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Abstract—This paper proposes DeeptDCS, a deep learning-

based real-time emulator to estimate the currents induced during 

the transcranial direct current stimulation (tDCS). The DeeptDCS 

takes the volume conductor model of a human head and the 

excitation parameters as inputs and provides the tDCS-induced 

three-dimensional current density across the whole head as 

output. The DeeptDCS obtains the current density more than 112x 

faster than the finite element-based open-source SimNIBS 

simulator while achieving a mean absolute error less than 0.1%.  

Keywords—Current density estimation, convolutional neural 

networks, deep learning, emulator, transcranial direct current 

stimulation (tDCS). 

I. INTRODUCTION 

Transcranial direct current stimulation (tDCS) is a non-
invasive brain stimulation technique that alters the excitability 
of brain regions by inducing a small current in the human head 
using electrodes attached to the scalp. tDCS has been shown to 
have therapeutic effects for depression and chronic pain and 
enhance the working memory of healthy individuals [1].  

Currently, the practitioners face two critical issues in 
optimizing tDCS for clinical and experimental protocols. First, 
intra- and inter-subject variations in head anatomy greatly 
influence the current distribution induced during tDCS. Due to 
these variations, common electrode positions will often fail to 
generate significant currents in the targetted brain regions. 
Ideally, the practitioner would be able to visualize and monitor 
the current distribution induced in the brain and modify the 
electrode position as necessary to achieve ideal therapeutic 
effects. However, obtaining in-vivo measurements of tDCS is 
challenging, and physics-based simulators [2, 3] appear to be the 
only viable option to determine the induced currents and E-fields 
inside the brain during stimulation. Second, the closed-loop 
neuronavigated tDCS protocols, in principle, could be planned 
to on-the-fly reconfigure electrode positions based on behavioral 
measurements to target the distinct regions. However, such 
reconfiguration of the electrodes would require the computation 
of E-field and current distributions for an ensemble of electrode 
positions. This is currently not practical because the physics-
based simulators do not provide the current distributions (near-) 

real time and their repetitive execution requires excessive 
computational resources. 

Similar issues persist in the clinical applications of 
transcranial magnetic stimulation (TMS) [4]. To tackle with 
these issues, a deep learning algorithm was recently proposed to 
estimate the strength of E-fields induced in selected regions of 
the brain during the TMS [4]. However, many TMS and tDCS 
applications require much rich information, such as the 
components of E-fields or currents and their distributions on the 
whole head. Furthermore, no deep learning-based scheme has 
been proposed for tDCS so far. 

In this study, we propose a deep learning-based real-time 
emulator to estimate the currents induced during tDCS. The 
proposed emulator, called DeeptDCS, utilizes a 3D U-net that 
takes the volume conductor model (VCM) and electrode 
positions as input [Fig. 1]. The emulator outputs the components 
of the three-dimensional currents distributed on the whole head 
during the tDCS procedure. The proposed emulator requires 
0.465 s on a GPU and 1 s on a CPU for one emulation. On the 
other hand, the finite-element based open-source SimNIBS 
requires 112 s on the same CPU for one simulation. Note that 
the SimNIBS can not be executed on a GPU. Therefore, the 
proposed emulator is at least 112x faster than SimNIBS while 
achieving a mean absolute error of only 0.06566 % of the 

maximum value of the ground truth.  
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Fig. 1. The workflow of the proposed DeeptDCS, which uses VCM with 

excitation configurations to emulate tDCS-induced three-dimensional current 
flow across the whole head.  



II. DEEPTDCS 

The proposed DeeptDCS scheme is schematically depicted 
in Fig. 1, which reads the VCM of head tissues with electrode 
configurations and predicts the components of current density 
across the subject’s head during tDCS. To learn the relationship 
between input and output in DeeptDCS, a deep convolutional 
neural network, 3D U-net [5], is adopted, which is an encoder-
decoder framework with skip connections. In the encoding 
stage, a series of convolutional blocks and max-pooling 
operators extract local features in various resolutions from the 
input. Afterwards, transposed convolutional blocks in the 
decoding path merge information skipped from the encoding 
path to recover the volume size and predict the three-
dimensional current flow.  

Apart from the anatomy of the human head, the current 
distribution during tDCS is affected by the shape, size, and 
positions of the electrodes. Feeding the electrode information as 
an additional input channel can increase the computational cost 
of the emulator. However, in DeeptDCS, the electrode 
parameters are appended to the VCM by assigning conductivity 
values larger than those of the head tissues for the corresponding 
voxels. Compared to methods taking excitation features as an 
additional input channel, this one-channel input scheme avoids 
the curse of dimensionality. 

III. DATA GENERATION 

To train and test DeeptDCS, data pairs of VCMs and current 
distributions are generated for commonly used tDCS excitation 
patterns. First, 21 subjects’ magnetic resonance images are 

adopted to construct VCMs. Then, the head tissue conductivities 
are randomly assigned based on the reference ranges [6]. Next, 
for each excitation pattern of a single subject, VCM is inputted 
to SimNIBS for acquiring the ground truth current distribution. 
Finally, the input VCM and output current distribution of 
SimNIBS, all defined on tetrahedral elements, are voxelized to 
be applicable to the convolutional operator in 3D U-net and used 
for training and evaluation of DeeptDCS. 

IV. NUMERICAL RESULTS 

Samples constructed are split into three subsets: training, 
validation, and testing. 3D U-net is trained by minimizing mean 
squared error loss and then applied to predict the three-
dimensional current density flow from a new VCM not used in 
the training. Fig. 2 illustrates the current density of one testing 
sample, which compares the ground truth obtained from 
SimNIBS and the estimation from DeeptDCS. As shown in the 
first column of Fig. 2, the agreement in current density 
distribution on the brain surface enables DeeptDCS in the 
clinical application where accurate localization of the target 
region is critical. Meanwhile, pixel-level consistency between 
the ground truth and the prediction in the sagittal slice allows 
research related to deep brain stimulation via tDCS. 
Furthermore, the mean absolute error of predictions via 

DeeptDCS is 0.001835 2mA/m , which is 0.06566 % of the 

maximum value in the ground truth. Each emulation via 
DeeptDCS costs 1 s on a CPU and 0.465 s on a single GPU, over 
112 and 240 times faster than one simulation by SimNIBS, 
which requires 112 s execution time on the same CPU. 
Therefore, the DeeptDCS is a promising tool for settings 
requiring real-time tDCS current visualization.  

V. CONCLUSION 

DeeptDCS, a deep learning-based real-time tDCS emulator 
is proposed. DeeptDCS leverages the ultra-short testing time of 
3D U-net to visualize the tDCS-induced three-dimensional 
current density across the whole head. In the talk, the details and 
performance of DeeptDCS will be presented.  
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Fig. 2. Visual comparison of magnitude of current density distribution across 

the brain (the first column) and the sagittal slice (the second column), where the 
three rows represent the ground truth from SimNIBS, the emulation from 

proposed DeeptDCS, and the corresponding absolute difference, respectively. 


