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Abstract—A fast Fourier transform (FFT)-accelerated 
integral equation solver for efficiently and accurately extracting 
inductance of structures discretized by voxels is described. This 
new solver called VoxHenry, unlike its predecessor FastHenry, 
can accurately account for the current flow around corners of 
structures using a carefully selected set of basis functions. 
VoxHenry solves the matrix system obtained upon discretization 
of the volume integral and current continuity equations 
iteratively. Matrix-vector multiplications required by the 
iterative solver are carried out using FFTs and the number of 
iterations is reduced using a sparse preconditioner. The accuracy 
and efficiency of VoxHenry are demonstrated via its application 
to inductance extraction of a circular coil. 

Keywords—Fast Fourier transform, inductance extraction, 
interconnects. 

I. INTRODUCTION 
The design of high-speed integrated circuits calls for 

efficient and accurate inductance extractors to produce circuit 
representations that can be used for signal timing, signal 
integrity, and cross-talk analyses. Inductance extractors that 
have been developed so far require structures to be discretized 
with volume filaments [1], tetrahedrons [2], or surface 
elements [3]. That said, there is a need for inductance 
extractors capable of working on structures discretized with 
voxels. Such an extractor would be extremely easy to 
incorporate into voxel-based virtual fabrication environments 
and suitable for modeling the structures during unit process 
steps of iterative design explorations. Additionally, its 
acceleration using fast Fourier transform (FFT) techniques [4]-
[9] is straightforward. 

In this work, an FFT-accelerated inductance extractor, 
named VoxHenry, is developed for solving a coupled system 
of volume integral and current continuity equations on 
voxelized structures. This new inductance extractor is more 
accurate and efficient than its predecessor FastHenry [1] thanks 
to algorithmic developments listed next. (i) VoxHenry expands 
the current density in terms of piecewise constant and linear 
basis functions permitting its accurate representation around 
corners. (ii) During the iterative solution of the matrix system 
obtained upon discretization, VoxHenry uses FFTs to expedite 

the matrix-vector multiplications. (iii) The number of iterations 
is reduced using a sparse preconditioner. Numerical results 
demonstrating the accuracy, efficiency, applicability of 
VoxHenry are provided.  

II. FORMULATION 
Let V  represent the volume of a non-magnetic structure 

with conductivity ,σ  which resides in an unbounded 
background medium with permittivity 0ε  and permeability 

0.µ  The structure is excited by source(s) operated at frequency 
ω . The structure is discretized by tK  voxels of size d∆ , 

t x y zK K K K= × × , where xK , yK , and zK  are the numbers 
of voxels along x , y , and z  directions; d∆ is selected to be 
equal to or less than the skin depth at ω . Let K  denote the 
number of non-empty voxels (with non-zero σ ), each of 
which has one node on each of its six surfaces; let M  denote 
the total number of these nodes. 

VoxHenry solves the coupled system of volume integral 
and current continuity equations: 
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 ( ) 0∇⋅ =J r , (2) 
where ( )J r  and ( )φ r  represent the current density and scalar 
potential. To solve (1) and (2), ( )J r is expanded in terms of 
divergence-free basis functions as: 
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where i
kI  is the unknown current coefficient, 

 ( ) ( ) ( )1 2 3ˆ ˆ ˆ, ,k k k= = =b r x b r y b r z , (4) 

 ( ) ( ) ( )( )4 1 ˆ ˆk k kd x x y y−= ∆ − − −b r x y , (5) 

 ( ) ( ) ( ) ( )( )5 1 ˆ ˆ ˆ2k k k kd x x y y z z−= ∆ − + − − −b r x y z ,  (6) 
and ( , , )k k kx y z  are the coordinates of center of thk  voxel. 
Substituting (3) into (1), testing the resulting equation with j

lb , 
1, ,5j =  , and enforcing (2) (in the form of normal current 
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density continuity) across the voxel surfaces, yield a linear 
system of equations with dimensions (5 ) (5 )K M K M+ × + :  
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Here, V , 1 2 3 4 5[ ; ; ; ; ]=I I I I I I , and Φ  are the excitation 
vector and the vectors of unknown current and potential 
coefficients, respectively. The entries of sparse matrix mnA , 

1, ,5n K=  , 1, ,m M=  , are assigned as the value of thn  
basis function on thm  node, multiplied with 1± . The entries of 
V  are obtained by summing the columns of TA  
corresponding to the port nodes. Matrix R  consists of K K×  
diagonal blocks ii

lkR  with entries ( ) ( )1 ,
k

i i
k k V

σ − b r b r , 
1, ,k K=  , where ,

Ω
⋅ ⋅  denotes standard inner product with 

support Ω  and kV  is the support of thk  voxel. Similarly, 
matrix L  consists of K K×  blocks ji

lkL with the entries:  
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Blocks jiL  are either zero or full matrices. The multiplication 
of full matrix jiL  with iI , i.e., j ji i=C L I , requires 2( )O K  
operations and is reduced to ( log )t tO K K  using FFTs [4]-[9]: 

 ( )* ( )j ji i
i

IFFT FFT= ∑   ,  (9) 

where ( )ji jiFFT=  , ji is the circulant tensor with the 
entries computed using (8), i  is a tensor formed by using 
current coefficients and zero padding, j  is the resultant 
tensor that provides the entries of jC . Dimensions of all 
tensors are 2 2 2x y zK K K× × . Note that the multiplications of 
sparse matrices A  and TA  with I  and Φ , respectively, 
require only ( )O K  operations. To ensure the rapid 
convergence of iterative solution of (7), a sparse 
preconditioner,  
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is applied to matrix-vector multiplications; here ( )diag=D L . 

III. NUMERICAL RESULT 
VoxHenry is used for extracting the inductance of a circular 

coil with conductivity of 75.8 10 S/m×  and loop and tube radii 
of 150 μm  and 5 μm . The coil positioned on the xy plane is 
excited from a spacing in the lower part of the coil between 

155 μmx =  and 155.5 μmx = . Discretization parameters 
0.5 μmd∆ = , 5 2969300K = and 1867528M = . The 

inductance of the coil is computed at frequencies ranging from 
1 Hz  to 1 THz  and compared to the values provided by an 
analytical formula [10] [Fig. 1 (a)]. An excellent match 
between results is observed. In addition, current distribution on 
the coil at 3GHz is plotted in Fig. 1 (b). For this problem, 
VoxHenry computes the inductance at one frequency point in 
2.93 minutes. 

IV. CONCLUSION 
An FFT-accelerated inductance extractor, VoxHenry, and 

its application to a voxelized circular coil are presented. The 

filament-based approaches, such as FastHenry, can not model 
the 3D currents in a circular coil accurately and are not directly 
applicable to voxelized circular coils (without remeshing) due 
to reasons explained in [11]. 

 

 
Fig. 1. (a) The frequency-dependent inductance of the circular coil. (b) The 
current distribution at 3 GHz. 
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