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Chapter 1

TWO—DIMENSIONAL LAPLACE’S EQUATION

1.1 Introduction

Perhaps a good starting point for introducing boundary element methods is through
solving boundary value problems governed by the two-dimensional Laplace’s equation

∂2φ

∂x2
+

∂2φ

∂y2
= 0. (1.1)

The Laplace’s equation occurs in the formulation of problems in many diverse
fields of studies in engineering and physical sciences, such as thermostatics, elasto-
statics, electrostatics, magnetostatics, ideal fluid flow and flow in porous media.

An interior boundary value problem which is of practical interest requires
solving Eq. (1.1) in the two-dimensional region R (on the Oxy plane) bounded by a
simple closed curve C subject to the boundary conditions

φ = f1(x, y) for (x, y) ∈ C1,

∂φ

∂n
= f2(x, y) for (x, y) ∈ C2, (1.2)

where f1 and f2 are suitably prescribed functions and C1 and C2 are non-intersecting
curves such that C1 ∪ C2 = C. Refer to Figure 1.1 for a geometrical sketch of the
problem.

The normal derivative ∂φ/∂n in Eq. (1.2) is defined by

∂φ

∂n
= nx

∂φ

∂x
+ ny

∂φ

∂y
, (1.3)

where nx and ny are respectively the x and y components of a unit normal vector to
the curve C. Here the unit normal vector [nx,ny] on C is taken to be pointing away
from the region R. Note that the normal vector may vary from point to point on C.
Thus, [nx, ny] is a function of x and y.

The boundary conditions given in Eq. (1.2) are assumed to be properly posed
so that the boundary value problem has a unique solution, that is, it is assumed that
one can always find a function φ(x, y) satisfying Eqs. (1.1)-(1.2) and that there is
only one such function.
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2 Two—dimensional Laplace’s Equation

Figure 1.1

For a particular example of practical situations involving the boundary value
problem above, one may mention the classical heat conduction problem where φ
denotes the steady-state temperature in an isotropic solid. Eq. (1.1) is then the
temperature governing equation derived, under certain assumptions, from the law of
conservation of heat energy together with the Fourier’s heat flux model. The heat
flux out of the region R across the boundary C is given by −κ∂φ/∂n, where κ is the
thermal heat conductivity of the solid. Thus, the boundary conditions in Eq. (1.2)
imply that at each and every given point on C either the temperature or the heat
flux (but not both) is known. To determine the temperature field in the solid, one
has to solve Eq. (1.1) in R to find the solution that satisfies the prescribed boundary
conditions on C.

In general, it is difficult (if not impossible) to solve exactly the boundary
value problem defined by Eqs. (1.1)-(1.2). The mathematical complexity involved
depends on the geometrical shape of the region R and the boundary conditions given
in Eq. (1.2). Exact solutions can only be found for relatively simple geometries of
R (such as a square region) together with particular boundary conditions. For more
complicated geometries or general boundary conditions, one may have to resort to
numerical (approximate) techniques for solving Eqs. (1.1)-(1.2).

This chapter introduces a boundary element method for the numerical solution
of the interior boundary value problem defined by Eqs. (1.1)-(1.2). We show how
a boundary integral solution can be derived for Eq. (1.1) and applied to obtain a
simple boundary element procedure for approximately solving the boundary value
problem under consideration. The implementation of the numerical procedure on the
computer, achieved through coding in FORTRAN 77, is discussed in detail.
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Fundamental Solution 3

1.2 Fundamental Solution

If we use polar coordinates r and θ centered about (0, 0), as defined by x = r cos θ
and y = r sin θ, and introduce ψ(r, θ) = φ(r cos θ, r sin θ), we can rewrite Eq. (1.1) as

1

r

∂

∂r
(r
∂ψ

∂r
) +

1

r2

∂2ψ

∂θ2 = 0. (1.4)

For the case in which ψ is independent of θ, that is, if ψ is a function of r
alone, Eq. (1.4) reduces to the ordinary differential equation

d

dr
(r
d

dr
[ψ(r)]) = 0 for r 6= 0. (1.5)

The ordinary differential equation in Eq. (1.5) can be easily integrated twice
to yield the general solution

ψ(r) = A ln(r) +B, (1.6)

where A and B are arbitrary constants.

From (1.6), it is obvious that the two-dimensional Laplace’s equation in Eq.
(1.1) admits a class of particular solutions given by

φ(x, y) = A ln
p
x2 + y2 +B for (x, y) 6= (0, 0). (1.7)

If we choose the constants A and B in (1.7) to be 1/(2π) and 0 respectively
and shift the center of the polar coordinates from (0, 0) to the general point (ξ, η), a
particular solution of Eq. (1.1) is

φ(x, y) =
1

2π
ln
p
(x− ξ)2 + (y − η)2 for (x, y) 6= (ξ, η). (1.8)

As we shall see, the particular solution in Eq. (1.8) plays an important role
in the development of boundary element methods for the numerical solution of the
interior boundary value problem defined by Eqs. (1.1)-(1.2). We specially denote this
particular solution using the symbol Φ(x, y; ξ, η), that is, we write

Φ(x, y; ξ, η) =
1

4π
ln[(x− ξ)2 + (y − η)2]. (1.9)

We refer to Φ(x, y; ξ, η) in Eq. (1.9) as the fundamental solution of the two-
dimensional Laplace’s equation. Note that Φ(x, y; ξ, η) satisfies Eq. (1.1) everywhere
except at (ξ, η) where it is not well defined.
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4 Two—dimensional Laplace’s Equation

1.3 Reciprocal Relation

If φ1 and φ2 are any two solutions of Eq. (1.1) in the region R bounded by the simple
closed curve C then it can be shown thatZ

C

(φ2

∂φ1

∂n
− φ1

∂φ2

∂n
)ds(x, y) = 0. (1.10)

Eq. (1.10) provides a reciprocal relation between any two solutions of the
Laplace’s equation in the regionR bounded by the curve C. It may be derived from the
two-dimensional version of the Gauss-Ostrogradskii (divergence) theorem as explained
below.

According to the divergence theorem, if F= u(x, y)i+v(x, y)j is a well defined
vector function such that ∇ ·F = ∂u/∂x+ ∂v/∂y exists in the region R bounded by
the simple closed curve C thenZ

C

F · n ds(x, y) =
ZZ
R

∇ · F dxdy,

that is, Z
C

[unx + vny]ds(x, y) =

ZZ
R

[
∂u

∂x
+

∂v

∂y
]dxdy,

where n = [nx, ny] is the unit normal vector to the curve C, pointing away from the
region R.

Since φ1 and φ2 are solutions of Eq. (1.1), we may write

∂2φ1

∂x2
+

∂2φ1

∂y2
= 0,

∂2φ2

∂x2
+

∂2φ2

∂y2
= 0.

If we multiply the first equation by φ2 and the second one by φ1 and take the
difference of the resulting equations, we obtain

∂

∂x
(φ2

∂φ1

∂x
− φ1

∂φ2

∂x
) +

∂

∂y
(φ2

∂φ1

∂y
− φ1

∂φ2

∂y
) = 0,

which can be integrated over R to giveZZ
R

[
∂

∂x
(φ2

∂φ1

∂x
− φ1

∂φ2

∂x
) +

∂

∂y
(φ2

∂φ1

∂y
− φ1

∂φ2

∂y
)]dxdy = 0.
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Boundary Integral Solution 5

Application of the divergence theorem to convert the double integral over R
into a line integral over C yieldsZ

C

[(φ2

∂φ1

∂x
− φ1

∂φ2

∂x
)nx + (φ2

∂φ1

∂y
− φ1

∂φ2

∂y
)ny]ds(x, y) = 0

which is essentially Eq. (1.10).
Together with the fundamental solution given by Eq. (1.9), the reciprocal

relation in Eq. (1.10) can be used to derive a useful boundary integral solution for
the two-dimensional Laplace’s equation.

1.4 Boundary Integral Solution

Let us take φ1 = Φ(x, y; ξ, η) (the fundamental solution as defined in Eq. (1.9))
and φ2 = φ, where φ is the required solution of the interior boundary value problem
defined by Eqs. (1.1)-(1.2).

Since Φ(x, y; ξ, η) is not well defined at the point (ξ, η), the reciprocal relation
in Eq. (1.10) is valid for φ1 = Φ(x, y; ξ, η) and φ2 = φ only if (ξ, η) does not lie in the
region R ∪ C. Thus,Z

C

[φ(x, y)
∂

∂n
(Φ(x, y; ξ, η))−Φ(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y) = 0

for (ξ, η) /∈ R ∪ C. (1.11)

A more interesting and useful integral equation than Eq. (1.11) can be derived
from Eq. (1.10) if we take the point (ξ, η) to lie in the region R ∪ C.

For the case in which (ξ, η) lies in the interior of R, Eq. (1.10) is valid if we
replace C by C ∪ Cε, where Cε is a circle of center (ξ, η) and radius ε as shown in
Figure 1.2∗. This is because Φ(x, y; ξ, η) and its first order partial derivatives (with
respect to x or y) are well defined in the region between C and Cε. Thus, for C and
Cε in Figure 1.2, we can writeZ

C∪Cε

[φ(x, y)
∂

∂n
(Φ(x, y; ξ, η))−Φ(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y) = 0,

that is, Z
C

[φ(x, y)
∂

∂n
(Φ(x, y; ξ, η))− Φ(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y)

= −
Z
Cε

[φ(x, y)
∂

∂n
(Φ(x, y; ξ, η))−Φ(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y). (1.12)

∗The divergence theorem is not only applicable for simply connected regions but also for multiply
connected ones such as the one shown in Figure 1.2. For the region in Figure 1.2, the unit normal
vector to Cε (the inner boundary) points towards the center of the circle.
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6 Two—dimensional Laplace’s Equation

Figure 1.2

Eq. (1.12) holds for any radius ε > 0, so long as the circle Cε (in Figure 1.2)
lies completely inside the region bounded by C. Thus, we may let ε → 0+ in Eq.
(1.12). This givesZ

C

[φ(x, y)
∂

∂n
(Φ(x, y; ξ, η))−Φ(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y)

= − lim
ε→0+

Z
Cε

[φ(x, y)
∂

∂n
(Φ(x, y; ξ, η))− Φ(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y).

(1.13)

Using polar coordinates r and θ centered about (ξ, η) as defined by x − ξ =
r cos θ and y − η = r sin θ, we may write

Φ(x, y; ξ, η) =
1

2π
ln(r),

∂

∂n
[Φ(x, y; ξ, η)] = nx

∂

∂x
[Φ(x, y; ξ, η)] + ny

∂

∂y
[Φ(x, y; ξ, η)]

=
nx cos θ + ny sin θ

2πr
. (1.14)

The Taylor’s series of φ(x, y) about the point (ξ, η) is given by

φ(x, y) =
∞X
m=0

mX
k=0

(
∂mφ

∂xk∂ym−k
)

¯̄̄̄
(x,y)=(ξ,η)

(x− ξ)k(y − η)m−k

k!(m− k)! .

On the circle Cε, r = ε. Thus,

φ(x, y) =
∞X
m=0

mX
k=0

(
∂m

∂xk∂ym−k
[φ(x, y)])

¯̄̄̄
(x,y)=(ξ,η)

εm cosk θ sinm−k θ
k!(m− k)!
for (x, y) ∈ Cε. (1.15)
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Boundary Integral Solution 7

Similarly, we may write

∂

∂n
[φ(x, y)] =

∞X
m=0

mX
k=0

(
∂m

∂xk∂ym−k
{ ∂

∂n
[φ(x, y)]})

¯̄̄̄
(x,y)=(ξ,η)

×εm cosk θ sinm−k θ
k!(m− k)! for (x, y) ∈ Cε. (1.16)

Using Eqs. (1.14), (1.15) and (1.16) and writing ds(x, y) = εdθ with θ ranging
from 0 to 2π, we may now attempt to evaluate the limit on the right hand side of Eq.
(1.13). On Cε, the normal vector [nx, ny] is given by [− cos θ,− sin θ]. Thus,Z

Cε

φ(x, y)
∂

∂n
[Φ(x, y; ξ, η]ds(x, y)

= − 1
2π

φ(ξ, η)

2πZ
0

dθ

− 1
2π

∞X
m=1

mX
k=0

εm

k!(m− k)! (
∂mφ

∂xk∂ym−k
)

¯̄̄̄
(x,y)=(ξ,η)

2πZ
0

cosk θ sinm−k θdθ

→ −φ(ξ, η) as ε→ 0+, (1.17)

and Z
Cε

Φ(x, y; ξ, η)
∂

∂n
[φ(x, y)]ds(x, y)

=
1

2π

∞X
m=0

mX
k=0

(
∂m

∂xk∂ym−k
(
∂

∂n
[φ(x, y)]))

¯̄̄̄
(x,y)=(ξ,η)

× εm+1 ln(ε)

k!(m− k)!

2πZ
0

cosk θ sinm−k θdθ

→ 0 as ε→ 0+, (1.18)

since εm+1 ln(ε)→ 0 as ε→ 0+ for m = 0, 1, 2, · · · .
Consequently, as ε→ 0+, Eq. (1.13) yields

φ(ξ, η) =

Z
C

[φ(x, y)
∂

∂n
(Φ(x, y; ξ, η))−Φ(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y)

for (ξ, η) ∈ R. (1.19)

Together with Eq. (1.9), Eq. (1.19) provides us with a boundary integral
solution for the two-dimensional Laplace’s equation. If both φ and ∂φ/∂n are known

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2007 WT Ang  
A Beginner’s Course in Boundary Element Methods 



8 Two—dimensional Laplace’s Equation

at all points on C, the line integral in Eq. (1.19) can be evaluated (at least in theory)
to calculate φ at any point (ξ, η) in the interior of R. From the boundary conditions
(1.2), at any given point on C, either φ or ∂φ/∂n, not both, is known, however.

To solve the interior boundary value problem, we must find the unknown φ
and ∂φ/∂n on C2 and C1 respectively. As we shall see later on, this may be done
through manipulation of data on the boundary C only, if we can derive a boundary
integral formula for φ(ξ, η), similar to the one in Eq. (1.19), for a general point (ξ, η)
that lies on C.

For the case in which the point (ξ, η) lies on C, Eq. (1.10) holds if we replace
the curve C by D ∪Dε, where the curves D and Dε are as shown in Figure 1.3. (If
Cε is the circle of center (ξ, η) and radius ε, then D is the part of C that lies outside
Cε and Dε is the part of Cε that is inside R.) Thus,Z

D

[φ(x, y)
∂

∂n
(Φ(x, y; ξ, η))− Φ(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y)

= −
Z
Dε

[φ(x, y)
∂

∂n
(Φ(x, y; ξ, η))−Φ(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y). (1.20)

Let us examine what happens to Eq. (1.20) when we let ε→ 0+.
As ε→ 0+, the curve D tends to C. Thus, we may writeZ

C

[φ(x, y)
∂

∂n
(Φ(x, y; ξ, η))−Φ(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y)

= − lim
ε→0+

Z
Dε

[φ(x, y)
∂

∂n
(Φ(x, y; ξ, η))− Φ(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y).

(1.21)

Figure 1.3
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Boundary Integral Solution 9

Note that, unlike in Eq. (1.13), the line integral over C in Eq. (1.21) is
improper as its integrand is not well defined at (ξ, η) which lies on C. Strictly
speaking, the line integration should be over the curve C without an infinitesimal
segment that contains the point (ξ, η), that is, the line integral over C in Eq. (1.21)
has to be interpreted in the Cauchy principal sense if (ξ, η) lies on C.

To evaluate the limit on the right hand side of Eq. (1.21), we need to know
what happens to Dε when we let ε→ 0+. Now if (ξ, η) lies on a smooth part of C (not
at where the gradient of the curve changes abruptly, that is, not at a corner point,
if there is any), one can intuitively see that the part of C inside Cε approaches an
infinitesimal straight line as ε→ 0+. Thus, we expect Dε to tend to a semi-circle as
ε→ 0+, if (ξ, η) lies on a smooth part of C. It follows that in attempting to evaluate
the limit on the right hand side of Eq. (1.21) we have to integrate over only half a
circle (instead of a full circle as in the case of Eq. (1.13)).

Modifying Eqs. (1.17) and (1.18), we obtain

lim
ε→0+

Z
Dε

φ(x, y)
∂

∂n
[Φ(x, y; ξ, η)]ds(x, y) = −1

2
φ(ξ, η),

lim
ε→0+

Z
Dε

Φ(x, y; ξ, η)
∂

∂n
[φ(x, y)]ds(x, y) = 0.

Hence Eq. (1.21) gives

1

2
φ(ξ, η) =

Z
C

[φ(x, y)
∂

∂n
(Φ(x, y; ξ, η))−Φ(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y)

for (ξ, η) lying on a smooth part of C. (1.22)

Together with the boundary conditions in Eq. (1.2), Eq. (1.22) may be applied
to obtain a numerical procedure for determining the unknown φ and/or ∂φ/∂n on
the boundary C. Once φ and ∂φ/∂n are known at all points on C, the solution of the
interior boundary value problem defined by Eqs. (1.1)-(1.2) is given by Eq. (1.19) at
any point (ξ, η) inside R. More details are given in Section 1.5 below.

For convenience, we may write Eqs. (1.11), (1.19) and (1.22) as a single
equation given by

λ(ξ, η)φ(ξ, η) =

Z
C

[φ(x, y)
∂

∂n
(Φ(x, y; ξ, η))−Φ(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y),

(1.23)

if we define

λ(ξ, η) =

⎧⎨⎩ 0 if (ξ, η) /∈ R ∪ C,
1/2 if (ξ, η) lies on a smooth part of C,
1 if (ξ, η) ∈ R.

(1.24)
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10 Two—dimensional Laplace’s Equation

1.5 Boundary Element Solution with Constant Elements

We now show how Eq. (1.23) may be applied to obtain a simple boundary element
procedure for solving numerically the interior boundary value problem defined by
Eqs. (1.1)-(1.2).

The boundary C is discretized into N very small straight line elements C(1),
C(2), · · · , C(N−1) and C(N), that is,

C ' C(1) ∪ C(2) ∪ · · · ∪ C(N−1) ∪ C(N). (1.25)

The boundary elements C(1), C(2), · · · , C(N−1) and C(N) are constructed as
follows. We put N well spaced out points (x(1), y(1)), (x(2), y(2)), · · · , (x(N−1), y(N−1))
and (x(N), y(N)) on C, in the order given, following the counter clockwise direction.
Defining (x(N+1), y(N+1)) = (x(1), y(1)), we take C(k) to be the boundary element from
(x(k), y(k)) to (x(k+1), y(k+1)) for k = 1, 2, · · · , N.

As an example, in Figure 1.4, the boundary C = C1 ∪ C2 in Figure 1.1 is
approximated using 5 boundary elements denoted by C(1), C(2), C(3), C(4) and C(5).

For a simple approximation of φ and ∂φ/∂n on the boundary C, we assume
that these functions are constants over each of the boundary elements. Specifically,
we make the approximation:

φ ' φ
(k)
and

∂φ

∂n
= p(k) for (x, y) ∈ C(k) (k = 1, 2, · · · , N), (1.26)

where φ
(k)
and p(k) are respectively the values of φ and ∂φ/∂n at the midpoint of

C(k).

Figure 1.4
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With Eqs. (1.25) and (1.26), we find that Eq. (1.23) can be approximately
written as

λ(ξ, η)φ(ξ, η) =
NX
k=1

{φ(k)F (k)
2 (ξ, η)− p(k)F (k)

1 (ξ, η)}, (1.27)

where

F (k)
1 (ξ, η) =

Z
C(k)

Φ(x, y; ξ, η)ds(x, y),

F (k)
2 (ξ, η) =

Z
C(k)

∂

∂n
[Φ(x, y; ξ, η)]ds(x, y). (1.28)

For a given k, either φ
(k)
or p(k) (not both) is known from the boundary

conditions in Eq. (1.2). Thus, there are N unknown constants on the right hand side
of Eq. (1.27). To determine their values, we have to generate N equations containing
the unknowns.

If we let (ξ, η) in Eq. (1.27) be given in turn by the midpoints of C(1), C(2),
· · · , C(N−1) and C(N), we obtain

1

2
φ

(m)
=

NX
k=1

{φ(k)F (k)
2 (x(m), y(m))− p(k)F (k)

1 (x(m), y(m))}

for m = 1, 2, · · · , N, (1.29)

where (x(m), y(m)) is the midpoint of C(m).

In the derivation of Eq. (1.29), we take λ(x(m), y(m)) = 1/2, since (x(m), y(m))
being the midpoint of C(m) lies on a smooth part of the approximate boundary C(1)∪
C(2) ∪ · · · ∪ C(N−1) ∪ C(N).

Eq. (1.29) constitutes a system of N linear algebraic equations containing the
N unknowns on the right hand side of Eq. (1.27). We may rewrite it as

NX
k=1

a(mk)z(k) =
NX
k=1

b(mk) for m = 1, 2, · · · , N, (1.30)
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12 Two—dimensional Laplace’s Equation

where a(mk), b(mk) and z(k) are defined by

a(mk) =

(
−F (k)

1 (x(m), y(m)) if φ is specified over C(k),

F (k)
2 (x(m), y(m))− 1

2
δ(mk) if ∂φ/∂n is specified over C(k),

b(mk) =

(
φ

(k)
(−F (k)

2 (x(m), y(m)) + 1
2
δ(mk)) if φ is specified over C(k),

p(k)F (k)
1 (x(m), y(m)) if ∂φ/∂n is specified over C(k),

δ(mk) =

½
0 if m 6= k,
1 if m = k,

z(k) =

(
p(k) if φ is specified over C(k),

φ
(k)

if ∂φ/∂n is specified over C(k).
(1.31)

Note that z(1), z(2), · · · , z(N−1) and z(N) are the N unknown constants on the
right hand side of Eq. (1.27), while a(mk) and b(mk) are known coefficients.

Once Eq. (1.30) is solved for the unknowns z(1), z(2), · · · , z(N−1) and z(N), the

values of φ and ∂φ/∂n over the element C(k), as given by φ
(k)
and p(k) respectively,

are known for k = 1, 2, · · · , N. Eq. (1.27) with λ(ξ, η) = 1 then provides us with an
explicit formula for computing φ in the interior of R, that is,

φ(ξ, η) '
NX
k=1

{φ(k)F (k)
2 (ξ, η)− p(k)F (k)

1 (ξ, η)} for (ξ, η) ∈ R. (1.32)

To summarize, a boundary element solution of the interior boundary value
problem defined by Eqs. (1.1)-(1.2) is given by Eq. (1.32) together with Eqs. (1.28),
(1.30) and (1.31). Because of the approximation in Eqs. (1.25) and (1.26), the
solution is said to be obtained using constant elements. Analytical formulae for
calculating F (k)

1 (ξ, η) and F (k)
2 (ξ, η) in Eq. (1.28) are given in Eqs. (1.37), (1.38),

(1.40) and (1.41) (together with Eq. (1.35)) in the section below.

1.6 Formulae for Integrals of Constant Elements

The boundary element solution above requires the evaluation ofF (k)
1 (ξ, η) andF (k)

2 (ξ, η).
These functions are defined in terms of line integrals over C(k) as given in Eq. (1.28).
The line integrals can be worked out analytically as follows.

Points on the element C(k) may be described using the parametric equations

x = x(k) − t`(k)n
(k)
y

y = y(k) + t`(k)n
(k)
x

)
from t = 0 to t = 1, (1.33)

where `(k) is the length of C(k) and [n
(k)
x , n

(k)
y ] = [y(k+1)− y(k), x(k)−x(k+1)]/`(k) is the

unit normal vector to C(k) pointing away from R.
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Formulae for Integrals of Constant Elements 13

For (x, y) ∈ C(k), we find that ds(x, y) =
p
(dx)2 + (dy)2 = `(k)dt and

(x− ξ)2 + (y − η)2 = A(k)t2 +B(k)(ξ, η)t+E(k)(ξ, η), (1.34)

where

A(k) = [`(k)]2,

B(k)(ξ, η) = [−n(k)
y (x

(k) − ξ) + (y(k) − η)n(k)
x ](2`

(k)),

E(k)(ξ, η) = (x(k) − ξ)2 + (y(k) − η)2. (1.35)

The parameters in Eq. (1.35) satisfy 4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2 ≥ 0 for any
point (ξ, η).To see why this is true, consider the straight line defined by the parametric

equations x = x(k) − t`(k)n
(k)
y and y = y(k) + t`(k)n

(k)
x for −∞ < t < ∞. Note that

C(k) is a subset of this straight line (given by the parametric equations from t = 0 to
t = 1). Eq. (1.34) also holds for any point (x, y) lying on the extended line. If (ξ, η)
does not lie on the line then A(k)t2+B(k)(ξ, η)t+E(k)(ξ, η) > 0 for all real values of t
(that is, for all points (x, y) on the line) and hence 4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2 > 0.
On the other hand, if (ξ, η) is on the line, we can find exactly one point (x, y) such
that A(k)t2+B(k)(ξ, η)t+E(k)(ξ, η) = 0. As each point (x, y) on the line is given by a
unique value of t, we conclude that 4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2 = 0 for (ξ, η) lying
on the line.

From Eqs. (1.28), (1.33) and (1.34), F (k)
1 (ξ, η) and F (k)

2 (ξ, η) may be written
as

F (k)
1 (ξ, η) =

`(k)

4π

1Z
0

ln[A(k)t2 +B(k)(ξ, η)t+E(k)(ξ, η)]dt,

F (k)
2 (ξ, η) =

`(k)

2π

1Z
0

n
(k)
x (x(k) − ξ) + n

(k)
y (y(k) − η)

A(k)t2 +B(k)(ξ, η)t+E(k)(ξ, η)
dt. (1.36)

The second integral in Eq. (1.36) is the easiest one to work out for the case
in which 4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2 = 0. For this case, the point (ξ, η) lies on the
straight line of which the element C(k) is a subset. Thus, the vector [x(k)− ξ, y(k)− η]

is perpendicular to [n
(k)
x , n

(k)
y ], that is, n

(k)
x (x(k)−ξ)+n

(k)
y (y(k)−η) = 0, and we obtain

F (k)
2 (ξ, η) = 0 for 4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2 = 0. (1.37)

From the integration formulaZ
dt

at2 + bt+ c
=

2√
4ac− b2 arctan(

2at+ b√
4ac− b2 ) + constant

for real constants a, b and c such that 4ac− b2 > 0,
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14 Two—dimensional Laplace’s Equation

we find that

F (k)
2 (ξ, η) =

`(k)[n
(k)
x (x(k) − ξ) + n

(k)
y (y(k) − η)]

π
p
4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2

×[arctan( 2A(k) +B(k)(ξ, η)p
4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2

)

− arctan( B(k)(ξ, η)p
4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2

)]

for 4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2 > 0. (1.38)

If 4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2 = 0, we may write

A(k)t2 +B(k)(ξ, η)t+E(k)(ξ, η) = A(k)(t+
B(k)(ξ, η)

2A(k)
)2.

Thus,

F (k)
1 (ξ, η) =

`(k)

4π

1Z
0

ln[A(k)(t+
B(k)(ξ, η)

2A(k)
)2]dt

for 4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2 = 0. (1.39)

Now if (ξ, η) lies on a smooth part of C(k), the integral in Eq. (1.39) is im-
proper, as its integrand is not well defined at the point t = t0 ≡ −B(k)(ξ, η)/(2A(k)) ∈
(0, 1). Strictly speaking, the integral should then be interpreted in the Cauchy princi-
pal sense, that is, to evaluate it, we have to integrate over [0, t0−ε]∪ [t0+ε, 1] instead
of [0, 1] and then let ε → 0 to obtain its value. However, in this case, it turns out
that the limits of integration t = t0 − ε and t = t0 + ε eventually do not contribute
anything to the integral. Thus, for 4A(k)E(k)(ξ, η) − [B(k)(ξ, η)]2 = 0, the final ana-

lytical formula for F (k)
1 (ξ, η) is the same irrespective of whether (ξ, η) lies on C(k) or

not. If (ξ, η) lies on C(k), we may ignore the singular behaviour of the integrand and
apply the fundamental theorem of integral calculus as usual to evaluate the definite
integral in Eq. (1.39) directly over [0, 1].

The integration required in Eq. (1.39) can be easily done to give

F (k)
1 (ξ, η) =

`(k)

2π
{ln(`(k)) + (1 +

B(k)(ξ, η)

2A(k)
) ln |1 + B

(k)(ξ, η)

2A(k)
|

−B
(k)(ξ, η)

2A(k)
ln |B

(k)(ξ, η)

2A(k)
|− 1}

for 4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2 = 0. (1.40)
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Implementation on Computer 15

UsingZ
ln(at2 + bt+ c)dt = t[ln(a)− 2] + (t+ b

2a
) ln[t2 +

b

a
t+

c

a
]

+
1

a

√
4ac− b2 arctan( 2at+ b√

4ac− b2 ) + constant

for real constants a, b and c such that 4ac− b2 > 0,
we obtain

F (k)
1 (ξ, η) =

`(k)

4π
{2[ln(`(k))− 1]− B

(k)(ξ, η)

2A(k)
ln |E

(k)(ξ, η)

A(k)
|

+(1 +
B(k)(ξ, η)

2A(k)
) ln |1 + B

(k)(ξ, η)

A(k)
+
E(k)(ξ, η)

A(k)
|

+

p
4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2

A(k)

×[arctan( 2A(k) +B(k)(ξ, η)p
4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2

)

− arctan( B(k)(ξ, η)p
4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2

)]}

for 4A(k)E(k)(ξ, η)− [B(k)(ξ, η)]2 > 0. (1.41)

1.7 Implementation on Computer

We attempt now to develop double precision FORTRAN 77 codes which can be
used to implement the boundary element procedure described in Section 1.5 on the
computer. In our discussion here, syntaxes, variables and statements in FORTRAN
77 are written in typewriter fonts, for example, xi, eta and A=L**2d0.

One of the tasks involved is the setting up of the system of linear algebraic
equations given in Eqs. (1.30) and (1.31). To do this, the functions F (k)

1 (ξ, η) and

F (k)
2 (ξ, η) have to be computed using the formulae in Section 1.6. We create a sub-

routine called CPF which accepts the values of ξ, η, x(k), y(k), n
(k)
x , n

(k)
y and `(k)(stored

in the real variables xi, eta, xk, yk, nkx, nky and L) in order to calculate and return

the values of πF (k)
1 (ξ, η) and πF (k)

2 (ξ, η) (in the real variables PF1 and PF2).
The subroutine CPF is listed below.

subroutine CPF(xi,eta,xk,yk,nkx,nky,L,PF1,PF2)

double precision xi,eta,xk,yk,nkx,nky,L,PF1,PF2,

& A,B,E,D,BA,EA
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16 Two—dimensional Laplace’s Equation

A=L**2d0

B=2d0*L*(-nky*(xk-xi)+nkx*(yk-eta))

E=(xk-xi)**2d0+(yk-eta)**2d0

D=dsqrt(dabs(4d0*A*E-B**2d0))

BA=B/A

EA=E/A

if (D.lt.0.0000000001d0) then

PF1=0.5d0*L*(dlog(L)

& +(1d0+0.5d0*BA)*dlog(dabs(1d0+0.5d0*BA))

& -0.5d0*BA*dlog(dabs(0.5d0*BA))-1d0)

PF2=0d0

else

PF1=0.25d0*L*(2d0*(dlog(L)-1d0)-0.5d0*BA*dlog(dabs(EA))

& +(1d0+0.5d0*BA)*dlog(dabs(1d0+BA+EA))

& +(D/A)*(datan((2d0*A+B)/D)-datan(B/D)))

PF2=L*(nkx*(xk-xi)+nky*(yk-eta))/D

& *(datan((2d0*A+B)/D)-datan(B/D))

endif

return

end

CPF is repeatedly called in the subroutine CELAP1. CELAP1 reads in the num-
ber of boundary elements (N) in the real variable N, the midpoints (x(k), y(k)) in
the real arrays xm(1:N) and ym(1:N), the boundary points (x(k), y(k)) in the real

arrays xb(1:N+1) and yb(1:N+1), the normal vectors (n
(k)
x , n

(k)
y ) in the real arrays

nx(1:N) and ny(1:N), the lengths of the boundary elements in the real array lg(1:N)

and the types of boundary conditions (on the boundary elements) in the integer ar-
ray BCT(1:N) together with the corresponding boundary values in the real array

BCV(1:N), set up and solve Eq. (1.30), and return all the values of φ
(k)
and p(k)

in the arrays phi(1:N) and dphi(1:N) respectively. (More details on the arrays
BCT(1:N) and BCV(1:N) will be given later on in Section 1.8.) Thus, a large part of
the boundary element procedure (with constant elements) for the numerical solution
of the boundary value problem is executed in CELAP1.

The subroutine CELAP1 is listed as follows.

subroutine CELAP1(N,xm,ym,xb,yb,nx,ny,lg,BCT,BCV,phi,dphi)

integer m,k,N,BCT(1000)

double precision xm(1000),ym(1000),xb(1000),yb(1000),
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Implementation on Computer 17

& nx(1000),ny(1000),lg(1000),BCV(1000),A(1000,1000),

& B(1000),pi,PF1,PF2,del,phi(1000),dphi(1000),F1,F2,

& Z(1000)

pi=4d0*datan(1d0)

do 10 m=1,N

B(m)=0d0

do 5 k=1,N

call CPF(xm(m),ym(m),xb(k),yb(k),nx(k),ny(k),lg(k),PF1,PF2)

F1=PF1/pi

F2=PF2/pi

if (k.eq.m) then

del=1d0

else

del=0d0

endif

if (BCT(k).eq.0) then

A(m,k)=-F1

B(m)=B(m)+BCV(k)*(-F2+0.5d0*del)

else

A(m,k)=F2-0.5d0*del

B(m)=B(m)+BCV(k)*F1

endif

5 continue

10 continue

call solver(A,B,N,1,Z)

do 15 m=1,N

if (BCT(m).eq.0) then

phi(m)=BCV(m)

dphi(m)=Z(m)

else

phi(m)=Z(m)

dphi(m)=BCV(m)

endif

15 continue

return

end
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18 Two—dimensional Laplace’s Equation

The values of a(mk) in Eq. (1.30) are kept in the real array A(1:N,1:N), the
sum b(m1) + b(m2) + · · · + b(mN) on the right hand side of the equation in the real
array B(1:N) and the solution z(k) in the real array Z(1:N). To solve for z(k), an LU
decomposition is performed on the matrix containing the coefficients a(mk) to obtain
a simpler system that may be easily solved by backward substitutions. This is done
in the subroutine SOLVER (listed below together with supporting subprograms DAXPY,
DSCAL and IDAMAX†) which accepts the integer N (giving the number of unknowns), the
real arrays A(1:N,1:N) and B(1:N)and the integer lud to return Z(1:N). In general,
the integer lud may be given any value except 0. However, if we are solving two
different systems of linear algebraic equations with the same square matrice [a(mk)],
one after the other, lud may be given the value 0 the second time SOLVER is called.
This is because it is not necessary to perform the LU decomposition on the same
square matrix again to solve the second system after solving the first. If lud is
given the value 0, SOLVER assumes that the square matrix has already been properly
decomposed before and avoids the time consuming decomposition process. In CELAP1,
since the square matrix has not been decomposed yet, the value of 1 is passed into
lud when we call SOLVER.

The subroutine SOLVER and its supporting programs are listed as follows.

subroutine SOLVER(A,B,N,lud,Z)

integer lda,N,ipvt(1000),info,lud,IDAMAX,

& j,k,kp1,l,nm1,kb

double precision A(1000,1000),B(1000),Z(1000),t,AMD(1000,1000)

common /ludcmp/ipvt,AMD

nm1=N-1

do 5 i=1,N

Z(i)=B(i)

5 continue

if (lud.eq.0) goto 99

†The main part of SOLVER for decomposing the square matrix A and solving AX = B is re-
spectively taken from the codes in the LINPACK subroutines DGEFA and DGESL written by Cleve
Moler. The supporting subprograms DAXPY, DSCAL and IDAMAX written by Jack Dongarra are also
from LINPACK. DGEFA, DGESL, DAXPY, DSCAL and IDAMAX are all in the public domain and may be
downloaded from Netlib website at http://www.netlib.org. Permission for reproducing the codes
here was granted by Netlib’s editor-in-chief Jack Dongarra.
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do 6 i=1,N

do 6 j=1,N

AMD(i,j)=A(i,j)

6 continue

info=0

if (nm1.lt.1) go to 70

do 60 k=1,nm1

kp1=k+1

l=IDAMAX(N-k+1,AMD(k,k),1)+k-1

ipvt(k)=l

if (AMD(l,k).eq.0.0d0) goto 40

if (l.eq.k) goto 10

t=AMD(l,k)

AMD(l,k)=AMD(k,k)

AMD(k,k)=t

10 continue

t=-1.0d0/AMD(k,k)

call DSCAL(N-k,t,AMD(k+1,k),1)

do 30 j=kp1,N

t=AMD(l,j)

if (l.eq.k) go to 20

AMD(l,j)=AMD(k,j)

AMD(k,j)=t

20 continue

call DAXPY(N-k,t,AMD(k+1,k),1,AMD(k+1,j),1)

30 continue

goto 50

40 continue

info=k

50 continue

60 continue

70 continue

ipvt(N)=N

if (AMD(N,N).eq.0.0d0) info=N

if (info.ne.0) pause ’Division by zero in SOLVER!’
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99 continue

if (nm1.lt.1) goto 130

do 120 k=1,nm1

l=ipvt(k)

t=Z(l)

if (l.eq.k) goto 110

Z(l)=Z(k)

Z(k)=t

110 continue

call DAXPY(N-k,t,AMD(k+1,k),1,Z(k+1),1)

120 continue

130 continue

do 140 kb=1,N

k=N+1-kb

Z(k) = Z(k)/AMD(k,k)

t=-Z(k)

call DAXPY(k-1,t,AMD(1,k),1,Z(1),1)

140 continue

return

end

subroutine DAXPY(N,da,dx,incx,dy,incy)

double precision dx(1000),dy(1000),da

integer i,incx,incy,ix,iy,m,mp1,N

if(N.le.0) return

if (da .eq. 0.0d0) return

if(incx.eq.1.and.incy.eq.1) goto 20

ix=1

iy=1

if(incx.lt.0) ix=(-N+1)*incx+1

if(incy.lt.0) iy=(-N+1)*incy+1
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do 10 i=1,N

dy(iy)=dy(iy)+da*dx(ix)

ix=ix+incx

iy=iy+incy

10 continue

return

20 m=mod(N,4)

if( m.eq. 0 ) go to 40

do 30 i=1,m

dy(i)=dy(i)+da*dx(i)

30 continue

if(N.lt.4) return

40 mp1=m+1

do 50 i=mp1,N,4

dy(i)=dy(i)+da*dx(i)

dy(i+1)=dy(i+1)+da*dx(i+1)

dy(i+2)=dy(i+2)+da*dx(i+2)

dy(i+3)=dy(i+3)+da*dx(i+3)

50 continue

return

end

subroutine DSCAL(N,da,dx,incx)

double precision da,dx(1000)

integer i,incx,m,mp1,N,nincx

if(N.le.0.or.incx.le.0) return

if(incx.eq.1) goto 20

nincx = N*incx

do 10 i=1,nincx,incx

dx(i)=da*dx(i)
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10 continue

return

20 m=mod(N,5)

if(m.eq.0) goto 40

do 30 i=1,m

dx(i) = da*dx(i)

30 continue

if(N.lt.5) return

40 mp1=m+1

do 50 i=mp1,N,5

dx(i)=da*dx(i)

dx(i+1)=da*dx(i+1)

dx(i+2)=da*dx(i+2)

dx(i+3)=da*dx(i+3)

dx(i+4)=da*dx(i+4)

50 continue

return

end

function IDAMAX(N,dx,incx)

double precision dx(1000),dmax

integer i,incx,ix,N,IDAMAX

IDAMAX = 0

if(N.lt.1.or.incx.le.0 ) return

IDAMAX = 1

if(N.eq.1)return

if(incx.eq.1) goto 20

ix = 1

dmax = dabs(dx(1))

ix = ix + incx
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do 10 i=2,N

if(dabs(dx(ix)).le.dmax) goto 5

IDAMAX=i

dmax=dabs(dx(ix))

5 ix=ix+incx

10 continue

return

20 dmax=dabs(dx(1))

do 30 i=2,N

if(dabs(dx(i)).le.dmax) goto 30

IDAMAX=i

dmax=dabs(dx(i))

30 continue

return

end

Once the values of φ
(k)
and p(k) are returned in the arrays phi(1:N) and

dphi(1:N) by CELAP1, they can be used by the subroutine CELAP2 to compute the
value of φ at any chosen point (ξ, η) in the interior of the solution domain. In the
listing of CELAP2 below, xi and eta are the real variables which carry the values of
ξ and η respectively. The computed value of φ(ξ, η) is returned in the real variable

pint. Note that the subroutine CPF is called in CELAP2 to compute πF (k)
1 (ξ, η) and

πF (k)
2 (ξ, η).

subroutine CELAP2(N,xi,eta,xb,yb,nx,ny,lg,phi,dphi,pint)

integer N,i

double precision xi,eta,xb(1000),yb(1000),nx(1000),ny(1000),

& lg(1000),phi(1000),dphi(1000),pint,sum,pi,PF1,PF2

pi=4d0*datan(1d0)

sum=0d0

do 10 i=1,N

call CPF(xi,eta,xb(i),yb(i),nx(i),ny(i),lg(i),PF1,PF2)

sum=sum+phi(i)*PF2-dphi(i)*PF1
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24 Two—dimensional Laplace’s Equation

10 continue

pint=sum/pi

return

end

1.8 Numerical Examples

We now show how the subroutines CELAP1 and CELAP2 may be used to solve two
specific examples of the interior boundary value problem described in Section 1.1.

Example 1.1

The solution domain is the square region 0 < x < 1, 0 < y < 1. The boundary
conditions are

φ = 0 on x = 0
φ = cos (πy) on x = 1

¾
for 0 < y < 1

∂φ

∂n
= 0 on y = 0 and y = 1 for 0 < x < 1.

Figure 1.5

The sides of the square are discretized into boundary elements of equal length.
To do this, we choose N evenly spaced out points on the sides as follows. The
boundary points on the sides y = 0 (bottom horizontal), x = 1 (right vertical), y = 1
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(top horizontal) and x = 0 (left vertical) are respectively given by (x(m), y(m)) =
([m−1]`, 0), (x(m+N0), y(m+N0)) = (1, [m−1]`), (x(m+2N0), y(m+2N0)) = (1− [m−1]`, 1)
and (x(m+3N0), y(m+3N0)) = (0, 1 − [m − 1]`) for m = 1, 2, · · · , N0, where N0 is the
number of boundary elements per side (so that N = 4N0) and ` = 1/N0 is the length
of each element. For example, the boundary points for N0 = 2 (that is, 8 boundary
elements) are shown in Figure 1.5.

The input points (x(1), y(1)), (x(2), y(2)), · · · , (x(N−1), y(N−1)), (x(N), y(N)) and
(x(N+1), y(N+1)), arranged in counter clockwise order on the boundary of the solu-
tion domain, are stored in the real arrays xb(1:N+1) and yb(1:N+1). (Recall that
(x(N+1), y(N+1)) = (x(1), y(1)).) The values in these arrays are input data defining the
geometry of the solution domain, to be generated by the user of the subroutines
CELAP1 and CELAP2. As the geometry in this example is a simple one, the input data
for the boundary points may be generated by writing a simple code as follows.

N=4*N0

dl=1d0/dfloat(N0)

do 10 i=1,N0

xb(i)=dfloat(i-1)*dl

yb(i)=0d0

xb(N0+i)=1d0

yb(N0+i)=xb(i)

xb(2*N0+i)=1d0-xb(i)

yb(2*N0+i)=1d0

xb(3*N0+i)=0d0

yb(3*N0+i)=1d0-xb(i)

10 continue

xb(N+1)=xb(1)

yb(N+1)=yb(1)

Note that N0 is an integer variable which gives the number of boundary ele-
ments per side and dl is a real variable giving the length of an element. The value
of N0 is a given input. The boundary points in Figure 1.5 may be generated by the
code above if we give N0 the value of 2.

In order to call CELAP1 and CELAP2, the midpoints of the elements (in the
real arrays xm(1:N) and ym(1:N)), the lengths of the elements (in the real array
lg(1:N)) and the unit normal vectors to the elements (in the real arrays nx(1:N)
and ny(1:N)) are required. These can be calculated from the input data stored in
the arrays xb(1:N+1) and yb(1:N+1). The general code for the calculation (which
is valid for any geometry of the solution domain) is as follows.

do 20 i=1,N

xm(i)=0.5d0*(xb(i)+xb(i+1))
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ym(i)=0.5d0*(yb(i)+yb(i+1))

lg(i)=dsqrt((xb(i+1)-xb(i))**2d0+(yb(i+1)-yb(i))**2d0)

nx(i)=(yb(i+1)-yb(i))/lg(i)

ny(i)=(xb(i)-xb(i+1))/lg(i)

20 continue

The type of boundary conditions on an element (that is, whether φ or ∂φ/∂n is
specified) and the corresponding specified value of either φ or ∂φ/∂n are input data.
The integer array BCT(1:N)is used to keep track of the types of boundary conditions
on the elements. If φ is specified on the 5-th boundary element C(5) then BCT(5) is
given the value 0. If BCT(5) is not 0, then we know that ∂φ/∂n is specified on C(5).
The values of either φ or ∂φ/∂n prescribed on the boundary elements are stored in
the real array BCV(1:N). For the boundary points in Figure 1.5, the input boundary
values of φ on the two elements on the right vertical sides are given by cos(πη) with
η being the y coordinates of the midpoints of the elements. For the boundary value
problem here, the code for generating the input data for BCT and BCV are as follows.

do 30 i=1,N

if (i.le.N0) then

BCT(i)=1

BCV(i)=0d0

else if ((i.gt.N0).and.(i.le.(2*N0))) then

BCT(i)=0

BCV(i)=dcos(pi*ym(i))

else if ((i.gt.(2*N0)).and.(i.le.(3*N0))) then

BCT(i)=1

BCV(i)=0d0

else

BCT(i)=0

BCV(i)=0d0

endif

30 continue

We may now invoke CELAP1 using the statement

call CELAP1(N, xm, ym, xb, yb, nx, ny, lg, BCT, BCV, phi, dphi)

to give us the (approximate) values of φ and ∂φ/∂n on the boundary elements. The

boundary values of φ and ∂φ/∂n (that is, φ
(k)
and p(k)) are respectively stored in

the real arrays phi(1:N) and dphi(1:N). For example, if the variable BCT(5) has
the value 0, we know that φ is specified on the 5-th boundary element and hence the
variable dphi(5) gives us the approximate value of ∂φ/∂n on C(5).
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Once CELAP1 is called, we may use CELAP2 to calculate the value of φ at any
interior point inside the square. For example, if we wish to calculate φ at (0.50, 0.70),
we may use the call statement

call CELAP2(N,0.50,0.70,xb,yb,nx,ny,lg,phi,dphi,pint)

to return us the approximate value of φ(0.50, 0.70) in the real variable pint.
An example of a complete program for the boundary value problem presently

under consideration is given below.

program EX1PT1

integer N0,BCT(1000),N,i,ians

double precision xb(1000),yb(1000),xm(1000),ym(1000),

& nx(1000),ny(1000),lg(1000),BCV(1000),

& phi(1000),dphi(1000),pint,dl,xi,eta,pi

print*,’Enter number of elements per side (<250):’

read*,N0

N=4*N0

pi=4d0*datan(1d0)

dl=1d0/dfloat(N0)

do 10 i=1,N0

xb(i)=dfloat(i-1)*dl

yb(i)=0d0

xb(N0+i)=1d0

yb(N0+i)=xb(i)

xb(2*N0+i)=1d0-xb(i)

yb(2*N0+i)=1d0

xb(3*N0+i)=0d0

yb(3*N0+i)=1d0-xb(i)

10 continue

xb(N+1)=xb(1)

yb(N+1)=yb(1)

do 20 i=1,N

xm(i)=0.5d0*(xb(i)+xb(i+1))

ym(i)=0.5d0*(yb(i)+yb(i+1))

lg(i)=dsqrt((xb(i+1)-xb(i))**2d0+(yb(i+1)-yb(i))**2d0)

nx(i)=(yb(i+1)-yb(i))/lg(i)
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ny(i)=(xb(i)-xb(i+1))/lg(i)

20 continue

do 30 i=1,N

if (i.le.N0) then

BCT(i)=1

BCV(i)=0d0

else if ((i.gt.N0).and.(i.le.(2*N0))) then

BCT(i)=0

BCV(i)=dcos(pi*ym(i))

else if ((i.gt.(2*N0)).and.(i.le.(3*N0))) then

BCT(i)=1

BCV(i)=0d0

else

BCT(i)=0

BCV(i)=0d0

endif

30 continue

call CELAP1(N,xm,ym,xb,yb,nx,ny,lg,BCT,BCV,phi,dphi)

50 print*,’Enter coordinates xi and eta of an interior point:’

read*,xi,eta

call CELAP2(N,xi,eta,xb,yb,nx,ny,lg,phi,dphi,pint)

write(*,60)pint,(dexp(pi*xi)-dexp(-pi*xi))*dcos(pi*eta)

& /(dexp(pi)-dexp(-pi))

60 format(’Numerical and exact values are:’,

& F14.6,’ and’,F14.6,’ respectively’)

print*,’To continue with another point enter 1:’

read*,ians

if (ians.eq.1) goto 50

end

All the subprograms needed for compiling EX1PT1 into an executable program
are the subroutines CELAP1, CELAP2, CPF and SOLVER (together with its supporting
subprograms DAXPY, DSCAL and IDAMAX).
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It is easy to check that boundary value problem here has the exact solution

φ =
sinh(πx) cos(πy)

sinh(π)
.

In the program EX1PT1 above, the numerical value of φ (as calculated by the bound-
ary element procedure with constant elements) at an input interior point (ξ, η) is
compared with the exact solution.

Table 1.1

(ξ, η) 20 elements 80 elements Exact
(0.10, 0.20) 0.022605 0.022397 0.022371
(0.10, 0.30) 0.016454 0.016279 0.016254
(0.10, 0.40) 0.008681 0.008560 0.008545
(0.50, 0.20) 0.163153 0.161521 0.161212
(0.50, 0.30) 0.118290 0.117325 0.117127
(0.50, 0.40) 0.062107 0.061673 0.061577
(0.90, 0.20) 0.586250 0.590103 0.589941
(0.90, 0.30) 0.427451 0.428609 0.428618
(0.90, 0.40) 0.223159 0.225308 0.225338

The numerical values of φ at various interior points obtained by EX1PT1 using
20 and 80 boundary elements are compared with the exact solution in Table 1.1.
There is a significant improvement in the accuracy of the numerical results when the
number of boundary elements used is increased from 20 to 80.

Table 1.2

a 0.900 0.950 0.990 0.995 0.999
20 elements 0.136% 2.830% 8.504% 9.563% 10.601%
80 elements 0.111% 0.144% 0.716% 1.403% 2.213%

We also examine the accuracy of the numerical value of φ at the interior point
(a, a) as a approaches 1 from below, that is, as the point (a, a) gets closer and closer
to the point (1, 1) on the boundary of the square domain. The percentage errors in
the numerical values of φ from calculations using 20 and 80 boundary elements are
shown in Table 1.2 for various values of a. In each of the two sets of results, it is
interesting to note that the percentage error grows as a approaches 1. For a fixed
value of a near 1, the percentage error of the numerical value of φ calculated with 80
elements are lower than that obtained using 20 elements. It is a well known fact that
the accuracy of a boundary element solution may deteriorate significantly at a point
whose distance from the boundary is very small compared with the lengths of nearby
boundary elements.
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Figure 1.6

Example 1.2

Take the solution domain to be the region bounded between the circles x2 + y2 = 1
and x2 + y2 = 4 in the first quadrant of the Oxy plane as shown in Figure 1.6. The
boundary conditions are given by

∂φ

∂n
= 0 on the straight side x = 0, 1 < y < 2,

∂φ

∂n
= 0 on the straight side y = 0, 1 < x < 2,

φ = cos(4 arctan(
y

x
)) on the arc x2 + y2 = 1, x > 0, y > 0,

φ = 3 cos(4 arctan(
y

x
)) on the arc x2 + y2 = 4, x > 0, y > 0.

This boundary value problem may be solved numerically using the boundary
element procedure with constant elements as in Example 1.1. To do this, we only have
to modify the parts in the program EX1PT1 that generate input data for the arrays
xb(1:N+1), yb(1:N+1), BCT(1:N) and BCV(1:N). Before we modify the program,
we have to work out formulae for the boundary points (x(1), y(1)), (x(2), y(2)), · · · ,
(x(N−1), y(N−1)) and (x(N), y(N)).

Let us discretize each of the straight sides of the boundary into N0 elements
and the arcs on x2+ y2 = 1 and x2+ y2 = 4 into 2N0 and 8N0 elements respectively,
so that N = 12N0. Specifically, the boundary points are given by

(x(m), y(m)) = (1 +
[m− 1]
N0

, 0) for m = 1, 2, · · · , N0,

(x(m+N0), y(m+N0)) = (2 cos(
[m− 1]π
16N0

), 2 sin(
[m− 1]π
16N0

)) for m = 1, 2, · · · , 8N0,
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(x(m+9N0), y(m+9N0)) = (0, 2− [m− 1]
N0

) for m = 1, 2, · · · , N0,

(x(m+10N0), y(m+10N0)) = (sin(
[m− 1]π
4N0

), cos(
[m− 1]π
4N0

)) for m = 1, 2, · · · , 2N0.

Thus, for the boundary value problem presently under consideration, the code
for generating the input data for the boundary points in the real arrays xb(1:N+1)

and yb(1:N+1) is as given below. Note that we are required to supply an input value
for the integer N0.

N=12*N0

pi=4d0*datan(1d0)

do 10 i=1,8*N0

dl=pi/dfloat(16*N0)

xb(i+N0)=2d0*dcos(dfloat(i-1)*dl)

yb(i+N0)=2d0*dsin(dfloat(i-1)*dl)

if (i.le.N0) then

dl=1d0/dfloat(N0)

xb(i)=1d0+dfloat(i-1)*dl

yb(i)=0d0

xb(i+9*N0)=0d0

yb(i+9*N0)=2d0-dfloat(i-1)*dl

endif

if (i.le.(2*N0)) then

dl=pi/dfloat(4*N0)

xb(i+10*N0)=dsin(dfloat(i-1)*dl)

yb(i+10*N0)=dcos(dfloat(i-1)*dl)

endif

10 continue

xb(N+1)=xb(1)

yb(N+1)=yb(1)

The code for generating the input data for the integer array BCT(1:N) and the
real array BCV(1:N) is as given below.

do 30 i=1,N

if ((i.le.N0).or.((i.gt.(9*N0)).and.(i.le.(10*N0)))) then

BCT(i)=1

BCV(i)=0d0

else if ((i.gt.N0).and.(i.le.(9*N0))) then

BCT(i)=0
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BCV(i)=3d0*dcos(4d0*datan(ym(i)/xm(i)))

else

BCT(i)=0

BCV(i)=dcos(4d0*datan(ym(i)/xm(i)))

endif

30 continue

Figure 1.7

As φ is specified on the arc x2+ y2 = 1, x > 0, y > 0, the last 2N0 variables in
the array dphi(1:N)returned by CELAP1 give us the numerical values of ∂φ/∂n at the
midpoints of the last 2N0 boundary elements, that is, −∂ψ/∂r at those midpoints if
we define ψ(r, θ) = φ(r cos θ, r sin θ), where the polar coordinates r and θ are given
by by x = r cos θ and y = r sin θ. We may print out these variables to obtain the
approximate values of ∂ψ/∂r at the midpoints of the last 2N0 boundary elements. In
Figure 1.7, the numerical ∂ψ/∂r at r = 1, 0 < θ < π/2, obtained using 240 elements
(that is, using N0 = 20) are compared graphically against the values obtained from
the exact solution‡ given by

φ = [
16

85
([x2 + y2]2 − 1

[x2 + y2]2
)− 16

255
(
[x2 + y2]2

16
− 16

[x2 + y2]2
)] cos(4 arctan(

y

x
)).

The numerical values show a good agreement with the exact ones except at points
that are extremely close to the corner points (0, 1) and (1, 0), that is, except at near
θ = 0 and θ = π/2.

‡Refer to page 202 of the book Partial Differential Equations in Mechanics 1 by APS Selvadurai
(Springer-Verlag, 2000).
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The numerical values of φ at selected points in the interior of the solution
domain, obtained using 240 elements, are compared with the exact solution in Table
1.3. There is a good agreement between the two sets of results. The interior points in
the last two rows of Table 1.3 are close to the corner point (1, 0). Note that the errors
of the numerical values at these two points are higher compared with those at the
other points. When we repeat the same calculation using 480 elements (N0 = 40),
the numerical values of φ are 0.826108 and 0.974111 at (1.099998, 0.001920) and
(1.010000, 0.000176) respectively, that is, we observe a significant improvement in
the accuracy of the numerical values at the two points.

Table 1.3

(ξ, η) 240 elements Exact
(1.082532, 0.625000) −0.392546 −0.392045
(0.875000, 1.515544) −0.908254 −0.907816
(1.060660, 1.060660) −1.094489 −1.094211
(1.099998, 0.001920) 0.824548 0.826958
(1.010000, 0.000176) 0.960174 0.975656

1.9 Summary and Discussion

A boundary element solution for the interior boundary value problem defined by Eqs.
(1.1)-(1.2) is given by Eq. (1.32) together with Eqs. (1.28), (1.30) and (1.31). The
solution is constructed from the boundary integral solution in Eq. (1.23). Constant
elements are used, that is, the boundary (of the solution domain) is discretized into
straight line elements and the solution φ and its normal derivative ∂φ/∂n on the
boundary are approximated as constants over a boundary element.

As no discretization of the entire solution domain is required, the boundary
element solution may be easily implemented on the computer for problems involving
complicated geometries and general boundary conditions. The boundary may be
easily discretized into line elements by merely placing on it well spaced out points.
We have discussed in detail how the numerical procedure can be coded in FORTRAN
77. In spite of the specific programming language used, our discussion may still be
useful to readers who are interested in developing the method using other software
tools (such as C++ and MATLAB), as FORTRAN 77 codes are relatively easy to
decipher.

The term “direct boundary element method” is often used to describe the
boundary element procedure given in this chapter. This is because the unknowns
in the formulation given by Eq. (1.30) can be directly interpreted as values of φ or
∂φ/∂n on the boundary. An alternative boundary element method may be obtained
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34 Two—dimensional Laplace’s Equation

from the simpler boundary integral solution

φ(x, y) =

Z
C

A(ξ, η) ln([x− ξ]2 + [y − η]2)ds(ξ, η),

where A(ξ, η) is a (boundary) weight function yet to be determined. To determine
A(ξ, η) approximately, we discretize C into boundary elements C(1), C(2), · · · , C(N−1)

and C(N)as before, and approximate A(ξ, η) as a constant A(m) over C(m), in order
to obtain the approximation

φ(x, y) '
NX
m=1

A(m)

Z
C(m)

ln([x− ξ]2 + [y − η]2)ds(ξ, η).

The constants A(m) are to be determined by using the given boundary conditions.
We shall not go into further details here other than pointing out that such as an
approach gives rise to a so called indirect boundary element method as the unknowns
A(m) are not related to φ or ∂φ/∂n on the boundary in a simple and direct manner.

1.10 Exercises

1. If φ satisfies the two-dimensional Laplace’s equation in the region R bounded
by a simple closed curve C, use the divergence theorem to show thatZ

C

∂

∂n
[φ(x, y)]ds(x, y) = 0.

(Note. This implies that if we prescribe ∂φ/∂n at all points on C in our bound-
ary value problem we have to be careful to ensure the above equation is satisfied.
Otherwise, the boundary value problem does not have a solution.)

2. If φ satisfies the two-dimensional Laplace’s equation in the region R bounded
by the curve C, use the divergence theorem to derive the relationZZ

R

|∇φ(x, y)|2dxdy =
Z
C

φ(x, y)
∂

∂n
[φ(x, y)]ds(x, y).

Hence show that: (a) if φ = 0 at all points on C then φ = 0 at all points
in R, that is, show that if the boundary conditions are given by φ = 0 on C
then the solution of our boundary value problem is uniquely given by φ = 0
for (x, y) ∈ R, and (b) if ∂φ/∂n = 0 at all points on C then φ can be any
arbitrary constant function in R, that is, if the boundary conditions are given
by ∂φ/∂n = 0 on C, then our boundary value problem has infinitely many
solutions given by φ = c for (x, y) ∈ R, where c is an arbitrary constant.
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3. Use the result in Exercise 2(a) above to show that if the boundary conditions
are given by φ = f(x, y) at all points on the simple closed curve C then the
boundary value problem governed by the two-dimensional Laplace’s equation in
the region R has a unique solution. [Hint. Show that if φ1 and φ2 are any two
solutions satisfying the Laplace’s equation and the boundary conditions under
consideration then φ1 = φ2 at all points in R.] (Notes. (1) In general, for the
interior boundary value problem defined by Eqs. (1.1)-(1.2) to have a unique
solution, φ must be specified at at least one point on C. (2) For the case in
which ∂φ/∂n is specified at all points on C, φ is only determined to within
an arbitrary constant. In such a case, the boundary element procedure in this
chapter may still work to give us one of the infinitely many solutions.)

4. Eq. (1.8) is not the only solution of the two-dimensional Laplace’s equation
that is not well defined at the single point (ξ, η). By differentiating Eq. (1.8)
partially with respect to x and/or y as many times as we like, we may generate
other solutions that are not well defined at (ξ, η). An example of these other
solutions is

φ(x, y) =
(x− ξ)

2π[(x− ξ)2 + (y − η)2]
.

If we denote this solution by Φ(x, y; ξ, η) (like what we had done before for the
solution in Eq. (1.8)), investigate whether we can still derive the boundary
integral solution as given by Eq. (1.19) from the reciprocal relation in Eq.
(1.10) or not.

5. Explain why the parameter λ(ξ, η) in Eq. (1.23) can be calculated using

λ(ξ, η) =

Z
C

∂

∂n
(Φ(x, y; ξ, η))ds(x, y).

Taking C to be the boundary of the triangular region y < −x+1, x > 0, y > 0,
evaluate the line integral above to check that: (a) λ(2, 1) = 0, (b) λ(1, 0) = 1/8,
(c) λ(0, 0) = 1/4, (d) λ(1/2, 1/2) = 1/2, and (e) λ(1/2, 1/4) = 1.

6. The boundary element solution given in this chapter provides us with an ap-
proximate but explicit formula for calculating φ at any interior point (ξ, η) in
the solution domain. We may also be interested in computing the vector quan-
tity ∇φ. Can an approximate explicit formula be obtained for ∇φ at (ξ, η)?
How can we obtain one?

7. Modify the program EX1PT1 in Section 1.7 to solve numerically the Laplace’s
equation given by Eq. (1.1) in the region x2 + y2 < 1, x > 0, y > 0, subject to
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Chapter 5

GREEN’S FUNCTIONS FOR POTENTIAL PROBLEMS

5.1 Introduction

In Chapter 1, for the two-dimensional Laplace’s equation, we have derived the bound-
ary integral equation

λ(ξ, η)φ(ξ, η) =

Z
C

[φ(x, y)
∂

∂n
(Φ(x, y; ξ, η))−Φ(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y). (5.1)

Here φ satisfies the Laplace’s equation in the two-dimensional region R bounded by
a simple closed curve C on the Oxy plane, Φ is the fundamental solution given by

Φ(x, y; ξ, η) =
1

4π
ln([x− ξ]2 + [y − η]2), (5.2)

and λ is the parameter defined by

λ(ξ, η) =

⎧⎨⎩ 0 if (ξ, η) /∈ R ∪ C,
1/2 if (ξ, η) lies on a smooth part of C,
1 if (ξ, η) ∈ R.

(5.3)

The boundary integral equation in Eq. (5.1) may still be valid with possibly
only minor modification of Eq. (5.3), if Φ(x, y; ξ, η) is chosen to take the more general
form

Φ(x, y; ξ, η) =
1

4π
ln([x− ξ]2 + [y − η]2) + Φ∗(x, y; ξ, η), (5.4)

where Φ∗(x, y; ξ, η) is any well defined function satisfying

∂2

∂x2
[Φ∗(x, y; ξ, η)] +

∂2

∂y2
[Φ∗(x, y; ξ, η)] = 0 for any (x, y) and (ξ, η) in R. (5.5)

Instead of taking Φ∗ = 0 (like in Chapters 1 and 2), we may find it advan-
tageous to choose Φ∗ that satisfies certain boundary conditions. The function Φ in
Eq. (5.4) with a specially chosen Φ∗ may be referred to as a Green’s function. As we
shall see later on, if an appropriately chosen Green’s function, instead of the usual
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116 Green’s Functions for Potential Problems

fundamental solution in Eq. (5.2), is used in the boundary integral equation, it may
be possible to avoid integration over part of the boundary C. The number of bound-
ary elements needed in the discretization of the boundary integral equation (hence
the number of unknowns in the resulting system of linear algebraic equations) may
then be reduced∗.

In this chapter, boundary element solutions of particular potential problems,
obtained by using Green’s functions for some special domains and boundary condi-
tions, are presented with examples of applications.

5.2 Half Plane

5.2.1 Two Special Green’s Functions

For the half plane y > 0 in Figure 5.1, two well known Green’s functions satisfying
particular conditions on the boundary y = 0 are derived by the so called method of
image. They are then applied to solve specific problems.

Figure 5.1

We choose Φ∗(x, y; ξ, η) such that it satisfies Eq. (5.5) in the half plane y > 0
and the boundary condition

Φ(x, 0; ξ, η) = 0 for −∞ < x <∞, (5.6)

which may be rewritten as

Φ∗(x, 0; ξ, η) = − 1
4π
ln([x− ξ]2 + η2) for −∞ < x <∞. (5.7)

∗An example of potential problems solved using a boundary integral formulation with Green’s
function, may be found in the article “A method for the numerical solution of some elliptic boundary
value problems for a strip” by DL Clements and J Crowe in the International Journal of Computer
Mathematics (Volume 8, 1980, pp. 345-355). The term “potential problems” refers to boundary
value problems governed by the Laplace’s equation.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2007 WT Ang  
A Beginner’s Course in Boundary Element Methods 



Half Plane 117

A suitable Φ∗(x, y; ξ, η) satisfying Eqs. (5.5) and (5.7) is given by

Φ∗(x, y; ξ, η) = − 1
4π
ln([x− ξ]2 + [y + η]2). (5.8)

The function Φ∗(x, y; ξ, η) as given in Eq. (5.8) is well defined at all point
(x, y) except at (ξ,−η). If the point (ξ, η) is in the half plane then (ξ,−η) being its
image point obtained through reflection about y = 0 should be outside the half plane.
Thus, Φ∗(x, y; ξ, η) in Eq. (5.8) satisfies the two-dimensional Laplace’s equation at
all points (x, y) and (ξ, η) in the interior of the half plane.

Let us denote the Green’s function given by Eqs. (5.4) and (5.8) byΦ1(x, y; ξ, η),
that is,

Φ1(x, y; ξ, η) =
1

4π
ln([x− ξ]2 + [y − η]2)− 1

4π
ln([x− ξ]2 + [y + η]2). (5.9)

For another Green’s function, in place of the boundary condition in Eq. (5.6),
Φ∗(x, y; ξ, η) is chosen to satisfy

∂

∂y
(Φ(x, y; ξ, η))

¯̄̄̄
y=0

= 0 for −∞ < x <∞, (5.10)

that is,

∂

∂y
(Φ∗(x, y; ξ, η))

¯̄̄̄
y=0

=
η

2π([x− ξ]2 + η2)
for −∞ < x <∞. (5.11)

It is easy to check that Eq. (5.11) is satisfied if

Φ∗(x, y; ξ, η) =
1

4π
ln([x− ξ]2 + [y + η]2). (5.12)

We denote the Green’s function given by Eqs. (5.4) and (5.12) by Φ2(x, y; ξ, η).
Thus,

Φ2(x, y; ξ, η) =
1

4π
ln([x− ξ]2 + [y − η]2) +

1

4π
ln([x− ξ]2 + [y + η]2). (5.13)

We show now how the Green’s functions in Eqs. (5.9) and (5.13) can be
applied to obtain special boundary integral formulations for two particular cases of
potential problems.
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118 Green’s Functions for Potential Problems

5.2.2 Applications

Case 5.1

This case involves a finite two-dimensional solution region R which is a subset of
the half plane y > 0. The curve boundary C of the region R consists of two non-
intersecting parts denoted by D and E. The part D is an arbitrarily shaped open
curve in the region y > 0, while E is a straight line segment on the x axis. For a
geometrical sketch of the solution domain, refer to Figure 5.2.

Figure 5.2

Mathematically, we are interested in solving the two-dimensional Laplace’s
equation

∂2φ

∂x2
+

∂2φ

∂y2
= 0 in R, (5.14)

subject to

φ = 0 for (x, y) ∈ E,
φ = f1(x, y) for (x, y) ∈ D1,

∂φ

∂n
= f2(x, y) for (x, y) ∈ D2, (5.15)

where f1 and f2 are suitably prescribed functions and D1 and D2 are non-intersecting
curves such that D1 ∪D2 = D.

If we repeat the analysis in Section 1.4 (page 5, Chapter 1) using the Green’s
function Φ1(x, y; ξ, η) in Eq. (5.9) in the place of the usual fundamental solution
Φ(x, y; ξ, η) = (4π)−1 ln([x− ξ]2+[y−η]2), we obtain the boundary integral equation

λ(ξ, η)φ(ξ, η) =

Z
D

[φ(x, y)
∂

∂n
(Φ1(x, y; ξ, η))−Φ1(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y),

(5.16)
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with the parameter λ defined by

λ(ξ, η) =

⎧⎨⎩ 0 if (ξ, η) ∈ E,
1/2 if (ξ, η) lies on a smooth part of D,
1 if (ξ, η) ∈ R.

(5.17)

Note that the integral over E does not appear in Eq. (5.16). The conditions that
φ(x, y) and Φ1(x, y; ξ, η) are both zero for (x, y) ∈ E are applied in the derivation of
Eq. (5.16).

There is no need to discretize the boundary E if Eq. (5.16) is used to derive a
boundary element procedure for solving the boundary value problem defined by Eqs.
(5.14) and (5.15).

To discretize the integral in Eq. (5.16), let us put N+1 well spaced out points
(x(1), y(1)), (x(2), y(2)), · · · , (x(N−1), y(N−1)), (x(N), y(N)) and (x(N+1), y(N+1)) on the
open curve D. The end points of the curve D are (x(1), y(1)) and (x(N+1), y(N+1))
with x(N+1) < x(1). Note that y(1) = y(N+1) = 0. The points are arranged such
that (x(k), y(k)) and (x(k+1), y(k+1)) (k = 1, 2, · · · , N) are two consecutive neighboring
points. The line segment between (x(k), y(k)) and (x(k+1), y(k+1)) forms the element
D(k). The curve D is approximated using

D ' D(1) ∪D(2) ∪ · · · ∪D(N−1) ∪D(N). (5.18)

For constant elements, we may make the approximation

φ ' φ
(k)
and

∂φ

∂n
' p(k) for (x, y) ∈ D(k) (k = 1, 2, · · · , N), (5.19)

in order to rewrite Eq. (5.16) approximately as

λ(ξ, η)φ(ξ, η) '
NX
k=1

φ
(k)
Z
D(k)

∂

∂n
(Φ1(x, y; ξ, η))ds(x, y)

−
NX
k=1

p(k)

Z
D(k)

Φ1(x, y; ξ, η)ds(x, y). (5.20)

Proceeding as before, we may choose (ξ, η) in Eq. (5.20) to be given in turn
by each of the midpoints of the boundary elements to set up a system of N linear

algebraic equations to solve for either φ
(k)
or p(k) (whichever is unknown on D(k)).

For setting up the linear algebraic equations, the integrals over D(k) can be evaluated
analytically by Z

D(k)

Φ1(x, y; ξ, η)ds(x, y) = F (k)
1 (ξ, η)−F (k)

1 (ξ,−η),
Z
D(k)

∂

∂n
[Φ1(x, y; ξ, η)]ds(x, y) = F (k)

2 (ξ, η)−F (k)
2 (ξ,−η), (5.21)
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where the formulae for F (k)
1 (ξ, η) and F (k)

2 (ξ, η) are given in Section 1.6 (page 12,
Chapter 1).

With Eq. (5.21), the subroutines CELAP1 and CELAP2 in Section 1.7 (page 16,
Chapter 1) can be easily modified for the problem under consideration here to find
unknown values of φ or ∂φ/∂n on the elements and to compute φ at interior points in
R. We modify CELAP1 and CELAP2 to create the subroutines G1LAP1 and G1LAP2 as
listed below. In G1LAP1 or G1LAP2, the subroutine CPF is called to compute F (k)

1 (ξ, η)

first and then again to calculate F (k)
1 (ξ,−η). The input and output parameters of

G1LAP1 or G1LAP2 are exactly the same as those of CELAP1 and CELAP2 respectively,
as detailed in Section 1.7.

subroutine G1LAP1(N,xm,ym,xb,yb,nx,ny,lg,BCT,BCV,phi,dphi)

integer m,k,N,BCT(1000)

double precision xm(1000),ym(1000),xb(1000),yb(1000),

& nx(1000),ny(1000),lg(1000),BCV(1000),A(1000,1000),

& B(1000),pi,P1F1,P1F2,del,phi(1000),dphi(1000),F1,F2,

& Z(1000),P2F1,P2F2

pi=4d0*datan(1d0)

do 10 m=1,N

B(m)=0d0

do 5 k=1,N

call CPF(xm(m),ym(m),xb(k),yb(k),nx(k),ny(k),lg(k),P1F1,P1F2)

call CPF(xm(m),-ym(m),xb(k),yb(k),nx(k),ny(k),lg(k),P2F1,P2F2)

F1=(P1F1-P2F1)/pi

F2=(P1F2-P2F2)/pi

if (k.eq.m) then

del=1d0

else

del=0d0

endif

if (BCT(k).eq.0) then

A(m,k)=-F1

B(m)=B(m)+BCV(k)*(-F2+0.5d0*del)

else

A(m,k)=F2-0.5d0*del

B(m)=B(m)+BCV(k)*F1

endif

5 continue
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10 continue

call solver(A,B,N,1,Z)

do 15 m=1,N

if (BCT(m).eq.0) then

phi(m)=BCV(m)

dphi(m)=Z(m)

else

phi(m)=Z(m)

dphi(m)=BCV(m)

endif

15 continue

return

end

subroutine G1LAP2(N,xi,eta,xb,yb,nx,ny,lg,phi,dphi,pint)

integer N,i

double precision xi,eta,xb(1000),yb(1000),nx(1000),ny(1000),

& lg(1000),phi(1000),dphi(1000),pint,sum,pi,P1F1,P1F2,

& P2F1,P2F2

pi=4d0*datan(1d0)

sum=0d0

do 10 i=1,N

call CPF(xi,eta,xb(i),yb(i),nx(i),ny(i),lg(i),P1F1,P1F2)

call CPF(xi,-eta,xb(i),yb(i),nx(i),ny(i),lg(i),P2F1,P2F2)

sum=sum+phi(i)*(P1F2-P2F2)-dphi(i)*(P1F1-P2F1)

10 continue

pint=sum/pi

return

end
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Example 5.1

To test the subroutines G1LAP1 or G1LAP2, we use them to solve Eq. (5.14) numerically
in the square region 0 < x < 1, 0 < y < 1, subject to

φ(x, 0) = 0 for 0 < x < 1,

∂φ

∂n

¯̄̄̄
x=0

= 0 and
∂φ

∂n

¯̄̄̄
x=1

= 0 for 0 < y < 1,

φ(x, 1) = 4x(1− x) for 0 < x < 1.

The analytical solution for this particular problem is given in series form by

φ(x, y) =
2

3
y − 4

∞X
n=1

sinh(2nπy) cos(2nπx)

n2π2 sinh(2nπ)
.

To use G1LAP1 or G1LAP2, we have to discretize only the vertical sides of the
square domain and the horizontal side 0 < x < 1, y = 1 into elements. Each of the
sides is discretized into N0 equal length elements. Thus, N = 3N0 and the points
(x(1), y(1)), (x(2), y(2)), · · · , (x(N−1), y(N−1)), (x(N), y(N)) and (x(N+1), y(N+1)) (on the
three sides) are given by

(x(k), y(k)) = (1, [k − 1]/N0)
(x(N0+k), y(N0+k)) = (1− [k − 1]/N0, 1)
(x(2N0+k), y(2N0+k)) = (0, 1− [k − 1]/N0)

⎫⎬⎭ for k = 1, 2, · · · , N0,

(x(3N0+1), y(3N0+1)) = (0, 0).

The main program EX5PT1 which makes use of G1LAP1 and G1LAP2 to solve
the problem under consideration is listed below.

program EX5PT1

integer N0,BCT(1000),N,i,ians

double precision xb(1000),yb(1000),xm(1000),ym(1000),

& nx(1000),ny(1000),lg(1000),BCV(1000),

& phi(1000),dphi(1000),pint,dl,xi,eta,pi,exct

print*,’Enter number of elements per side (<334):’

read*,N0

N=3*N0

pi=4d0*datan(1d0)

dl=1d0/dfloat(N0)
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do 10 i=1,N0

xb(i)=1d0

yb(i)=dfloat(i-1)*dl

xb(N0+i)=1d0-yb(i)

yb(N0+i)=1d0

xb(2*N0+i)=0d0

yb(2*N0+i)=xb(N0+i)

10 continue

xb(N+1)=0d0

yb(N+1)=0d0

do 20 i=1,N

xm(i)=0.5d0*(xb(i)+xb(i+1))

ym(i)=0.5d0*(yb(i)+yb(i+1))

lg(i)=dsqrt((xb(i+1)-xb(i))**2d0+(yb(i+1)-yb(i))**2d0)

nx(i)=(yb(i+1)-yb(i))/lg(i)

ny(i)=(xb(i)-xb(i+1))/lg(i)

20 continue

do 30 i=1,N

if (i.le.N0) then

BCT(i)=1

BCV(i)=0d0

else if ((i.gt.N0).and.(i.le.(2*N0))) then

BCT(i)=0

BCV(i)=4d0*xm(i)*(1d0-xm(i))

else

BCT(i)=1

BCV(i)=0d0

endif

30 continue

call G1LAP1(N,xm,ym,xb,yb,nx,ny,lg,BCT,BCV,phi,dphi)

50 print*,’Enter coordinates xi and eta of an interior point:’

read*,xi,eta

call G1LAP2(N,xi,eta,xb,yb,nx,ny,lg,phi,dphi,pint)

exct=2d0*eta/3d0
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do 55 i=1,1000

exct=exct-4d0*((dexp(2d0*dfloat(i)*pi*(eta-1d0))

& -dexp(-2d0*dfloat(i)*pi*(eta+1d0)))

& *dcos(2d0*dfloat(i)*pi*xi))

& /((dfloat(i*i)*pi*pi)*(1d0-dexp(-4d0*dfloat(i)*pi)))

55 continue

write(*,60)pint,exct

60 format(’Numerical and exact values are:’,

& F14.6,’ and’,F14.6,’ respectively’)

print*,’To continue with another point enter 1:’

read*,ians

if (ians.eq.1) goto 50

end

Figure 5.3

In Figure 5.3, we plot the numerical φ obtained using N0 = 20 (60 boundary
elements altogether) against 0 < x < 1 for y = 0.30, 0.45, 0.60, 0.75 and 0.90. The
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graphs of the numerical and the exact solutions are in good agreement with each
other.

Case 5.2

As sketched in Figure 5.4, the solution domain R is taken to be the half plane y > 0
without the finite region bounded by a simple closed curve C. We are interested in
solving Eq. (5.14) subject to

∂φ

∂n

¯̄̄̄
y=0

= 0 for −∞ < x <∞,

φ = f1(x, y) for (x, y) ∈ C1,

∂φ

∂n
= f2(x, y) for (x, y) ∈ C2,

φ→ 0 as x2 + y2 → 0, (5.22)

where f1 and f2 are suitably prescribed functions and C1 and C2 are non-intersecting
curves such that C1 ∪ C2 = C.

Figure 5.4

Note that ∂φ/∂n = −∂φ/∂y on the plane boundary y = 0. The last condition
in Eq. (5.22) specifies the “far field” behavior of the solution. For our purpose here,
we assume that φ decays as O([x2 + y2]−a ln[x2 + y2]) (with a being a positive real
number) for large x2 + y2 (within the half plane).

Particular engineering problems which require the computation of stress around
a hole or rigid inclusion or fluid flow past an impermeable body may be formulated
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126 Green’s Functions for Potential Problems

in terms of the boundary value problem above. The curve C represents the boundary
of the hole or rigid inclusion or impermeable body.

To obtain a boundary integral formulation for the problem under consid-
eration, let us first introduce an artificial boundary Sρ given by the semi-circle
x2 + y2 = ρ2, y > 0, where ρ is a positive real number. We take Rρ to be the
finite region whose boundary is given by C ∪ Sρ ∪ Lρ, where Lρ is the horizontal
straight line between the point (−ρ, 0) and (ρ, 0). We assume that ρ is sufficiently
large, so that the simple closed curve C lies wholly in the region Rρ. Refer to Figure
5.5. We can recover the solution domain R in Figure 5.4 if we let the parameter ρ
tend to infinity.

Figure 5.5

If we carry out the analysis in Section 1.4 (page 5, Chapter 1) on the region
Rρ using the Green’s function Φ2(x, y; ξ, η) in Eq. (5.13), we obtain the boundary
integral equation

λ(ξ, η)φ(ξ, η) =

Z
C∪Sρ

[φ(x, y)
∂

∂n
(Φ2(x, y; ξ, η))− Φ2(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y),

(5.23)

with the parameter λ defined by

λ(ξ, η) =

½
1/2 if (ξ, η) lies on a smooth part of C ∪ Sρ,
1 if (ξ, η) ∈ Rρ ∪ Lρ.

(5.24)

In deriving Eq. (5.23), we use the boundary conditions ∂φ/∂n = 0 and ∂Φ2/∂n = 0
on Lρ. The integral over Lρ does not appear in the formulation.

To examine the integral over Sρ for ρ tending to infinity, we write

ln([x− ξ]2 + [y ± η]2) = ln(r2 + ξ2 + η2 − 2r[ξ cos θ ∓ η sin θ])

= ln(r2) + ln(1 +
ξ2 + η2

r2
− 2[ξ cos θ ∓ η sin θ]

r
), (5.25)
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where r and θ are the usual polar coordinates.
From Eq. (5.25), it is obvious that ln([x− ξ]2 + [y ± η]2) ' ln(r2) for large r.

It follows that

Φ2 ' 1

π
ln(r) for large r.

If we further assume that

φ ' A(θ) ln(r)
r2a

for large r,

where A(θ) is a well defined function of θ and a is a positive real number, we find
that

lim
ρ→∞

Z
Sρ

[φ(x, y)
∂

∂n
(Φ2(x, y; ξ, η))− Φ2(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y)

= lim
ρ→∞

[ln(ρ)]2

πρ2a

πZ
0

2aA(θ)dθ = 0.

Thus, if we let ρ tend to infinity in Eq. (5.23), for the potential problem here
with conditions given in Eq. (5.22), we obtain the boundary integral equation

λ(ξ, η)φ(ξ, η) =

Z
C

[φ(x, y)
∂

∂n
(Φ2(x, y; ξ, η))−Φ2(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y),

(5.26)

with the parameter λ defined by

λ(ξ, η) =

½
1/2 if (ξ, η) lies on a smooth part of C,
1 if (ξ, η) ∈ R or if η = 0. (5.27)

Note that in Eq. (5.26) the integral is over the boundary C only. If the usual
fundamental solution Φ(x, y; ξ, η) = (4π)−1 ln([x − ξ]2 + [y − η]2) is used instead of
Φ2(x, y; ξ, η), the path of integration in the boundary integral equation includes the
line y = 0 for −∞ < x < ∞. The advantage of using the special Green’s function
Φ2(x, y; ξ, η) is obvious for the particular problem under consideration.

Finally, let us check that the integral expression for φ(ξ, η) in Eq. (5.26)
tends to zero as ξ2 + η2 → ∞ (within the solution domain). From Eq. (5.13), for
(x, y) ∈ C, we find that Φ2(x, y; ξ, η)→ (2π)−1 ln(ξ2+η2) and ∂(Φ2(x, y; ξ, η)/∂n→ 0
as ξ2 + η2 →∞. Thus, Eq. (5.26) gives

φ(ξ, η)→ − 1
2π
ln(ξ2 + η2)

Z
C

∂

∂n
(φ(x, y))ds(x, y) as ξ2 + η2 →∞.
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With reference to Figure 5.5, ∂φ/∂n is required to satisfy†Z
C∪Lρ∪Sρ

∂

∂n
(φ(x, y))ds(x, y) = 0.

Now we know that ∂φ/∂n is zero on Lρ. We expect ∂φ/∂n to behave as O([x
2 +

y2]−a−1/2 ln[x2 + y2]) on Sρ for large ρ (since we assume that φ decays as O([x2 +
y2]−a ln[x2 + y2]) for large x2 + y2). Thus, for the problem under consideration, if we
let ρ→∞, we find that ∂φ/∂n on C satisfiesZ

C

∂

∂n
(φ(x, y))ds(x, y) = 0.

It follows that φ(ξ, η) as given by Eq. (5.26) tends to zero as ξ2+η2 →∞. Note that
if we prescribe ∂φ/∂n at all points on C we must ensure that the condition above is
fulfilled.

Since the curve C is an inner boundary (within the half plane), the unit
normal vector [nx, ny] on C (for computing ∂φ/∂n and ∂Φ2/∂n) is taken to point
into the region bounded by C. To discretize C, we place N well spaced out points
(x(1), y(1)), (x(2), y(2)), · · · , (x(N−1), y(N−1)) and (x(N), y(N)) on C in the clockwise
(instead of counter clockwise) direction. Using the conditions specified on C and
constant elements, we may use the computer codes in Chapter 1 to solve the problem
under consideration. Since the Green’s function Φ2 is used here (in place of the
usual fundamental solution Φ), the subroutines CELAP1 and CELAP2 for computing φ
numerically have to be replaced by G2LAP1 and G2LAP2 as listed below.

subroutine G2LAP1(N,xm,ym,xb,yb,nx,ny,lg,BCT,BCV,phi,dphi)

integer m,k,N,BCT(1000)

double precision xm(1000),ym(1000),xb(1000),yb(1000),

& nx(1000),ny(1000),lg(1000),BCV(1000),A(1000,1000),

& B(1000),pi,P1F1,P1F2,del,phi(1000),dphi(1000),F1,F2,

& Z(1000),P2F1,P2F2

pi=4d0*datan(1d0)

do 10 m=1,N

B(m)=0d0

do 5 k=1,N

call CPF(xm(m),ym(m),xb(k),yb(k),nx(k),ny(k),lg(k),P1F1,P1F2)

†Exercise 1 of Chapter 1 on page 34 may be of relevance here.
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call CPF(xm(m),-ym(m),xb(k),yb(k),nx(k),ny(k),lg(k),P2F1,P2F2)

F1=(P1F1+P2F1)/pi

F2=(P1F2+P2F2)/pi

if (k.eq.m) then

del=1d0

else

del=0d0

endif

if (BCT(k).eq.0) then

A(m,k)=-F1

B(m)=B(m)+BCV(k)*(-F2+0.5d0*del)

else

A(m,k)=F2-0.5d0*del

B(m)=B(m)+BCV(k)*F1

endif

5 continue

10 continue

call solver(A,B,N,1,Z)

do 15 m=1,N

if (BCT(m).eq.0) then

phi(m)=BCV(m)

dphi(m)=Z(m)

else

phi(m)=Z(m)

dphi(m)=BCV(m)

endif

15 continue

return

end

subroutine G2LAP2(N,xi,eta,xb,yb,nx,ny,lg,phi,dphi,pint)

integer N,i

double precision xi,eta,xb(1000),yb(1000),nx(1000),ny(1000),

& lg(1000),phi(1000),dphi(1000),pint,sum,pi,P1F1,P1F2,

& P2F1,P2F2

pi=4d0*datan(1d0)
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sum=0d0

do 10 i=1,N

call CPF(xi,eta,xb(i),yb(i),nx(i),ny(i),lg(i),P1F1,P1F2)

call CPF(xi,-eta,xb(i),yb(i),nx(i),ny(i),lg(i),P2F1,P2F2)

sum=sum+phi(i)*(P1F2+P2F2)-dphi(i)*(P1F1+P2F1)

10 continue

pint=sum/pi

return

end

Example 5.2

For a particular test problem, let us take the inner boundary C to be the circle
x2 + (y − 1)2 = 1/4. The boundary condition on the inner boundary is given by

φ = 4x(1 +
1

16y + 1
) on C.

The condition on y = 0 and the far field condition are as described in Eq. (5.22).
It is easy to check that the exact solution of the particular test problem is

given by

φ = x(
1

x2 + (y − 1)2 +
1

x2 + (y + 1)2
).

The main program for numerical solution of the test problem is listed in EX5PT2

below. Note that the boundary points on the circular boundary C are arranged in
clockwise order.

program EX5PT2

integer BCT(1000),N,i,ians,j

double precision xb(1000),yb(1000),xm(1000),ym(1000),

& nx(1000),ny(1000),lg(1000),BCV(1000),

& phi(1000),dphi(1000),pint,dl,xi,eta,pi,exct

print*,’Enter number of elements on the circle (<1000):’

read*,N
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pi=4d0*datan(1d0)

dl=2d0*pi/dfloat(N)

do 10 i=1,N

xb(i)=0.5d0*dcos(dfloat(i-1)*dl)

yb(i)=1d0-0.5d0*dsin(dfloat(i-1)*dl)

10 continue

xb(N+1)=xb(1)

yb(N+1)=yb(1)

do 20 i=1,N

xm(i)=0.5d0*(xb(i)+xb(i+1))

ym(i)=0.5d0*(yb(i)+yb(i+1))

lg(i)=dsqrt((xb(i+1)-xb(i))**2d0+(yb(i+1)-yb(i))**2d0)

nx(i)=(yb(i+1)-yb(i))/lg(i)

ny(i)=(xb(i)-xb(i+1))/lg(i)

20 continue

do 30 i=1,N

BCT(i)=0

BCV(i)=4d0*xm(i)*(1d0+1d0/(16d0*ym(i)+1d0))

30 continue

call G2LAP1(N,xm,ym,xb,yb,nx,ny,lg,BCT,BCV,phi,dphi)

50 print*,’Enter coordinates xi and eta of an interior point:’

read*,xi,eta

call G2LAP2(N,xi,eta,xb,yb,nx,ny,lg,phi,dphi,pint)

exct=xi*(1d0/(xi**2d0+(eta-1d0)**2d0)

& +1d0/(xi**2d0+(eta+1d0)**2d0))

write(*,60)pint,exct

60 format(’Numerical and exact values are:’,

& F14.6,’ and’,F14.6,’ respectively’)

print*,’To continue with another point enter 1:’

read*,ians

if (ians.eq.1) goto 50

end
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Discretizing the circular boundary C into 50 elements of equal length, we
compute φ(x, 0) numerically and compare the numerical values with the exact ones
for −5 < x < 5 in Figure 5.6. This verifies that φ may be accurately calculated on
the exterior boundary y = 0 of the solution domain by using Eq. (5.26) with λ = 1.

Figure 5.6

5.3 Infinitely Long Strip

5.3.1 Derivation of Green’s Functions by Conformal Mapping

Let us consider the infinitely long strip −∞ < x <∞, 0 < y < h, on the Oxy plane,
as shown in Figure 5.7. If we write z = x + iy (i =

√−1), the conformal mapping
w = exp(πz/h) (with w = u + iv) can be used to transform the infinitely long strip
to the half plane v > 0 (on the Ouv plane) in Figure 5.8. The boundary y = 0 is
mapped to the line v = 0, u > 0, while y = h to v = 0, u < 0.
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Figure 5.7

Figure 5.8

In real variables, the conformal mapping w = exp(πz/h) can be expressed in
terms of a pair of equations given by

u = exp(
πx

h
) cos(

πy

h
),

v = exp(
πx

h
) sin(

πy

h
). (5.28)

Let us construct a Green’s function eΨ(u, v;α, β) for the half plane u > 0

in Figure 5.8 such that eΨ is singular at (u, v) = (α,β) and satisfies the Dirichlet
condition

eΨ(u, 0;α,β) = 0 for −∞ < u <∞. (5.29)
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From Eq. (5.9), such a Green’s function is given by

eΨ(u, v;α,β) = 1

4π
ln([u− α]2 + [v − β]2)− 1

4π
ln([u− α]2 + [v + β]2). (5.30)

If (α,β) is the image point of (ξ, η) (a given point in the infinitely long strip

in Figure 5.7), we may use Eq. (5.28) to bring eΨ(u, v;α, β) to the physical 0xy plane,
that is, we define the function

Ψ(x, y; ξ, η) =
1

4π
ln([exp(

πx

h
) cos(

πy

h
)− exp(πξ

h
) cos(

πη

h
)]2

+[exp(
πx

h
) sin(

πy

h
)− exp(πξ

h
) sin(

πη

h
)]2)

− 1
4π
ln([exp(

πx

h
) cos(

πy

h
)− exp(πξ

h
) cos(

πη

h
)]2

+[exp(
πx

h
) sin(

πy

h
) + exp(

πξ

h
) sin(

πη

h
)]2). (5.31)

According to the theory of conformal mapping‡, Ψ should satisfy the two-
dimensional Laplace’s equation everywhere in the infinitely long strip except at
(x, y) = (ξ, η) and the conditions

Ψ(x, 0; ξ, η) = 0 and Ψ(x, h; ξ, η) = 0 for −∞ < x <∞. (5.32)

Note that Eq. (5.32) follows directly from Eq. (5.29).
If R is the region bounded by a simple closed curve C which lies in the infinitely

long strip, can we use the function Ψ(x, y; ξ, η) in Eq. (5.31) in place of Φ(x, y; ξ, η)
in Eq. (5.2) to derive the boundary integral equation in Eq. (5.1)?

To find out, let us examine what happens to Ψ(x, y; ξ, η) as (x, y) approaches
the point (ξ, η).

As (x, y) tends to (ξ, η), the first logarithmic term on the right hand side of
Eq. (5.31) blows up but the second logarithmic term is bounded. Examining the
argument inside the logarithmic function in the first term, we find that

exp(
πx

h
) cos(

πy

h
)− exp(πξ

h
) cos(

πη

h
)

= (exp(
πξ

h
) +

π

h
exp(

πξ

h
)[x− ξ] +

π2

2h2
exp(

πξ

h
)[x− ξ]2 + · · · )

×(cos(πη
h
)− π

h
sin(

πη

h
)[y − η] +

π2

2h2
cos(

πη

h
)[y − η]2 + · · · )

− exp(πξ
h
) cos(

πη

h
)

' π

h
exp(

πξ

h
)([x− ξ] cos(

πη

h
)− [y − η] sin(

πη

h
))

for (x, y) very close to (ξ, η),

‡For further details, one may refer to the relevant chapters on conformal mapping in the textbook
Complex Variables and Applications by RV Churchill and JW Brown (McGraw-Hill, 1990).
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and

exp(
πx

h
) sin(

πy

h
)− exp(πξ

h
) sin(

πη

h
)

= (exp(
πξ

h
) +

π

h
exp(

πξ

h
)[x− ξ] +

π2

2h2
exp(

πξ

h
)[x− ξ]2 + · · · )

×(sin(πη
h
) +

π

h
cos(

πη

h
)[y − η]− π2

2h2
sin(

πη

h
)[y − η]2 + · · · )

− exp(πξ
h
) sin(

πη

h
)

' π

h
exp(

πξ

h
)([y − η] cos(

πη

h
) + [x− η] sin(

πη

h
))

for (x, y) very close to (ξ, η).

It follows that

Ψ(x, y; ξ, η) ' 1

4π
ln([x− ξ]2 + [y − η]2) for (x, y) very close to (ξ, η),

that is, Ψ(x, y; ξ, η) behaves like the usual fundamental solution in Eq. (5.2) as (x, y)
approaches (ξ, η).

Thus, if R is the region bounded by a simple closed curve C which lies in the
infinitely long strip, we can use the function Ψ(x, y; ξ, η) in Eq. (5.31) in place of
Φ(x, y; ξ, η) in Eq. (5.2) to derive the boundary integral equation in Eq. (5.1).

For the infinitely long strip, let us define

Φ3(x, y; ξ, η) =
1

4π
ln([exp(

πx

h
) cos(

πy

h
)− exp(πξ

h
) cos(

πη

h
)]2

+[exp(
πx

h
) sin(

πy

h
)− exp(πξ

h
) sin(

πη

h
)]2)

− 1
4π
ln([exp(

πx

h
) cos(

πy

h
)− exp(πξ

h
) cos(

πη

h
)]2

+[exp(
πx

h
) sin(

πy

h
) + exp(

πξ

h
) sin(

πη

h
)]2), (5.33)

as a Green’s function (for the two-dimensional Laplace’s equation) satisfying the
conditions

Φ3(x, 0; ξ, η) = 0 and Φ3(x, h; ξ, η) = 0 for −∞ < x <∞. (5.34)

Similarly, we may obtain

Φ4(x, y; ξ, η) =
1

4π
ln([exp(

πx

h
) cos(

πy

h
)− exp(πξ

h
) cos(

πη

h
)]2

+[exp(
πx

h
) sin(

πy

h
)− exp(πξ

h
) sin(

πη

h
)]2)

+
1

4π
ln([exp(

πx

h
) cos(

πy

h
)− exp(πξ

h
) cos(

πη

h
)]2

+[exp(
πx

h
) sin(

πy

h
) + exp(

πξ

h
) sin(

πη

h
)]2), (5.35)
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as a Green’s function which satisfies the conditions§

∂

∂y
[Φ4(x, y; ξ, η)]

¯̄̄̄
y=0

= 0 and
∂

∂y
[Φ4(x, y; ξ, η)]

¯̄̄̄
y=h

= 0 for −∞ < x <∞.
(5.36)

5.3.2 Applications

The Green’s functions Φ3(x, 0; ξ, η) and Φ4(x, y; ξ, η) above are applied to obtain
special boundary integral formulations for two specific problems.

Example 5.3

Consider the solution domain R shown in Figure 5.9. The boundary of R comprises
four parts denoted by L1, L2, L3 and L4, where

L1 = {(x, y) : x2 + (y − 1/2)2 = 1/4, x < 0},
L2 = {(x, y) : x = 1, 0 < y < 1},
L3 = {(x, y) : 0 ≤ x < 1, y = 1},
L4 = {(x, y) : 0 ≤ x < 1, y = 0}.

Figure 5.9

The problem of interest here is to solve Eq. (5.14) in R subject to the boundary

§An alternative Green’s function satisfying the conditions in Eq. (5.36), expressed in terms of
a Fourier integral transform, may be found in the paper “A method for the numerical solution of
some elliptic boundary value problems for a strip” by DL Clements and J Crowe in the International
Journal of Computer Mathematics (Volume 8, 1980, pp. 345-355).
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conditions

∂φ

∂n
= 2πx sin(πy) sinh(π[x− 1])

+π(2y − 1) cos(πy) cosh(π[x− 1])
for (x, y) ∈ L1,

∂φ

∂n
= 0 for (x, y) ∈ L2,

φ = 0 for (x, y) ∈ L3 ∪ L4.

It is easy to verify that the exact solution is given by

φ(x, y) = sin(πy) cosh(π[x− 1]).
In view of the condition φ = 0 for (x, y) ∈ L3 ∪ L4, we may use the Green’s

function Φ3(x, y; ξ, η) in Eq. (5.33) to obtain the boundary integral equation

λ(ξ, η)φ(ξ, η) =

Z
L1∪L2

[φ(x, y)
∂

∂n
(Φ3(x, y; ξ, η))−Φ3(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y),

with the parameter λ defined by

λ(ξ, η) =

⎧⎨⎩ 0 if (ξ, η) ∈ L3 ∪ L4,
1/2 if (ξ, η) lies on a smooth part of L1 ∪ L2,
1 if (ξ, η) ∈ R.

In using the above integral formulation to devise a boundary element proce-
dure, we do not have to discretize L3 and L4. We discretize L1 and L2 into N straight
line elements denoted by C(1), C(2), · · · , C(N−1) and C(N). Proceeding as before, we
may approximate φ and ∂φ/∂n as constants over the boundary elements and reduce
the task of finding the unknown φ on L1 ∪ L2 to solving a system of linear algebraic
equations. To set up the linear algebraic equations, we have to evaluate the line
integrals Z

C(k)

Φ3(x, y; ξ, η)ds(x, y) and

Z
C(k)

∂

∂n
[Φ3(x, y; ξ, η)]ds(x, y).

These line integrals may be evaluated numerically using the formula in Eq. (3.23)
(page 62, Chapter 3).

We shall not go into details here, but earlier FORTRAN codes such as CPG,
CEHHZ1 and CEHHZ2 (listed on pages 64 to 67, Chapter 3) can be easily modified in
an appropriate manner to solve the problem under consideration here through the
special boundary integral formulation given above.
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To obtain some numerical results, the semi-circle L1 is discretized into 50
equal length boundary elements and the straight line L2 into another 50 equal length
elements (that is, 100 boundary elements are employed on L1 ∪ L2). As ∂φ/∂n is
specified on L2 (x = 1, 0 < y < 1), we compare the numerically obtained values
of φ(1, y) against the exact solution in Figure 5.10. There is a reasonably good
agreement between the numerical and the exact values of φ on L2. The validity of
the Green’s function Φ3(x, y; ξ, η) is thus verified here.

Figure 5.10

Example 5.4

Take the solution domain R to be 0 < x < 3, 0 < y < 1. We are interested in solving
Eq. (5.14) in R subject to the boundary conditions

∂φ

∂n

¯̄̄̄
y=0

= 0 for 0 < x < 3,

∂φ

∂n

¯̄̄̄
y=1

=

½
1 for 1 < x < 2,
0 otherwise,

φ(0, y) = 0 for 0 < y < 1,

∂φ

∂n

¯̄̄̄
x=3

= 0 for 0 < y < 1.
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Infinitely Long Strip 139

If we use the Green’s function Φ4(x, y; ξ, η) in Eq. (5.35) to derive a boundary
integral equation for the problem, we obtain

λ(ξ, η)φ(ξ, η) = −
2Z

1

Φ4(x, 1; ξ, η)dx−
1Z

0

Φ4(0, y; ξ, η)
∂φ

∂n

¯̄̄̄
x=0

dx

+

1Z
0

∂

∂n
(Φ4(x, y; ξ, η))

¯̄̄̄
x=3

φ(3, y)dy, (5.37)

where λ(ξ, η) = 1/2 if (ξ, η) lies on the vertical sides (x = 0 and x = 3) of the
rectangular solution domain and λ(ξ, η) = 1 if (ξ, η) lies on the horizontal sides
(y = 0 and y = 1) or in the interior of the solution domain.

With the use of the special Green’s function Φ4(x, y; ξ, η), it is not necessary
to integrate over the parts of the horizontal sides (y = 0 and y = 1) where ∂φ/∂n is
specified as 0. Proceeding as usual, we may discretize the boundary integral equation
above to set up a system of linear algebraic equations to determine ∂φ/∂n on x = 0
and φ on x = 3. We assume that ∂φ/∂n is a constant over each element. Once the
unknown values of ∂φ/∂n on the elements are determined, φ(ξ, η) may be computed
at any point (ξ, η) in the solution domain.

Table 5.1

(x, y)
With special

Green’s function
Without special
Green’s function

(0.50, 0.25) 0.4847 0.4858
(1.50, 0.25) 1.2666 1.2677
(2.50, 0.25) 1.4874 1.4831
(0.50, 0.50) 0.4978 0.4983
(1.50, 0.50) 1.3322 1.3340
(2.50, 0.50) 1.5015 1.4968
(0.50, 0.75) 0.5147 0.5129
(1.50, 0.75) 1.4556 1.4584
(2.50, 0.75) 1.5180 1.5127

It appears that there is no simple analytical solution for the problem under
consideration. To check the validity of the special boundary integral equation ob-
tained using the Green’s function Φ4(x, y; ξ, η), we compare its numerical values of
φ with those obtained using the boundary element procedure outlined in Chapter 1
(that is, without the use of any special Green’s function, by using the subroutines
CELAP1 and CELAP2). The intervals of integration in the special boundary integral
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140 Green’s Functions for Potential Problems

equation in Eq. (5.37) are discretized into 120 straight line elements, each of length
0.0250 units, to set up a system of 80 linear algebraic equations in 80 unknowns. For
the boundary element method in Chapter 1, 320 elements, each also of length 0.0250
units, are employed. The numerical values of φ thus obtained at selected points in
the interior of the solution domain are given in Table 5.1. There is a good agreement
between the two sets of numerical values.

5.4 Exterior Region of a Circle

5.4.1 Two Special Green’s Functions

Consider the region x2 + y2 > a2 (a is a positive real number) as sketched in Figure
5.11. For this region, we give Green’s functions¶ satisfying certain conditions on the
circular boundary x2 + y2 = a2.

Figure 5.11

Let the required Green’s functions take the form

Φ(x, y; ξ, η) =
1

4π
ln([

x

a
− ξ

a
]2 + [

y

a
− η

a
]2) + Φ∗(x, y; ξ, η), (5.38)

such that Φ∗(x, y; ξ, η) satisfies

∂2

∂x2
[Φ∗(x, y; ξ, η)] +

∂2

∂y2
[Φ∗(x, y; ξ, η)] = 0

for x2 + y2 > a2 and ξ2 + η2 > a2. (5.39)

¶Note from the author. I had no prior knowledge of the specific forms of the Green’s functions
Φ5(x, y; ξ, η) and Φ6(x, y; ξ, η) given in Eqs. (5.42) and (5.44). I deduced them by guesswork during
the writing of this section. I believe that they must have already been recorded (in equivalent
forms) somewhere in the research literature. If you have any information on this, please e-mail me
at mwtang@ntu.edu.sg.
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Exterior Region of a Circle 141

For convenience, we define z = x+ iy and z0 = ξ + iη (i =
√−1) and refer to

the points (x, y) and (ξ, η) as z and z0 respectively. We may rewrite Φ(x, y; ξ, η) in
Eq. (5.38) given above ask

Φ(x, y; ξ, η) =
1

2π
Re{ln(1

a
[z − z0])}+ Φ∗(x, y; ξ, η), (5.40)

where Re denotes the real part of a complex number.
Let us take

Φ∗(x, y; ξ, η) = − 1
2π
Re{ln(1− z0z

a2
)}, (5.41)

where the overhead bar denotes the complex conjugate of a complex number.
From Figure 5.11, it is obvious that a/z 6= z0/a for all points z and z0 in

the region x2 + y2 > a2. This implies that 1 − z0z/a
2 is not zero over the region

x2 + y2 > a2 and Φ∗(x, y; ξ, η) as given in Eq. (5.41) satisfies Eq. (5.39).
We may use Eqs. (5.40) and (5.41) to define a Green’s function for the region

x2 + y2 > a2, that is,

Φ5(x, y; ξ, η) =
1

2π
Re{ln(1

a
[z − z0])}− 1

2π
Re{ln(1− z0z

a2
)}. (5.42)

If we write z in polar form as z = r exp(iθ), we obtain

Φ5(x, y; ξ, η)|on the circle x2+y2=a2

=
1

2π
Re{ln(exp(iθ)− z0

a
)}− 1

2π
Re{ln(1− z0 exp(iθ)

a
)}

=
1

2π
Re{ln(exp(iθ)− z0

a
)}− 1

2π
Re{ln(1− z0 exp(iθ)

a
)}

=
1

2π
Re{ln(exp(iθ)− z0

a
)}− 1

2π
Re{ln(1− z0 exp(−iθ)

a
)}

=
1

2π
Re{ln(exp(iθ)− z0

a
)}− 1

2π
Re{ln[exp(−iθ)(exp(iθ)− z0

a
)]} = 0.

Note that r =
p
x2 + y2, that is, r = a on the circle.

Thus, the Green’s function Φ5(x, y; ξ, η) in Eq. (5.42) satisfies the boundary
condition

Φ5(x, y; ξ, η) = 0 on the circle x
2 + y2 = a2. (5.43)

In a similar way, another Green’s function for the region x2+y2 > a2 as defined
by

Φ6(x, y; ξ, η) =
1

2π
Re{ln(1

a
[z − z0])}+ 1

2π
Re{ln(1− z0z

a2
)− ln(z

a
)} (5.44)

kThe complex logarithmic function ln(w) is defined by ln |w| + i arg(w). Thus, Re{ln(z)} =
1
2 ln(p

2 + q2) if w = p+ iq, where p and q are real numbers.
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can be shown to satisfy the boundary condition

∂

∂n
[Φ6(x, y; ξ, η)] = 0 on the circle x

2 + y2 = a2. (5.45)

Note that ∂[Φ6(x, y; ξ, η)]/∂n = −∂[Φ6(r cos θ, r sin θ; ξ, η)]/∂r on x
2 + y2 = a2.

5.4.2 Applications

Example 5.5

The solution domain R is taken to be a doubly connected region given by

R = {(x, y) : x2 + y2 > 1, − ` < x < `, − ` < y < `, ` > 1}.

Refer to Figure 5.12.

Figure 5.12

We are interested in solving Eq. (5.14) in R subject to the boundary conditions

φ = 0 on the inner boundary I (circle),

φ = 1 on the outer boundary E (sides of square).

For the boundary value problem above, the Green’s function Φ5(x, y; ξ, η) in
Eq. (5.42) may be applied together with the given boundary conditions to obtain the
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boundary integral equation

λ(ξ, η)φ(ξ, η) =

Z
E

[
∂

∂n
(Φ5(x, y; ξ, η))−Φ5(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y), (5.46)

with the parameter λ defined by

λ(ξ, η) =

⎧⎨⎩ 0 if (ξ, η) ∈ I,
1/2 if (ξ, η) lies on a smooth part of E,
1 if (ξ, η) ∈ R.

Integration over the inner boundary I is avoided by the use of the special Green’s
function.

The problem has been solved before using several different approaches∗∗. For
` = 1.53499, a method based on complex variables gives the approximation††

φ(x, y) ' 0.99203 · ln(x2 + y2) + 0.01331([x+ iy]4 + [x− iy]4)(1− 1

[x2 + y2]4
)

+0.00007([x+ iy]8 + [x− iy]8)(1− 1

[x2 + y2]8
). (5.47)

We discretize the outer boundary E into 80 equal length elements to set up
a system of 80 linear algebraic equations to determine ∂φ/∂n on E. The unknown
∂φ/∂n is assumed to be a constant over each boundary element. In Table 5.2, the
numerical values of φ as obtained using Eq. (5.46) are compared with those computed
from Eq. (5.47) at selected points in the interior of R. The two sets of numerical
values of φ are in quite close agreement with each other.

Table 5.2

(x, y)
Boundary integral

equation in Eq. (5.46)
Approximate formula

in Eq. (5.47)
(0.77781, 0.77781) 0.16856 0.16854
(−0.60000, 1.0392) 0.34049 0.34027
(0.22574,−1.2803) 0.57292 0.57184
(1.5000, 0.00000) 0.94001 0.93756
(0.00000, 1.4000) 0.76681 0.76497
(1.4142, 1.4142) 0.97920 0.98683

∗∗See, for example, the article “A solution of Laplace’s equation for a round hole in a square peg,”
Journal of the Society for Industrial and Applied Mathematics (Volume 12, 1964, pp. 1-14) by RW
Hockney. As pointed in this article, the boundary value problem under consideration arises in the
modeling of gas leakage across the graphite brick of a nuclear reactor.
††This is as given in “Laplace’s equation in the region bounded by a circle and a square,” Technical

Report No. M9/97 (Universiti Sains Malaysia, 1997) by KH Chew. Approximate formulae of φ for
other values of ` may also found in this report.
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Example 5.6

The solution domain R is as in Figure 5.12. As in Example 5.6, the inner boundary
x2 + y2 = 1 is denoted by I and the outer boundary (the sides of the square) by E.
The governing equation in R is the Laplace’s equation in Eq. (5.14). We impose the
condition ∂φ/∂n = 0 on the interior boundary I. At each and every point on the
exterior boundary E, either φ or ∂φ/∂n is suitably prescribed.

If the Green’s function Φ6(x, y; ξ, η) in Eq. (5.44) is applied together with the
boundary condition on I to obtain the boundary integral equation for the problem
under consideration, we obtain

λ(ξ, η)φ(ξ, η) =

Z
E

[φ(x, y)
∂

∂n
(Φ6(x, y; ξ, η))−Φ6(x, y; ξ, η)

∂

∂n
(φ(x, y))]ds(x, y),

(5.48)

with the parameter λ defined by

λ(ξ, η) =

½
1/2 if (ξ, η) lies on a smooth part of E,
1 if (ξ, η) ∈ R ∪ I.

For a particular solution of Eq. (5.14) satisfying the condition ∂φ/∂n = 0 on
I, we take

φ(x, y) = x+
x

x2 + y2
. (5.49)

We use Eq. (5.49) to produce boundary data for φ on E and discretize the
boundary integral equation in Eq. (5.48) to solve numerically the problem under
consideration subject to the boundary data of φ generated on E. If the numerical
procecure really works, we should be able to recover numerically the solution in Eq.
(5.49). For ` = 2.00000, in Table 5.3, the numerical values of φ on I (where r = 1)
obtained using 80 boundary elements are compared with the exact solution in Eq.
(5.49) for selected values of the polar angle θ.

Table 5.3

θ Eq. (5.48) Exact solution
0o 2.000006 2.000000
15o 1.931910 1.931852
30o 1.732099 1.732051
45o 1.414239 1.414214
60o 1.000003 1.000000
75o 0.517632 0.517638
90o 0.000000 0.000000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2007 WT Ang  
A Beginner’s Course in Boundary Element Methods 



Summary and Discussion 145

5.5 Summary and Discussion

Several Green’s functions for the two-dimensional Laplace’s equation in a half plane,
an infinitely long strip and a region exterior to a circle, which satisfy certain boundary
conditions, are given. They are applied to obtain special boundary integral equations
for particular boundary value problems.

As is clear from the examples given, if the required solution and the Green’s
function used satisfy the same homogeneous condition‡‡ on a certain part of the
boundary, it is not necessary to integrate over that part. Furthermore, that bound-
ary condition is automatically satisfied in the boundary integral formulation of the
problem under consideration and requires no further treatment. This gives rise to a
smaller system of linear algebraic equations in the boundary element procedure.

The smaller system definitely helps to ease the requirement on computer mem-
ory storage and precision. There are fewer coefficients to compute in setting up the
system and less computer time is needed to invert a smaller matrix. More computer
time is, however, required to compute each coefficient, as the Green’s function as-
sumes a form which is more complicated than the usual fundamental solution. In
general, the integration of the Green’s function and its normal derivative over an
element has to be done numerically. Whether or not there is a significant overall
reduction (or increase) in computer time needed to complete the boundary element
procedure depends on how complicated the Green’s function is.

5.6 Exercises

Unless otherwise stated, the two-dimensional Laplace’s equation is the governing par-
tial differential equation in all the exercises below.

1. Consider again the boundary value problem in Exercise 7 of Chapter 1 (page 35).
Use the Green’s function Φ1(x, y; ξ, η) in Eq.(5.9) to obtain a special boundary
integral equation for the problem. Discretize the boundary integral equation in
order to solve for φ numerically. Compare the numerical values of φ at selected
points in the interior of the solution domain with the exact solution.

2. Let z = x + iy and w = u + iv, where x, y, u and v are real variables. Check
that the mapping w = z2 transforms the quarter plane x > 0, y > 0 (on the
Oxy plane) to the half plane v > 0 (on the Ouv plane). Find a Green’s function
Φ(x, y; ξ, η) for the quarter plane such that

Φ(0, y; ξ, η) = 0 for 0 < y <∞,
Φ(x, 0; ξ, η) = 0 for 0 < x <∞.

‡‡In the examples given here, the homogeneous conditions involved are given by either φ = 0
or ∂φ/∂n = 0 on the boundary. The boundary condition given by ∂φ/∂n + kφ = 0 may also be
considered.
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3. For the quarter plane in Exercise 2, construct a Green’s function Φ(x, y; ξ, η)
such that

∂

∂x
[Φ(x, y; ξ, η)]

¯̄̄̄
x=0

= 0 for 0 < y <∞,
∂

∂y
[Φ(x, y; ξ, η)]

¯̄̄̄
y=0

= 0 for 0 < x <∞.

4. The mapping w = cos(πz/a) transforms the half strip 0 < x < a, y > 0 to the
half plane v > 0. Find a Green’s function Φ(x, y; ξ, η) for the half strip such
that

Φ(0, y; ξ, η) = 0 for y > 0,

Φ(a, y; ξ, η) = 0 for y > 0,

Φ(x, 0; ξ, η) = 0 for 0 < x < a.

Use the Green’s function to obtain a special boundary integral equation for the
boundary value problem in Exercise 3 of Chapter 2 (page 55). Discretize the
boundary integral equation in order to solve for φ numerically. Compare the
numerical values of φ at selected points in the interior of the solution domain
with the exact solution.

5. For the Helmholtz equation on page 57 in the half plane y > 0, construct a
Green’s function Ω(x, y; ξ, η) satisfying the boundary condition

Ω(x, 0; ξ, η) = 0 for 0 < x <∞.

6. Repeat Exercise 5 with the boundary condition

∂

∂y
[Ω(x, y; ξ, η)]

¯̄̄̄
y=0

= 0 for 0 < x <∞.

7. The Green’s function Φ5(x, y; ξ, η) in Eq. (5.42), but not Φ6(x, y; ξ, η) in Eq.
(5.44), is valid for the circle x2 + y2 < a. Explain why.
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the boundary conditions

φ = 0 on the horizontal side y = 0 for 0 < x < 1,

φ = 1 on the vertical side x = 0 for 0 < y < 1,
∂φ

∂n
= 0 on the quarter circle x2 + y2 = 1, x > 0, y > 0.

Discretize each of the three parts of the boundary (the two sides and the quar-
ter circle) into N0 boundary elements so that N = 3N0, that is, so that we
have a total of 3N0 boundary elements. Using various values of N0, run the
modified program to calculate the numerical solution at various selected inte-
rior points and compare the results obtained with the exact solution φ(x, y) =
(2/π) arctan(y/x). According to the exact solution, φ is not well defined at
(0, 0). This is not surprising, as (0, 0) is the point where the value of φ sud-
denly jumps from 0 on the horizontal side to 1 on the vertical side. The normal
derivative ∂φ/∂n is given by −∂φ/∂y on the horizontal side. From the exact
solution, we know that ∂φ/∂n → −∞ on y = 0 as x → 0+. This singular be-
havior of the solution may be a problem for the boundary element procedure.
Investigate the numerical solution at points near (0, 0). The subroutine CELAP1

returns the numerical values of ∂φ/∂n on the horizontal side in the first N0

variables of the real array dphi(1:N). Compare the values in these variables
with the exact values of ∂φ/∂n on the horizontal side. Repeat the same exercise
with the vertical side.

8. Modify the program EX1PT1 in Section 1.7 to solve numerically the Laplace’s
equation given by Eq. (1.1) in the region 0 < x < 1, 0 < y < 1, subject to the
boundary conditions

∂φ

∂n
= 5 cos(πx) on the top horizontal side y = 1 for 0 < x < 1,

∂φ

∂n
= 0 on the other three remaining sides,

φ = 1 at (x, y) = (
1

3
,
1

2
).

By discretizing each side of the square into N0 equal length elements, run the
modified program with various values of N0 to compute φ at some selected
interior points. (Notes. (1) With the boundary conditions alone, the bound-
ary value problem does not have a unique solution. Thus, the subroutine
CELAP2 by itself may not return us the desired numerical value of φ in the
real variable pint. Use the additional condition as given by φ(1/3, 1/2) = 1
to find the desired numerical solution. (2) The exact solution of this problem
is φ(x, y) = 5 cos(πx) cosh(πy)/(π sinh(π)) + 0.827 103 138 436. Compare your
numerical values with the exact solution.)
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