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Abstract— Transcranial magnetic stimulation (TMS) is a non-
invasive method that uses coils placed on the scalp to stimulate 
brain regions via magnetic induction. TMS is known to stimulate 
regions that are exposed to a large E-field magnitude. As a result, 
computational E-field dosimetry is increasingly being used to 
inform TMS administration. Existing methods for computational 
E-field dosimetry require substantial run-times that limit their 
applicability for many practical applications. We have developed 
a computational method based on adaptive cross approximations 
of matrices for fast computational E-field dosimetry of TMS. 
These methods will enable the development of improved TMS 
paradigms. 

Keywords—Adaptive Cross Approximation, brain stimulation, 
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I. INTRODUCTION 
Transcranial magnetic stimulation (TMS) is a non-invasive 

method for brain stimulation that uses a coil driven by low-
frequency current pulses (>10kHz) to magnetically stimulate 
targeted brain regions. TMS is widely used for neuroscience 
research to study brain function and is FDA-approved for the 
treatment of depression and migraines. TMS has been shown to 
stimulate brain regions that are exposed to high E-fields. This 
has led to increased use of computational modeling for E-field 
dosimetry.  

Computational methods for TMS E-field dosimetry use 
MRI-derived subject-specific volume conductor models and a 
TMS coil model to determine E-fields induced in the head when 
the coil is placed at a given position on the scalp. In principle, 
these methods could be iteratively applied to determine optimal 
coil placement on the scalp. For example, finding the coil 
position that maximizes E-field to the targeted brain region 
while avoiding another one. Furthermore, they could be used to 
incorporate inherent variabilities and uncertainties of the TMS 
setup into the simulation to predict the uncertainty of the TMS-
induced E-field. An example is to determine E-field uncertainty 
resulting from limited precision and accuracy in coil placement. 
These and many other applications of TMS E-field solvers are 
currently impractical due to the long run-times of simulations, 

which are in the order of 10 of seconds. We present a method 
based on adaptive cross approximation (ACA) that after an 
initial setup stage of a few hours, it enables the generation of 
TMS coil position to E-field maps in seconds. These maps can 
then be used for TMS coil placement optimization and 
uncertainty quantification. (Note: For the range of frequencies 
of TMS pulses, quasi-stationary assumptions apply, as a result, 
temporal and spatial variations are separable and the temporal 
variation is suppressed in what follows.) 

II. METHODS 

A. Discretization and matrix completion objective 
The head is discretized into a tetrahedron mesh. In particular, 

the brain consists of a total of 𝑁𝑁𝑏𝑏  tetrahedrons, and the scalp 
consists of 𝑁𝑁𝑡𝑡  scalp boundary nodes. We discretize coil 
placements by assuming that the coil is always centered about a 
node on the scalp boundary, and all possible orientations are 
sampled one degree apart [Fig. 1]. The brain E-fields are 
assumed constant within each tetrahedron.  

 

Fig. 1. The coil is assumed to always be placed tangent to the scalp and 
centered about one of the head mesh nodes depicted in blue. Furthermore, the 
orientation of the coil is indicated by an arrow as shown above.  

Our goal is to obtain E-field values generated in every 
tetrahedron of a brain mesh region of interest (ROI) for all 
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possible coil placements. In other words, we would like to 
construct the matrix 𝐀𝐀 of dimension 3𝑁𝑁𝑏𝑏 × 360𝑁𝑁𝑡𝑡 , where the 
entries are defined as 

 (𝐀𝐀)3(𝑖𝑖1−1)+𝑖𝑖2,360(𝑗𝑗1−1)+𝑗𝑗2 =

⎩
⎪
⎨

⎪
⎧𝐄𝐄𝑗𝑗1

(𝑗𝑗2)�𝐫𝐫𝑖𝑖1� ⋅ 𝐱𝐱�     𝑖𝑖2 = 1

𝐄𝐄𝑗𝑗1
(𝑗𝑗2)�𝐫𝐫𝑖𝑖1� ⋅ 𝐲𝐲�     𝑖𝑖2 = 2

𝐄𝐄𝑗𝑗1
(𝑗𝑗2)�𝐫𝐫𝑖𝑖1� ⋅ 𝐳𝐳�     𝑖𝑖2 = 3

. (1) 

Here 𝑖𝑖1 = {1,2, … ,𝑁𝑁𝑏𝑏} , 𝑖𝑖2 = {1,2,3} ,  𝑗𝑗1 = {1,2, … ,𝑁𝑁𝑡𝑡} , 𝑗𝑗2 =
{1,2, … ,360}  and 𝐄𝐄𝑗𝑗1

(𝑗𝑗2)�𝐫𝐫𝑖𝑖1�  is the E-field generated at the 
center of the 𝑖𝑖1 th tetrahedron 𝐫𝐫𝑖𝑖1  assuming the coil is placed 
centered at the 𝑗𝑗1 th node and oriented to point 𝑗𝑗2  degrees 
clockwise from the back of the head as shown in Fig. 1.  

 The next subsection describes approaches for rapidly 
computing rows and columns of 𝐀𝐀 enabling its generation using 
an interpolatory decomposition like the ACA described after the 
next subsection.  

B. Determining 𝑬𝑬𝑗𝑗1
(𝑗𝑗2)�𝒓𝒓𝑖𝑖1� 

The coil currents when the coil is placed at location 𝑗𝑗1 and 
oriented along 𝑗𝑗2 th orientation are denoted as 𝐉𝐉𝑗𝑗1

(𝑗𝑗2)(𝐫𝐫) and the 
corresponding E-field they generate in free-space is denoted as 
𝐄𝐄𝐢𝐢𝐢𝐢𝐢𝐢𝑗𝑗1

(𝑗𝑗2)(𝐫𝐫) . Quasi-stationary assumptions dictate that 
𝐄𝐄𝑗𝑗1

(𝑗𝑗2)(𝐫𝐫) = −∇𝜙𝜙(𝐫𝐫) + 𝐄𝐄𝐢𝐢𝐢𝐢𝐢𝐢𝑗𝑗1
(𝑗𝑗2)(𝐫𝐫) , where ∇ ⋅ σ(𝐫𝐫)∇𝜙𝜙(𝐫𝐫) = ∇ ⋅

σ(𝐫𝐫)𝐄𝐄𝐢𝐢𝐢𝐢𝐢𝐢𝑗𝑗1
(𝑗𝑗2)(𝐫𝐫), the normal component of ∇𝜙𝜙(𝐫𝐫) is zero on the 

boundary and σ(𝐫𝐫) is the conductivity [1]. To determine ∇𝜙𝜙(𝐫𝐫), 
we use an in-house 1st order FEM method [1]. The above 
solution enables us to compute a column of the matrix 𝐀𝐀 with 
the run-time equal to a single FEM solution.  

To apply many interpolatory decompositions, like the ACA 
used here, we would like to compute the matrix’s rows. Our 
previously developed auxiliary dipole method (ADM) is used 
for this purpose. ADM enables the computation of the average 
E-field generated in a prespecified ROI for all possible coil 
placements [2]. We use ADM to find the average E-field in the 
𝑖𝑖1th tetrahedron along a direction �̂�𝐭. We first define a source as 
𝐉𝐉𝐂𝐂𝑖𝑖1

(𝑖𝑖2)(𝐫𝐫) = 1/𝑉𝑉𝑖𝑖1  �̂�𝐭 on the 𝑖𝑖1 th tetrahedron and zero elsewhere, 
where 𝑉𝑉𝑖𝑖1  is the volume of the 𝑖𝑖1 th tetrahedron and �̂�𝐭  is the 
principal direction corresponding to 𝑖𝑖2. Second, we determine 
the E-fields that the auxiliary source generates outside the head 
𝐄𝐄𝐂𝐂𝑖𝑖1

(𝑖𝑖2)(𝐫𝐫). Reciprocity will dictate that the average E-field along 
�̂�𝐭 will be 

 𝐄𝐄𝑗𝑗1
(𝑗𝑗2)�𝐫𝐫𝑖𝑖1� ⋅ �̂�𝐭 = ∫𝐄𝐄𝐂𝐂𝑖𝑖1

(𝑖𝑖2)(𝐫𝐫) ⋅ 𝐉𝐉𝑗𝑗1
(𝑗𝑗2)(𝐫𝐫)d𝐫𝐫. (2) 

Equation (2) is rapidly evaluated using fast-multiple methods 
and an efficient quadrature rule described in [2]. For more 
detailed descriptions of both our FEM solver and ADM, the 
reader is referred to [1]-[2]. 

C. ACA 
The previous section described a method for computing rows 

and columns of the matrix 𝐀𝐀  enabling the use of ACA to 

approximate 𝐀𝐀 . Details of the ACA can be found here [3]. 
Briefly, at the kth iteration the ACA algorithm constructs a k rank 
matrix 𝐀𝐀�(𝑘𝑘) from k linearly independent columns and rows of 𝐀𝐀 
that approximate 𝐀𝐀 with error orthogonal to its row and column 
spaces. During each iteration, additional columns to be 
appended to the approximation are determined in a greedy way 
by using all previously computed rows and columns of 𝐀𝐀  to 
infer the column and row that results will result in the largest 
correction.  

III. RESULTS 

A. Sphere head model 
As a first scenario, we consider a three-sphere head model 

as shown in Fig. 2(a). All of the admissible coil positions are 
shown in black and the 1 cm diameter ROI is shown by a red 
region. We considered two ROIs: one of 1 cm diameter 
[Fig.2(a)] and a 2 cm diameter ROI generated by growing the 1 
cm diameter ROI. The relative L2 norm error for an SVD 
compression, ACA compression, and predicted stop criterion as 
a function of rank is shown in Fig. 3. We observe that the SVD 
can achieve a 2% relative L2-norm error with a rank 11 
approximation for both ROI diameters of 1 cm and 2 cm. The 
ACA achieves a 2 % error using a rank 17 approximation for 
ROI diameter of 1 cm and a rank 25 approximation for ROI 
diameter of 2 cm. The ACA is able to achieve near optimal 
results without the necessity to compute the whole matrix. 
Furthermore, the red and black curves in Fig. 2 have some 
correspondence indicating that the ACA stop criterion is a good 
predictor of actual ACA accuracy enabling its use to determine 
if appropriate accuracy has been achieved. 

 
Fig. 2. Two different scenarios. (a) The three-sphere head 
model scenario and (b)an MRI-derived head model scenario. 
 

 
Fig. 3. Convergence curves for two different ROIs for the 
sphere head scenario. (a) The diameter of the ROI is 1 cm and 
(b) the diameter of the ROI is 2 cm. 



B. MRI-derived head model 
As a second scenario, we considered an MRI-derived head 

model as shown in Fig. 2(b) [4]. All of the admissible coil 
positions are shown in black and the 1 cm diameter cortical ROI 
is shown by the red region. We considered two ROIs: one of 1 
cm diameter [Fig.2(b)] and a 2 cm diameter ROI generated by 
growing the 1 cm diameter ROI. The relative L2 norm error for 
an SVD compression, ACA compression, and predicted stop 
criterion as a function of rank is shown in Fig. 4. We observe 
that the SVD can achieve a 2% relative L2 norm error with a rank 
7 approximation for ROI diameter of 1 cm and a rank 8 
approximation for ROI diameter of 2 cm. The ACA achieves a 
2 % error using a rank 12 approximation for ROI diameter of 1 
cm and a rank 17 approximation for ROI diameter of 2 cm. The 
ACA results are consistent with those obtained for the sphere 
head model.  

 

 
Fig. 4. Convergence curves for two different ROI sizes for the 
MRI-derived head scenario. (a) Diameter of the ROI is 1 cm; 
(b) Diameter of the ROI is 2 cm. 

IV. CONCLUSION 
ACA in conjunction with reciprocity enables the fast 

computation of coil location and orientation to cortical E-field 
mappings without the need to compute a matrix inverse and by 
just using the solution to a few sample coil locations and 
orientations. The use of such methods reduces the computational 
time of running E-field simulations significantly and can be used 
non-intrusively. TMS coil placement to E-field maps can be 
used for brain mapping [5], and a fast solver like the one 
presented here will enable the wide adoption of such methods.  
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