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Abstract—A butterfly acceleration scheme is proposed for the
fast solution of volume integral equation (VIE). The proposed
scheme efficiently constructs the method of moments (MoM)
matrix in the compressed format and obtains an approximate
inverse of the MoM matrix, used as a highly effective precondi-
tioner. The proposed scheme enables to efficiently solve problems
involving millions of unknowns. Furthermore, it requires much
less computational resources compared to H matrix scheme for
the electromagnetic (EM) scattering analysis of electrically large
structures.

Index Terms—Butterfly algorithm, direct solver, fast solver,
preconditioners, volume integral equation.

I. INTRODUCTION

RECENT advances in EM and optical systems require
fast and accurate simulation tools to characterize EM

scattering from heterogeneous structures. Among various tools
developed for this purpose, VIE solvers offer several ad-
vantages over their differential equation counterparts. The
VIE solvers require the solution of a dense linear system of
equations (LSE), which has to be accelerated by a fast matrix-
vector multiplication scheme (such as the ones based on fast
multipole method and/or fast Fourier transform [1]–[5]). Of-
tentimes, the LSE becomes ill-conditioned when analyzing the
structures with negative permittivity [6], [7], high permittivity
[8]–[10], or mixed positive and negative permittivity [11].
This ill-conditioning results in slow or no convergence of
the iterative solution of the LSE. To this end, fast schemes
to accelerate the matrix-vector multiplications as well as the
convergence of the iterative solutions are highly desirable
for the broad permittivity and large-scale EM analysis of
heterogeneous structures.

In this study, a hierarchical off-diagonal butterfly (HOD-
BF) scheme [12] is proposed for the fast solution of LSE
in VIE solvers. The scheme efficiently constructs the HOD-
BF-compressed matrix blocks, used for the fast matrix-vector
multiplication during the iterative solution of LSE. Moreover,
the scheme obtains a cheap and approximate inverse of the
MoM matrix, used as a highly effective preconditioner. Such
preconditioner reduces the number of iterations to single digit
even for highly ill-conditioned LSEs, arising in the analyses
pertinent to the structures with negative, high, or mixed
permittivity. The computational time required by the proposed
scheme to obtain the HOD-BF-compressed blocks and to per-
form multiplication with them scales as O(N log2N), while
that required to obtain the approximate inverse preconditioner
scales as O(N1.5 logN). Here N is the number of Schaubert-

Wilton-Glisson (SWG) functions [13] used to discretize the
flux in the analyzed structure.

II. VIE FORMULATION

Assume that a time-harmonic EM field is incident upon a
heterogeneous structure with dielectric permittivity ε(r) and
the structure resides in a background medium with permittivity
ε0. The electric flux inside the structure can be obtained by
solving the LSE, which reads

ZI = V, (1)

where

Z(m,n) =

〈
fm(r),

fn(r)

ε(r)
− j2πfηL (κ(r)fn(r))

〉
m

I(n) = Dn

V (m) =
〈
fm(r),Einc(r)

〉
m

; n,m = 1, ..., N. (2)

In (2), fn(r) is the SWG basis function with the un-
known expansion coefficient Dn, f is the frequency, η is
intrinsic impedance, L is the EFIE operator [9], κ(r) =
(ε(r)− ε0) /ε(r) is the contrast, Einc(r) is the incident elec-
tric field, and < a,b >m denotes the standard inner product
of a with b on the support of mth testing function. The
construction of MoM matrix Z and its iterative solution for
I require O(N2) computational resources; such cost can be
reduced to O(N log2N) via the proposed HOD-BF scheme.

III. HOD-BF ACCELERATION AND PRECONDITIONER

The proposed HOD-BF scheme is a high-frequency ex-
tension of the hierarchically off-diagonal low-rank (HOD-
LR) scheme. The HOD-LR scheme generates a hierarchical
partitioning of the MoM matrix followed by compression of
off-diagonal blocks representing non-overlapping interactions
as low-rank products. The compressed blocks permit fast
matrix-vector multiplications and inversion at low-frequency
EM analysis. The HOD-BF scheme replaces the low-rank
products in HOD-LR scheme with butterflies to enable high-
frequency compression. The construction of the HOD-BF-
compressed MoM matrix and approximate inverse precondi-
tioner are described below:

A. Construction of HOD-BF-compressed MoM matrix

The construction begins by recursively subdividing the
scatterer (i.e., structure) into subscatterers with approximately
equal numbers of unknowns using a tree clustering algorithm
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[14]. This procedure yields a complete binary tree TH of LH
levels with root level 0 and leaf level LH . Each node τ at
level l is an index set τ ⊂ {1, . . . , N} associated with the
corresponding subscatterer. For a non-leaf node τ at level l
with children τ1 and τ2, τ = τ1 ∪ τ2 and τ1 ∩ τ2 = ∅. For a
non-root node τ , its parent is denoted pτ . At the leaf level,
the diagonal blocks Dτ = Z(τ, τ) are directly computed as
dense blocks, while off-diagonal blocks are compressed using
the butterfly representation described below.

Specifically, let τ1 and τ2 be two siblings in TH on level
l. These two sibling nodes correspond to two off-diagonal
blocks Bτ1 = Z(τ1, τ2) and Bτ2 = Z(τ2, τ1). As an example
consider the butterfly compression of the m×n block B = Bτ1

with o = τ1 and s = τ2, then B = Z(o, s) is compressed as a
butterfly with L = LH−l levels. Let To and Ts denote subtrees
of TH with L levels, rooted at nodes o and s respectively.
The butterfly compression requires the complementary low-
rank property: for any level 0 ≤ l ≤ L, any node τ at level l
of To and any node ν at level L−l of Ts, the subblock Z(τ, ν)
is numerically low-rank with rank rτ,ν bounded by a small
number r called the butterfly rank. Given the complementary
low-rank property, we can compress any subblock Z(τ, ν)
above as a low-rank product in an interpolative form:

Z(τ, ν) ≈ Z(τ, ν̄)Vτ,ν . (3)

where ν̄ represents the skeleton columns, Z(τ, ν̄) is the
skeleton matrix, and Vτ,ν is the interpolation matrix. Once
all the interpolation and transfer matrices are computed, the
butterfly factorization of B can be written as

Z(o, s) ≈ BLWLWL−1 . . .W1V0. (4)

Here, the outer factor V0 = diag(Vo,ν1 , . . . ,Vo,ν2L
) consists

interpolation matrices at the leafs of Ts, and the block-diagonal
inner factors Wl, l = 1, . . . , L have blocks Wτ for all nodes
τ at level l − 1 of To.

B. Inversion of HOD-BF-compressed system matrix

Once constructed, the inverse of the HOD-BF-compressed
system matrix can be computed approximately and used as a
preconditioner during the iterative solution of Eq. (1). The
inversion algorithm has been previously described in [12],
[15].

Let Dτ = Z(τ, τ) denote the diagonal block associated with
node τ at level l of TH . The recursive algorithm essentially
starts from level l = Lh and inverts the dense Dτ directly.
For node τ at higher levels l, it is not hard to see that
Dτ is a HOD-BF matrix with Lh − l levels. Dτ is then
partitioned into [Dτ1 ,Bτ1 ;Bτ2 ,Dτ2 ]. D−1

τ1 and D−1
τ2 are first

computed by recursion. Next, the butterfly block is updated as
Bτi ← D−1

τi Bτi with both D−1
τi and Bτi already compressed.

Finally the updated matrix [I,Bτ1 ;Bτ2 , I] is inverted using
the butterfly extension of the Sherman-Morrison-Woodbury
formula [16]. The algorithm also computes a butterfly ap-
proximation of Z−1 with a relative tolerance to be used as
a preconditioner.

IV. NUMERICAL RESULTS

Two numerical examples to demonstrate the accuracy and
efficiency of the proposed solver are presented here. In both
examples the structures are illuminated by an x̂ polarized
plane-wave travelling along −ẑ direction. All simulations are
carried out on the Cori supercomputer of Haswell nodes; each
node has two 16-core Intel Xeon E5-2698v3 processors and
128 GB of 2133 MHz DDR4 memory and each simulation is
carried out on 16 nodes.

In the first example, a two-layered spherical shell is consid-
ered. The shell has a outer radius of 2.4 m with thickness
of 0.03 m for both layers and permittivity of 4ε0 for the
inner layer and 2ε0 for the outer layer [Fig. 1]. The flux
inside the structure is discretized by N = 5, 530, 950 SWG
basis functions. The radar cross section (RCS) is computed at
f = 600 MHz using the proposed VIE solver and compared
with analytical Mie series solution [Fig. 1(b)]; both results
demonstrate very good agreement. The required number of
iterations with and without approximate inverse preconditioner
are 7 and 643, respectively. This shows the effectiveness of the
proposed preconditioner.

(a) (b)

Fig. 1. (a) Two-layered shell with ε1 = 2ε0, and ε2 = 4ε0 . (b) The RCSs
computed with the proposed solver and Mie series solution at f = 600 MHz.

In the second example, a NASA almond with size 0.25 ×
0.1 × 0.04 m and permittivity ε(r) = (4− 0.0001j) ε0 is
analyzed. The computational and memory requirements of the
proposed scheme are studied while the frequency is changed
from 4.4 GHz to 20 GHz with maximum N = 12, 112, 059
. Fig. 2 shows that the construction cost of compressed
MoM matrix in the HOD-BF-accelerated solver scales as
O(N log2N). In contrast, the construction cost required in the
low-rank H matrix-accelerated solver scales at least O(N1.5).
In addition, the computational cost of inversion to obtain
preconditioner scales as O(N1.5 logN) for both HOD-BF
and H matrix schemes. For the analysis with N = 1.6M
unknowns, HOD-BF scheme requires 5.0x/3.2x less compu-
tational time and 3.2x/2.7x less memory compared to the H
matrix scheme for the construction/inversion. The iterative
solution via HOD-BF-accelerated solver without precondi-
tioner does not converge for the analyses with more than
N = 3M unknowns. However, the HOD-BF-accelerated solver
with preconditioner requires maximum 4 iterations for the
analyses at all frequencies.
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Fig. 2. (a) CPU and (b) memory scaling of the HOD-BF-accelerated solver
and H matrix-accelerated solver when applied to the EM analysis of a NASA
almond with permittivity ε(r) = (4− 0.0001j) ε0
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