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Abstract ⎯ Palmprint recognition has been investigated over ten years. During this 

period, many different problems related to palmprint recognition have been addressed. 

This paper provides an overview of current palmprint research, describing in particular 

capture devices, preprocessing, verification algorithms, palmprint-related fusion, 

algorithms especially designed for real-time palmprint identification in large databases 

and measures for protecting palmprint systems and users’ privacy. Finally, some 

suggestion is offered. 
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1. Introduction 

The inner surface of the palm normally contains three flexion creases, secondary creases 

and ridges. The flexion creases are also called principal lines and the secondary creases 

are called wrinkles. The flexion and the major secondary creases are formed between the 

3rd and 5th months of pregnancy [36] and superficial lines appear after we born. Although 

the three major flexions are genetically dependent, most of other creases are not [2]. Even 

identical twins have different palmprints [2]. These non-genetically deterministic and 

complex patterns are very useful in personal identification. Human beings were interested 

in palm lines for fortune telling long time ago. Scientists know that palm lines are 

associated with some genetic diseases including Down syndrome, Aarskog syndrome, 

Cohen syndrome and fetal alcohol syndrome [68]. Scientists and fortunetellers name the 

lines and regions in palm differently shown in Fig. 1 [30].  



3 
 

Palmprint research employs either high resolution or low resolution images. High 

resolution images are suitable for forensic applications such as criminal detection [24]. 

Low resolution images are more suitable for civil and commercial applications such as 

access control. Generally speaking, high resolution refers to 400 dpi or more and low 

resolution refers to 150 dpi or less. Fig. 2 illustrates a part of a high-resolution palmprint 

image and a low resolution palmprint image. Researchers can extract ridges, singular 

points and minutia points as features from high resolution images while in low resolution 

images they generally extract principal lines, wrinkles and texture. Initially palmprint 

research focused on high-resolution images [69-70] but now almost all research is on  

low resolution images for civil and commercial applications. This is also the focus of this 

paper.  

The design of a biometric system takes account of five objectives: cost, user 

acceptance and environment constraints, accuracy, computation speed and security (Fig. 

3). Reducing accuracy can increase speed. Typical examples are hierarchical approaches. 

Reducing user acceptance can improve accuracy. For instance, users are required to 

provide more samples for training. Increasing cost can enhance security. We can embed 

more sensors to collect different signals for liveness detection. In some applications, 

environmental constraints such as memory usage, power consumption, size of templates 

and size of devices have to be fulfilled. A biometric system installed in PDA (personal 

digital assistant) requires low power and memory consumption but these requirements 

may not be vital for biometric access control systems. A practical biometric system 

should balance all these aspects. 
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A typical palmprint recognition system consists of five parts: palmprint scanner, 

preprocessing, feature extraction, matcher and database illustrated in Fig. 4. The 

palmprint scanner collects palmprint images. Preprocessing sets up a coordinate system 

to align palmprint images and to segment a part of palmprint image for feature extraction. 

Feature extraction obtains effective features from the preprocessed palmprints. A matcher 

compares two palmprint features and a database stores registered templates. 

The rest of this paper is organized as the follows. Section 2 reviews palmprint 

scanners and preprocessing algorithms. Section 3 lists verification algorithms. Section 4 

summarizes various fusion approaches for enhancing verification accuracy. Section 5 

discusses the algorithms for real-time palmprint identification in large databases. Section 

6 mentions the existing methods for protecting palmprint systems and user privacy. 

Section 7 offers some concluding remarks and further directions 

 

2. Palmprint Scanners and Preprocessing  

2.1 Palmprint Scanners 

Researchers utilize four types of sensors, CCD-based palmprint scanners, digital cameras, 

digital scanners and video cameras to collect palmprint images. Fig. 5 shows a CCD-

based palmprint scanner developed by The Hong Kong Polytechnic University. Zhang et 

al. and Han were the first two research teams developing CCD-based palmprint scanners 

[7, 9]. CCD-based palmprint scanners capture high quality palmprint images and align 

palms accurately because the scanners have pegs for guiding the placement of hands [7, 

9]. These scanners simplify the development of recognition algorithms because the 

images are captured in a controlled environment. However, developing a CCD-based 

palmprint scanner requires a suitable selection of lens, camera, and light sources. Wong 
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et al. provide some principles for CCD-based palmprint scanner design [93]. Although 

these palmprint scanners can capture high quality images, they are large.  

 Collection approaches based on digital scanners, digital cameras and video 

cameras require less effort for system design and can be found in office environments. 

These approaches do not use pegs for the placement of hands. Some researchers believe 

this increases user acceptance. Digital cameras and video cameras can be used to collect 

palmprint images without contact [37], an advantage if hygiene is a concern.  However, 

these images might cause recognition problem as their quality is low because they collect 

is in an uncontrolled environment with illumination variations and distortions due to hand 

movement. Digital scanners are not suitable for real-time applications because of the 

scanning time.  

Fig. 6(a) is a palmprint image collected with a CCD-based palmprint scanner and 

Fig. 6(b) is a palmprint image collected with a digital scanner. Although Fig. 6(a) does 

not include the fingers, this does not mean that CCD-based palmprint scanners cannot 

capture fingers. The scanner developed by Han can capture all information from a palm 

including fingers and palm. Capturing fingers may require increasing the size of the 

device. In Fig. 6(b), we can see that the palm is distorted because of contact with the 

scanners. This distortion does not happen in Fig. 6(a) because the scanner is better 

designed. 

 

2.2 Preprocessing 

Preprocessing is used to align different palmprint images and to segment the centre for 

feature extraction. Most of the preprocessing algorithms employ the key points between 
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fingers to set up a coordinate system. Preprocessing involves five common steps, 1) 

binarizing the palm images, 2) extracting the contour of hand and/or fingers, 3) detecting 

the key points, 4) establishing a coordination system and 5) extracting the central parts. 

Fig. 7(a) illustrates the key points and Fig. 7(b) shows a preprocessed image.  

The first and second steps in all the preprocessing algorithms are similar. However, 

the third step has several different implementations including tangent-based [7], bisector-

based [16, 48] and finger-based [9, 10] to detect the key points between fingers. The 

tangent-based approach considers the two boundaries ― one from point finger and 

middle finger and the other from ring finger and last finger ― as two convex curves and 

computes the tangent of these two curves. The two intersections are considered as two 

key points for establishing the coordinate system. Tangent-based approaches have several 

advantages. They depend on a very short boundary around the bottom of fingers. 

Therefore, it is robust to incomplete fingers (as in the disabled) and the presence of rings. 

Bisector-based approach constructs a line using two points, the center of gravity of a 

finger boundary and the midpoint of its start and end points. The intersection of the line 

and the finger boundary is considered a key point. Han and his team propose two 

approaches to establish the coordinate system, one based on the middle finger [10] and 

the other based on the point, middle and ring fingers [9]. The middle finger approach uses 

a wavelet to detect the fingertip and the middle point in the finger bottom and construct a 

line passing through these two points [10]. The multiple finger approach uses a wavelet 

and a set of predefined boundary points on the three fingers to construct three lines in the 

middle of the three fingers. The two lines from point and ring fingers are used to set the 

orientation of the coordinate system and the line from the middle finger is used to set its 
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position. These approaches use only the information on the boundaries of fingers while 

Kumar et al. proposed using all information in palms [50]. They fit an ellipse to a binary 

palmprint image and set up the coordinate system according to the orientation of the 

ellipse.  

After obtaining the coordinate systems, the central parts of palmprints are 

segmented. Most of the preprocessing algorithms segment square regions for feature 

extraction but some of them segment circular [61] and half elliptical regions [41]. The 

square region is easier for handling translation variation, while the circular and half 

elliptical regions may be easier for handling rotation variation.   

 

3. Verification Algorithms 

Once the central part is segmented, features can be extracted for matching. There are two 

types of recognition algorithms, verification and identification. Verification algorithms 

must be accurate. Identification algorithms must be accurate and fast (matching speed). 

This section concentrates on verification algorithms and identification algorithms will be 

discussed in Section 5. Verification algorithms are line-based, subspace-based and 

statistic-based. Some algorithms in this section can support a certain scale of 

identification. However, most of the researchers do not report matching speed.  

 

3.1 Line-Based Approaches 

Line-based approaches either develop edge detectors or use existing edge detection 

methods to extract palm lines [31, 34, 44, 52-53, 58-60, 83, 95]. These lines are either 

matched directly or represented in other formats for matching.  
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Wu et al. use Canny edge operator [103] to detect palm lines [44]. The orientations of 

the edge points are passed into four membership functions representing four directions. 

For each direction, the authors compute   ∑ ∈
×=

Ryx iiR yxyxMagE
),(

2
, )),(),(( μ , where μi 

represents one of the membership functions; Mag represents the magnitude of the lines 

and R is a local region. The feature value, ER,i is normalized. Finally, Euclidean distance 

is used for matching.    

Wu et al. designed two masks to compute the vertical first-order derivative and the 

second-order derivative of palmprint images [34]. The directional first-order and second-

order derivatives can be obtained by rotating the two standard marks. They use the zero-

crossings of the first-order derivatives to identify the edge points and corresponding 

directions. The magnitude of the corresponding second-order derivative is considered as 

the magnitude of the lines. They retain only the positive magnitude because palm lines 

are valleys. The weighted sum of the local directional magnitude is regarded as an 

element in the feature vector. This feature is normalized by its maximum and minimum 

components. As with [44], Euclidean distance is used for matching.   

Wu et al. propose another algorithm, which use Sobel masks to compute the 

magnitude of palm lines [48]. These magnitudes are projected along both x and y 

directions to form histograms. These histograms are considered as inputs of Hidden 

Markov Models (HMMs).       

Boles et al. use Sobel masks and thresholds to construct binary edge images [52] and 

then employ Hough transform to extract the parameters of the six lines with highest 

densities in the accumulator array for matching.  
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Kung et al. formed a feature vector based on a low-resolution edge map. The feature 

vector is passed into decision-based neural networks [58]. This was the first paper to 

report an on-line palmprint recognition method.  

Pedro et al. employ Sobel masks to enhance edge information and the statistical 

information in the processed images is used to estimate an optimal threshold for 

extracting the edges [59]. The authors then utilize a thinning algorithm to further process 

the edges. Several descriptors of the edges are computed as features for matching.  

Huang et al. proposed a two-level modified finite radon transform and a dynamic 

threshold to extract major wrinkles and principal lines. Two binary edge maps are 

compared based on a matching scheme called pixel-to-area comparison [83]. The authors 

claim that the proposed algorithm has a better high false acceptance rate than a classical 

palmprint identification algorithm − PalmCode [1, 7]. However, PalmCode still has a 

better at low false acceptance rate. Even though some strong wrinkles are included in the 

edge maps, the major features in this method are principal lines, which are genetically 

dependent [2]. 

Leung et al. employ Sobel masks to extract palm lines and line segment Hausdorff 

distance to compare two palmprints [95, 104]. Rafael Diaz et al. use Sobel masks and 

Morphologic operator as two separated feature extractors to obtain the gradient of the 

images [53]. These feature values are classified by neural networks. 

 

3.2 Subspace-Based Approaches 

Subspace-based approaches also called appearance-based approach in the literature of 

face recognition. They use principal component analysis (PCA), linear discriminant 
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analysis (LDA) and independent component analysis (ICA) [8, 12-13, 18, 42, 63, 66-67, 

90]. The subspace coefficients are regarded as features. Various distance measures and 

classifiers are used to compare the features. In addition to applying PCA, LDA and ICA 

directly to palmprint images, researchers also employ wavelets, Gabor, discrete cosine 

transform (DCT) and kernels in their methods [8, 18, 39, 42, 89, 91]. Fig. 8 illustrates the 

architecture of subspace approach. Some researchers have developed new subspace 

approaches and examined them on palmprints [71-73, 102, 105]. Generally speaking, 

subspace-based approaches do not make use of any prior knowledge of palmprints. Table 

1 summarizes subspace approaches.  

 

3.3 Statistical Approaches 

Statistical approaches are either local or global statistical approaches. Local statistical 

approaches transform images into another domain and then divide the transformed 

images into several small regions [10, 15, 33, 45, 50-51, 63-64]. Local statistics such as 

means and variances of each small region are calculated and regarded as features. Gabor, 

wavelets and Fourier transforms have been applied. The small regions are commonly 

square but some are elliptical and circular [29, 64]. To our knowledge, no one has yet 

investigated high order statistics for these approaches. In addition to directly describing 

the local region by statistics, Wang et al. use histograms of local binary pattern as 

features [98]. Global statistical approaches [11, 14, 46, 49, 54] compute global statistical 

features directly from the whole transformed images. Moments, centers of gravity and 

density have been regarded as the global statistical features. Table 2 summarizes these 

algorithms.  
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3.4 Other Approaches 

Some approaches are difficult to classify [9, 32, 43, 47, 55, 78, 92, 96-97, 99, 101] 

because they combine several image-processing methods to extract palmprint features 

and employ some standard classifiers such as neural networks to make the final decision.  

 Chen et al. [101] perform a two dimensional dual-tree complex transform on the 

preprocessed palmprints to decompose the images. Dual-tree complex transforms are 

proposed to resolve the weakness of traditional wavelet transform, which is not shift-

invariant, for pattern recognition. Then they apply Fourier Transform on each subband 

and regard the spectrum magnitude as features. Finally, SVM is used as a classifier.  

 Chen et al. extract a series of local features (e.g. average intensity) along a spiral 

[78] and use a time series method called symbolic aggregate approximation to represent 

the features and minimum distance to compare two feature vectors.  

 Doi et al. regard the intersection points of finger skeletal lines and finger creases 

and the intersection points of the extended finger skeletal lines and principal lines as 

feature points [55]. In addition to position information, the tangential angles between the 

principal lines and the extended skeletal lines are also considered as features. They used 

root mean square deviation to measure the differences between two features. 

 Han extracted seven specified line profiles from preprocessed palmprints and 

three fingers and used wavelets to compute low frequency information [9]. This 

information is formed as a new feature vector, whose dimensionality is reduced by PCA. 

Finally, generalized learning vector quantization and optimal positive Boolean function 
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are used to make final decision. This work may be the first paper employing feature-level 

fusion for palmprint recognition. 

 Hennings-Yeamans et al. employ Log-Gabor filters to assign line-content scores 

to different regions of palmprints [43, 97]. A specific number of regions with top line-

content scores are selected to train correlation filters. They use optimal tradeoff synthetic 

discriminant function (OTSDF) filter as a classifier. Correlation filter is a type of 

classifiers, extensively studied by Vijaya Kumar and his coworkers [106]. To optimize 

verification performance, they make use of several user-specific techniques (e.g. user-

specific segmentation and user-specific threshold).   

 Koichi et al. also propose a correlation approach [96]. The amplitude spectrum of 

two segmented images is used to estimate their rotational and scale differences. One of 

the images is rotated and scaled and then their amplitude information in the frequency 

domain is removed. Finally, band-limited phase-only correlation (BLPOC) is used to 

compute the similarity of two images. BLPOC only considers low to middle frequency 

information.  

 Zhang et al. used complex wavelets to decompose palmprint images and propose 

a modified complex-wavelet structural similarity (CW-SSIM) index for measuring the 

local similarity of two images [99]. The overall similarity of two palmprints is estimated 

as the average of all local modified CW-SSIM. CW-SSIM is originally proposed for 

evaluating image quality [100].  

 Zhou et al. [92] employ wavelet to decompose palmprints and use support vector 

machine (SVM) as a classifier. The input of the SVM is low subband images. This 

approach may overlook some important information in the middle frequency spectrum.  
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4. Fusion 

Fusion is a promising approach that may increase the accuracy of systems [77]. Many 

biometric traits including fingerprint [82], palm vein [84], finger surface [19, 39, 80], 

face [20, 62, 66, 81], iris [88], and hand shape [17, 39, 50, 61, 76] have been combined 

with palmprints at score level or at representation level. Combining other hand features 

such as hand geometry and finger surface with palmprints allows these features and 

palmprints to be extracted from a single hand image. Only one sensor is needed. 

Researchers have examined various fusion rules including sum, maximum, average, 

minimum, support vector machines and neural networks. Researchers also fuse features 

including appearance-based, line and texture features from palmprints [21, 29]. Kumar et 

al. even fuse user identities [62]. Table 3 summarizes the existing fusion approaches. 

Although fusion increases accuracy, it generally increases computation costs and 

template sizes and reduces user acceptance.  

 

5. Identification in Large Databases 

5.1 Classification and Hierarchical Approaches 

The problem of real-time identification in large databases has been addressed in three 

ways: through hierarchies, classification and coding. Hierarchical approaches employ 

simple but computationally effective features to retrieve a sub-set of templates in a given 

database for further comparison [14-16]. These approaches increase matching speed at 

the cost of accuracy. Classifiers can remove target palmprints by using simple features.  
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Classification approaches assign a class to each palmprint in a database. Wu et al. 

define six classes based on the number of principal lines and their intersections [22] (Fig. 

9). However, the six classes are highly unbalanced, e.g. about 80% of palmprints in 

category 5 (Fig. 9(e)) and the algorithm has high bin errors of 4%.  So these classes are 

not enough for identification. Li et al. proposed dealing with the unbalanced class [94] 

problem by further dividing the unbalanced class. 

 

5.2 Coding Approaches 

Coding approaches [1, 3-4, 7, 56] use one matching function to search entire databases. 

This avoids introducing errors from the classification or hierarchical systems but it is 

difficult to identify effective features for the matching function. Daugman, the inventor of 

IrisCode, has demonstrated that the bitwise hamming distance allows real-time brute-

force identification in large databases [25]. Several coding algorithms similar to IrisCode 

have been proposed for palmprint identification. PalmCode uses a single Gabor filter to 

extract the local phase information of palmprint [1, 7]. The phase is quantized and is 

represented in bits and the bitwise hamming distance is used to compare two PalmCodes. 

The computational architecture is the same as IrisCode. PalmCode always generates 

highly correlated features from different palms. To remove this correlation, in the first 

version of Fusion Code [75], we use four directional Gabor filters to generate four 

PalmCodes. These PalmCodes are combined. For each sample point, only phase 

information generated by the Gabor filter having maximum magnitude is quantized. 

Hamming distance is still used to compare two Fusion Codes. In the second version of 

Fusion Code, the authors carefully examine the number of Gabor filters and their 
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parameters and find out that the optimal number of Gabor filters is two. They replace the 

static threshold with a dynamical threshold. The second version of Fusion Code is much 

more effective than the first.   

Both PalmCode and Fusion Code (first and second versions) employ quantized 

phases as features and the hamming distance as a matcher. Competitive Code [3] uses the 

orientation field of a palmprint, encoding it for high-speed matching using a novel coding 

scheme and bitwise angular distance. Like PalmCode and Fusion Code, Competitive 

Code uses translated matching to improve alignment in preprocessing. A second version 

of Competitive Code [5], generated 25 translated templates from an input palmprint to 

match the templates in a database, producing more effective matching codes than the first 

version. Other researchers have studied this same feature [56, 74, 85].  

Sun et al. used differences between Gaussians to extract orientation fields and 

bitwise hamming distances for use in matching [56].  Wu et al. modified Fusion Code to 

extract the orientation field. This algorithm uses the hamming distance but it is not 

bitwise [57, 74] so direct implementation of this algorithm does not support high-speed 

matching. However, it is possible to replace the non-bitwise hamming distance with the 

bitwise hamming distance if a suitable coding scheme is provided.  

 Jia et al. also use the term code to describe their method. They modify a finite 

Radon transform and employ a winner-take-all rule, which is used in Competitive Code, 

to estimate the orientation field of palmprints. They design a matching scheme called 

pixel-to-area comparison to improve robustness. Because of the pixel-to-area matching 

scheme, the matching speed of this algorithm is slower than that of other coding 

algorithms, which uses bitwise hamming distance and bitwise angular distance.  
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 IrisCode is the foundation of new coding algorithms for palmprints. IrisCode is a 

clustering algorithm with four prototypes; the locus of a Gabor function is a two-

dimensional ellipse with respect to a phase parameter and the bitwise hamming distance 

can be regarded as a bitwise angular distance [38, 79].  

    

6. Security and Privacy 

Biometric systems are vulnerable to many attacks including replay, database and brute-

force attacks [26]. Compared with verification, fusion and identification, there has been 

little research on palmprint security. We have analyzed the probability of successfully 

using brute-force attack to break in a palmprint identification system [5] and proposed 

cancelable palmprints for template re-issuance to defend replay attacks and database 

attacks [86]. Connie et al. combined pseudo-random keys and palmprint features to 

generate cancelable palmprint representations [27]. They claim that their method can 

achieve zero equal error rates. However, they assume [6] that the pseudo-random keys 

are never lost and shared and based on this assumption report zero equal error rates for 

different biometric traits [28]. Sun et al. apply watermarking techniques to hide finger 

features in palmprint images for secure identification [40]. Wu et al. use palmprint for 

cryptosystem [87]. Although some security issues have been addressed, it is still not 

enough. For example, liveness detection has not been well studied. A fake palmprint can 

be found in [79]. Potential solutions of liveness detection include infrared and multiple 

spectrum approaches [82, 107].   

Biometric traits contain information not only for personal identification but also for 

other applications. For example, deoxyribonucleic acid (DNA) and retina can be used to 



17 
 

diagnose diseases. Palmprints can also indicate genetic disorders. Most previous medical 

research related to the palm has concentrated on abnormal flexion creases, the Simian 

line and the Sydney line (Fig. 10) [68]. About 3% of normal population has abnormal 

flexion creases. Medical researchers also discover the association between density of 

secondary creases and schizophrenia [36]. To protect private information in palmprints, 

databases store encrypted templates because the line features can be reconstructed from 

raw templates. Both traditional encryption techniques and cancelable biometrics can be 

used for encryption. Cancelable biometrics match in the transform domain while 

traditional encryption techniques require decryption before matching. In other words, 

decryption is not necessary for cancelable biometrics. When matching speed is an issue, 

e.g. identification in a large database, cancelable biometrics can hide private information.  

 

7. Discussion and Conclusion 

Before the end of this paper, we would like to re-mention some papers that are very 

worthy to read carefully. Our first suggestion is Han’s work [9], which is a very complete 

work. We especially appreciate his palmprint scanner described in this work that can 

collect images of whole hands and use pegs for hand placement. For verification, we 

recommend Hennings-Yeomans et al’s correlation filter approach [97]. They employ 

many user-specific techniques to optimize accuracy. For real-time large database 

identification, Kong’s PhD dissertation is our suggestion because it contains PalmCode, 

Fusion Code and Competitive Code and the theory of coding methods. In addition to 

Kong’s work, we also recommend to read the original IrisCode [25] paper, which is the 

foundation of all coding methods. For fusion, we do not emphasize on any paper in our 
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list because it is well-known that fusion can improve accuracy. Biometric fusion is in fact 

an application of information fusion and combined classifiers. Many excellent papers 

have been published in these two fields. For security, we also do not emphasize on any 

paper because the literature of palmprint security is very small. 

In face recognition literature, many researchers design algorithms based on prior 

knowledge of the face. To optimize the recognition performance in terms of speed and 

accuracy, we expect that more algorithms are designed based on the prior knowledge of 

palmprints. Different template formats may require different measures for template 

protection [86]. More research should be put into security and privacy issues [65, 108]. 

For biometric fusion, the authors recommend combining IrisCode − the commercial iris 

recognition algorithm and Competitive Code or other coding methods for high-speed 

large-scale personal identification because these algorithms share a number of important 

properties (e.g. high speed matching). Even though IrisCode does not accumulate false 

acceptance rates when the number templates in database increases, its false reject rate still 

increases. Some issues in using palmprints for personal identification have not been well 

addressed. For instance, we know that ridges in palmprints are stable for a person’s whole 

life but the stability of principal lines and wrinkles has not been systemically investigated.       
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Figures:  

Fig. 1 Definitions of palm lines and regions (a) from scientists and (b) from fortune-

tellers. 

Fig. 2 Palmprint features in (a) a high resolution image and (b) a low resolution image. 

Fig. 3 The inter relationships between different objectives for designing a biometric 

system. 

Fig. 4 An illustration of a typical palmprint recognition system 

Fig. 5 A CCD-based palmprint scanner 

Fig. 6 Two palmprints collected by (a) a CCD-based palmprint scanner, and (b) a digital 

scanner 

Fig. 7 Illustration of preprocessing. (a) the key points based on finger boundary and (b) 

the central parts for feature extraction. 

Fig. 8 The architecture of subspace approach 

Fig. 9 The six classes of palmprints defined by Wu et al. [22] 

Fig. 10 Abnormal palmprints. 
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Table 1 Summary of subspace approach 

Table 2 Summary of statistical approach 

Table 3 Summary of palmprint fusion 
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Tables:  

 

Table 1 Summary of Subspace Approach 

Feature extraction Subspace  Classifier Ref 
Wavelets: Haar, Daubechies 
and Symmlet 

PCA, LDA, ICA L1 Measure 
L2 Measure 
Cosine Measure 
Probabilistic neural network 

8 

Nil LDA Euclidean distance 12 
Nil PCA Weighted Euclidean distance 13 
DCT Improved Fishface Euclidean distance 18 
Nil  Kernel PCA Maximum a posterior 

classifier 
39 

Wavelet ICA Euclidean distance 42 
Nil PCA, ICA Euclidean distance 66 
Nil ICA Radial basis probabilistic 

neural network    
67 

Nil Bi-directional PCA Assembled Matrix distance 
metric 

71 

Nil Kernel PCA + Locality 
preserving projections 

Euclidean distance 73 

Gabor filter + boosting 
algorithm  

LDA Cosine distance  89 

Nil Winner-take-all network 
based on ICA 

Radial basis probabilistic 
neural network    

90 

Wavelet, DCT, FFT Kernel PCA Support Vector Machine, 
Weighted Euclidean Distance, 
Linear Euclidean Distance 

91 

Nil Unsupervised discriminant 
project 

Euclidean, Cosine measure 102, 
105 
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Table 2 Summary of Statistical Approach 

Feature extraction Statistical feature   Shape of small regions Classifier Ref 
Sobel filter, 
morphological 
operators 

Mean Square and rectangle  Backpropagation  
neural network 

10 

Direction masks Standard deviation Square Cosine 
similarity 

33, 
50  

Gabor filter Mean and standard 
deviation 

Circular Cosine 
similarity 

64 

Directional line 
detector, 
Gabor, 
Haar Wavelet 

Mean energy, number 
of line pixel 

Rectangle, segments in 
elliptical half-ring 

L1 norm 29 

Nil Zernike moments Global statistics Euclidean, L1 
norm 

11 

Wavelet  center of gravity, 
density, spatial 
dispersivity and 
engery  

Global statistics Sum of 
individual 
percentage error  

14 

M-band wavelet L1-norm energy, 
Variance  

Global statistics Euclidean 
distance 

46 

Nil Zernike moments Global statistics Modular neural 
network 

49 

Otsu binarization Hu Invariant Moments Global statistics Euclidean 
distance 

54 
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Table 3 Summary of Palmprint Fusion 

Biometric traits and features Level of fusion Ref 
Hand geometry and palmprint Feature  9 
Hand geometry and palmprint Score  17 
Finger + palmprint Score 19 
Face + palmprint Score 20 
Gabor + Line features + PCA features from palmprints Score 21 
Gabor + Line + Haar wavelet features from palmprints Score/decision 29 
Hand geometry + palmprint + knuckleprint Feature 39 
Hand geometry + palmprint Feature/score 50 
Face + palmprint + Claimed identity Score 62 
Face + palmprint Feature 66 
Hand geometry + palmprint Feature/score 76 
Hand geometry+palmprint+finger surface Score 80 
Palmprint+face Feature 81 
Fingerprint+Hand geometry+palmprint Score 23, 35, 82 
Palmprint+palm vein Score 84 
Palmprint+iris Score 88 

 

 


