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Introduction
In the book “A Beginner’s Course in Boundary Element Methods”, we

have considered solving the two-dimensional Laplace’s equation

∂2φ

∂x2
+

∂2φ

∂y2
= 0 for (x, y) ∈ R, (1)

subject to the boundary conditions

φ = f1(x, y) for (x, y) ∈ C1,
∂φ

∂n
= f2(x, y) for (x, y) ∈ C2, (2)

where f1 and f2 are suitably prescribed functions and C1 and C2 are non-
intersecting curves such that C1 ∪ C2 = C and C is the simple closed curve
bounding the two-dimensional region R. We have shown how a boundary
integral solution can be derived for (1) and applied (Chapters 1 and 2) to
obtain boundary element procedures for the numerical solution of (1) and
(2).
An alternative boundary element procedure based on the theory of com-

plex variables can be derived for the numerical solution of (1) and (2) as
explained below.

Complex Formulation
According to the theory of complex variables, if F (z) (z = x + iy, i =√−1) is analytic (holomorphic) in R, then both the real and the imaginary

parts of F (z) satisfy the two-dimensional Laplace’s equation for (x, y) ∈ R.
Thus, we may write

φ(x, y) = Re{F (z)}. (3)

We may think of (3) as the general solution of (1).
The boundary value problem defined by (1) and (2) may then be re-stated

as:
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“Construct a complex function F (z) which is holomorphic in
R and such that

Re{F (z)} = f1(x, y) for (x, y) ∈ C1,
Re{(n1 + in2)F 0(z)} = f2(x, y) for (x, y) ∈ C2,

where [n1, n2] is the unit normal vector to the curve C pointing
away from R.”

Numerical Construction of F (z)
According to the Cauchy integral formulae, if F (z) is holomorphic in the

region R bounded by the simple closed curve C then

2πiF (z0) =

I
C

F (z)

z − z0dz for z0 = x0 + iy0 ∈ R, (4)

and

2πiF 0(z0) =
I
C

F (z)

(z − z0)2dz for z0 ∈ R. (5)

In the Cauchy integral formulae above, C is assigned an anticlockwise direc-
tion.
We will use (4) and (5) to construct numerically1 the required holomor-

phic function F (z) whose real part gives the solution of the boundary value
problem defined by (1) and (2). As pointed out above, the required function
F (z) must satisfy

Re{F (z)} = f1(x, y) for (x, y) ∈ C1,
Re{(n1 + in2)F 0(z)} = f2(x, y) for (x, y) ∈ C2. (6)

1The idea of using (4) to construct F (z) numerically was apparently initiated by Hro-
madka and his co-researchers in the 1980s (see, for example, T. V. Hromadka and C.
Lai, The Complex Variable Boundary Element Method in Engineering Analysis, Springer-
Verlag, 1987). The use of (5) for treating the boundary condition given on the second line
of (6) is a later development as found in works such as Linkov and Mogilevskaya [A. M.
Linkov and S. G. Mogilevskaya, Complex hypersingular integrals and integral equations in
plane elasticity, Acta Mechanica 105 (1994) 189-205] and Ang and Park [W. T. Ang and
Y. S. Park, A complex variable boundary element method for an exterior boundary value
problem governed by an elliptic partial differential equation, SEA Bulletin of Mathematics
23 (1999) 541-549].
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We begin by noting that if the value of F (z) is known at all points on
the boundary C then we have solved the problem as we can then (at least
theoretically) use (4) to calculate F at any point z0 inside the solution domain
R. From (6), the value of the function F (z) is only partially known. For
example, at any point z on C1, the value of only the real part of F (z) is
known. We will outline here a simple boundary element method (that is,
no discretisation of the solution domain R into elements is needed in the
numerical procedure) for finding F (z) numerically at all points on C.
We place N consecutive points z(1), z(2), · · · , z(N−1) and z(N) in anticlock-

wise on the boundary C. Here z(n) = x(n) + iy(n). The m-th element C(m) is
the directed line from z(m) to z(m+1). (Note that we take z(N+1) = z(1).) So,
we make the approximation

C ' C(1) ∪ C(2) ∪ · · · ∪ C(N−1) ∪ C(N). (7)

With (7), (4) can be approximately written as

2πiF (z0) =
NX
n=1

Z
C(n)

F (z)

z − z0dz for z0 ∈ R. (8)

If we write F (z) as its Taylor-Maclaurin series about z = z0 and retains
only the first term (in the series), we find thatZ

C(n)

F (z)

z − z0dz = F (z0)
Z
C(n)

1

z − z0dz +O(|z
(n+1) − z(n)|). (9)

Formally, we can evaluate the line integral on the right hand side of (9) as

Z
C(n)

1

z − z0dz =

z(n+1)Z
z(n)

1

z − z0dz

= ln(z(n+1) − z0)− ln(z(n) − z0). (10)

However, since ln(z) is a complex function such that its imaginary part may
have multiple values for a given z, we have to interpret the imaginary part
of ln(z(n+1) − z0) − ln(z(n) − z0) carefully. Whatever branch we choose to
give to the complex logarithmic function, that is, no matter how we define
arg(z) in ln(z) = ln |z|+ i arg(z), ln(z(n+1) − z0)− ln(z(n) − z0) must be the
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angle θ(n) shown in Figure 1. As sketched in Figure 1, θ(n) is positive because
arg(z(n+1) − z0) and arg(z(n) − z0) are both positive angles (by convention)
and arg(z(n+1)− z0) > arg(z(n)− z0). Nevertheless, depending on where z0 is
or the direction of the element C(n), it is possible for θ(n) to be negative. For
example, if the element is orientated as sketched in Figure 2, then arg(z(n+1)−
z0) < arg(z

(n)− z0) and hence θ(n) < 0.Whatever the case may be, it is clear
that |θ(n)| cannot be greater than π,that is the magnitude of the angle θ(n)

cannot be greater than 180o. Thus, −π ≤ θ(n) ≤ π. In Figure 1, if we push
z0 to tend to the midpoint (say) of the element, then we find that θ

(n) tends
to π.

Figure 1

Figure 2
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We can now writeZ
C(n)

1

z − z0dz = ln(z(n+1) − z0)− ln(z(n) − z0)

= γ(n)(z0) + iθ
(n)(z0), (11)

where

γ(n)(z0) = ln |z
(n+1) − z0
z(n) − z0 |,

θ(n)(z0) =


Ω(n)(z0) if −π < Ω(n)(z0) ≤ π

Ω(n)(z0) + 2π if −2π ≤ Ω(n)(z0) ≤ −π
Ω(n)(z0)− 2π if π < Ω(n)(z0) ≤ 2π

,

Ω(n)(z0) = Arg(z(n+1) − z0)−Arg(z(n) − z0). (12)

Note that Arg(z) is the principal argument of z such that −π < Arg(z) ≤ π
and θ(n)(z0) as defined above is for z0 ∈ R ∪ C and is such that −π <
θ(n)(z0) ≤ π.
For convex region R, the angle θ(n)(z0) is always positive if z0 lies in R.

Thus, from the cosine rule for the sides of a triangle, we can write

θ(n)(z0) = cos−1
Ã¯̄
z(n+1) − z0

¯̄2
+
¯̄
z(n) − z0

¯̄2 − ¯̄z(n+1) − z(n)¯̄2
2 |z(n+1) − z0| |z(n) − z0|

!
for z0 in R which is convex. (13)

Note that (9), (11), (12) and (13) are still all valid even if we let z0
tends towards the midpoint of any of the boundary elements, that is, all
those equations still hold if we let z0 be the midpoint of any of the boundary
elements. If we let z0 = bz(p) (midpoint of C(p)) in (8), use (9) and (11) and
take the real parts of both sides of the equation, we obtain

v(p) =
1

2π

NX
n=1

{θ(n)(bz(p))v(n) − γ(n)(bz(p))u(n)} for p = 1, 2, · · · , N, (14)

where u(p) = Re{F (bz(p))}and v(p) = Im{F (bz(p))}.
We may regard (14) as a system of N linear algebraic equations in 2N

unknowns u(n) and v(n) (n = 1, 2, · · · , N). Another N equations are needed
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to complete the system. This comes from the boundary conditions on the N
boundary elements.
If the boundary condition on an element is given by the second line of (6),

we have to calculate the first order derivative of the holomorphic function
F at the midpoint of the element. To do this, we use the second Cauchy
integral formula as given in (5).
From (5), we can write

2πiF 0(z0) =
NX
n=1

Z
C(n)

F (z)

(z − z0)2dz for z0 ∈ R. (15)

If we write F (z) as its Taylor-Maclaurin series about z = z0, we find thatZ
C(n)

F (z)

(z − z0)2dz = F (z0)

Z
C(n)

1

(z − z0)2dz + F
0(z0)

Z
C(n)

1

(z − z0)dz

+ · · ·+ F
(k)(z0)

k!

Z
C(n)

1

(z − z0)2−k dz + · · · . (16)

Now so long as z0 is a point inside R, none of the integrals on the right hand
side of (16) is improper and the second and subsequent terms can all be
shown to be O(|z(n+1) − z(n)|). However, if we let z0 to tend to the midpoint
of C(p),as we will have to if we are interested in using (15) to approximate
F 0(bz(p)), we have to bear in mind that for n = p the second term on the
right hand side of (16) tends to πiF 0(bz(p)) as z0 → bz(p). Hence, we make the
approximation Z

C(n)

F (z)

(z − bz(p))2dz
' F (bz(p)) Z

C(n)

1

(z − bz(p))2dz
= F (bz(p))[− 1

(z(n+1) − bz(p)) + 1

(z(n) − bz(p)) ] for n 6= p, (17)
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and Z
C(p)

F (z)

(z − bz(p))2dz
' F (bz(p)) Z

C(p)

1

(z − bz(p))2dz + πiF 0(bz(p))
= F (bz(p))[− 1

(z(p+1) − bz(p)) + 1

(z(p) − bz(p)) ] + πiF 0(bz(p)). (18)

It follows that (15) can be approximately written as

πiF 0(bz(p)) = NX
n=1

{− 1

(z(n+1) − bz(p)) + 1

(z(n) − bz(p))}F (bz(n)). (19)

Now we are ready to set up N more equations using (6) and (19). We
obtain

u(p) = f
(p)
1 if φ is specified on C(p), (20)

or

NX
n=1

{q(pn)u(n) − r(pn)v(n)} = f (p)2 if
∂φ

∂n
is specified on C(p), (21)

where f
(p)
1 and f

(p)
2 are the specified boundary values and q(pn)and r(pn) are

real parameters defined by

q(pn) + ir(pn) =
1

πi
{− 1

(z(n+1) − bz(p)) + 1

(z(n) − bz(p))}(n(p)1 + in
(p)
2 ), (22)

where [n
(p)
1 , n

(p)
2 ] is the unit normal vector to C

(p) pointing out of R.
We may solve (14) together with (20) or (21) as a system of 2N linear

algebraic equations in 2N unknowns u(n) and v(n) (n = 1, 2, · · · , N). If φ
is specified at at least one point on C then the constants u(n) are uniquely
determined. From a theoretical point of view, Im{F (z)} is determined only
up to an arbitrary constant by (6). Thus, if we solve (14) together with (20)
or (21) without specifying the value of Im{F (z)} at one point on C, we may
end up having v(n) whose values are all extremely large in magnitude. To
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avoid such a situation, we may set v(N) = 0 and solve (14) for p = 1, 2, · · · ,
N − 1 (instead of N) together with (20) or (21).
Once u(n) and v(n) are known, we may calculate F at any interior point

z0 = x0 + iy0 in R approximately using

F (z0) =
1

2πi

NX
n=1

(u(n) + iv(n))[γ(n)(z0) + iθ
(n)(z0)] for z0 ∈ R, (23)

and the approximate value of the required solution φ at the point (x0, y0) is
given by the real part of F (z0).

A Test Problem
Take the test problem in Example 1.2 in the book “A Beginner’s Course

in Boundary Element Methods”. The CVBEM codes (in Fortran 77) for the
numerical solution of the test problem are listed in the file CVBEM.FOR. As in
the book, the boundary is discretised into 12N0 elements. In the table below,
we compare the numerical solution obtained using N0 = 10 and N0 = 40 at
some points in the interior of the solution domain.

(x, y) N0 = 10 N0 = 40 Exact
(1.50, 0.50) 0.3618 0.3602 0.3591
(0.10, 1.20) 0.7333 0.7353 0.7330
(1.08, 0.63) −0.3795 −0.3982 −0.4042
(0.88, 1.52) −0.9171 −0.9245 −0.9274
(1.06, 1.06) −1.0702 −1.0867 −1.0923

Cauchy and Hadamard finite-part integrals
We could have started the derivation of the boundary element procedure

by using

πiF (z0) = C
I
C

F (z)

z − z0dz for z0 = x0 + iy0 ∈ C, (24)

and

πiF 0(z0) = H
I
C

F (z)

(z − z0)2dz for z0 ∈ C, (25)
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where C and H denote that the complex integral over C is to be interpreted
in the Cauchy principal and Hadamard finite-part sense. If we do so, we
would have to define clearly what Cauchy principal and Hadamard finite-
part integrals are in complex variables.
In the derivation given in this document, we have avoided going explicitly

into the Cauchy principal and Hadamard finite-part integrals. This is done
by discretising the curve C first into elements and then letting z0 tend to the
midpoint of an element. The point z0 tends to the midpoint of an element,
but it is always within R, so we can use (4) and (5) instead of having to start
from (24) and (25).
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