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Abstract  
 
In this study, exact and closed-form expressions for the vector and scalar potentials due to the currents 
represented by the Rao-Wilton-Glisson (RWG) bases are derived. Calculation of these potentials play 
a central role in the implementation of the marching-on-in-time (MOT) method for the analysis of 
surface scattering from structures. To the best knowledge of the authors, these potentials have been 
numerically calculated in the frequency domain till now, and time-domain applications have inherited 
similar numerical calculation techniques. In this study, formulae are derived completely in the time 
domain without any assumptions about the temporal behavior of the RWG basis functions. It is shown 
that the aforementioned potentials are directly related with the arc segments formed by the triangular 
patches of the RWG bases and the sphere which is positioned at the observation point and has a radius 
R ct= , where c is the speed of light. Especially, scalar potential is directly proportional to the angles 
of the total arc segments and the vector potential is a function of the bisector vectors related to these 
arc segments. A simple algorithm to calculate these quantities is also explained.  
 
1. Introduction  
 
Problems involving electromagnetic scattering from arbitrarily shaped bodies have been solved by 
numerical procedures. For analyzing scattering problem in the time domain, the Marching-on-in-Time 
(MOT) method has been widely utilized after 1990s. The most computationally expensive part in the 
MOT algorithms is the evaluation of the potential integrals related with the space bases functions. One 
of the widely used space basis functions is the Rao-Wilton-Glisson (RWG) bases [1]. 
 
The first step in an MOT method is to discretize the current density on the radiating or scattering body 
in terms of the RWG basis functions ( )nf r  as 

 ( , ) ( ) ( )n n
n

t I t=∑J r f r , (1) 

where ( )nI t  is the time-dependent coefficient corresponding to the thn  spatial basis function. With 
this expansion, the vector and scalar potentials observed at an arbitrary point r  can be expressed 
respectively as 
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where R ′= −r r  and ∗  denotes temporal convolution. In Eqn. (3), 1t
−∂  denotes integration (anti-

derivative) with respect to time.  
 
During the implementation of an MOT algorithm, the integrals in Eqns. (2) and (3) are to be evaluated. 
Currently, these integrations are handled through numerical quadrature. Recently, an approach to find 
closed-form expressions for these integrals has been proposed [2]. This approach relies on a 
polynomial approximation of the term ( ) ( )nI t t R cδ∗ −  in Eqns. (2) and (3), through which the result 



can be written in terms of time-independent integrals. In this paper, closed-form expressions for the 
integrals in Eqns. (2) and (3) will be derived. Since these integrals (as formulated above) are 
independent from the expansion coefficients ( )nI t , the results are not based on any a priori 
assumptions regarding the temporal behavior of the current distributions. To simplify the discussion 
henceforth, we note that ( ) ( )n n∝ −f r r r  over a triangular domain nS , where nr  is a given vertex of 

nS . Similarly, ( )n∇ ⋅ f r  is a constant over nS . Using these in Eqns. (2) and (3), and moving the terms 

independent of ′r  out of the integrals yields the critical integrals that are the main subject of this 
paper. Namely; 
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The main aim of this paper can be restated as obtaining closed-form and exact expressions for the 
integrals (4) and (5). 
 
The rest of the paper is organized as follows. Since the evaluation of a scalar integral is relatively 
simpler, the evaluation of ( )sH t  will be explained in Section 2. In Section 3, where the evaluation of 

( )v tH  is discussed, it will become clear that certain geometrical parameters are common to the 

evaluation of both ( )v tH  and ( )sH t . Calculation of these geometrical parameters will be 
algorithmically explained in Section 4. Verification of the obtained formulas will be accomplished in 
Section 5 through comparison of the results with those obtained by the inverse Fourier transformation 
of frequency domain results that employ numerical quadratures.  
 
2. The Scalar Potential Integral 
 
In this section, an exact closed-form expression for ( )sH t  will be derived in detail. However, details 
regarding how the geometrical parameters in the resulting expressions can be obtained will be 
illuminated later in Section 4. In [3], the frequency-domain counterpart of ( )sH t  is recognized as the 

scalar potential due to a uniform charge distribution over an arbitrary triangular surface nS . Hence, 

( )sH t  is the scalar potential due to a temporally impulsive charge distribution over nS  that radiates in 

a homogeneous, isotropic, and non-dispersive medium. The key to evaluating ( )sH t  is realizing that  
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To arrive at this expression starting from Eq. (5), first, the origin of the coordinate system is shifted so 
that it coincides with the observation location r . In this shifted coordinate system R r′= . Then, the 
following properties of integration with Dirac functions is employed with ( ) 1f r r′ ′= : 

 ( ) ( ) ( ) ( ) ( ) ( ) .f r t r c dr c f r ct r dr c f ct ct r drδ δ δ′ ′ ′ ′ ′ ′ ′ ′− = − = −∫ ∫ ∫  (7) 

Finally, Eqn. (6) is obtained by re-shifting the origin back to its original location. It is seen that the 
integral is related to the arc length of the line formed by the intersection of two surfaces: nS  and the t-

parametric surface ct R= . This line, labeled nl , is illustrated in Figure 1(a). Hence, in a sense, the 

function ( )sH t  can be interpreted as the spherical Radon transform of the triangle nS  along the radial 
direction R . Let us express this insight in mathematical terms. 
 
To evaluate the integral in Eqn. (6), let us define a local (Cartesian) coordinate system ( , , )u v n , whose 

origin coincides with ρρρρ  (the projection of r  onto the plane of nS ) and unit vectors ̂u  and v̂  lie on 

the plane of nS  as shown in Figure 1(a). Also, let ( , , )nζ φ  denote the local cylindrical coordinates in 



this new system (Figure 1(a)). In this coordinate system, dS d dζ φ ζ′ ≡ . With the definitions of the 
integration limits illustrated in Figure 1(a), the integral in Eqn. (6) can be written explicitly as 
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Here, minζ  and maxζ  denote the distance between the point ρρρρ  and the nearest and farthest points of 

nS  to ρρρρ , respectively. Since the integrand in Eqn. (8) is independent of φ , the inner integration will 

yield 1 2 1( ) ( ) ( )α ζ φ ζ φ ζ= − , which is the angle spanned by ( )nl t . To evaluate the outer integral, a 

change of variables from ζ  to 2 2 ½( )R dζ −= +  can be effected. With these changes and by using 

Eqn. (7), the explicit expression for ( )sH t  can be written as  
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where 1( )tα  is used to succinctly denote ( )2 2
1 ( )ct dα − , since c  and d  are constants. Eqn. (9) is 

the exact closed-form expression for the time-dependent scalar potential integral. The only parameter 
in this expression whose determination is not straightforward is the angle 1( )tα . It will be obvious in 
the next section that during the evaluation of the vector potential integral, vector parameters that 
depend on this angle will also be needed.  
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Figure 1   The ( , , )u v n  and ( , , )nζ φ  coordinate systems, integration limits (a), and the 

definitions of relevant vectors (b) . 

3. The Vector Potential Integral 
 
In this section, an exact closed-form expression for ( )v tH  given in Eqn. (4) will be derived in detail. 

In [3], the frequency-domain counterpart of ( )v tH  is recognized as the vector potential due to a 

vector-valued basis function which is proportional to the vector ( n′ −r r ), where nr  is the position 

vector of a vertex of nS  (see Fig. 1(b)) and it is assumed that nS′∈r . Note that in [3], the vector 

( n′ −ρ ρρ ρρ ρρ ρ ) is used instead of ( n′ −r r ) which are seen to be equal in Fig. 1(b). Henceforth, ( n′ −ρ ρρ ρρ ρρ ρ ) 

will be used. 
 



The strategy used to evaluate ( )v tH  is merely an extension of the procedure discussed in the previous 

section. However, first, ( )v tH  must be split into two terms in order to conveniently apply this 

procedure. The splitting is effected by using ( )n′ − =r r  ( ) ( ) ( )n n′ ′− = − + −ρ ρ ρ ρ ρ ρρ ρ ρ ρ ρ ρρ ρ ρ ρ ρ ρρ ρ ρ ρ ρ ρ  in Eqn. (4), 

yielding 
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The first term on the right hand side is recognized as a constant vector times the ( )sH t  integral that 

appears in the scalar potential evaluation of the previous section. To evaluate 2( )tH , let us again use 

the local cylindrical coordinates ( , , )nζ φ . Then, in this new system, 2( )tH  can be expressed as  

 

2

2max

min 1

2max

min 1

(t)

( )

( )

( )
2

( )

( )
( )

( )
ˆ ˆ( cos sin )

1
ˆ ˆ(cos sin ) ( ) ,

nS

t R c
dS

R

t R c
d d

R

ct R d d
t

φ ζζ

ζ φ ζ

φ ζζ

ζ φ ζ

δ

δζ φ ζ φ ζ φ ζ

φ φ δ ζ φ ζ

=
−′ ′−

−= +

= + −

∫

∫ ∫

∫ ∫

H

u v

u v

ρ ρρ ρρ ρρ ρ

 (11) 

where Eqn. (7) has been used again to obtain the last expression. Evaluating the φ  integral first, and 

then the ζ  integral with a change of variables to R , again, produces the final result as follows: 
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In the final expression, the dependence of 1α  and 1ê  on t  are again expressed in a concise form. Note 

also that 1ˆ ( )te  is nothing but the unit vector along the bisector of the angle 1( )tα . 
 
4. Obtaining Geometrical Quantities 
 
As mentioned above, determination of the angle 1( )tα  and the unit bisector vector 1ˆ ( )te  is crucial in 
the evaluation of both the scalar and vector potential integrals. Here, a simple methodology is derived 
for obtaining these quantities. However, before proceeding further, it should be pointed out that the 
integration limits in Eqs. (8) and (11) are written somewhat naively to illustrate the concept of 
derivation. Only for certain values of ζ , the collection of points in nS  that are a distance ζ  away 

from the origin will form a single arc that lies in the range 1 2( , )φ φ φ∈ . In general, a given value of 

( )tζ  will yield 3L ≤  arcs in nS . These arcs are formed by the intersection of the triangle nS  with a 

sphere of radius R ct=  (or equivalently, with the circle whose center is ρρρρ  and radius is 

2 2( ) ( )t ct dζ = − ). In this general case, the 1( )tα  in Eqn. (9) should be replaced with  
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and the ( )1 1ˆsin 0.5 ( )( )t tα e  term in Eqn. (12) with 

 ( )1 1 1
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where the definitions of ( )i tα  and ˆ ( )i te  are related to the thi  arc in nS . To determine these 
quantities, first, the intersection of the ρρρρ -centered circle with the line segments that bound the triangle 

nS  must be found. As a result of this step, a group of intersection points { ; 6}k k ≤c  will be obtained. 
Then, these intersection points should be grouped in pairs, each of which defines an arc segment 
within nS . Finally, the quantities in Eqns. (13) and (14) can be calculated using the ( )i tα  and ˆ ( )i te  
due to each arc segment.  
 
There exist cases when the circle, whose center is at ρρρρ  and radius is ( )tζ , does not intersect with any 

edges of the triangle nS . In this case, if ρρρρ  is located outside of nS , both ( )tα  and ( )te  are zero. This 

case corresponds to the time intervals for which the fields of the current distribution over nS  have 
either not arrived at the observer location or have already passed it. The latter situation also applies to 
the case when ρρρρ  is located within nS  and ( )tζ  is longer than the distance between ρρρρ  and the 

furthest vertex to this point. Another possibility is that ρρρρ  is located within nS  and ( )tζ  is shorter 
than the distance between ρρρρ  and the nearest edge to ρρρρ . Here, the whole circle coincides with the 

interior of nS  and for this reason ( ) 2tα π= . Due to the sin(0.5 ( ))tα  term in ( )te , it turns out that 

( ) 0t =e  for this case, too. The last case is quite interesting since it points to the fact that actually there 
arises no singularity in the scalar and vector potentials as the observation point approaches to the 
surface which carries the current density. 
 
4. Numerical Results 
 
In this section, the validity of the results in Eqns. (9) and (12) (supplemented with Eqns. (13) and (14)) 
will be demonstrated through comparison with the results that are first obtained in the frequency 
domain and then inverse Fourier transformed to time domain. The frequency domain results are 
calculated by the methods presented in [3]. 
 
For many different types of triangles and arbitrarily selected observation points, ( )sH t  and ( )v tH  
have been evaluated by both time-domain formulation given in this paper (labeled TD in the figures) 
and by the frequency-domain evaluations (labeled FD in the figures). It is seen that the agreement 
between the results obtained through the two formulations are gratifying. Nevertheless in here, results 
that show the salient features of the conducted experiments are presented by using the half RWG basis 
triangle whose vertex coordinates are 1 (10,0,1)=r , 2 (15, 5,1)= −r  and 3 (15,5,1)=r . The current 

represented on this triangle is assumed to be directed away from 1n =r r . In the first example, the 

observation point r  is positioned at (5,0,1), which lies on the symmetry axis of the triangle. In this 

case, the circle (with radius ( )tζ ) firstly intersects the triangle at vertex 1r  at time 16.7t =  ns. Until 

the circle intersects the edge opposite to 1r  at time 33.3t =  ns, there will be a single arc that defines 

( )tα  and ( )te . After this time, there will be two arcs and ( )tα  will decrease rapidly. These 

expectations are clearly met as seen in Fig. 2(a) for ( )sH t  and ( )v tH .  
In the second example, r  is located at point (11, 6,1)−  to demonstrate the robustness of the developed 
algorithm under different arc formations at different time intervals. The circle first intersects the 
triangle at a point over the edge between 1r  and 2r  at time 11.7t =  ns. After this time point, the arc 
segments that contribute to the calculation of ( )tα  and ( )te  show radical differences in three different 
regimes bounded by the time points 11.7 ns, 13.7 ns, 20.2 ns, and 39 ns. Therefore, this is a 
particularly challenging case for the algorithm presented in Section 4. However, as seen from 
Fig. 2(b), the agreement between the time-domain and frequency domain results is excellent.  



It was mentioned in Section 4 that when the observation point is on the basis function, no singularities 
arise. The third example demonstrates this fact with (13,0,1)=r . In Fig. 2(c), in which the scalar 
potentials are compared, there are inconsistencies in regions of sharp transition. In other regions, the 
results show good agreement. The inaccuracies are due to Gibbs phenomenon and reveal the 
insufficiency of using frequency domain integrations to obtain time domain responses.  
So far, only examples with special features and few field components have been presented. The last 
example is designed to demonstrate the robustness of the proposed algorithm under arbitrarily 
conditions. Hence, a triangle with vertex coordinates 1 =r  ( 5.20, 6.14, 6.03)− , 

2 ( 8.61, 5.36,12.17)= −r  ve 3 ( 6.11,13.14, 6.40)= −r  is employed. The observation point is at 

( 9.43, 0.85,14.40)= −r . It is again seen in Fig. 2(d) that both ( )sH t  and all the components ( )v tH  
show perfect agreement with the results obtained in the frequency domain.  
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Figure 2 Numerical results for ( )sH t  and ( )v tH . 
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