A potential problem with a non-classical boundary condition

Recently, Wu Hao, a researcher at the Institute for Solid State Physics in the University of Tokyo, told me he is interested in applying the BEM to solve a boundary value problem which goes something like this.
"Solve

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 \text { in } R \text { bounded by a curve } C \tag{1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\frac{\partial \phi}{\partial n}=G\left(x, y, \phi-\frac{\partial \phi}{\partial t}\right) \text { for }(x, y) \in C \tag{2}
\end{equation*}
$$

where G is an expression containing x, y and $\phi-\frac{\partial \phi}{\partial t}, \frac{\partial \phi}{\partial t}=\underline{\mathbf{t}} \cdot \nabla \phi$ and $\underline{\mathbf{t}}$ is the unit tangential vector on C in the anticlockwise direction.

In addition to (2), the value of $\phi-\frac{\partial \phi}{\partial t}$ can be computed at every point (x, y) on C, that is,

$$
\begin{equation*}
\phi-\frac{\partial \phi}{\partial t}=f(x, y) \text { for }(x, y) \in C \tag{3}
\end{equation*}
$$

where $f(x, y)$ is a suitably given function."
Actually, in the original problem stated by Hao Wu, $G\left(x, y, \phi-\frac{\partial \phi}{\partial t}\right)$ is specifically given by something like $\sin \left(\phi-\frac{\partial \phi}{\partial t}\right)$ but we generalise his problem here (so that later on we can easily create a test problem to check if the BEM procedure works).

One good way to proceed is to use the BEM to solve first (1) subject to

$$
\begin{equation*}
\frac{\partial \phi}{\partial n}=G(x, y, f(x, y)) \text { for }(x, y) \in C \tag{4}
\end{equation*}
$$

The problem defined by (1) and (4) does not have a unique solution. If the BEM delivers us a particular solution denoted by $\phi_{0}(x, y)$, then $\phi_{0}(x, y)+B$ (with B which is an arbitrary constant) is also a solution of (1) and (4). The constant B for the problem defined by (1)-(3) can be determined in the BEM post-processing stage by using (3) as follows.

On the i-th element $C^{(i)}$, estimate the value of $\frac{\partial \phi_{0}}{\partial t}$ (from the BEM solution ϕ_{0}) at the midpoint $\left(\bar{x}^{(i)}, \bar{y}^{(i)}\right)$ of the element. The value of B estimated from data on $C^{(i)}$ is given by

$$
B^{(i)}=f\left(\bar{x}^{(i)}, \bar{y}^{(i)}\right)-\phi_{0}\left(\bar{x}^{(i)}, \bar{y}^{(i)}\right)+\left.\frac{\partial \phi_{0}}{\partial t}\right|_{(x, y)=\left(\bar{x}^{(i)}, \bar{y}^{(i)}\right)} .
$$

The constant B can then be obtaining by averaging the values of $B^{(i)}$ over all the elements.

Now since we have to estimate the value of $\frac{\partial \phi_{0}}{\partial t}$ over an element, it may be better to use linear elements. If the discontinuous linear elements in Chapter 2 of the book "A Beginner's Course in Boundary Element Methods" are used then (in the notations of the book)

$$
\begin{aligned}
f\left(\bar{x}^{(i)}, \bar{y}^{(i)}\right) & \simeq \frac{f\left(x^{(i)}, y^{(i)}\right)+f\left({ }^{(i+1)}, y^{(i+1)}\right)}{2} \\
\phi_{0}\left(\bar{x}^{(i)}, \bar{y}^{(i)}\right) & \simeq \frac{\widehat{\phi}^{(N+i)}+\widehat{\phi}^{(i)}}{2} \\
\left.\frac{\partial \phi_{0}}{\partial t}\right|_{(x, y)=\left(\bar{x}^{(i)}, \bar{y}^{(i)}\right)} & \simeq \frac{\widehat{\phi}^{(N+i)}-\widehat{\phi}^{(i)}}{\sqrt{\left(\xi^{(N+i)}-\xi^{(i)}\right)^{2}+\left(\eta^{(N+i)}-\eta^{(i)}\right)^{2}}}
\end{aligned}
$$

A test problem

For a test problem, take C to be the circle $x^{2}+y^{2}=1, G\left(x, y, \phi-\frac{\partial \phi}{\partial t}\right)=$ $2\left(\phi-\frac{\partial \phi}{\partial t}\right)-8 x y$, and $f(x, y)=x^{2}-y^{2}+4 x y$. The exact solution for this problem is $\phi=x^{2}-y^{2}$.

We use the subroutine DLELAP1 (Chapter 2) to work out a particular solution for (1) and (4) and estimate the constant B as explained above. Together with DLELAP2, the estimated value of B is then used to compute the solution of (1)-(3) at selected points inside the solution domain $x^{2}+y^{2}<$ 1.The complete main programme is in the file haowu.txt. Numerical results using $N=100$ are compared with the exact solution in the table below at some selected interior points.

(x, y)	Numerical	Exact
$(0.1,0.4)$	-0.1500	-0.1500
$(0.9,0.3)$	0.7186	0.7200
$(-0.2,0.7)$	-0.4492	-0.4500
$(-0.6,-0.6)$	-0.0011	0.0000
$(0.8,-0.2)$	0.6000	0.6000

WT Ang 24 July 2010

