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ABSTRACT 
 
To restore skin features, e.g. skin marks, in JPEG 
compressed images for criminal and victim identification, 
Tang et al. proposed a knowledge-based (KB) deblocking 
method. Experimental results showed that it outperforms 
other deblocking methods designed for generic images. 
However, it is computationally demanding. In this paper, 
two hash functions, bitwise l1–minimization, a hybrid 
searching procedure and a parallel scheme are developed to 
speed it up. Experimental results demonstrate that the 
proposed computational techniques speed up the KB 
method more than 150% on average.  
 

Index Terms—Skin images, forensics, skin marks, 
JPEG, biometrics 
 

1. INTRODUCTION 
 
Recently, skin marks and blood vessels have been proposed 
to identify criminals and victims in evidence images [1-2]. 
These features are small and very sensitive to image quality. 
Evidence images are very likely compressed by the JPEG 
method because it is widely installed in digital cameras. A 
knowledge-based (KB) method has been specially designed 
for removing JPEG blocking artifacts in skin images, so as 
to restore the original clarity of the images [3]. 
Experimental results demonstrated that this method can 
effectively improve the quality of skin images and perform 
better than other deblocking methods designed for generic 
images [5-7]. The KB method is extremely slow because it 
searches optimal uncompressed blocks in a large skin image 
database to replace the compressed blocks in evidence 
images. It may take several hours to process one image with 
8M pixels. Even though more computing resources are 
given, the processing time cannot be reduced significantly 
because the KB method is not parallel. Thus, it is essential 
to speed up the KB method for legal cases with a lot of 
evidence images. 

Before presenting the proposed computational 
techniques to speed up the KB method, a set of notations 
and a summary of the KB method are given. A target block 
is a block that is currently processing. A frequency 
neighborhood (FN) is the quantized discrete cosine 
transform (QDCT) coefficients in the to-be-processed 
blocks labeled as blocks 5-8 in Fig. 1(a). A spatial 
neighborhood (SN) refers to the 18 pixels in the processed 
blocks adjacent to the target block. Fig. 1(a) illustrates these 
terms. In this paper, the QDCT coefficients in a block are 
regarded as a row vector 1[ ]e rq q q   where iq is a QDCT 

coefficient and 64r  (8×8), because the quantized high 
frequency coefficients are always zero and can be ignored. 
The subscript e denotes that the vector is from an input 
image (evidence image). The row vector is called index 
vector, which is illustrated in Fig. 1(b). An FN is also 
represented by a row vector 

5 6 7 85 6 7 8 5,1 5, 6,1 6, 7,1 7, 8,1 8,[ ]e r r r rf c c c c a a a a a a a a     , 

where ci is a quantized DC coefficient, aij is a quantized AC 
coefficient, {1 }ij r   and {5 8}.i   5 6 7 8[ ]ecf c c c c  and 

5 6 7 85,1 5, 6,1 6, 7,1 7, 8,1 8,[ ]ea r r r rf a a a a a a a a    
 
are 

defined to represent quantized DC coefficients and the 
quantized AC coefficients separately. The SN is also 
represented as a row vector se. 
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Fig. 1 Illustration of target block, frequency neighborhood, spatial 

neighborhood and index vector. 
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database is produced by a set of uncompressed skin images 
and a JPEG quantization table. The original images are first 
compressed and then the QDCT coefficients (index vector), 
the FN and the SN of each block, which are respectively 
denoted as qdi, fdi and sdi, are extracted. The quantized DC 
and AC coefficients in fdi are denoted as fdci and fdai, 
respectively. The subscript d indicates that the vectors are 
generated from images in the database and the subscript 

{1, , }i N  , where N represents the total number of blocks 

in the database, is an index to denote different blocks.  
The KB method removes blocking artifacts in Y, U and 

V components separately. Input compressed images are 
processed block by block in a raster-scan order – from left 
to right and from top to bottom. Given a target block in a 
compressed image, the KB method first searches for 
uncompressed blocks in the skin image database, whose 
index vectors are the same as the index vector from the 
target blocks. Mathematically, this operation is to construct 
the set, 

1
( ) { | 0}e e diG q i q q              (1) 

where 
1

  represents l1 – norm. ( )eG q  is an index set and its 

cardinality is often very large, especially for U and V 
components. Then, the FN of the target block is used as a 
search query and l1 – norm is also used as a measure to 
reduce the size of ( )eG q . The remaining uncompressed 

blocks form the set 
'

1 1
( ) { | ( ) ( ) }e e di e dj e eG f i f f f f j G q i G q        (2) 

Note that the cardinality of ' ( )eG f  can be greater than one. 

Finally, the optimal uncompressed block in the database for 
the target block defined by  

'
1

arg min . . ( ),e di e
i

j s s s t i G f           (3) 

is obtained and the pixels in the target block are replaced 
with the optimal uncompressed block. Eqs. 1, 2 and 3 refer 
to respectively the first, second and third steps in the KB 
method. 

To speed up the KB method, a number of 
computational techniques are proposed in this paper. 
Section 2 presents two hash functions for a new database 
structure. They reduce the computational complexity of Eq. 
1 to O(1). Section 3 gives the bitwise l1–minimization to 
speed up the computation of Eq. 2 for U and V components. 
Section 4 offers a parallel scheme for multi-core computers. 
Section 5 compares the original KB method and the 
proposed implementation. Section 6 offers some conclusive 
remarks.  
 
2. HASH FUNCTIONS FOR INDEX VECTORS AND 

A NEW DATABASE STRUCTURE 
 
Given an uncompressed image database and a quantization 
table, the images are transformed to the YUV domain and 
compressed by the JPEG method. Then, index vectors (qdi), 

frequency neighborhoods (fdi) and spatial neighborhoods 
(sdi) are extracted. The information from U and V 
components is stored in a two-level directory structure. The 
first hash function, which maps an input index vector to the 
first level folder name, is defined as  

1
1

1

( ) 2
r

i
e i

i

h q s 



  ,       (4) 

where 1is   if 0iq  and 0is  if 0iq  . Note that 

1[ ]e rq q q  . The second hash function, which computes the 

second level folder name, is defined as 

2 1 2( )e rh q q q q    ,                   (5) 

where iq  is a null character if 0iq   and i iq q   if 0iq  . 

In each of these second level folders, there is only one file 
storing all FNs and each line in this file is one FN. Note that 
each line is distinctive, meaning that no duplicated FN is 
stored in the same file. For each FN, there are two 
corresponding files in the same folder: one stores all the 
SNs with the same FN and the other stores corresponding 
uncompressed pixels. h1 and h2 provide two strings as two 
folder names that are uniquely defined by the index vector. 
Clearly, there is no numerical comparison to be performed 
for locating the folder, which stores FNs and SNs with the 
same index vector as qe. We can use h1 and h2 to implement 
Eqs. 1 for U and V components because their index vectors 
have only few non-zero coefficients.  

The compression ratio of Y component is generally low 
and therefore, it has numerous different index vectors. To 
avoid generating file fragments, a single file is used to store 
all FNs. In this file, all FNs with the same qdi are saved 
continuously. Furthermore, a mapping structure, which is 
implemented by a MySQL table, is used to record the FN 
and SN positions in the file. When a search is performed, 
the input index vector is first used as a key to obtain the first 
and last byte location of FNs in the file. Based on these two 
values, the corresponding FNs are retrieved from the file. 
Similarly, SNs and uncompressed pixels are stored in two 
files. 

 
3. A BITWISE l1–NORM FOR U AND V FREQUENCY 

NEIGHBORHOODS 
 

The KB method uses l1 – norm as a measure to find optimal 
FNs i.e.,

1
argmin ,e di

i
f f where ( )ei G q . In each 

comparison, l1–norm performs m-1 additions, m subtractions 

and m absolute operations, where 
8

5

4 i
i

m r


   is the length 

of fe and fdi. It is time consuming when the cardinality of 
( )eG q  is large. Thus, a binary representation of FNs is 

proposed and a bitwise l1–norm is designed for this 
representation.  

Before discussing the bitwise representation for FNs, a 
simple example is first introduced. Given two integers 3 and 



4 and using Table 1 to encode them, their bitwise 
representations are respectively 5

3 [111 0 0]b   and 
5
4 [1111 0]b  , where the superscripts are the order of the 

coding table indicating the number of bits used to represent 
one integer and the subscripts are the integers of the bitwise 
representations. Table 1 is an order five coding table. 

Clearly, 
5

5 5
3 4 1

1

4 3i i
i

b b


   , where  represents a bitwise 

XOR. From Table 1, it can be easily observed 

that
5

5 5
1

1
ki ji

i

b b k j


   , where 0 , 5j k  . The count 

function of the dynamic_bitset class in the C++ library is 
used to perform the summation. Thus, l1–norm can be 
implemented in two operations, one bitwise XOR and one 
bit count. This encoding method is modified from the 
generalized IrisCodes [8-9], which have been used to 
support high speed iris and palmprint matching [10].  

Given a set of integers, p1,…., pu, directly encoding 
them may require more bits. A more effective approach is to 
encode ri where min( )i i j

j
r p p  . The minimum order of 

the coding table is max( ) min( )j jp p . A coding table with 

an order   can be employed. It can be represented by a 
matrix [ ]ij , where 1 i   , 1 1j    , and ij  is 

defined by 
0

1ij

if i j

otherwise



 


.           (6) 

Using the previous notations, the FNs can also be 
represented as a matrix Fd, where each row is [fdci fdai]. For 
the sake of convenience, let Fdc and Fda be two matrixes and 
each of their rows stores respectively fdci and fdai. Since the 
range of the quantized DC coefficients in Fdc is larger than 
the range of the quantized AC coefficients in Fda, they are 
processed separately. By making use of the property of the 
coding tables, rdcj(x) is defined as  

( ) ( ) min( ( ))dcj dcj dcj
x

r x F x F x  ,          (7) 

where Fdcj is the jth column of Fdc and Fdcj(x) is its element, 
is encoded. Since the range of the quantized AC coefficients 
is very short, the global minimum of all quantized AC 
coefficients is used to define  

,
( ) ( ) min( ( ))daj daj daj

j x
r x F x F x  ,         (8) 

where Fdaj is the jth column of Fda. Once rdcj(x) and rdaj(x) 
are encoded, the FNs are represented by a set of bits for 
comparison. 
 

4. A PARALLEL SCHEME 
 
To make use of multi-core processors, the KB method 
should be parallelized. The first and second steps do not use 
information from any other blocks to process a target block. 

Thus they can be parallelized directly. The last step searches 
optimal blocks using information from left, left-top, top and 
top-right processed blocks. In addition to data dependence, 
it is noted that even in the same image, some blocks have 
exactly the same QDCT coefficients and FNs. Considering 
these factors, a parallel algorithm is given in Fig. 2.  
 

Input: Compressed Image 
Output: Deblocked Image  
Algorithm:  
1. Extract QDCT coefficients and FNs of each block in the   input 

image in parallel. 
    1.1. Identify the unique QDCT coefficient blocks. 
    1.2. Read in corresponding FNs from database in parallel. 
2. Perform parallel searches to identify nearest FNs.  
3. Perform parallel search according to the computing order 

illustrated in Fig. 3 to identify optimal SN and obtain 
corresponding uncompressed pixels.   

4. Return the deblocked image. 

Fig. 2 Pseudo code for parallel search.
 

 
Fig. 3 The order of spatial 
neighborhood computation 

 

Table 1 Order 5 coding tables for 
the bitwise l1 – norm.  

Input 
values 

0 1 2 3 4 5 

Bit 1 0 1 1 1 1 1 
Bit 2 0 0 1 1 1 1 
Bit 3 0 0 0 1 1 1 
Bit 4 0 0 0 0 1 1 
Bit 5 0 0 0 0 0 1 

 

 

5. EXPERIMENTAL RESULTS 
 
In the experiments, the skin image database containing 
5,662 images was used to evaluate the speed of the 
proposed algorithm and the KB method, and the images in 
the database were compressed by the JPEG method with the 
Independent JPEG Group (IJG) quantization tables with 
quality factors (QF) of 50. 400 skin images with size of 
128x128, 128x192, 192x192, 129x256, 256x256, 256x448, 
448x448 and 448x512 pixels were examined. Each size has 
50 images. In each test, the median time of processing 50 
images with the same size was used as a performance index. 
Originally, the KB method was implemented in Matlab. For 
fair comparison, C++ was used to re-implement it. The 
experiments were performed on a 2.93 GHz PC with 4 cores 
and 4 GB memory, running Windows 7. 

Fig. 4 plots computation time against size of input 
images in terms of the number of blocks. The number of 
blocks in U component (Fig. 4(a)) and V component (Fig. 
4(b)) is only 25% of those in Y component because of the 
JPEG down sampling operation in these two components. 
Figs. 4(a) and (b) show that the proposed algorithm is 
significantly faster than the original KB method for U and V 
components. More precisely, for U and V components from

1 2 3 4 5 6 7 8
3 4 5 6 7 8 9 10
5 6 7 8 9 10 …
7 8 9 10 11 
9 10 11 12 …
11 12 13 
13

9 …

…
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(a) the numbers on x-axis in 104 (b) the numbers on x-axis in 104
 

(c) the numbers on x-axis in 105 (d) the numbers on x-axis in 105 
Fig. 4 The relationship between computation time and input image size in terms of number of blocks. The quality factor of input 

compressed images is 50. (a) U component, (b) V component, (c) Y component and (d) color images. (a color figure) 

Fig. 5 The relationship between computation time and database size. The quality factor of the compressed images is 50. (a) U component, 
(b) V component, (c) Y component and (d) color images. (a color figure)

an image with size of 448x512 pixels, the proposed 
algorithm is respectively 736% and 757% faster than the 
KB method. Fig. 4(c) demonstrates that the proposed 
algorithm can also effectively speed up the process for Y 
component. The improvement for Y component is not as 
great as the improvements for U and V components because 
U and V components have more duplicated blocks and 
because some proposed schemes are only applicable to 
them. To fairly compare the proposed algorithm with the 
KB method for color images in a computer with a multi-
core processor, a simple parallel version of the KB method 
is implemented, whose performance is labeled as simple 
parallel deblocking in Fig. 4(d). This simple parallel version 
simultaneously processes Y, U and V components. Fig. 4(d) 
shows clearly that the proposed algorithm is significantly 
faster than the KB method and its parallel version. It was 
expected that the parallel version can effectively reduce the 
computation time. However, the KB method requires huge 
memory and I/O operations, which make the simple parallel 
process ineffective. These experimental results demonstrate 
that the proposed algorithm can increase the speed of the 
KB method by 120% on average.   

Ten databases with 1000, 1500, 2000, 2500, 3000, 
3500, 4000, 4500, 5000 and 5662 images were constructed 
to study the relationship between deblocking time and 
database size. The 50 testing images with size of 448x512 
pixels were compressed using the IJG quantization table 

with quality factor of 50. Figs. 5(a) and (b) show that when 
the size of databases increases, computational time of both 
algorithms increases. However, the increasing rates of the 
proposed algorithm are much slower than that of the KB 
method. Figs. 5(c) and (d) show the experimental results for 
Y component and color images. The increasing rates of the 
proposed algorithm are also slower than that of the KB 
method. 

 
6. CONCLUTION 

 
In this paper, an algorithm is proposed to speed up the KB 
method, which is specially designed to remove blocking 
artifacts and recover skin features in JPEG compressed 
images for criminal and victim identification. Two hash 
functions, a bitwise l1 –minimization and a parallel scheme 
are developed. Experiments are performed to compare the 
KB method and the new algorithm. The experimental results 
show that the proposed algorithm runs significantly faster 
than the KB method. 
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