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Abstract

In the present paper, a three-dimensional radially symmetric bound-
ary element model of the human eye is proposed for simulating changes
in corneal temperature during treatment of laser thermokeratoplasty.
Energy absorption inside the cornea is modeled using the Beer-Lambert
law. Heat transfer inside the eye is assumed to be governed by the
classical heat diffusion equation. The resulting initial-boundary value
problem is solved numerically using a time-stepping boundary element
method. The temperature field is calculated for heating by both the
pulsed laser and the continuous wave laser. The results obtained are
compared with those from other models found in the literature.
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1 Introduction

Laser thermo-keratoplasty (L-TKP) is a corneal refractive surgery technique

intended for vision correction. In L-TKP, the human cornea is shrunk to a

certain size in order to improve its refractive power. Shrinkages are induced

thermally through laser heating. Although successful applications of the L-

TKP have been documented in the past, it is not the preferred choice for

clinical treatment of hyperopia compared to photo-refractive keratectomy

and laser in-situ keratomileusis. This is largely due to the low predictability

and repeatability of the L-TKP in producing reliable results. Nevertheless,

L-TKP is still popular in the treatment of presbyopic patients today [1].

During the last decade or so, numerous investigations have been carried

out to study the thermo-mechanical behaviors of the human cornea during

treatment of L-TKP to improve its predictability and the repeatability. Since

L-TKP may cause thermal damage to the cornea, most of the experiments

were carried out in-vitro using either the human or the animal cornea as

test samples. Alternatively, some researchers have opted for mathematical

investigations due to its ease of implementation. With the availability of high

computing power, more realistic and sophisticated models can be developed

to improve the accuracy of the simulated solution.

For mathematical convenience, many models for investigating the corneal

temperature distribution during L-TKP assumed highly simplified geometries

and initial-boundary conditions. Peppers et al [2] and Mainster [3] modeled

the cornea as a half-space region where heat flow during laser heating was

assumed to be one-dimensional. The absorption of laser energy inside the

cornea was modeled using the Beer-Lambert law. Mainster et al [4] and Zhou

et al [5] modeled the human cornea was modeled as a finite cylinder where

the temperature distribution during treatment of L-TKP was calculated us-

ing the finite difference method. A similar cylindrical model solved using
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the finite element method was developed by Brinkmann et al [6]. Unlike the

models before, Brinkmann et al [6] accounted for the intracorneal focusing

of the laser beam which was modeled based on ray tracing measurements.

This model was subsequently used by Brinkmann and co-workers to investi-

gate the thermal responses of the human cornea during L-TKP under various

conditions [7], [8], [9], [10]. In [11] and [12], the cornea was modeled as a

rectangular strip of finite thickness. Analytical expressions to the corneal

temperature distribution during L-TKP were obtained for various conditions

where solutions were computed numerically. Recently, Podol’stev and Zhel-

tov [13] modeled the human eye as a multi-layered cylinder to study the

heat transfer process during L-TKP. The laser beam which is incident at the

center of the cornea was assumed to be absorbed and scattered inside each

different eye region. Results obtained were used to identify the threshold

conditions for photo-destruction of the human cornea.

Although models that assumed highly simplified geometry of the cornea

greatly simplifies the problem, it requires assumptions to be made when

specifying the boundary conditions which may not be physiologically cor-

rect. In the present study, a three-dimensional radially symmetric model

of the human eye is developed which takes into account the major ocular

components such as the aqueous humor, lens, vitreous and the sclera. The

eye model is used to simulate the transient temperature changes inside the

cornea during treatment of L-TKP. Two of the most commonly used lasers

in L-TKP, namely the pulsed laser and the continuous wave laser are consid-

ered. Changes in the corneal temperature are calculated numerically using

the boundary element method. Unlike the finite element method which re-

quires a full domain discretization, only the boundary of the solution domain

has to be discretized when using the boundary element method. Thus, the

preparation of boundary data may be greatly simplified, especially for com-

plicated geometries like the human eye.
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The aim of the present study is to demonstrate the feasibility of using

an anatomically more realistic eye model for simulating temperature changes

inside the cornea during treatment of L-TKP. The thermal behaviors of the

human cornea subjected to laser heating are studied. Thermally induced

corneal shrinkages are qualitatively examined for both the pulsed laser and

the continuous wave laser. This is carried out by comparing the spatial

and temporal temperature profiles of the cornea with its shrinkage threshold

temperatures reported elsewhere in the literature.

2 Laser Thermo-Keratoplasty (L-TKP)

Corneal collagen is known to shrink when heated to temperatures between

55 and 65oC [14]. In practice however, the temperature which the cornea

is heated to depends on the type of laser used which ultimately depends on

the parameters of the laser. When the corneal temperature exceeds 90oC,

the collagen relaxes to counter the intended corneal shrinkage [15]. The

cornea consists of three layers, namely the epithelium (the outermost layer),

the stroma (the middle layer) and the endothelium (the innermost layer).

During treatment of L-TKP, it is important to ensure that the temperature

of the deep stromal tissues reaches the shrinkage threshold rather than the

epithelial layer alone. This is to guarantee a long term effect of the corneal

shrinkage [6]. The temperature at the corneal endothelium however, should

not reach 65oC to avoid thermal damage of the endothelial cells [16].

Lasers used in L-TKP are typically in the mid-infrared region; emitted

at a wavelength of approximately 2µm. The holmium laser, Ho:YAG, is

commonly used in pulsed laser treatment and has a wavelength of 2.1µm.

In the continuous wave laser treatment, laser diodes which exhibit a wider

range of wavelength due to its tunability are used [8]. Typical values of the

laser wavelength may lie between 1.85 and 1.87µm [9].
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3 The Human Eye Model

A three-dimensional radially symmetric model of the human eye which fol-

lows closely the dimensions of the model in [17] is developed. The optic nerve

is excluded due to its minimal influence on the overall temperature distri-

bution of the eye especially in the corneal region. Internal eye structures

such as the aqueous humor, the lens and the vitreous are modeled based on

dimensions which were obtained from anatomical measurements [18], [19].

The retina and the choroid which are relatively thin are modeled together

with the sclera as one homogeneous region. The iris is also assumed to be

part of the sclera since they both have similar thermal properties [20]. The

human eye is modeled as comprising five distinct regions, namely the cornea,

the aqueous humor, the lens, the vitreous and the sclera which we denote as

R1, R2, R3, R4 and R5 respectively.

With reference to the cylindrical polar coordinates r, θ and z, Figure 1

shows a cross-section of the model on the rz plane. (Note that r denotes

the distance of a point from the z axis.) The full geometry of the model is

obtained by rotating the cross-section by an angle of 360◦ about the z axis.

Each region of the human eye is assumed to be homogeneous and ther-

mally isotropic. Thermal properties such as thermal conductivity, density

and specific heat may be found in the literature and they are listed in Table

1.

3.1 Governing Heat Equation

The partial differential equation governing the axisymmetric heat flow inside

the human eye subject to laser heating is given by

ρici
∂

∂t
[Ti (r, z, t)] = ∇ (κi∇Ti(r, z, t)) + Si(r, z, t),

for i = 1, 2, 3, 4 and 5, (1)
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where ρi, ci and κi are respectively the density, specific heat and thermal

conductivity of the region Ri, t is time, Ti is the temperature in Ri and Si

is heat absorbed by Ri during laser irradiation. Note that for the radially

symmetric model, the temperature Ti is taken to be a function of r, z and t,

that is, independent of the coordinate θ.

For the range of laser wavelength (1.85-2.1µm) used in the treatment of

L-TKP (as mentioned in Section 2), the heat absorption Si may be given by

Si(r, z, t) =

½
φ(t)µ(1−z)E(r) exp(−µz), for i = 1,
0 for i = 2, 3, 4 and 5,

(2)

where µ is the laser absorption coefficient whose value depends on the laser

wavelength, z is the Fresnel reflectance at the corneal surface, E(r) is inci-
dent irradiance at the center of the corneal surface, and φ(t) is given by

φ(t) =

½
1 if laser is on,
0 if laser is off.

(3)

According to Manns et al [12], the value of Fresnel reflectance, z is given by
0.024.

Equation (2) implies that heat from the laser energy is only absorbed

inside the cornea. This assumption is based on the absorption properties of

ocular media, as explained in [25]. If the laser wavelength is between 1.85 and

2.1µm, the cornea absorbs more than 95% of the laser energy. The remaining

percentage of the non-absorbed energy may be assumed to be reflected from

the corneal surface. Thus, no laser beam passes through the cornea into the

other regions of the eye during laser irradiation.

In the present study, the laser beam profile is assumed to be of the

Gaussian type. Although the actual laser beam profile may not be per-

fectly Gaussian, the differences are not expected to produce any significant

effects on the temperature distribution inside the cornea [12]. The incident

irradiance may thus be written as

E(r) = E0 exp

µ
−2r

2

w2

¶
, (4)
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where E0 is the peak irradiance and w is the radius of laser beam at the

corneal surface where the laser power decreases to exp(−1) times its maxi-
mum value.

3.2 Initial-Boundary Conditions

As shown in Figure 1, Γ1 and Γ2 are parts of the exterior boundary of the

human eye model. Here, the conditions specified on Γ1 and Γ2 follow those

that are reported in [17] and [26].

On the exterior surface of the cornea Γ1, heat is transferred to the envi-

ronment via convection and radiation. Cooling is aided by the evaporation of

tears from the tear film on top of the corneal surface. More mathematically,

this condition is given by

−κ1∂T1
∂n

= hamb (T1 − Tamb) + εσ
¡
T 41 − T 4amb

¢
+Evap on Γ1, (5)

where the first, second and last term on the right hand side refers to the heat

loss due to convection, radiation and tears evaporation respectively, hamb
is ambient convection coefficient, Tamb is ambient temperature, ε is corneal

emissivity, σ is the Stefan-Boltzmann constant, Evap is the heat loss due to

tears evaporation and ∂T1/∂n is the rate of change of T1 in the outward unit

vector normal to the external corneal surface Γ1.

On the exterior surface of the sclera Γ2, heat from blood flow across the

sclera enters the eye and diffuses via conduction to the corneal surface. Thus,

we may write

−κ5∂T5
∂n

= hbl (T5 − Tbl) on Γ2, (6)

where hbl is the blood convection coefficient, Tbl is the blood temperature and

∂T5/∂n denotes the rate of change of T5 in the outward unit vector normal

to the external corneal surface Γ2.
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At the interfaces between two contiguous regions of the human eye, the

continuity principle applies such that

T1 = T2 and κ1
∂T1
∂n

= κ2
∂T2
∂n

on I12,

T1 = T5 and κ1
∂T1
∂n

= κ5
∂T5
∂n

on I15,

T2 = T3 and κ2
∂T2
∂n

= κ3
∂T3
∂n

on I23,

T2 = T5 and κ2
∂T2
∂n

= κ5
∂T5
∂n

on I25,

T3 = T4 and κ3
∂T3
∂n

= κ4
∂T4
∂n

on I34,

T3 = T5 and κ3
∂T3
∂n

= κ5
∂T5
∂n

on I35,

T4 = T5 and κ4
∂T4
∂n

= κ5
∂T5
∂n

on I45, (7)

where Iij denotes the interface between Ri and Rj and ∂Ti/∂n (at the in-

terface) denotes the rate of change of temperature Ti in the direction of a

normal vector to the interface.

The values of the various parameters in (5) and (6) are the same as those

in [17] and they are listed in Table 2.

The initial condition is given by the steady-state temperature prior to

laser heating, that is, by the solution obtained from solving the steady-state

heat equation

∇ (κi∇Ti(r, z)) = 0 for i = 1, 2, 3, 4 and 5, (8)

subject to (5), (6) and (7).

4 Boundary Element Model

The numerical solution of (1) subjected to the conditions in (5), (6), (7)

and (8) is obtained using a time-stepping dual-reciprocity boundary element
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method. To do so, an integro-differential formulation of (1) with reference to

the region Ri in the cross-section of the human eye model in Figure 1, that

is,

γ(ξ, η)Ti(ξ, η, t) =

Z
Λi

Ti(r, z, t)
∂

∂n
[Φ(r, z; ξ, η)] · r · ds(r, z)

−
Z
Λi

Φ(r, z; ξ, η)
∂

∂n
[Ti(r, z, t)] · r · ds(r, z)

+

ZZ
Ri

Φ(r, z; ξ, η)

·
ρici
κi

∂

∂t
[Ti(r, z, t)]− 1

κi
Si(r, z, t)

¸
dR(r, z)

for (ξ, η) ∈ Ri ∪ Λi and i = 1, 2, 3, 4 and 5, (9)

where Λi denotes the curve boundary of the region Ri, ds (r, z) denotes the

length of an infinitesimal part of curve Λi and dR(r, z) denotes the area of an

infinitesimal portion of the region Ri, γ(ξ, η) = 1 if (ξ, η) lies in the interior

of Ri, γ(ξ, η) = 1/2 if (ξ, η) lies on a smooth part of Λi, and Φ (r, z; ξ, η) and

∂Φ (r, z; ξ, η) /∂n are the axisymmetric fundamental solution of the Laplace

equation and its normal derivative respectively, given by

Φ(r, z; ξ, η) = − K(m(r, z; ξ, η))

π
p
a(r, z; ξ, η) + b(r; ξ)

,

∂

∂n
[Φ(r, z; ξ, η)] = − 1

π
p
a(r, z; ξ, η) + b(r; ξ)

× {nr
2r
[
ξ2 − r2 + (η − z)2

a(r, z; ξ, η)− b(r; ξ)
E(m(r, z; ξ, η))

−K(m(r, z; ξ, η))]

+ nz
η − z

a(r, z; ξ, η)− b(r; ξ)
E(m(r, z; ξ, η))},

m(r, z; ξ, η) =
2b(r; ξ)

a(r, z; ξ, η) + b(r; ξ)
,

a(r, z; ξ, η) = ξ2 + r2 + (η − z)2, b(r; ξ) = 2rξ (10)
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where nr and nz are the components of the outward unit normal vector on Λi

in the r and z direction respectively andK and E denotes the complete ellip-

tic integral of the first and second kind respectively as defined in [27]. Note

that in the axisymmetric formulation, the z axis does not form part of the

curve boundary Λi. Details on the derivation of (9) and (10) may be found

in [28]. The boundary element method is implemented by discretizing the

boundary Λi into small straight line segments. The domain integral and the

time dependent variable in (9) are treated using the dual-reciprocity bound-

ary element method (DR-BEM) and the time stepping scheme respectively.

For a detailed derivation, one may refer to the Appendix.

5 Results and Analysis

In the actual clinical treatment of L-TKP, the cornea is heated at eight

different spots which are arranged in an annular pattern about the center of

the corneal surface. In the present study, only one spot which is located at

the center of the corneal surface is considered. This assumption is necessary

to maintain the radially symmetric feature of the human eye which is of

great computational advantage. With this assumption, an increase in the

temperature near the center of the corneal surface is to be expected.

To capture accurately the large thermal variation over the small heated

area on the corneal surface, the boundary discretization there should be

sufficiently fine. Similarly, a large number of interior collocation points must

be chosen inside the cornea and aqueous humor since temperature varies

greatly around these regions (see the Appendix). The boundaries of the

human eye model are discretized into a total of 253 boundary elements, with

72 of them located on the boundary of the cornea. A total of 316 interior

points is selected inside the human eye model, with 53 and 142 of them placed

inside the cornea and aqueous humor respectively. The interior points are
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selected such that they are densely packed in regions close to the point where

the laser beam is incident. This is shown in Figure 2. The system of linear

algebraic equations in the time-stepping DR-BEM is set up using Matlab

6.5 c° [29]. Simulations are executed on a Pentium 2.4GHz, 512MB RAM

personal computer.

Before simulations can be carried out, the laser absorption coefficient, µ

in the cornea has to be chosen. In the present study, as in [13], µ is taken

to be that of water. In addition, its value is assumed to be independent of

temperature. The radius of the laser beam, w is chosen to be 0.3mm which

is typical in a clinical treatment of L-TKP [11].

5.1 Pulsed laser irradiation

The values of each laser parameter chosen for the pulsed laser treatment are

summarized in Table 3. Energy per pulse denotes the amount of energy sup-

plied by the laser beam to the cornea. Pulse duration indicates the duration

when the laser beam is incident on the surface of the cornea and pulse repe-

tition rate defines the number of pulses that is applied onto the cornea every

1 second. According to Manns et al [11], a typical pulsed L-TKP treatment

consists of seven laser pulses which we will consider here. Each laser pulse

is applied every 0.2s (pulse repetition rate) for a duration of 200µs (pulse

duration).

It follows that the function φ(t) defined in (3) may be written as

φ(t) =

½
1
0
if t ∈ J,
if t /∈ J,

(11)

where t is the time taken to be in seconds here and J is the time interval

defined by

J =
6[

m=0

{t : 0.2002m ≤ t ≤ 0.2002m+ 0.0002}. (12)
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Figure 3 plots the corneal temperature against time at various points

along the pupillary axis (r = 0) during the course of pulsed L-TKP. Seven

temperature peaks corresponding to the seven laser pulses can be observed.

During the 0.2s time interval when the cornea is not irradiated, the heat

absorbed inside the cornea is diffused into the environment via convection

and radiation and into the remaining part of the eye via conduction. This

is shown in Figure 3 by the rapid decrease in temperature following each

temperature peak.

At the end of the seventh pulse, temperature at (r, z) = (0, 0) is approxi-

mately 111oC. At the interface between the cornea and aqueous humor, that

is, at (r, z) = (0, 588µm), the temperature approximately 53oC . According to

Brinkmann et al [7], when using pulsed laser, the cornea should be heated to

a minimum temperature of 100oC to initiate the shrinking process. Based on

the temperature plot in Figure 3, this requirement is satisfied at the surface

of the cornea.

Figure 4 shows the variation of the corneal temperature along the pupil-

lary axis (against z at r = 0) following each laser pulse. The vertical lines

drawn at z = 50µm and z = 550µm separate the plotted area into the corneal

epithelium (z < 50µm), corneal stroma (50µm< z < 550µm) and corneal en-

dothelium (z > 550µm). Temperature thresholds denoting the lower limit for

corneal shrinkage (T = 55oC) and the limit for corneal relaxation (T = 90oC)

are indicated by the horizontal lines.

Throughout the course of pulsed L-TKP treatment, the most of the

corneal stroma temperature is found to lie between 55 and 90oC (see Fig-

ure 4). This is suitable for inducing corneal shrinkages. Although a small

region inside the stroma (50µm ≤ z ≤ 100µm) is heated beyond its relax-
ation threshold, overall shrinkage of the cornea may not be severely affected

since relaxation occur only at superficial depths of the stroma. Similarly, the

corneal endothelium (z > 550µm) which has a temperature below the 55oC
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threshold may not have severe effects on the corneal shrinkage in general.

This is due to the absence of collagen fibers in the corneal endothelium [30].

The temperature reached by the corneal endothelium also implies that no

endothelial cell damage occurs during the course of pulsed L-TKP [16] (see

section 2).

The spatial temperature profiles over a small cross-section of the human

eye on the rz plane are shown in Figure 5. The cross-section which comprises

mainly the cornea and the aqueous humor is selected in such a way that

a significant variation in the temperature can be observed. For a clearer

visualization, the temperature plots in Figure 1 are given with the mirror

images about the z axis. The dotted line indicates the interface between the

cornea and the aqueous humor.

5.2 Continuous wave laser irradiation

Table 4 summarizes the values of laser parameters chosen for the continuous

wave L-TKP. Similar to the pulsed laser treatment, the values given in Table 4

represent values in a typical clinical treatment. Unlike pulsed laser treatment,

the continuous wave laser irradiates the surface of the cornea in a continuous

manner over a much longer duration. In this study, the corneal surface is

irradiated for 10s before the laser is removed. The function φ(t) may thus

be written as

φ(t) =

½
1
0
for 0 ≤ t ≤ 10s,
for t > 10s.

(13)

The temperature in the cornea at selected points along the pupillary axis

at r = 0 is plotted against time in Figure 6. During the first two seconds

of heating, a rapid increase in corneal temperature is observed. The rate of

change of temperature gradually decreases between t = 2s and t = 10s. At

t > 10s, following the removal of the laser beam, the heat that is absorbed

inside the cornea is diffused rapidly to its surrounding which is illustrated by
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the large drop in temperature.

According to Brinkmann et al [8], when using continuous wave laser,

the cornea must be heated to a minimum temperature of 85oC in order to

produce maximum amount of corneal shrinkage. Our model however, only

predicted a maximum temperature of approximately 75oC at (r, z) = (0, 0).

To produce the maximum amount of shrinkage therefore, one may increase

the laser power or prolong the heating duration in order to elevate the corneal

temperature to 85oC.

Figure 7 plots the variation of corneal temperature along the pupillary

axis (against z at r = 0) at t = 2, 4, 6, 8 and 10s. Similar to Figure 4, the

vertical dotted lines separate the plotted area into the corneal epithelium,

corneal stroma and corneal endothelium. The upper (65oC) and lower (55oC)

threshold limits for corneal shrinkage to occur is denoted by the horizontal

lines.

During the course of laser irradiation, temperature at majority of the

stroma is found to lie between 55 and 65oC. At the corneal epithelium, tem-

perature ranges from 65 to 75oC. Comparing this to the temperature pro-

duced when using pulsed laser, it appears that the continuous wave laser

avoids the problem of over-heating. Similar to pulsed laser heating, no en-

dothelial cell damages are found when the continuous wave laser is used.

Figure 8 plots the spatial temperature profile over a small cross-section

of the eye model on the rz plane at t = 2, 4, 6, 8 and 10s. As in Figure 5,

only cross section where significant changes in temperature can be observed

is presented.

6 Discussion and Summary

In the pulsed laser treatment, the temperature profiles in Figures 3 and 4

agree qualitatively with those obtained mathematically by Manns et al [12].
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The variation of the maximum corneal temperature with time also agrees

qualitatively with experimental measurements carried out by Papaioannou

et al [31]. In the present study, we have not considered the effects of aqueous

humor hydrodynamics on the corneal temperature during treatment of L-

TKP which were accounted for by Manns et al [12]. According to Heys

and Barocas [32], there is no significant correlation between the circulation

of aqueous humor and heat transfer inside the normal human eye. Since

the heating during treatment of L-TKP is localized to a very small region

on the cornea, it is not expected to change greatly the circulation inside

the aqueous humor. More investigations are necessary to provide further

knowledge on the effects of aqueous humor circulation on the corneal surface

during treatment of L-TKP.

In the continuous wave laser treatment, the spatial temperature profiles

in Figure 8 agree qualitatively with the numerical results demonstrated in

[9] and [10]. It should be noted that the intracorneal focusing of the laser

modeled by Brinkmann and co-workers [9], [10] is a better model compared

to the present one where the laser is assumed to be focused only on the

corneal surface. This aspect may be considered in future investigations to

further improve the complete eye model presented in this study.

The results in Section 5 do not show corneal relaxation and corneal ep-

ithelial damage when L-TKP is carried out using the continuous wave laser.

This is however, not the case when the pulsed laser is used. Based on these

observations, it appears that the continuous wave laser performs better than

the pulsed laser in L-TKP which agrees with the experimental findings in

[7] and [33]. In addition to the uniform and homogeneous corneal heating,

absence of over-heating and absence of corneal tissue damage, other advan-

tages of the continuous wave laser include minimum heat loss during laser

irradiation, requirement of lower energy supply and the tunability of laser

wavelength which allows for variation in laser penetration depth [7], [33].
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The complete model of the human eye undergoing L-TKP has been suc-

cessfully developed. This is demonstrated by the good qualitative agreement

between the numerical predictions of our model and those obtained from the

literature. The use of the boundary element method helps to alleviate the

high computational cost required for solving a complete eye model by allow-

ing discretization to be carried out only at the boundaries. In the radially

symmetric formulation, the boundary is given by a set of curves which are

easily discretized into straight line elements.

In the present work, the boundaries of the eye model are discretized using

discontinuous linear elements. Numerical accuracy may be improved by using

higher order elements such as the quadratic elements. The formulation of

the problem however, may not be as straightforward. Similarly, the accuracy

of the time stepping scheme may be improved by using higher order time

interpolations instead of the linear one used in this study.

The time-stepping scheme employed in this study appears to perform

fairly well. Other methods in dealing with the time dependence of temper-

ature include the use of the time dependent fundamental solution and the

Laplace transformation technique. The efficiency and the accuracy of these

alternative methods in solving (1) may be explored in future studies.

The main difference between the model in the present study and those

found in the literature is in the geometry of the cornea. In earlier studies,

the geometry of the cornea which is assumed to be a cylinder or tissue slab

with finite thickness is highly idealized. In the present study, the model

is anatomically and physiologically more complete and realistic; taking into

consideration the various components of the human eye. The use of a com-

plete model provides a more accurate anatomical representation of the human

cornea. At the same time, boundary conditions can be specified based on

the physical observation of the actual human eye.

The present study is limited to the calculation of temperature changes
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during L-TKP which is only the first step for L-TKP. Most of the discussions

were carried out based on the temperature that is reached by the cornea dur-

ing the treatment of L-TKP and thus, may not accurately reflect the actual

shrinkage and cell damage phenomena. A more proper analysis will include

the calculation of corneal collagen denaturation based on the predicted tem-

peratures from the present model. The stress generated within the cornea due

to its shrinkage may also be calculated using the theory of thermoelasticity.

These investigations are open for future studies.

Appendix
This section gives the details of the steps involved in the implementation

of the boundary element method which include the DR-BEM and the time

stepping scheme which are used to obtain a numerical solution of the current

problem. The integro-differential equation in (1) is reproduced here as

γ(ξ, η)Ti(ξ, η, t) =

Z
Λi

Ti(r, z, t)
∂

∂n
[Φ(r, z; ξ, η)] · r · ds(r, z)

−
Z
Λi

Φ(r, z; ξ, η)
∂

∂n
[Ti(r, z, t)] · r · ds(r, z)

+

ZZ
Ri

Φ(r, z; ξ, η)

·
ρici
κi

∂

∂t
[Ti(r, z, t)]− 1

κi
Si(r, z, t)

¸
dR(r, z)

for (ξ, η) ∈ Ri ∪ Λi and i = 1, 2, 3, 4 and 5, (A1)

For a numerical method based on (A1), we discretize the boundary Λi

into Ni elements such that Λi = Λ
(1)
i ∪ Λ(2)i ....Λ

(Ni−1)
i ∪ Λ

(Ni)
i . If the starting

and ending points (r, z) of the element Λ(k)i (for k = 1, 2, ..., Ni − 1, Ni) are

denoted by (r(k)i , z
(k)
i ) and (r

(k+1)
i , z

(k+1)
i ) respectively, we choose two points

17



on Λ
(k)
i such that

(ξ
(k)
i , η

(k)
i ) = (r

(k)
i , z

(k)
i ) + τ

³
r
(k+1)
i − r

(k)
i , z

(k+1)
i − z

(k)
i

´
(ξ
(k+Ni)
i , η

(k+Ni)
i ) = (r

(k)
i , z

(k)
i ) + (1− τ)(r

(k+1)
i − r

(k)
i , z

(k+1)
i − z

(k)
i ), (A2)

where τ may be any pre-selected real number such that 0 < τ < 0.5. For the

purpose of obtaining the results presented in Section 5, τ is taken to be 0.25.

The temperature and heat flux (−κ∂T/∂n = q) on Λ(k)i are approximated

by

Ti (r, z, t)

'
h
s
(k)
i (r, z)− (1− τ) c

(k)
i

i
T
(k)
i (t)−

h
s
(k)
i (r, z)− τc

(k)
i

i
T
(k+Ni)
i (t)

(2τ − 1) c(k)i

for (r, z) ∈ Λ
(k)
i , (A3)

and

qi (r, z, t)

'
h
s
(k)
i (r, z)− (1− τ) c

(k)
i

i
q
(k)
i (t)−

h
s
(k)
i (r, z)− τc

(k)
i

i
q
(k+Ni)
i (t)

(2τ − 1) c(k)i

for (r, z) ∈ Λ
(k)
i , (A4)

where T
(k)
i (t) and T

(k+N)
i (t) are the temperature at the points (ξ(k)i , η

(k)
i )

and (ξ(k+Ni)
i , η

(k+Ni)
i ) respectively, q(k)i (t) and q

(k+N)
i (t) are the heat flux at

(ξ
(k)
i , η

(k)
i ) and (ξ

(k+Ni)
i , η

(k+Ni)
i ) respectively, c(k)i is the length of element Λ(k)i

and s
(k)
i (r, z) is defined as

s
(k)
i (r, z) =

r³
r − r

(k)
i

´2
+
³
z − z

(k)
i

´2
for (r, z) ∈ Λ

(k)
i . (A5)

In (A3) and (A4), note that Ti and qi are approximated as linear functions

of s(k)i across the element Λ(k)i .
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Substituting (A3) and (A4) into (A1) gives

γ(ξ, η)Ti(ξ, η, t) =

NiX
k=1

1

(2τ − 1) c(k)i

×
nh
− (1− τ) c

(k)
i G

(k)
2i (ξ, η) +G

(k)
4i (ξ, η)

i
T
(k)
i (t)

+
h
τc
(k)
i G

(k)
2i (ξ, η)−G

(k)
4i (ξ, η)

i
T
(k+Ni)
i (t)

−
h
− (1− τ) c

(k)
i G

(k)
1i (ξ, η) +G

(k)
3i (ξ, η)

i
q
(k)
i (t)

−
h
τc
(k)
i G

(k)
1i (ξ, η)−G

(k)
3i (ξ, η)

i
q
(k+Ni)
i (t)

o
+

ZZ
Ri

Φ(r, z; ξ, η)

·
ρici
κi

∂

∂t
[Ti(r, z, t)]− 1

κi
Si(r, z, t)

¸
dR(r, z)

for (ξ, η) ∈ Ri ∪ Λi and i = 1, 2, 3, 4 and 5, (A6)

where

G
(k)
1i (ξ, η) =

Z
Λ
(k)
i

Φ (r, z; ξ, η) · r · ds (r, z) ,

G
(k)
2i (ξ, η) =

Z
Λ
(k)
i

∂

∂n
[Φ (r, z; ξ, η)] · r · ds (r, z) ,

G
(k)
3i (ξ, η) =

Z
Λ
(k)
i

s
(k)
i (r, z)Φ (r, z; ξ, η) · r · ds (r, z) ,

G
(k)
4i (ξ, η) =

Z
Λ
(k)
i

s
(k)
i (r, z)

∂

∂n
[Φ (r, z; ξ, η)] · r · ds (r, z) . (A7)

The integrals in (A7) may be calculated numerically by using, for example,

Gaussian quadrature.

The domain integral in (A6) may be converted into a boundary integral

using the DR-BEM [34]. To do so, Li points denoted by (ξ
(2Ni+1)
i , η

(2Ni+1)
i ),

(ξ
(2Ni+2)
i , η

(2Ni+2)
i ), ..., (ξ

(2Ni+Li−1)
i , η

(2Ni+Li−1)
i ) and (ξ(2Ni+Li)

i , η
(2Ni+Li)
i ) (for
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i = 1, 2, 3, 4 and 5), are selected in the interior of Ri. These points serve as

collocation points for the DR-BEM. Besides the interior collocation points,

the 2Ni boundary points on the boundary elements of Λi, as defined in (A2),

are also used.

In the DR-BEM, the domain integral is approximated byZZ
Ri

Φ(r, z; ξ, η)

·
ρici
κi

∂

∂t
[Ti(r, z, t)]− 1

κi
Si(r, z, t)

¸
dR(r, z)

'
2Ni+LiX
m=1

·
ρici
κi

d

dt
[T
(m)
i (t)]− 1

κi
Si(r, z, t)

¸ 2Ni+LiX
j=1

W
(mj)
i Ψ

(j)
i (ξ, η)

for i = 1, 2, 3, 4 and 5 (A8)

where T (m)i (t) = Ti(ξ
(m)
i , η

(m)
i , t) for m = 1, 2, · · · , 2Ni + Li and the coeffi-

cients W (mj)
i and Ψ

(j)
i (ξ, η) are defined implicitly by

2Ni+LiX
j=1

W
(kj)
i θ

(p)
i (ξ

(j)
i , η

(j)
i ) =

½
0 if p 6= k
1 if p = k

for p, k = 1, 2, · · · , 2Ni + Li,

(A9)

and

Ψ
(j)
i (ξ, η) = γ(ξ, η)χ

(j)
i (ξ, η)−

Z
Λi

χ
(j)
i (ξ, η)

∂

∂n
[Φ(r, z; ξ, η)] · r · ds(r, z)

+

Z
Λi

Φ(r, z; ξ, η)
∂

∂n
[χ
(j)
i (ξ, η)] · r · ds(r, z)

for j = 1, 2....2Ni + Li, (A10)

respectively. The local interpolating function, θ(p)i and the particular solu-

tion, χ(j)i may be expressed as

θ
(p)
i (r, z) = 4E(m(r, z; ξ

(p)
i , η

(p)
i ))

q
a(r, z; ξ

(p)
i , η

(p)
i ) + b(r; ξ

(p)
i ) (A11)
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and

χ
(p)
i (ξ, η) =

1

9
(a(r, z; ξ

(p)
i , η

(p)
i ) + b(r; ξ

(p)
i ))

q
a(r, z; ξ

(p)
i , η

(p)
i ) + b(r; ξ

(p)
i )

× [(m(r, z; ξ(p)i , η
(p)
i )− 1)K(m(r, z; ξ(p)i , η

(p)
i ))

+ (4− 2m(r, z; ξ(p)i , η
(p)
i ))E(m(r, z; ξ

(p)
i , η

(p)
i ))] (A12)

respectively. Details on the functions in (A11) and (A12) may be found in

[35].

Substituting (A8) into (A6) and letting (ξ, η) be given by (ξ(n)i , η
(n)
i ), one

obtains

γ(ξ
(n)
i , η

(n)
i )T

(n)
i (t)

=
NiX
k=1

1

(2τ − 1) c(k)i

×
nh
− (1− τ) c

(k)
i G

(k)
2i (ξ

(n)
i , η

(n)
i ) +G

(k)
4i (ξ

(n)
i , η

(n)
i )
i
T
(k)
i (t)

+
h
τc
(k)
i G

(k)
2i (ξ

(n)
i , η

(n)
i )−G

(k)
4i (ξ

(n)
i , η

(n)
i )
i
T
(k+Ni)
i (t)

−
h
− (1− τ) c

(k)
i G

(k)
1i (ξ

(n)
i , η

(n)
i ) +G

(k)
3i (ξ

(n)
i , η

(n)
i )
i
q
(k)
i (t)

−
h
τc
(k)
i G

(k)
1i (ξ

(n)
i , η

(n)
i )−G

(k)
3i (ξ

(n)
i , η

(n)
i )
i
q
(k+Ni)
i (t)

o
+
2Ni+LiX
m=1

·
ρici
κi

d

dt
[T
(m)
i (t)]− 1

κi
Si(r, z, t)

¸

×
2Ni+LiX
j=1

W
(mj)
i Ψ

(j)
i (ξ

(n)
i , η

(n)
i )

for n = 1, 2...2Ni + Li − 1, 2Ni + Li

and i = 1, 2, 3, 4 and 5. (A13)
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The function T (m)i (t) and its first order derivative are approximated using

T
(m)
i (t) ' 1

2

·
T
(m)
i (t+

1

2
∆t) + T

(m)
i (t− 1

2
∆t)

¸
,

d

dt
[T
(m)
i (t)] ' 1

∆t

·
T
(m)
i (t+

1

2
∆t)− T

(m)
i (t− 1

2
∆t)

¸
, (A14)

where ∆t is a small positive number. Note the magnitudes of the errors in

the approximations above are O([∆t]2).

Substituting the approximation in (A14) into (A13) gives
1

2
γ(ξ

(n)
i , η

(n)
i )[T

(n)
i (t+

1

2
∆t) + T

(n)
i (t− 1

2
∆t)]

=

NiX
k=1

1

(2τ − 1) c(k)i

×
½
1

2

h
− (1− τ) c

(k)
i G

(k)
2i (ξ

(n)
i , η

(n)
i ) +G

(k)
4i (ξ

(n)
i , η

(n)
i )
i

×
·
T
(k)
i (t+

1

2
∆t) + T

(k)
i (t− 1

2
∆t)

¸
+
1

2

h
τc
(k)
i G

(k)
2i (ξ

(n)
i , η

(n)
i )−G

(k)
4i (ξ

(n)
i , η

(n)
i )
i

×
·
T
(k+Ni)
i (t+

1

2
∆t) + T

(k+Ni)
i (t− 1

2
∆t)

¸
−
h
(1− τ) c

(k)
i G

(k)
1i (ξ

(n)
i , η

(n)
i ) +G

(k)
3i (ξ

(n)
i , η

(n)
i )
i
q
(k)
i (t)

−
h
τc
(k)
i G

(k)
1i (ξ

(n)
i , η

(n)
i )−G

(k)
3i (ξ

(n)
i , η

(n)
i )
i
q
(k+Ni)
i (t)

o
+
2Ni+LiX
m=1

·
ρici
κi∆t

µ
T
(m)
i (t+

1

2
∆t)− T

(m)
i (t− 1

2
∆t)

¶
− 1

κi
Si(r, z, t)

¸

×
2Ni+LiX
j=1

W
(mj)
i Ψ

(j)
i (ξ

(n)
i , η

(n)
i )

for n = 1, 2...2Ni + Li − 1, 2Ni + Li

and i = 1, 2, 3, 4 and 5. (A15)

If T (m)i (t− 1
2
∆t) is assumed known, then (A15) together with (5), (6) and

(7) can be reduced to a system of 2 × (N1 + N2 + N3 + N4 + N5) + (L1 +
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L2 + L3 + L4 + L5) algebraic equations in 2× (N1 +N2 +N3 +N4 +N5) +

(L1 + L2 + L3 + L4 + L5) unknown functions of t. The non-linear boundary

condition in (5) is treated using the iterative procedure outlined in [17] so

that the system of algebraic equations to solve is a linear one. With T
(m)
i (0)

given by the steady-state temperature prior to the laser heating, the linear

system is solved by letting t = 1
2
∆t, 3

2
∆t, 5

2
∆t, ..., in a consecutive manner,

to determine the unknown functions of t at higher and higher time levels.
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List of tables and figures

Table 1: Thermal properties of each eye region

Region
Thermal

conductivity,
κ (Wm−1K−1)

Density,
ρ (kgm-3)

Specific heat,
c (Jkg-1K-1)

Cornea, R1 0.58 [21] 1050 [22] 4178 [23]
Aqueous humor, R2 0.58 [21] 996 [22] 3997 [22]
Lens, R3 0.40 [24] 1050 [23] 3000 [24]
Vitreous, R4 0.60 [22] 1000 [22] 4178 [22]
Sclera, R5 1.00 [20] 1100 [20] 3180 [20]

Table 2: Parameters in the boundary conditions
Parameter Value
Blood temperature, Tbl (oC) 37
Ambient temperature Tamb (oC) 25
Blood convection coefficient, hbl (Wm−2K−1) 65
Ambient convection coefficient, hamb (Wm−2K−1) 10
Evaporation rate, Evap (Wm−2) 40
Emissivity of the cornea, ε 0.975
Stefan-Boltzmann constant, σ (Wm−2K−4) 5.67×10−8
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Table 3: Typical laser parameters chosen for the pulsed laser
Parameter Value
Energy per pulse (mJ) 30
Pulse duration (µs) 200
Peak irradiance, E0 (Wm−2) 5.31×108
Pulse repetition rate (Hz) 5
Wavelength (µm) 2.1
Laser absorption coefficient of water, µ (m−1) 2000

Table 4: Typical laser parameters chosen for the continuous wave laser
Parameter Value
Laser power, P (mW) 125
Peak irradiance, E0 (Wm−2) 4.42×105
Heating duration (s) 10
Wavelength (µm) 1.87
Laser absorption coefficient of water, µ (m−1) 1900

Figure 1: The human eye model
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Figure 2: Interior collocation points selected for the eye model

Figure 3: Plots of the corneal temperature against time at various points
along the pupiliary axis (r = 0) during pulsed laser irradiation
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Figure 4: The corneal temperature along the pupiliary axis (against z at
r = 0) at the end of each laser pulse
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Figure 5: Spatial temperature profiles over a selected cross-section of the eye
subject to pulsed laser irradiation
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Figure 6: Temperature against time at selected points along the pupiliary
axis
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Figure 7: The corneal temperature along the pupiliary axis (against z at
r = 0) at various time levels
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Figure 8: Spatial temperature profile over a small cross-section of the eye
during continuous wave laser irradiation
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