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Abstract— A new method is presented to compute radar returns 

scattered by a wind mill farm.  This method will enhance the 

capability of the radar systems to locate low flying aircraft near 

the wind farm. This uses a previously developed method, Wave 

Confinement, to propagate the details of radar returns into the 

far field. A simple demonstration to compute the scattered signal 

from a single wind turbine is presented. 

I. INTRODUCTION 

Windmill farms present a difficult challenge to radar systems, 

especially when they are located near Air Force bases or 

airports. The problem that we are address concerns aircraft 

approaching an airport located near a windmill farm. This 

problem would be simple if the individual windmills were 

placed far apart, or were all in air flowing at the same speed 

and direction. However, windmill farms often have several 

hundred turbines spaced only a few diameters apart, each of 

which is exposed to varying winds because they are at 

different locations in a complex topography. The scattered 

signals will then undergo refraction and multiple reflections. 

We present a new method that uses our previously developed 

technique, Wave Confinement (WC), to accurately compute 

radar returns. This involves propagation in a realistic 

environment that has index of refraction variations and 

complex terrain. Currently, the only alternative method—“Ray 

Tracing” [1]—can take some of these effects into account, but 

involves an incoherent collection of “rays”, from which it is 

difficult to extract information. Ray tracing can even become 

chaotic, or neglect caustics altogether. Details of the basic 

method are included in [2] and some new developments are 

briefly discussed in this paper. 

II. METHODOLOGY 

The above problem as shown in Figure 1 is solved in 4 steps: 

a) Far field propagation, b) Near Field generation on a 

“source” surface surrounding known emitters or targets such 

as windmills and aircraft.  c) Computation of small scale 

return signals by applying the arrival time, attenuation factor 

and propagation vector.  

 
Fig.1: Problem Description 

A. Far Field Propagation 

A new, simple, computationally efficient wave simulation 

method that overcomes most of the problems of conventional 

methods for long distance propagation in inhomogeneous 

media, including multiple reflections is used for far field 

propagation. In its initial form, it involves the scalar wave 

equation with non-dispersive and non-diffusive media, but 

these limitations can be removed in future versions with 

perturbation terms. This new method is termed the 

“Generalized Eikonal Method” (GEM).  

The solution at any far field receiver is assumed to be 

represented by smooth variables (away from caustics): 

attenuation factor (
rec

kA ), propagation vector (
rec

ks ) and 

arrival time (
rec

k ). It is assumed that the wave equation is 

accurately computed (with conventional methods) in a small 

region surrounding windmills and aircraft, with dimensions 

comparable to the wavelength of interest (  ). In general, 

because of the reflections and refractions in realistic media, 

the wave paths, or Eikonal phase will be multi-valued in some 

regions of space, which represent multiple passes of the wave 

front. Then, at each grid node, an array of phase is stored, one 

for each wave front passage. This is easily accomplished using 

a counter, which serves as an array index (k). For each k, or 

“trajectory”, the recently developed method – “Wave 

Confinement” – (WC), is used to solve a modified wave 

equation [2]. This method generates values of the 

“computational wave”- k  at grids nodes when equation (1) is 

discretized. 
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where F is a combination of positive and negative (stable) 

dissipation. The purpose of this modification is to generate 

short, coherent Nonlinear Solitary Waves which represent 

wave fronts. When equation (1) is discretized, the solitary 

waves persist indefinitely, remaining concentrated over only 

2-3 grid cells, unlike conventional numerical schemes, where 

the waves dissipate. The centroids of these computational 

waves represent the wave fronts of the actual waves, which 

may be much shorter the computational waves. In this way, it 

is computationally feasible to solve for wave propagation over 

a large region, containing many waves. 

B. Near Field Generation 

A new parallel fast Fourier transform and fast multipole 

method (FFT-FMM) -accelerated surface integral equation 

solver [3] has been developed which is capable of analyzing 

scattering from wind turbines in the high-frequency regime. 

The novelty of the solver lies in its parallelization scheme as 

well as the use of a singular value decomposition scheme for 

compressing near-field interactions.  

We assume that the transmitters are located a few kilometers 

away from the wind farms and hence the EM wave is planar. 

So, the wind turbine is illuminated by a plane-wave 

(propagating along y direction). E-field with unit magnitude is 

polarized along z direction.  The time history of the scattered 

signal is computed on a “source” surface surrounding the near 

field of a scattering object, which will later be used to 

reconstruct the signal at any far field point. Note: In the 

current paper, the time history of the electric field intensity 

envelope is used for simplicity because the main objective of 

the paper is to show the demonstration of a coupled inner field 

near the wind mill and the WC based far field method. 

C. Return Signal Computation 

Now, we project out the waves that will intersect the receiver. 

So, at any far field point, the physical signal is computed as 

           rec rec rec

source sourceE x,t A x ,t * E x ,t .           (2) 

where 
rec rec sourcet t  , and 

sourcet is the time of the near 

field computation. 

III. DEMONSTRATION 

The new method described in the above section is used to 

compute the return single from a single wind turbine. Time 

history of the scattered signal computed in the near field and is 

saved on a “source” surface around wind turbine. The near 

field points are selected on a sphere with the radius of 125m (3 

times blade's length). In Figure 2, a snapshot of the Electric 

field intensity is shown on a sphere of radius 3 rotor radii with 

wind turbine at the center. 

Nonlinear solitary wave propagation, taking into account 

reflection and refraction, can provide information about the 

region on the inner field that accounts to the signal at the 

receiver, which will then be used to compute the signal. For 

multiple arrivals, point of origin and return signals 

corresponding to each arrival are computed. For the above 

case, the return signal is computed at a receiver placed ~700m 

away. The computed first arrival (incident) and second arrival 

(reflected) signals are plotted against the exact signals in 

Figure 3 and Figure 4 respectively and appear to match well. 

 

 
Fig.3: First Arrival for One Windmill at ~700m distance 

 

 
Fig.4: Second Arrival for One Windmill at ~700m distance 
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