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Abstract—This paper proposes a deep learning-based 

approach for rapidly detecting the defects inside tree trunks via 
ground penetrating radar (GPR) technology. In this approach, 
GPR measurements are performed centimeters-away from the 
surface of tree trunk on a straight trajectory. Then the B-scans 
obtained from GPR measurements are processed via a deep 
learning algorithm to detect the defects inside the tree trunks, 
classify their types, and estimate their sizes/severities. An open-
source finite-difference time-domain (FDTD) simulator is used to 
produce a large set of B-scans from random realizations of 
realistic 2D tree trunk cross-sections without and with different 
size of defects (cavities, decays, and cracks). The data set is then 
used to train and test a six-layer convolutional neural network 
(CNN) with drop-out layers and weight regularization to avoid 
overfitting. Our preliminary results show that the testing 
accuracy of the CNN algorithm is more than 90%. The testing 
results demonstrate that the current methodology allows 
accurately detecting the types and sizes of defects inside tree 
trunks to monitor the health condition of trees.   

Keywords— convolutional neural network (CNN), deep 
learning, defect detection, ground-penetrating radar (GPR), tree 
health monitoring.  

I. INTRODUCTION   

 The non-destructive techniques such as microwave 
tomography and ground penetrating radar (GPR) are becoming 
increasingly popular for the health monitoring of trees. These 
techniques allow imaging inside the trunks of the health and 
unhealthy trees with defects (e.g., decays, cavities, cracks) and 
assessing their health conditions. The microwave tomography 
requires transmitting and receiving electromagnetic (EM) 
signals via multiple antennas positioned around the tree trunk 
and processing of these signals via a computationally costly 
reconstruction algorithm [1]. The GPRs often leverage a set of 
transmitter and receiver antennas and make use of advanced 
signal processing techniques to image the interiors of tree 
trunks [2]. All these techniques necessitate measurements in 
contact with the surface of the tree trunks, require excessive 
resources, and are time-consuming even for a single tree. To 
this end, their applicability to the massive health screening of 
trees in large forests is not feasible. 

 In this paper, a convolutional neural network (CNN)-based 
methodology for rapidly detecting defects inside tree trunks via 
GPR technology is proposed. In this methodology, the main 
strategy is scanning the tree trunks centimeters-away from their 

surfaces on a straight trajectory via a GPR. By doing so, the 
GPR measurements can be performed very fast and a cluster of 
trees can be scanned in a short time. Next, the B-scans of trees 
are simultaneously processed via a trained CNN to detect the 
defects and identify their types and sizes. The numerical tests 
clearly demonstrate the feasibility and detection accuracy of 
the proposed methodology. 

II. METHODOLOGY 

The proposed methodology extracts the features of the 
received EM signals, particularly B-scans, while moving a set 
of transmitter and receiver on a straight trajectory centimeters-
away from the tree trunk. (Note: The straight trajectory and 
transmitter/receiver are shown with thick black line and dots in 
Fig 1(a), respectively). At selected measurement locations on 
the trajectory, the transmitter emits an EM signal and the 
receiver collects the EM signals reflected from the tree trunk. 
The time history of the received EM signals at the selected 
locations on trajectory, A-scans, are stacked together to form 
B-scans. The B-scans of the trees with defects clearly show the 
distinct scattering signatures of the defects via different 
numbers of hyperbolas with differing apexes and local 
distortions due to multiple reflections in defects with different 
material properties. These signatures can be detected by the 
human eye in the example scenario below and also by the 
machine via a CNN algorithm even in the scenarios where 
those can not be detected by the human eye.  

In the example scenario, a realistic tree trunk model with 
and without defects is simulated using an open-source 2D 
finite-difference time-domain (FDTD) simulator [3] to show 
the distinct scattering signatures of the defects. In this scenario, 
a Hertzian dipole transmits a Gaussian signal with the center 
frequency of 1 GHz. A probe positioned 30 cm away from the 
dipole collects the reflected signals. Both dipole and probe, 
shown with dots in Fig. 1(a), are moved along three meter-long 
straight trajectory, 15 cm away from the nearest point on the 
tree trunk surface. The A-scans are obtained at every 4 cm. 
First, a healthy tree trunk with relative permittivity 6 is 
simulated [Fig. 1(a)]. Its B-scan clearly shows the reflections 
from the top surface of the trunk (the hyperbola at the upper 
part) and the bottom surface of the trunk (the hyperbola at the 
lower part). The tree trunks with cavity [Fig. 1(c)], decay with 
relative permittivity 16 [Fig. 1(e)], and crack [Fig. 1(g)] are 
simulated. Their corresponding B-scans [Figs. 1(d),(f),(h)] 
clearly show the distinct scattering signatures of the defects. In 
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particular, the cavity introduces a hyperbola in between two 
hyperbolas [Fig. 1(d)], while the decay and crack produce a 
pair of hyperbolas [Fig. 1(f)] and a short segment [Fig. 1(h)], 
respectively. 
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Fig.1. (a) The simulation model and (b) B-scan of a healthy tree trunk. (c) The 
simulation model and (d) B-scan of a tree trunk with cavity. (e) The simulation 
model and (f) B-scan of a tree trunk with decay. (c) The simulation model and 
(d) B-scan of a tree trunk with crack. 

 To detect the distinct signatures of defects and classify their 
types and severity via a CNN, 500 random scenarios and their 
corresponding B-scans are generated. In these randomly 
generated realistic scenarios, the tree trunks with random rough 
surfaces have relative permittivities varying from 5 and 10. 
The major and minor axis of the ellipse-shaped trunks are 
randomly chosen from intervals [0.3, 0.4] m and [0.2, 0.4] m, 

respectively. Seven different classes are introduced using these 
randomly generated scenarios. These classes include the 
healthy trunks, the trunks with minor and major cavities (with 
radii randomly selected in [0.03, 0.075) m and [0.075, 0.15] m, 
respectively), the trunks with minor and major decays (with 
radii randomly selected in [0.03, 0.075) m and [0.075, 0.15] m, 
respectively), and the trunks with minor and major cracks (with 
lengths randomly selected in [0.15, 0.3) m and [0.3, 0.55] m, 
respectively). The B-scans of these seven classes are scaled, 
transformed to grey-scale, and resized to train CNN; while a 
quarter of B-scans are used for testing, the rest is used for 
training. The trained CNN consists of six convolutional layers, 
six max-pooling layers and two full-connected layers. A drop-
out layer is added after the second fully-connected layer to 
avoid over-fitting. The output of seven neurons is used to 
predict the class of each B-scan. The details of the CNN will be 
provided in the talk. 

III.  RESULTS AND DISCUSSIONS 

 After the model fitting via training and testing samples, the 
final average testing accuracy approaches 91%, as shown in 
Table I. The accuracy for classifying the severity of cracks is 
higher than the other two types with more complex patterns. 
These results have proven the potential of the proposed 
methodology for accurately detecting the defects inside tree 
trunks and classify their severities. A large amount of samples 
will be generated to train and test the proposed network in the 
future. 

TABLE I. CLASSIFICATION ACCURACY 

Class Health 
trunk 

Minor 
cavity 

Major 
cavity 

Minor 
decay 

Major 
decay 

Minor 
crack 

Major 
crack  

Accuracy 
(%)  

94 93 76 83 84 100 100 91 
(ave) 

IV. CONCLUSIONS 

In this study, a deep CNN-based methodology for 
detecting tree defects with various severities was proposed for 
rapidly monitoring the health conditions of a cluster of trees 
via GPR measurements performed centimeters-away from the 
surfaces of the tree trunks. The numerical tests showed the 
feasibility and high detection accuracy of such methodology. 
Training of the CNN algorithm via B-scans of realistic 3D tree 
trunk models are currently underway.  
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