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Abstract—Tensor decompositions are applied to lessen the 
memory requirements of translation operator tensors in fast 
multipole method-fast Fourier transform (FMM-FFT) a ccelerated 
integral equation (IE) solvers. In particular, methodologies 
leveraging Tucker and tensor train (TT) decompositions are 
developed to compress the three-dimensional (3D) arrays and 
four-dimensional (4D) array storing the FFT’ed translation 
operator values. Preliminary results show the achieved memory 
reduction as well as imposed computational overhead via the 
developed methodologies.  
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I. INTRODUCTION 

The FMM-FFT accelerated IE solvers permit efficient and 
accurate characterization of electromagnetic (EM) phenomena 
on electrically large and complex platforms [1-4]. For many 
practical scenarios, these solvers’ applicability is limited by their 
memory requirement. One of the primary data structures 
limiting their applicability is the tensors holding the FFT’ed 
translation operator values on a structured grid. Recently, 
Tucker decompositions (a.k.a. high-order singular value 
decompositions) were proposed to lessen the memory 
requirement of FFT’ed translation operator tensors [5, 6]. These 
decompositions achieved more than 90% memory reduction in 
the memory requirement of these tensors and required negligible 
computational overhead. Such decompositions were recently 
used to reduce the memory requirement of FFT’ed system 
tensors arising in volume IE simulators as well [7, 8].  

In [5], the memory reduction, computational overhead, and 
accuracy (i.e., performance metrics) of Tucker decompositions 
are investigated for compressing the FFT’ed translation operator 
tensors computed at each plane-wave direction and generated 
for different structure and FMM box sizes. That said, a detailed 
performance analysis is missing for the FFT’ed translation 
operator tensors generated for different wavenumbers and FMM 
accuracies. Furthermore, the performance of other 
decompositions for reducing the memory requirement of 
FFT’ed translation operator tensors is not analyzed so far. 
Moreover, the performance of neither Tucker nor other 
decompositions is demonstrated for compressing the 4D array 
holding the FFT’ed translation operator values on a structured 
grid for all plane-wave directions.  

This study aims to fill the abovementioned gaps in the 
application of tensor decompositions to the compression of 
FFT’ed translation operator tensors. To this end, methodologies 
leveraging the Tucker and TT decompositions are developed for 
compressing 3D arrays storing the FFT’ed translation operator 
tensors for each plane-wave direction as well as 4D array storing 
the FFT’ed translation operator values for all plane-wave 
directions. During the setup stage of solvers, the Tucker and TT-
based methodologies for compressing 3D arrays and 4D array, 
called Tucker-3D, TT-3D, Tucker-4D and TT-4D, respectively, 
are used to obtain compressed tensors efficiently via cross-based 
approximations [8, 9] for given tolerance. During the iterative 
solution stage of the solvers, the compressed tensors are fully or 
partially restored to obtain the FFT’ed translation operator 
tensor for each plane-wave direction. Then the restored tensor is 
used to perform the convolution for each plane-wave direction 
via 3D FFTs. Due to limited space, here we provide the general 
idea of methodologies and preliminary results. Details of the 
developed methodologies as well as their performances with 
respect to different parameters will be provided in the talk. 

II. FORMULATION 

In FMM-FFT acceleration scheme, a hypothetical box 
enclosing the structure is divided into xN , yN , and zN  small 

boxes along principle axes. The boxes are centered on a uniform 
3D grid points and labeled by Bu  with ( , , )x y zu u u=u ,

1,...,x xu N= , 1,...,y yu N= , 1,...,z zu N=  . In this scheme, while 

the interactions between basis functions in adjacent boxes are 
computed classically, those in the remaining boxes are 
accounted for as follows. First, the basis functions’ far-field 

patterns along a plane-wave direction ˆ
ik , dir1, ,i N= K  , are 

summed for each box and stored in aggregation tensor ˆ( )iu kF . 

Next, ˆ( )iu kF  is convolved with FFT’ed translation operator 

tensor ˆ( )i′−u u kT  via 3D FFT operations. Finally, the plane-

wave spectra for ̂ ik  obtained as the result of convolution is 

projected onto the basis functions. The same procedure is 
applied for all dirN  directions and the far-field contribution to 

the matrix-vector multiplication is computed; here dirN  is a 

function of FMM accuracy, box size, and wavenumber [6]. 



ˆ( )i′−u u kT  with dimensions 2 2 2x y zN N N× ×  is computed and 

stored during setup stage of the solvers. The memory 

requirement of ˆ( )i′−u u kT  for each ˆ ik  can be significantly 

lowered by applying Tucker or TT decompositions as 

 1 2 3
Tucker 1 Tucker 2 Tucker 3 Tucker′− ≈ × × ×u u U U UT C ,  (1) 

 1 3
TT 1 TT 3 TT′− ≈ × ×u u U UT C .  (2) 

Here j× , 1, ,3j = K , denotes the modej−  matrix product of a 

tensor. The 3D array C  and matrix jU  along mode j− , 

pertinent to Tucker or TT decompositions (as indicated at the 
subscripts), can be efficiently obtained for a given tolerance by 
utilizing the cross approximation [8] and AMEN-cross 

approximation [9], respectively. Likewise, ˆ( )i′−u u kT  for all ˆ
ik , 

dir1, ,i N= K , constitutes a 4D array, 4DT , with dimensions

dir2 2 2x y zN N N N× × × , which can be compressed via Tucker or 

TT decompositions as  

 1 2 3 4
4D Tucker 1 Tucker 2 Tucker 3 Tucker 4 Tucker≈ × × × ×U U U UT C ,  (3) 

 1 1 3
4D TT1 1 TT 3 TT2 3 TT( ) ( )≈ × × ×U UT C C  . (4) 

Here ( k
j×A B ) represents the tensor contraction along modej−   

in A and mode k−  in B . By effectively performing matrix-
tensor products, the compressed tensor can be fully or partially 
restored to obtain the FFT’ed translation operator tensor for each 
plane-wave direction, during the iterative solution stage. 

III.  NUMERICAL RESULT 

In this section, EM scattering analysis of a perfect electric 
conductor sphere with unit radius is considered for comparing 
the performances of developed methodologies. The analysis is 
performed at 2.39 GHz and 4.79 GHz, at which the diameter of 
sphere becomes 16λ and 32 λ, respectively, where λ denotes the 
wavelength. For the analysis at these frequencies, once the FMM 
box size and accuracy are set to 0.5λ and 5 digits, there exist 435 
FFT’ed translation operator tensors with dimensions 64×64×64 
and 128×128×128, respectively (dir 435N = ). While Tucker-3D 
and TT-3D methodologies compress each ˆ( )i′−u u kT  for each 
ˆ

ik  separately, Tucker-4D and TT-4D methodologies compress 
4DT . In Fig.1, we plot the memory reductions achieved by these 

methodologies versus the relative error in the tensors restored 
after applying the decompositions. Clearly, TT-4D performs the 
best when very high accuracy (more than 610− ) is needed. Both 
Tucker-4D and TT-4D methodologies yield higher memory 
savings compared to the Tucker-3D and TT-3D methodologies.  

For the analysis at 4.79 GHz and relative error 610− , the TT-
4D and Tucker-4D methodologies reduced the memory of 
original FFT’ed translation operator tensors from 13,920 MB to 
473 MB and 541 MB, achieving 96.60% and 96.12% memory 
reduction, respectively. On the other hand, Tucker-3D reduced 
it to 1,007 MB, which is twice the total memory of compressed 
tensors obtained in TT-4D methodology. Moreover, TT-3D 
reduced it to 1,794 MB, corresponding to 87.11% memory 
reduction. For the same analysis, the computational overhead 
introduced by methodologies is computed by taking the ratio of 
the time required to restore one FFT’ed translation operator to 

the convolution time. While this ratio is 0.34 and 0.40 for TT-
3D and Tucker-3D, that is 2.26 and 1.5 for TT-4D and Tucker-
4D, respectively. 

IV.  CONCLUSION 

The Tucker and TT-based methodologies are developed to 
reduce the memory requirement of FFT’ed translation operator 
tensors in FMM-FFT accelerated IE solvers. Preliminary results 
demonstrate the achieved memory saving and required 
computational overhead of the developed methodologies. 

 
Fig. 1. The memory reduction w.r.t. the relative error when the dimensions of 
translation operator tensors are (a) 64 64 64× × and (b)128 128 128× × . 
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