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Abstract

A micro-statistical model is proposed for investigating the effective

properties of a micro-damaged interface between a piezoelectric layer

and a piezoelectric half-space under inplane electroelastostatic defor-

mations. The interface is modeled as damaged by periodic arrays of

micro-cracks. The lengths and the positions of the micro-cracks on

a period interval of the interface are randomly generated. The con-

ditions on the interfacial micro-cracks are formulated in terms of hy-

persingular integro-differential equations with the displacement and

electrical potential jumps across the interface being unknown func-

tions to be determined. To gain new useful physical insights into the

behaviors of the imperfect interface, the influences of the material con-

stants, the width of the layer and the crack densities of the interface

on the effective properties of the interface are examined in details.
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1 Introduction

For a mathematically more tractable analysis of layered materials having

microscopically damaged interfaces, the interfaces may be simplified as ones

with effective properties. Such an interface between two elastic materials

denoted by 1 and 2 is modeled as a continuous distribution of springs with

interfacial conditions given by

σ(1) · n = σ(2) · n = k · (u(1) − u(2)) on Γ (1)

where Γ denotes the spring-like interface between the two elastic materials,

n is the unit normal vector to Γ pointing into material 1, u() and σ() are

respectively the displacement and the stress in material  and the second rank

tensor k characterizes the effective stiffness of Γ. For works on interfaces

described by the interfacial conditions in (1), one may refer to Benveniste

and Miloh [5], Fan and Sze [7], Hashin [9] and Jones and Whittier [10].

As piezoelectric composites play an increasingly important role in engi-

neering applications (Park el al. [15, 16] and Trolier-McKinstry and Muralt

[21]), researchers have shown interest in the analyses of imperfect interfaces

between piezoelectric materials. The interfacial conditions in (1) may be gen-

eralized to analyze weak interfaces between piezoelectric materials, as in Fan

et al. [8] and Li and Lee [12]. In general, the interface between piezoelectric

materials may be damaged both mechanically and electrically (Li et al. [14]),

that is, not only the displacement is discontinuous across the weak interface,

but the electric potential is also discontinuous. More specifically, for an in-

terface Γ between two piezoelectric materials, the interfacial conditions in

(1) may be generalized to

σ(1) · n = σ(2) · n = k · (u(1) − u(2)) + b ((1) − (2))

D(1) · n = D(2) · n = c · (u(1) − u(2)) + ((1) − (2))

¾
on Γ (2)
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where () and D() are respectively the electrical potential and the electri-

cal displacement in material  and the scalar  the vectors b and c and

the second rank tensor k are tensorial quantities characterizing the effective

properties of Γ.

Most existing research works on weak imperfect interfaces between piezo-

electric materials decouple the elastic displacement and electrical potential

jumps in the interfacial conditions in (2), that is, the assumption that b = 0

and c = 0 is made. Examples of papers making such an assumption include

Chen and Lee [6], Kuo [11], Shodja et al. [18, 19], Sun et al. [20] and Zhou

et al. [28]. Relatively few papers, such as Li et al. [13, 14] and Shi et al. [17],

consider the coupling between the mechanical and electrical imperfections in

the spring-like interface. The validity of the assumption that b = 0 and c = 0

has not been examined in detail in the literature. A clearer idea on this can

be obtained by taking into consideration the micro details of the interface. A

micro-model of the interface can be developed for estimating k b c and .

Such a model is used in Ang et al. [2] to analyze the effective properties of

micro-damaged interfaces under antiplane electroelastostatic deformations.

In the present paper, we study the effective behaviors of the interface

between a piezoelectric layer and a piezoelectric half-space under inplane de-

formations. It (the interface) is modeled as containing periodically repeated

micro-cracks, which are taken to be either electrically permeable or electri-

cally impermeable. As in the analyses of Wang et al. [22, 23, 24, 25] for weak

interfaces between elastic materials, a statistical approach is adopted here to

generate randomly the lengths and positions of the micro-cracks within a

period interval of the interface. The conditions on the micro-cracks are for-

mulated in terms of the hypersingular integro-differential equations, where

both the displacement jumps and the electrical potential jumps across the
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interface appear as the unknown functions to be determined. Once the hy-

persingular integro-differential equations are solved numerically, the effective

properties of the interface may be readily calculated. For specific cases, the

influences of the material constants, the thickness of the layer and the crack

densities of the interface on the effective properties of the interface are ex-

amined in detail. From the results, we gain new useful physical insights

into the effective behaviors of the imperfect interface between the piezoelec-

tric layer and the piezoelectric half-space under inplane electroelastostatic

deformations.

2 The problem

With reference to a Cartesian coordinate system 123 consider an infi-

nitely long piezoelectric layer bonded to a piezoelectric half-space. The layer

and the half-space occupy respectively the regions 0  2   and 2  0

The interface 2 = 0 between the layer and the half-space is damaged by a

periodic array of micro-cracks. The layer and the half-space are assumed to

be perfectly bonded on the uncracked parts of the interface.

A period interval of the interface contains an arbitrary number  of

arbitrarily positioned micro-cracks of possibly different lengths. More specif-

ically, the tips of the  micro-cracks in the region 0  1   are taken

to be (() 0) and (() 0) ( = 1 2   ) where () and () satisfy

0  (1)  (1)  (2)  (2)  · · ·  ()  ()   The remaining parts

of the interface are periodic replicas of the region 0  1   Specifically,

the tips of the micro-cracks on the remaining part of the interface are given

by () +   1  () +  for  = 1 2 · · ·   and  = ±1 ±2 · · · 
Refer to Figure 1 for a geometrical sketch of the piezoelectric bimaterial for

 = 3.
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Figure 1. A geometrical sketch of the piezoelectric bimaterial for  = 3

The bimaterial is subject to an inplane electroelastostatic deformation

such that the Cartesian elastic displacements . elastic stresses  electrical

potential  and electrical displacements  are functions of only 1 and 2.

The micro-cracks are assumed to open up and become traction-free under

the electroelastostatic deformation.

If the micro-cracked interface between the piezoelectric layer and the

piezoelectric half-space is simplified as a homogeneous interface with effective

properties, the problem of interest here is to estimate the constant coefficients

describing the effective properties of the interface.

If all the micro-cracks are electrically impermeable then the effective inter-

face is electrically impermeable and is described by (2) which can be rewritten
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in Cartesian coordinates as

2(1 0
+) = 2(1 0

−) = 
(imp)
 ∆(1) + ∆(1)

2(1 0
+) = 2(1 0

−) = ∆(1) + ∆(1)

¾
for −∞  1 ∞

(3)

and the constant coefficients 
(imp)
 , ,  and  are effective properties to

be estimated. Note that ∆(1) = (1 0
+) − (1 0

−) and ∆(1) =

(1 0
+)−(1 0

−) are respectively the displacement and electric potential

jumps across the effective interface and the Einsteinian convention of sum-

ming over a repeated index is assumed for Latin subscripts running from 1

to 2

On the other hand, if all the micro-cracks are electrically permeable,

the electric potential is continuous on the electrically permeable effective

interface and the interfacial conditions in (3) is modified to become

2(1 0
+) = 2(1 0

−) = 
(per)
 ∆(1)

2(1 0
+) = 2(1 0

−)
∆(1) = 0

⎫⎬⎭ for −∞  1 ∞ (4)

and 
(per)
 are the effective stiffness coefficients to be estimated.

3 Formulation and computation

In this section, we present the basic equations of electroelastostatics to for-

mulate the problem stated in Section 2 as a boundary value problem, express

the boundary value problem in terms of a system of hypersingular integro-

differential equations and outline a computational procedure for estimating

the effective properties of the micro-damaged interface under electroelasto-

static deformations.
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3.1 Boundary value problem

The piezoelectric bimaterial in Section 2 undergoes the inplane deformations

and the electrical poling is along the 2 direction. The relevant Cartesian

components of the inplane stresses  and the electric displacement  are

related to one another by

11 = 11(2)
1
1

+ 12(2)
2
2

+ 31(2)


2


22 = 12(2)
1
1

+ 22(2)
2
2

+ 33(2)


2


12 = 44(2)(
1
2

+
2
1

) + 15(2)


1


1 = 15(2)(
1
2

+
2
1

)− 11(2)


1


2 = 31(2)
1
1

+ 33(2)
2
2
− 33(2)



2
 (5)

where (2) (2) and (2) are respectively the elastic moduli, piezo-

electric coefficients and dielectric coefficients of the piezoelectric bimaterial

defined by

(11(2) 12(2) 22(2) 44(2)

15(2) 31(2) 33(2) 11(2) 33(2)) =⎧⎪⎪⎨⎪⎪⎩
(
(1)
11  

(1)
12  

(1)
22  

(1)
44  

(1)
15  

(1)
31  

(1)
33  

(1)
11  

(1)
33 )

for 0  2  

(
(2)
11  

(2)
12  

(2)
22  

(2)
44  

(2)
15  

(2)
31  

(2)
33  

(2)
11  

(2)
33 )

for 2  0

(6)

with 
()
11  

()
12  

()
22  

()
44  

()
15  

()
31  

()
33  

()
11 and 

()
33 ( = 1 2) being suitable

positive constants.

According to the conservation of momentum and the Gauss law of electric

flux, the governing partial differential equations for the deformation of the
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piezoelectric material are given by

11(2)
21
21

+ (12(2) + 44(2))
22

12
+ 44(2)

21
22

+(31(2) + 15(2))
2

12
= 0

(12(2) + 44(2))
21

12
+ 44(2)

22
21

+ 22(2)
22
22

+15(2)
2

21
+ 33(2)

2

22
= 0

(15(2) + 31(2))
21

12
+ 15(2)

22
21

+ 33(2)
22
22

−11(2)
2

21
− 33(2)

2

22
= 0 (7)

Following closely the notation of Barnett and Lothe [4], we introduce the

generalized displacements  and stresses  as

 =

½
 for  =  = 1 2
 for  = 3

 =

½
 for  =  = 1 2
 for  = 3

and define  as

 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

11 if (  ) = (1 1 1 1)
12 if (  ) = (1 1 2 2) = (2 2 1 1)
22 if (  ) = (2 2 2 2)
44 if (  ) = (1 2 1 2) = (2 1 2 1) = (1 2 2 1) = (2 1 1 2)
15 if (  ) = (2 1 3 1) = (1 2 3 1) = (3 1 2 1) = (3 1 1 2)
31 if (  ) = (1 1 3 2) = (3 2 1 1)
33 if (  ) = (2 2 3 2) = (3 2 2 2)
−11 if (  ) = (3 1 3 1)
−33 if (  ) = (3 2 3 2)
0 otherwise,

(8)
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such that (5) and (7) may be rewritten respectively as

 = 



(for  = 1 2 3;  = 1 2)

and


2


= 0 (for  = 1 2 3) (9)

where the Einsteinian convention of summing over repeated indices holds

here for the uppercase Latin subscripts which take the values 1, 2 and 3.

Note that the coefficients  are functions of 2 as defined by (6) for the

piezoelectric bimaterial.

Mathematically, the problem stated in Section 2 requires solving (9) sub-

ject to suitably prescribed conditions. The conditions on the interface 2 = 0

are given by

2(1 0
+) = 2(1 0

−)
∆(1) = 0

¾
for (1 0) on the uncracked parts of the interface, (10)

and by either

2(1 0
±) = −(1)

for (1 0) on electrically impermeable micro-cracks,

(11)

or

12(1 0
±) = −1(1)

22(1 0
±) = −2(1)

∆3(1) = 0

⎫⎬⎭
for (1 0) on electrically permeable micro-cracks, (12)

where 1(1) 2(1) and 3(1) are periodic functions of period  giving the

internal loads on the micro-cracks and ∆(1) = (1 0
+)− (1 0

−)
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The conditions on the plane 2 =  (the external edge of the layer) and at

the far field are

2(1 ) = 0 for −∞  1 ∞

(1 2) → 0 as 2 → −∞ (13)

3.2 Hypersingular integro-differential equations

For electrically impermeable micro-cracks, the analysis in [23] can be readily

employed to formulate the boundary value problems defined by (9), (10),

(11) and (13) in terms of a system of the hypersingular integro-differential

equations given by

1

2
=

Z 

0

(1 ) Re{
3X

=1

}[ 1

(1 − 1)
2
+Θ(1 1)]1

+
1

2

Z 

0

(1 ) Re{
3X

=1

3X
=1

Ω(1 1 
(1)
 − 

(1)
 )}1

− 1
2

X
=1

Z ()

()
∆(1) Re{

3X
=1

Ω(1 1− (1) )}1

− 1
2

X
=1

Z ()

()
∆(1) Re{

3X
=1

3X
=1

Ω(1 1− (1) )}1

= 0 for 0  1   (14)
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and

− 1
2

Z 

0

(1 )Re{
3X

=1

Ω(1 1 
(1)
 )( +

3X
=1

)}1

+
1

2
[=

Z ()

()

∆(1)Re{}
(1 − 1)

2
1

+
X
=1
6=

Z ()

()

∆(1) Re{}
(1 − 1)

2
1

+
X
=1

Z ()

()
∆(1) Re{}Θ(1 1)1 −

∆(1)

1
Im{}]

= (1) for 
()  1  () ( = 1 2 ) (15)

where =
R
denotes that the integral is to be interpreted in the Hadamard finite-

part sense (for details, see Ang [1]), Re denotes the real part of a complex

number, the overhead bar denotes the conjugate of a complex number, 

and  are constants given by

 = [
(1)
2

(1)
 (

(1)
21 +  (1) 

(1)
22)]

(1)
 

 = [
(1)
2

(1)
 (

(1)
21 + 

(1)
 

(1)
22)]

(1)
 

the constants 
(1)
 are implicitly defined by

3X
=1

(
(1)


(2)
 − 

(1)

2
(2)
)

(1)

 = (
(1)
2

(2)
 − 

(1)


(2)
)

(1)
  (16)

the constants 
()
2 ( = 1 2) are given by


()
2 = (

()
21 +  () 

()
22)

()
 (17)

the constants 
(1)
 and 

(2)
 denote respectively the material constants

 for the layer and the half-space, the constants 
()
1  

()
2 and 

()
3 are

11



the complex numbers with positive imaginary parts and they are solutions

of the sextic equations in  () given by

det

⎡⎢⎣ 
()
11 + 

()
44 (

())2 (
()
12 + 

()
44 )

() (
()
31 + 

()
15 )

()

(
()
12 + 

()
44 )

() 
()
44 + 

()
22 (

())2 
()
15 + 

()
33 (

())2

(
()
31 + 

()
15 )

() 
()
15 + 

()
33 (

())2 −()11 − 
()
33 (

())2

⎤⎥⎦ = 0 (18)

the constants 
()
 are chosen to satisfy⎡⎢⎣ 

()
11 + 

()
44 (

()
 )2 (

()
12 + 

()
44 )

()
 (

()
31 + 

()
15 )

()


(()12 + ()44 )
()
 ()44 + ()22 (

()
 )2 ()15 + ()33 (

()
 )2

(
()
31 + 

()
15 )

()
 

()
15 + 

()
33 (

()
 )2 −()11 − 

()
33 (

()
 )2

⎤⎥⎦
⎡⎢⎣ 

()
1

()2

()
3

⎤⎥⎦ = 0
(19)

in which 
()
1 and 

()
2 can be solved by taking 

()
3 = 1 (see Athanasius et

al. [3]), the matrices 
()
 and 

()
 are respectively the inverses of 

()
 and

()2 and the constants 
()
 are implicitly defined by

Im{
3X

=1


()
2

()
}()

 =   (20)

with  being the Kronecker-delta and Im denoting the imaginary parts of

a complex number, the constants  and  are defined by

 =
3X

=1

 +
3X

=1

3X
=1



 =
3X

=1

3X
=1

 −
3X

=1



and the functions Θ(1 1) and Ω(1 1 ) are defined as

Θ(1 1) =
1

2
Ψ1(

+ 1 − 1


) +
1

2
Ψ1(

+ 1 − 1


)

Ω(1 1 ) =
1

(1 − 1 + )2
+
1

2
Ψ1(

+ 1 − 1 + 


)

+
1

2
Ψ1(

− 1 + 1 − 


)
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with Ψ1 being the trigamma function. Note that the Greek subscripts  

and  have the values 1, 2 and 3.

For electrically permeable micro-cracks, the corresponding hypersingu-

lar integro-differential equations for the interfacial conditions in (12) can

be obtained from (15) by letting  =  = 1 2 (instead of  = 1 2 3) and

∆3(1) = 0 The unknown functions in the hypersingular integro-differential

equations are ∆1(1) and ∆2(1).

3.3 Computational procedure for estimating effective

properties

For electrically impermeable micro-cracks, the numerical procedures in Wang

et al. [23] can be employed to solve the hypersingular integro-differential

equations (14) and (15) for the unknown generalized displacement jumps

∆(1). Three independent sets of electroelastostatic loads denoted by

 = 
()
 ( = 1 2 and 3) are applied in (14) and (15) to solve for the

corresponding generalized displacement jumps denoted by ∆
()
 (1) Once

the unknown ∆
()
 (1) are obtained, the effective properties 

(imp)
 , ,  and

 in (3) may be calculated by using

Z 

0

⎡⎢⎣ 
()
1 (1)


()
2 (1)


()
3 (1)

⎤⎥⎦ 1 =

⎡⎣ 
(imp)
11 

(imp)
12 1


(imp)
21 

(imp)
22 2

1 2 

⎤⎦ · X
=1

Z ()

()

⎡⎢⎣ ∆
()
1 (1)

∆
()
2 (1)

∆
()
3 (1)

⎤⎥⎦ 1
for  = 1 2 and 3 (21)

For electrically permeable micro-cracks, since ∆
()
3 (1) = 0 only two

independent sets of elastostatic loads 
()
 ( = 1 2) are used to numerically

solve the hypersingular integro-differential equations (15) for  having only

the values 1 and 2 to obtain the corresponding displacement jumps∆
()
 (1)

( = 1 2) Once the unknown ∆
()
 (1) are obtained, the effective proper-

13



ties 
(per)
 in the interfacial conditions in (4) may be calculated by usingZ 

0

"

()
1 (1)


()
2 (1)

#
1 =

"

(per)
11 

(per)
12


(per)
21 

(per)
22

#
·

X
=1

Z ()

()

"
∆

()
1 (1)

∆
()
2 (1)

#
1

for  = 1 2 (22)

The statistical approach described in Wang et al. [25] is adopted here

for the estimation of the effective properties of the interface. For statistical

simulations, random interfaces are created. To form a random interface, the

lengths of the micro-cracks in the region 0  1   2 = 0, are randomly

generated by using a chi-square distribution 2() of degree of freedom .

The micro-cracks are then randomly located in the region 0  1   2 = 0.

In reality, the distribution of micro-cracks on an interface tends to skew

towards shorter micro-cracks, that is, a realistic interface tends to have more

shorter micro-cracks and fewer longer ones. Such a distribution of micro-

cracks can be generated by using a lower degree of freedom, such as = 5 in

the chi-square distribution. Thus, in all the specific cases studied in Section

4, we use the chi-square distribution 2(5) to generate the lengths of the

micro-cracks.

For an electrically impermeable interface having average micro-crack lengthb and damage ratio  defined by
b = 1



X
=1

(() − ()) and  =
1



X
=1

(() − ()) (23)

we compute the non-dimensionalized effective properties b(imp) 
(2)
44  bq

(2)
44 

(2)
11 ,bq

(2)
44 

(2)
11 and b(−(2)11 ) as follows. We generate  random interfaces,

all of which have the same respective values for  and the relative width b
of the layer, and we calculate and average up the non-dimensionalized effec-

tive properties of all the random interfaces. The average non-dimensionalized

14



effective properties of all the random interfaces are then the required non-

dimensionalized effective properties of the electrically impermeable interface

of the electrically impermeable interface for fixed values of  and b
The non-dimensionalized effective properties b(per) 

(2)
44 of an electrically

permeable interface having average micro-crack length b and damage ratio 
are computed via statistical simulations in a similar way.

Like in Wang et al. [22, 23, 24, 25], we have investigated here the number

of micro-cracks (over a period interval of the interface) required for homoge-

nizing the interface. If the number of micro-cracks needed for homogenizing

the interface is 0 then the average values of the non-dimensionalized effec-

tive properties of the random interfaces do not change significantly with 

(the number of micro-cracks per period interval of the interface) when 

exceeds 0 Using  = 50 (that is, a sample of 50 random interfaces) in a

statistical simulation for estimating the effective properties for various values

of  b and the material constants in the layer and the half-space, we find
that the interface can be homogenized by taking 0 = 40

In the statistical simulations for the case studies in Section 4, we use a

sample of 50 random interfaces, each of which contains 40 micro-cracks, to

estimate the interfacial effective properties. As mentioned earlier on, the

micro-crack length follows the chi-square distribution 2(5)

4 Case studies on the effective stiffness coef-

ficients of the interface

In this section, we conduct parametric studies on the effective properties of

micro-damaged interfaces between a piezoelectric layer and a piezoelectric

half-space by using the statistical approach outlined in Section 3.3. In all

the cases studied below, the effective properties b(per) 
(2)
44 (for electrically

15



permeable interfaces) are found to be extremely close to b(imp) 
(2)
44 (for

electrically impermeable interfaces). Thus, only the results for electrically

impermeable interfaces are presented here.

4.1 Effects of b and  on an interface between par-
ticular materials

Here we consider the cases where the layer and the interface are occupied by

specific piezoelectric materials. The effects of b (the average half micro-
crack length over the width of the layer) and  (the damage ratio) on the

effective properties of the interface are investigated.

The layer is taken to be occupied by the piezoelectric material PZT ce-

ramic with material constants (1)11 = 138 × 1010 N/m2 (1)22 = 129 × 1010
N/m2 

(1)
44 = 245 × 1010 N/m2 

(1)
12 = 939 × 1010 N/m2 

(1)
15 = 140

C/m2 
(1)
31 = 102 C/m2 

(1)
33 = 307 C/m2 

(1)
11 = 151 × 10−10 C/(V m)

and 
(1)
33 = 130 × 10−10 C/(V m) (Wang and Noda [26]). The half-space is

occupied by the piezoelectric material barium titanate (BaTiO3) with ma-

terial constants given by 
(2)
11 = 166 × 1010 N/m2 (2)22 = 162 × 1010 N/m2


(2)
44 = 43×1010 N/m2 

(2)
12 = 78×1010 N/m2 

(2)
15 = 116 C/m

2 
(2)
31 = −44

C/m2 
(2)
33 = 186 C/m

2 
(2)
11 = 112× 10−10 C/(V m) and 

(2)
33 = 126× 10−10

C/(V m) (Wang et al. [27]).

For selected values of  Figures 2, 3, 4 and 5 plot respectively the non-

dimensionalized effective properties b(imp)11 
(2)
44  b(imp)22 

(2)
44  b2q

(2)
44 

(2)
11

and b(−(2)11 ) against b The values of b(imp)12 
(2)
44  b(imp)21 

(2)
44  b1q

(2)
44 

(2)
11

and b1q
(2)
44 

(2)
11 are observed to be extremely small compared to b(imp)11 

(2)
44 b(imp)22 

(2)
44  b2q

(2)
44 

(2)
11 and b(−(2)11 ), having magnitudes in the order of

at least 10−9. Also, the value of 2 is observed to be very close to the value

of 2.
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For a fixed , the figures show that the effective properties b(imp)11 
(2)
44 b(imp)22 

(2)
44  b2q

(2)
44 

(2)
11 and b(−(2)11 ) decrease as b increases The rate

of decrease in b(−(2)11 ) has the smallest magnitude compared to the cor-
responding ones in b(imp)11 

(2)
44  b(imp)22 

(2)
44 and b2q

(2)
44 

(2)
11 , that is, the

plane edge 2 =  of the layer apparently has a relatively small influence on

the effective property b(−(2)11 ) The figures also show that all the effective
properties for a fixed value of b decrease with increasing damage ratio .
This observation may be explained as follows. If the micro-cracks occupy a

larger area on the interface, they are less stable, giving rise to larger mag-

nitude generalized displacement jumps ∆(1) over the micro-cracks and

hence smaller effective properties.

Figure 2. Plots of b(imp)11 
(2)
44 against b for  = 04 05 and 06
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Figure 3. Plots of b(imp)22 
(2)
44 against b for  = 04 05 and 06

Figure 4. Plots of b2q
(2)
44 

(2)
11 against b for  = 04 05 and 06
18



Figure 5. Plots of b(−(2)11 ) against b for  = 04 05 and 06

4.2 Effects of 
(1)
15 

(2)
15  

(1)
31 

(2)
31 and 

(1)
33 

(2)
33

The effects of the non-dimensionalized piezoelectric coupling coefficients 
(1)
15 

(2)
15 


(1)
31 

(2)
31 and 

(1)
33 

(2)
33 on the effective properties of the interface are studied

here.

As in Section 4.1, the material in the half-space is taken to be BaTiO3.

The layer is taken to have the same elastic moduli and the dielectric constants

with the half-space, but it has piezoelectric coefficients such that 
(1)
15 

(2)
15 =


(1)
31 

(2)
31 = 

(1)
33 

(2)
33 =  where  is a non-negative constant.

For b = 05 Figures 6, 7, 8 and 9 plot respectively the non-dimensionalized
effective properties b(imp)11 

(2)
44  b(imp)22 

(2)
44  b2q

(2)
44 

(2)
11 and b(−(2)11 )

against log10  for selected values of  Note that the values of b(imp)12 
(2)
44 
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b(imp)21 
(2)
44  b1q

(2)
44 

(2)
11 and b1q

(2)
44 

(2)
11 are observed to be in the order

of 10−9 or even smaller. As before, 2 is observed to be very close to 2.

Figures 6, 7 and 9 show that b(imp)11 
(2)
44  b(imp)22 

(2)
44 and b(−(2)11 )

increase with log10  for −1  log10   2. For 2  log10   3 the values

of b(imp)11 
(2)
44  b(imp)22 

(2)
44 and b(−(2)11 ) do not change very much. As

 → 0+ b(imp)11 
(2)
44  b(imp)22 

(2)
44 and b(−(2)11 ) tend to constants.

For a fixed value of  Figure 8 shows that b2q
(2)
44 

(2)
11 has a local

maximum at around  = 10 and tends to constants as  becomes larger or

approaches zero It is obvious that the values of b2q(2)44 
(2)
11 are not equal

to zero. This demonstrates that the widely used assumption, which considers

the effective properties  and  as zero, may not be valid.

Figure 6. Plots of b(imp)11 
(2)
44 against log10  for  = 04 05 and 06 andb = 05.
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Figure 7. Plots of b(imp)22 
(2)
44 against log10  for  = 04 05 and 06 andb = 05.
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Figure 8. Plots of b2q
(2)
44 

(2)
11 against log10  for  = 04 05 and 06 andb = 05.
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Figure 9. Plots of b(−(2)11 ) against log10  for  = 04 05 and 06 andb = 05.
For selected values of  Figures 10, 11, 12 and 13 plot respectivelyb(imp)11 

(2)
44  b(imp)22 

(2)
44  b2q

(2)
44 

(2)
11 and b(−(2)11 ) against b for  =

05 For a fixed  Figures 10, 11 and 12 show that b(imp)11 
(2)
44  b(imp)22 

(2)
44

and b2q
(2)
44 

(2)
11 decrease with b. Figure 13 shows that the trend in the

variation of b(−(2)11 ) against b may be different depending on the mag-
nitude of , that is, on the magnitude of the piezoelectric coefficients in the

layer. For  = 5, it appears that b(−(2)11 ) increases as b increases. How-
ever, for the smaller values of  b(−(2)11 ) seems to decrease with increasingb
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Figure 10. Plots of b(imp)11 
(2)
44 against b for selected values of  and
 = 05.
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Figure 12. Plots of b2q
(2)
44 

(2)
11 against b for selected values of  and
 = 05.
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Figure 13. Plots of b(−(2)11 ) against b for selected values of  and
 = 05.

4.3 Effects of 
(1)
11 

(2)
11  

(1)
12 

(2)
12  

(1)
22 

(2)
22 and 

(1)
44 

(2)
44

In this subsection, we study how varying the relative strength 
(1)
11 

(2)
11  

(1)
12 

(2)
12 


(1)
22 

(2)
22 and 

(1)
44 

(2)
44 of the material in the layer may affect the effective prop-

erties of the interface.

Again, take the half-space to be occupied by BaTiO3. The dielectric

constants and the piezoelectric coefficients in the layer are taken to have the

same values with those in the half-space, but the elastic moduli in the layer

are taken to be given by 
(1)
11 

(2)
11 = 

(1)
12 

(2)
12 = 

(1)
22 

(2)
22 = 

(1)
44 

(2)
44 =  (where

 is a positive constant)

For b = 05 Figures 14, 15, 16 and 17 plot respectively the effec-

tive properties b(imp)11 
(2)
44  b(imp)22 

(2)
44  b2q

(2)
44 

(2)
11 and b(−(2)11 ) against

log10  for selected values of As before, the values of b(imp)12 
(2)
44  b(imp)21 

(2)
44 

26



b1q
(2)
44 

(2)
11 and b1q

(2)
44 

(2)
11 are observed to be in the order of 10

−9 or even

smaller and 2 is observed to be very close to 2

For a fixed , we observe that b(imp)11 
(2)
44  b(imp)22 

(2)
44 and b2q

(2)
44 

(2)
11

increase significantly, but b(−(2)11 ) decreases, as  increases, that is, as the
elastic moduli in the layer are getting larger compared to the elastic moduli in

the half-space. It appears that increasing the elastic moduli in the layer has a

more drastic influence on b(imp)11 
(2)
44 and b(imp)22 

(2)
44 than b2q

(2)
44 

(2)
11 andbq

(2)
44 

(2)
11  As the layer becomes extremely soft, b(imp)11 

(2)
44  b(imp)22 

(2)
44

and b2q
(2)
44 

(2)
11 tend to zero and b(−(2)11 ) tends to a non-zero constant.

Figure 14. Plots of b(imp)11 
(2)
44 against log10  for selected values of  andb = 05
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Figure 15. Plots of b(imp)22 (2)44 against log10  for selected values of  andb = 05
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Figure 16. Plots of b2q
(2)
44 

(2)
11 against log10  for selected values of 

and b = 05
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Figure 17. Plots of b(−(2)11 ) against log10  for selected values of  andb = 05

4.4 Effects of 
(1)
11 

(2)
11 and 

(1)
33 

(2)
33

Here the effects of the non-dimensionalized dielectric constants 
(1)
11 

(2)
11 and


(1)
33 

(2)
33 on the effective properties of the interface are investigated.

The half-space is still taken to be occupied by BaTiO3. The elastic moduli

and the piezoelectric coefficients in the layer are taken to have the same values

with the ones in the layer, but the dielectric constants in the layer are given

by 
(1)
11 

(2)
11 = 

(1)
33 

(2)
33 =  (where  is a positive constant)

For b = 05 and selected values of  the effective properties b(imp)11 
(2)
44 b(imp)22 

(2)
44  b2q

(2)
44 

(2)
11 and b(−(2)11 ) are plotted against log10  in Fig-

ures 18, 19, 20 and 21 respectively As before, the values of b(imp)12 
(2)
44 b(imp)21 

(2)
44  b1q

(2)
44 

(2)
11 and b1q

(2)
44 

(2)
11 are observed to be negligible and

the difference between 2 and 2 is insignificant
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From the figures, b(imp)11 
(2)
44  b(imp)22 

(2)
44 and b2q

(2)
44 

(2)
11 decrease in

magnitude as the ratio  increases (that is, as the dielectric constants in

the layer are larger than those in the half-space), while the magnitude ofb(−(2)11 ) increases with increasing . As  increases, b(imp)11 
(2)
44  b(imp)22 

(2)
44

and b2q
(2)
44 

(2)
11 decrease at a rate much smaller than that at which b(−(2)11 )

increases, that is, varying the dielectric constants in the layer appears to have

a greater influence on b(−(2)11 ) than the other effective properties of the
interface.

Figure 18. Plots of b(imp)11 
(2)
44 against log10  for selected values of  andb = 05
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Figure 20. Plots of b2q
(2)
44 

(2)
11 against log10  for selected values of 

and b = 05
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Figure 21. Plots of b(−(2)11 ) against log10  for selected values of  andb = 05

5 Summary and conclusions

Amicro-statistical model is used to analyze the effective properties of a micro-

damaged interface between a piezoelectric layer and a piezoelectric half-space

under inplane electroelastostatic deformations. The interface is modeled as

damaged by periodic arrays of electrically permeable or impermeable micro-

cracks. The boundary conditions on the interfacial micro-cracks give rise to

hypersingular integro-differential equations with the displacement jumps and

electrical potential jump across the interface being unknown functions to be

determined. For a given interface, once the hypersingular integro-differential

equations are solved for a set of independent loads on the micro-cracks, the

effective properties of the interface can be readily computed. For a statistical
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approach, the effective properties are estimated from the mean values of

a sample of interfaces containing a sufficient number of micro-cracks that

have randomly generated lengths and positions over a period interval of the

interface.

As in (3) and (4), the effective properties of interest here are characterized

by the parameters 
(imp)
    and  for electrically impermeable interfaces

and by 
(per)
 for electrically permeable interfaces. From numerous case stud-

ies involving a wide range of values for the damage ratio, the average half

length of the micro-cracks over the thickness of the layer and the material

constants in the layer and the half-space, we find that there is no significant

difference between (imp) and (per) 

Furthermore, the effective properties 
(imp)
12  

(imp)
21  1 and 1 are found

to be extremely small compared to 
(imp)
11  

(imp)
22  2 2 and . The values

of 2 and 2 are only very small for cases where the layer is extremely soft

compared to the half-space. They are not equal to zero in general. Thus, the

rather widely used assumption in which  and  are taken to be zero may

be called into question.

To gain further useful physical insights into the behaviors of the imper-

fect interface, we have examined in detail how the material constants, the

damage ratio of the interface and the width of the layer affect the effective

properties of the interface. The results obtained appear to be intuitively and

qualitatively acceptable.
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