
SPEEDING UP THE KNOWLEDGE-BASED DEBLOCKING METHOD FOR EFFICIENT
FORENSIC ANALYSIS

1*Yanzhu Liu, 2Xiaojie Li and 2Adams Wai Kin Kong

1Institute of Automation, Chinese Academy of Science, China

2School of Computer Engineering, Nanyang Technological University, Singapore
Emails: yanzhu.liu@ia.ac.cn, xli16@e.ntu.edu.sg and adamskong@ntu.edu.sg

* All her work was done in the Nanyang Technological University.

ABSTRACT

To restore skin features, e.g. skin marks, in JPEG
compressed images for criminal and victim identification,
Tang et al. proposed a knowledge-based (KB) deblocking
method. Experimental results showed that it outperforms
other deblocking methods designed for generic images.
However, it is computationally demanding. In this paper,
two hash functions, bitwise l1–minimization, a hybrid
searching procedure and a parallel scheme are developed to
speed it up. Experimental results demonstrate that the
proposed computational techniques speed up the KB
method more than 150% on average.

Index Terms—Skin images, forensics, skin marks,
JPEG, biometrics

1. INTRODUCTION

Recently, skin marks and blood vessels have been proposed
to identify criminals and victims in evidence images [1-2].
These features are small and very sensitive to image quality.
Evidence images are very likely compressed by the JPEG
method because it is widely installed in digital cameras. A
knowledge-based (KB) method has been specially designed
for removing JPEG blocking artifacts in skin images, so as
to restore the original clarity of the images [3].
Experimental results demonstrated that this method can
effectively improve the quality of skin images and perform
better than other deblocking methods designed for generic
images [5-7]. The KB method is extremely slow because it
searches optimal uncompressed blocks in a large skin image
database to replace the compressed blocks in evidence
images. It may take several hours to process one image with
8M pixels. Even though more computing resources are
given, the processing time cannot be reduced significantly
because the KB method is not parallel. Thus, it is essential
to speed up the KB method for legal cases with a lot of
evidence images.

Before presenting the proposed computational
techniques to speed up the KB method, a set of notations
and a summary of the KB method are given. A target block
is a block that is currently processing. A frequency
neighborhood (FN) is the quantized discrete cosine
transform (QDCT) coefficients in the to-be-processed
blocks labeled as blocks 5-8 in Fig. 1(a). A spatial
neighborhood (SN) refers to the 18 pixels in the processed
blocks adjacent to the target block. Fig. 1(a) illustrates these
terms. In this paper, the QDCT coefficients in a block are
regarded as a row vector 1[]e rq q q  where iq is a QDCT

coefficient and 64r (8×8), because the quantized high
frequency coefficients are always zero and can be ignored.
The subscript e denotes that the vector is from an input
image (evidence image). The row vector is called index
vector, which is illustrated in Fig. 1(b). An FN is also
represented by a row vector

5 6 7 85 6 7 8 5,1 5, 6,1 6, 7,1 7, 8,1 8,[]e r r r rf c c c c a a a a a a a a     ,

where ci is a quantized DC coefficient, aij is a quantized AC
coefficient, {1 }ij r  and {5 8}.i  5 6 7 8[]ecf c c c c and

5 6 7 85,1 5, 6,1 6, 7,1 7, 8,1 8,[]ea r r r rf a a a a a a a a    

are

defined to represent quantized DC coefficients and the
quantized AC coefficients separately. The SN is also
represented as a row vector se.

Target block

processed blocks to‐be‐processed blocks

Spatial
Neighborhood (SN)

5

6 7 8

[00 01… 30]

[00 01… 30]

[00 01… 30]

[00 01… 30]

6

7

8

1 2 3

4 Frequency
Neighbor‐
hood (FN)

5

(a) (b)
Fig. 1 Illustration of target block, frequency neighborhood, spatial

neighborhood and index vector.
The KB method uses information from a given database

to remove blocking artifacts and restore skin features. This

00 01 02 03 04 05 06 07

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

[00 10 01 02 11 20 30 21 12]
Index vector

QDCT matrix

database is produced by a set of uncompressed skin images
and a JPEG quantization table. The original images are first
compressed and then the QDCT coefficients (index vector),
the FN and the SN of each block, which are respectively
denoted as qdi, fdi and sdi, are extracted. The quantized DC
and AC coefficients in fdi are denoted as fdci and fdai,
respectively. The subscript d indicates that the vectors are
generated from images in the database and the subscript

{1, , }i N  , where N represents the total number of blocks

in the database, is an index to denote different blocks.
The KB method removes blocking artifacts in Y, U and

V components separately. Input compressed images are
processed block by block in a raster-scan order – from left
to right and from top to bottom. Given a target block in a
compressed image, the KB method first searches for
uncompressed blocks in the skin image database, whose
index vectors are the same as the index vector from the
target blocks. Mathematically, this operation is to construct
the set,

1
() { | 0}e e diG q i q q   (1)

where
1

 represents l1 – norm. ()eG q is an index set and its

cardinality is often very large, especially for U and V
components. Then, the FN of the target block is used as a
search query and l1 – norm is also used as a measure to
reduce the size of ()eG q . The remaining uncompressed

blocks form the set
'

1 1
() { | () () }e e di e dj e eG f i f f f f j G q i G q        (2)

Note that the cardinality of ' ()eG f can be greater than one.

Finally, the optimal uncompressed block in the database for
the target block defined by

'
1

arg min . . (),e di e
i

j s s s t i G f   (3)

is obtained and the pixels in the target block are replaced
with the optimal uncompressed block. Eqs. 1, 2 and 3 refer
to respectively the first, second and third steps in the KB
method.

To speed up the KB method, a number of
computational techniques are proposed in this paper.
Section 2 presents two hash functions for a new database
structure. They reduce the computational complexity of Eq.
1 to O(1). Section 3 gives the bitwise l1–minimization to
speed up the computation of Eq. 2 for U and V components.
Section 4 offers a parallel scheme for multi-core computers.
Section 5 compares the original KB method and the
proposed implementation. Section 6 offers some conclusive
remarks.

2. HASH FUNCTIONS FOR INDEX VECTORS AND

A NEW DATABASE STRUCTURE

Given an uncompressed image database and a quantization
table, the images are transformed to the YUV domain and
compressed by the JPEG method. Then, index vectors (qdi),

frequency neighborhoods (fdi) and spatial neighborhoods
(sdi) are extracted. The information from U and V
components is stored in a two-level directory structure. The
first hash function, which maps an input index vector to the
first level folder name, is defined as

1
1

1

() 2
r

i
e i

i

h q s 



  , (4)

where 1is  if 0iq  and 0is  if 0iq  . Note that

1[]e rq q q  . The second hash function, which computes the

second level folder name, is defined as

2 1 2()e rh q q q q    , (5)

where iq is a null character if 0iq  and i iq q  if 0iq  .

In each of these second level folders, there is only one file
storing all FNs and each line in this file is one FN. Note that
each line is distinctive, meaning that no duplicated FN is
stored in the same file. For each FN, there are two
corresponding files in the same folder: one stores all the
SNs with the same FN and the other stores corresponding
uncompressed pixels. h1 and h2 provide two strings as two
folder names that are uniquely defined by the index vector.
Clearly, there is no numerical comparison to be performed
for locating the folder, which stores FNs and SNs with the
same index vector as qe. We can use h1 and h2 to implement
Eqs. 1 for U and V components because their index vectors
have only few non-zero coefficients.

The compression ratio of Y component is generally low
and therefore, it has numerous different index vectors. To
avoid generating file fragments, a single file is used to store
all FNs. In this file, all FNs with the same qdi are saved
continuously. Furthermore, a mapping structure, which is
implemented by a MySQL table, is used to record the FN
and SN positions in the file. When a search is performed,
the input index vector is first used as a key to obtain the first
and last byte location of FNs in the file. Based on these two
values, the corresponding FNs are retrieved from the file.
Similarly, SNs and uncompressed pixels are stored in two
files.

3. A BITWISE l1–NORM FOR U AND V FREQUENCY

NEIGHBORHOODS

The KB method uses l1 – norm as a measure to find optimal
FNs i.e.,

1
argmin ,e di

i
f f where ()ei G q . In each

comparison, l1–norm performs m-1 additions, m subtractions

and m absolute operations, where
8

5

4 i
i

m r


  is the length

of fe and fdi. It is time consuming when the cardinality of
()eG q is large. Thus, a binary representation of FNs is

proposed and a bitwise l1–norm is designed for this
representation.

Before discussing the bitwise representation for FNs, a
simple example is first introduced. Given two integers 3 and

4 and using Table 1 to encode them, their bitwise
representations are respectively 5

3 [111 0 0]b  and
5
4 [1111 0]b  , where the superscripts are the order of the

coding table indicating the number of bits used to represent
one integer and the subscripts are the integers of the bitwise
representations. Table 1 is an order five coding table.

Clearly,
5

5 5
3 4 1

1

4 3i i
i

b b


   , where  represents a bitwise

XOR. From Table 1, it can be easily observed

that
5

5 5
1

1
ki ji

i

b b k j


   , where 0 , 5j k  . The count

function of the dynamic_bitset class in the C++ library is
used to perform the summation. Thus, l1–norm can be
implemented in two operations, one bitwise XOR and one
bit count. This encoding method is modified from the
generalized IrisCodes [8-9], which have been used to
support high speed iris and palmprint matching [10].

Given a set of integers, p1,…., pu, directly encoding
them may require more bits. A more effective approach is to
encode ri where min()i i j

j
r p p  . The minimum order of

the coding table is max() min()j jp p . A coding table with

an order  can be employed. It can be represented by a
matrix []ij , where 1 i   , 1 1j    , and ij is

defined by
0

1ij

if i j

otherwise



 


. (6)

Using the previous notations, the FNs can also be
represented as a matrix Fd, where each row is [fdci fdai]. For
the sake of convenience, let Fdc and Fda be two matrixes and
each of their rows stores respectively fdci and fdai. Since the
range of the quantized DC coefficients in Fdc is larger than
the range of the quantized AC coefficients in Fda, they are
processed separately. By making use of the property of the
coding tables, rdcj(x) is defined as

() () min(())dcj dcj dcj
x

r x F x F x  , (7)

where Fdcj is the jth column of Fdc and Fdcj(x) is its element,
is encoded. Since the range of the quantized AC coefficients
is very short, the global minimum of all quantized AC
coefficients is used to define

,
() () min(())daj daj daj

j x
r x F x F x  , (8)

where Fdaj is the jth column of Fda. Once rdcj(x) and rdaj(x)
are encoded, the FNs are represented by a set of bits for
comparison.

4. A PARALLEL SCHEME

To make use of multi-core processors, the KB method
should be parallelized. The first and second steps do not use
information from any other blocks to process a target block.

Thus they can be parallelized directly. The last step searches
optimal blocks using information from left, left-top, top and
top-right processed blocks. In addition to data dependence,
it is noted that even in the same image, some blocks have
exactly the same QDCT coefficients and FNs. Considering
these factors, a parallel algorithm is given in Fig. 2.

Input: Compressed Image
Output: Deblocked Image
Algorithm:
1. Extract QDCT coefficients and FNs of each block in the input

image in parallel.
 1.1. Identify the unique QDCT coefficient blocks.
 1.2. Read in corresponding FNs from database in parallel.
2. Perform parallel searches to identify nearest FNs.
3. Perform parallel search according to the computing order

illustrated in Fig. 3 to identify optimal SN and obtain
corresponding uncompressed pixels.

4. Return the deblocked image.

Fig. 2 Pseudo code for parallel search.

Fig. 3 The order of spatial
neighborhood computation

Table 1 Order 5 coding tables for
the bitwise l1 – norm.

Input
values

0 1 2 3 4 5

Bit 1 0 1 1 1 1 1
Bit 2 0 0 1 1 1 1
Bit 3 0 0 0 1 1 1
Bit 4 0 0 0 0 1 1
Bit 5 0 0 0 0 0 1

5. EXPERIMENTAL RESULTS

In the experiments, the skin image database containing
5,662 images was used to evaluate the speed of the
proposed algorithm and the KB method, and the images in
the database were compressed by the JPEG method with the
Independent JPEG Group (IJG) quantization tables with
quality factors (QF) of 50. 400 skin images with size of
128x128, 128x192, 192x192, 129x256, 256x256, 256x448,
448x448 and 448x512 pixels were examined. Each size has
50 images. In each test, the median time of processing 50
images with the same size was used as a performance index.
Originally, the KB method was implemented in Matlab. For
fair comparison, C++ was used to re-implement it. The
experiments were performed on a 2.93 GHz PC with 4 cores
and 4 GB memory, running Windows 7.

Fig. 4 plots computation time against size of input
images in terms of the number of blocks. The number of
blocks in U component (Fig. 4(a)) and V component (Fig.
4(b)) is only 25% of those in Y component because of the
JPEG down sampling operation in these two components.
Figs. 4(a) and (b) show that the proposed algorithm is
significantly faster than the original KB method for U and V
components. More precisely, for U and V components from

1 2 3 4 5 6 7 8
3 4 5 6 7 8 9 10
5 6 7 8 9 10 …
7 8 9 10 11
9 10 11 12 …
11 12 13
13

9 …

…
…

(a) the numbers on x-axis in 104 (b) the numbers on x-axis in 104

(c) the numbers on x-axis in 105 (d) the numbers on x-axis in 105
Fig. 4 The relationship between computation time and input image size in terms of number of blocks. The quality factor of input

compressed images is 50. (a) U component, (b) V component, (c) Y component and (d) color images. (a color figure)

Fig. 5 The relationship between computation time and database size. The quality factor of the compressed images is 50. (a) U component,
(b) V component, (c) Y component and (d) color images. (a color figure)

an image with size of 448x512 pixels, the proposed
algorithm is respectively 736% and 757% faster than the
KB method. Fig. 4(c) demonstrates that the proposed
algorithm can also effectively speed up the process for Y
component. The improvement for Y component is not as
great as the improvements for U and V components because
U and V components have more duplicated blocks and
because some proposed schemes are only applicable to
them. To fairly compare the proposed algorithm with the
KB method for color images in a computer with a multi-
core processor, a simple parallel version of the KB method
is implemented, whose performance is labeled as simple
parallel deblocking in Fig. 4(d). This simple parallel version
simultaneously processes Y, U and V components. Fig. 4(d)
shows clearly that the proposed algorithm is significantly
faster than the KB method and its parallel version. It was
expected that the parallel version can effectively reduce the
computation time. However, the KB method requires huge
memory and I/O operations, which make the simple parallel
process ineffective. These experimental results demonstrate
that the proposed algorithm can increase the speed of the
KB method by 120% on average.

Ten databases with 1000, 1500, 2000, 2500, 3000,
3500, 4000, 4500, 5000 and 5662 images were constructed
to study the relationship between deblocking time and
database size. The 50 testing images with size of 448x512
pixels were compressed using the IJG quantization table

with quality factor of 50. Figs. 5(a) and (b) show that when
the size of databases increases, computational time of both
algorithms increases. However, the increasing rates of the
proposed algorithm are much slower than that of the KB
method. Figs. 5(c) and (d) show the experimental results for
Y component and color images. The increasing rates of the
proposed algorithm are also slower than that of the KB
method.

6. CONCLUTION

In this paper, an algorithm is proposed to speed up the KB
method, which is specially designed to remove blocking
artifacts and recover skin features in JPEG compressed
images for criminal and victim identification. Two hash
functions, a bitwise l1 –minimization and a parallel scheme
are developed. Experiments are performed to compare the
KB method and the new algorithm. The experimental results
show that the proposed algorithm runs significantly faster
than the KB method.

7 ACKNOWLEDGMENTS

This work is partially supported by the Ministry of
Education, Singapore through Academic Research Fund
Tier 2, MOE2012-T2-1-024.

(a) (b)

(c) (d)

0

100
200
300
400
500
600
700

 High-speed deblocking
Simple parallel deblocking
Original deblocking

Number of Images in Database
2000 3000 4000 5000 60001000 2000 3000 4000 5000

50

100

150

200

250

300

350

Number of Images in Database

High-speed deblocking
Original deblocking

1000 2000 3000 4000 5000
0

50

100

150

200

250

Number of Images in Database

High-speed deblocking
Original deblocking

1000 2000 3000 4000 5000 0

20

40

60

80

100

120

140

Number of Images in Database

S
ec

on
ds

High-speed deblocking
Original deblocking

0 0.5 1 1.5 2
0

100

200
300

400
500

600
700

The Number of Blocks in Color Image

 High-speed deblocking
Simple parallel deblocking
Original deblocking

2.50 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

The Number of Blocks in Y Component

 High-speed deblocking
Original deblocking

0 1 2 3 4 5 6
0

50

100

150

200

250

The Number of Blocks in V Component

 High-speed
Original deblocking

0 1 2 3 4 5 6
0

20

40

60

80

100
120
140

The Number of Blocks in U Component

S
ec

on
ds

 High-speed deblocking
Original deblocking

6000 60006000 1000

8. REFERENCES

[1] A. Nurhudatiana, A.W.K. Kong, K. Matinpour, S.Y. Cho and
N. Craft, “Fundamental statistics of relatively permanent
pigmented or vascular skin marks”, International Joint Conference
on Biometrics, pp. 1-6, 2011.

[2] C. Tang, A.W.K. Kong and N. Craft, “Uncovering vein
patterns from color skin images for forensic analysis”, IEEE
Conference on Computer Vision and Pattern Recognition, pp. 665-
672, 2011.

[3] C. Tang, A.W.K. Kong and N. Craft, “Using a knowledge-
based approach to remove blocking artifacts in skin images for
forensic analysis”, IEEE Transactions on Information Forensics
and Security, vol. 2, pp. 1038–1049, 2011.

[4] D. Sun and W. Chan, “Postprocessing of low bit-rate block
DCT coded images based on a fields of experts prior”, IEEE
Transactions on Image Processing, vol. 16, no. 11, pp. 2743-2751,
2007.

[5] A. Foi, V. Katkovnik and K. Egiazarian, “Pointwise shape-
adaptive DCT for high-quality denoising and deblocking of
grayscale and color images”, IEEE Transactions on Image
Processing, vol. 16, no. 5, pp. 1395-1411, 2007.

[6] Y. Luo and R. K. Ward, “Removing the blocking artifacts of
block-based DCT compressed images”, IEEE Transactions on
Image Processing, vol. 12, no. 7, pp. 838-842, 2003.

[7] J. Chou, M. Crouse and K. Ramchandran, “A simple algorithm
for removing blocking artifacts in block-transform coded images”,
IEEE Signal Processing Letters, vol. 5, no. 2, pp. 33-35, 1998.

[8] A.W.K. Kong, D. Zhang and M. Kamel, “An analysis of
IrisCode”, IEEE Transactions on Image Processing, vol. 19, no. 2,
pp. 522-532, 2010.

[9] J.G. Daugman, “High confidence visual recognition of persons
by a test of statistical independence”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 15, no. 11, pp.
1148-1161, 1993.

[10] A.W.K. Kong, D. Zhang and M. Kamel, “An analysis of
brute-force break-ins of a palmprint authentication system”, IEEE
Transactions on Systems, Man and Cybernetics, Part B, vol. 36,
no. 5, pp. 1201-1205, 2006.

