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Abstract  IrisCode has been used to gather iris data for 430 million people. Because of the huge impact of IrisCode, it 

is vital that it is completely understood. This paper first studies the relationship between bit probabilities and a mean of 

iris images 1 and then uses the Chi-square statistic, the correlation coefficient and a resampling algorithm to detect 

statistical dependence between bits. The results show that the statistical dependence forms a graph with a sparse and 

structural adjacency matrix. A comparison of this graph with a graph whose edges are defined by the inner product of the 

Gabor filters that produce IrisCodes shows that partial statistical dependence is induced by the filters and propagates 

through the graph. Using this statistical information, the security risk associated with two patented template protection 

schemes that have been deployed in commercial systems for producing application-specific IrisCodes is analyzed. To 

retain high identification speed, they use the same key to lock all IrisCodes in a database. The belief has been that if the 

key is not compromised, the IrisCodes are secure. This study shows that even without the key, application-specific 

IrisCodes can be unlocked and that the key can be obtained through the statistical dependence detected. 
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1. Introduction 

IrisCode2 is the most influential iris recognition algorithm in use [1]. As of Sept 2013, the total number of people in India 

alone who have had their iris patterns enrolled by IrisCode is approximately 430 million. The Unique Identification 

Authority of India (UIDAI) is enrolling about one million persons per day, at 36,000 active stations, and UIDAI plans to 

have the entire population of 1.2 billion people enrolled within 3 years. In addition to the unique identification project 

carried out by UIDAI, other flagship deployments include those at Amsterdam's Schiphol airport, ten UK airports, 

US/Canadian borders and all 32 air, land, and seaports in the United Arab Emirates [16]. The computational advantages of 

IrisCode, including its extremely high matching speed for large-scale identification and automatic threshold adjustment 

based on image quality (e.g., the number of effective bits) and database size [1-3], play an important role in its market 

success. In addition to its massive deployments, IrisCode influences numerous biometric recognition methods [4-15]. 

Because of its impact, IrisCode has to be understood clearly.  

                                                            
1The mean of iris images is defined as the average of independent iris images. 
2In this paper, IrisCode is used interchangeably to refer to both the method and the features of the iris recognition algorithm developed by Daugman. 
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Many iris recognition papers have been published, but our understanding of this crucial algorithm, which will 

soon impact over 16% of the world’s population, remains incomplete. In the original scientific paper describing IrisCode, 

Daugman noted that the bits “0” and “1” in an IrisCode are equiprobable and that its imposter distribution is binomial [1]. 

He also reported that the number of degrees of freedom of the imposter binomial distribution is much less than the number 

of bits because they are not independent [1, 24]. Hollingsworth et al.3 analyzed bit stability in their iris codes to separate 

the best bits and fragile bits and thereby enhance recognition performance [17-18]. Santos and Proenca noted that the 

spatial distribution of concordant bits can be used as features for performance improvement [33]. Kong et al. 

mathematically derived the following points: IrisCode is a compression algorithm and also a clustering algorithm with 

four clustering centers; with respect to a phase parameter, the locus of a Gabor function is an ellipse in a two-dimensional 

space, which can often be approximated by a circle; the Gabor function can be considered a phase-steerable filter; the 

phase distance in a particular domain can be implemented through the bitwise hamming distance and a specially designed 

coding scheme; each IrisCode is a convex polyhedral cone in a hyperspace; the central ray of this cone is an optimal ray 

of an objective function on a set of distributions and also a very rough iris image; Gabor filters can be used as a Gabor 

atom detector; and the magnitude and phase of a target Gabor atom can be estimated from the magnitude and phase of the 

corresponding Gabor response [4, 19-21]. Nevertheless, a number of statistical properties of IrisCode have not been 

studied, e.g., the relationship between bit probabilities and a mean of iris images and the relationship between statistical 

dependence in IrisCodes and the Gabor filters. In addition to the properties of IrisCode, researchers have investigated 

security risks associated with iris templates. Kong used his theoretical results to reconstruct iris images from IrisCodes 

[20]. Venugopalan et al. and Galbally et al. used an information-embedding approach and a genetic algorithm, 

respectively, to synthesize iris images from binary iris templates with sizes in the range of 9,600 to 21,600 bits [31-32]. 

These security studies were based on the assumption that iris templates are unprotected. Statistical information is always 

crucial in security analysis.   

Though the IrisCode computational procedures are well known, a brief computational summary is presented here 

for notation consistency. Two-dimensional Gabor filters with zero direct current (DC) are applied to an iris image in a 

dimensionless polar coordinate system, 0 ( , )I ρ φ , to extract phase information. The complex Gabor response is quantized 

into two bits by the following inequalities:  

                                                            
3 Hollingsworth et al. mainly used 1D log-Gabor wavelets in their study [17-18]. 
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where ωo is the spatial frequency, αo and βo control the shape of the Gaussian function and ( , )o or θ  is the center/location 

of the filter in the spatial domain [2]. One thousand and twenty-four Gabor filters with different parameters 

( , , , , )o o o o or θ ω α β  generate 2,048 bits to form an IrisCode, and a mask excludes the corrupted bits, e.g., from the eyelashes 

and eyelids [2]. The bitwise hamming distance is employed for high-speed matching. Although Eqs. 1–4 are presented as 

integrals, in the rest of this paper, the two-dimensional functions are expressed in discrete form as matrices, and these 

matrices are expressed as vectors after lexicographic ordering. Therefore, all filtering operations are expressed as inner 

products. 

To prevent cross-matching of biometric templates stored in different application systems and to issue new 

templates to replace compromised templates, Braithwaite and his coworkers, including Daugman, patented a framework, 

owned by Iridian Technologies Inc., to produce application-specific templates [22-23]. This framework is also expected to 

preclude obtaining original templates from application-specific templates. This framework has been applied to IrisCode 

and deployed in commercial systems [25]. Two realizations of this framework for IrisCode were proposed. The first 

realization computes an application-specific IrisCode jB⊗ 

 through  

j u jB S B⊗ = ⊗
 

,              (5) 
where jB



 is an original IrisCode computed from Eqs. 1-4, uS  is a random bit vector generated by a key u , and ⊗  is a 

bitwise XOR operator. jB


, jB⊗ 

 and uS  can be regarded as binary row vectors with a length of 2,048. The subscript ⊗  

in jB⊗ 

 is only a symbol, not an operator. When a bit in uS  is one, the corresponding bit in jB


 will be changed; 

otherwise, it will remain the same. In this realization, the masks of jB


 and jB⊗ 

 are the same. Using this scheme, 

22048≈3.2×10616 application-specific IrisCodes can be generated from one original IrisCode. To guarantee that jB⊗ 

 and 
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jB


 are sufficiently different, Braithwaite et al. suggested retaining at least half of the bits in uS  as one. Thus, the total 

number of effective application-specific IrisCodes is 1.6×10616 [22]. The second realization computes an application-

specific IrisCode jB× 

 and its mask jM× 

 through  

j j uB B P× = ×
 

 and j j uM M P× = ×
 

,             (6) 
where uP  is a 2,048-by-2,048 random permutation matrix generated by a key u and jM



 is the mask of jB


. The total 

number of different permutation matrixes is 58942048! 10≈ . In this study, Eqs. 5 and 6 are called the XOR protection 

scheme and the permutation protection scheme, respectively.  

These two schemes have many advantages. Application-specific IrisCodes and original IrisCodes have the same 

format, and therefore, the hamming distance can still be used as a dissimilarity measure. Another advantage is that these 

schemes do not cause any performance degradation. The speed of issuing new application-specific IrisCodes is very high. 

System administrators can regularly replace old templates with new templates in very short periods of time. Doing so 

significantly reduces the risk of attacks based on compromised templates. If the same key is used to lock all the IrisCodes 

in a database, high identification speed can be retained. Eqs. 5 and 6 are bijective functions. Once uP  and uS  are known, 

the original IrisCodes can be revealed. Braithwaite et al. utilize network and software approaches to secure uP  and uS . It 

is assumed that without uP  and uS , application-specific IrisCodes cannot be unlocked, and application-specific IrisCodes 

in different application systems cannot be matched. These two protection schemes are much more important than other 

iris template protection schemes because they have been deployed in commercial systems [25]. IrisCode has enrolled over 

400 million users in approximately 170 countries. Any security risk in these protection schemes may endanger numerous 

people and organizations. This study first describes an examination of the relationship between bit probabilities and a 

mean of iris images and the statistical dependence between bits in IrisCodes. The statistical information is used to analyze 

security risks in the two protection schemes in the case that all IrisCodes in a database are locked by the same key for real-

time large-scale identification but the key is not compromised.    

 The rest of this paper is organized as follows. Section 2 presents the testing databases, the relationship between bit 

probabilities and a mean of iris images and the statistical dependence between bits detected using the Chi-square statistic, 

the correlation coefficient and a resampling algorithm. Section 3 presents two graph-based algorithms to unlock 

application-specific IrisCodes without keys. Section 4 reports the experimental results. Section 5 discusses the 

implications of the statistical and experimental findings presented in this study. 
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2. Statistics and Graphs Derived from IrisCodes  

2.1. Notations and Graph Representations 

For purposes of presentation clarity, a set of notations is presented. Let an IrisCode database be a matrix B , with a size of 

n by 2048, of n IrisCodes from s different irises. When n s= , meaning that each iris has only one IrisCode in the 

database, the database is denoted by sB . Each row of B  containing one IrisCode is denoted by 1 2048[ ]j j jB b b=


 , where 

{0,1},jkb ∈  {1, ,2048}k∈   and {1, , },j n∈   and each column of B  containing bits at the same location from different 

IrisCodes is denoted by kB


. Let the corresponding mask database be M , whose jth row, denoted by 1 2048[ ]j j jM m m=




, is the mask of jB


 and whose kth column, denoted by kM


, is a column vector formed by the kth bits in the masks. The 

masks are used to discriminate between uncorrupted bits from iris regions and corrupted bits from noise, including 

eyelids, eyelashes and reflections. As with sB , when n s= , the mask database is denoted by sM . If the IrisCodes in B  

are protected by Eqs. 5 and 6, the application-specific IrisCode databases are denoted by B⊗  and ,B×  respectively, and 

the corresponding mask databases are denoted by M⊗  and M× , respectively. Note that M M⊗ = . To obtain B  and M  

from B⊗ , B× , M⊗  and M× , the algorithms presented in Section 3 require another IrisCode database and the 

corresponding mask database from unrelated iris images, e.g., images from public databases. These databases are denoted 

by UB  and UM , respectively. The term jkb  in B  is determined by the sign of the inner product, T
j k j kI ,g I g< >= , where 

kg  is either a real part or an imaginary part of a zero-DC Gabor filter, jI  is a digital iris image in a dimensionless polar 

coordinate system, multiplied by ρ , and T represents a transpose. The inner product is in fact a discrete version of the 

integrals in Eqs. 1–4. Both jI  and kg  are column vectors. When jI  is considered to be a two-dimensional image, 

( , )jI x y  is used to denote its pixel value at the location ( , )x y . The term 1v  represents a vector whose elements are all 

ones, i.e., 1 [1, ,1] .T
v =   

In this section, the statistical relationships between bits in IrisCodes and between bits in their masks are examined, 

and graphs are used to represent this statistical information. The nodes in the graphs represent bit locations, and their 

edges represent the relationships between two bit locations. Fig. 1(a) illustrates a graph displaying the statistical 

dependence between bits in IrisCodes, where ψ  is a function that uses two column vectors of B  and the corresponding 

column vectors of M  to compute the level of their statistical dependence. This function is in fact the proposed resampling 
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algorithm based on the Chi-square statistic and the correlation coefficient. To understand the source of this dependence, 

another graph whose edges are the inner products of the filters, i.e., ,j kg g< > , is constructed (Fig. 1(b)). One additional 

graph whose edges are defined by the correlation coefficients between mask bits is also discussed (Fig. 1(c)). These 

graphs are utilized to define their adjacency matrixes for the statistical analysis and the proposed graph-based algorithms. 

The first graph (Fig. 1(a)) is used to reveal the structure of the statistical dependence in IrisCodes; the second graph (Fig. 

1(b)) is used to explain the source of the statistical dependence and the last graph (Fig. 1(c)) is used in Section 3 to 

analyze security risks in application-specific IrisCodes. These graphs are employed to study different relationships 

between bit locations. They are not simply for analyzing bit probabilities in individual bit locations. The adjacency matrix 

of the mask correlation graph depends highly on eyelashes, eyelids and segmentation processes. IrisCode, which only 

extracts information from a single channel, is the focus of this paper. Thus, dependence and correlation between different 

channels in color iris images are not considered. All these graphs are undirected because ,ψ φ  and the inner product are 

commutative. Note that their edge values can be negative. The precise mathematical definitions of ψ and φ  are given in 

Fig. 7 and Eq. 15, respectively. Their adjacency matrixes are denoted by Ψ , Φ  and G , respectively, and each has a size 

of 2,048 by 2,048. The element in the jth row and the kth column of Ψ  is ( , ) ( , , , )j k j kj k B B M MψΨ =
   

. Similarly, 

( , ) ( , )j kj k M MφΦ =
 

 and ( , ) , .j kG j k g g=< >  To emphasize the adjacency matrixes computed from ( , ),B M⊗ ⊗  

( , )B M× ×  and ( , )U UB M , the subscripts ⊗ , × and U are added. For example, ⊗Ψ  is the adjacency matrix of the statistical 

dependence graph computed from ( , ).B M⊗ ⊗  Section 2.2 presents the testing databases. Section 2.3 discusses the 

relationship between bit probabilities and a mean of iris images. Section 2.4 examines the statistical dependence between 

bits in IrisCodes and its relationship with ,j kg g< >  and also discusses the correlation between bits in the masks.  

 

2.2. Databases 

Two public iris databases, the West Virginia University (WVU) iris database and the UBIRIS.v1 database [26-27], are 

employed to analyze the statistical properties of IrisCodes and evaluate the algorithms proposed in Section 3. The WVU 

iris database4 contains 3,099 iris images from 472 irises, and the UBIRIS.v1 database contains 1,877 images from 241 

irises. All the images in the WVU iris database are included in the analysis and experiments. However, 48 images from 

the UBIRIS.v1 database were removed because of their poor quality (some images do not even have irises). Fig. 2 gives 

                                                            
4 Some mislabeled images were corrected. 
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examples of the removed iris images. The WVU iris images were captured in an infrared lighting environment, while the 

UBIRIS.v1 iris images were captured in a visible lighting environment. The original images in the UBIRIS.v1 database 

are color images. We only employ their red components for evaluation because the iris texture in this channel is the 

clearest (Fig. 3).  
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Fig. 1 Three graphs that display information in IrisCodes, their masks and Gabor filters: (a) a statistical dependence graph, (b) a Gabor graph and (b) 

a mask correlation graph. 

        
Fig. 2 Examples of images removed from the UBIRIS.v1 

database. (Color figure) 
Fig. 3 Iris texture in different channels. (a) is a color image and (b), (c) and 

(d) are the R, G and B components of (a), respectively. (Color figure) 
 
2.3. The Relationship between Bit Probabilities and a Mean of Iris Images 

Bit probabilities are the most fundamental statistic in IrisCodes. Given an IrisCode database sB  containing n IrisCodes 

from n irises, the corresponding mask database sM  and the images 1, , nI I  generating them, the relationship between 

their bit probabilities and the mean of the iris images are studied in this subsection. The sample mean of the iris images is 

1

1 n

j
j

I I
n =

= ∑ , and the sample probability of the kth bit being one is 
1 1

ˆ ( )
n n

k jk jk jk
j j

p b m m
= =

= ∩∑ ∑ , where ∩  is a bitwise 

AND operator. To reduce the influence of imperfect segmentation, 300 sample bit probabilities with the greatest 
1

n

jk
j

m
=
∑  

values are selected for analysis. This number is based on some preliminary experiments on the databases. If more sample 

bit probabilities are selected, the results given below will have higher chances influenced by eyelashes and eyelids. Both 

the UBIRIS.v1 database and the WVU database contain a lot of very low quality iris images, and therefore the same 

number of sample bit probabilities is selected from them. This number is enough to eliminate most of the corrupted bits 

which are not detected by the segmentation algorithm and retain many uncorrupted bits for the statistical analysis. Their 

corresponding kI,g< >  are also computed. The blue circles in Fig. 4 show the sample bit probabilities versus the 

(a) (b) (c) 

(a) (b) (c) (d) 
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corresponding kI,g< > . One image per iris in the testing databases is randomly selected in this analysis. This figure 

indicates that the bit probabilities are not always approximately 0.5 and that they are highly correlated with kI,g< > . The 

correlation coefficients for the UBIRIS.v1 database and the WVU database are 0.76 and 0.89, respectively. These large 

correlation coefficients can be explained by Eq. 9 and will be discussed. Some may expect that the blue circles in Fig. 4(a) 

should spread more than the blue circles in Fig. 4(b) because the images in the UBIRIS.v1 database are more 

heterogeneous. It should be noted that the blue circles in Fig. 4 are computed from very clean iris regions. Eyelashes and 

eyelids should not affect the result significantly. Another point should be emphasized that the red channels of the 

UBIRIS.v1 images are used in this study, while the WVU images are NIR images. Because NIR provides stronger iris 

signals than red light, ,NIR kI g< >  can be greater than ,red kI g< > , where NIRI  represents the mean of the NIR iris 

images and redI  represents the mean of the red channels of the color iris images. Furthermore, NIRI  and redI  are not 

normalized, meaning that their norms are not the same, i.e., NIR redI I≠ . These norms highly depend on imaging 

environments and have a great impact on ,NIR kI g< >  and ,red kI g< > . Thus, the blue circles in Fig. 4(b) spreading 

more than the blue circles in Fig. 4(a) are not abnormal. 

To investigate the correlation between bit probabilities and the mean of the iris images, the intensities of the iris 

images are modified by the equation ˆ( , ) (0.5 ( , ) 1) ( , )I x y A x y I x y= × + , where 
( , )

ˆ ˆ( , ) ( , ) / max ( , )
x y

A x y A x y A x y= . 

( ) ( )1 1
1 1 2 2

ˆ( , ) exp 0.5 [ ] [ ] exp 0.5 [ ] [ ]T T T TA x y x y x y x y x yµ µ µ µ− −       = − − Σ − + − − Σ −        , where 1 [32 64]Tµ = , 

2 [32 488]Tµ =  and 
500 0

0 500
 

Σ =  
 

.  A is a function composed of two Gaussian terms with a maximum value of one. 

Fig. 5 shows two modified images. The modification simulates extra light shining on the left and right parts of the irises. 

The same statistical analysis is repeated for the modified images, and the results are plotted as the blue circles in Fig. 6. 

The bit probabilities change significantly, although they are still positively correlated with kI,g< > . These changes 

indicate that bit probabilities can be influenced by lighting conditions and they can be far away from 0.5. The correlation 

coefficients computed from the blue circles in Figs. 6(a) and (b) are 0.93 and 0.94, respectively. The relationship between 

bit probabilities and kI,g< >  can be explained by the following equations. Using the mathematical expectation, the 

probability of the kth bit in an IrisCode being one is defined as   



9 
  

1( ) ( ( ) 1) ( )
2

T
k kE b sign g I f I dI= + ×∫ ,             (7) 

where E represents an operator of the mathematical expectation, sign is the sign function and f  is the probability density 

function of independent iris images. Eq. 7 assumes that 0kI,g< >=  is measure zero and can be ignored. Rewriting Eq. 7,  

( )1 1( )
2 2

T
k

k T
k

g I f IE b dI
g I
×

= +∫ ,             (8) 

is obtained. Assuming that T
k kw g I≈  for all iris images, Eq. 8 can be further simplified as  

1 1( ) ( )
2 2

T
k k

k
E b g I f I dI

w
≈ × +∫ .             (9) 

Note that ( )I f I dI×∫  is the mean of iris images and that kw  depends on kg , meaning that kw  is not a constant for 

different bit locations. Eq. 9 clearly shows that kI,g< >  influences ( )kE b , but their relationship is nonlinear because kw  

depends on I . The red crosses in Figs. 4 and 6 show the approximate ( )kE b  values given by Eq. 9, plotted against 

kI,g< > . These two figures validate Eq. 9 and demonstrate its predictive capability. The mean differences between the 

approximate ( )kE b  and ˆkp  are 0.025, 0.025, 0.060 and 0.056 for the data in Figs. 4(a), 4(b), 6(a) and 6(b), respectively. 

If kw  in different bit locations are roughly the same, Eq. 9 becomes a linear equation and explains the large correlation 

coefficients of the blue circles in Figs. 4 and 6. 

To demonstrate that the bit probabilities are in fact influenced by illumination, the following simple optical model 

is employed 

0
( , ) ( , , ) ( , , ) ( )iris cI x y L x y R x y S dλ λ λ λ

∞
= ∫ ,          (10) 

where L  is an illuminant, irisR  is the reflectance of an iris, cS  is the spectral response function of a camera and λ  is a 

wavelength. Using Eq. 10 and ˆ( , ) (0.5 ( , ) 1) ( , )I x y A x y I x y= × + ,  

0
ˆ( , ) (0.5 ( , ) 1) ( , , ) ( , , ) ( )iris cI x y A x y L x y R x y S dλ λ λ λ

∞
= × +∫ ,         (11) 

is obtained. Let ˆ( , , ) (0.5 ( , ) 1) ( , , )L x y A x y L x yλ λ= × + . Î  can be regarded as an image captured under the illuminant L̂ . 

Eqs. 9 and 11 indicate that illuminants can affect the bit probabilities. It agrees with the changes of the blue circles in Figs. 

4 and 6. In addition, Eq. 9 shows that if ( )I f I dI×∫  and kg  are orthogonal, the expected probability ( ) 0.5kE b ≈ , which 

agrees with Daugman’s result, published in 1993 [1]. If ( ) 1vI f I dI e× =∫ , where e∈ℜ  and 1 [1, ,1]T
v =  , the inner 
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product of ( )I f I dI×∫  and kg  will be zero because kg  is a zero-DC filter. That is, when the intensity of the mean of the 

iris images is the same everywhere, the bit probabilities will be approximately 0.5.  

  

  
Fig. 5 The left column shows original images and the right column shows images modified by the equation ˆ( , ) (0.5 ( , ) 1) ( , )I x y A x y I x y= × + . 

    
Fig. 4 The relationship between kI,g< >  and bit probabilities. (a) The 
results from the UBIRIS.v1 database and (b) results from the WVU 
database. One outline in (a) with 0.1kI,g< > >  is not shown. (Color 
figure) 

Fig. 6 The relationship between kI,g< >  and bit probabilities computed 
from the modified iris images. (a) The results from the UBIRIS.v1 
database and (b) results from the WVU database. (Color figure) 

 
2.3.  Three Graphs Computed from IrisCodes, Masks and Gabor Filters 
 
Section 2.1 briefly introduces three graphs that display different statistical and structural relationships between bits. This 

subsection presents the details of the computations for obtaining their adjacency matrixes, which are used in the next 

section to analyze application-specific IrisCodes. The statistical dependence graph is first discussed, and then, the Gabor 

graph is presented to explain the statistical dependence graph. Lastly, the mask correlation graph is discussed.   

 Given an IrisCode database sB  containing n independent IrisCodes from n irises and their mask database sM , the 

Chi-square test is used to detect statistical dependence between bits. Because IrisCodes and their masks are binary, a 

bitwise implementation of the Chi-square statistic, 

2 2

1 12

2

1 1

ˆ ˆ ˆ ˆ( ) (~ )
( , )

ˆ ˆ ˆ ˆ

ˆ ˆ( ~ ) (~ ~ )

ˆ ˆ

n n

sik sij sik sij kj k j sik sij sik sij kj k j
i i

kj k j kj k j

n n

sik sij sik sij kj k j sik sij sik sij k
i i

kj k j

B B M M n p p B B M M n q p
X j k

n p p n q p

B B M M n p q B B M M n

n p q

= =

= =

   
∩ ∩ ∩ − ∩ ∩ ∩ −   

   = +

 
∩ ∩ ∩ − ∩ ∩ ∩ − 

 + +

∑ ∑

∑ ∑
2

ˆ ˆ

ˆ ˆ

j k j

kj k j

q q

n q q

 
 
 

, (12) 

where sijB  and sijM  are the elements of sB  and sM  in the ith row and the jth column, respectively, 
1

n

kj sik sij
i

n M M
=

= ∩∑ , 

ˆ ˆ(1 )k kq p= − , ˆ ˆ(1 )j jq p= −  and ~  represents a bitwise NOT operator, can be derived. Note that ∩  is a bitwise AND 

(a) (b) (a) (b) 
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operator. Note also that the analysis in this study does not depend on this bitwise implementation. A floating-point 

implementation can also be used. In Section 3, the notation 2 2( , ) ( , )s j s kX B B X j k=
 

 is employed to emphasize the 

inputs. Although 2Xα  (defined as 2 2Pr( ( , ) | and are independent)s j s kX j k X B Bα α> =
 

) is used as a decision threshold 

and α  is set to a very small number, e.g., 0.01, the number of false detections is still very high because the number of 

pairwise dependencies to be tested is enormous. To be specific, 2,096,128 ((2048×2048-2048)/2) tests are required. In 

general, each iris has more than one IrisCode in a database, and therefore, a resampling algorithm is used to reduce the 

number of false detections. To extract more information from the dependent bits, their correlation coefficients, defined as  

1

2 2

1 1

ˆ ˆ( )( ) ( )
( , ) ,

ˆ ˆ( ) ( ) ( ) ( )

n

sij j sik k sij sik
i

n n

sij j sij sik sik k sij sik
i i

B p B p M M
R j k

B p M M B p M M

=

= =

− − × ∩
=

− × ∩ − × ∩

∑

∑ ∑
        (13) 

are also computed. Only the sign of ( , )R j k  is used to construct the statistical dependence graph, and therefore, the 

denominator is ignored. The numerator of ( , )R j k , denoted by ( , )uR j k , can be simplified as  

1 1 1

ˆ ˆ ˆ ˆ( , ) ,
n n n

u sij sik sij sik j sik sij sik k sij sij sik j k jk
i i i

R j k B B M M p B M M p B M M p p n
= = =

= ∩ ∩ ∩ − ∩ ∩ − ∩ ∩ +∑ ∑ ∑        (14) 

where 
1

n

kj sik sij
i

n M M
=

= ∩∑ . In Section 3, ( , ) ( , )u s j s k uR B B R j k=
 

 is used to emphasize the inputs.  

 Now, let us present the proposed resampling algorithm for constructing the adjacency matrix Ψ  of the statistical 

dependence graph. Given an IrisCode database B  containing n IrisCodes from s irises, where ,s n  and its mask 

database M , the number of iterations t, the minimum number of effective bits for the Chi-square statistic calculation me 

and the decision threshold for the Chi-square statistic 2Xα , the proposed resampling algorithm first randomly selects s 

independent IrisCodes and the corresponding masks from B  and M  to form sB  and sM , respectively. Note that if s is 

very large, it is not necessary to select one IrisCode per iris. sB  and sM  are entered into Eq. 12 to compute all pairwise 

dependencies. If 2 2( , )X j k Xα> , ( , )uR j k  is computed, and ( , )j kΨ  is updated through ( , ) ( , ) ( ( , ))uj k j k sign R j kΨ = Ψ + . 

The process is repeated t times. The pseudo code of the resampling algorithm is given in Fig. 7. Fig. 8 shows the 

adjacency matrix of the statistical dependence graph of the UBIRIS.v1 database, where the gray pixels represent no 

statistical dependence; the white pixels represent statistical dependence with positive correlation and the black pixels 

represent statistical dependence with negative correlation. Fig. 9 shows the first 256 bits of three adjacency matrixes of 
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the statistical dependence graphs. Figs. 9(a) and (b) are computed from the IrisCodes of the UBIRIS.v1 database. Fig. 9(a) 

is obtained from the standard Chi-square statistic and the correlation coefficient, while Fig. 9(b) is obtained from the 

proposed resampling algorithm with t=100. These figures show that the resampling algorithm effectively suppresses the 

noise from false detections. Figs. 8 and 9 illustrate that the statistical dependence in IrisCodes is very structural. If a 

suitable threshold is applied, they will become sparse matrixes. A large t produces more stable results if the number of 

images is enough for re-sampling. If t is too small, the adjacency matrixes will be very noisy such as Fig. 9(a), which is in 

fact computed from t=1. The preliminary experiments of this study indicate that when t=100, the adjacency matrixes are 

stable enough. The proposed resampling algorithm is also applied to the IrisCodes of the WVU database. Fig. 9(c) shows 

the first 256 bits of the corresponding adjacency matrix of the statistical dependence graph. Though the adjacency 

matrixes in Figs. 9(b) and (c) are computed from two different databases, they are very similar. Let UBIRISΨ  and WVUΨ  be 

the two adjacency matrixes obtained respectively from the UBIRIS.v1 and WVU databases. 15,000 elements with the 

greatest UBIRIS WVU( , ) ( , )j k j kΨ + Ψ  in UBIRISΨ  and WVUΨ  are selected and each selected element pair is regarded as a 

point, i.e., UBIRIS WVU( ( , ), ( , ))j k j kΨ Ψ  in a two dimensional space. Since UBIRISΨ  and WVUΨ  are symmetric, the elements 

in the lower triangles of the matrixes are not selected. Fig. 10(a) is a plot of the points and Fig. 10(b) illustrates the 

locations of the selected elements. Fig. 10(a) shows clearly that even though the two adjacency matrixes are obtained from 

two different databases, their elements are highly correlated. The corresponding correlation coefficient is 0.99. These 

results imply that the dependence is generated from the same source.  

To understand the source of this statistical dependence, the adjacency matrix G  of the Gabor graph, whose edges 

are defined by ,j kg g< > , is computed. The red pixels in Fig. 11(a) are the elements in 1 {( , ) | , 0}j kj k g gΛ = < >≠ , and 

their intensity represents ,j kg g< > . The blue pixels in Fig. 11(a) are the elements in 

2048

2
1, { , }

( , ) | | , || , | 0 , 0j i i k j k
i i k j

j k g g g g g g
= ∉

  Λ = < > < > ≠ ∧ < >= 
  

∑ , where ∧  is an AND operator, and their intensity 

represents 
2048

1, { , }

| , || , |j i i k
i i k j

g g g g
= ∉

< > < >∑ . Though Gabor filters have infinite support in the continuous domain, in discrete 

implementation, their supports are always finite. Thus, many ,j kg g< >  are zero. The elements in 1Λ  indicate the nodes 

that are directly connected in the Gabor graph. The elements in 2Λ  are not connected in the Gabor graph, but they are 
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connected through another node. For example, ( , )j k  are not connected, but both ( , )j i  and ( , )i k  are connected. 

Comparing the color pixels in Fig. 11(a) to the structural pattern in Fig. 8, two points can be concluded: 1) ,j kg g< >  

directly induces partial statistical dependence, and 2) this statistical dependence propagates through the Gabor graph and 

produces other statistical dependence, as shown in Fig. 8. The first point is much clearer when comparing Figs. 9(b)-(c) 

and Fig. 11(b). Fig. 11(b) shows the connections of the first 256 bit locations in the Gabor graph G . The grey pixels in 

Fig. 11(b) indicate , 0j kg g< >= ; the white pixels indicate , 0j kg g< > >  and the black pixels indicate , 0j kg g< > < .  

 The last graph introduced in this section is the mask correlation graph, whose edges are defined by the correlation 

coefficient between mask bits in two locations. To be more precise, given a mask database ,M  the correlation coefficient 

between bit locations k and j is computed from 

1

2 2

1 1

ˆ ˆ( )( )
( , ) ,

ˆ ˆ( ) ( )

n

ij mj ik mk
i

n n

ij mj ik mk
i i

M p M p
j k

M p M p

=

= =

− −
Φ =

− −

∑

∑ ∑
          (15) 

where 
1

ˆ /
n

mj ij
i

p M n
=

=∑  and 
1

ˆ /
n

mk ik
i

p M n
=

=∑ . The adjacency matrix of the mask correlation graph is denoted as .Φ  Fig. 

12 shows the adjacency matrixes of the mask correlation graphs computed from the UBIRIS.v1 database and the WVU 

database.  

    
Fig. 10 The correlation between the elements of UBIRISΨ  and WVUΨ . (a) 
a plot of the selected elements of WVUΨ  against the corresponding 
elements of UBIRISΨ  and (b) the locations of the selected elements to 
compute (a). The rows and columns of (b) represent bit locations and the 
size of (b) is 2048 by 2048. (Color figure. To see clearly the images, 
please read the electronic version.) 
 

Fig. 11 (a) A matrix displaying the first-order connections and the 
second-order connections in the Gabor graph. The red pixels indicate the 
elements in 1Λ , and the blue pixels indicate the elements in 2Λ . (b) 
The first 256 bits of the adjacency matrix of the Gabor graph, whose 
elements are ,j kg g< > . The rows and columns of these matrixes 

represent bit locations. The size of (a) is 2048 by 2048 and the size of (b) 
is 256 by 256. (Color figure. To see clearly the images, please read the 
electronic version.) 

(a) (b) (a) (b) 
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Input: An IrisCode database B  and its mask database M from n iris images and s different irises, where s « n.  
The minimum number of effective bits me required to calculate the value of the Chi-square statistic.  
The decision threshold of the Chi-square statistic 2Xα  and the number of iterations t. 
Output: The adjacency matrix Ψ  of the statistical dependence graph.  
Algorithm:     

1. Set 0Ψ = , where 0  is a zero matrix with a size of 2,048 by 2,048.   
2. Randomly select s independent IrisCodes and their masks to form sB  and sM .  

3. Calculate the value of the Chi-square statistic, j k∀ ≤  if 
1

n

kj sik sij e
i

n M M m
=

= ∩ >∑ . 

4. If kj en m>  and 2 2( , )X j k Xα> , calculate ( , )uR j k  and update Ψ  through ( , ) ( , ) ( ( , ))uj k j k sign R j kΨ = Ψ + . 
5. Repeat steps 2–4 t times. 
6. Set ( , ) ( , )k j j kΨ = Ψ , j k∀ < . 

Fig. 7 The pseudo code of the resampling algorithm. 
 

 
Fig. 8 The adjacency matrix of the statistical dependence graph of the UBIRIS.v1 database. The matrix is obtained from the proposed resampling 

algorithm (Fig. 7). Its rows and columns represent bit locations and its size is 2048 by 2048.    
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Fig. 12 The adjacency matrixes of the mask correlation 
graphs of (a) the UBIRIS.v1 database and (b) the WVU 
database. The elements of these matrixes are computed 
from Eq. 15. The rows and columns in these matrixes 
represent bit locations. Both matrix sizes are 2048 by 2048.    

Fig. 9 A comparison of the first 256 bits of the adjacency matrixes of the statistical 
dependence graphs obtained from (a) the standard Chi-square statistic and correlation 
coefficient and (b)-(c) the proposed resampling algorithm (Fig. 7) on the UBIRIS.v1 and 
WVU databases, respectively. The rows and columns of these matrixes represent bit 
locations. All matrix sizes are 256 by 256. (To see clearly the images, please read the 
electronic version.)     

 

3. Two Graph-based Algorithms  

In this section, two graph-based algorithms called the X-algorithm and the P-algorithm are presented to analyze 

application-specific IrisCodes produced by the XOR and permutation protection schemes in Eqs. 5 and 6. The two 

algorithms are designed to study the case in which the same key is used to lock all IrisCodes in a database for large-scale 

real-time identification. Both algorithms assume that attackers have an application-specific IrisCode database, its mask 

database, an unrelated iris image database and all the filters, 1 2048{ , , }g g , but do not have the key that locks the 

database, meaning that uS  in Eq. 5 and uP  in Eq. 6 are unknown to them. The first two assumptions are valid. If it is 

guaranteed that attackers obtain neither the application-specific IrisCodes nor their masks, there is no point in applying 

template protection schemes. If attackers are insiders, they may be able to obtain the application-specific IrisCodes and 

their masks directly. If iris recognition systems are connected to the Internet, attackers may be able to obtain the 

application-specific IrisCodes and their masks through networks. The unrelated iris images can be obtained from public 

iris image databases or collected from attackers’ iris imaging systems. The two algorithms do not assume that the 

application-specific IrisCodes and the unrelated iris images are from the same eye. The last assumption concerning how 

attackers obtain 1 2048{ , , }g g  is discussed in the last section. In fact, some attacks do not depend on 1 2048{ , , },g g  which 

is also discussed in the last section. The two graph-based algorithms presented in this section depend heavily on the 

graphs and the statistical information given in the previous section. Section 3.1 presents the X-algorithm for analyzing the 

XOR protection scheme, and Section 3.2 presents the P-algorithm for analyzing the permutation protection scheme.  

 

3.1.  The X-Algorithm for Analyzing the XOR Protection Scheme 

The X-algorithm for analyzing the XOR protection scheme requires the adjacency matrixes of two statistical dependence 

graphs as inputs. One is computed from unprotected IrisCodes and their masks of unrelated iris images, and the other is 

(b) (a) (a) (b) (c) 
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computed from application-specific IrisCodes and their masks, produced by the XOR protection scheme. The two 

adjacency matrixes are denoted by UΨ  and ⊗Ψ , respectively. Using the unrelated iris images, 1 2048{ , , }g g  and the 

resampling algorithm given in Fig. 7, UΨ  is obtained. Applying the resampling algorithm to the application-specific 

IrisCodes and their masks, ⊗Ψ  is also obtained. The proposed X-algorithm uses UΨ  and ⊗Ψ  to estimate the random bit 

vector uS  that locks the application-specific IrisCodes.  

Two mathematical properties of the Chi-square statistic and the correlation coefficient are derived to design the 

X-algorithm. Given two columns s jB


 and s kB


 in sB  and the corresponding columns s jM


 and s kM


 in sM , it can be 

proven that the Chi-square statistic is invariant to the XOR operation, meaning that  

2 2( , ) ( ( ) , ( ) )s j s k u s j u s kX B B X S j B S k B= ⊗ ⊗
   

,          (16) 
( )uS j∀  and ( ) {0,1}uS k ∈ , where ( )uS j  and ( )uS k  are the jth and kth elements in uS . ( )u s jS j B⊗



 and ( )u s kS k B⊗


 

represent two column vectors whose elements are ( )u sijS j B⊗  and ( ) ,u sikS k B i⊗ ∀ , respectively. When both ( ) 0uS j =  

and ( ) 0uS k = , ( )u s j s jS j B B⊗ =
 

 and ( )u s k s kS k B B⊗ =
 

. Clearly, 2 2( ( ) , ( ) ) ( , )u s j u s k s j s kX S j B S k B X B B⊗ ⊗ =
   

. 

When both ( ) 1uS j =  and ( ) 1uS k = , ( ) ~u s j s jS j B B⊗ =
 

 and ( ) ~u s k s kS k B B⊗ =
 

. Substituting ~ s jB


 and ~ s kB


 into 

Eq. 12, 2 2(~ ,~ ) ( , )s j s k s j s kX B B X B B=
   

 is obtained. When ( ) 1uS j =  and ( ) 0uS k = , ( ) ~u s j s jS j B B⊗ =
 

 and 

( )u s k s kS k B B⊗ =
 

. Substituting ~ s jB


 and s kB


 into Eq. 12, 2 2(~ , ) ( , )s j s k s j s kX B B X B B=
   

 is also obtained. Similarly, 

when ( ) 0uS j =  and ( ) 1uS k = , 2 2( ,~ ) ( , )s j s k s j s kX B B X B B=
   

. Thus, ( )uS j∀  and ( ) {0,1}uS k ∈ , 

2 2( ( ) , ( ) ) ( , ).u s j u s k s j s kX S j B S k B X B B⊗ ⊗ =
   

 

The other mathematical property is that     

( ( ) , ( ) ) ( ( ) ( )) ( , ),u u s j u s k u u u s j s kR S j B S k B H S j S k R B B⊗ ⊗ = ⊗ ×
   

         (17) 
where (0) 1H =  and (1) 1H = − . Note that the subscript u in uR  and the subscript u in uS  have different meanings. Eq. 17 

means that if ( ) ( )u uS j S k= , ( ( ) , ( ) ) ( , )u u s j u s k u s j s kR S j B S k B R B B⊗ ⊗ =
   

; otherwise, 

( ( ) , ( ) ) ( , )u u s j u s k u s j s kR S j B S k B R B B⊗ ⊗ = −
   

. Without loss of generality, s jM


 and s kM


 are regarded as vectors with 

all ones in the proof. Thus,  

1 1 1

1 1( , ) ( )( ),
n n n

u s j s k sij swj sik swk
i w w

R B B B B B B
n n= = =

= − −∑ ∑ ∑ 

          (18) 
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which is the numerator of Eq. 13. Eq. 17 is clearly valid when both ( ) 0uS j =  and ( ) 0uS k =  because ( )u s j s jS j B B⊗ =
 

 

and ( )u s k s kS k B B⊗ =
 

. When ( ) 1uS j =  and ( ) 1uS k = , ( ) 1u s j v s jS j B B⊗ = −
 

 and ( ) 1u s k v s kS k B B⊗ = −
 

, where 

1 [1, ,1]T
v =  . Substituting these terms into Eq. 18 and simplifying, (1 ,1 ) ( , )u v s j v s k u s j s kR B B R B B− − =

   

. When 

( ) 1uS j =  and ( ) 0uS k = , ( ) 1u s j v s jS j B B⊗ = −
 

 and ( )u s k s kS k B B⊗ =
 

. (1 , ) ( , )u v s j s k u s j s kR B B R B B− = −
   

 is obtained. 

Similarly, when ( ) 0uS j =  and ( ) 1uS k = , ( ,1 ) ( , )u s j v s k u s j s kR B B R B B− = −
   

 is obtained. Combining these four cases, 

Eq. 17 is proven.  

Let ⊗Ψ  be the adjacency matrix of the statistical dependence graph computed from an application-specific 

IrisCode database B⊗  whose jth row is j u jB S B⊗ = ⊗
 

 and the corresponding mask database M⊗ . Note that M M⊗ = . 

Using the mathematical properties given in Eqs. 16–17 and the resampling algorithm, the relationship between ⊗Ψ  and 

Ψ  is described by   

( , ) ( ( ) ( )) ( , )u uj k H S j S k j k⊗Ψ = ⊗ Ψ .           (19) 
Note that Ψ  is the adjacency matrix of the statistical dependence graph computed from the original IrisCode database B 

and the corresponding mask database M, which produce B⊗  and M⊗ . Let the adjacency matrix computed from the 

IrisCodes of unrelated iris images be UΨ . Based on Eq. 19, a minimization defined as  

2048
2

2048 2048

1 1

ˆ arg min ( ( , ) ( ( ) ( )) ( , )),u U
V Z j k

S d j k H V j V k j k⊗
∈ = =

= Ψ − ⊗ Ψ∑∑          (20) 

where d is a distance function and 2048
2Z  is a set containing all binary vectors with a length of 2,048, can be used to 

estimate uS .  

The X-algorithm is a greedy algorithm used to perform this minimization. Because of the enormous search space, 

the global optimum is not expected to be found. The algorithm first assumes that one of the bits in uS  is known. Here, 

(1)uS  is assumed to be zero, meaning that the first bits in the application-specific IrisCodes are not changed. Thus, ˆ (1)uS  

is set to zero. The X-algorithm processes bit by bit. In each iteration, one bit location is selected based on the optimization 

\
arg max ( , ) ( , )o Uk j

k j k j k⊗
∈ Γ

∈Γ

= Ψ + Ψ∑ ,           (21) 

where Γ  is the set of all bit locations that have been processed and \  is a complement operator. Eq. 21 selects the bit 

location whose statistical dependence on the processed bit locations is the highest. The minimization, defined as 
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( )
{0,1}

ˆ ˆ( ) arg min ( , ) ( , ) ( , ) ( ( )) ( , ) ,u o o U o U o u oz
j

S k j k j k j k H z S j j k⊗ ⊗∈
∈Γ

= Ψ + Ψ × Ψ − ⊗ Ψ∑         (22) 

is used to determine ˆ ( )u oS k . This minimization is based on using the processed bits in ˆ ( )uS k  and their locations in Γ  to 

determine ˆ ( )u oS k . ( ) ˆ( , ) ( , ) ( , ) ( ( )) ( , )o U o U o u oj k j k j k H z S j j k⊗ ⊗Ψ + Ψ × Ψ − ⊗ Ψ  in Eq. 22 is a realization of the 

distance function d in Eq. 20. Direct optimization can be performed because the size of the search space in Eq. 22 is only 

two numbers. The proposed algorithm iteratively uses Eqs. 21 and 22 to estimate all bits in uS . Initially, (1) 0uS =  is 

assumed. This assumption may be incorrect, meaning that the actual (1)uS  may be one. According to Eqs. 19, 21 and 22, 

if this assumption is incorrect, the true estimate should be ˆ~ uS . Using these two estimates to unlock the jth application-

specific IrisCode in the database, ˆ
u jS B⊗⊗



 and ˆ~ u jS B⊗⊗


 are obtained. Up to this point, neither estimate is known to 

be better than the other. To make the final decision, the sample bit probabilities ˆkp  of UB  are calculated. A naïve Bayes 

classifier is constructed to calculate  

ˆ ˆ ˆˆ ˆPr( ) (( ( ) ) (1 ( ) ) )u j u jk k u jk k
k

S B S k B p S k B q⊗ ⊗ ⊗
∈Θ

⊗ ≈ ⊗ + − ⊗∏

,          (23) 

where Θ  is the set of m bit locations with the highest U ik
i

M∑ . That is, Θ  is the set of the m clearest bit locations. Note 

that only the m clearest bit locations are used to estimate ˆPr( )u jS B⊗⊗


. Then,  

1

ˆ ˆ(Pr( ) Pr(~ ))
n

u j u j
j

S B S Bς ξ
⊗

⊗ ⊗
=

= ⊗ > ⊗∑  

,          (24) 

where 1ξ =  if the condition is true; otherwise, 0ξ = . If / 2nς ⊗> , where n⊗  is the number of application-specific 

IrisCodes in B⊗ , ˆ
uS  is selected to approximate uS ; otherwise, ˆ~ uS  is selected. Fig. 13 gives the pseudo code of the X-

algorithm. 

3.2.  The P-Algorithm for Analyzing the Permutation Protection Scheme 

The P-algorithm for analyzing the permutation protection scheme requires the adjacency matrixes of the statistical 

dependence graph and the mask correlation graph, computed from unrelated iris images, and the adjacency matrixes of the 

statistical dependence graph and the mask correlation graph, computed from application-specific IrisCodes and the 

corresponding masks. These adjacency matrixes are denoted by UΨ , UΦ , ×Ψ  and ×Φ , respectively. Because 

j j uB B P× = ×
 

 and j j uM M P× = ×
 

, T
u uP P×Ψ = Ψ  and ,T

u uP P×Φ = Φ  where Ψ  and Φ  are computed from the 

unprotected IrisCode database B and the corresponding mask database M. Using these equations, an optimization  
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ˆ arg min ,T
u UP

P P P×∈Ξ
= Ψ − Ψ            (25) 

where Ξ  is the set of all permutation matrixes of size 2,048 by 2,048 and   is a matrix norm, e.g., the Frobenius norm, 

is formulated to estimate uP . If UΨ = Ψ , Eq. 25 is a graph isomorphism problem, whose complexity is NP. In general, 

UΨ ≠ Ψ  because of statistical fluctuation and noise, and therefore, Eq. 25 becomes a graph matching problem. In 

preliminary attempts, a number of existing graph matching methods were tested [28-30], but no positive result was 

obtained. The huge adjacency matrixes, 2,048 by 2,048 in size, are the major challenge in estimating uP . The differences 

between UΨ  and Ψ  make the problem more complicated.  

The proposed P-algorithm has three components: the starting point generation, the core of the P-algorithm and the 

hierarchical search. The starting point generation and the hierarchical search are relatively simple, as discussed later. The 

core of the P-algorithm is iterative use of selection, optimization and update steps to estimate the permutation matrix uP . 

Note that a permutation matrix can be regarded as a function ( )i j℘ =  if ( , ) 1P i j = , and the function ℘  can be regarded 

as a vector [ (1), , (2048)]℘ ℘ . Once the function ℘  is known, the corresponding permutation matrix is obtained. The 

core of the P-algorithm takes two sets of bit location correspondences, i.e., 1 1ˆ ( )i j℘ =  and 2 2ˆ ( )i j℘ = , where the notation ^ 

signifies that ℘̂  is an estimate of ℘  and 1 2 1 2, , , {1, ,2048}i i j j ∈  , as a starting point. Note that ℘  and ℘̂  may not be the 

same. Here, it is assumed that these two sets of bit location correspondences are correct. The starting point generation 

component discussed later is designed to produce correct correspondences.  

Let Γ  and ×Γ  be the sets of the processed bit locations in UΨ  and ×Ψ , respectively. Initially, 1 2{ , }i iΓ =  and 

1 2{ , }j j×Γ = . The core of the P-algorithm first selects a bit location from \Γ  based on Γ  and UΨ . Note that \  is a 

complement operator, as mentioned previously. The core of the algorithm then uses an optimization with inputs UΨ , UΦ , 

×Ψ  and ×Φ  to determine the corresponding bit location in ×Ψ  of the selected bit location in UΨ . Lastly, ℘̂ , Γ  and ×Γ  

are updated. For each given \j∈ Γ , the core of the P-algorithm constructs a set jϒ  of c bit locations in Γ  that have the 

greatest statistical influence on the bit location j. Mathematically, { ( ,1), , ( , )}j R j R j cΓ Γϒ =  , where RΓ  is an indexing 

function defined as ( , ( ,1)) ( , ( ,2)) ( , ( , ))U U Uj R j j R j j R j cΓ Γ ΓΨ ≥ Ψ ≥ Ψ  and ( , )R j iΓ ∈Γ , {1, , }i c∀ ∈  . The 

cardinality of jϒ  is controlled by the parameter 1min( , )c t= Γ , where 1t  is a threshold and Γ  is the cardinality of Γ . 

The parameter 1t  is used to remove unreliable bit locations whose statistical dependence on the bit location j is small. In 
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the experiments, 1t  is set to ten. In the first several iterations, 1tΓ < , and therefore, c is defined as 1min( , ).t Γ  Note that 

each \j∈ Γ  has different jϒ , but their cardinalities are the same. To select a bit location \h∈ Γ  for processing, a 

maximin scheme, 

\\
arg max min ( , ) ( , ) ( , )

j

U U Ukjj ik j

h j i j i k i
∈ Γ∈ Γ

∈ϒ≠

= Ψ Ψ −Ψ∑ ,          (26) 

is used. Note that jk∉ϒ  because k∉Γ . The term ( , ) ( , ) ( , )
j

U U U
i

j i j i k i
∈ϒ

Ψ Ψ −Ψ∑  is the sum of the weighted absolute 

differences between ( , )U j iΨ  and ( , )U k iΨ  at the bit locations in jϒ . This term is a measure of the dissimilarity between 

the two vectors [ ( , ( ,1)) ( , ( , ))]U Uj R j j R j cΓ ΓΨ Ψ  and [ ( , ( ,1)) ( , ( , ))]U Uk R j k R j cΓ ΓΨ Ψ . Given a fixed j, 

\
min ( , ) ( , ) ( , )

j

U U Uk
ik j

j i j i k i
∈ Γ

∈ϒ≠

Ψ Ψ −Ψ∑  yields a vector [ ( , ( ,1)) ( , ( , ))]U Uk R j k R j cΓ ΓΨ Ψ  whose difference from 

[ ( , ( ,1)) ( , ( , ))]U Uj R j j R j cΓ ΓΨ Ψ  is a minimum. The core of the P-algorithm identifies a bit location \h∈ Γ  that yields 

the greatest minimum difference. This maximin scheme avoids selection of a bit location whose 

[ ( , ( ,1)) ( , ( , ))]U Uj R j j R j cΓ ΓΨ Ψ  is close to another [ ( , ( ,1)) ( , ( , ))]U Uk R j k R j cΓ ΓΨ Ψ , to prevent a decision error in 

the next step. All the operations in this maximin scheme are on the set jϒ ⊂ Γ , which guarantees that the selected bit 

location h and Γ  have strong statistical dependence. Once the bit location h is chosen, the corresponding ˆ ( )h℘  is 

determined by  

/
ˆ ˆˆ ( ) arg min ( , ) ( , ( )) ( , ) ( , ( ))

h

U Uk
i

h h i k P i h i k P iι
×

× ×∈ Γ
∈ϒ

℘ = Ψ −Ψ + Φ −Φ∑ ,         (27) 

where ι  is a parameter balancing the two terms. The upper limit of the elements in UΨ  and ×Ψ  is t, which is the number 

of iterations in the resampling algorithm given in Fig. 7, while the upper limit of the elements in UΦ  and ×Φ  is one. In 

the experiments, ι  is set to t when UΦ , and ×Φ  are obtained from the same database. Lastly, h  is inserted into Γ , ˆ ( )h℘  

is inserted into ×Γ , and ℘̂  is updated. The core of the P-algorithm is summarized in Fig. 14.  

UΨ  and ×Ψ  are very similar even when they are computed from databases with different characteristics (Fig. 9). 

However, UΦ  and ×Φ  can be different because they are affected mainly by the percentage of eyelids and eyelashes 

covering irises (Fig. 12). To reduce this difference, ×Φ  defined as ( ( ), ( )) ( ( ), ( ))x y U Ux Uyj j j j× × ×Φ Θ Θ =Φ Θ Θ , where x×Θ  

and y×Θ  are indexing functions such that 2 2( (1), (1)) ( (2048 ), (2048 ))x y x y× × × × × ×Φ Θ Θ ≥ ≥ Φ Θ Θ  and UxΘ  and UyΘ  are 
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also indexing functions such that 2 2( (1), (1)) ( (2048 ), (2048 ))U Ux Uy U Ux UyΦ Θ Θ ≥ ≥ Φ Θ Θ , is used to replace ×Φ  in Eq. 

27. In the experiments, ×Φ  is used when UΨ  and ×Ψ  are computed from different databases, meaning that one is 

UBIRIS.v1 database and the other is the WVU database. In addition, a small value of ι  is employed.  

 The core of the P-algorithm relies on two sets of bit location correspondences, i.e., 1 1ˆ ( )i j℘ =  and 2 2ˆ ( ) .i j℘ =  If all 

possible correspondences are tested, the core of the algorithm must be run more than 8.78×1012 times (2,048!/(2!×(2,048-

2)!)×2,048×2,047). To reduce the computation burden, the starting point generation component and the hierarchical 

search component are proposed. Instead of computing all possible cases, a pair of bit locations 1 2( , )s si i  with strong 

statistical dependence in UΨ  is preselected. Thus, the number of bit location correspondences is reduced to 4,192,256 

(2,048×2,047). To further reduce this number, features are extracted from all possible bit location pairs 1 2( , )k k  in ×Ψ  

that potentially correspond to 1 2( , )s si i . The features include mask probabilities, bit probabilities, the rank of 1 2( , )k k×Ψ  in 

the list 1 1( ,1), , ( ,2048)k k× ×Ψ Ψ , 1 2( ( , ) ( , ) ) /
z

z
i

k i i k× ×
∈

Ψ + Ψ∑


 , where {1,2,3}z∈ , 

1 1 2 1 2{ | ( , ) 0 ( , ) 0}i i k i k k i i k× ×= ≠ ∧ ≠ ∧Ψ > ∧Ψ > , 2 1 2 1 2{ | ( , ) 0 ( , ) 0}i i k i k k i i k× ×= ≠ ∧ ≠ ∧Ψ < ∧Ψ <  and 

3 1 2 1 2{ | ( , ) ( , ) 0}i i k i k k i i k× ×= ≠ ∧ ≠ ∧Ψ ×Ψ < . If the features computed from 1 2( , )k k  are within a predefined range, 

1 2( , )k k  will be considered a pair correspondence to 1 2( , )s si i . In the experiments, these features were found to reduce the 

average number of potential corresponding pairs to 176 for the UBIRIS.v1 database and 133 for the WVU database.  

To increase the speed of the algorithm further, a hierarchical search is used. All selected corresponding pairs are 

entered into the core of the P-algorithm, but only l  bit locations are processed. The best ϖ  corresponding pairs, based on 

the criterion  

1 2

1 2

1 2 1 2

1 2 1 2

ˆ ˆ( , ) ( ( ), ( ))

ˆ ˆ( , ) ( ( ), ( ))

U
c c

U
c c
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×
∈Γ ∈Γ

×
∈Γ ∈Γ

Ψ −Ψ ℘ ℘

=
Ψ +Ψ ℘ ℘

∑∑
∑∑

,          (28) 

are chosen to process the rest of the bit locations. The core of the P-algorithm returns one permutation matrix for each 

corresponding pair. That is, ϖ  permutation matrixes are produced. In the experiments, 50l =  and 15.ϖ =  In general, 

attackers have more than one chance. Eq. 28 is used again to select three permutation matrixes from the ϖ  permutation 

matrixes to finally unlock the application-specific IrisCodes in B× . The experimental results reported in Section 4 are 

calculated from the best of these three permutation matrixes, in terms of error bits and hamming distances.  
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Input: An IrisCode database UB  and its mask database UM  from unrelated iris images. An application-specific IrisCode database 
B⊗  protected by the XOR protection scheme and the corresponding mask database M⊗ . The parameter m that controls the number 
of effective bit locations used in the naïve Bayes classifier.  
Output: The estimated bit vector ˆ

uS .  
Algorithm:    

1. Use the re-sampling algorithm in Fig. 7 to calculate UΨ  of UB  and ⊗Ψ  of B⊗ .  

2. Calculate ˆkp  and ˆkq  from UB  and select the m clearest bit locations to form Θ , according to Uik
i

M∑ . 

3. Set ˆ (1) 0uS =  and {1}Γ = . 
4. Use Eq. 21 to select a bit location ok . 
5. Use Eq. 22 to obtain ˆ ( )u oS k  and insert ok into Γ . 
6. Repeat steps 5 and 6 until all bit locations are processed.  
7. Use ˆ

uS  and ˆ~ uS  to unlock B⊗ .  
8. Use Eqs. 23–24 to compute ς .  

9. Return ˆ
uS  and ˆ

u jS B⊗⊗


, j∀  if / 2nς ⊗> ; otherwise, return ˆ~ uS  and ˆ~ u jS B⊗⊗


, j∀ . 

Fig. 13 The pseudo code of the X-algorithm. 
 

Input: The adjacency matrixes ( UΨ  and UΦ ) of the statistical dependence graph and the mask correlation graph from unrelated 
iris images.  
The adjacency matrixes ( ×Ψ  and ×Φ ) of the statistical dependence graph and the mask correlation graph from an application-
specific IrisCode database B×  and M× .  
A pair of bit location correspondences, i.e., 1 1ˆ ( )i j℘ =  and 2 2ˆ ( )i j℘ = .  
Output: The estimated permutation matrix that locks B×  and M×  and the unlocked B×  and M× .  
Algorithm:    

1. Set 1 2{ , }i iΓ =  and 1 2{ , }j j×Γ = . 
2. Compute { ( ,1), ( , )}j R j R j cΓ Γϒ = 

, \j∀ ∈ Γ .  
3. Use Eq. 26 to select a bit location \h∈ Γ . 
4. Use Eq. 27 to compute correspondence bit location ˆ ( )h℘ .  
5. Update Γ , ×Γ  and ℘̂ . 
6. Repeat steps 2–5 until Γ  is 2048. 
7. Use ℘̂  to construct the corresponding permutation matrix and use it to unlock B×  and M× . 

Fig. 14 The pseudo code of the core of the P-algorithm. 
 

4. Experimental Results 

The X-algorithm and the P-algorithm were applied to the two public iris image databases, the West Virginia University 

(WVU) iris database and the UBIRIS.v1 database, to evaluate the security risks in the XOR and permutation protection 

schemes. The UBIRIS.v1 database was collected in a visible light environment and the WVU database was collected in an 

NIR environment. For each algorithm and database, one hundred tests were performed, and in each test, the database was 

randomly divided into a training set and a testing set. The training set contained half of the irises, and the testing set 

contained the other half. These two datasets were disjoint, meaning that no iris had images in both datasets. To study the 

performance of the algorithms on training and testing sets with different characteristics, the UBIRIS.v1 database was used 

as a training set and the WVU database was used as a testing set, and vice versa. In each of these experiments, one 
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hundred tests were also performed. The IrisCodes and the masks computed from the training sets are regarded as UB  and 

UM , respectively, and the IrisCodes and the masks computed from the testing sets are regarded as B  and M , 

respectively. The training sets were used to compute UΨ  and UΦ .  

In each test of the XOR protection scheme, a random bit vector uS  with a length of 2,048 was generated to lock 

the IrisCodes and the masks in the testing set. Half of the random bits in uS were one. The locked B  and M , regarded as 

B⊗  and M⊗ , respectively, were used to compute ⊗Ψ . The X-algorithm was applied to ⊗Ψ  to estimate the random bit 

vector uS  and to unlock B⊗  and M⊗ . The histograms of the number of bit differences between uS  and the estimated uS , 

denoted by ˆ
uS , are shown in Figs. 15(a)-(d). Though uS  had 2,048 bits, the X-algorithm only made 62 and 11 bits of 

error, on average, for the UBIRIS.v1 and WVU databases, respectively, meaning that 97.0% and 99.5% of the bits, 

respectively, were correct (Figs. 15(a) and (b)). The X-algorithm even correctly obtained all bits in 18 tests on the WVU 

database. Figs. 15(c) and (d) show that in the experiments where training and testing sets were from different databases, 

the X-algorithm made respectively 5 and 11 bits of error, on average. Some may expect that when the training and testing 

sets had different characteristics, the performance of the X-algorithm should deteriorate. In these experiments (Figs. 15(c) 

and (d)), the entire UBIRIS.v1 and WVU databases were utilized to calculate UΨ  and ⊗Ψ , and therefore, they were more 

stable. Figs. 9-11 have shown that the adjacency matrixes of the statistical dependence graphs computed from the two 

databases are very similar because the dependence is from the same source. Though the adjacency matrixes of the mask 

correlation graphs computed from the two databases are different significantly (Fig. 12), they do not influence the X-

algorithm (Eqs. 21 and 22). Figs. 15(e)-(h) show the distributions of the normalized hamming distance between two 

IrisCodes from the same image, one in B  and the other unlocked from B⊗ . The distribution in Fig. 15(e) was obtained 

from 91,521 matchings of the iris images in the UBIRIS.v1 database. The mean of these normalized hamming distances is 

0.011, and 38% of them are zero. The distribution in Fig. 15(f) was obtained from 155,566 matchings of the iris images in 

the WVU database. The mean of these normalized hamming distances is 0.0066, and 85% of them are zero. The 

distribution in Fig. 15(g) was obtained from 309,900 matchings of the iris images in the WVU database and the mean of 

these normalized hamming distances is 0.0020. The distribution in Fig. 15(h) was obtained from 182,900 matchings of the 

iris images in the UBIRIS.v1 database and the mean of these normalized hamming distances is 0.0005. The genuine and 

imposter distributions of the databases that produce the corresponding testing sets are also given in Figs. 15(e)-(h). Note 
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that the training set and the testing set of Figs. 15(g) and (h) were from different databases and iris orientation was taken 

into account in all these matchings [1-2]. The distributions of matching unlocked IrisCodes and the corresponding original 

IrisCodes are very sharp and their means are very close to zero. Figs. 15(i)-(l) show the corresponding receiver operating 

characteristic (ROC) curves, where the raw normalized hamming distances were scaled by the function given in [4]. The 

ROC curves obtained from the databases that produce the corresponding testing sets are also given. Fig. 15 indicates 

clearly that the XOR protection scheme is vulnerable and that, through the bit probabilities and the statistical dependence, 

the X-algorithm can effectively unlock the protected IrisCodes without the keys.  

    

    

    
Fig. 15 Results given by the X-algorithm. The first row (a-d) shows the histograms of the number of bit differences between uS  and ˆ

uS  estimated by 
the X-algorithm. The second row (e-h) shows the distributions of the normalized hamming distance between two IrisCodes from the same image, one 
in B  and the other unlocked from B⊗  by the X-algorithm. The third row (i-l) shows the ROC curves of the X-algorithm. The first column is results 
from the UBIRIS.v1 database. The second column is results from the WVU database. The third column is results from using the UBIRIS.v1 and 
WVU databases as the training and testing sets, respectively and the fourth column is results from using the WVU and UBIRIS.v1 databases as the 
training and testing sets, respectively. (Color figure. To see clearly the distributions, please read the electronic version.) 
 

 In each test of the permutation protection scheme, a random vector u℘  with a length of 2,048, containing integers 

from 1 to 2,048, was generated to construct a permutation matrix uP , where ( , ) 1uP j i =  when ( )u j i℘ = ; otherwise, 

( , ) 0uP j i = . uP  was used to lock the IrisCodes and the masks in the testing set to produce B×  and M× , and ×Ψ  and ×Φ  

were obtained by applying the resampling algorithm and the correlations coefficients to them. The P-algorithm was 

(d) (c) (b) (a) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
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applied to ×Ψ  and ×Φ  to estimate ,uP  B  and M . From the estimated uP , the corresponding estimated key, denoted by 

ˆ u℘ , was obtained. Figs. 16(a)-(d) show the histograms of the number of different elements between u℘  and ˆ u℘ , i.e., 

2048

1

ˆ2048 [ ( ) ( )]u u
j

j jδ
=

− ℘ −℘∑ , where δ  is the Kronecker delta function. Fig. 16(a) shows that in 5% of the tests on the 

UBIRIS.v1 database, the P-algorithm correctly obtained more than 70% elements in u℘ . Fig. 16(b) shows that in 9%, 

16% and 26% of the tests on the WVU database, the P-algorithm correctly obtained more than 90%, 80%, and 70% 

elements in u℘ , respectively. The function ( ( ), ( )) ( ( ), ( ))x y U Ux Uyj j j j× × ×Φ Θ Θ =Φ Θ Θ  was not used in these two 

experiments. Figs. 16(c) and (d) show that when the training set and the testing set used to compute { , }U UΨ Φ  and 

{ , }× ×Ψ Φ  had different characteristics, the differences between u℘  and ˆ u℘  increased. ×Ψ  and UΨ  were stable for the 

two databases, but ×Φ  and UΦ  were not. In these experiments, the parameter ι  in Eq. 27 was lowered down and the 

function ( ( ), ( )) ( ( ), ( ))x y U Ux Uyj j j j× × ×Φ Θ Θ =Φ Θ Θ  was also used to reduce the impact from the differences between ×Φ  

and UΦ . Figs. 16(e)-(h) show the distributions of the normalized hamming distance between two IrisCodes from the same 

image, one in B  and the other unlocked from B× . The genuine and imposter distributions of the databases that were used 

to compute the corresponding ×Ψ  and ×Φ  are also given. Figs. 16(e) and (f) show that a large amount of normalized 

hamming distances are shorter 0.33 and some of them are even shorter than 0.1. However, when { , }U UΨ Φ  and { , }× ×Ψ Φ  

were computed from different databases, the normalized hamming distances shorter than 0.33 reduced (Figs. 16(g) and 

(h)). Figs. 16(i)-(l) show the corresponding ROC curves. The ROC curves of the databases that were used to compute 

{ , }× ×Ψ Φ  are also given. The ROC curves in Figs. 16(i) and (j) were obtained from the UBIRIS.v1 and WVU databases, 

respectively. They indicate that when the threshold is set at the false acceptance rate of 10-2%, more than 40% of the 

unlocked IrisCodes can match their corresponding unprotected IrisCodes. When { , }U UΨ Φ  and { , }× ×Ψ Φ  were computed 

from different databases, the ROC curves dropped (Figs. 16(k) and (l)). However, for the same threshold, approximate 

20% of the unlocked IrisCodes can still match their corresponding unprotected IrisCodes. Fig. 16 demonstrates that the 

permutation scheme is also vulnerable.  

 The experimental results show that the permutation protection scheme is more secure than the XOR protection 

scheme. Comparing the security keys uS  and u℘  in the two schemes and analyzing the two algorithms, this result is not 
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surprising, because the key space of u℘  (2048!)  is much larger than that of uS 2048(2 ) , and the selection space (/ )×Γ  in 

the optimization step (Eq. 27) of the P-algorithm is also much larger than the selection space ({0,1})  in the optimization 

step (Eq. 22) of the X-algorithm. The experimental results fit the a-priori expectation. A comparison of the results shown 

in Figs. 16(a)-(d) and 16(e)-(h), obtained from the P-algorithm, indicates that though the errors between the keys u℘  and 

ˆ u℘  are large, the normalized hamming distance between the IrisCodes in B  and the IrisCodes unlocked from B×  is still 

short. This phenomenon can be attributed to the robustness of IrisCode. Roughly speaking, even for two unrelated 

IrisCodes, half of their bits are the same. Thus, only a portion, e.g., 50% of the elements in ˆ u℘  being correct is sufficient 

to produce a normalized hamming distance shorter than a decision threshold, e.g., 0.33.  

    

    

     
Fig. 16 Results given by the P-algorithm. The first row (a-d) shows the histograms of the number of different elements between u℘  and ˆ u℘ obtained 
by the P-algorithm. The second row (e-h) shows the distributions of the normalized hamming distance between two IrisCodes from the same image, 
one in B  and the other unlocked from B×  by the P-algorithm. The third row (i-l) shows the ROC curves of the P-algorithm. The first column is 
results from the UBIRIS.v1 database. The second column is results from the WVU database. The third column is results from using the UBIRIS.v1 
and WVU databases as the training and testing sets, respectively and the fourth column is results from using the WVU and UBIRIS.v1 databases as 
the training and testing sets, respectively. (Color figure) 
 
5. Summary, Discussion and Future Work 

Over 400 million users have been mathematically enrolled by IrisCode, and this number is increasing at a dramatic rate. 

Detailed analyses of IrisCode, especially aspects related to security and privacy, are greatly needed. Although a number of 

(c) (b) (a) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
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papers have been published on the theoretical and geometric properties of IrisCode, its statistical characteristics have not 

been fully revealed. This paper first studies the relationship between bit probabilities and a mean of iris images, as 

described by Eq. 9, and shows that bit probabilities are not always approximately 0.5 and that they are highly dependent 

on the mean of iris images. That is, zero-DC filters do not guarantee that bit probabilities are approximately 0.5. However, 

when the mean of iris images is constant everywhere, they will be approximately 0.5, which matches the well-known 

results reported in Daugman’s paper, published in 1993 [1]. To study the statistical dependence between bits, the Chi-

square statistic, the correlation coefficient and a resampling algorithm are utilized. These statistical tools successfully 

suppress detection noise and reveal the statistical dependence in IrisCodes. The adjacency matrix of the graph formed by 

the statistical dependence is very structural. A comparison of this adjacency matrix and that of the Gabor graph shows that 

partial statistical dependence between bits is induced by the Gabor filters and propagates through the graph to produce 

other statistical dependence. Using this newly derived statistical information, two graph-based algorithms were developed 

to examine the security risk in the patented XOR and permutation protection schemes proposed by Braithwaite et al. [22-

23] and deployed in commercial applications [25]. The experimental results demonstrate that both schemes are vulnerable. 

Even without the keys, these algorithms can unlock the protected IrisCodes and estimate the keys through the bit 

probabilities and the statistical dependence.  

 The experiments which the color images (the UBIRIS.v1 database) were used as a training set and the NIR 

images (the WVU database) were used as a testing set, and vice versa are extreme cases of evaluating the X-algorithm and 

the P-algorithm because the training and testing images have totally different characteristics. It should be highlighted that 

commercial iris recognition systems have quality checkers to control image quality and ISO/IEC JTC 1/SC 37 working 

group has set up iris image standards. If attackers, e.g., insiders know the model of the iris recognition system that 

produces the protected IrisCodes, they can purchase the same system to collect iris images as a training set. It will 

increase similarity between the training set and the testing set.  

The Gabor filters used in the X-algorithm and the P-algorithm should not be considered secrets because attackers 

can estimate them from large iris image databases. This estimation may not require many unprotected IrisCodes and the 

corresponding images. To obtain excellent performance, the parameters of the Gabor filters in commercial iris recognition 

systems are optimized. Attackers can use a large iris image database to optimize their parameters and validate them on 

publicly available IrisCodes and the corresponding images, which can be found in Daugman’s scientific papers and 

homepage. For the XOR protection scheme, attackers can even use the statistical dependence in the protected IrisCodes to 
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estimate the Gabor filters. One simple method is arg min ( )
Gs

s
d UG

f ⊗Ψ − Ψ , where df  is a matrix norm, e.g., the Frobenius 

norm, 
GsUΨ  is the adjacency matrix of the statistical dependence graph obtained by applying the Gabor filters sG  to 

unrelated iris images and ⊗Ψ  and 
GsUΨ  are two matrixes whose elements are ( , )j k⊗Ψ  and ( , )

GsU j kΨ , respectively. 

In this minimization, sG  is a set of zero-DC Gabor filters controlled by free parameters.  

To link application-specific IrisCodes in different databases locked by different keys, attackers may not even need 

the Gabor filters. Let j u jB S B⊗ = ⊗
 

 and '
'j u jB S B⊗ = ⊗

 

 be two application-specific IrisCodes generated by the XOR 

protection scheme with two different keys uS  and 'uS . Using the XOR operator, their relationship is described by 

'
'j u u jB S S B⊗ ⊗= ⊗ ⊗

 

, where 'u uS S⊗  is regarded as a single key and '
jB⊗ 

 is regarded as the original IrisCode in Eq. 5. 

Thus, the X-algorithm can be used to estimate the key 'u uS S⊗ , and lastly, the relationship between jB⊗ 

 and '
jB⊗ 

 can be 

revealed. To be more precise, attackers only need to replace UΨ  in the X-algorithm with the adjacency matrix of 'B⊗  for 

this attack. A similar equation, ' 1
'j j u uB B P P−

× ×= × ×
 

, where j j uB B P× = ×
 

, '
'j j uB B P× = ×

 

 and 'uP  and uP  are two 

random permutation matrixes, is derived from the permutation protection scheme. 1
'u uP P− ×  is regarded as a single 

permutation matrix, but estimating this matrix demands more computational power. The core of the P-algorithm can still 

be used. However, the number of corresponding pairs, i.e., 1 1ˆ ( )i j℘ =  and 2 2ˆ ( )i j℘ = , needed to run the core is greater 

because the statistical properties of the starting point 1 2( , )i i  cannot be estimated from unrelated iris images to set the 

thresholds in the starting point generation component. Assuming that 1 2( , )i i  is a pair of bit locations with the strongest 

statistical dependence in 'B× , for each bit location {1, ,2048}ov ∈   in B× , 1( , ), , ( , )o o nv v v v , where 1, , nv v  are the n  

bit locations with the strongest statistical dependence on ov , are considered to be corresponding pairs, i.e., 1 0ˆ ( )i v℘ =  and 

2ˆ ( ) ki v℘ = , where {1, , }k n∈ 

 . Because most of the bit pairs are independent, 2048n  . The sign of their correlation 

coefficients can be used to further reduce this number. To be more precise, if 1 2( , )i i  is positively (negatively) correlated, 

the corresponding pair ( , )o kv v  must also be positively (negatively) correlated. Let the total number of ( , )o kv v  pairs be 20 

after the reduction based on the sign of the correlation coefficients. Thus, the total number of corresponding pairs needed 

to start the core is 61,440 (2,048×20×2). Although this number is much greater than the original number, attackers with 
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rich computational resources can still accomplish the attack. Cloud computing is one inexpensive way to access huge 

computational power in a short period of time.  

Braithwaite et al. mentioned that using the XOR and permutation protection schemes simultaneously increases the 

security level. This scheme is described by   

j j u uB B S P⊗× = ⊗ ×
 

.            (29) 
Undoubtedly, this scheme is more difficult to break because uP  randomly changes the dependent bit locations in the 

adjacency matrix of the statistical dependence graph and uS  randomly changes the sign of its elements. However, it would 

be a mistake to think that simply combining the two vulnerable schemes would achieve perfect security. One possible 

attack can be based on a modification of the P-algorithm and the X-algorithm. To break the scheme described by Eq. 29, 

the P-algorithm can be used to recover the positional information, and then the X-algorithm can be used to recover the 

sign information. However, the original ×Ψ  in the P-algorithm must be replaced with ⊗×Ψ , where ⊗×Ψ  is the adjacency 

matrix of the statistical dependence graph computed from B⊗× , because uS  randomly changes the sign of its elements. 

Due to the loss of the sign information, some features employed in the starting point generation component cannot be 

used. Consequently, more computational resources are required.  

 There are a number of approaches available to eliminate the security risk reported in this study. The easiest 

approach is to use different keys to lock different IrisCodes and store them in a distributed database (e.g., smartcards). The 

statistical dependence could not then be detected. Braithwaite et al. also mentioned this approach [22-23], but they did not 

notice the security risk reported in this study. The price of this approach is that it only supports verification. Another 

approach is to store IrisCodes in a central database but use different keys to lock different IrisCodes. For identification, all 

of the keys would be applied to input IrisCodes to match IrisCodes locked by different keys. Although this approach can 

support identification, the identification is much slower than in the original approach. How to protect the keys is another 

problem because the number of keys, which are stored in the central database, is equal to the number of IrisCodes. Using 

the XOR protection scheme in these scenarios is in fact an implementation of one-time pad, which was proven to offer 

perfect security [34], if the mask information cannot be utilized to infer any bit in an IrisCode. To encrypt the mask 

information, the permutation protection scheme should also be applied. Note that the permutation protection scheme alone 

does not offer perfect security even in these scenarios. Assuming that an IrisCode whose all bits are one is processed by 

the permutation protection scheme, the protected IrisCode is still same as the original one. This simple example 
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demonstrates that the permutation protection scheme does not offer perfect security because it retains the bit frequency in 

the protected IrisCode. To maintain the identification speed of the original approach, stronger template protection methods 

are greatly needed. When researchers design these methods, the statistical results presented in this study must be taken 

into account. In addition to template protection methods, other security measures, e.g., database security and hardware 

measures, should be used simultaneously. Although this study concentrates on the use of statistical information in security 

analysis, this information should be further exploited to enhance the performance of IrisCode. 
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