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Abstract

Two micromechanical models based on the hypersingular integral

formulations are presented for estimating the effective stiffness of a

micro-cracked interface between a thin elastic layer and an elastic half

space under antiplane deformations. The three-phase model simplifies

the interface into three parts − micro-cracked, perfectly bonded and
effective regions. The micromechanical-statistical model takes into

consideration statistical variations in the lengths of randomly posi-

tioned interfacial micro-cracks. Some parametric studies are carried

out on how the plane boundary of the thin layer and the material prop-

erties of the thin layer and the half space affect the effective stiffness

of the interface.
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1 Introduction

Thin film structures form the basic components of many microelectronic

devices. They exists in almost all essential elements of integrated circuit

technology, such as microprocessor and electrical actuators. As explained in

Nix [8], a thin film may be formed by coating at a very high temperature

a layer of material on a substrate of a different material. During the cool-

ing process, the mismatch of the thermal expansion coefficient between the

layer and the substrate may give rise to thermally induced residual stresses,

resulting in the formation of interfacial micro-defects. Thus, the analysis of

damaged interfaces between the thin layer and the substrate is of consider-

able importance in assessing the reliability of microelectronic devices (see,

for example, Suo and Hutchinson [9], Varias, Mastorakos and Aifantis [10]

and Xu, Blume and Shih [12]).

A microscopically damaged interface may be modeled as containing inter-

facial micro-cracks. For macro-level mechanics, the micro-cracked interface

may be regarded as a continuous distribution of springs with an effective stiff-

ness to be estimated by taking into consideration some microscopic details

of the interface. Fan and Sze [6] presented a three-phase model for estimat-

ing the effective electric property of the interface between two dielectric half

spaces and employed the finite element method to solve approximately the

boundary value problem for the model. More recently, Wang, Ang and Fan

[11] proposed a micromechanical model for calculating the interface effective

stiffness between two anisotropic elastic half spaces under antiplane shear

loads, allowing for statistical variations in the lengths of randomly positioned

interfacial micro-cracks. If the variation in the lengths of the micro-cracks

is small and if the micro-cracks are more or less evenly distributed on the

interface, the value of effective stiffness estimated by the micromechanical-
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statistical model in [11] is found to be close to that given by the corresponding

three-phase model of the interface.

The micromechanical-statistical and the three-phase models in [11] are

formulated and solved in terms of hypersingular integral equations. An

advantage of the hypersingular integral formulations is that the unknown

functions on the micro-cracks are the crack-opening displacements (Ang [2]).

Once the hypersingular integral equations are solved, the interface effective

stiffness, which is related to the displacement jump across the interface in the

macro spring model, can be easily computed. Furthermore, the numerical

solution of the integral equations does not require the use of any artificially

introduced boundary for the elastic half spaces.

In the present paper, the hypersingular boundary integral equation based

models in [11] are extended to estimate the effective stiffness of a micro-

cracked interface between a thin elastic layer and an elastic half space under

antiplane deformations. Some parametric studies are carried out using the

micromechanical-statistical model to investigate how the plane boundary of

the thin layer and the material properties of the thin layer and the half space

affect the effective stiffness of the interface.

2 The problem

Referring to a Cartesian coordinate frame 123 consider a thin homo-

geneous anisotropic elastic layer occupying the region 0  2  . The

layer is bonded to a homogeneous anisotropic elastic half space in the region

2  0 The interface between the thin elastic layer and the elastic half space

is microscopically damaged with interfacial micro-cracks.

The bimaterial is assumed to be undergo an antiplane elastostatic defor-

mation. The only non-zero component of the elastic displacement, denoted
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by 3, is the one along the 3 direction and varies with only the spatial

coordinates 1 and 2 The antiplane components of the stress are given by

3 = (1 2)
3


 (1)

where  are elastic coefficients defined by

(1 2) =

(

(1)
 for 0  2  


(2)
 for 2  0

(2)

with () being positive constants such that 
()
 = () and (

()
12 )

2−()11 ()22 

0 Note that the Einsteinian convention of summing over a repeated index

holds here for Latin subscripts which take the values 1 and 2

From (1) and the equilibrium equations of elastostatics, 3 is required to

satisfy the partial differential equation




(

3


) = 0 (3)

The antiplane displacement 3 and stress 3 along a macroscopic portion

of the microscopically damaged interface 2 = 0 may be homogenized by

using the averaging procedure

b3(b1 0±) =
1

2

Z 1+
1− 3(1 0

±)1

b3(b1 0±) =
1

2

Z 1+
1− 3(1 0

±)1 (4)

where b1 and  are the midpoint and the half-length of the macroscopic

portion.

The interfacial conditions in the macro-level spring model for the mi-

croscopically damaged interface are (see, for example, Fan and Sze [6] and

Benveniste and Miloh [3])

b(b3(b1 0+)− b3(b1 0−)) = b32(b1 0+) = b32(b1 0−) (5)
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where b is the effective stiffness of the interface. It is assumed here that
the interface is homogeneously damaged at the macro level so that b is a
constant.

The problem of interest here is to investigate the effect of the plane bound-

ary 2 =  of the thin layer on the effective stiffness b of the interface.
3 Micromechanical analysis of the interface

As inWang, Ang and Fan [11], the microscopically damaged interface is mod-

eled as containing periodic arrays of interfacial micro-cracks. More specifi-

cally,  arbitrarily located micro-cracks of possibly different lengths lie on

the part of the interface where 0  1   2 = 0 The tips of a typi-

cal -th micro-crack on this part of the interface are given by (() 0) and

(() 0) where () and () are constants such that 0  (1)  (1)  (2) 

(2)  · · ·  ()  ()   On the remaining parts of the interface, the

micro-cracks are given by () +   1  () +  for  = 1 2 · · ·  
and  = ±1 ±2 · · ·  that is, the remaining micro-cracks are periodically
distributed exact replicas of the  micro-cracks on the interval 0  1  

2 = 0 Refer to Figure 1.

The fraction of the interface damaged by the micro-cracks is given by 

where

 =
1



X
=1

(() − ()). (6)
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Figure 1. The micro-cracked interface between a thin layer and a

half-space.

The bimaterial is acted upon by an external uniform antiplane shear

stress load. The micro-cracks are assumed traction free. For micromechani-

cal analysis of the micro-cracked interface, the governing partial differential

equation (3) together with (2) is to be solved in the bimaterial subject to

32(1 0
±) = 0 for (1 0±) on the micro-cracks,

3(1 0
+) = 3(1 0

−)
32(1 0

+) = 32(1 0
−)

¾
for (1 0

±) outside the micro-cracks

(7)

and

32(1 ) = 0 for 1 ∈ (−∞∞)
32(1 2)→ 0 as 2 → −∞ (8)

where 0 is a given positive constant.
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Two different micromechanical models are used here for estimating the

effective stiffness b of the micro-cracked interface described above. One is
a three-phase model which simplifies a period length of the micro-cracked

interface to a single micro-crack, perfectly bonded parts and an effective re-

gion. The other is a micromechanical-statistical model in which the positions

and lengths of a sufficiently large number of micro-cracks lying on a period

of the interface are chosen using statistical simulations.

3.1 Three-phase model

The three-phase model here models the portion of the micro-cracked interface

on 0  1   as comprising (i) a single representative micro-crack in the

region (1)  1  (1) 2 = 0 (ii) perfectly bonded parts in the regions

0  1  (1) and (1)  1  (2) on 2 = 0 and (iii) an effective region

(2)  1  (2) 2 = 0 which describes the behaviors of the interface using

the macro-level spring model. Note that (1) (2), (1) and (2) are constants

such that 0  (1)  (1)  (2)  (2) =  (1) = (2) − (1) and (2) is

much smaller than  The geometry of the entire interface in the three-phase

model is periodic with period  Refer to Figure 2.

7



Figure 2. A sketch of the three-phase model

For the three-phase model, the damage ratio  corresponding to (6) is

given by

 =
(1) − (1)

(2)
 (9)

The interfacial conditions for the three-phase model are

32(1 0
±) = 0 for (1 0±) ∈ damage

∆3(1) = 0
32(1 0

+) = 32(1 0
−)

¾
for (1 0

±) ∈ perfectb∆3(1) = 32(1 0
±) for (1 0±) ∈ effective (10)

where ∆3(1) = 3(1 0
+)− 3(1 0

−) and

damage =
∞[

=−∞
((1) +  (1) + )

perfect =
∞[

=−∞
( (1) + ) ∪ ((1) +  (2) + )

effective =
∞[

=−∞
((2) +  (2) + ) (11)
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Note that the conditions over effective in (10) follow those given in (5) for

the macro-model of the microscopically damaged interface. As the effective

stiffness b is an unknown constant to be determined, another equation is
needed to complete the formulation of the interfacial conditions. The equa-

tion is given by b
(2)

(1)Z
(1)

∆3(1)1 = 0 (12)

It is derived from the relation

b × (average value of ∆3(1) over 0  1  (2)) = 0 (13)

For the analysis of the three-phase model, the partial differential equation

(3) together with (2) is to be solved in the bimaterial in Figure 2 subject to

(8), (10) and (12).

3.2 Micromechanical-statistical model

To simulate the micro-cracked interface statistically, the micro-cracks over

a period length of the interface are generated randomly. The length of a

micro-crack follows a chosen statistical distribution and each micro-crack

is positioned randomly. For a more realistic simulation of the variation of

the micro-crack length, the chi-square distribution of degree of freedom ,

denoted by 2(), is used to generate the lengths of  micro-cracks. A

2 distribution with a smaller degree of freedom has a probability density

function skewed towards generating a greater number of shorter micro-cracks.

As an example, the distribution of the micro-crack length generated by the

2(5) distribution is shown in Figure 3.

For fixed values of the damage ratio  of the interface and the non-

dimensionalized thin layer thickness b = b where b is the average half
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crack length of the micro-cracks on the interface, the effective stiffness of the

micro-cracked interface is estimated as follows. A random sample of  inter-

faces is formed by choosing randomly  sets of  micro-cracks as described

above. For the -th interface, the governing partial differential equation (3)

with (2) is solved in the bimaterial subject to the conditions in (7) and (8).

Once the displacement jump ∆3(1) is known on the  micro-cracks, the

effective stiffness b of the -th interface may be obtained using
b = 0[

X
=1

Z ()

()
∆3(1)1]

−1 (14)

The non-dimensionalized effective stiffness bbq
(2)
11 

(2)
22 − ((2)12 )2 is com-

puted from (14).

Figure 3. Distribution of the micro-cracks lengths generated by the 2(5)

distribution. Note that  denotes a unit length.
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If the non-dimensionalized effective stiffness from the  interfaces are

given by 1 2 · · ·  −1 and   the sample mean  of the non-dimensionalized
effective stiffness is given by

 =
1



X
=1

 (15)

and the standard deviation of the non-dimensionalized effective stiffness from

the sample mean  is

 =

vuut 1

 − 1
X
=1

( − )2 (16)

4 Hypersingular integral equations

In this section, the analysis in Wang, Ang and Fan [11] is extended to de-

rive hypersingular integral equations for the boundary value problems of the

three-phase and the micromechanical-statistical models. The unknown func-

tions in the hypersingular integral equations are the interfacial displacement

jump ∆3 on the damaged parts of the interface and the displacement 3 on

the plane boundary 2 = 

4.1 Three-phase model

For the boundary value problem of the three-phase model, the boundary

integral equation of (3) as given in Clements [5] may be used together with

the perfect interface Green’s function in Berger and Karageorghis [4] to derive

3(1 2) =
02

22(1 2)
+

∞X
=−∞

Z (+1)



∗(1)Λ(1 ; 1 2)1

−
∞X

=−∞

2X
=1

Z ()+

()+

∆3(1)Λ(1 0
+; 1 2)1

for 0  2   (17)
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where ∗(1) = 3(1 )− 0
(1)
22 and

Λ(1 2; 1 2) =
1

2(1)
Re{ 

(1)
2

1 − 1 +  (1)(2 − 2)
}

+
(1) − (2)

2(1)((1) + (2))
Re{ 

(1)
2

1 − 1 +  (1)2 −  (1)2
} (18)

where () =

q

()
11 

()
22 − [()12 ]2,  () = (−()12 + ())

()
22 , 

()
2 = 

()
11 +

 ()
()
12 and  =

√−1 Note that the overhead bar over a complex number
denotes the complex conjugate of the number.

The use of (1) and (17) gives

32(1 2) = 0 +
∞X

=−∞

Z (+1)



∗(1)Γ(1 ; 1 2)1

−
∞X

=−∞

2X
=1

Z ()+

()+

∆3(1)Γ(1 0
+; 1 2)1

for 0  2   (19)

where

Γ(1 2; 1 2) =
1

2(1)
Re{ (

(1)
2 )

2

[1 − 1 +  (1)(2 − 2)]
2
}

+
(1) − (2)

2(1)((1) + (2))
Re{ 

(1)
2 

(1)

2

[1 − 1 +  (1)2 −  (1)2]
2
}(20)

Note that the conditions on perfect in (10) and the far-field condition in the

second line of (8) are satisfied by (18) and (19).

From the fact that ∗(1) = 3(1 )−0(1)22 and ∆3(1) are periodic

functions of 1 with period , (19) and the formula (Wang, Ang and Fan
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[11])
∞X
=1

1

(± )2
=
1

2
1(1±




) for Re{1± 


}  0 (21)

where 1 is the trigamma function, the boundary condition on the plane

boundary 2 =  as given in (8) gives rise to the hypersingular integral

equations

=

Z (2)

0

∗(1)
(1 − 1)

2
1

+

Z (2)

0

∗(1)[Θ(1 1)−
(1) − (2)

(1) + (2)
Ω(1−1

2(1)


(1)
22

)]1

− 2(2)

(1) + (2)

2X
=1

Z ()

()
∆3(1)Ω(1−1 +


(1)
21


(1)
22

−
(1)


(1)
22

)1

= 0 for 0  1  (2)

(22)

and the conditions in (10) for damage and effective yieldZ (2)

0

∗(1)Ω(1−1 −

(1)
21


(1)
22


(1)


(1)
22

)1

−=
Z ()

()

∆3(1)

(1 − 1)
2
1 −

2X
=1
 6=

Z ()

()

∆3(1)

(1 − 1)
2
1

−
2X

=1

Z ()

()
∆3(1)Θ(1 1)1

=
((1) + (2))(0 − (2)b∆3(1))

(1)(2)
for ()  1  () ( = 1 2)

(23)

where =
R
denotes that the integral is to be interpreted in the Hadamard

finite-part sense, () is such that () = 1 if  =  and () = 0 if
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 6=  and Θ(1 1) and Ω(1 1 2) are defined by

Θ(1 1) =
1

2
1(

+ 1 − 1


) +
1

2
1(

+ 1 − 1


)

Ω(1 1 2) =
(1 + 1)

2 − 2
2

((1 + 1)
2 + 22)

2
+

1

22
1(

+ 1 + 1 − 2


)

+
1

22
1(

+ 1 + 1 + 2


) +

1

22
1(
−+ 1 + 1 − 2

− )

+
1

22
1(
−+ 1 + 1 + 2

− ) (24)

In the three-phase model, the hypersingular integral equations in (23)

and (24) are to be solved together with (12) for the unknown functions ∗

and ∆3 and the effective stiffness b
4.2 Micromechanical-statistical model

The boundary value problem for the micromechanical statistical model re-

quires solving (3) with (2) in the bimaterial subject to the conditions in (7)

and (8). As in the analysis for the three-phase model, the boundary integral

equation of (3) together with the perfect interface Green’s function may be

used to derive

3(1 2) =
02

22(1 2)
+

∞X
=−∞

Z (+1)



∗(1)Λ(1 ; 1 2)1

−
∞X

=−∞

X
=1

Z ()+

()+

∆3(1)Λ(1 0
+; 1 2)1

for 0  2   (25)
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and

32(1 2) = 0 +
∞X

=−∞

Z (+1)



∗(1)Γ(1 ; 1 2)1

−
∞X

=−∞

X
=1

Z ()+

()+

∆3(1)Γ(1 0
+; 1 2)]1

for 0  2   (26)

From (26), the conditions on the plane boundary 2 =  (in (8)) and

on the micro-cracks (in (7)) may be rewritten respectively in terms of the

hypersingular integral equations

=

Z 

0

∗(1)
(1 − 1)

2
1

+

Z 

0

∗(1)[Θ(1 1)−
(1) − (2)

(1) + (2)
Ω(1−1

2(1)


(1)
22

)]1

− 2(2)

(1) + (2)

X
=1

Z ()

()
∆3(1)Ω(1−1 +


(1)
21


(1)
22

−
(1)


(1)
22

)1

= 0 for 0  1    (27)

and Z 

0

∗(1)Ω(1−1 −

(1)
21


(1)
22


(1)


(1)
22

)1

−=
Z ()

()

∆3(1)

(1 − 1)
2
1 −

X
=1
 6=

Z ()

()

∆3(1)

(1 − 1)
2
1

−
X

=1

Z ()

()
∆3(1)Θ(1 1)1

= 0
((1) + (2))

(1)(2)
 for ()  1  () ( = 1 2 · · · ) (28)

For statistically generated micro-cracks over a period length of the in-

terface 2 = 0 the hypersingular integral equations in (27) and (28) are to
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be solved for the unknown functions ∗ and ∆3 to calculate the effective

stiffness in (14).

5 Numerical procedures

Numerical procedures for solving the hypersingular integral equations of the

three-phase and the micromechanical-statistical models are outlined here.

The boundary value problem for each of the models is eventually reduced to

solving a system of linear algebraic equations.

For treating the integrals involving the unknown function ∗(1) on the

exterior boundary of the thin layer in both models, the interval 0 ≤ 1 ≤ (2)

is divided up into t equal subintervals. The -th subinterval is given by


()
t ≤ 1 ≤ 

()
t . Over each of the subintervals, 

∗ is approximated as a

constant, that is,

(2)

0
∗(1) ' () (constant) for 

()
t ≤ 1 ≤ 

()
t  (29)

where (1), (2) · · ·  (t−1) and (t ) are constants to be determined.

5.1 Three-phase model

The three-phase model requires approximating the displacement jump∆3(1)

over the intervals (1) ≤ 1 ≤ (1) (“the micro-crack”) and (2) ≤ 1 ≤ (2)

(“the effective region”).

The displacement jump ∆3(1) over 
(1) ≤ 1 ≤ (1) shows a strong

variation behaving like
p
(1 − (1))((1) − 1) near 1 = (1) and 1 = (1)
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It is approximated as in Kaya and Erdogan [7] by using

(2)

0
∆3(1) '

q
(1 − (1))((1) − 1)

×
cX
=1

() (−1)(
21 − (1) − (1)

(1) − (1)
)

for (1) ≤ 1 ≤ (1) (30)

where  is a positive integer, 
(1), (2) · · ·  (c−1) and (c ) are constant

coefficients to be determined and  ()() is the -th order Chebyshev poly-

nomials of the second kind. Note that  may be required to be sufficiently

large for (30) to be a good approximation. Details on such an approximation

may also be found in Ang [2].

For approximating ∆3(1) over the effective region, the interval 
(2) ≤

1 ≤ (2) is divided into e subintervals. The -th subinterval is given by


()
e ≤ 1 ≤ 

()
e  More specifically, 

()
e and 

()
e are given by


()
e =

(2) + (2)

2
− (2) − (2)

2
cos(

[ − 1]
e

)


()
e =

(2) + (2)

2
− (2) − (2)

2
cos(



e

)

⎫⎪⎪⎬⎪⎪⎭ for  = 1 2 · · ·  e (31)

The displacement jump ∆3(1) is approximated as a constant over each of

the subintervals, that is,

(1)

0
∆3(1) ' () (constant) for for ()e ≤ 1 ≤ ()e  (32)

where (1), (2) · · ·  (e−1) and (e ) are constants to be determined.

With the approximations above, if 1 in (22) is taken in turn to be given byb()t = (
()
t +

()
t )2 for  = 1 2  t the hypersingular integral equations
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may be reduced to the linear algebraic equations

tX
=1

(){− 1

(
()
t − b()t ) + 1

(
()
t − b()t )

+

Z 
()
t


()
t

[Θ(1 1)−
(1)(2) − 1
(1)(2) + 1

Ω(1−b()t 
2(1)


(1)
22

)]1}

− 2

(1)(2) + 1

cX
=1

()
Z (1)

(1)

q
(1 − (1))((1) − 1)

× (−1)(
21 − (1) − (1)

(1) − (1)
)Ω(1−b()t +


(1)
21

(1)22
−

(1)

(1)22
)1

− 2

(1)(2) + 1

eX
=1

()
Z 

()
e


()
e

Ω(1−b()t +

(1)
21


(1)
22

−
(1)


(1)
22

)1

= 0 for  = 1 2  t

(33)

If 1 in (23) for 
(1)  1  (1) (over the micro-crack) is taken in turn by

1 = () ≡ 1
2
((1) + (1)) +

1

2
((1) − (1)) cos(

[2− 1]
2c

)

for  = 1 2  c (34)

the hypersingular singular equations may be approximately reduced to the
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linear algebraic equations

tX
=1

()
Z 

()
t


()
t

Ω(1−() − 
(1)
21


(1)
22


(1)


(1)
22

)1

+
cX
=1

() (−1)(
2() − (1) − (1)

(1) − (1)
)

−
cX
=1

()
Z (1)

(1)

q
(1 − (1))((1) − 1)

× (−1)(21 − (1) − (1)

(1) − (1)
)Θ(1 

())1

−
eX
=1

()

(
− 1


()
e − ()

+
1


()
e − ()

+

Z 
()
e


()
e

Θ(1 
())1

)

= (
(2)

(1)
+ 1) for  = 1 2 c

(35)

If 1 in (23) for 
(2)  1  (2) (over the effective region) is taken to

be given by the midpoint of each of the elements on the effective region,

that is, 1 ≡ b()e = (
()
e + 

()
e )2 the hypersingular integral equations

approximately give rise to
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tX
=1

()
Z 

()
t


()
t

Ω(1−b()e − 
(1)
21


(1)
22


(1)


(1)
22

)1

−
cX
=1

()
Z (1)

(1)

q
(1 − (1))((1) − 1)

× (−1)(21 − (1) − (1)

(1) − (1)
)[

1

(1 − b()e )2 +Θ(1 b()e )]1
−

eX
=1

()

(
− 1

()e − b()e +
1

()e − b()e
+

Z 
()
e


()
e

Θ(1 b()e )1 − ((2)
(1)

+ 1)
b
(2)

()

)

= (
(2)

(1)
+ 1) for  = 1 2 e

(36)

Use of (30) in (12) gives

1

(2)
b = (2)[

X
=1

()
Z (1)

(1)

q
(1 − (1))((1) − 1)

× (−1)(
21 − (1) − (1)

(1) − (1)
)1]

−1

(37)

The equations in (33), (35), (36) and (37) may be solved simultaneously

for the unknowns () ( = 1 2  t) 
() ( = 1 2  c), 

() ( =

1 2  e) and b An iterative method may be used to solve the equations
as follows. With a guessed value of b, (33), (35) and (36) are solved as a
system of t + e + c linear algebraic equations for 

() ( = 1 2  t)

() ( = 1 2  c) and () ( = 1 2  e) The value of b is then
updated using (37). With the updated value of b, (33), (35) and (36) are
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solved again. The procedure is repeated until b is observed to converge to a
prescribed number of significant figures.

Note that all the integrals in (33), (35), (36) and (37) may be evaluated

accurately by using suitable integration quadratures. Specifically, the inte-

grals containing the term
p
(1 − (1))((1) − 1) in the integrands may be

computed with good accuracy by using formula (25.4.40) in Abramowitz and

Stegun [1] and the other integrals by the Simpson’s rule.

5.2 Micromechanical-statistical model

For the micro-cracks in the micromechanical-statistical model, the displace-

ment jump ∆3(1) is approximated using

(2)

0
∆3(1) '

q
(1 − ())(() − 1)

×

()
X

=1

() (−1)(
21 − () − ()

() − ()
)

for ()  1  ()  = 1 2  (38)

where () are unknowns to be determined.

With the above approximations, if 1 in (19) is taken in turn to be given

by b()t for  = 1 2 t the hypersingular integral equations may be ap-

proximately reduced to linear algebraic equations
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X
=1

()

(
− 1


()
 − b()

+
1


()
 − b()

+

Z 
()



()


[Θ(1 b() )−
(1)(2) − 1
(1)(2) + 1

Ω(1−b() 
2(1)


(1)
22

)]1

)

− 2

(1)(2) + 1

X
=1


()
X

=1

()
Z ()

()

q
(1 − ())(() − 1)

× (−1)(
21 − () − ()

() − ()
)Ω(1−b() +


(1)
21


(1)
22

−
(1)


(1)
22

)1

= 0 for  = 1 2  (39)

Similarly, if 1 in (20) is given in turn by

1 = () ≡ 1
2
(() + ()) +

1

2
(() − ()) cos(

[2− 1]
2

()


)

for  = 1 2   ()
 ( = 1 2 ) (40)

the hypersingular integral equations may be approximately reduced to the

linear algebraic equations
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X
=1

()
Z 

()



()


Ω(1−() − (1)21


(1)
22


(1)


(1)
22

)1

+


()
X

=1

() (−1)(
2() − () − ()

() − ()
)

−
X
=1
 6=


()
X

=1

()
Z ()

()

p
(1 − ())(() − 1)

(1 − ())2

× (−1)(
21 − () − ()

() − ()
)1

−
X
=1


()
X

=1

()
Z ()

()

q
(1 − ())(() − 1)

× (−1)(
21 − () − ()

() − ()
)Θ(1 

())1

= (
(2)

(1)
+ 1) for  = 1 2   ()

 ( = 1 2 )

(41)

The linear algebraic equations (39) and (41) are solved simultaneously

for the unknowns () ( = 1 2  t) and () ( = 1 2  
()
 ;  =

1 2 ) From (14), the effective stiffness b may be approximated as
1

(2)
b = [

X
=1


()
X

=1

()
Z ()

()

q
(1 − ())(() − 1)

× (−1)(
21 − () − ()

() − ()
)1]

−1

(42)
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6 Numerical checking

If the  micro-cracks over the portion 0  1   2 = 0 of the interface,

as described at the beginning of Section 3, are taken to be of equal length

and are evenly distributed on the interface, then the effective stiffness calcu-

lated by the numerical procedure for the micromechanical-statistical model

in Subsection 5.2 should agree very closely with that given by the three-phase

model in Subsection 5.1 (for the same corresponding input parameters).

To check numerically the observation above as well as to find out whether

the three-phase model gives intuitively expected results or not, the numerical

procedures in Subsections 5.1 and 5.2 are carried out using elastic modulus

for isotropic materials as given by 
()
 = 

()where (1) and (2) are the

shear modulus of the thin layer and the half space respectively. For such

materials, () = () and the effective stiffness b is such that b(2) is a

function of (1)(2).

For the three-phase model in Subsection 5.1, the input parameters are

taken to be given by (1) = − (1) = + (2) = 2 and (2) =  where 

and  are positive numbers selected to be much smaller than  Thus, the

length of the representative micro-crack is 2 and the damage ratio  is given

by  The thickness of the thin layer  is non-dimensionalized as b = 

For selected (1)(2) b and  (33), (35) and (36) are solved with iterative

procedure to estimate the non-dimensionalized effective stiffness b(2) us-

ing (37) Note that b(2) is independent of .

For the numerical procedure in Subsection 5.2, the  micro-cracks, each

of length 2 are taken to be evenly distributed over the region 0 ≤ 1 ≤ .

For the numerical checking here, we take  = 10. For selected (1)(2) b
and  (39) and (41) are solved to estimate b(2) by using (42).
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Figure 4. Plots of b(2) against  for the shear modulus ratio

(1)(2) = 1 and selected values of the thin layer thickness b.
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Figure 5. Plots of b(2) against b for the damage ratio  = 05 and
selected values of the shear modulus ratio (1)(2).

Figure 4 plots the non-dimensionalized effective stiffness b(2) against

the damage ratio  for selected b and (1)(2) = 1 As expected, the plots

obtained by the numerical procedure in Subsection 5.1 are close to those cal-

culated by the procedure for the three-phase model in Subsection 5.2. Further

investigations using other values of (1)(2) show a very small difference be-

tween the effective stiffness calculated by the two numerical procedures. For

fixed values of the non-dimensionalized thin layer thickness and the shear

modulus ratio (1)(2), the percentage difference of the effective stiffness

between the two models in Subsection 5.1 and 5.2 tends to become larger as

 increases. For 01 ≤  ≤ 08, the value of percentage difference between the
two sets of numerical values of b(2) is less than 3.5%, while for  = 09

the value of percentage difference is less than 4.9%.
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For a fixed  Figure 4 shows that b(2) becomes larger with increas-
ing thin layer thickness b This is expected, as the interaction between the
plane boundary and the interface becomes weaker and gives rise to smaller

displacement jumps over the micro-cracks when the thickness b is relatively
small.

More results are given in Figure 5, where the damage ratio is fixed as

 = 05 and b(2) is plotted against the thin layer thickness b for various
selected values of (1)(2). It is observed that each of the plots for the non-

dimensionalized effective stiffness tends to a constant value as b increases
That constant value is very close to the corresponding values of the the non-

dimensionalized effective stiffness computed using the models in Wang, Ang

and Fan [11] for a microscopically damaged interface between two dissimilar

half spaces. For a fixed b Figure 5 also shows that the non-dimensionalized
effective stiffness appears to be smaller for a smaller shear modulus ratio

(1)(2). This suggests that the damaged interface is “strengthened” and

has a greater effective stiffness when the shear modulus (1) of the thin layer

increases relative to the shear modulus (2) of the half space. Lastly, as may

be expected, the effective stiffness is observed to decrease as the damage ratio

 of the interface increases.

7 Micromechanical-statistical simulations

The micromechanical-statistical model is employed here to examine the effec-

tive stiffness of the micro-cracked interface for the case in which the materials

occupying the thin layer and the elastic half space are isotropic with shear

modulus (1) and (2) respectively. For the statistical simulation, an inter-

face is formed by placing randomly micro-cracks with randomly generated

lengths on a period length of the interface. The micro-crack length follows a
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chosen 2 distribution. For given shear modulus ratio(1)(2) damage ratio

 and non-dimensionalized thickness b = b (b is the average half length of
the micro-cracks), the non-dimensionalized effective stiffness bb(2) is given

by the mean of the non-dimensionalized effective stiffness of the  randomly

generated interfaces − the calculation of the mean is outlined in Subsection
3.2.

7.1 Influence of the micro-crack length distribution

The influence that the 2 distribution used in generating the lengths of the

micro-cracks has on bb(2) is examined here. For fixed (1)(2)  and b,
a sample of 50 interfaces is used to estimate bb(2) Each of the interfaces

is formed by placing 50 micro-cracks over a period length of the interface.

The lengths of the 50 micro-cracks are randomly generated to follow the

2() distribution ( is a chosen positive integer) but the micro-cracks are

positioned in such a way that the crack-tip gap is the same between any two

consecutive neighboring micro-cracks. The crack-tip gap is related to b and
 by  = 2b(1− )

For  = 05 and selected values of (1)(2), Figure 6 plots the non-

dimensionalized effective stiffness bb(2) against b for cases where the micro-
crack length follows the 2(5) 2(10) and 2(25) distributions. The non-

dimensionalized effective stiffness b(2) calculated using the three-phase

model is also plotted against b =  in Figure 6. It is obvious that the non-

dimensionalized effective stiffness of the micromechanical-statistical model

becomes closer to that of the three-phase model if a larger degree of freedom

is used in the 2 distribution for generating the micro-crack length distribu-

tion. This is not surprising because the ratio of the standard deviation of the

2() distribution to the mean of the distribution is given by
p
2 and ap-
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proaches zero as the degree of freedom  increases (Abramowitz and Stegun

[1]). Note the three-phase model assumes that every micro-crack has equal

length and is evenly distributed along the interface. It is obvious that the

three-phase model may not give a reliable estimate of the effective stiffness

if there is a significant variation in the lengths of the micro-cracks on the

interface.
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Figure 6. Plots of non-dimensionalized mean effective stiffness versus the

non-dimensionalized thin layer thickness b for lengths of micro-cracks
generated by 2(5) 2(10) and 2(25) distributions. Also included are the

corresponding values predicted by the three-phase model.
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7.2 Number of micro-cracks for homogenizing the in-

terface

The number of micro-cracks required on a period length of the interface for

homogenizing the effective stiffness of the interface properly is examined here

as follows. For fixed (1)(2)  and b, a random sample of 50 interfaces is

generated. Each interface contains  micro-cracks over a period length of

the interface. The lengths of the micro-cracks are chosen to follow the 2()

distribution for a fixed  and the  micro-cracks are randomly positioned

over a period length of the interface. If the number of micro-cracks needed

to homogenize the interface is0 then the mean of the non-dimensionalized

effective stiffness of the 50 interfaces (calculated as explained in Subsection

3.2) does not vary significantly with  for  ≥0

For (1)(2) = 1  = 05 and b = 1, the scattering and the means of

the non-dimensionalized effective stiffness of the 50 interfaces generated by

using the 2(5) distribution are shown in Figure 7 for various values of 

It is observed that the mean of the effective stiffness decreases dramatically

as  increases from 10 to 40 and it does not change significantly for 

exceeding 40. Furthermore, the range of the data for the effective stiffness of

the 50 interfaces for  = 40 is narrower than that for  = 10 The range

of the data does not seem to change very much for  between 40 and 60.

It appears that 40 micro-cracks per period length of the interface may be

sufficient to homogenize the interface.

Further simulations are carried out using various other values for b
(1)(2),  and  show too that the observations above are true. In some

cases, even 30 micro-cracks are found to be sufficient for homogenizing the
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interface.

Figure 7. Scattering and means of the effective stiffness of the 50

interfaces for different 

7.3 Some parametric investigations

To use the micromechanical-statistical model to conduct some parametric

investigations on the effective stiffness of the interface, 50 interfaces are ran-

domly generated for selected b , (1)(2) and  For each interface, the

2(5) distribution is used to generate the lengths of 40 micro-cracks which

are randomly positioned on a period length of the interface.

Figure 8 plots the non-dimensionalized effective stiffness bb(2) against

the damage ratio  for selected values of b and (1)(2) Three obvious

trends are observed in Figure 8. Firstly, for fixed values of b and (1)(2)
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the non-dimensionalized effective stiffness of the interface decreases with in-

creasing damage ratio  This is not surprising as the micro-cracks occupy

a larger portion of the interface, have smaller crack-tip gaps and tend to be

less stable if the damage ratio  is larger. Secondly, for fixed values of  and

(1)(2) the non-dimensionalized effective stiffness decreases as the non-

dimensionalized thickness b of the layer decreases. This is as expected as it
is known that the plane boundary of the thin layer has the effect of making

the micro-cracks less stable. Thirdly, for fixed values of  and b the non-
dimensionalized effective stiffness increases with increasing (1)(2). This

may be explained as follows − coating the elastic half space with a layer

of stronger material has the overall effect of strengthening the half space,

thereby causing the micro-cracks to be more stable.

The non-dimensionalized effective stiffness is plotted against the non-

dimensionalized thin layer thickness b in Figure 9 for selected values of 
and (1)(2) For the values of  and (1)(2) considered, the effective

stiffness increases rapidly with increasing b for b  1, that is, if the thickness

of the thin layer is less than the average half length of the micro-cracks.

For b  1, the effective stiffness increases slowly as b increases and remains
constant to within at least two significant figures for b exceeding 4 Futher
simulations show that the effective stiffness does not change significantly forb = 10 100 and 1000. At least for 01 ≤ (1)(2) ≤ 10 and 01 ≤  ≤ 09
the analysis here seems to suggest that the plane boundary of the thin layer

has hardly any effect in influencing the effective stiffness of the interface if

the thickness of the thin layer is at least four times larger than the average

half length of the micro-cracks.
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Figure 8. Plots of bb(2) against  for selected values of b and (1)(2)
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To examine the effect of varying (1)(2) on the effective stiffness of

the interface, the non-dimensionalized effective stiffness bb(2) is plotted

against log10(
(1)(2)) in Figure 10 for  = 05 and selected values of b For

moderate values of(1)(2) within the range where−15  log10((1)(2)) 

2, the plots for the different values of b are visually distinguishable. As
pointed out earlier, for a fixed (1)(2) the non-dimensionalized effective

stiffness is larger for larger b For (1)(2)  100, the non-dimensionalized

effective stiffness increases very slowly as (1)(2) increases. At (1)(2) =

1000, it converges to the same constant value of 1.41 (to within at least two

significant figures) for all the three values of b considered here. Thus, it
appears that the plane boundary of the thin layer has negligible effect on

the effective stiffness if the shear modulus (1) of the thin layer is very much

larger than the shear modulus (2) of the half space. As (1)(2) → 0+

the non-dimensionalized effective stiffness tends to zero no matter what b
is, that is, if the thin layer is extremely soft relative to the half space, the

effective stiffness of the interface may be very small in magnitude.

35



Figure 9. Plots of bb(2) against b for selected values of (1)(2) and 
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Figure 10. Plots of bb(2) against log10(
(1)(2)) for  = 05 and

selected values of b.

8 Summary

Two different micromechanical models based on the hypersingular integral

formulations are proposed here for the task of estimating the effective stiffness

of a micro-cracked interface between an anisotropic thin elastic layer and

an anisotropic elastic half space under antiplane deformations. The first

model, which is called the three-phase model, simplifies the interface into

three parts − micro-cracked, perfectly bonded and effective regions − which
are periodically repeated along the whole interface. The second model known
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as the micromechanical-statistical model, treats the interface as containing

randomly positioned micro-cracks with statistically varying sizes.

The hypersingular integral formulations of both models are verified nu-

merically by comparing the numerical procedures in Subsection 5.1 for three-

phase model and Subsection 5.2 for the special case where the micro-cracks

have equal length and are evenly distributed. As expected, the values of the

effective stiffness of the interface computed by the numerical procedure in

Subsection 5.1 are close to those by the numerical procedure in Subsection

5.2. For the values of thin layer thickness b relative to the half micro-crack
length, damage ratio  and shear modulus ratio (1)(2) considered, the

two sets of values agree to within less than 5% − the agreement is better if
the damage ratio  of the interface is lower.

For simulations using the micromechanical-statistical model, the lengths

of the micro-cracks are statistically generated based on a chosen 2 distribu-

tion and the micro-cracks are randomly positioned. As expected, statistical

simulations carried out using a 2 distribution of a higher degree of freedom

predict values of the effective stiffness closer to those given by the three-

phase model. For the ranges of values used here for the shear modulus ratio

(1)(2), damage ratio  of the interface and the thickness b of the thin layer
relative to the average half micro-crack length, the number of micro-cracks

required to homogenize the effective stiffness is around 40 micro-cracks per

period length of the interface.

The micromechanical-statistical model is used to conduct some paramet-

ric studies on the effects of varying , b and (1)(2) on the effective stiffness

of the interface. For fixed values of b and (1)(2), the effective stiffness is

a decreasing function of  For fixed values of  and (1)(2) the effective

stiffness increases with b but appears to tend to a constant as b tend to infin-
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ity. For a fixed non-zero b the effect of the plane boundary on the effective
stiffness is reduced as (1)(2) increases to an extremely large value, that

is, as the thin layer becomes harder relative to the half space.
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