

Abstract—Multi-modal optimization refers to locating not
only one optimum but a set of locally optimal solutions. Niching
is an important technique to solve multi-modal optimization
problems. The ability of discover and maintain multiple niches
is the key capability of these algorithms. In this paper,
differential evolution with an ensemble of restricted
tournament selection (ERTS-DE) algorithm is introduced
to perform multimodal optimization. The algorithms is
tested on 15 newly designed scalable benchmark
multi-modal optimization problems and compared with
the crowding differential evolution (Crowding-DE) in the
literature. As shown by the experimental results, the
proposed algorithm outperforms the Crowding-DE on
the novel scalable benchmark problems.

I. INTRODUCTION
N real world optimization, many engineering problems can
be classified as multi-modal problems, such as
classification problems in machine learning [1] and

inversion of teleseismic waves [2]. The aim is to locate
several globally or locally optimal solutions and then to
choose the most appropriate solution considering practical
issues. In recent years, evolutionary algorithms (EA) with
various niching techniques have been successfully applied to
solve multi-modal optimization problems. The earliest
niching approach was proposed by Cavicchio [3].
Subsequently, many other niching methods, such as crowding
[4] and clearing [5], have also been proposed.
 Differential evolution is a very powerful optimization
technique compared with other EAs such as genetic
algorithms and evolutionary programming. Like other EAs,
DE is also a population-based algorithm. Although DE has
been proven to be effective in locating one globally optimal
solution [6], the basic DE is not efficient for solving
multi-modal optimization problems [7]. Some work has been
done to extend the DE to solve multi-modal problems [8]-[9].
Thomsen proposed a Crowding-DE [7] and showed that
Crowding-DE outperformed a DE based fitness sharing
algorithm. In this paper, DE with an ensemble of crowding
and restricted tournament selection (ECRTS-DE) is proposed
and compared with the Crowding-DE on a set of newly
designed scalable multi-modal optimization problems.
 The remainder of this paper is structured as follows.
Section II provides a brief overview of differential evolution,
crowding and restricted tournament selection as well as the
Crowding-DE algorithm. In Section III, the proposed

Manuscript received February 7, 2010. This work was supported by the

Nanyang Technological University.
Authors are with Nanyang Technological University, School of Electrical
and Electronic Engineering, Singapore, 639798 (phone: 65-67905404; fax:
65-67933318; emails: E070088@ntu.edu.sg , epnsugan@ntu.edu.sg).

ERTS-DE algorithm is introduced. The definition of newly
developed problems and the results of the experiments are
presented in Sections IV and V, respectively. Finally, the
paper is concluded in Section VI.

II. CROWDING DIFFERENTIAL EVOLUTION
This section introduces the differential evolution algorithm,
crowding and restricted tournament selection based niching
algorithms and crowding differential evolution algorithm
which is a DE and crowding based multimodal optimization
algorithm.

A. Differential Evolution

The differential evolution (DE) algorithm was first
introduced by Storn and Price [10] and widely used in
different areas [11]-[13]. The four major steps involved in DE
are known as, initialization, mutation, recombination and
selection. In the mutation operation, one of the following
strategies is used [14]:
DE/rand/1:)(321 rrrp xxFxv −⋅+=

DE/best/1:)(21 rrbestp xxFxv −⋅+=

DE/current-to-best/2:
)(21 rrpbestpp xxxxFxv −+−⋅+=

DE/best/2:)(4321 rrrrbestp xxxxFxv ++−⋅+=

DE/rand/2:)(54321 rrrrrp xxxxFxv −+−⋅+=

where r1, r2, r3, r4, r5 are mutually different integers
randomly generated in the range [1, NP (population size)], F
is the scale factor used to scale differential vectors. xbest is the
solution with the best fitness value in the current population.
 The crossover operation is applied to each pair of the
generated mutant vector and its corresponding parent vector
using the following equations:

⎩
⎨
⎧ ≤

=
otherwisex

CRrandifv
u

ip

iip
ip

,

,
,

where up is the offspring vector. CR is the crossover rate
which is a user-specified constant.

B. Crowding and Restricted Tournament Selection
Crowding [4] was introduced by De Jong in 1975 and

extended to restricted tournament selection by Harik [15]. It
differs from a simple evolutionary algorithm in the way of
replacing individuals in the current population by offspring.

Novel Multimodal Problems and Differential Evolution with Ensemble of
Restricted Tournament Selection

Bo-Yang Qu, Ponnuthurai Nagaratnam Suganthan, Snr Member, IEEE

I

For crowding and restricted tournament selection, in order to
compare the offspring with the current population, a random
set of w (window size) individuals are selected from the
current population and the nearest to the offspring is
determined by Euclidean distance measure. Finally, this
nearest individual is replaced by the offspring if its fitness
value is worse than the offspring’s fitness value. This process
is repeated for all the offspring in each generation. Crowding
and restricted tournament selection methods are effective in
maintaining the diversity of the population, which is
important in multi-modal optimization.

C. Crowding DE

Crowding DE was first introduced by Thomsen to solve
multi-modal optimization problems [7]. In Crowding DE, the
fitness value of an offspring is compared with that of the
nearest individual in the current population (w is same as the
population size). The steps of Crowding DE are shown in
Table I.

Table I. Crowding DE algorithm

Step 1 Use the basic DE to produce NP (population size)
offspring.

 For i=1:NP
Step 2 Calculate the Euclidean distance values of the
 offspring(i) to the other individuals in the DE
 Population.
Step 3 Compare the fitness value of offspring(i) and
 the fitness value of the individual that has the
 smallest Euclidean distance. The offspring will
 replace the individual if it is fitter than the
 individual.
 Endfor
Step 4 Stop if the termination criterion is met, otherwise go
 to step 1.

III. ERTS-DE

As we know, there is one key parameter w that controls the
performance of restricted tournament selection (Crowding
DE is a special case with w=NP). According to the “No free
lunch” theorem [16], it is impossible to find one parameter
value that can be better than all other parameter values for all
problems. Motivated by this observation, an ensemble of
restricted tournament selection DE is proposed using parallel
populations with different window sizes. In other words,
different populations are used. In this paper, two populations
with two different window sizes are used. More populations
can be used, if additional different parameters or different
niching algorithms are used. Each population will generate its
own offspring population. The populations need not only
compete with their own offspring, but also the offspring
generated by the other population. In this way, the algorithm

will always keep the offspring that was generated by the more
suitable parameter leading to a better performance. The
flowchart of the ERTS-DE algorithm is shown in Fig. 1.

Fig. 1. Flowchart of the ERTS-DE algorithm

Initializing populations
P1 and P2

Generation=1

Max No. of
FEs reached

Generate
offspring o1 from

P1

Generate
offspring o2from

P2

RTS1 RTS2

Combine o1
and o2

Y

Stop
N

Replacement with
window size w1 for

population P1

Replacement with
window size w2 for

population P2

Generation + 1

IV. PROBLEM DEFINITIONS

There are several multi-modal benchmark problems available
in the literature. However, these problems are relatively easy
and many algorithms can solve them perfectly. There is also a
lack of scalable multi-modal problems. Therefore, it is
difficult to differentiate the performance of advanced
algorithms. To overcome these problems, a new set of
scalable multi-modal problems is designed in this article by
making use of composition functions in [17]. All the test
functions are maximization problems with equal globally
optimal fitness value of 0. The composition functions are
defined as follows:

()F x : new composition function
()if x : ith basic function used to construct the composition

 function.
 n: number of basic functions (number of optima)
 D: dimensions (can be chosen from 1-100)

iM : linear transformation matrix for each ()if x

io : new shifted optima position for each ()if x

{ }'

1

() *[(() / *)]
i

n

i i i i
i

F x w f x o Mλ
=

= −∑

iw : weight value for each ()if x , calculated as follow:

1
2

()
exp()

2

D

k ik
k

i
i

x o
w

Dσ
=

−
= −

∑

max()
*(1 max().^10) max()

i i i
i

i i i i

w w w
w

w w w w
==⎧

= ⎨ − ≠⎩

then normalize the weight
1

/
n

i i i
i

w w w
=

= ∑

iσ : used to control each ()if x ’s coverage range.

iλ : used to stretch compress the function.
'

max() * () /i i if x C f x f= , C is a predefined constant.

max if is estimated

using: ' '
max ((/)*), [5,5,...,5]i i i if f x M xλ= =

Composition Function 1 (F1, n=8)

1 2 ()f x− : Rastrigin’s Function

2

1

() (10cos(2) 10)
D

i i i
i

f x x xπ
=

= − +∑

3 4 ()f x− : Weierstrass Function

max
max

1 0
0

[cos(2 (0.5))])
() ()

[cos(2 0.5)]

k k
iD k

k
i k k

i k
k

a b x
f x

D a b

π

π= =
=

+ −
= ∑ ∑ ∑ i

 a=0.5, b=3, kmax =20
5 6 ()f x− : Griewank’s Function

2

11

() cos() 1
4000

D D
i i

i
ii

x x
f x

i==

= − ∏ +∑

7 8 ()f x− : Sphere Function

2

1

()
D

i i
i

f x x
=

= ∑

1iσ = for all i
λ = [1, 1, 10, 10, 5/60, 5/60, 5/32, 5/32]
Mi : are all identity matrices
These formulas are basic functions; shift and rotation should
be added to these functions. Take 1f as an example, the
following function should be evaluated:

2

1

() (10cos(2) 10)
D

i i i
i

f z z zπ
=

= − +∑

where 1 1(() /)*iz x o Mλ= − .

Composition Function 2 (F2 n=6)

1 2 ()f x− : Griewank’s Function

3 4 ()f x− : Weierstrass Function

5 6 ()f x− : Sphere Function
1iσ = for all i

λ = [1, 1, 10, 10, 5/60, 5/60,]
Mi : are all identity matrices

Composition Function 3 (F3 n=6)

1 2 ()f x− : Rastrigin’s Function

3 4 ()f x− : Griewank’s Function

5 6 ()f x− : Sphere Function
1iσ = for all i

λ = [1, 1, 10, 10, 5/60, 5/60,]
Mi : are all identity matrices

Composition Function 4 (F4 n=6)

1 2 ()f x− : Rastrigin’s Function

3 4 ()f x− : Weierstrass Function

5 6 ()f x− : Griewank’s Function
1iσ = for all i

λ = [1, 1, 10, 10, 5/60, 5/60,]
Mi : are all identity matrices

Composition Function 5 (F5 n=6)

1 2 ()f x− : Rastrigin’s Function

3 4 ()f x− : Weierstrass Function

5 6 ()f x− : Sphere Function
1iσ = for all i

λ = [1, 1, 10, 10, 5/60, 5/60,]
Mi : are all identity matrices

Composition Function 6 (F6 n=6)

1 2 ()f x− : F8F2 Function

2

11
8() cos() 1

4000

D D
i i

ii

x x
F x

i==

= − ∏ +∑

1
2 2 2

1
1

2() (100() (1))
D

i i i
i

F x x x x
−

+
=

= − + −∑

1 2 2 3

1 , 1

() 8(2(,)) 8(2(,)) ...
8(2(,) 8(2())

i

D D D

f x F F x x F F x x
F F x x F F x x−

= + + +

+

3 4 ()f x− : Weierstrass Function

5 6 ()f x− : Griewank’s Function
[1,1,1,1,1,2]σ = ,
[5*5 /100;5 /100;5*1;1;5*1;1]λ =

Mi : are all orthogonal matrix

Composition Function 7 (F7 n=6)

1 2 ()f x− : Rotated Expanded Scaffer’s F6 Function
2 2 2

2 2 2

(sin () 0.5)
(,) 0.5

(1 0.001())
x y

F x y
x y

+ −
= +

+ +
1 2 2 3 1 1() (,) (,) ... (,) (,)i D D Df x F x x F x x F x x F x x−= + + + +

3 4 ()f x− : F8F2 Function

5 6 ()f x− : Weierstrass Function
[1,1,1,1,1,2]σ = ,
[5;10;5;1;5*5/100;5/100]λ =

Mi : are all orthogonal matrix

Composition Function 8 (F8 n=6)

1 2 ()f x− : Rotated Expanded Scaffer’s F6 Function

3 4 ()f x− : F8F2 Function

5 6 ()f x− : Griewank’s Function
[1,1,1,1,1,2]σ = ,
[5*5 /100;5 /100;5*1;1;5*1;1]λ =

Mi : are all orthogonal matrix

Composition Function 9 (F9 n=6)

1 2 ()f x− : Rotated Expanded Scaffer’s F6 Function

3 4 ()f x− : Weierstrass Function

5 6 ()f x− : Griewank’s Function
[1,1,1,1,1,2]σ = ,
[5;10;5*5 /100;5 /100;5;1]λ =

Mi : are all orthogonal matrix

Composition Function 10 (F10 n=6)

1 2 ()f x− : Rastrigin’s Function

3 4 ()f x− : F8F2 Function

5 6 ()f x− : Weierstrass Function
[1,1,1,1,1,2]σ = ,
[5;10;5*5 /100;5 /100;5;1]λ =

Mi : are all orthogonal matrix

Composition Function 11 (F11 n=8)

1 2 ()f x− : Rastrigin’s Function

3 4 ()f x− : F8F2 Function

5 6 ()f x− : Weierstrass Function

7 8 ()f x− : Griewank’s Function
[1,1,1,1,1,2,2,2]σ = ,

[5;1;5;1;50;10;5*5 / 200;5 / 200]λ =
Mi : are all orthogonal matrix

Composition Function 12 (F12 n=8)

1 2 ()f x− : Rotated Expanded Scaffer’s F6 Function

3 4 ()f x− : F8F2 Function

5 6 ()f x− : Weierstrass Function

7 8 ()f x− : Griewank’s Function
[1,1,1,1,1,2,2,2]σ = ,
[5*5 /100;5 /100;5;1;5;1;50;10]λ =

Mi : are all orthogonal matrix

Composition Function 13 (F13 n=10)

1 2 ()f x− : Rotated Expanded Scaffer’s F6 Function
 3 4 ()f x− : Rastrigin’s Function

5 6 ()f x− : F8F2 Function

7 8 ()f x− : Weierstrass Function

9 10 ()f x− : Griewank’s Function
[1,1,1,1,1,2,2,2,2,2]σ = ,
[5*5 /100;5 /100;5;1;5;1;50;10;5*5 / 200;5 / 200]λ =

Mi : are all orthogonal matrix

Composition Function 14 (F14 n=10)
All settings are the same as F13, except Mi’s condition
numbers are [10 20 50 100 200 1000 2000 3000 4000 5000]

Composition Function 15 (F15 n=10)

1()f x : Weierstrass Function

2 ()f x : Rotated Expanded Scaffer’s F6 Function

3 ()f x : F8F2 Function

4 ()f x : Ackley’s Function

2

1 1

1 1() 20exp(0.2) exp(cos(2)) 20
D D

i i i
i i

f x x x e
D D

π
= =

= − − − + +∑ ∑

5 ()f x : Rastrigin’s Function

6 ()f x : Griewank’s Function

7 ()f x : Non-Continuous Expanded Scaffer’s F6 Function
2 2 2

2 2 2

(sin () 0.5)
(,) 0.5

(1 0.001())
x y

F x y
x y

+ −
= +

+ +
1 2 2 3 1 1() (,) (,) ... (,) (,)i D D Df x F y y F y y F y y F y y−= + + + +

1 / 2
1, 2,...,

(2) / 2 1/ 2

j j

i

j j

x x
y for j D

round x x

⎧ <⎪= =⎨
>⎪⎩

1 0 & 0.5
() 0.5

1 0 & 0.5

a if x b
round x a if b

a if x b

− ≤ ≥⎧
⎪= <⎨
⎪ + > ≥⎩

8 ()f x : Non-Continuous Rastrigin’s Function

2

1

() (10cos(2) 10)
D

i i i
i

f x y yπ
=

= − +∑

1 / 2
1, 2,...,

(2) / 2 1/ 2

j j

i

j j

x x
y for j D

round x x

⎧ <⎪= =⎨
>⎪⎩

9 ()f x : High Conditioned Elliptic Function
1

6 21

1

() (10)
iD
D

i
i

f x x
−
−

=

= ∑

10 ()f x : Sphere Function with Noise in Fitness

 2

1
() ()(1 0.1 (0,1))

D

i i
i

f x x N
=

= +∑

n=10
2iσ = for all i

[10;5 / 20;1;5 / 32;1;5 /100;5 / 50;1;5 /100;5 /100]λ =
Mi are all rotation matrices, condition number are [100 50 30
10 5 5 4 3 2 2];

Table II. Test function properties
Test Function No. of equal

global optima
No. of basic

function used
Rotation used

(Y/N)
F1 8 4 N
F2 6 3 N
F3 6 3 N
F4 6 3 N
F5 6 3 N
F6 6 3 Y
F7 6 3 Y
F8 6 3 Y
F9 6 3 Y
F10 6 3 Y
F11 8 4 Y
F12 8 4 Y
F13 10 5 Y
F14 10 5 Y
F15 10 10 Y

V. EXPERIMENTS AND RESULTS

For the simulations, Matlab 7.1 is used as the programming
language. The configurations of the computer are Intel
Pentium® 4 CPU 3.00 GHZ, 2 GB of memory. As the test
problems are relatively complex and the number of optima is
large, a large population size should be used. The population
size is set 600 for D=10 and 1200 for D=30. The maximum
number of generation is 500 for D=10 and 1000 for D=30.
Therefore, the maximum number of function evaluations will
be the population size multiplied by number of generations
for both algorithms. The parameters used in the algorithms
are list as below:

F=0.9, CR=0.1,
Two experiments are conducted as follows:

1. D=10, Test Functions: F1-F15
2. D=30, Test Functions: F1-F5

For comparison, the following two criteria are used:
1. Number of optima found [18]
2. The best value found

An optimum is considered to be found if there exists a
solution in the population within the tolerated Euclidean
distance to that optimum. The tolerance for all problems is set
to 0.1. All problems are run for 25 times. The results are

shown in Tables III-V. Since for D=30, both algorithms are
not able to locate any global optimum, the number of optima
found for these problems will be zero. As can been seen from
the results, the proposed algorithm outperforms the
Crowding-DE on all benchmark problems.

Table III Comparison of number of optima found (D=10)

Test Function Crowding DE

F1

Best 1 2
Worst 0 0
Mean 0.1 1.2
Std 0.3162 0.7888

F2

Best 3 3
Worst 1 3
Mean 2 3
Std 0.6667 0

F3

Best 1 3
Worst 0 1
Mean 0.1 2.1
Std 0.3162 0.5676

F4

Best 1 2
Worst 0 1
Mean 0.7 1.5
Std 0.4831 0.5270

F5

Best 2 4
Worst 0 2
Mean 1.4 2.9
Std 0.6992 0.5677

F6

Best 0 3
Worst 0 1
Mean 0 2.4
Std 0 0.6992

F7

Best 0 0
Worst 0 0
Mean 0 0
Std 0 0

F8

Best 0 1
Worst 0 0
Mean 0 0.2
Std 0 0.4216

F9

Best 1 2
Worst 0 0
Mean 0.1 1.1
Std 0.3162 0.8756

F10

Best 0 0
Worst 0 0
Mean 0 0
Std 0 0

F11

Best 1 1
Worst 0 1
Mean 0.4 1
Std 0.5164 0

F12

Best 0 1
Worst 0 0
Mean 0 0.2
Std 0 0.4216

F13

Best 0 1
Worst 0 0
Mean 0 0.2
Std 0 0.4216

F14

Best 0 0
Worst 0 0
Mean 0 0
Std 0 0

F15

Best 0 2
Worst 0 0
Mean 0 0.5
Std 0 0.7071

Table IV. Comparison of best value found (D=10)

Test Function Crowding DE ERTS-DE

F1

Best -0.3218 -0.1777
Worst -1.9420 -0.8395
Mean -1.1618 -0.4367
Std 0.4773 0.1912

F2

Best -0.0480 -0.0074
Worst -0.1316 -0.0339
Mean -0.0911 -0.0239
Std 0.0272 0.0077

F3

Best -0.0987 -0.0306
Worst -0.3566 -0.0904
Mean -0.1954 -0.0615
Std 0.0834 0.0225

F4

Best -26.4690 -11.5970
Worst -39.4740 -27.5910
Mean -31.7634 -18.4755
Std 4.5066 5.5951

F5

Best -0.0999 -0.0137
Worst -0.2112 -0.0832
Mean -0.1292 -0.0377
Std 0.0345 0.0215

F6

Best -2.2706 -0.1270
Worst -6.5206 -0.9615
Mean -4.6309 -0.5758
Std 1.2340 0.2838

F7

Best -43.1750 -3.6100
Worst -114.7600 -18.0540
Mean -64.6664 -11.0893
Std 20.8064 4.8449

F8

Best -7.2632 -1.8996
Worst -20.1200 -5.8679
Mean -13.1706 -3.7509
Std 3.7754 1.2317

F9

Best -2.7016 -0.7779
Worst -10.0240 -2.6185
Mean -5.9759 -1.7434
Std 2.0342 0.6195

F10

Best -21.2510 -1.6850
Worst -40.4930 -3.6430
Mean -29.6469 -2.5746
Std 6.5543 0.5745

F11

Best -14.2310 -2.6533
Worst -20.9890 -11.0240
Mean -17.7898 -5.7436
Std 2.2209 2.3804

F12

Best -3.9807 -1.1163
Worst -20.2220 -4.8248
Mean -14.1562 -2.0342
Std 5.6613 1.1223

F13

Best -9.2783 -3.0312
Worst -30.0480 -12.7220
Mean -23.6060 -6.2305
Std 6.6086 3.2660

F14

Best -38.1120 -3.2552
Worst -81.2650 -75.5100
Mean -56.5465 -30.5935
Std 16.0574 56.4823

F15

Best -9.4756 -1.2842
Worst -46.7710 -5.0021
Mean -21.6305 -2.9632
Std 11.6107 1.0729

Table V. Comparison of best value found (D=30)

Test Function Crowding DE ERTS-DE

F1

Best -5.1271 -2.9273
Worst -7.8151 -4.5686
Mean -6.2561 -3.8060
Std 0.8332 0.6433

F2

Best -2.6091 -1.1209
Worst -3.7313 -1.6555
Mean -3.1617 -1.3865
Std 0.4195 0.1907

F3

Best -2.4809 -0.7774
Worst -4.3563 -2.0588
Mean -3.7140 -1.6436
Std 0.6220 0.3615

F4

Best -72.2550 -59.2930
Worst -74.8780 -72.5570
Mean -73.9101 -64.6000
Std 0.9569 4.5664

F5

Best -2.2144 -1.0255
Worst -3.9658 -1.6979
Mean -3.0425 -1.4246
Std 0.5437 0.1853

VI. CONCLUSION
In this paper, differential evolution algorithm with an

ensemble of restricted tournament selection-based niching
algorithm is proposed to overcome the difficulty of choosing
window size parameter when solving multi-modal
optimization problems. The proposed algorithm is compared
with the Crowding-DE on a set of newly designed scalable
multi-modal problems. As we can see from the result, the
proposed algorithm outperforms the Crowding-DE on all the
test problems.

REFERENCES
[1] S. W. Mahfoud, “Niching methods for genetic algorithms,” Ph.D.

dissertation, Urbana, IL, USA, 1995. [Online]. Available:
citeseer.ist.psu.edu/mahfoud95niching.html.

[2] K. Koper and M. Wysession, “Multimodal function optimization with a
niching genetic algorithm: A seis-mological example,” Bulletin of the
Seismological Society of America, vol. 89, pp. 978-988, 1999.

[3] D. J. Cavicchio, “Adaptive search using simulated evolution,” Ph.D.
dissertation, University of Michigan, Ann Arbor, 1970.

[4] K. A. De Jong, “An analysis of the behavior of a class of genetic
adaptive systems, Ph.D. dissertation, University of Michigan, 1975.

[5] A. Pétrowski, “A clearing procedure as a niching method for genetic
algorithms”, Proc. of the IEEE Int. Conf. on Evolutionary
Computation, New York, USA, 1996, pp. 798–803.

[6] K. Price. “An introduction to differential evolution.” New Ideas in
Optimization, pages 79-108, 1999.

[7] R. Thomsen. “Multi-modal optimization using crowding-based
differential evolution. In Proceedings of the 2004 Congress on
Evolutionary Computation, volumn 2, pages 1382-1389, 2004.

[8] D. Zaharie. “Extensions of differential evolution algorithms for
multimodal optimization,” In Proceedings of SYNASC'04, 6th
International Symposium of Symbolic and Numeric Algorithms for
Scientific Computing, pages 523{534, 2004.

[9] Z. Hendershot. “A differential evolution algorithm for automatically
discovering multiple global optima in multidimensional, discontinues
spaces. In Proceedings of MAICS 2004, Fifteenth Midwest Artificial
Intelligence and Cognitive Sciences Conference, pages 92{97, 2004.

[10] R. Storn and K. V. Price, "Differential evolution-Asimple and efficient
heuristic for global optimization over continuous spaces," Journal of
Global Optimization, vol. 11, pp. 341-359, 1995.

[11] S. Das, A. Konar and U. K. Chakraborty, “ Annealed differential
evolution,” In Proc. IEEE Congress on Evolutionary Computation,
Singapore, 2007.

[12] U. K. Chakraborty, S. Das and A. Konar, “Differential evolution with
local neighborhood, In Proc. IEEE Congress on Evolutionary
Computation, Canada, 2006.

[13] V. L. Huang, A. K. Qin and P. N. Suganthan, “Self-adaptive
Differential Evolution Algorithm for Constrained Real-Parameter
Optimization”, In Proc. IEEE Congress on Evolutionary Computation,
Canada, 2006.

[14] X. Q. Chen, Z. X. Hou, and J. X. Liu, "Multi-objective optimization
with modified pareto differential evolution," in International
Conference on Intelligent Computation Technology and Automation,,
Piscataway, NJ 08855-1331, United States, 2008.

[15] G. Harik, “Finding multiple solutions in problems of bounded
difficulty,” University of Illinois at Urbana-Champaign, 1994, IIIiGAL
Report No. 94002.

[16] D H. Wolpert, W. G. Macready, No free lunch theorems for
optimization, IEEE Transactions on Evolutionary Computation 1
(1997) 67–82.

[17] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. –P. Chen, A. Auger
and S. Tiwari, “Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization,” Technical
Report, Nanyang Technological University, May 2005.

[18] J. Gan, K. Warwick, “A variable radius niching technique for
speciation in genetic algorithms,” In Proc. of the Genetic and
Evolutionary Computation Conference (GECCO 2000), San Francisco,
USA, 2000, pp. 96–103.

Appendix (not to publish, just to assist the review process)

Test Function Set 1

F1: Two-Peak Trap

1

160 (15), for 0 x 15
15()
200 (15), for 15 x 20
5

x
f x

x

⎧ − ≤ ≤⎪⎪= ⎨
⎪ − ≤ ≤
⎪⎩

 Range: 0 20x≤ ≤

F2: Central Two-Peak Trap

2

160 , for 0 10
10

160() (15) for 10 15
5

200 (15), for 15 x 20
5

x x

f x x x

x

⎧ ≤ ≤⎪
⎪
⎪= − ≤ ≤⎨
⎪
⎪

− ≤ ≤⎪⎩

 Range: 0 20x≤ ≤

F3: Five-Uneven-Peak Trap

3

80(2.5) for 0 2.5
64(2.5) for 2.5 5
64(7.5) for 5 7.5
28(7.5) for 7.5 12.5

()
28(17.5) for 12.5 17.5
32(17.5) for 17.5 22.5
32(27.5) for 22.5 27.5
80(27.5) for 27.5 30

x x
x x

x x
x x

f x
x x

x x
x x

x x

− ≤ <⎧
⎪ − ≤ <⎪
⎪ − ≤ <
⎪ − ≤ <⎪= ⎨ − ≤ <⎪
⎪ − ≤ <
⎪

− ≤ <⎪
⎪ − ≤ ≤⎩

 Range: 0 20x≤ ≤

F4: Equal Maxima

 6
4 () sin (5)f x xπ=

 Range: 0 1x≤ ≤

F5: Decreasing Maxima

 2 6
5

0.1() exp[2log(2) ()] sin (5)
0.8

xf x xπ−
= − ⋅ ⋅

 Range: 0 1x≤ ≤

F6: Uneven Maxima

 6 3/4
6 () sin (5 (0.05))f x xπ= −

 Range: 0 1x≤ ≤

F7: Uneven Decreasing Maxima

 2 6 3/4
7

0.08() exp[2log(2) ()] sin (5 (0.05))
0.854

xf x xπ−
= − ⋅ ⋅ −

 Range: 0 1x≤ ≤

F8: Himmelblau’s function

 2 2 2 2
8 (,) 200 (11) (7)f x y x y x y= − + − − + −

 Range: 6 , 6x y− ≤ ≤

F9: Six-Hump Camel Back

4

2 2 2 2
9 (,) 4[(4 2.1) (4 4)]

3
xf x y x x xy y y= − − + + + − +

 Range: 1.9 1.9;
1.1 1.1

x
y

− ≤ ≤
− ≤ ≤

F10: Shekel’s foxholes

10 24

6 6
0

1(,) 500
10.002

1 (()) (())
where () 16(mod 5) 2), and () 16((/ 5) 2)

i

f x y

i x a i y b i
a i i b i i

=

= −
+

+ + − + −

= − = −⎢ ⎥⎣ ⎦

∑

 Range: 65.536 , 65.535x y− ≤ ≤

F11: 2D Inverted Shubert function

2

5
11 1

1

() cos[(1)]ij
i

f j j x j
=

=

= − + +∑∏rx

 Range: 1 210 , 10x x− ≤ ≤

F12-14: Inverted Vincent function

1

1() sin(10.log())

where is the dimesnion of the problem

n

i
i

f x
n

n
=

= ∑rx

 Range: 0.25 10ix≤ ≤

Test Function Set 2

The set 2 composition function are defined as follow:

()F x : new composition function

()if x : ith basic function used to construct the composition

 function.

 n: number of basic functions (number of optima)

 D: dimensions (can be chosen from 1-100)

iM : linear transformation matrix for each ()if x

io : new shifted optima position for each ()if x

{ }'

1
() *[(() / *)]

i

n

i i i i
i

F x w f x o Mλ
=

= −∑

iw : weight value for each ()if x , calculated as follow:

1
2

()
exp()

2

D

k ik
k

i
i

x o
w

Dσ
=

−
= −

∑

max()
*(1 max(). ^10) max()

i i i
i

i i i i

w w w
w

w w w w
==⎧

= ⎨ − ≠⎩

Then normalize the weight
1

/
n

i i i
i

w w w
=

= ∑

iσ : used to control each ()if x ’s coverage range.

iλ : used to stretch compress the function.

'
max() * () /i i if x C f x f= , C is a predefined constant.

max if is estimated using: ' '
max ((/)*), [5,5,...,5]i i i if f x M xλ= =

Composition Function 1 (F15, n=8)

1 2 ()f x− : Rastrigin’s Function

2

1
() (10cos(2) 10)

D

i i i
i

f x x xπ
=

= − +∑

3 4 ()f x− : Weierstrass Function

max
max

1 0
0

max

[cos(2 (0.5))])
() ()

[cos(2 0.5)]

0.5, 3, 20

k k
iD k

k
i k k

i k
k

a b x
f x

D a b

a b k

π

π= =
=

+ −
=

= = =

∑ ∑ ∑ �

5 6 ()f x− : Griewank’s Function

2

11

() cos() 1
4000

D D
i i

i
ii

x x
f x

i==

= −∏ +∑

7 8 ()f x− : Sphere Function

2

1
()

D

i i
i

f x x
=

= ∑

1iσ = for all i

λ = [1, 1, 10, 10, 5/60, 5/60, 5/32, 5/32]

Mi : are all identity matrices

These formulas are basic functions; shift and rotation should be added to these functions. Take
1f as an example, the following function should be evaluated:

2

1
() (10cos(2) 10)

D

i i i
i

f z z zπ
=

= − +∑

where 1 1(() /)*iz x o Mλ= − .

Composition Function 2 (F16 n=6)

1 2 ()f x− : Griewank’s Function

3 4 ()f x− : Weierstrass Function

5 6 ()f x− : Sphere Function

1iσ = for all i

λ = [1, 1, 10, 10, 5/60, 5/60,]

Mi : are all identity matrices

Composition Function 3 (F17 n=6)

1 2 ()f x− : Rastrigin’s Function

3 4 ()f x− : Griewank’s Function

5 6 ()f x− : Sphere Function

1iσ = for all i

λ = [1, 1, 10, 10, 5/60, 5/60,]

Mi : are all identity matrices

Composition Function 4 (F18 n=6)

1 2 ()f x− : Rastrigin’s Function

3 4 ()f x− : Weierstrass Function

5 6 ()f x− : Griewank’s Function

1iσ = for all i

λ = [1, 1, 10, 10, 5/60, 5/60,]

Mi : are all identity matrices

Composition Function 5 (F19 n=6)

1 2 ()f x− : Rastrigin’s Function

3 4 ()f x− : Weierstrass Function

5 6 ()f x− : Sphere Function

1iσ = for all i

λ = [1, 1, 10, 10, 5/60, 5/60,]

Mi : are all identity matrices

Composition Function 6 (F20 n=6)

1 2 ()f x− : F8F2 Function

2

11

8() cos() 1
4000

D D
i i

ii

x x
F x

i==

= −∏ +∑

1
2 2 2

1
1

2() (100() (1))
D

i i i
i

F x x x x
−

+
=

= − + −∑

1 2 2 3 1 , 1() 8(2(,)) 8(2(,)) ... 8(2(,) 8(2())i D D Df x F F x x F F x x F F x x F F x x−= + + + +

3 4 ()f x− : Weierstrass Function

5 6 ()f x− : Griewank’s Function

[1,1,1,1,1,2]σ = ,

[5*5 /100;5 /100;5*1;1;5*1;1]λ =

Mi : are all orthogonal matrix

Composition Function 7 (F21 n=6)

1 2 ()f x− : Rotated Expanded Scaffer’s F6 Function
2 2 2

2 2 2

(sin () 0.5)
(,) 0.5

(1 0.001())
x y

F x y
x y
+ −

= +
+ +

1 2 2 3 1 1() (,) (,) ... (,) (,)i D D Df x F x x F x x F x x F x x−= + + + +

3 4 ()f x− : F8F2 Function

5 6 ()f x− : Weierstrass Function

[1,1,1,1,1,2]σ = ,

[5;10;5;1;5*5/100;5/100]λ =

Mi : are all orthogonal matrix

Composition Function 8 (F22 n=6)

1 2 ()f x− : Rotated Expanded Scaffer’s F6 Function

3 4 ()f x− : F8F2 Function

5 6 ()f x− : Griewank’s Function

[1,1,1,1,1,2]σ = ,

[5*5 /100;5 /100;5*1;1;5*1;1]λ =

Mi : are all orthogonal matrix

Composition Function 9 (F23 n=6)

1 2 ()f x− : Rotated Expanded Scaffer’s F6 Function

3 4 ()f x− : Weierstrass Function

5 6 ()f x− : Griewank’s Function

[1,1,1,1,1,2]σ = ,

[5;10;5*5 /100;5 /100;5;1]λ =

Mi : are all orthogonal matrix

Composition Function 10 (F24 n=6)

1 2 ()f x− : Rastrigin’s Function

3 4 ()f x− : F8F2 Function

5 6 ()f x− : Weierstrass Function

[1,1,1,1,1,2]σ = ,

[5;10;5*5 /100;5 /100;5;1]λ =

Mi : are all orthogonal matrix

Composition Function 11 (F25 n=8)

1 2 ()f x− : Rastrigin’s Function

3 4 ()f x− : F8F2 Function

5 6 ()f x− : Weierstrass Function

7 8 ()f x− : Griewank’s Function

[1,1,1,1,1,2,2,2]σ = ,

[5;1;5;1;50;10;5*5 / 200;5 / 200]λ =

Mi : are all orthogonal matrix

Composition Function 12 (F26 n=8)

1 2 ()f x− : Rotated Expanded Scaffer’s F6 Function

3 4 ()f x− : F8F2 Function

5 6 ()f x− : Weierstrass Function

7 8 ()f x− : Griewank’s Function

[1,1,1,1,1,2,2,2]σ = ,

[5*5 /100;5 /100;5;1;5;1;50;10]λ =

Mi : are all orthogonal matrix

Composition Function 13 (F27 n=10)

1 2 ()f x− : Rotated Expanded Scaffer’s F6 Function

 3 4 ()f x− : Rastrigin’s Function

5 6 ()f x− : F8F2 Function

7 8 ()f x− : Weierstrass Function

9 10 ()f x− : Griewank’s Function

[1,1,1,1,1,2,2,2,2,2]σ = ,

[5*5 /100;5 /100;5;1;5;1;50;10;5*5 / 200;5 / 200]λ =

Mi : are all orthogonal matrix

Composition Function 14 (F28 n=10)

All settings are the same as F13, except Mi’s condition numbers are [10 20 50 100 200 1000
2000 3000 4000 5000]

Composition Function 15 (F29 n=10)

1()f x : Weierstrass Function

2 ()f x : Rotated Expanded Scaffer’s F6 Function

3 ()f x : F8F2 Function

4 ()f x : Ackley’s Function

2

1 1

1 1() 20exp(0.2) exp(cos(2)) 20
D D

i i i
i i

f x x x e
D D

π
= =

= − − − + +∑ ∑ 5 ()f x : Rastrigin’s Function

6 ()f x : Griewank’s Function

7 ()f x : Non-Continuous Expanded Scaffer’s F6 Function

2 2 2

2 2 2

(sin () 0.5)
(,) 0.5

(1 0.001())
x y

F x y
x y
+ −

= +
+ +

1 2 2 3 1 1() (,) (,) ... (,) (,)i D D Df x F y y F y y F y y F y y−= + + + +

1/ 2
1, 2,...,

(2) / 2 1/ 2

j j

i

j j

x x
y for j D

round x x

⎧ <⎪= =⎨
>⎪⎩

1 0 & 0.5
() 0.5

1 0 & 0.5

a if x b
round x a if b

a if x b

− ≤ ≥⎧
⎪= <⎨
⎪ + > ≥⎩

8 ()f x : Non-Continuous Rastrigin’s Function

2

1
() (10cos(2) 10)

D

i i i
i

f x y yπ
=

= − +∑

1/ 2
1, 2,...,

(2) / 2 1/ 2

j j

i

j j

x x
y for j D

round x x

⎧ <⎪= =⎨
>⎪⎩

9 ()f x : High Conditioned Elliptic Function

1
6 21

1

() (10)
iD
D

i
i

f x x
−
−

=

= ∑

10 ()f x : Sphere Function with Noise in Fitness

 2

1

() ()(1 0.1 (0,1))
D

i i
i

f x x N
=

= +∑

n=10

2iσ = for all i

[10;5 / 20;1;5 / 32;1;5 /100;5 / 50;1;5 /100;5 /100]λ =

Mi are all rotation matrices, condition number are [100 50 30 10 5 5 4 3 2 2];

