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Abstract  — In this study, a tensor train-based tensor 

completion scheme is proposed to reduce the setup time of fast 
Fourier transform (FFT) - accelerated integral equation (IE) 
simulators. The proposed scheme is applied to completion of the 

system tensors arising in FFT-accelerated IE simulators 
developed for the analyses from DC to high-frequencies. The 
preliminary results show that the scheme yields 10.8x, 3x, and 

2.6x computational time-saving during the generation of system 
tensors with 

-4
10  accuracy for electrostatic, quasi-magneto-

static, and full-wave analyses, respectively.  

Index Terms — Fast Fourier transform (FFT), integral 

equation, system tensors, tensor train (TT) decompositions. 

I. INTRODUCTION 

Integral equation (IE)-based electromagnetic (EM) 

simulators have become the popular choice of 

engineers/scientists for analysis, design, and characterization 

in many EM problems from DC to terahertz. Among these 

simulators, fast Fourier transform (FFT)-accelerated ones [1-5] 

offer substantially low computational time and memory 

requirements compared to the others in exchange for requiring 

a discretization via voxels and/or panels on a structured grid. 

In FFT-accelerated IE simulators, the matrix-vector 

multiplication is executed via convolutions performed on 

circulant tensors derived from system tensors. The generation 

of these system tensors requires excessive time that dominates 

the setup time of these simulators and sometimes is even more 

than iterative solution time for large-scale structures. To this 

end, a strategy based on Tucker decompositions [6-11] was 

proposed to accelerate the generation of these system tensors 

in [2-4]. In this strategy, very large system tensors for voxels 

with unit edge length are generated, compressed via Tucker 

decompositions, and stored in hard disk during the installation 

stage of the simulator. During the setup stage, the compressed 

tensors are restored and scaled by the actual voxel size; the 

restored tensors are resized according to the required 

computational domain size. This strategy yields a significant 

reduction in the setup time of the simulators, yet it requires 

pre-computation of the Tucker-compressed tensors during the 

installation stage. 

This study proposes a tensor train (TT) decomposition-

based [11] tensor completion scheme to compute system 

tensors efficiently without any pre-computation. In particular, 

TT-compressed representations of system tensors are obtained 

by alternating minimal energy cross algorithm. Then the TT- 

compressed representations are used to restore the original 

system tensors. As system tensors are low-rank, the 

computational time required to obtain TT-compressed 

representations is much shorter than the computational time 

required for obtaining full system tensors. The proposed TT-

based tensor completion scheme is applied to generate the 

system tensors of open-source VoxCap [3], 

SuperVoxHenry/VoxHenry [1, 2], and MARIE [5] simulators 

developed for electrostatic, magneto-quasi-static, and full-

wave analyses. Numerical results show that the TT-based 

tensor completion scheme yields significant time-saving 

during the setup stage for increasing computational domain 

size and TT tolerance. In particular, the scheme yields 10.8x, 

3x, and 2.6x less computational time during the setup stages of 

VoxCap, VoxHenry, and MARIE for generating the system 

tensors of a computational domain discretized by 

600 600 600   voxels for an accuracy of 410− . It should be 

noted here that the TT-accelerated IE simulators have been 

thoroughly studied in recent years [12, 13]. However, a TT-

based tensor completion scheme is proposed for the first time 

in this study to obtain the system tensors in FFT-accelerated 

IE simulators. 

II. FORMULATION 

In this section, the system tensors (and their TT 

representations) arising in FFT-accelerated IE simulators (in 

VoxCap, VoxHenry, and MARIE) are expounded after their 

corresponding integral equations and linear system of 

equations (LSEs) are explained.  

Let S   and V   denote the surface and volume of a structure 

(a conductor or a dielectric target) residing in a vacuum with 

permittivity 
0  and permeability 

0 . The computational 

domain enclosing the structure is discretized by 

t x y zN N N N=    voxels with edge length x  ,where 
xN , 



 

 

yN  and 
zN  denote the number of voxels along x-, y-, and z-

directions, respectively. While the structure occupies K  non-

air voxels, there exist N  panels discretizing the surfaces of 

structures.  

In the electrostatic analysis of the structure, VoxCap solves 

a surface integral equation, which reads as 
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where r  and r  denote the observer and source points, 

respectively. ( ) r  and ( ) r  denote the potential and charge 

density on the surface of the structure (conductor), 

respectively. After discretizing ( ) r  by piecewise constant 

basis function ( )lw r  defined on panels and applying Galerkin 

testing, an N N  system matrix P  is obtained and grouped 

with respect to the normal direction of panels as 
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In VoxCap, system Toeplitz tensors ,  , , { , , }x y z  = , 

corresponding to the blocks 
, 

P  in P  are obtained via [3] 
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where , ,i j and k  indices vary from 1 to 1xN + , 1yN + , and 

1zN + , respectively, while ( 1)( 1)xl i N j= + + − +  

( 1)( 1)( 1)x yN N k+ + − .  

In the magneto-quasi-static analysis, VoxHenry solves the 

current continuity law ( ) 0 =J r  and a volume integral 

equation, which is [1] 
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where   and   denote the conductivity of the structure and 

the angular frequency, respectively. After discretizing the 

current density ( )J r  by piecewise constant and linear basis 

functions, , { , , , 2 ,3 }l x y z D D  =f , and applying Galerkin 

testing, a 5 5K K  system matrix Z  is obtained as [1] 
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The system Toeplitz tensors 
, 

, , { , , ,2 ,3 }x y z D D  = , 

corresponding to blocks 
, 

Z  in Z , are obtained via [1] 
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where , ,i j and k  indices vary from 1 to 
xN , yN , and 

zN , 

respectively, while ( 1) ( 1)x x yl i N j N N k= + − + − .  

In the full-wave analysis of a structure, MARIE solves the 

electric field volume integral equation, which reads as [5] 
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where ( )E r  and 
inc ( )E r  denote total electric field in the 

structure (dielectric target) and incident electric field, 

respectively, while 
0.5

0 0 0( )k   = . After discretizing ( )J r  

with pulse basis functions l


f , { , , }x y z = , [5], and applying 

Galerkin testing, a 3 3K K  system matrix G is obtained as  
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The system Toeplitz tensors ,  , , { , , }x y z  = , 

corresponding to the blocks , 
G , in G  are obtained via  

0 1

,

, ,

1

ˆˆ ˆ ˆ( ) ( )
4

l

m n

jk

i j k m n

m n lS S

e
dS dS 



 − − + −



=   
 − + −

  
r r r r

n α n β
r r r r

,(9) 

where 1,2,..., xi N= , 1,2,..., yj N= , 1,2,..., zk N= , 

ˆˆ ˆ ˆ ˆ, { , , }=α β x y z , while ( 1) ( 1)x x yl i N j N N k= + − + − . The 

summation on m  and n  are performed on each face of voxels 

and the surface integration is performed on 
mS  and 

nS   with 

unit normals ˆ
mn  and ˆ

nn , respectively.  

All system tensors can be efficiently obtained by TT 

completion. To this end, let ={ , , }  represent a 

real/complex four-dimensional array, i.e., 
1 4 1 4{ / }n n n n

. Its TT decomposition reads as [14]: 
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Here 1 , 1,...,4k k kr n r

k k , represents TT core tensor and 

kr  is the TT rank (
0 4 1r r= = ).  and k ki   stand for spatial and 

auxiliary indices, respectively. An alternating minimal energy 

cross approximation [15] can be used to obtain the TT cores, 

which then can be used to obtain the full tensor . While 

obtaining TT cores, small numbers of rows, columns, and 



 

 

fibers of these tensors are obtained by calling the original 

tensor fill routines in VoxCap, VoxHenry, and MARIE, since 

these tensors are low-rank. After obtaining TT cores, the rest 

of the entries are obtained by TT completion, which is 

performed much faster than obtaining the tensor entries from 

original routines employing quadrature or analytical 

expressions.  

III. NUMERICAL RESULTS 

This section provides the preliminary results demonstrating 

the efficiency and accuracy achieved by TT completion 

scheme. All numerical tests are conducted on a Linux server 

with Intel® Xeon® Gold 6142 CPU 2.60GHz and MATLAB 

R2019a. 

First, the system tensors generated in VoxCap simulator are 

obtained by the proposed scheme. In particular, a perfectly 

electric conducting sphere with a diameter of 0.5m is 

discretized by voxels of size 0.005, 0.0025, 0.00167, 0.00125, 

0.001, and 0.00083 m for the test. This gives rise to 

100, ,600x y zN N N= = =  with an increase of 100 voxels 

along each principal axis for each test. Initially, we compare 

the setup time to obtain ,  , , { , , }x y z  =  via original 

tensor fill routines in VoxCap and TT-completion scheme 

with tolerance 410−  and 610−  [Fig. 1]. In Fig 1, the data points 

corresponding to computational domain sizes 100 100 100  , 

..., 600 600 600   are the ones with tensor sizes of 66 10 , 

..., 91.296 10 . For the largest computational domain realized 

by 600 600 600   voxels, the TT-completion scheme yields 

10.8x and 6.08x computational saving for TT tolerance 410−  

and 610−  compared to original routines in VoxCap employing 

analytical expression and quadrature. The maximum TT rank 

is obtained as 13 and 20 while the memory requirement of the 

TT core tensors is 3.95 MB and 8.5 MB for TT tolerance of 
410−  and 610− , respectively. Note that the memory 

requirement of the original tensor is 9888 MB. Furthermore, 

to evaluate the accuracy of the proposed scheme, the system 

tensors obtained by the TT-completion scheme are used while 

obtaining the self-capacitance of the sphere. Fig. 2 compares 

the self-capacitance obtained via analytical formula and TT 

completion-augmented VoxCap scheme with TT tolerance 
410−  and 610− . Clearly, the self-capacitance values match up 

to two digits with increasing 1/ x  (or increasing system 

tensor size and resolution). To obtain the self-capacitance via 

direct VoxCap and TT completion-augmented VoxCap, both 

schemes require the same number of iterations during the 

iteration solution, indicating that the accuracy obtained by the 

TT-completion scheme with 410−  accuracy is sufficient for 

accurate analysis.  

Next, the proposed scheme is applied to the completion of 

system tensors in VoxHenry. Again, the computational 

domain size is increased from 100 100 100   to 

600 600 600   with 100  voxel increment along each 

principle axis for each test, while voxel size is decreased from 

0.05 to 0.0083 m. The setup time to obtain 
, 

, , { , , ,2 ,3 }x y z D D  = , via original tensor-fill routines 

in VoxHenry and TT-completion scheme with TT tolerance 
410−  and 610−  is compared in Fig.3. In Fig.3, the data points 

corresponding to computational domain sizes 100 100 100  , 

..., 600 600 600   are the ones with tensor sizes of 71 10 , 

…, 92.16 10 . For the largest computational domain 

600 600 600  , the proposed scheme yields 3x and 1.7x 

computational saving for TT tolerance 410−  and 610− . Again, 

maximum TT rank is 14 and 22, while the memory 

requirements of TT cores are 2.3 and 3.96 MB, while the 

memory requirement of the original tensor is 32,959 MB.  

 

Fig. 1. Setup time required to obtain VoxCap’s system tensors via its 

tensor-fill routines and TT-completion scheme. 

 

Fig. 2. The self-capacitance of a sphere obtained by analytical 

formula and TT completion-augmented VoxCap. 

 

Fig. 3. Setup time required to obtain VoxHenry’s system tensors via 

its tensor-fill routines and TT-completion scheme 

 

Fig. 4. Setup time required to obtain MARIE’s system tensors via its 

tensor-fill routines and TT-completion scheme 

 

Finally, the proposed scheme is used to efficiently obtain 

the system tensors in MARIE. For this purpose, the 

computational domain is discretized by voxels of size 0.05, 

0.025, 0.0167, 0.0125, 0.01, and 0.0083 m for the test. This 

gives rise to 100, ,600x y zN N N= = =  with an increase of 



 

 

100 voxels along each principal axis. The angular frequency 

  is set to 1.885 MHz. The setup time to obtain 
,  , , { , , }x y z  =  via original tensor-fill routines in 

MARIE and the TT-completion scheme with TT tolerance of 
410−  is provided in Fig.4. In Fig.4, the data points 

corresponding to computational domain sizes 100 100 100  , 

..., 600 600 600   are the ones with tensor sizes of 66 10 , 

..., 91.296 10 . Clearly, after certain tensor size, for the 

computational domains with {400,500,600}x y zN N N= = = , 

TT-completion scheme requires far less computational time. 

For the largest computational domain 600 600 600  , the 

proposed scheme yields 2.6x computational saving and the 

maximum TT rank is 13. While the memory requirements of 

TT cores are 1.2 MB, that of the original tensor is 19,874 MB. 

IV. CONCLUSION 

In this work, a TT-based tensor completion scheme was 

proposed to reduce the setup time of FFT-accelerated IE 

solvers. The scheme was applied to the generation of block 

Toeplitz system tensors of open-source FFT-accelerated IE 

simulators, including VoxCap, VoxHenry, and MARIE. 

Compared with existing tensor-fill routines inside these 

simulators, TT-based completion scheme requires far less 

computational time and resources. In the talk, further 

numerical results showing the accuracy and efficiency of the 

proposed scheme will be provided for the magneto-quasi-

static and full-wave analyses. 
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