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Abstract  Biometric identification is an emerging technology that can solve security 

problems in our networked society. A few years ago, a new branch of biometric technology, 

palmprint authentication, was proposed [1] whereby lines and points are extracted from 

palms for personal identification. In this paper, we consider the palmprint as a piece of 

texture and apply texture-based feature extraction techniques to palmprint authentication. A 

2-D Gabor filter is used to obtain texture information and two palmprint images are compared 

in terms of their hamming distance. The experimental results illustrate the effectiveness of 

our method.  

 

Index Terms  Palmprint, Gabor filter, biometrics, feature extraction, texture analysis 

 

1. Introduction 

Computer-based personal identification, also known as biometric computing, which attempts 

to recognize a person by his/her body or behavioral characteristics, has more than 30 years of 

history. The first commercial system, called Identimat, which measured the shape of the hand 

and the length of fingers, was developed in the 1970s. At the same time, fingerprint-based 

automatic checking systems were widely used in law enforcement. Because of the rapid 

development of hardware, including computation speed and capture devices, iris, retina, face, 

voice, signature and DNA have joined the biometric family [2-3,24]. 

Fingerprint identification has drawn considerable attention over the last 25 years. 

However, some people do not have clear fingerprints because of their physical work or 

problematic skin. Iris and retina recognition provide very high accuracy but suffer from high 

costs of input devices or intrusion into users. Recently, many researchers have focused on 

face and voice verification systems; nevertheless, their performance is still far from 

satisfactory [20]. The accuracy and uniqueness of 3-D hand geometry are still open questions 
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[2,4,20]. Compared with the other physical characteristics, palmprint authentication has 

several advantages: 1) low-resolution imaging; 2) low intrusiveness; 3) stable line features 

and 4) high user acceptance. 

Palmprint authentication can be divided into two categories, on-line and off-line. Fig. 1 (a) 

and (b) show an on-line palmprint image and an off-line palmprint image, respectively. 

Research on off-line palmprint authentication has been the main focus in the past few years 

[1,5,22-23], where all palmprint samples are inked on paper, then transmitted into a computer 

through a digital scanner. Due to the relative high-resolution off-line palmprint images (up to 

500 dpi), some techniques applied to fingerprint images could be useful for off-line palmprint 

authentication, where lines, datum points and singular points can be extracted [1,5]. For on-

line palmprint authentication, the samples are directly obtained by a palmprint scanner [25-

26]. Recently, a CCD based palmprint capture device has been developed by us [25]. Fig. 2(a) 

shows a palmprint image captured by our palmprint scanner and Fig. 2(b) shows the outlook 

of the device. Note that a low-resolution technique (75 dpi) is adopted to reduce the image 

size, which is comparable with fingerprint images even though a palm is much larger than a 

fingerprint. It is evident that on-line identification is more important for many real-time 

applications, so that it draws our attention to investigate.  

Our on-line palmprint verification system contains five modules, palmprint acquisition, 

preprocessing, feature extraction, matching and storage. Fig. 3 gives a block diagram to 

describe the relationship between the five modules. The five modules are described below: 

1) Palmprint Acquisition: A palmrpint image is captured by our palmprint scanner and 

then the AC signal is converted into a digital signal, which is transmitted to a 

computer for further processing. 
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2) Preprocessing: A coordinate system is set up on basis of the boundaries of fingers so 

as to extract a central part of a palmprint for feature extraction. 

3) Textured Feature Extraction: We apply a 2-D Gabor filter to extract textural 

information from the central part. 

4) Matching: A distance measure is used to measure the similarity of two palmprints.  

5) Database: It is used to store the templates obtained from the enrollment phase.  

 

Our palmprint authentication system can operate in two modes, enrollment and 

verification. In the enrollment mode, a user is to provide several palmprint samples to the 

system. The samples are captured by our palmprint scanner and passes through preprocessing 

and feature extraction to produce the templates stored in a given database. In the verification 

mode, the user is asked to provide his/her user ID and his/her palmprint sample. Then the 

palmprint sample passes through preprocessing and feature extraction. The extracted features 

are compared with templates in the database belonging to the same user ID.  

In this paper, we attempt to apply a textural extraction method to palmprint images for 

personal authentication. The remaining sections are organized as follows: preprocessing steps 

are mentioned in Section 2. Palmprint feature extraction by texture analysis is explained in 

Section 3. Experimental results are given in Section 4. Finally, Section 5 summaries the main 

results of this paper. 
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2. Palmprint Image Preprocessing 

Before feature extraction, it is necessary to obtain a sub-image from the captured palmprint 

image and to eliminate the variations caused by rotation and translation. The five main steps 

of palmprint image preprocessing are as follows (see Fig. 4).  

Step 1: Apply a low-pass filter to the original image. Then use a threshold, Tp, to convert 

this original image into a binary image as shown in Fig. 4(b). Mathematically, this 

transformation can be represented as 

B(x, y)=1 if pTyxLyxO ≥),(*),( ,     (1) 

B(x, y)=0 if pTyxLyxO <),(*),( ,     (2) 

where B(x,y) and O(x,y) are the binary image and the original image, respectively; L(x,y) is a 

lowpass filter, such as Gaussian, and “∗” represents an operator of convolution.  

Step 2: Extract the boundaries of the holes, (Fixj, Fiyj), (i=1,2), between fingers using a 

boundary-tracking algorithm. The start points, (Sxi, Syi), and end points, (Exi, Eyi), of the 

holes are then marked in the process (see Fig. 4(c)). 

Step 3: Compute the center of gravity,  (Cxi, Cyi), of each hole with the following 

equations:  
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where M(i) represents the number of boundary points in the hole, i. Then construct a line that 

passes through (Cxi, Cyi) and the midpoint of (Sxi, Syi) and (Exi, Eyi). The line equation is 

defined as 
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where (Mxi, Myi) is the midpoint of (Sxi, Syi) and (Exi, Eyi). Based on these lines, two key 

points, (k1, k2), can easily be detected (see Fig. 4(d)).  

Step 4: Line up k1 and k2 to get the Y-axis of the palmprint coordinate system and make a 

line through their mid point which is perpendicular to the Y-axis, to determine the origin of 

the coordinate system (see Fig. 4(e)). This coordinate system can align different palmprint 

images.  

Step 5: Extract a sub-image with the fixed size on the basis of coordinate system, which is 

located at the certain part of the palmprint for feature extraction (see Fig. 4(f)). 

 

3. Palmprint Feature Extraction By Texture Analysis 

This section defines our palmprint feature extraction method, which includes filtering and 

matching. The motivation for using a Gabor filter in our palmprint research is first discussed.  

 

3.1 Gabor Function 

Gabor filter, Gabor filter bank, Gabor transform and Gabor wavelet are widely applied to 

image processing, computer vision and pattern recognition. This function can provide 

accurate time-frequency location governed by the “Uncertainty Principle” [6-7]. A circular 2-

D Gabor filter in the spatial domain has the following general form [8-9], 
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where 1−=i ; u is the frequency of the sinusoidal wave; θ controls the orientation of the 

function and σ is the standard deviation of the Gaussian envelope. Such Gabor filters have 
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been widely used in various applications [10-19]. In addition to accurate time-frequency 

location, they also provide robustness against varying brightness and contrast of images. 

Furthermore, the filters can model the receptive fields of a simple cell in the primary visual 

cortex. Based on these properties, in this paper, we try to apply a Gabor filter to palmprint 

authentication.  

 

3.2 Filtering and Feature Extraction 

Generally, principal lines and wrinkles can be observed from our captured palmprint images 

(see Fig. 1(a)). Some algorithms such as the stack filter [21] can obtain the principal lines. 

However, these lines do not contribute adequately to high accuracy because of their similarity 

amongst different palms. Fig. 5 shows six palmprint images with similar principal lines. Thus, 

wrinkles play an important role in palmprint authentication but accurately extracting them is 

still a difficult task. This motivates us to apply texture analysis to palmprint authentication.  

In fact, a Gabor function, ),,,,( σθ uyxG  with a special set of parameters (σ, θ, u), is 

transformed into a discrete Gabor filter, ],,,,[ σθ uyxG . The parameters are chosen from 12 

sets of parameters listed in Table 1 based on the experimental results in the next section. In 

order to provide more robustness to brightness, the Gabor filter is turned to zero DC (direct 

current) with the application of the following formula: 

2)12(
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where (2n+1)2 is the size of the filter. In fact, the imaginary part of the Gabor filter 

automatically has zero DC because of odd symmetry. This adjusted Gabor filter will 

convolute with a sub-image defined in Section 2. The sample point in the filtered image is 

coded to two bits, (br, bi), by the following inequalities, 
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br=1 if ≥]*],,,,[
~

Re[ IuyxG σθ  0,     (8) 

br=0 if <]*],,,,[
~

Re[ IuyxG σθ  0,     (9) 

bi=1 if ≥]*],,,,[
~

Im[ IuyxG σθ  0,              (10) 

bi=0 if <]*],,,,[
~

Im[ IuyxG σθ  0,              (11) 

where I is the sub-image of a palmprint. Using this coding method, only the phase 

information in palmprint images is stored in the feature vector. The size of the feature is 256 

bytes. Fig. 6 shows the features generated by the 12 filters listed in Table 1. This texture 

feature extraction method has been applied to iris recognition [13]. 

 

3.3 Palmprint Matching 

In order to describe clearly the matching process, each feature vector is considered as two 2-

D feature matrices, real and imaginary. Palmprint matching is based on a normalized 

hamming distance. Let P and Q be two palmprint feature matrices. The normalized hamming 

distance can be defined as, 

( )
2

1 1

2

),(),(),(),(

N

jiQjiPjiQjiP
D

N

i

N

j
IIRR

o

∑ ∑ ⊗+⊗
= = = ,             (12) 

where PR (QR) and PI (QI) are the real part and the imaginary part of P (Q), respectively; the 

Boolean operator, “⊗ ”, is equal to zero if and only if the two bits, PR(I)(i,j) and QR(I)(i,j) are 

equal and the size of the feature matrices is N×N. It is noted that Do is between 1 and 0. The 

hamming distance for perfect matching is zero. In order to provide translation invariance 

matching, Eq. (12) can be improved as 
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where S=2 and T=2 control the range of horizontal and vertical translation of a feature in the 

matching process, respectively and  

)1,1max(),min()( ssNNsH +−+= .               (14) 

The hamming distance, Dmin, can support translation matching; nevertheless, because of 

unstable preprocessing, it is not a rotational invariant matching. Therefore, in enrollment 

mode, the coordinate system is rotated by a few degrees and then the sub-images are 

extracted for feature extraction. Finally, combining the effect of preprocessing and rotated 

features, Eq. (13) can provide both approximately rotational and translation invariance 

matching.  

 

4. Experimental Results 

4.1 Palmprint Database 

In the following experiments, a palmprint database contains 4,647 palmprint images collected 

from 120 individuals by using our palmprint scanner. 43 of them are female, 111 of them are 

less than 30 years old and 2 of them are more than 50 years old. Each of them is asked to 

provide about 10 images for their left palm and 10 images for their right palm in each of two 

occasions.  In total, each subject provides about 40 images. The average time difference of 

the first and second occasions is 81 days. The maximum and minimum are 4 and 162 days, 

respectively. Originally, the collected images have two sizes, 384×284 and 768×568. The 

large images are resized to 384×284; consequently, the size of all the test images in the 

following experiments is 384×284 with 75dpi resolution. The central parts of each image 

extracted with size 128 by 128 are named DBI. The preprocessed images in DBI resized to 64 

by 64 are named DBII. The DBII is used to test the possibility of using lower-resolution 

palmprint images for personal identification. Fig. 7 shows nine typical images from our 

databases. 
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4.2 Verification Tests 

To obtain better parameters for our system, 12 different sets of parameters listed in Table 1 

are used to test the method. The first four filters are named as Level 1 filters since they are 

different in the parameter, θ. Similarly, the other filters are named as Level 2 and Level 3. 

Each of the images in DBI (DBII) is matched with all other palmprint images in the same 

database. A matching is counted as a correct matching if two palmprint images are collected 

from the same palm; otherwise it is an incorrect matching. The total number of matchings for 

one verification test is 10,794,981. 43,660 of them are correct matchings and rest of them are 

incorrect matchings. In total, 24 verification tests are carried out for testing the 12 sets of 

parameters on the two databases. The performance of different parameters on the two 

databases is presented by Receiver Operating Characteristic (ROC) curves, which are a plot 

of genuine acceptance rate against false acceptance rate for all possible operating points. Figs. 

8(a), 8(b) and 8(c) (8(d), 8(e) and 8(f)) show the ROC curves for DBI (DBII) generated by 

Levels 1, 2, 3 filters, respectively. According to the ROC curves, Level 3 filters are better 

than Levels 1 and 2 filters for DBI. According to Fig. 8(c), Filters 9, 10 and 11 provide 

similar performance when the false acceptance rate is greater than 10-2.  For false acceptance 

rates smaller than 10-2, Filters 9 and 11 are better than Filter 10. For DBII, Level 1 filters are 

better than Level 2 and 3 filters. In fact, Filter 2 is the best for DBII. Although using very 

low-resolution images as DBII’s images cannot provide very good performance, it still gives 

us an insight into using very low-resolution palmprint images for personal identification. 

 

5. Conclusions 

This paper reports a textured-based feature extraction method using low-resolution palmprint 

images for personal authentication. A palmprint is considered as a texture image, so an 
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adjusted Gabor filter is employed to capture the texture information on palmprints. Based on 

our tests, Filter 11 is the best of twelve filters in terms of accuracy. Combined with the effects 

of preprocessing and rotated preprocessed images, our matching process is translation and 

rotational invariance. Experimental results illustrate the effectiveness of the method. 
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Figures: 

Fig. 1 Examples of (a) on-line, with line definitions and (b) off-line palmprint images.  

Fig. 2 Capture device and captured palmprint images. (a) On-line palmprint image 
obtained by our palmprint scanner and (b) our palmprint capture device. 

Fig. 3 Block diagram of our palmprint verification system.  
 
Fig. 4  Main steps of preprocessing. (a) Original image, (b) Binary image,  (c) Boundary 

tracking, (d) Key points (k1 and k3) detecting, (e) The coordinate system and (f) The 
central part of a palmprint. 

 
Fig. 5 Three six images with similar principal lines 
 
Fig. 6  Original image from DBI and their features generated by 12 filters listed in Table. a) 

Original image, b), d) and f) real parts of features from Level 1, 2, and 3 filters, 
respectively, c), e) and g) imaginary parts of from Level 1, 2 and 3 filters, 
respectively. 

 
Fig. 7. Nine typical images from DBI. 
 
Fig. 8 Verification test results. (a), (b) and (c), ((d), (e) and (f)) the ROC curves of Level 1, 

Level 2 and Level 3 filters from DBI (DBII), respectively  
 
 
 
Tables: 
 
Table 1 The parameters of the 12 filters. 
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(a)      (b) 

 
 

(c)      (d) 

 
(e)      (f) 

 
Fig. 8 
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Tables 
 
 

 
Table 1 

 
Levels  No Sizes θ u σ 

1 9 by 9 0 0.3666 1.4045 
2 9 by 9 45 0.3666 1.4045 
3 9 by 9 90 0.3666 1.4045 

 
 

1 

4 9 by 9 135 0.3666 1.4045 
5 17 by 17 0 0.1833 2.8090 
6 17 by 17 45 0.1833 2.8090 
7 17 by 17 90 0.1833 2.8090 

 
 

2 

8 17 by 17 135 0.1833 2.8090 
9 35 by 35 0 0.0916 5.6179 
10 35 by 35 45 0.0916 5.6179 
11 35 by 35 90 0.0916 5.6179 

 
 

3 

12 35 by 35 135 0.0916 5.6179 
 
 
 
 
 
 
 


