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Abstract— A computational framework for statistically 
characterizing electric (E-) fields generated during transcranial 
magnetic stimulation (TMS) is presented. The framework 
combines a high dimensional model representation (HDMR) 
technique with a quasi-static finite-difference (QSFD) simulator 
to obtain statistics of E-fields due to uncertainty in the TMS setup 
and patient’s brain anatomy. Application of the proposed 
computational framework shows that E-fields induced by TMS 
are highly sensitive to the position and orientation of TMS coils, 
as well as the size of patient’s brain. 

I. INTRODUCTION 
TMS is a non-invasive method used in psychiatry and in 

neuroscience research for stimulating neuronal tissue. During 
TMS, coils located near the scalp and driven with low-
frequency current pulses generate magnetic fields that induce 
E-fields and eddy currents inside the conductive brain tissue. If 
E-field inside a neuron exceeds a specified threshold, the 
neuron will depolarize its membrane leading to an action 
potential and thus affecting brain function. This trigger 
mechanism allows studying causal links between stimulated 
cortical region and observable behaviors. That said, the 
location, volume, and depth of the stimulated cortical region 
often are strongly affected by the uncertainty in the TMS setup 
(e.g. the position and orientation of TMS coils), as well as the 
uncertainty in patient’s brain anatomy (e.g. the permittivity, 
conductivity, and size of the patient’s brain).  

This paper presents a computational framework for 
statistically characterizing E-fields (and thereby, the regions 
stimulated during TMS), given the uncertainty in TMS setup 
and patient’s brain anatomy. The proposed framework 
leverages HDMR expansions [1] to approximate E-fields (and 
hence, their statistics) that are potentially affected by a large 
number of random variables, i.e., the variables that 
parameterize the above uncertainties. The HDMR expansions 
allow generating surrogate models of E-fields via series of 
iteratively constructed component functions involving only the 
most significant random variables. The component functions of 
HDMR expansions are approximated via a multi-element 
probabilistic collocation (ME-PC) method described in [2, 3]. 
While approximating each component function, a QSFD 
simulator [4] is used to compute E-field values at 
integration/collocation points specified by the ME-PC method. 

Upon the generation of accurate surrogate models of E-fields, 
the classical Monte-Carlo (MC) method is used to compute the 
statistics of E-fields while accounting for the probability 
density functions (PDFs) of the random variables. The 
proposed framework was applied to the statistical 
characterization of E-fields inside a three-sphere head model 
and a cortical region of a MRI-derived head model targeted 
during TMS therapy.  

II. FORMULATION 
Assume uncertainties in TMS setup and brain anatomy are 

parameterized by an dofN -dimensional random vector 
dof1 2[ , ,..., ]Nx x x=x , dof

1

N
ii=

∈ Ω = Ω∏x , and each random 
variable ix , dof1, ,i N=  , is mutually independent and 
distributed with a PDF across [ , ]i i ia bΩ = . Let ( )F x  represent 
an observable (e.g., the E-field on a point in cortical region), 
which is typically a complicated function of x  and can only be 
evaluated by a deterministic simulator. In principle, the 
statistics of ( )F x  can be obtained by applying MC, which 
requires evaluation of ( )F x  for many samples of x . That said, 
MC method converges very slowly and becomes impractical 
when each deterministic simulation performed to compute 

( )F x  is CPU-intensive. To circumvent this difficulty, we 
apply the MC method to the surrogate model (i.e., approximate 
representation) of ( )F x  generated using HDMR expansion, 
which approximates ( )F x  via component functions as [1]  
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Here, 0F  is the zeroth-order component function which is 
constant over Ω ; 

1 1
( )i iF x  denotes a first-order component 

function that represents the individual contribution of 
1i

x  to 
( )F x ; 

1 2 1 2
( , )i i i iF x x  denotes a second-order component 

function that reveals the combined contribution of 
1i

x  and 
2i

x  
to ( )F x ; the remaining terms in (1) are higher order combined 
contributions of random variables to ( )F x . The representation 
in (1) can be constructed using the cut-HDMR method [1], 
which expresses the component functions in terms of 
observable values on lines, planes, and hyperplanes (i.e. cuts) 
in Ω . The observable values on cuts are approximated using 
the adaptive ME-PC method [2, 3], which requires the 



evaluation of ( )F x  on collocation/integration points using the 
QSFD solver described in [4]. The HDMR expansion in (1) and 
its advantage can be best described by an example. Assume 

dof 3N = ; the expansion in (1) can be written explicitly as 
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Assume that ( )F x consists of a constant term and monomials, 
i.e., 4 4 4

1 2 3( ) 2F x x x= + + +x . The component functions 0F , 
1 1( )F x , 2 2( )F x , and 3 3( )F x  in (2) are needed to approximate 
( )F x  while the remaining ones in (2) are redundant and should 

be excluded from the HDMR expansion. Including only the 
“most significant” component functions in HDMR expansion 
significantly reduces the computational cost of surrogate model 
generation. An iterative scheme described in [5, 6] is used to 
incorporate the most relevant component functions in the 
HDMR expansion.  

III. NUMERICAL RESULTS 
The proposed framework was used to statistically 

characterize the magnitudes of the E-fields generated inside a 
three-sphere head model [Fig. 1(a)]. The head model consists 
of three-concentric spheres (or layers) that represent the brain, 
skull, and skin tissues from innermost to outermost. The head 
model is excited by a Figure-8 coil centered at (0,0,10.2) cm , 
positioned perpendicular to the z - axis, and driven with a 
current varying at a rate of 8 kA/μs . Five parameters 
characterize the uncertainty in brain anatomy and TMS setup 
( dof 5N = ): the conductivities of the brain brainσ , the skull 

skullσ , and the skin skinσ , and the position of the coil along the 
x −  and y −  directions, xC  and yC , (i.e., 

brain skull skin[ , , , , ]x yC Cσ σ σ=x ). The random variables are 
assumed to be uniformly distributed in ranges [ , ]i ia b , 

1, ,5i =  ; [0.3825,0.5175] S/m , [0.0425,0.0575] S/m , 
[0.3825,0.5175] S/m , [ 1,1] cm− , and [ 1,1] cm− , respectively. 
The observables are the magnitudes of E-fields computed at 
121 points selected on a Cartesian grid centered at 
(0,0,6.5) cm ; the points on grid are positioned 0.3 cm  apart 
from each other [Fig. 1(b)]. The proposed method required 680 
deterministic simulations to generate surrogate models of 
observables with average L-2 norm error of 42.16 10−× . Using 
the surrogate models, the means and standard deviations of 
observables are computed when brain skull skin[ , , , , ]x yC Cσ σ σ=x  
[Figs. 1(c)-(d)]. In addition, standard deviations of observables 
are obtained when [ , ]x yC C=x [Fig. 1(e)], and 

brain skull skin[ , , ]σ σ σ=x  [Fig. 1(f)], respectively. Apparently, the 
uncertainty in coil position significantly affects the E-fields 
while the effect of the uncertainty in tissue conductivity to the 
E-fields is negligible. These results are consistent with the 
results obtained when MRI-derived head models were used 
instead of three-sphere model. The statistics of the E-fields 

inside MRI-derived head models showed that the coil 
orientation and the patient’s brain size have even more 
significant effect on E-fields. The statistics were also useful to 
draw the following conclusions for the use of TMS in 
experimental and clinical settings: (i) Uncertainty in coil 
position and orientation may reduce the response rates of TMS 
depression therapy. (ii) When MRI-guided neuronavigation is 
available, the practitioners should favor targets on the crest of a 
gyrus to obtain maximal stimulation. (iii) An increasing scalp-
to-cortex distance reduces the magnitudes of E-fields on the 
surface and inside the cortex. 

 

Fig. 1 (a) The geometry of the three-sphere head model with 
the Figure-8 coil. (b) The Cartesian grid under the coil. The 

statistical moments of the E-fields’ magnitudes (in V m ): (c) 
the means and (d) standard deviations when 

brain skull skin[ , , , , ]x yC Cσ σ σ=x ; the standard deviations when (e) 
[ , ]x yC C=x  and (f) brain skull skin[ , , ]σ σ σ=x . 
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