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Abstract 

A boundary integral method for analysing the anti-plane harmonic vibration of a ceramic slab which is subject to an electrical load is 
outlined here. The problem under consideration has application in the analysis of piezoelectric transformers. Quantities of practical 
interest, such as the transforming ratio and the efficiency of the ceramic slab as a piezoelectric transformer, are computed.   
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1. Introduction 

Of interest here is the analysis of the anti-plane harmonic 
vibration of a piezoelectric slab of a polarised ceramic which is 
subject to an electrical load. 

With reference to a Cartesian coordinate system Ox1x2x3, the 
piezoelectric slab occupies the region given by 0 < x1 < , −h < 
x2 < h, −∞ < x3 < ∞, where and h are positive real numbers. 
The electrical poling direction of the ceramic is along the x3 
direction. All the sides of the slab are traction-free. Certain parts 
of the boundary of the slab are electroded as shown in Fig. 1. 
More precisely, the parts 0 < x1 < a,  x2 = ±h are occupied by 
input electrodes with voltages ±Vin exp(iω t) (i2 = −1), while the 
parts b < x1 < ,  x2 = ±h are covered by output electrodes with 
voltages ∓ Vout exp(iω t), where t denotes time,  Vin  and Vout are 
constants and ω is the driving frequency of the input voltage. 
The output electrodes are connected by an electric circuit with 
impedance Z. The parts a < x1 < b,  x2 = ±h and the vertical 
sides of the slab are unelectroded. Note that a < b. 

 Under the input voltage Vin exp(iω t), the slab is driven into 
an anti-plane harmonic vibration such that the only non-zero 
component of its displacement is the one along the x3 direction 
and given by u3 = u(x1, x2) exp(iω t). The electric potential is 
given by φ = ψ(x1, x2) exp(iω t) and the non-zero x3 component 
of the traction on the boundary by T = q(x1, x2)exp(iω t).  

 
Figure 1: A sketch of the problem 

For given Vin, ω and Z, the problem is to determine Vout and the 
normal electric displacement D = p(x1, x2) exp(iω t) on the 
electroded parts of the boundary of the slab. Once the problem 
is solved, quantities of interest, such as the transforming ratio 
and the efficiency of the piezoelectric slab as a transformer, can 
be computed.  

2. Mathematical formulation 

The following non-dimensionalised quantities are defined: 
 

* * * * * * *1 2 11
1 2 2

11 44 15

* * * * * * * * *1 2 1 2 11 1 2
1 2 1 2 1 2

44 15 15

* * * * * * 11 out 111 in 1 2
in 1 2 out 1 2

15

( , ) 2, , , ( , ) , ,

( , ) ( , ) ( , )( , ) , ( , ) , ( , ) ,

( ,( , )( , ) , ( , )

j
j

x u x xa h hx a h u x x
c e

q x x p x x x xq x x p x x x x
c e e

V x xV x xV x x V x x
e

ρεωω
π ε

ε ψψ

εε

= = = = =
+

= = =

= = *2 11

15

) , ,
2

i ZZ
e h

ωε=

where c44 is the shear modulus of the material,  e15 and ε11 are 
respectively the piezoelectric and dielectric constants and ρ is 
the density. Henceforth, for convenience, the superscript ∗  for 
the non-dimensionalised quantities will be omitted. 

The problem in Section 1 requires solving for u and ψ from 
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Further details, such as on how s and p are related to u and ψ,  
may be found in Ref. [2]. The usual convention of summing 
over latin subscripts which run from 1 to 2 is adopted here. 

As Vout is not known in Eqn. (2), the additional condition in 
Eqn. (3) which gives the relation between the output voltage 
and the current in the circuit connecting the output electrodes is 
required to complete the formulation of the problem. 

3. Boundary integral equations 

Equations (1) and (2) give rise to the boundary integral 
equation (see Ref. [1]) 
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where C is the path which comprises three straight lines defined 
by {(x1, x2) : x1 = 0, 0 ≤ x2 < h}, {(x1, x2) : x2 = h, 0 ≤ x1 ≤ 1} and 
{(x1, x2) : x1 = 1, 0 ≤ x2 < h}, nj(x1, x2) are the components of the 
unit normal vector to C pointing away from the interior of the 
slab, λ(ξ1, ξ2) = 1/2 if (ξ1, ξ2) lies on a smooth part of C and is 
not an endpoint of C and λ(ξ1, ξ2) = 1 if (ξ1, ξ2) lies in the 
interior of the slab, k2 = (e15)2/(c44ε11) and 
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where Y0 is the zero-th order Bessel function of the second kind. 
Equations (3) and (4) can be discretised together with Eqn. 

(2) as explained in Ref. [1] to determine numerically u(x1, x2) on 
C, and p(x1, x2) and ψ(x1, x2) on respectively the electroded and 
unelectroded parts of C, and the unknown output voltage Vout. 
Once these unknown quantities are determined, the 
transforming ratio of the ceramic slab as a piezoelectric 
transformer can be computed by |Vout/Vin|  and the efficiency by 
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where the overhead bar denotes the complex conjugate. 

4. Numerical results 

The transformer is taken to be made of polarised ceramic 
PZT-5H with damping in the elastic material constant c44. As in 
Ref. [3], the coefficients of the ceramic are chosen to be c44 = 
(2.3+0.023i)×1010 N/m2, ρ = 7500 kg/m3, e15 = 17 C/m2 and ε11 
= 1.505×10−8 C/(Vm). Here the non-dimensionalised height h is 
taken to be given by 0.05 and a and b by 0.40 and 0.60 
respectively. 

The boundary C is discretized into equal length straight line 
elements. The calculation is refined by doubling the number of 
elements until convergence is observed in the numerical values. 

For a larger ω or a very small h, more elements may be needed. 
Up to 900 constant elements are used here. 

The numerical values of the transforming ratio |Vout/Vin| are 
calculated for a range of the non-dimensionalised driving 
frequency ω for a given Z. For Z = 2, the transforming ratio 
appears to peak near ω = 0.904. Table 1 records the values of 
|Vout/Vin| for selected values of ω  near 0.904.  

 
Table 1: Numerical values of |Vout/Vin| (Z = 2). 

ω 0.901 0.903 0.904 0.905 0.907 0.909 
|Vout/Vin| 0.988   2.13  2.78  1.74 0.725 0.424 

 

 
Figure 2: Plot of |Vout/Vin| against Z (ω = 0.904) 
 

For ω = 0.904, |Vout/Vin| is plotted against Z in Fig. 2. It is 
observed |Vout/Vin| is maximum at Z = 2.01 (approximately) and 
appears to tend to a fixed value (approximately 0.066) as Z 
increases. Also, for ω = 0.904, the efficiency of the transformer 
is plotted against Z/i in Fig. 3.  The efficiency reaches a peak 
value of approximately 0.0762 at close to Z/i = 2 and then 
decreases as the Z/i increases. The plots in Fig. 2 and 3 exhibit 
qualitative features similar to those in Ref. [3]. 

 
Figure 3: Plot of efficiency against Z/i (ω = 0.904) 
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