
 
 

 

  

Abstract—Multi-modal optimization refers to locating not 
only one optimum but a set of locally optimal solutions. Niching 
is an important technique to solve multi-modal optimization 
problems. The ability of discover and maintain multiple niches 
is the key capability of these algorithms. In this paper, 
differential evolution with an ensemble of restricted 
tournament selection (ERTS-DE) algorithm is introduced 
to perform multimodal optimization. The algorithms is 
tested on 15 newly designed scalable benchmark 
multi-modal optimization problems and compared with 
the crowding differential evolution (Crowding-DE) in the 
literature. As shown by the experimental results, the 
proposed algorithm outperforms the Crowding-DE on 
the novel scalable benchmark problems.  

I. INTRODUCTION 
N real world optimization, many engineering problems can 
be classified as multi-modal problems, such as 
classification problems in machine learning [1] and 

inversion of teleseismic waves [2]. The aim is to locate 
several globally or locally optimal solutions and then to 
choose the most appropriate solution considering practical 
issues.  In recent years, evolutionary algorithms (EA) with 
various niching techniques have been successfully applied to 
solve multi-modal optimization problems. The earliest 
niching approach was proposed by Cavicchio [3]. 
Subsequently, many other niching methods, such as crowding 
[4] and clearing [5], have also been proposed.  
 Differential evolution is a very powerful optimization 
technique compared with other EAs such as genetic 
algorithms and evolutionary programming. Like other EAs, 
DE is also a population-based algorithm. Although DE has 
been proven to be effective in locating one globally optimal 
solution [6], the basic DE is not efficient for solving 
multi-modal optimization problems [7]. Some work has been 
done to extend the DE to solve multi-modal problems [8]-[9]. 
Thomsen proposed a Crowding-DE [7] and showed that 
Crowding-DE outperformed a DE based fitness sharing 
algorithm. In this paper, DE with an ensemble of crowding 
and restricted tournament selection (ECRTS-DE) is proposed 
and compared with the Crowding-DE on a set of newly 
designed scalable multi-modal optimization problems. 
    The remainder of this paper is structured as follows. 
Section II provides a brief overview of differential evolution, 
crowding and restricted tournament selection as well as the 
Crowding-DE algorithm. In Section III, the proposed 
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ERTS-DE algorithm is introduced. The definition of newly 
developed problems and the results of the experiments are 
presented in Sections IV and V, respectively. Finally, the 
paper is concluded in Section VI. 

II. CROWDING DIFFERENTIAL EVOLUTION 
This section introduces the differential evolution algorithm, 
crowding and restricted tournament selection based niching 
algorithms and crowding differential evolution algorithm 
which is a DE and crowding based multimodal optimization 
algorithm. 

 

A. Differential Evolution 
 

The differential evolution (DE) algorithm was first 
introduced by Storn and Price [10] and widely used in 
different areas [11]-[13]. The four major steps involved in DE 
are known as, initialization, mutation, recombination and 
selection. In the mutation operation, one of the following 
strategies is used [14]: 
DE/rand/1: )( 321 rrrp xxFxv −⋅+=  

DE/best/1: )( 21 rrbestp xxFxv −⋅+=  

DE/current-to-best/2: 
)( 21 rrpbestpp xxxxFxv −+−⋅+=  

DE/best/2: )( 4321 rrrrbestp xxxxFxv ++−⋅+=  

DE/rand/2: )( 54321 rrrrrp xxxxFxv −+−⋅+=  

where r1, r2, r3, r4, r5 are mutually different integers 
randomly generated in the range [1, NP (population size)], F 
is the scale factor used to scale differential vectors. xbest is the 
solution with the best fitness value in the current population. 
 The crossover operation is applied to each pair of the 
generated mutant vector and its corresponding parent vector 
using the following equations: 
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where up  is the offspring vector. CR is the crossover rate 
which is a user-specified constant.   

 

B. Crowding and Restricted Tournament Selection 
Crowding [4] was introduced by De Jong in 1975 and 

extended to restricted tournament selection by Harik [15].  It 
differs from a simple evolutionary algorithm in the way of 
replacing individuals in the current population by offspring. 
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For crowding and restricted tournament selection, in order to 
compare the offspring with the current population, a random 
set of w (window size) individuals are selected from the 
current population and the nearest to the offspring is 
determined by Euclidean distance measure. Finally, this 
nearest individual is replaced by the offspring if its fitness 
value is worse than the offspring’s fitness value. This process 
is repeated for all the offspring in each generation. Crowding 
and restricted tournament selection methods are effective in 
maintaining the diversity of the population, which is 
important in multi-modal optimization. 

 

C. Crowding DE 
 

Crowding DE was first introduced by Thomsen to solve 
multi-modal optimization problems [7]. In Crowding DE, the 
fitness value of an offspring is compared with that of the 
nearest individual in the current population (w is same as the 
population size). The steps of Crowding DE are shown in 
Table I. 

 
Table I.  Crowding DE algorithm 

Step 1 Use the basic DE to produce NP (population size) 
offspring. 

 For i=1:NP 
Step 2      Calculate the Euclidean distance values of the  
      offspring(i) to the other individuals in the DE 
      Population. 
Step 3      Compare the fitness value of offspring(i) and 
      the fitness value of the individual that has the  
      smallest Euclidean distance. The offspring will    
      replace the individual if it is fitter than the   
      individual. 
 Endfor 
Step 4 Stop if the termination criterion is met, otherwise go 
 to step 1. 
 

III. ERTS-DE 
 

As we know, there is one key parameter w that controls the 
performance of restricted tournament selection (Crowding 
DE is a special case with w=NP). According to the “No free 
lunch” theorem [16], it is impossible to find one parameter 
value that can be better than all other parameter values for all 
problems. Motivated by this observation, an ensemble of 
restricted tournament selection DE is proposed using parallel 
populations with different window sizes. In other words, 
different populations are used. In this paper, two populations 
with two different window sizes are used. More populations 
can be used, if additional different parameters or different 
niching algorithms are used. Each population will generate its 
own offspring population. The populations need not only 
compete with their own offspring, but also the offspring 
generated by the other population. In this way, the algorithm 

will always keep the offspring that was generated by the more 
suitable parameter leading to a better performance. The 
flowchart of the ERTS-DE algorithm is shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Flowchart of the ERTS-DE algorithm  
 
 

Initializing populations 
P1 and P2 

Generation=1 

Max No. of 
FEs reached 

Generate 
offspring o1 from 

P1 

Generate 
offspring o2from 

P2 

RTS1 RTS2 

Combine o1 
and o2 

Y 

Stop 
N

Replacement with 
window size w1 for 

population P1 

Replacement with 
window size w2 for 

population P2 

Generation + 1 



 
 

 

IV. PROBLEM DEFINITIONS 
 
There are several multi-modal benchmark problems available 
in the literature. However, these problems are relatively easy 
and many algorithms can solve them perfectly. There is also a 
lack of scalable multi-modal problems. Therefore, it is 
difficult to differentiate the performance of advanced 
algorithms. To overcome these problems, a new set of 
scalable multi-modal problems is designed in this article by 
making use of composition functions in [17]. All the test 
functions are maximization problems with equal globally 
optimal fitness value of 0. The composition functions are 
defined as follows: 

( )F x : new composition function 
( )if x : ith basic function used to construct the composition  

           function. 
 n:        number of basic functions (number of  optima) 
 D:       dimensions (can be chosen from 1-100)  

iM  :   linear transformation matrix for each ( )if x  

io  :     new shifted optima position for each  ( )if x  

{ }'
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iw  :    weight value for each ( )if x , calculated as follow: 
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then normalize the weight 
1

/
n

i i i
i

w w w
=

= ∑  

iσ  :     used to control each ( )if x ’s coverage range. 

iλ  :     used to stretch compress the function. 
'

max( ) * ( ) /i i if x C f x f= , C is a predefined constant. 

max if  is estimated 

using: ' '
max (( / )* ), [5,5,...,5]i i i if f x M xλ= =  

 
Composition Function 1 (F1, n=8) 

1 2 ( )f x− : Rastrigin’s Function 

2
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3 4 ( )f x− : Weierstrass Function 
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 a=0.5, b=3, kmax =20 
5 6 ( )f x− : Griewank’s Function 

2

11

( ) cos( ) 1
4000

D D
i i

i
ii

x x
f x

i==

= − ∏ +∑  

7 8 ( )f x−  : Sphere Function 

2

1

( )
D

i i
i

f x x
=

= ∑  

1iσ =  for all i 
λ = [1, 1, 10, 10, 5/60, 5/60, 5/32, 5/32] 
Mi : are all identity matrices 
These formulas are basic functions; shift and rotation should 
be added to these functions.  Take 1f as an example, the 
following function should be evaluated: 
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where 1 1(( ) / )*iz x o Mλ= − . 
 
Composition Function 2 (F2 n=6) 

1 2 ( )f x−  :  Griewank’s Function 

3 4 ( )f x− :   Weierstrass Function 

5 6 ( )f x− :   Sphere Function 
1iσ =  for all i 

λ = [1, 1, 10, 10, 5/60, 5/60,] 
Mi : are all identity matrices 
 
Composition Function 3 (F3 n=6) 

1 2 ( )f x−  :  Rastrigin’s Function 

3 4 ( )f x− :   Griewank’s Function 

5 6 ( )f x− :   Sphere Function 
1iσ =  for all i 

λ = [1, 1, 10, 10, 5/60, 5/60,] 
Mi : are all identity matrices 
 
Composition Function 4 (F4 n=6) 

1 2 ( )f x−  :  Rastrigin’s Function 

3 4 ( )f x− :   Weierstrass Function 

5 6 ( )f x− :   Griewank’s Function 
1iσ =  for all i 

λ = [1, 1, 10, 10, 5/60, 5/60,] 
Mi : are all identity matrices 
 
Composition Function 5 (F5 n=6) 

1 2 ( )f x−  :  Rastrigin’s Function 

3 4 ( )f x− :   Weierstrass Function 

5 6 ( )f x− :   Sphere Function 
1iσ =  for all i 

λ = [1, 1, 10, 10, 5/60, 5/60,] 
Mi : are all identity matrices 
 
Composition Function 6 (F6 n=6) 

1 2 ( )f x−  : F8F2 Function 
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3 4 ( )f x− :   Weierstrass Function 

5 6 ( )f x− :   Griewank’s Function 
[1,1,1,1,1,2]σ = , 
[5*5 /100;5 /100;5*1;1;5*1;1]λ =  

Mi : are all orthogonal matrix 
 
Composition Function 7 (F7 n=6) 

1 2 ( )f x−  : Rotated Expanded Scaffer’s F6 Function   
2 2 2

2 2 2

(sin ( ) 0.5)
( , ) 0.5

(1 0.001( ))
x y

F x y
x y

+ −
= +

+ +  
1 2 2 3 1 1( ) ( , ) ( , ) ... ( , ) ( , )i D D Df x F x x F x x F x x F x x−= + + + +  

3 4 ( )f x−  : F8F2 Function 

5 6 ( )f x− :   Weierstrass Function  
[1,1,1,1,1,2]σ = , 
[5;10;5;1;5*5/100;5/100]λ =  

Mi : are all orthogonal matrix 
 
Composition Function 8 (F8 n=6) 

1 2 ( )f x−  : Rotated Expanded Scaffer’s F6 Function    

3 4 ( )f x−  : F8F2 Function 

5 6 ( )f x− :   Griewank’s Function 
[1,1,1,1,1,2]σ = , 
[5*5 /100;5 /100;5*1;1;5*1;1]λ =  

Mi : are all orthogonal matrix 
 
Composition Function 9 (F9 n=6) 

1 2 ( )f x−  : Rotated Expanded Scaffer’s F6 Function    

3 4 ( )f x− :   Weierstrass Function 

5 6 ( )f x− :   Griewank’s Function  
[1,1,1,1,1,2]σ = , 
[5;10;5*5 /100;5 /100;5;1]λ =  

Mi : are all orthogonal matrix 
 
Composition Function 10 (F10 n=6) 

1 2 ( )f x−  :  Rastrigin’s Function 

3 4 ( )f x−  :  F8F2 Function 

5 6 ( )f x− :   Weierstrass Function 
[1,1,1,1,1,2]σ = , 
[5;10;5*5 /100;5 /100;5;1]λ =  

Mi : are all orthogonal matrix 
 
Composition Function 11 (F11 n=8) 

1 2 ( )f x−  :  Rastrigin’s Function 

3 4 ( )f x−  :  F8F2 Function 

5 6 ( )f x− :   Weierstrass Function 

7 8 ( )f x− :   Griewank’s Function  
[1,1,1,1,1,2,2,2]σ = , 

[5;1;5;1;50;10;5*5 / 200;5 / 200]λ =  
Mi : are all orthogonal matrix 
 
Composition Function 12 (F12 n=8) 

1 2 ( )f x−  :  Rotated Expanded Scaffer’s F6 Function    

3 4 ( )f x−  :  F8F2 Function 

5 6 ( )f x− :   Weierstrass Function 

7 8 ( )f x− :   Griewank’s Function  
[1,1,1,1,1,2,2,2]σ = , 
[5*5 /100;5 /100;5;1;5;1;50;10]λ =  

Mi : are all orthogonal matrix 
 
Composition Function 13 (F13 n=10) 

1 2 ( )f x−  :  Rotated Expanded Scaffer’s F6 Function 
 3 4 ( )f x− :  Rastrigin’s Function  

5 6 ( )f x−  :  F8F2 Function 

7 8 ( )f x− :   Weierstrass Function 

9 10 ( )f x− :   Griewank’s Function  
[1,1,1,1,1,2,2,2,2,2]σ = , 
[5*5 /100;5 /100;5;1;5;1;50;10;5*5 / 200;5 / 200]λ =  

Mi : are all orthogonal matrix 
 
Composition Function 14 (F14 n=10) 
All settings are the same as F13, except Mi’s condition 
numbers are [10 20 50 100 200 1000 2000 3000 4000 5000] 
 
Composition Function 15 (F15 n=10) 

1( )f x :   Weierstrass Function 

2 ( )f x  :  Rotated Expanded Scaffer’s F6 Function 

3 ( )f x  :  F8F2 Function 

4 ( )f x  :  Ackley’s Function 
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5 ( )f x :  Rastrigin’s Function 

6 ( )f x :  Griewank’s Function  

7 ( )f x  : Non-Continuous Expanded Scaffer’s F6 Function 
2 2 2

2 2 2

(sin ( ) 0.5)
( , ) 0.5

(1 0.001( ))
x y

F x y
x y

+ −
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8 ( )f x  : Non-Continuous Rastrigin’s Function 

2
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( ) ( 10cos(2 ) 10)
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f x y yπ
=

= − +∑  



 
 

 

1 / 2
1, 2,...,

(2 ) / 2 1/ 2

j j

i

j j

x x
y for j D

round x x

⎧ <⎪= =⎨
>⎪⎩

 

9 ( )f x  :  High Conditioned Elliptic Function 
1

6 21

1

( ) (10 )
iD
D

i
i

f x x
−
−

=

= ∑  

10 ( )f x  : Sphere Function with Noise in Fitness 

 2

1
( ) ( )(1 0.1 (0,1) )

D

i i
i

f x x N
=

= +∑  

n=10 
2iσ =  for all i 

[10;5 / 20;1;5 / 32;1;5 /100;5 / 50;1;5 /100;5 /100]λ =  
Mi  are all rotation matrices, condition number are [100 50 30 
10 5 5 4 3 2 2]; 

Table II.  Test function properties 
Test Function No. of equal 

global optima 
No. of basic 

function used 
Rotation used 

(Y/N) 
F1 8 4 N 
F2 6 3 N 
F3 6 3 N 
F4 6 3 N 
F5 6 3 N 
F6 6 3 Y 
F7 6 3 Y 
F8 6 3 Y 
F9 6 3 Y 
F10 6 3 Y 
F11 8 4 Y 
F12 8 4 Y 
F13 10 5 Y 
F14 10 5 Y 
F15 10 10 Y 

V. EXPERIMENTS AND RESULTS 
 

For the simulations, Matlab 7.1 is used as the programming 
language. The configurations of the computer are Intel 
Pentium® 4 CPU 3.00 GHZ, 2 GB of memory. As the test 
problems are relatively complex and the number of optima is 
large, a large population size should be used. The population 
size is set 600 for D=10 and 1200 for D=30. The maximum 
number of generation is 500 for D=10 and 1000 for D=30. 
Therefore, the maximum number of function evaluations will 
be the population size multiplied by number of generations 
for both algorithms. The parameters used in the algorithms 
are list as below: 

F=0.9, CR=0.1,  
Two experiments are conducted as follows: 

1. D=10, Test Functions: F1-F15  
2. D=30, Test Functions: F1-F5 

For comparison, the following two criteria are used: 
1. Number of optima found [18] 
2. The best value found  

An optimum is considered to be found if there exists a 
solution in the population within the tolerated Euclidean 
distance to that optimum. The tolerance for all problems is set 
to 0.1. All problems are run for 25 times. The results are 

shown in Tables III-V. Since for D=30, both algorithms are 
not able to locate any global optimum, the number of optima 
found for these problems will be zero. As can been seen from 
the results, the proposed algorithm outperforms the 
Crowding-DE on all benchmark problems. 

Table III  Comparison of number of optima found (D=10) 

Test Function  Crowding DE  

F1 

Best 1 2 
Worst 0 0 
Mean 0.1 1.2 
Std 0.3162 0.7888 

F2 

Best 3 3 
Worst 1 3 
Mean 2 3 
Std 0.6667 0 

F3 

Best 1 3 
Worst 0 1 
Mean 0.1 2.1 
Std 0.3162 0.5676 

F4 

Best 1 2 
Worst 0 1 
Mean 0.7 1.5 
Std 0.4831 0.5270 

F5 

Best 2 4 
Worst 0 2 
Mean 1.4 2.9 
Std 0.6992 0.5677 

F6 

Best 0 3 
Worst 0 1 
Mean 0 2.4 
Std 0 0.6992 

F7 

Best 0 0 
Worst 0 0 
Mean 0 0 
Std 0 0 

F8 

Best 0 1 
Worst 0 0 
Mean 0 0.2 
Std 0 0.4216 

F9 

Best 1 2 
Worst 0 0 
Mean 0.1 1.1 
Std 0.3162 0.8756 

F10 

Best 0 0 
Worst 0 0 
Mean 0 0 
Std 0 0 

F11 

Best 1 1 
Worst 0 1 
Mean 0.4 1 
Std 0.5164 0 

F12 

Best 0 1 
Worst 0 0 
Mean 0 0.2 
Std 0 0.4216 

F13 

Best 0 1 
Worst 0 0 
Mean 0 0.2 
Std 0 0.4216 

F14 

Best 0 0 
Worst 0 0 
Mean 0 0 
Std 0 0 

F15 

Best 0 2 
Worst 0 0 
Mean 0 0.5 
Std 0 0.7071 



 
 

 

 
Table IV.  Comparison of best value found (D=10)  

Test Function  Crowding DE ERTS-DE 

 

F1 

Best -0.3218 -0.1777 
Worst -1.9420 -0.8395 
Mean -1.1618 -0.4367 
Std 0.4773 0.1912 

F2 

Best -0.0480 -0.0074 
Worst -0.1316 -0.0339 
Mean -0.0911 -0.0239 
Std 0.0272 0.0077 

F3 

Best -0.0987 -0.0306 
Worst -0.3566 -0.0904 
Mean -0.1954 -0.0615 
Std 0.0834 0.0225 

F4 

Best -26.4690 -11.5970 
Worst -39.4740 -27.5910 
Mean -31.7634 -18.4755 
Std 4.5066 5.5951 

F5 

Best -0.0999 -0.0137 
Worst -0.2112 -0.0832 
Mean -0.1292 -0.0377 
Std 0.0345 0.0215 

F6 

Best -2.2706 -0.1270 
Worst -6.5206 -0.9615 
Mean -4.6309 -0.5758 
Std 1.2340 0.2838 

F7 

Best -43.1750 -3.6100 
Worst -114.7600 -18.0540 
Mean -64.6664 -11.0893 
Std 20.8064 4.8449 

F8 

Best -7.2632 -1.8996 
Worst -20.1200 -5.8679 
Mean -13.1706 -3.7509 
Std 3.7754 1.2317 

F9 

Best -2.7016 -0.7779 
Worst -10.0240 -2.6185 
Mean -5.9759 -1.7434 
Std 2.0342 0.6195 

F10 

Best -21.2510 -1.6850 
Worst -40.4930 -3.6430 
Mean -29.6469 -2.5746 
Std 6.5543 0.5745 

F11 

Best -14.2310 -2.6533 
Worst -20.9890 -11.0240 
Mean -17.7898 -5.7436 
Std 2.2209 2.3804 

F12 

Best -3.9807 -1.1163 
Worst -20.2220 -4.8248 
Mean -14.1562 -2.0342 
Std 5.6613 1.1223 

F13 

Best -9.2783 -3.0312 
Worst -30.0480 -12.7220 
Mean -23.6060 -6.2305 
Std 6.6086 3.2660 

F14 

Best -38.1120 -3.2552 
Worst -81.2650 -75.5100 
Mean -56.5465 -30.5935 
Std 16.0574 56.4823 

F15 

Best -9.4756 -1.2842 
Worst -46.7710 -5.0021 
Mean -21.6305 -2.9632 
Std 11.6107 1.0729 

 
 
 

 
Table V.  Comparison of best value found (D=30)  

Test Function  Crowding DE ERTS-DE 

 

F1 

Best -5.1271 -2.9273 
Worst -7.8151 -4.5686 
Mean -6.2561 -3.8060 
Std 0.8332 0.6433 

F2 

Best -2.6091 -1.1209 
Worst -3.7313 -1.6555 
Mean -3.1617 -1.3865 
Std 0.4195 0.1907 

F3 

Best -2.4809 -0.7774 
Worst -4.3563 -2.0588 
Mean -3.7140 -1.6436 
Std 0.6220 0.3615 

F4 

Best -72.2550 -59.2930 
Worst -74.8780 -72.5570 
Mean -73.9101 -64.6000 
Std 0.9569 4.5664 

F5 

Best -2.2144 -1.0255 
Worst -3.9658 -1.6979 
Mean -3.0425 -1.4246 
Std 0.5437 0.1853 

 

VI. CONCLUSION 
In this paper, differential evolution algorithm with an 

ensemble of restricted tournament selection-based niching 
algorithm is proposed to overcome the difficulty of choosing 
window size parameter when solving multi-modal 
optimization problems. The proposed algorithm is compared 
with the Crowding-DE on a set of newly designed scalable 
multi-modal problems. As we can see from the result, the 
proposed algorithm outperforms the Crowding-DE on all the 
test problems.   
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Appendix (not to publish, just to assist the review process) 

Test Function Set 1 

F1: Two-Peak Trap 

1

160 (15 ),      for 0 x 15
15( )
200 ( 15),      for 15 x 20
5

x
f x

x

⎧ − ≤ ≤⎪⎪= ⎨
⎪ − ≤ ≤
⎪⎩

 

 Range: 0 20x≤ ≤  

F2: Central Two-Peak Trap 

 
2

160 , for 0 10
10

160( ) (15 ) for 10 15
5

200 ( 15),      for 15 x 20
5

x x

f x x x

x

⎧ ≤ ≤⎪
⎪
⎪= − ≤ ≤⎨
⎪
⎪

− ≤ ≤⎪⎩

 

 Range: 0 20x≤ ≤  

F3: Five-Uneven-Peak Trap 

 
3

80(2.5 ) for 0 2.5
64( 2.5) for 2.5 5
64(7.5 ) for 5 7.5
28( 7.5) for 7.5 12.5

( )
28(17.5 ) for 12.5 17.5
32( 17.5) for 17.5 22.5
32(27.5 ) for 22.5 27.5
80( 27.5) for 27.5 30

x x
x x

x x
x x

f x
x x

x x
x x

x x

− ≤ <⎧
⎪ − ≤ <⎪
⎪ − ≤ <
⎪ − ≤ <⎪= ⎨ − ≤ <⎪
⎪ − ≤ <
⎪

− ≤ <⎪
⎪ − ≤ ≤⎩

 

 Range: 0 20x≤ ≤  

F4: Equal Maxima 

 6
4 ( ) sin (5 )f x xπ=  

 Range: 0 1x≤ ≤  



F5: Decreasing Maxima 

 2 6
5

0.1( ) exp[ 2log(2) ( ) ] sin (5 )
0.8

xf x xπ−
= − ⋅ ⋅  

 Range: 0 1x≤ ≤  

F6: Uneven Maxima 

 6 3/4
6 ( ) sin (5 ( 0.05))f x xπ= −  

 Range: 0 1x≤ ≤  

F7: Uneven Decreasing Maxima 

 2 6 3/4
7

0.08( ) exp[ 2log(2) ( ) ] sin (5 ( 0.05))
0.854

xf x xπ−
= − ⋅ ⋅ −  

 Range: 0 1x≤ ≤  

F8:  Himmelblau’s function 

 2 2 2 2
8 ( , ) 200 ( 11) ( 7)f x y x y x y= − + − − + −  

 Range: 6 , 6x y− ≤ ≤  

F9: Six-Hump Camel Back 

 
4

2 2 2 2
9 ( , ) 4[(4 2.1 ) ( 4 4 ) ]

3
xf x y x x xy y y= − − + + + − +  

 Range: 1.9 1.9;
1.1 1.1

x
y

− ≤ ≤
− ≤ ≤

 

F10: Shekel’s foxholes 

 
10 24

6 6
0

1( , ) 500
10.002

1 ( ( )) ( ( ))
where ( ) 16( mod 5) 2), and ( ) 16( ( / 5) 2)

i

f x y

i x a i y b i
a i i b i i

=

= −
+

+ + − + −

= − = −⎢ ⎥⎣ ⎦

∑  

 Range: 65.536 , 65.535x y− ≤ ≤  

F11: 2D Inverted Shubert function 



 
2

5
11 1

1

( ) cos[( 1) ]ij
i

f j j x j
=

=

= − + +∑∏rx  

 Range: 1 210 , 10x x− ≤ ≤  

F12-14: Inverted Vincent function 

 
1

1( ) sin(10.log( ))

where is the dimesnion of  the problem

n

i
i

f x
n

n
=

= ∑rx  

 Range: 0.25 10ix≤ ≤  

 

 

Test Function Set 2 

The set 2 composition function are defined as follow: 

( )F x : new composition function 

( )if x : ith basic function used to construct the composition  

           function. 

 n:        number of basic functions (number of  optima) 

 D:       dimensions (can be chosen from 1-100)  

iM  :   linear transformation matrix for each ( )if x  

io  :     new shifted optima position for each  ( )if x  

{ }'

1
( ) *[ (( ) / * )]

i

n

i i i i
i

F x w f x o Mλ
=

= −∑  

iw  :    weight value for each ( )if x , calculated as follow: 

1
2

( )
exp( )

2

D

k ik
k

i
i

x o
w

Dσ
=

−
= −

∑
 



max( )
*(1 max( ). ^10) max( )

i i i
i

i i i i

w w w
w

w w w w
==⎧

= ⎨ − ≠⎩
 

Then normalize the weight 
1

/
n

i i i
i

w w w
=

= ∑  

iσ  :     used to control each ( )if x ’s coverage range. 

iλ  :     used to stretch compress the function. 

'
max( ) * ( ) /i i if x C f x f= , C is a predefined constant. 

max if  is estimated using: ' '
max (( / )* ), [5,5,...,5]i i i if f x M xλ= =  

 

Composition Function 1 (F15, n=8) 

1 2 ( )f x− : Rastrigin’s Function 

2

1
( ) ( 10cos(2 ) 10)

D

i i i
i

f x x xπ
=

= − +∑  

3 4 ( )f x− : Weierstrass Function 

max
max

1 0
0

max

[ cos(2 ( 0.5))])
( ) ( )

[ cos(2 0.5)]

0.5, 3, 20

k k
iD k

k
i k k

i k
k

a b x
f x

D a b

a b k

π

π= =
=

+ −
=

= = =

∑ ∑ ∑ �  

5 6 ( )f x− : Griewank’s Function 

2

11

( ) cos( ) 1
4000

D D
i i

i
ii

x x
f x

i==

= −∏ +∑  

7 8 ( )f x−  : Sphere Function 

2

1
( )

D

i i
i

f x x
=

= ∑  

1iσ =  for all i 

λ = [1, 1, 10, 10, 5/60, 5/60, 5/32, 5/32] 

Mi : are all identity matrices 



These formulas are basic functions; shift and rotation should be added to these functions.  Take 
1f as an example, the following function should be evaluated: 

2

1
( ) ( 10cos(2 ) 10)

D

i i i
i

f z z zπ
=

= − +∑  

where 1 1(( ) / )*iz x o Mλ= − . 

 

Composition Function 2 (F16 n=6) 

1 2 ( )f x−  :  Griewank’s Function 

3 4 ( )f x− :   Weierstrass Function 

5 6 ( )f x− :   Sphere Function 

1iσ =  for all i 

λ = [1, 1, 10, 10, 5/60, 5/60,] 

Mi : are all identity matrices 

 

Composition Function 3 (F17 n=6) 

1 2 ( )f x−  :  Rastrigin’s Function 

3 4 ( )f x− :   Griewank’s Function 

5 6 ( )f x− :   Sphere Function 

1iσ =  for all i 

λ = [1, 1, 10, 10, 5/60, 5/60,] 

Mi : are all identity matrices 

 

Composition Function 4 (F18 n=6) 

1 2 ( )f x−  :  Rastrigin’s Function 

3 4 ( )f x− :   Weierstrass Function 



5 6 ( )f x− :   Griewank’s Function 

1iσ =  for all i 

λ = [1, 1, 10, 10, 5/60, 5/60,] 

Mi : are all identity matrices 

 

Composition Function 5 (F19 n=6) 

1 2 ( )f x−  :  Rastrigin’s Function 

3 4 ( )f x− :   Weierstrass Function 

5 6 ( )f x− :   Sphere Function 

1iσ =  for all i 

λ = [1, 1, 10, 10, 5/60, 5/60,] 

Mi : are all identity matrices 

 

Composition Function 6 (F20 n=6) 

1 2 ( )f x−  : F8F2 Function 

 

2

11

8( ) cos( ) 1
4000

D D
i i

ii

x x
F x

i==

= −∏ +∑  

 

1
2 2 2

1
1

2( ) (100( ) ( 1) )
D

i i i
i

F x x x x
−

+
=

= − + −∑  

1 2 2 3 1 , 1( ) 8( 2( , )) 8( 2( , )) ... 8( 2( , ) 8( 2( ))i D D Df x F F x x F F x x F F x x F F x x−= + + + +  

3 4 ( )f x− :   Weierstrass Function 

5 6 ( )f x− :   Griewank’s Function 

[1,1,1,1,1,2]σ = , 

[5*5 /100;5 /100;5*1;1;5*1;1]λ =  

Mi : are all orthogonal matrix 



 

Composition Function 7 (F21 n=6) 

1 2 ( )f x−  : Rotated Expanded Scaffer’s F6 Function   
2 2 2

2 2 2

(sin ( ) 0.5)
( , ) 0.5

(1 0.001( ))
x y

F x y
x y
+ −

= +
+ +  

1 2 2 3 1 1( ) ( , ) ( , ) ... ( , ) ( , )i D D Df x F x x F x x F x x F x x−= + + + +  

3 4 ( )f x−  : F8F2 Function 

5 6 ( )f x− :   Weierstrass Function  

[1,1,1,1,1,2]σ = , 

[5;10;5;1;5*5/100;5/100]λ =  

Mi : are all orthogonal matrix 

 

Composition Function 8 (F22 n=6) 

1 2 ( )f x−  : Rotated Expanded Scaffer’s F6 Function    

3 4 ( )f x−  : F8F2 Function 

5 6 ( )f x− :   Griewank’s Function 

[1,1,1,1,1,2]σ = , 

[5*5 /100;5 /100;5*1;1;5*1;1]λ =  

Mi : are all orthogonal matrix 

 

Composition Function 9 (F23 n=6) 

1 2 ( )f x−  : Rotated Expanded Scaffer’s F6 Function    

3 4 ( )f x− :   Weierstrass Function 

5 6 ( )f x− :   Griewank’s Function  

[1,1,1,1,1,2]σ = , 



[5;10;5*5 /100;5 /100;5;1]λ =  

Mi : are all orthogonal matrix 

 

Composition Function 10 (F24 n=6) 

1 2 ( )f x−  :  Rastrigin’s Function 

3 4 ( )f x−  :  F8F2 Function 

5 6 ( )f x− :   Weierstrass Function 

[1,1,1,1,1,2]σ = , 

[5;10;5*5 /100;5 /100;5;1]λ =  

Mi : are all orthogonal matrix 

 

Composition Function 11 (F25 n=8) 

1 2 ( )f x−  :  Rastrigin’s Function 

3 4 ( )f x−  :  F8F2 Function 

5 6 ( )f x− :   Weierstrass Function 

7 8 ( )f x− :   Griewank’s Function  

[1,1,1,1,1,2,2,2]σ = , 

[5;1;5;1;50;10;5*5 / 200;5 / 200]λ =  

Mi : are all orthogonal matrix 

 

Composition Function 12 (F26 n=8) 

1 2 ( )f x−  :  Rotated Expanded Scaffer’s F6 Function    

3 4 ( )f x−  :  F8F2 Function 

5 6 ( )f x− :   Weierstrass Function 



7 8 ( )f x− :   Griewank’s Function  

[1,1,1,1,1,2,2,2]σ = , 

[5*5 /100;5 /100;5;1;5;1;50;10]λ =  

Mi : are all orthogonal matrix 

 

Composition Function 13 (F27 n=10) 

1 2 ( )f x−  :  Rotated Expanded Scaffer’s F6 Function 

 3 4 ( )f x− :  Rastrigin’s Function  

5 6 ( )f x−  :  F8F2 Function 

7 8 ( )f x− :   Weierstrass Function 

9 10 ( )f x− :   Griewank’s Function  

[1,1,1,1,1,2,2,2,2,2]σ = , 

[5*5 /100;5 /100;5;1;5;1;50;10;5*5 / 200;5 / 200]λ =  

Mi : are all orthogonal matrix 

 

Composition Function 14 (F28 n=10) 

All settings are the same as F13, except Mi’s condition numbers are [10 20 50 100 200 1000 
2000 3000 4000 5000] 

 

Composition Function 15 (F29 n=10) 

1( )f x :   Weierstrass Function 

2 ( )f x  :  Rotated Expanded Scaffer’s F6 Function 

3 ( )f x  :  F8F2 Function 

4 ( )f x  :  Ackley’s Function 
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1 1

1 1( ) 20exp( 0.2 ) exp( cos(2 )) 20
D D

i i i
i i

f x x x e
D D

π
= =

= − − − + +∑ ∑ 5 ( )f x :  Rastrigin’s Function 

6 ( )f x :  Griewank’s Function  

7 ( )f x  : Non-Continuous Expanded Scaffer’s F6 Function 

2 2 2

2 2 2

(sin ( ) 0.5)
( , ) 0.5

(1 0.001( ))
x y

F x y
x y
+ −

= +
+ +  

1 2 2 3 1 1( ) ( , ) ( , ) ... ( , ) ( , )i D D Df x F y y F y y F y y F y y−= + + + +  

1/ 2
1, 2,...,

(2 ) / 2 1/ 2

j j

i

j j

x x
y for j D

round x x

⎧ <⎪= =⎨
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1 0 & 0.5
( ) 0.5

1 0 & 0.5

a if x b
round x a if b

a if x b

− ≤ ≥⎧
⎪= <⎨
⎪ + > ≥⎩

 

8 ( )f x  : Non-Continuous Rastrigin’s Function 

2

1
( ) ( 10cos(2 ) 10)

D

i i i
i

f x y yπ
=

= − +∑  

1/ 2
1, 2,...,

(2 ) / 2 1/ 2

j j

i

j j

x x
y for j D

round x x

⎧ <⎪= =⎨
>⎪⎩

 

9 ( )f x  :  High Conditioned Elliptic Function 

1
6 21

1

( ) (10 )
iD
D

i
i

f x x
−
−

=

= ∑  

10 ( )f x  : Sphere Function with Noise in Fitness 

 2

1

( ) ( )(1 0.1 (0,1) )
D

i i
i

f x x N
=

= +∑  

n=10 

2iσ =  for all i 

[10;5 / 20;1;5 / 32;1;5 /100;5 / 50;1;5 /100;5 /100]λ =  

Mi  are all rotation matrices, condition number are [100 50 30 10 5 5 4 3 2 2]; 


