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The boundary integral equation for the three-dimensional potential prob-

lem is given in Chapter 6 of the book “A Beginner’s Course in Boundary
Element Methods” as

λ(ξ, η, ζ)φ(ξ, η, ζ) =

ZZ
S

(φ(x, y, z)
∂

∂n
[Φ3D(x, y, z; ξ, η, ζ)]

−Φ3D(x, y, z; ξ, η, ζ) ∂
∂n
[φ(x, y, z)])ds(x, y, z), (1)

where φ satisfies the three-dimensional Laplace’s equation in the region R
bounded by a closed surface S, λ(ξ, η, ζ) is defined by

λ(ξ, η, ζ) =

 0 if (ξ, η, ζ) /∈ R ∪ S,
1/2 if (ξ, η, ζ) lies on a smooth part of S,
1 if (ξ, η, ζ) ∈ R,

(2)

and Φ3D is the fundamental solution given by

Φ3D(x, y, z; ξ, η, ζ) = − 1

4π
p
(x− ξ)2 + (y − η)2 + (z − ζ)2

. (3)

Let us now consider the axisymmetric case in which the surface S of the
solution domain can be generated by rotating a curve Γ about the z-axis
by an angle of 360o. For example, if S is the sphere x2 + y2 + (z − 2)2 = 1
(sphere of center (0, 0, 2) and radius 1) then we can generate the surface S
by rotating the semi-circle x2 + (z − 2)2 = 1, x ≥ 0, on the Oxz plane by
an angle of 360o about the z-axis. For such a surface S and for φ which
does not change with the polar coordinate θ but only with r and z, that
is, for an axisymmetric problem, the boundary integral over S in (1) can be
reduced to an integral over the curve Γ as explained below. (In cylindrical
polar coordinates, points can be described using (r, θ, z) instead of (x, y, z),
where x = r cos θ and y = r sin θ.)
Firstly, let us define

φ∗(r, θ, z) = φ(r cos θ, y sin θ, z)

p∗(r, θ, z) =
∂

∂n
[φ(x, y, z)]

¯̄̄̄
(x,y,z)=(r cos θ,y sin θ,z)

(nx,ny)=(nr cos θ−nθ sin θ,nr sin θ+nθ cos θ)
,
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nx,ny)=(nr cos θ−nθ sin θ,nr sin θ+nθ cos θ)



where nr and nθ are respectively the r and θ components of the outward unit
normal vector to the surface S as explained below. In Cartesian coordinates,
the normal vector is given by [nx, ny, nz].
For an axisymmetric problem, φ∗ is independent of θ and we can write

φ∗(r, z). We will show now that, for axisymmetric problem, p∗ also depends
only on r and z. We have:

∂

∂n
[φ(x, y, z)] = nx

∂φ

∂x
+ ny

∂φ

∂y
+ nz

∂φ

∂z

= nx(
∂φ∗

∂r

∂r

∂x
+

∂φ∗

∂θ

∂θ

∂x
)

+ny(
∂φ∗

∂r

∂r

∂y
+

∂φ∗

∂θ

∂θ

∂y
) + nz

∂φ∗

∂z
.

If we introduce a local (polar) coordinate system with base vectors er, eθ
and ez =k, then the unit normal vector is given by nrer + nθeθ + nzez. On
a fixed plane z = c (constant), if the body is axisymmetric, the components
nr, nθ and nz do not change with θ, but nx and ny change with θ. It may be
shown that

nx = nr cos θ − nθ sin θ
ny = nr sin θ + nθ cos θ.

It follows that (for axisymmetric problem)

p∗ = (nr cos θ − nθ sin θ)[cos θ∂φ
∗

∂r
− sin θ

r

∂φ∗

∂θ
]

+(nr sin θ + nθ cos θ)[sin θ
∂φ∗

∂r
+
cos θ

r

∂φ∗

∂θ
] + nz

∂φ∗

∂z

= nr
∂φ∗

∂r
+
1

r
nθ

∂φ∗

∂θ
+ nz

∂φ∗

∂z
.

Since φ∗, nr and nz are independent of θ, we find that p∗ = nr∂φ
∗/∂r +

nz∂φ
∗/∂z is also independent of θ.
For convenience, we will now drop the asterik ∗ and write φ∗(r, z) as

merely φ(r, z) and p∗(r, z) as p(r, z).
For S which is symmetrical about the z-axis, the infinitesimal area ds(x, y, z)

in (1) can be written as

ds(x, y, z) = r d` dθ. (4)
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where nr and nθ are respectively the r and θ components of the outward unitnormal vector to the surface S as explained below. In Cartesian coordinates,the normal vector is given by [nx, ny, nz].

nz



where d` is the length of an infinitesimal portion of the curve Γ.
Consider now (1) for axisymmetric potential problem. For a point (ξ, η, ζ) =

(r0 cos θ0, r0 sin θ0, z0) on the Oxz plane (where y = 0 or θ0 = 0), we can
rewrite (1) as

λ(r0, z0)φ(r0, z0)

=

ZZ
S

(φ(r, z)
∂

∂n
[Φ3D(r cos θ, r sin θ, z; r0, 0, z0)]

−Φ3D(r cos θ, r sin θ, z; r0, 0, z0)p(r, z))r d` dθ, (5)

where λ(r0, z0) = 1/2 if (r0, z0) lies on a smooth part of Γ and λ(r0, z0) = 1
if (r0, z0) lies in the interior of the solution domain on the Oxz plane.
We need to integrate with respect to θ from 0 to 2π as the complete

surface S is obtained by rotating Γ by an angle of 360◦. Note that θ appears
only in the function Φ3D and not in φ(r, z). The integration involving the
coordinates r and z (that is, with respect to `) is over the curve Γ. Thus, we
can rewrite (5) as

λ(r0, z0)T (r0, z0)

=

Z
Γ

(T (r, z)Ψaxis(r, z; r0, z0;nr, nz)− Φaxis(r, z; r0, z0)p(r, z))rd`(r, z),

(6)

where

Φaxis(r, z; r0, z0)

=

2πZ
0

Φ3D(r cos θ, r sin θ, z; r0, 0, z0)dθ

= − 1
4π

2πZ
0

1p
(r cos θ − r0)2 + r2 sin2 θ + (z − z0)2

dθ

= − 1
4π

2πZ
0

1p
r2 + r20 + (z − z0)2 − 2rr0 cos θ

dθ

= − 1

π
p
r2 + r20 + (z − z0)2 + 2rr0

2πZ
0

1

4
q
1− 2rr0(1+cos θ)

r2+r20+(z−z0)2+2rr0

dθ
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= − 1

π
p
r2 + r20 + (z − z0)2 + 2rr0

πZ
0

1

2
q
1− 2rr0(1+cos(2t))

r2+r20+(z−z0)2+2rr0

dt

= − 1

π
p
r2 + r20 + (z − z0)2 + 2rr0

πZ
0

1

2
q
1− 4rr0 cos2(t)

r2+r20+(z−z0)2+2rr0

dt

= − 1

π
p
r2 + r20 + (z − z0)2 + 2rr0

π/2Z
0

1q
1− 4rr0 cos2(t)

r2+r20+(z−z0)2+2rr0

dt

= − 1

π
p
r2 + r20 + (z − z0)2 + 2rr0

π/2Z
0

1q
1− 4rr0 sin

2(t)
r2+r20+(z−z0)2+2rr0

dt.

If we define the function K(m) as

K(m) =

π/2Z
0

1p
1−m sin2(t)dt, (7)

then we can write

Φaxis(r, z; r0, z0)

= − 1

π
p
r2 + r20 + (z − z0)2 + 2rr0

K(
4rr0

r2 + r20 + (z − z0)2 + 2rr0
). (8)

In mathematics, K is a special function and is called the complete elliptic
integral of the first kind. There is a simple approximate but accurate for-
mula in Abramowitz and Stegun’s Handbook of Mathematical Functions for
evaluating K(m). Some mathematical softwares may have inbuilt functions
for calculating K(m). Note that 0 ≤ 4rr0

r2+r20+(z−z0)2+2rr0 ≤ 1 and K(m) is

undefined for m = 1.
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Also, for axisymmetric body, we have:

Ψaxis(r, z; r0, z0;nr, nz)

=

2πZ
0

∂

∂n
[Φ3D(r cos θ, r sin θ, z; r0, 0, z0)]dθ

=

2πZ
0

(nr
∂

∂r
[Φ3D(r cos θ, r sin θ, z; r0, 0, z0)]

+
1

r
nθ

∂

∂θ
[Φ3D(r cos θ, r sin θ, z; r0, 0, z0)]

+nz
∂

∂z
[Φ3D(r cos θ, r sin θ, z; r0, 0, z0)])dθ (9)

= nr
∂

∂r
[Φaxis(r, z; r0, z0)] + nz

∂

∂z
[Φaxis(r, z; r0, z0)]

For the axisymmetric body, can you see why nθ = 0?
There is this relationship:

d

dm
(K(m)) =

1

2m
(
E(m)

1−m −K(m)), (10)

where

E(m) =

π/2Z
0

p
1−m sin2 tdt. (11)

Note that E(m) is known as the complete elliptic integral of the second kind.
Details on computing E(m) are available in Abramowitz and Stegun.
From (9) and (10), it can be shown that

Ψaxis(r, z; r0, z0;nr, nz)

= − 1

π
p
r2 + r20 + (z − z0)2 + 2rr0

×{nr
2r
[

r20 − r2 + (z − z0)2
r2 + r20 + (z − z0)2 − 2rr0

E(
4rr0

r2 + r20 + (z − z0)2 + 2rr0
)

−K( 4rr0
r2 + r20 + (z − z0)2 + 2rr0

)]

+nz
z0 − z

r2 + r20 + (z − z0)2 − 2rr0
E(

4rr0
r2 + r20 + (z − z0)2 + 2rr0

)}. (12)
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If we use (6) to devise a boundary element method for solving the ax-
isymmetric potential problem, we have to discretize the curve Γ on the rz
space (that is, the Oxz plane). The curve Γ can be discretized into straight
line elements. The k-th typical element which has endpoints (r(k), z(k)) and
(r(k+1), z(k+1))
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