Notes on Cauchy principal and Hadamard finite-part integrals by W. T. Ang
Original version on 11 May 2009
Revised and corrected on 12 July 2014
(In the original version, a term is missing in the alternative definition for the Hadamard finite-part integrals. This is now corrected in (12) below.)

Cauchy principal integrals

Assume that $f(t)$ is well-defined over $a \leq t \leq b$. Cauchy principal integrals defined by

$$
\begin{equation*}
\mathcal{C} \int_{a}^{b} \frac{f(t)}{t-x} d t=\lim _{\epsilon \rightarrow 0^{+}}\left(\int_{a}^{x-\epsilon} \frac{f(t)}{t-x} d t+\int_{x+\epsilon}^{b} \frac{f(t)}{t-x} d t\right) \text { for } a<x<b \tag{1}
\end{equation*}
$$

arise in the formulation of many problems in engineering science.
For convenience in our discussion, let us assume that the function $f(t)$ $a \leq t \leq b$ can be expanded as a Taylor series about $t=x$, that is, it can be written as

$$
\begin{align*}
f(t) & =f(x)+f^{\prime}(x)(t-x)+\frac{1}{2} f^{\prime \prime}(x)(t-x)^{2}+\cdots \\
& =f(x)+\sum_{m=1}^{\infty} \frac{f^{(m)}(x)}{m!}(t-x)^{m} \text { for } a \leq t \leq b \tag{2}
\end{align*}
$$

Substituting (2) into the right hand side of (1), we find that

$$
\begin{equation*}
\mathcal{C} \int_{a}^{b} \frac{f(t)}{t-x} d t=f(x) \ln \left|\frac{b-x}{a-x}\right|+\sum_{m=1}^{\infty} \frac{f^{(m)}(x)}{m!m}\left\{(b-x)^{m}-(a-x)^{m}\right\} . \tag{3}
\end{equation*}
$$

Consider now the limit

$$
\lim _{\epsilon \rightarrow 0^{+}} \int_{a}^{b} \frac{(t-x) f(t)}{(t-x)^{2}+\epsilon^{2}} d t
$$

Using (2), we find that

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0^{+}} \int_{a}^{b} \frac{(t-x) f(t)}{(t-x)^{2}+\epsilon^{2}} d t \\
= & \lim _{\epsilon \rightarrow 0^{+}}\left\{f(x) \int_{a}^{b} \frac{(t-x)}{(t-x)^{2}+\epsilon^{2}} d t+\sum_{m=1}^{\infty} \frac{f^{(m)}(x)}{m!} \int_{a}^{b} \frac{(t-x)^{m+1}}{(t-x)^{2}+\epsilon^{2}} d t\right\} \\
= & \lim _{\epsilon \rightarrow 0^{+}}\left\{\frac{1}{2} f(x)\left[\ln \left|(t-x)^{2}+\epsilon^{2}\right|\right]_{t=a}^{t=b}+\sum_{m=1}^{\infty} \frac{f^{(m)}(x)}{m!} \int_{a}^{b} \frac{(t-x)^{m+1}}{(t-x)^{2}+\epsilon^{2}} d t\right\} \\
= & f(x) \ln \left|\frac{b-x}{a-x}\right|+\sum_{m=1}^{\infty} \frac{f^{(m)}(x)}{m!} \int_{a}^{b} \lim _{\epsilon \rightarrow 0^{+}} \frac{(t-x)^{m+1}}{(t-x)^{2}+\epsilon^{2}} d t \\
= & f(x) \ln \left|\frac{b-x}{a-x}\right|+\sum_{m=1}^{\infty} \frac{f^{(m)}(x)}{m!m}\left\{(b-x)^{m}-(a-x)^{m}\right\} \\
= & \mathcal{C} \int_{a}^{b} \frac{f(t)}{t-x} d t .
\end{aligned}
$$

Note that we can write

$$
\lim _{\epsilon \rightarrow 0^{+}} \sum_{m=1}^{\infty} \frac{f^{(m)}(x)}{m!} \int_{a}^{b} \frac{(t-x)^{m+1}}{(t-x)^{2}+\epsilon^{2}} d t=\sum_{m=1}^{\infty} \frac{f^{(m)}(x)}{m!} \int_{a}^{b} \lim _{\epsilon \rightarrow 0^{+}} \frac{(t-x)^{m+1}}{(t-x)^{2}+\epsilon^{2}} d t
$$

because the integrand is well-defined over $a \leq t \leq b$ as $\epsilon \rightarrow 0^{+}$.
It is also possible to work out the integral

$$
\int_{a}^{b} \frac{(t-x)^{m+1}}{(t-x)^{2}+\epsilon^{2}} d t
$$

first before letting $\epsilon \rightarrow 0^{+}$to obtain the same final result.
Thus, we obtain an alternative but equivalent definition for the Cauchy principal integrals, that is,

$$
\begin{equation*}
\mathcal{C} \int_{a}^{b} \frac{f(t)}{t-x} d t=\lim _{\epsilon \rightarrow 0^{+}} \int_{a}^{b} \frac{(t-x) f(t)}{(t-x)^{2}+\epsilon^{2}} d t . \tag{4}
\end{equation*}
$$

Hadamard finite-part integrals

Let us write

$$
F(x)=\mathcal{C} \int_{a}^{b} \frac{f(t)}{t-x} d t
$$

If we use (3), we find that

$$
\begin{align*}
F^{\prime}(x)= & f(x)\left[-\frac{1}{b-x}+\frac{1}{a-x}\right] \\
& +f^{\prime}(x) \ln \left|\frac{b-x}{a-x}\right| \\
& +\sum_{m=2}^{\infty} \frac{f^{(m)}(x)}{m!(m-1)}\left[(b-x)^{m-1}-(a-x)^{m-1}\right] . \tag{5}
\end{align*}
$$

An interesting question is, "What can we make of the terms on the right hand side of (5)?"

To answer the question, let us consider

$$
\begin{equation*}
\int_{a}^{x-\epsilon} \frac{f(t)}{(t-x)^{2}} d t+\int_{x+\epsilon}^{b} \frac{f(t)}{(t-x)^{2}} d t . \tag{6}
\end{equation*}
$$

On using (2), we obtain

$$
\begin{align*}
& \int_{a}^{x-\epsilon} \frac{f(t)}{(t-x)^{2}} d t+\int_{x+\epsilon}^{b} \frac{f(t)}{(t-x)^{2}} d t \\
= & \frac{2}{\epsilon} f(x)+f(x)\left[-\frac{1}{b-x}+\frac{1}{a-x}\right] \\
& +f^{\prime}(x) \ln \left|\frac{b-x}{a-x}\right| \\
& +\sum_{m=2}^{\infty} \frac{f^{(m)}(x)}{m!(m-1)}\left[(b-x)^{m-1}-(a-x)^{m-1}\right] . \tag{7}
\end{align*}
$$

The expression in (6) contains two parts - one whose magnitude blows up to infinity and the other that remains finite in magnitude as $\epsilon \rightarrow 0^{+}$. The part that remains finite in magnitude is given by the right hand side of (5) (that is, by $\left.F^{\prime}(x)\right)$. Thus, we conclude

$$
\frac{d}{d x}\left[\mathcal{C} \int_{a}^{b} \frac{f(t)}{t-x} d t\right]=\text { finite part of } \lim _{\epsilon \rightarrow 0^{+}}\left[\int_{a}^{x-\epsilon} \frac{f(t)}{(t-x)^{2}} d t+\int_{x+\epsilon}^{b} \frac{f(t)}{(t-x)^{2}} d t\right] .
$$

If we define

$$
\begin{equation*}
\mathcal{H} \int_{a}^{b} \frac{f(t)}{(t-x)^{2}} d t=\text { finite part of } \lim _{\epsilon \rightarrow 0^{+}}\left[\int_{a}^{x-\epsilon} \frac{f(t)}{(t-x)^{2}} d t+\int_{x+\epsilon}^{b} \frac{f(t)}{(t-x)^{2}} d t\right], \tag{8}
\end{equation*}
$$

then we may write

$$
\begin{equation*}
\frac{d}{d x}\left[\mathcal{C} \int_{a}^{b} \frac{f(t)}{t-x} d t\right]=\mathcal{H} \int_{a}^{b} \frac{f(t)}{(t-x)^{2}} d t \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d}{d x}\left[\mathcal{C} \int_{a}^{b} \frac{f(t)}{t-x} d t\right]=\mathcal{H} \int_{a}^{b} f(t) \frac{\partial}{\partial x}\left[\frac{1}{(t-x)}\right] d t \tag{10}
\end{equation*}
$$

Perhaps (8) may be better rewritten as

$$
\begin{align*}
& \mathcal{H} \int_{a}^{b} \frac{f(t)}{(t-x)^{2}} d t=\lim _{\epsilon \rightarrow 0^{+}}\left[\int_{a}^{x-\epsilon} \frac{f(t)}{(t-x)^{2}} d t+\int_{x+\epsilon}^{b} \frac{f(t)}{(t-x)^{2}} d t-\frac{2}{\epsilon} f(x)\right] \\
& \text { for } a<x<b \tag{11}
\end{align*}
$$

An alternative definition for the Hadamard finite-part integrals is given by ${ }^{1}$

$$
\begin{align*}
\mathcal{H} \int_{a}^{b} \frac{f(t) d t}{(t-x)^{2}}= & \lim _{\epsilon \rightarrow 0^{+}}\left[\int_{a}^{b} \frac{(t-x)^{2} f(t) d t}{\left[(t-x)^{2}+\epsilon^{2}\right]^{2}}-\frac{\pi}{2 \epsilon} f(x)\right] \\
& -\frac{f(x)}{2}\left[\frac{1}{b-x}-\frac{1}{a-x}\right] \text { for } a<x<b \tag{12}
\end{align*}
$$

The alternative definition (12) can be easily verified as follows. If we use (2) and

$$
\begin{align*}
& \int \frac{(t-x)^{2} d t}{\left((t-x)^{2}+\epsilon^{2}\right)^{2}}=-\frac{t-x}{2\left((t-x)^{2}+\epsilon^{2}\right)}+\frac{1}{2 \epsilon} \arctan \left(\frac{1}{2} \frac{2 t-2 x}{\epsilon}\right) \\
& \int \frac{(t-x)^{3} d t}{\left((t-x)^{2}+\epsilon^{2}\right)^{2}}=\frac{\epsilon^{2}}{2\left((t-x)^{2}+\epsilon^{2}\right)}+\frac{1}{2} \ln \left((t-x)^{2}+\epsilon^{2}\right) \tag{13}
\end{align*}
$$

[^0]we find that
\[

$$
\begin{align*}
\lim _{\epsilon \rightarrow 0^{+}} \int_{a}^{b} \frac{(t-x)^{2} f(t) d t}{\left[(t-x)^{2}+\epsilon^{2}\right]^{2}}= & f(x) \lim _{\epsilon \rightarrow 0^{+}} \int_{a}^{b} \frac{(t-x)^{2} d t}{\left[(t-x)^{2}+\epsilon^{2}\right]^{2}} \\
& +f^{\prime}(x) \lim _{\epsilon \rightarrow 0^{+}} \int_{a}^{b} \frac{(t-x)^{3} d t}{\left[(t-x)^{2}+\epsilon^{2}\right]^{2}} \\
& +\sum_{m=1}^{\infty} \frac{f^{(m+1)}(x)}{(m+1)!} \lim _{\epsilon \rightarrow 0^{+}} \int_{a}^{b} \frac{(t-x)^{3+m} d t}{\left[(t-x)^{2}+\epsilon^{2}\right]^{2}} \\
= & \lim _{\epsilon \rightarrow 0^{+}} \frac{\pi}{2 \epsilon} f(x)-\frac{f(x)}{2(b-x)}+\frac{f(x)}{2(a-x)} \tag{14}\\
& +f^{\prime}(x)\{\ln |b-x|-\ln |a-x|\} \\
& +\sum_{m=1}^{\infty} \frac{f^{(m+1)}(x)}{(m+1)!} \int_{a}^{b}(t-x)^{m-1} d t .
\end{align*}
$$
\]

Examples

$$
\begin{aligned}
& \mathcal{C} \int_{-1}^{1} \frac{1}{t} d t=\lim _{\epsilon \rightarrow 0^{+}}\left(\int_{-1}^{-\epsilon} \frac{1}{t} d t+\int_{+\epsilon}^{1} \frac{1}{t} d t\right) \\
&=\lim _{\epsilon \rightarrow 0^{+}}(\ln |-\epsilon|-\ln |-1|+\ln |1|-\ln |\epsilon|)=0 \\
& \mathcal{C} \int_{0}^{1} \frac{t}{t-\frac{1}{4}} d t=\int_{0}^{1} d t+\frac{1}{4} \mathcal{C} \int_{0}^{1} \frac{1}{t-\frac{1}{4}} d t \\
&=1+\frac{1}{4} \lim _{\epsilon \rightarrow 0^{+}}\left(\int_{0}^{1 / 4-\epsilon} \frac{1}{t-\frac{1}{4}} d t+\int_{1 / 4+\epsilon}^{1} \frac{1}{t-\frac{1}{4}} d t\right)=1+\frac{1}{4} \ln (3) \\
& \mathcal{H} \int_{-1}^{1} \frac{1}{t^{2}} d t=\text { finite part of } \lim _{\epsilon \rightarrow 0^{+}}\left(\int_{-1}^{-\epsilon} \frac{1}{t^{2}} d t+\int_{+\epsilon}^{1} \frac{1}{t^{2}} d t\right) \\
&=\text { finite part of } \lim _{\epsilon \rightarrow 0^{+}}\left(\frac{2}{\epsilon}-2\right)=-2 .
\end{aligned}
$$

Hypersingular integral equations for a simple crack problem

We will now show how elastic crack problems may be formulated in terms of equations containing Hadamard finite-part integrals. For clarity, let us consider a mode III crack problem that requires us to solve the two-dimensional

Laplace's equation for $\phi(x, y)$ on the whole of the $O x y$ plane containing a finite cut (a crack) in the region $-a<x<a, y=0$. The solution $\phi(x, y)$ is required to satisfy the following conditions:

$$
\begin{align*}
\left.\frac{\partial \phi}{\partial y}\right|_{y=0^{ \pm}} & =q(x) \text { for }-a<x<a, \tag{15}\\
\phi & \rightarrow 0 \text { as } x^{2}+y^{2} \rightarrow \infty \tag{16}
\end{align*}
$$

where $q(x)$ is a given function.
If $\phi(x, y)$ satisfies the 2D Laplace's equation in the region R bounded by a simple closed curve C, the boundary integral equation for the 2D Laplace's equation is

$$
\begin{align*}
\phi(\xi, \eta)= & \int_{C}\left[\phi(x, y) \Lambda(x, y ; \xi, \eta)-\Phi(x, y ; \xi, \eta) \frac{\partial}{\partial n}(\phi(x, y))\right] d s(x, y) \\
& \quad \text { for }(\xi, \eta) \in R \tag{17}
\end{align*}
$$

where

$$
\begin{align*}
\frac{\partial}{\partial n}(\phi(x, y)) & =n_{1}(x, y) \frac{\partial \phi}{\partial x}+n_{2}(x, y) \frac{\partial \phi}{\partial y} \\
\Phi(x, y ; \xi, \eta) & =\frac{1}{4 \pi} \ln \left([x-\xi]^{2}+[y-\eta]^{2}\right) \\
\Lambda(x, y ; \xi, \eta) & =\frac{\partial}{\partial n}(\Phi(x, y ; \xi, \eta)) \\
& =\frac{[x-\xi] n_{1}(x, y)+[y-\eta] n_{2}(x, y)}{2 \pi\left([x-\xi]^{2}+[y-\eta]^{2}\right)} \tag{18}
\end{align*}
$$

where $\left[n_{1}(x, y), n_{2}(x, y)\right]$ is the outward unit normal vector to C at the point (x, y).

Here we take the boundary C to comprise two parts: the boundary at infinity denoted by C_{∞} and the crack L. The crack L consists of two opposite faces and the function $\phi(x, y)$ may jump across opposite crack faces. We may
write (17) as

$$
\begin{align*}
\phi(\xi, \eta)= & \int_{C_{\infty}}\left[\phi(x, y) \Lambda(x, y ; \xi, \eta)-\Phi(x, y ; \xi, \eta) \frac{\partial}{\partial n}(\phi(x, y))\right] d s(x, y) \\
& +\int_{-a}^{a}\left[\phi\left(x, 0^{+}\right) \Lambda\left(x, 0^{+} ; \xi, \eta\right)+\phi\left(x, 0^{-}\right) \Lambda\left(x, 0^{-} ; \xi, \eta\right)\right. \\
& +\left.\Phi\left(x, 0^{+} ; \xi, \eta\right) \frac{\partial}{\partial y}(\phi(x, y))\right|_{y=0^{+}} \\
& \left.-\left.\Phi\left(x, 0^{-} ; \xi, \eta\right) \frac{\partial}{\partial y}(\phi(x, y))\right|_{y=0^{-}}\right] d x \tag{19}
\end{align*}
$$

for (ξ, η) lying in the interior of the $O x y$ plane with a finite cut at $-a<x<a$, $y=0$.

In view of the far field condition in (16), if we assume that $\phi(x, y)$ behaves as $O\left(\left[x^{2}+y^{2}\right]^{-\alpha}(\alpha>0)\right.$ for large $x^{2}+y^{2}$, then we can show that

$$
\begin{equation*}
\int_{C_{\infty}}\left[\phi(x, y) \Lambda(x, y ; \xi, \eta)-\Phi(x, y ; \xi, \eta) \frac{\partial}{\partial n}(\phi(x, y))\right] d s(x, y)=0 . \tag{20}
\end{equation*}
$$

From (18), $\Phi\left(x, 0^{+} ; \xi, \eta\right)=\Phi\left(x, 0^{-} ; \xi, \eta\right)$ and $\Lambda\left(x, 0^{+} ; \xi, \eta\right)=-\Lambda\left(x, 0^{-} ; \xi, \eta\right)$. Noting (15) and (20), we may now reduce (19) to

$$
\begin{equation*}
\phi(\xi, \eta)=\int_{-a}^{a} \frac{\eta \Delta \phi(x) d x}{2 \pi\left([x-\xi]^{2}+\eta^{2}\right)}, \tag{21}
\end{equation*}
$$

where $\Delta \phi(x)=\phi\left(x, 0^{+}\right)-\phi\left(x, 0^{-}\right)$for $-a<x<a$.
If we expand $\Delta \phi(x)$ as a Taylor series about $x=\xi$, we find that, for $-a<\xi<a$,

$$
\begin{align*}
& \phi\left(\xi, 0^{+}\right)=\lim _{\eta \rightarrow 0^{+}} \int_{-a}^{a} \frac{\eta \Delta \phi(x) d x}{2 \pi\left([x-\xi]^{2}+\eta^{2}\right)}=\frac{1}{2} \Delta \phi(\xi), \\
& \phi\left(\xi, 0^{-}\right)=\lim _{\eta \rightarrow 0^{-}} \int_{-a}^{a} \frac{\eta \Delta \phi(x) d x}{2 \pi\left([x-\xi]^{2}+\eta^{2}\right)}=-\frac{1}{2} \Delta \phi(\xi), \tag{22}
\end{align*}
$$

which leads to $\Delta \phi(\xi)=\phi\left(\xi, 0^{+}\right)-\phi\left(\xi, 0^{-}\right)$. For $\xi \notin[-a, a]$, note that the integrands of the integrals in (22) are not singular and hence $\phi\left(\xi, 0^{+}\right)=$ $\phi\left(\xi, 0^{-}\right)$, that is, $\phi(x, y)$ is continuous on the uncracked part of the plane $y=0$.

From (21), we obtain

$$
\begin{equation*}
\frac{\partial}{\partial \eta}[\phi(\xi, \eta)]=\int_{-a}^{a} \frac{[x-\xi]^{2} \Delta \phi(x) d x}{2 \pi\left([x-\xi]^{2}+\eta^{2}\right)^{2}}-\eta^{2} \int_{-a}^{a} \frac{\Delta \phi(x) d x}{2 \pi\left([x-\xi]^{2}+\eta^{2}\right)^{2}} \tag{23}
\end{equation*}
$$

If we expand the function $\Delta \phi(x)$ in the second integral on the right hand side of (23) as a Taylor series about $x=\xi$, we find that

$$
\begin{align*}
\left.\frac{\partial}{\partial \eta}[\phi(\xi, \eta)]\right|_{\eta=0^{+}}= & \frac{1}{2 \pi} \lim _{\eta \rightarrow 0^{+}}\left\{\int_{-a}^{a} \frac{[x-\xi]^{2} \Delta \phi(x) d x}{\left([x-\xi]^{2}+\eta^{2}\right)^{2}}-\frac{\pi \Delta \phi(\xi)}{2 \eta}\right. \\
& \left.-\frac{\Delta \phi(\xi)}{2}\left[\frac{1}{b-\xi}-\frac{1}{a-\xi}\right]+O(\eta)\right\} \\
& \text { for }-a<\xi<a, \tag{24}
\end{align*}
$$

which may be rewritten as

$$
\begin{equation*}
\left.\frac{\partial}{\partial \eta}[\phi(\xi, \eta)]\right|_{\eta=0^{+}}=\frac{1}{2 \pi} \mathcal{H} \int_{-a}^{a} \frac{\Delta \phi(x) d x}{[x-\xi]^{2}} \text { for }-a<\xi<a, \tag{25}
\end{equation*}
$$

if we take (12) into consideration.
Thus, the condition on the crack in (15) gives rise to

$$
\begin{equation*}
\frac{1}{2 \pi} \mathcal{H} \int_{-a}^{a} \frac{\Delta \phi(x) d x}{[x-\xi]^{2}}=q(x) \text { for }-a<\xi<a \tag{26}
\end{equation*}
$$

a Hadamard finite-part (hypersingular) integral equation with $\Delta \phi(x)$ (for $-a<x<a)$ as an unknown function to be determined. For crack problems, the unknown function $\Delta \phi(x)$ takes the form $\Delta \phi(x)=\sqrt{a^{2}-x^{2}} \psi(x)$ (for $-a<x<a)$ and for given $q(x)$, it may be possible to invert (26) to obtain analytically. Even if we do not know how to invert (26) analytically, there are numerical methods ${ }^{2}$ for determining $\psi(x)$ from the hypersingular integral equation.

[^1]
[^0]: ${ }^{1}$ This alternative definition is suggested in Engineering Analysis with Boundary Elements 23 (1999) 713-720 by WT Ang and DL Clements, but the term $-\frac{f(x)}{2}\left[\frac{1}{b-x}-\right.$ $\left.\frac{1}{a-x}\right]$ on the second line of (12) is missing in the paper.

[^1]: ${ }^{2}$ See, for example, Kaya A, Erdogan F, On the solution of integral equations with strongly singular kernels, Quarterly of Applied Mathematics 45 (1987) 105-122.

