
Play to Earn in the Metaverse over Wireless
Networks with Deep Reinforcement Learning

Terence Jie Chua
Graduate College

Nanyang Technological University
terencej001@e.ntu.edu.sg

Wenhan Yu
Graduate College

Nanyang Technological University
wenhan002@e.ntu.edu.sg

Jun Zhao
School of Computer Science & Engineering

Nanyang Technological University
junzhao@ntu.edu.sg

Abstract—The Metaverse Play-to-Earn games on mobile have
been gaining popularity as it enables players to earn in-game
tokens which can be translated to real-world profits. With the
advancements in augmented reality (AR) technologies, users
are able to join the digital society and play AR games in
the Metaverse. However, these high-resolution games are deeply
interactive and compute intensive, and in-game graphical scenes
needs to be offloaded from mobile devices to an edge server
for computation. In our work, we consider a realistic asym-
metric dual-joint optimization problem where the Metaverse
Service Providers (MSP)’s objective is to reduce in-game graphics
down-link transmission latency, up-link transmission latency,
and users’ (UE) device energy consumption, while maximiz-
ing UE resolution-influenced in-game earning potential through
optimizing the down-link user-Metaverse Service Provider Cell
Station (UE-MSPCS) assignment (discrete-case allocation) and
the up-link transmission power selection (continuous-case power
selection). The data downlink and uplink transmissions are then
executed asynchronously. We proposed a novel multi-agent, loss-
sharing (MALS) deep reinforcement learning model to tackle
the above-mentioned asynchronous and asymmetric problem. We
then compare our proposed multi-agent model with other base-
line models and show its superiority over other methods.

I. INTRODUCTION

Background. The introduction and rapid expansion of the
Metaverse has brought a myriad of opportunities [1], and Play-
to-Earn is one of the most iconic features. Traditionally, and
prior to the introduction of the Metaverse, players’ do not
have complete ownership over their in-game earnings, assets
and tokens as they ultimately belonged to the game developers
and creators. Yet now, the existence of the Metaverse allows
players to gain ownership over their in-game token earnings
and possessions through block-chain contracts [2]. These con-
tracts certify the legitimacy and ownership of in-game items
thus enabling its real-world value.

Compute-intensive Mobile Augmented Reality (MAR).
Many of the Play-to-Earn games are developed for mobile
devices [3], enabling people to play them whenever and
wherever possible to earn in-game currency and items. With
rapid development within the gaming industry, the general
trend of modern Play-to-Earn games such as Polkacity [4],
and Reality Clash [5] are also moving in the direction of
delivering high-quality, Mobile Augmented Reality (MAR)
graphics, rendering these Metaverse game graphics to be much
more compute-intensive. Despite rapid development in AR
technologies, current mobile devices do not have sufficient

computing power to keep up with the rapidly increasing
graphical demands of augmented reality (AR) game-play. Yet
in the context of AR play-to-earn games, the fluidity of gaming
experience should be highly regarded as it influences player’s
game play. An alternative, yet feasible method to powering AR
game-play is to off-load computation to an edge computing
server [6], [7].

Motivation. In the context of the play-to-earn Metaverse
games, an example of in-game graphics offloading pipeline
can be described as such: In a single iteration of transmissions,
high-resolution in-game graphics can first be downloaded from
the Metaverse Service Provider Cell Station (MSPCSs) to the
players (UEs), in which players will view in-game scenes
and take actions, altering the in-game scenes. These altered
in-game scenes are then offloaded back to the MSPCSs for
computation. In the above-mentioned computation offloading
process, there is often concerns pertaining to long transmission
delays, poor in-game graphic resolution, and expensive energy
consumption required to power the transmission process.

Problem. We formulated the problem in such a way that
the objective of the Metaverse Service Providers (MSP) is to
minimize the (i) graphical data down-link transmission delay,
(ii) up-link transmission delay, (iii) and UE device battery
consumption, while maximizing (iv) players’ in-game earning
potential influenced by graphic resolution, by optimizing the
UE-MSPCS allocation, and UE up-link energy consumption.
This is to ensure player retention by improving their overall in-
game fluidity, experience, profitability and UE device battery
life for long periods of play. This problem is non-trivial as
there is a clear trade-off between UE device battery consump-
tion for up-link transmission and up-link transmission latency.

A. Our Approach and Rationale

To tackle these above-mentioned problems, we introduce
a novel Multi-Agent Loss-Sharing (MALS) deep reinforce-
ment learning (RL)-based orchestrator which houses a down-
link (DL) and an up-link (UL) agent which aims to jointly
maximize the utility functions of the MSP. Specifically, we
designed the DL agent to be a discrete-action space RL agent
which chooses the UE-MSPCS allocation, and a continuous-
action space RL agent which selects UE device uplink power
to maximize the utility function. However, instead of providing
the agents an overarching objective function, the agents are as-

signed to tackle sub-objectives which are within their control.
It is intuitive to have differing sub-objectives in each of the
DL and UL stages as the data transmitting party in each stage,
and hence, variables in which they control, differ. This is to
avoid “confusing” the agents while providing the agents with
clearer goals. Note that the agents are asymmetric, in that they
have separate sub-objectives and have different action space
type. The UL and DL agents are also executed asynchronously
and the DL agent will first select the UE-MSPCS allocation,
conduct the DL data transfer, followed by the UL transmission
and UL power selection by the UL agent. While it may seem
that the UL and DL transmission processes are two separate
processes: asymmetric and asynchronous, it is important to
consider the concurrent optimization of both stages. We do not
employ the traditional Multi-Agent Reinforcement Learning
(MARL) [8] as our proposed problem is asynchronous. In
our proposed scenario, the down-link and up-link agent will
execute actions in an alternate fashion. However, the traditional
MARL considers all agents’ actions and each agent executes
actions simultaneously in each time-step, rendering the tradi-
tional MARL inefficient in our proposed scenario.

B. Related Works and Our Work’s Novelty.

Computation offloading of Metaverse applications. Since
the Metaverse is still relatively new, limited studies con-
sider the computation offloading of Metaverse applications.
Chua et al. [9] introduced an AR socialization over 6G
wireless networks within the Metaverse scenario and proposed
a deep RL approach to tackle it.

Deep Reinforcement Learning for Task-offloading. There
are several works utilizing deep reinforcement learning for
the purpose of optimizing task-offloading [10]–[12]. However,
these works consider the system as a single entity. In practical-
ity, the DL and UL process may involve different parties in the
transmission process and may have different sub-objectives.

In contrast to these abovementioned works, there are also
some excellent works focused on solving joint optimization
problems with Multi-Agent RL. Guo et al. [13] solved the
handover control and power allocation joint problem using
MAPPO, under the traditional Centralized Training Decen-
tralized Execution (CTDE) paradigm. He et al. [14] utilized
Multi-Agent RL to solve a joint power allocation and channel
assignment problem. However, these works do not address a
multi-stage, asynchronous transmission scenario, like the one
we consider in our work.
Contributions. Our contributions are as follows:

• Dual Joint Optimization: We formulated a novel
Metaverse Play-to-Earn-enabled mobile edge computing
(MEC), dual joint optimization problem.

• Multi-Agent-Loss-Sharing: We proposed a novel
asymmetric and asynchronous Multi-Agent (Discrete-
Continuous) Loss-Sharing reinforcement learning-based
orchestrator to tackle a novel Asynchronous and
Asymmetric wireless communication problem.

• Comparison of our proposed methods against base-
line: We compare our (i) proposed method MALS with

Intersection
Area

MSPCS select

Inter-cell
interference

Intra-cell
interference

*Inter-cell interference is
in Downlink stage

Continuous Action:
power allocation

Discrete Action:
MSPCS Selection

Max

MinMin

Min A
ge

n
t2

A
ge

n
t1

Fig. 1. System Model illustrating the interaction of the UEs with the MSCPS,
Agents’ sub-objectives and variables-of-control.

baseline methods such as (ii) independent dual-agent
(IDA) and (iii) CTDE (MARL) [8] reinforcement learning
algorithms and show the superiority of our proposed
method in handling Asynchronous executions.

II. SYSTEM MODEL

Problem Scenario. Consider the real-time down-link (DL)
and up-link (UL) transmission of N = {1, 2, ..., N} players
(UE) moving about. In each complete transmission iteration,
each UE i ∈ N begins downloading Metaverse in-game scenes
from an MSPCS. We consider both intra-cell interference and
inter-cell interference in the DL transmission. After the DL
of in-game graphical data, we consider the UL transmission
of the same set of N = {1, 2, ..., N} players’ (UE) changes
to in-game graphical scenes, to its allocated MSPCS from a
set of M = {1, 2, ...,M}. Each UE i ∈ N will upload their
Metaverse in-game graphical scenes to their allocated MSPCS.
We consider intra-cell interference in the up-link transmission.
For the sake of simplifying an already complex scenario, we
consider the scenario in which users only make movement
after each successful down- and up-link data transmissions.

A. Down-link Communication

Our communication scenario is based on wireless cellular
network. Each MSPCS M = {0, 1, 2, ...,M} will have its
down-link channel assigned to the UEs N = {1, 2, ..., N}.
Dt = {Dt

1, D
t
2, ..., D

t
N} is the size of the in-game graphics

to be downloaded from the MSPCSs to the UEs, where Dt
i

denotes the size of data to be downloaded by player (UE)
i ∈ N at transmission iteration t. In addition, we have channel
allocation ct = (ct1, ..., c

t
N), where cti = v(i ∈ N , v ∈ M)

denotes UE i is allocated to MSPCS v at iteration t. We can
derive the signal to interference plus noise ratio (SINR) of
UE i at iteration-step t as:

Γt
i =

gt
v,ip

t
v,i

gt
v,i

∑
n∈N\{i}:ctn=ct

i

pt
v,n+

∑
j∈M\{v}

gt
j,i

∑
k∈N :ct

k
=ct

i

pt
j,k+wσ2 .

(1)

where ptv,i is the transmit power of MSPCS v for commu-
nication with UE i at iteration step t, gtv,i is the channel gain
between MSPCS v and UE i at iteration step t. ptv,n is the
power allocated by CS v to user n ̸= i at iteration step t,
gtj,i is the channel gain between other MSPCS j and UE i,
and ptj,k is the transmit power of MSPCS j to other UE k. w
is the bandwidth of each MSPCS and σ2 denotes the additive
white gaussian background noise. Note that from here, we may
discuss variables and terms without index t for convenience
and simplicity of explanation.

Essentially, gv,i ·pv,i is the transmission signal from MSPCS

v to UE i,

[
gv,i ·

∑
n∈N\{i}:ctn=cti

pv,n

]
is the intra-cell interfer-

ence caused by the interaction between MSPCS v and other

UE n ̸= i to UE i, and

[∑
j∈M\{v}

gj,i
∑

k∈N :ctk=cti

pj,k

]
is

the inter-cell interference caused by the signals of all other
MSPCSs j ̸= v to UE i.

For each iteration step t, the down-link data transfer rate
rd,ti from the MSPCS to UE i is influenced by the SINR as
such, based on the Shannon-Hartley theorem [15]:

rd,ti = w · log2
(
1 + Γt

i

)
, (2)

For a fixed data size to be transmitted, a higher data transfer
rate results in a shorter down-link transmission delay at
iteration step t as shown:

ℓd,ti =
Dt

i

rd,ti

(3)

where Dt
i is the size of down-link in-game data from MSPCS

to UE i at iteration step t and the resolution-impacted earning
potential function ω(rd,ti) is influenced by the UE i’s SINR.
Intuitively, a more efficient UE to MSPCS allocation results
in a higher UE i SINR, UE i down-link transmission rate
(data transmitted per unit time rd,ti), and lower total down-
link transmission delay ℓd,ti , at iteration t, for all UE i. A
higher data transmitted per unit time is translated to improved
graphic resolution per unit time, resulting in an enhancement
in players’ in-game visuals, which translates to better in-game
performance and hence, better resolution-influenced earning
potential.

B. Up-link Communication

In the up-link leg of the communication model, each player
(UE) allocated to an MSPCS will upload its graphical changes
to the previously downloaded Metaverse in-game scene data,
to its assigned MSPCS. These graphical changes to the scenes
are denoted zDt = {zDt

1, zD
t
2, ..., zD

t
N} where z represents

a scaling factor, relating the UL and DL data size. We
consider the intra-MSPCS interference and derive the signal to

interference plus noise ratio (SINR) of MSPCS v at iteration
step t as:

βt
i =

gtv,i · pti,v∑
n∈N\{i}:ctn=cti

ptn,v · gtv,n + wσ2
(4)

where pti,v is the power transmitted from UE i to MSPCS
v at iteration t, ptn,v is the power transmitted from other
UE n allocated to MSPCS v, to the MSPCS v, at iteration
t, and gtv,n is the channel gain between other UE n and
MSPCS v at iteration t. The up-link data rate ru,ti can similarly
be represented by ru,ti = ϑ · log2 (1 + βt

i), where ϑ is the
bandwidth of the transmitting UE devices. Similarly, as the
number of UEs allocated to the same MSPCS increases, the
SINR and hence rate of data transfer, decreases.

The up-link transmission latency of UE i at iteration step t
is defined as such:

ℓu,ti =
zDt

i

ru,ti

(5)

where zDt
i is the up-link in-game graphics data size of UE i

at iteration step t, ru,ti is the up-link data transfer rate of UE
i at iteration step t. The energy consumed by UE i to upload
the in-game graphics data at iteration step t is defined as:

Et
i = pti,v · ℓ

u,t
i (6)

In each round (iteration or step t) of in-game data up-link, the
battery-life remaining in UE i is:

Batti = Batt−1
i − Et

i (7)

where Bat0i is the battery capacity of UE i at full charge.
Finally, we represent the total battery charge consumed as of
iteration step t as a percentage of battery size at full charge,
for each UE as such: Qt

i =
Bat0i−Batti

Bat0i
· 100, where Qt

i is
the battery charge consumed as a percentage of total device
battery capacity of UE i as of time step t. The selection of
up-link transmission power influences the up-link transmission
latency, which influences the fluidity. On the other hand, the
selection of up-link transmission power also influences UE
battery charge consumption.

C. Problem formulation

To sum up, the DL sub-objective of the MSP is to find the
optimal UE-MSPCS allocation arrangement ct which mini-
mizes the total down-link latency ℓd,ti while maximizing the
total resolution-influenced UE earning potential ω(rd,ti). We
formulated our down-link utility function as:

min
ct

T∑
t=1

∑
i∈N

q · ℓd,ti − (1− q) · b · ω(rd,ti), (8)

s.t.

M∑
j=1

cti,j = 1,∀i ∈ N ,∀t ∈ T, (9)

Dt
i ≥ 0,∀i ∈ N ,∀t ∈ T (10)

where T is the total number of down-link transmissions of
in-game graphical data. The constraint (9) restricts each UE
to be allocated to only one MSPCS in each iteration step. The

constraint (10) ensures that the down-link data for all UEs in
each iteration step is non-negative. q is a scaling factor which
seeks to balance the order difference in magnitude between
ℓd,ti and ω(rd,ti). b is a factor which places both terms ℓd,ti and
b · ω(rd,ti) on the same measurement unit.

On the other hand, the UL sub-objective of the MSP is
to find the optimal UE up-link power allocation pt which
minimizes the total up-link latency ℓu,ti and UE device battery
consumption Qt

i. We formulate our up-link utility function as:

min
pt

T∑
t=1

∑
i∈N

h · ℓu,ti − (1− h) · f ·Qt
i, (11)

s.t.

M∑
j=1

cti,j = 1,∀i ∈ N ,∀t ∈ T (12)

Qt
i ≤ 100,∀i ∈ N ,∀t ∈ T, (13)

where ℓu,ti is the up-link transmission delay of player (UE) i
at iteration step t, Qt

i is the UE battery consumption of UE i
at iteration step t, and h is a factor which scales Qt

i to be on
a balanced magnitude of order as ℓu,ti . Scaling factor f in the
objective function is essential in placing both terms ℓu,ti and
f ·Qt

i on the same measurement unit. Constraint (12) ensures
that each UE is allocated to only 1 MSPCS. Finally, constraint
(13) ensures that the UE battery consumption has to be less
than 100% (or battery life (%) has to be greater than 0) for
the up-link transmission.

III. REINFORCEMENT LEARNING SETTINGS

For our work, we assign two reinforcement learning agents,
one (DL agent) controlling the down-link transmission UE-
MSPCS allocation, and the other (UL agent) controlling the
up-link transmission power selection. The DL agent and UL
agent serve their sub-objectives (8) and (11), respectively.

A. State, Action, Reward Design

State. For the DL agent’s observation state sd, we have
chosen to include 1) Channel gain between each UE and
all MSPCSs: gtv,i, 2) in-game scene DL data size at each
transmission iteration t: Dt

i , as Dt
i influences latency ℓd,ti and

gtv,i influences both data DL transmission rate, latency ℓd,ti and
resolution-influenced in-game earning potential ω(rd,ti).

For the UL agent’s observation state su, we have chosen to
include 1) Channel gain between each UE and all MSPCSs:
gtv,i, as it influences data UL transmission rate, latency ℓu,ti

and uplink transmission battery consumption Qt
i. As we are

enforcing that each UE device has positive battery-charge
to continue the up-link transmission at each transmission
iteration step t, we have to include 2) Battery charge consumed
(%) of UE devices Qt−1

i from the previous iteration for the
calculation of the battery charge consumed (%) Qt

i in the
present iteration.

Action. In the DL communication model, the DL agent’s
action is to decide the UE to MSPCS allocation, in which the
action space can be written as such: ad,t = ct = {ct1, ...ctN}.
The number of the discrete actions is NM , where N denotes

ac
ti
o
n
_l
o
g_
st
d

m
u

st
d

N
~(
m
u
,s
td
)

Si
gm

o
id

so
ft
m
ax

C
at
e
go
ri
ca
l

Environment

da

us ua

dsCollect
trajectory

us

ds

us

ds

(, , ')u u uR s s (, , ')d d dR s s

Calculate
Advantage

Calculate
Advantage

uA

dA

Centralized
Training

u dLoss Loss+

Fig. 2. Reinforcement Learning Multi-Agent-Loss-Sharing Proximal Policy
Optimization (MALS-PPO) structure and model update.

the number of UEs and M is the total number of MSPCSs.
This signifies that each UE will be allocated one MSPCS.

In the UL communication model, the action space is contin-
uous and action dimension is N , in which there is one power
output value selected for each UE to transmit the in-game data
to its assigned MSPCS. The up-link action space at each trans-
mission iteration is written as such: au,t = pt = {pt1, ..., ptN},
where pti (i ∈ N) is the up-link power selected at iteration t
for UE N .

Reward. For the down-link communication model, the
reward given to the DL agent at transmission iteration t is
given as such:

Rd,t = −

∑
i∈N q · ℓd,ti − (1− q) · b · ω

(
rd,ti

)
N

(14)

while for the up-link communication model, the reward given
to the UL agent at transmission iteration t is given as such:

Ru,t = −
∑

i∈N h · ℓu,ti − (1− h) · f ·Qt
i

N
(15)

The intuition for the down-link and up-link reward assignment
follows the utility function in equation (8) and (11), respec-
tively. We divide the reward functions by N players to find an
average reward, as average reward received per UE is more
intuitive than the reward sum.

B. Multi-Agent-Loss-Sharing (MALS)

In our work, we equipped our MALS algorithm with a
discrete-action space Actor, a continuous-action space Actor
and a multi-head Critic, based on a Proximal Policy optimiza-
tion (PPO) algorithm [16].

Function process: In each transmission iteration, the re-
wards (Ru,t, Rd,t) with states (su,t, sd,t) and next states
(su,t+1, sd,t+1) will be sent to critic for generating the state-
value V and loss functions of Critic. Finally, V will be used
to calculate the advantage value for updating the Actors.
This process repeats until the end of an episode. The above-
mentioned process is illustrated in Fig 2.

Asymmetric Actor: In MALS, there are two Actors, one is
responsible for arranging channel resources in the DL stage,
and the other is responsible for allocating transmission power

in the UL stage. Apart from their asymmetric task, the action
space types for both DL and UL agents, and hence policy
parameterizations, are dissimilar.

Each agent attempts to achieve its own sub-objectives. In
MALS, θd and θu are the network weights of DL agent and
UL agent and the gradients ∆θd, ∆θu of the DL agent and
UL agent are:

∆θu = E(su,t,au,t)∼πθu′ [▽f
t(θu)A

u(su,t)] (16)

∆θd = E(sd,t,ad,t)∼πθd
′ [▽f

t(θd)A
d(sd,t)] (17)

where f t(θ) = min{Rt(θ), clip(Rt(θ), 1 − ϵ, 1 + ϵ)} in the
case of PPO, in which Rt is the reward obtained by an agent
at iteration t, and ϵ is the clipping parameter. The advantage
function A(·) of both UL and DL agents are estimated with a
truncated version of GAE [17].

Multi-head Critic: In our problem, the objectives of each
agent are different. Thus, we propose the MALS to aid the
estimation of the value function in the reward problem. This
Multi-head Critic have two heads and the value network is
divided into two branches V u

ϕ , V d
ϕ . The value function can

be estimated by the two-head neural network F (·) as shown
below:

V u
ϕ = F (su) (18)

V d
ϕ = F (sd) (19)

Then, we sum the weighted losses of each head as the loss
function of the Multi-head Critic:

Lu(ϕ) = (Vϕ(s
u,t)−Au,t − γVϕ′(su,t+1))2 (20)

Ld(ϕ) = (Vϕ(s
d,t)−Ad,t − γVϕ′(sd,t+1))2 (21)

L(ϕ) = κ1 × Lu(ϕ) + κ2 × Ld(ϕ) (22)

where ϕ, ϕ′ are the weights of the critic network and the target
network, respectively, and κ1 and κ2 are the weights of each
head’s loss. We update the Multi-head critic through (22) to
improve the estimate of the multi-value function.

IV. EXPERIMENT RESULTS

A. Configuration
We use three congestion settings: 3 MSPCSs and 4 to

6 UEs (with 3 MPSPCSs and z number of UEs denoted
as ”3z” from hereon) to test our proposed Multi-Agent-
Loss-Sharing (MALS) reinforcement learning-based method.
The bandwidth and noise are simulated to be w = 10
MHz and σ2 = −100 dBm, respectively. We design the
in-game resolution-influenced earning potential function to
be: ω(rd,ti) = P · exp−rd,ti , where P is a positive scaling
factor which controls the maximum profit a user can make.
Intuitively, as UE i down-link data size at iteration step t
increases, the resolution of the in-game graphics increases,
resulting in an increase in resolution-influenced in-game earn-
ing potential. This earning potential function is arbitrary and
is chosen as such for simplicity. We set different MSPCS
power output and initialized random locations within a 100m
by 100m area for the MSPCS and for different UEs as:
(1.5, 2.0) Watt, (0, 100) m, respectively. The metaverse in-
game graphic sizes Dt

i of each UE varies every episode from

Algorithm 1 MALS-PPO (proposed RL structure)

Initiate: critic parameter ϕ and target network ϕ
′
, down-link

actor parameter θd, up-link actor parameter θu, initial state
sd,1, sd,t ← sd,1

1: for iteration = 1, 2, ... do
2: DL agent execute action according to πθ

′
d
(ad,t|sd,t)

3: Get reward Rd,t and up-link state su,t

4: UL agent execute action according to πθ′
u
(au,t|su,t)

5: Get reward Ru,t and next step down-link state sd,t+1

6: if iteration ≥ 2 then
7: Sample (sd,t, ad,t, su,t, au,t, Rd,t, Ru,t, sd,t+1, su,t+1)

iteratively
8: end if
9: sd,t ←sd,t+1, su,t ←su,t+1

10: Compute advantages {Ad,t, Au,t}
11: Compute target values {V d,t

targ, V
u,t
targ}

12: for k = 1, 2, ...,K do
13: Shuffle the data’s order and set batch size bs
14: for j=0, 1, ..., T

bs − 1 do
15: Compute gradient for down- and up-link actors:

▽θd,▽θu
16: Apply gradient ascent on θd using ▽θd by eq. (17)
17: Apply gradient ascent on θu using ▽θu by eq. (16)
18: Update critic with loss from eq. (22)
19: end for
20: end for
21: Assign target network parameters ϕ

′ ← ϕ every C steps
22: end for

800 to 1000 Mb. We set P , b and f to be 100, 50 and 75,
respectively, after empirical tuning, and h and q to be 0.5.
In each transmission iteration step, UEs randomly move a
maximum of 10m in x and y directions, in which x and y
represents the relative longitudinal and latitudinal directions
in our 100m by 100m map. We adopt the ADAM optimizer
[18] for all our implemented algorithms. To better observe the
final model performances, we trained the models for 1,000,000
iterations (steps) for all congestion settings. We conducted the
training and simultaneous evaluation of the models for each
of the configurations at different seed settings: seed 0 to seed
9.

B. Result analyses

1) MALS model convergence: In training our MALS
model, all three configurations showed a general increment
of achieved test reward for both the DL and the UL agents as
training progresses (shown in Figure 4).

Down-link. The gradual increment in the MALS down-link
agent reward, as training progresses, can be attributed to the
decrease in in-game down-link transmission time and increase
in resolution-influenced earning potential of the UE devices
(shown in Figure 3) with each training step. These observa-
tions directly reflect that the down-link agent is allocating UE-
MSPCS more efficiently, decreasing the down-link latency and

Average down-link delay. Average UE earning potential.

Average up-link delay. Average battery consumption percentage.

Fig. 3. Key metrics performance obtained through MALS across training steps.

improving the resolution-influenced earning potential of the
UEs.

Up-link. Similarly, we note that the improvement of the
MALS up-link agent reward received, as training progresses,
can be attributed to the more optimal selection of UE trans-
mission output power for the up-link transmission, resulting
in a lower average up-link delay and lower battery charge
consumption (shown in Figure 3).

2) Comparison with other reinforcement learning model
structures: We studied how our proposed MALS model
compared to two other RL-based model structures; the most
intuitive (ii) independent dual agent (IDA) (which employs
two individual agents in which information transfer is only
via the states), and (iii) CTDE (which is the framework
used for MARL) [8]. Our proposed model (MALS model
structure) achieves a smooth convergence for each of the
configuration, exhibiting a narrow range of down-link and up-
link rewards, across different seeds (shown in Figure 4). The
narrow bands indicate that the proposed model’s performance
is stable across the different seed settings, for each of the
congestion configurations.

On the other hand, the (ii) IDA model took significantly
more steps to converge (shown in Figure 4). Furthermore, the

variance of the down-link rewards obtained is much larger,
with some seeds achieving excellent reward performance, yet
failing in other seeds. The excellence of the down-link reward
obtained by the IDA model in some seeds is reflected as
a compromise in the performance of the independent dual
agent’s up-link reward. From Figure 4, we can observe for
the IDA model in ”34” and ”35” configurations, there is a
slight improvement in the up-link rewards in the early steps of
training, followed by a subsequent decline in rewards obtained
in later steps. This indicates instability and hyper-sensitivity of
the model when handling different seed settings. It is apparent
that the the down-link agent’s rewards are prioritised over the
up-link agent’s rewards in this case, and this is not ideal in
real-world.

The (iii) CTDE model achieved lackluster performance
when compared to our proposed methods (MALS) for both
the down-link and up-link rewards (shown in Figure 4), and
produced a large variance of down-link and up-link reward
outputs across the different seeds, albeit not as severe as the
IDA model. The lower rewards and higher variance across
seeds reflect poorer performance, instability and unreliability
of the CTDE model.

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

60

40

20

0

20

R
ew

ar
d

34
35
36

Down-link reward for MALS method.

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

25

20

15

10

5

R
ew

ar
d

34
35
36

Up-link reward for MALS method.

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

75

50

25

0

25

50

75

100

R
ew

ar
d

34
35
36

Down-link reward for IDA model.

0.0 0.2 0.4 0.6 0.8 1.0

Steps 1e6

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

R
ew

ar
d

34
35
36

Up-link reward for IDA model.

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

100

80

60

40

20

0

20

40

60

R
ew

ar
d

34
35
36

Down-link reward for CTDE model.

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

20

15

10

5

R
ew

ar
d

34
35
36

Up-link reward for CTDE model.

Fig. 4. Up-link and down-link agent rewards obtained for MALS model,
Independent Dual Agent model, CTDE model, across congestion settings and
seed 0 to 9. Bands within the graph indicate the range of reward values
obtained.

V. CONCLUSION

In this work, we considered a Metaverse Play-to-Earn mo-
bile edge computing framework and formulated an asymmetric
(discrete-continuous) and asynchronous (alternating DL and
UL) dual-joint optimization where the MSPs’ objective is
to minimize in-game graphics DL, UL transmission latency,
and UE device battery charge consumption, while maximizing
UEs’ in-game resolution-influenced earning potential. We then
proposed a novel multi-agent loss-sharing (MALS) RL model
to tackle the above-mentioned asynchronous and asymmetric
problem, and demonstrated its superiority in performance over
other methods. In future works, we will conduct thorough and
in-depth joint optimization weighting-analyses of our proposed
model.

REFERENCES

[1] E. Sheridan, M. Ng, L. Czura, A. Steiger, A. Vegliante, and
K. Campagna, “Framing the future of web 3.0: Metaverse edi-
tion,” https://www.goldmansachs.com/insights/pages/framing-the-future-
of-web-3.0-metaverse-edition.html, 2021.

[2] R. Browne, “Cash grab or innovation? the video
game world is divided over nfts,” Dec 2021. [Online].
Available: https://www.cnbc.com/2021/12/20/cash-grab-or-innovation-
the-video-game-world-is-divided-over-nfts.html

[3] A. N. Roos, “Best play-to-earn games with nfts or crypto,” Sep 2022.
[Online]. Available: https://www.playtoearn.online/games/

[4] [Online]. Available: https://www.polkacity.io/
[5] “Reality clash.” [Online]. Available: https://realityclash.com/

[6] L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1584–1607,
2019.

[7] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Compute-and
data-intensive networks: The key to the metaverse,” arXiv preprint
arXiv:2204.02001, 2022.

[8] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Advances in neural information processing systems, vol. 30,
2017.

[9] T. J. Chua, W. Yu, and J. Zhao, “Resource allocation for mobile
metaverse with the internet of vehicles over 6g wireless commu-
nications: A deep reinforcement learning approach,” arXiv preprint
arXiv:2209.13425, 2022.

[10] H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu, “Optimization of lightweight
task offloading strategy for mobile edge computing based on deep
reinforcement learning,” Future Generation Computer Systems, vol. 102,
pp. 847–861, 2020.

[11] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino,
“Task offloading and resource allocation for mobile edge computing by
deep reinforcement learning based on sarsa,” IEEE Access, vol. 8, pp.
54 074–54 084, 2020.

[12] M. Tang and V. W. Wong, “Deep reinforcement learning for task
offloading in mobile edge computing systems,” IEEE Transactions on
Mobile Computing, 2020.

[13] D. Guo, L. Tang, X. Zhang, and Y.-C. Liang, “Joint optimization
of handover control and power allocation based on multi-agent deep
reinforcement learning,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 11, pp. 13 124–13 138, 2020.

[14] C. He, Y. Hu, Y. Chen, and B. Zeng, “Joint power allocation and channel
assignment for noma with deep reinforcement learning,” IEEE Journal
on Selected Areas in Communications, vol. 37, no. 10, pp. 2200–2210,
2019.

[15] J. R. Pierce, An introduction to information theory: symbols, signals and
noise. Courier Corporation, 2012.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[17] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

