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Abstract—Tensor decompositions are applied to lessen the

memory requirements of translation operator tensorsin fast
multipole method-fast Fourier transform (FMM-FFT) a ccelerated
integral equation (IE) solvers. In particular, methodologies
leveraging Tucker and tensor train (TT) decomposibns are
developed to compress the three-dimensional (3D) rays and
four-dimensional (4D) array storing the FFT'ed translation
operator values. Preliminary results show the achieed memory
reduction as well as imposed computational overheaslia the
developed methodologies.
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l. INTRODUCTION

The FMM-FFT accelerated IE solvers permit efficiant
accurate characterization of electromagnetic (ENdn@mmena
on electrically large and complex platforms [1-Bpr many
practical scenarios, these solvers’ applicabiitiyrnited by their
memory requirement. One of the primary data strestu
limiting their applicability is the tensors holdinge FFT'ed
translation operator values on a structured griéceRtly,
Tucker decompositions (a.k.a. high-order singulalue

decompositions) were proposed to lessen the memory
requirement oFFT’ed translation operator tensors [5, 6]. These

decompositions achieved more than 90% memory ristuict
the memory requirement of these tensors and retjnegligible
computational overhead. Such decompositions werenthy
used to reduce the memory requirementF&fT’ed system
tensors arising in volume IE simulators as welld]J7,

In [5], the memory reduction, computational ovexheand
accuracy (i.e., performance metrics) of Tucker dgmsitions
are investigated for compressing fHel'ed translation operator
tensors computed at each plane-wave direction andrgted
for different structure and FMM box sizes. Thadsai detailed
performance analysis is missing for th€T'ed translation
operator tensors generated for different wavenusied FMM
accuracies. Furthermore, the performance of
decompositions for reducing the memory requiremeht

This study aims to fill the abovementioned gapstha
application of tensor decompositions to the congioes of
FFT'edtranslation operator tensors. To this end, metlogies
leveraging the Tucker and TT decompositions areldged for
compressing 3D arrays storing thET’ed translation operator
tensors for each plane-wave direction as well aar8y storing
the FFT’ed translation operator values for all plane-wave
directions. During the setup stage of solversTingker and TT-
based methodologies for compressing 3D arrays Bndrday,
called Tucker-3D, TT-3D, Tucker-4D and TT-4D, resipeely,
are used to obtain compressed tensors efficierglgross-based
approximations [8, 9] for given tolerance. Durifg titerative
solution stage of the solvers, the compressed temasefully or
partially restored to obtain th&FT'ed translation operator
tensor for each plane-wave direction. Then theredttensor is
used to perform the convolution for each plane-wdivection
via 3D FFTs. Due to limited space, here we protegeneral
idea of methodologies and preliminary results. Detaf the
developed methodologies as well as their perforemmneith
respect to different parameters will be providethmtalk.

Il FORMULATION

In FMM-FFT acceleration scheme, a hypothetical box
nclosing the structure is divided ind,, N, , andN, small
boxes along principle axes. The boxes are centereduniform
3D grid points and labeled by8, with u=(u,,u,u,) ,
u,=1..,N,u, =1,..,N,,u, =1,...,N, . In this scheme, while

the interactions between basis functions in adjaberes are
computed classically, those in the remaining boxes
accounted for as follows. First, the basis fundidiar-field

patterns along a plane-wave directibn, i =1,...,N,, , are
summed for each box and stored in aggregation lteﬁ§(ﬁi) .
Next, F,(k,) is convolved withFFT’ed translation operator
tensor 7,,_,(k,) via 3D FFT operations. Finally, the plane-

other

wave spectra fok, obtained as the result of convolution is

FFT’ed translation operator tensors is not analyzed $o faprojected onto the basis functions. The same proeeds
Moreover, the performance of neither Tucker noreoth applied for allN,, directions and the far-field contribution to

decompositions is demonstrated for compressingtbharray

holding theFFT’ed translation operator values on a structure

grid for all plane-wave directions.

dthe matrix-vector multiplication is computed; hekg, is a

function of FMM accuracy, box size, and wavenumf&r



(IQ.) with dimensions2N, x 2N, x 2N, is computed and
stored during setup stage of the solvers. The mgmo
requirement of 7,_ (k) for eachk can be significantly
lowered by applying Tucker or TT decomposmons as

112 3
cTucker 1 X 2U Tucker>< Tucke (1)
~ 113
u "’CTT % UlTT ><3UTT' (2)

3, denotes the modeg] matrix product of a

Tucker

Herex,, j=1,...,

tensor. The 3D array¢ and matrix U’ along mode-j ,

pertinent to Tucker or TT decompositions (as intdidaat the
subscripts), can be efficiently obtained for a gitelerance by
utilizing the cross approximation [8] and AMEN-csos

approximation [9], respectively. Likewisq,, u(k ) forallk
i=1...,Ng , constitutes a 4D arrayJ,, , with dimensions

2N, x 2N, x 2N, x N, , which can be compressed via Tucker or

TT decompositions as

T

= cTucker x 1UlTut:ker>< ZU 2Tucke?< D : Tucke>r< u ¢ Tuck? (3)
7d40 = (CTTl xl UlTT) Xls (CTT2 X 3 U 3TT) . (4)

" . .

Here (Ax[B ) represents the tensor contraction along mgde

in A and mode-k in B . By effectively performing matrix-
tensor products, the compressed tensor cdullyeor partially
restored to obtain tHeFT’edtranslation operator tensor for each
plane-wave direction, during the iterative solutstage.

I1l.  NUMERICAL RESULT

In this section, EM scattering analysis of a pertgectric
conductor sphere with unit radius is consideredctomparing
the performances of developed methodologies. Thy/sis is
performed at 2.39 GHz and 4.79 GHz, at which tlaengiter of
sphere becomes 1@nd 32\, respectively, wherk denotes the
wavelength. For the analysis at these frequenmes the FMM
box size and accuracy are set tdl@bd 5 digits, there exist 435
FFT’ed translation operator tensors with dimensions 64684
and 128x128x128, respectivel)(, =435). While Tucker-3D
and TT-3D methodologies compress egkh,, (k;) for each
k, separately, Tucker-4D and TT-4D methodologies cesyp
T.o - In Fig.1, we plot the memory reductions achielygthese
methodologies versus the relative error in thedensestored
after applying the decompositions. Clearly, TT-4®fprms the
best when very high accuracy (more tH4R’) is needed. Both
Tucker-4D and TT-4D methodologies yield higher mgmo
savings compared to the Tucker-3D and TT-3D metlogjiles.

For the analysis at 4.79 GHz and relative el®f , the TT-

the convolution time. While this ratio is 0.34 and0 for TT-
3D and Tucker-3D, that is 2.26 and 1.5 for TT-4[0 dnicker-
'AD, respectively.

IV. CONCLUSION

The Tucker and TT-based methodologies are develtiped
reduce the memory requirementRH T 'ed translation operator
tensors in FMM-FFT accelerated IE solvers. Prelanyresults
demonstrate the achieved memory saving and required
computational overhead of the developed methodefogi

100 ; ,
90+ I S E S o ==
L -—-O.—“-..

80 C--alp
c\o' E 4
= 70+F
s |
E (a)
=
2 60 :

2 100 ¢ : : ,
g G —
b Y > Y e el P
g : o‘“*--o._____e
= 90F O~ T o
| ——TT-3D
L =G -Tucker-3D
| ——TT-4D D
L == = -Tucker-4D (b)
80 il 1 1
107 10 107 107 10”7 1078

Relative Error
Fig. 1. The memory reduction w.r.t. the relativeoewhen the dimensions of
translation operator tensors are @)x 64x 64and (b)L28x 128 12¢.
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