## Boundary Integral Equation for

## Axisymmetric Potential Problem

by W. T. Ang 26 February 2009
Revised 3 November 2010
The boundary integral equation for the three-dimensional potential problem is given in Chapter 6 of the book "A Beginner's Course in Boundary Element Methods" as

$$
\begin{align*}
\lambda(\xi, \eta, \zeta) \phi(\xi, \eta, \zeta)= & \iint_{S}\left(\phi(x, y, z) \frac{\partial}{\partial n}\left[\Phi_{3 \mathrm{D}}(x, y, z ; \xi, \eta, \zeta)\right]\right. \\
& \left.-\Phi_{3 \mathrm{D}}(x, y, z ; \xi, \eta, \zeta) \frac{\partial}{\partial n}[\phi(x, y, z)]\right) d s(x, y, z), \tag{1}
\end{align*}
$$

where $\phi$ satisfies the three-dimensional Laplace's equation in the region $R$ bounded by a closed surface $S, \lambda(\xi, \eta, \zeta)$ is defined by

$$
\lambda(\xi, \eta, \zeta)= \begin{cases}0 & \text { if }(\xi, \eta, \zeta) \notin R \cup S,  \tag{2}\\ 1 / 2 & \text { if }(\xi, \eta, \zeta) \text { lies on a smooth part of } S, \\ 1 & \text { if }(\xi, \eta, \zeta) \in R,\end{cases}
$$

and $\Phi_{3 \mathrm{D}}$ is the fundamental solution given by

$$
\begin{equation*}
\Phi_{3 \mathrm{D}}(x, y, z ; \xi, \eta, \zeta)=-\frac{1}{4 \pi \sqrt{(x-\xi)^{2}+(y-\eta)^{2}+(z-\zeta)^{2}}} . \tag{3}
\end{equation*}
$$

Let us now consider the axisymmetric case in which the surface $S$ of the solution domain can be generated by rotating a curve $\Gamma$ about the $z$-axis by an angle of $360^{\circ}$. For example, if $S$ is the sphere $x^{2}+y^{2}+(z-2)^{2}=1$ (sphere of center ( $0,0,2$ ) and radius 1 ) then we can generate the surface $S$ by rotating the semi-circle $x^{2}+(z-2)^{2}=1, x \geq 0$, on the $O x z$ plane by an angle of $360^{\circ}$ about the $z$-axis. For such a surface $S$ and for $\phi$ which does not change with the polar coordinate $\theta$ but only with $r$ and $z$, that is, for an axisymmetric problem, the boundary integral over $S$ in (1) can be reduced to an integral over the curve $\Gamma$ as explained below. (In cylindrical polar coordinates, points can be described using $(r, \theta, z)$ instead of $(x, y, z)$, where $x=r \cos \theta$ and $y=r \sin \theta$.)

Firstly, let us define

$$
\begin{aligned}
\phi^{*}(r, \theta, z) & =\phi(r \cos \theta, y \sin \theta, z) \\
p^{*}(r, \theta, z) & =\left.\frac{\partial}{\partial n}[\phi(x, y, z)]\right|_{\left(n_{x}, n_{y}\right)=\left(n_{r} \cos \theta-n_{\theta} \sin \theta, n_{r} \sin \theta+n_{\theta} \cos \theta\right)} ^{(x, y, z)=(r \cos \theta, y \sin \theta, z)},
\end{aligned},
$$

where $n_{r}$ and $n_{\theta}$ are respectively the $r$ and $\theta$ components of the outward unit normal vector to the surface $S$ as explained below. In Cartesian coordinates, the normal vector is given by $\left[n_{x}, n_{y}, n_{z}\right]$.

For an axisymmetric problem, $\phi^{*}$ is independent of $\theta$ and we can write $\phi^{*}(r, z)$. We will show now that, for axisymmetric problem, $p^{*}$ also depends only on $r$ and $z$. We have:

$$
\begin{aligned}
\frac{\partial}{\partial n}[\phi(x, y, z)]= & n_{x} \frac{\partial \phi}{\partial x}+n_{y} \frac{\partial \phi}{\partial y}+n_{z} \frac{\partial \phi}{\partial z} \\
= & n_{x}\left(\frac{\partial \phi^{*}}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial \phi^{*}}{\partial \theta} \frac{\partial \theta}{\partial x}\right) \\
& +n_{y}\left(\frac{\partial \phi^{*}}{\partial r} \frac{\partial r}{\partial y}+\frac{\partial \phi^{*}}{\partial \theta} \frac{\partial \theta}{\partial y}\right)+n_{z} \frac{\partial \phi^{*}}{\partial z}
\end{aligned}
$$

If we introduce a local (polar) coordinate system with base vectors $\underline{\mathbf{e}}_{r}, \underline{\mathbf{e}}_{\theta}$ and $\underline{\mathbf{e}}_{z}=\underline{\mathbf{k}}$, then the unit normal vector is given by $n_{r} \underline{\mathbf{e}}_{r}+n_{\theta} \underline{\mathbf{e}}_{\theta}+n_{z} \underline{\mathbf{e}}_{z}$. On a fixed plane $z=c$ (constant), if the body is axisymmetric, the components $n_{r}, n_{\theta}$ and $n_{z}$ do not change with $\theta$, but $n_{x}$ and $n_{y}$ change with $\theta$. It may be shown that

$$
\begin{aligned}
& n_{x}=n_{r} \cos \theta-n_{\theta} \sin \theta \\
& n_{y}=n_{r} \sin \theta+n_{\theta} \cos \theta .
\end{aligned}
$$

It follows that (for axisymmetric problem)

$$
\begin{aligned}
p^{*}= & \left(n_{r} \cos \theta-n_{\theta} \sin \theta\right)\left[\cos \theta \frac{\partial \phi^{*}}{\partial r}-\frac{\sin \theta}{r} \frac{\partial \phi^{*}}{\partial \theta}\right] \\
& +\left(n_{r} \sin \theta+n_{\theta} \cos \theta\right)\left[\sin \theta \frac{\partial \phi^{*}}{\partial r}+\frac{\cos \theta}{r} \frac{\partial \phi^{*}}{\partial \theta}\right]+n_{z} \frac{\partial \phi^{*}}{\partial z} \\
= & n_{r} \frac{\partial \phi^{*}}{\partial r}+\frac{1}{r} n_{\theta} \frac{\partial \phi^{*}}{\partial \theta}+n_{z} \frac{\partial \phi^{*}}{\partial z} .
\end{aligned}
$$

Since $\phi^{*}, n_{r}$ and $n_{z}$ are independent of $\theta$, we find that $p^{*}=n_{r} \partial \phi^{*} / \partial r+$ $n_{z} \partial \phi^{*} / \partial z$ is also independent of $\theta$.

For convenience, we will now drop the asterik $*$ and write $\phi^{*}(r, z)$ as merely $\phi(r, z)$ and $p^{*}(r, z)$ as $p(r, z)$.

For $S$ which is symmetrical about the $z$-axis, the infinitesimal area $d s(x, y, z)$ in (1) can be written as

$$
\begin{equation*}
d s(x, y, z)=r d \ell d \theta \tag{4}
\end{equation*}
$$

where $d \ell$ is the length of an infinitesimal portion of the curve $\Gamma$.
Consider now (1) for axisymmetric potential problem. For a point $(\xi, \eta, \zeta)=$ $\left(r_{0} \cos \theta_{0}, r_{0} \sin \theta_{0}, z_{0}\right)$ on the $O x z$ plane (where $y=0$ or $\theta_{0}=0$ ), we can rewrite (1) as

$$
\begin{align*}
& \lambda\left(r_{0}, z_{0}\right) \phi\left(r_{0}, z_{0}\right) \\
& \iint_{S}\left(\phi(r, z) \frac{\partial}{\partial n}\left[\Phi_{3 \mathrm{D}}\left(r \cos \theta, r \sin \theta, z ; r_{0}, 0, z_{0}\right)\right]\right. \\
& \left.-\Phi_{3 \mathrm{D}}\left(r \cos \theta, r \sin \theta, z ; r_{0}, 0, z_{0}\right) p(r, z)\right) r d \ell d \theta, \tag{5}
\end{align*}
$$

where $\lambda\left(r_{0}, z_{0}\right)=1 / 2$ if $\left(r_{0}, z_{0}\right)$ lies on a smooth part of $\Gamma$ and $\lambda\left(r_{0}, z_{0}\right)=1$ if $\left(r_{0}, z_{0}\right)$ lies in the interior of the solution domain on the $O x z$ plane.

We need to integrate with respect to $\theta$ from 0 to $2 \pi$ as the complete surface $S$ is obtained by rotating $\Gamma$ by an angle of $360^{\circ}$. Note that $\theta$ appears only in the function $\Phi_{3 \mathrm{D}}$ and not in $\phi(r, z)$. The integration involving the coordinates $r$ and $z$ (that is, with respect to $\ell$ ) is over the curve $\Gamma$. Thus, we can rewrite (5) as

$$
=\int_{\Gamma}^{\lambda\left(r_{0}, z_{0}\right) T\left(r_{0}, z_{0}\right)}\left(T(r, z) \Psi_{\text {axis }}\left(r, z ; r_{0}, z_{0} ; n_{r}, n_{z}\right)-\Phi_{\text {axis }}\left(r, z ; r_{0}, z_{0}\right) p(r, z)\right) r d \ell(r, z),
$$

where

$$
\begin{gathered}
\quad \Phi_{\text {axis }}\left(r, z ; r_{0}, z_{0}\right) \\
=\int_{0}^{2 \pi} \Phi_{3 \mathrm{D}}\left(r \cos \theta, r \sin \theta, z ; r_{0}, 0, z_{0}\right) d \theta \\
=-\frac{1}{4 \pi} \int_{0}^{2 \pi} \frac{1}{\sqrt{\left(r \cos \theta-r_{0}\right)^{2}+r^{2} \sin ^{2} \theta+\left(z-z_{0}\right)^{2}}} d \theta \\
=- \\
=-\frac{1}{4 \pi} \int_{0}^{2 \pi} \frac{1}{\pi \sqrt{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}-2 r r_{0} \cos \theta}} d \theta \\
=\int_{0}^{2 \pi} \frac{1}{4 \sqrt{1-\frac{2 r r_{0}(1+\cos \theta)}{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}}} d \theta
\end{gathered}
$$

$$
\begin{aligned}
& =-\frac{1}{\pi \sqrt{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}} \int_{0}^{\pi} \frac{1}{2 \sqrt{1-\frac{2 r r_{0}(1+\cos (2 t))}{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}}} d t \\
& =-\frac{1}{\pi \sqrt{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}} \int_{0}^{\pi} \frac{1}{2 \sqrt{1-\frac{4 r r_{0} \cos ^{2}(t)}{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}}} d t \\
& =-\frac{1}{\pi \sqrt{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}} \int_{0}^{\pi / 2} \frac{1}{\sqrt{1-\frac{4 r r_{0} \cos ^{2}(t)}{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}}} d t \\
& =-\frac{1}{\pi \sqrt{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}} \int_{0}^{\pi / 2} \frac{1}{\sqrt{1-\frac{4 r r_{0} \sin ^{2}(t)}{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}}} d t .
\end{aligned}
$$

If we define the function $K(m)$ as

$$
\begin{equation*}
K(m)=\int_{0}^{\pi / 2} \frac{1}{\sqrt{1-m \sin ^{2}(t)}} d t \tag{7}
\end{equation*}
$$

then we can write

$$
\begin{align*}
& \Phi_{\text {axis }}\left(r, z ; r_{0}, z_{0}\right) \\
= & -\frac{1}{\pi \sqrt{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}} K\left(\frac{4 r r_{0}}{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}\right) . \tag{8}
\end{align*}
$$

In mathematics, $K$ is a special function and is called the complete elliptic integral of the first kind. There is a simple approximate but accurate formula in Abramowitz and Stegun's Handbook of Mathematical Functions for evaluating $K(m)$. Some mathematical softwares may have inbuilt functions for calculating $K(m)$. Note that $0 \leq \frac{4 r r_{0}}{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}} \leq 1$ and $K(m)$ is undefined for $m=1$.

Also, for axisymmetric body, we have:

$$
\begin{align*}
& \Psi_{\text {axis }}\left(r, z ; r_{0}, z_{0} ; n_{r}, n_{z}\right) \\
= & \int_{0}^{2 \pi} \frac{\partial}{\partial n}\left[\Phi_{3 \mathrm{D}}\left(r \cos \theta, r \sin \theta, z ; r_{0}, 0, z_{0}\right)\right] d \theta \\
= & \int_{0}^{2 \pi}\left(n_{r} \frac{\partial}{\partial r}\left[\Phi_{3 \mathrm{D}}\left(r \cos \theta, r \sin \theta, z ; r_{0}, 0, z_{0}\right)\right]\right. \\
& +\frac{1}{r} n_{\theta} \frac{\partial}{\partial \theta}\left[\Phi_{3 \mathrm{D}}\left(r \cos \theta, r \sin \theta, z ; r_{0}, 0, z_{0}\right)\right] \\
& \left.+n_{z} \frac{\partial}{\partial z}\left[\Phi_{3 \mathrm{D}}\left(r \cos \theta, r \sin \theta, z ; r_{0}, 0, z_{0}\right)\right]\right) d \theta  \tag{9}\\
= & n_{r} \frac{\partial}{\partial r}\left[\Phi_{\text {axis }}\left(r, z ; r_{0}, z_{0}\right)\right]+n_{z} \frac{\partial}{\partial z}\left[\Phi_{\text {axis }}\left(r, z ; r_{0}, z_{0}\right)\right]
\end{align*}
$$

For the axisymmetric body, can you see why $n_{\theta}=0$ ?
There is this relationship:

$$
\begin{equation*}
\frac{d}{d m}(K(m))=\frac{1}{2 m}\left(\frac{E(m)}{1-m}-K(m)\right), \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
E(m)=\int_{0}^{\pi / 2} \sqrt{1-m \sin ^{2} t} d t \tag{11}
\end{equation*}
$$

Note that $E(m)$ is known as the complete elliptic integral of the second kind. Details on computing $E(m)$ are available in Abramowitz and Stegun.

From (9) and (10), it can be shown that

$$
\begin{align*}
& =\Psi_{\text {axis }}\left(r, z ; r_{0}, z_{0} ; n_{r}, n_{z}\right) \\
& = \\
& \quad-\frac{1}{\pi \sqrt{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}} \\
& \\
& \quad \times\left\{\frac { n _ { r } } { 2 r } \left[\frac{r_{0}^{2}-r^{2}+\left(z-z_{0}\right)^{2}}{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}-2 r r_{0}} E\left(\frac{4 r r_{0}}{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}\right)\right.\right.  \tag{12}\\
& \left.\quad-K\left(\frac{4 r r_{0}}{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}\right)\right] \\
& \\
& \left.\quad+n_{z} \frac{z_{0}-z}{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}-2 r r_{0}} E\left(\frac{4 r r_{0}}{r^{2}+r_{0}^{2}+\left(z-z_{0}\right)^{2}+2 r r_{0}}\right)\right\} .
\end{align*}
$$

If we use (6) to devise a boundary element method for solving the axisymmetric potential problem, we have to discretize the curve $\Gamma$ on the $r z$ space (that is, the $O x z$ plane). The curve $\Gamma$ can be discretized into straight line elements. The $k$-th typical element which has endpoints $\left(r^{(k)}, z^{(k)}\right)$ and $\left(r^{(k+1)}, z^{(k+1)}\right)$

