
An Analysis of IrisCode 
 
 

1Adams Kong, IEEE Member, 2David Zhang, IEEE Fellow,  
and 3Mohamed Kamel, IEEE Fellow 

 
1 Forensics and Security Laboratory,  

School of Computer Engineering, Nanyang Technological University,  
Nanyang Avenue, Singapore, 639798 

 
2Biometrics Research Centre 

Department of Computing, The Hong Kong Polytechnic University 
Kowloon, Hong Kong 

 
3Pattern Analysis and Machine Intelligence Research Group 

University of Waterloo, 
200 University Avenue West, Ontario, Canada 

 
 

Corresponding author: 

Adams Kong 

School of Computer Engineering, Nanyang Technological University,  

Nanyang Avenue, Singapore, 639798 

Phone: (65) 6513-8041 

Fax: (65) 6792-6559 

E-mail: adamskong@ntu.edu.sg 



 1

Abstract ⎯ IrisCode is an iris recognition algorithm developed in 1993 and continuously improved by 

Daugman. It has been extensively applied in commercial iris recognition systems. IrisCode representing 

an iris based on coarse phase has a number of properties including rapid matching, binomial impostor 

distribution and a predictable false acceptance rate. Because of its successful applications and these 

properties, many similar coding methods have been developed for iris and palmprint identification. 

However, we lack a detailed analysis of IrisCode. The aim of this paper is to provide such an analysis as a 

way of better understanding IrisCode, extending the coarse phase representation to a precise phase 

representation, and uncovering the relationship between IrisCode and other coding methods. Our analysis 

demonstrates that IrisCode is a clustering algorithm with four prototypes; the locus of a Gabor function is 

a two-dimensional ellipse with respect to a phase parameter and can be approximated by a circle in many 

cases; Gabor function can be considered as a phase-steerable filter and the bitwise hamming distance can 

be regarded as a bitwise phase distance. We also discuss the theoretical foundation of the impostor 

binomial distribution. We use this analysis to develop a precise phase representation which can enhance 

accuracy. Finally, we relate IrisCode and other coding methods. 

 

Keywords: Biometrics, iris recognition, Daugman algorithm, palmprint recognition, phase, Gabor filter  

 

1. Introduction 

Various biometric systems have been developed for governmental and commercial applications. Most of 

these systems can verify, 1-to-1 match or identify a person in a small database, 1-to-many match. Real 

time large-scale identification is still a challenging problem in terms of matching speed and accuracy. Of 

existing biometric technologies, 1IrisCode developed in 1993 and continuously improved by Daugman 

[1-4] is able to identify a person in an extremely large database in real time. Although recently there has 

been some debate as to the accuracy of IrisCode [5], IrisCode has been extensively deployed in 

                                                 
1 In this paper, IrisCode is used interchangeably to refer to both the method and features of iris recognition 
developed by Daugman. Recently, this method has also been called the Daugman algorithm.  
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commercial iris recognition systems for various security applications and more than 50 million persons 

have been enrolled using IrisCode. Following the key idea of IrisCode, researchers have developed 

different coding methods for use in iris and palmprint recognition [6-18, 27]. 

We now give a brief computational summary for those who are not familiar with IrisCode. Two 

dimensional Gabor filters with zero DC are applied to an iris image in a dimensionless polar coordinate 

system, I(ρ, φ). The complex Gabor response is encoded into two bits by using the following inequalities:  
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where r0, θ0, ω, α and β are the parameters of the Gabor filters [2]. The bitwise hamming distance is used 

to measure the difference between two IrisCodes. The first version of the bitwise hamming distance is 

defined as 2048/)(
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bitwise operator, XOR. The current IrisCode uses a mask to exclude the corrupted bits from eyelashes, 

reflection, eyelids, and low signal-to-noise ratio [2]. The hamming distance between two IrisCodes is 
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where AM and BM are respectively the masks of IrisCodes A and B and ∩ represents bitwise operator 

AND.  

The desirable qualities of IrisCode are well known. It is robust against local brightness and contrast 

variations because of the zero DC Gabor filters and the coding scheme. In rotating between any adjacent 

phase quadrants, only a single bit in IrisCode changes and this can enhance the robustness of the genuine 

distribution. In rotating between one phase quadrant to the opposite phase quadrant, both two bits in 

IrisCode change, which is to say that the distances between phase quadrants are retained. We refer to this 

representation as cyclic representation. Another well-known property of IrisCode is that it produces a 

binomial impostor distribution with high degrees-of-freedom (which does not necessarily imply high 

accuracy [30]). Making use of this property, the decision threshold is dynamically changed according to a 

predictable false acceptance rate from the binomial impostor distribution. Some researchers have 

developed an iris individuality model [24] based on the binomial impostor distribution. The key to high 

speed matching is the bitwise hamming distance. IrisCode can perform one million comparisons per 

second using a computer with a 3G Hz processor. This speed can be further improved by applying Beacon 

Guided Search [20]. 

It is generally believed that the cores of IrisCode are the operators, “≥” and “<” in the Eqs. 1-4 and 

the bitwise hamming distance. These two operators allow each feature value to be represented by one bit 

then two encoded features are compared using the bitwise hamming. Researchers replace the Gabor filters 

in IrisCode with different filters and transformations including 2quadratic spline wavelet, Haar wavelet 

frame, log Gabor filters, independent component analysis, directional filter banks and dissociated tripole 

filters [10-18] to develop new coding methods for iris recognition. Based on this understanding, some 

researchers claim that IrisCode is a local ordinal feature [11]. Some researchers further believe that the 

impostor distribution of their coding method also follows a binomial distribution [19]. However, this 

understanding of IrisCode is incomplete and limits the design of new coding schemes for feature 

                                                 
2 The coding scheme in [10] does not explicitly use the two operators, “≥” and “<”. In fact, it can be rewritten based 
on these two operators. Readers can refer appendix A. 
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representation. One weakness of this understanding is that each filter response or coefficient provides 

only one bit of information. It lacks representational flexibility. Furthermore, some claims are 

controversial. Developing an iris individuality model with a solid theoretical foundation also requires a 

complete understanding [24].  

A detailed analysis of IrisCode is important for understanding IrisCode, for designing new coding 

schemes, and for clarifying the relationship between IrisCode and other coding methods. Nevertheless, 

such an analysis has not been found in the literature. In this paper, we investigate the relationship between 

IrisCode and clustering algorithms, the property of the Gabor function, and the relationship between the 

bitwise hamming distance and bitwise phase distance. We also discuss the theoretical foundation of the 

binomial impostor distribution. Making use of this analysis, we develop an algorithm for precise phase 

representation with effective filtering and matching. Finally, we study the relationship between IrisCode 

and other coding methods. 

 The rest of this paper is organized as follows. Section 2 describes the properties of IrisCode from the 

point of view of clustering. Section 3 presents an algorithm for precise phase representation. Section 4 

discusses the theoretical basis for the binomial impostor distribution. Section 5 shows the relationship 

between IrisCode and different coding methods. Section 6 offers some concluding remarks.  

 

2. Understanding IrisCode from a Clustering Point of View. 

In this section, we demonstrate that IrisCode is a clustering algorithm and study the properties of the 

Gabor function. The relationship between bitwise hamming distance and bitwise phase distance is 

presented in Section 3.  

 

2.1  IrisCode ⎯ A Clustering Algorithm 

Let MR(ρ, φ) and MI(ρ, φ) be the real and imaginary parts of a Gabor filter. For convenience, we use MR to 

denote MR(ρ, φ). We use the same notations for other symbols. The definitions of MR and MI are as 
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follows: 
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We do not remove the DC term of the Gabor filter in Eq. 6 since in this paper we assume that the DC of 

the iris patch for filtering has been removed.  

We define a continuous periodic function,  

))sin()(cos()( IR MMZ ϕϕϕ += ,        (8) 

with respect to the phase parameter, ϕ, where ϕ∈[0, 2π). Z(ϕ) is called a filter-generating function. Using 

Z(ϕ), we can obtain four filters by substituting 5π/4, 7π/4, π/4, and 3π/4 to ϕ. The four filters are 

2/)()4/5(0 IR MMZZ −−== π ,        (9) 

2/)()4/7(1 IR MMZZ −== π ,       (10) 

2/)()4/(2 IR MMZZ +== π ,       (11) 

2/)()4/3(3 IR MMZZ +−== π .       (12) 

These four filters are shown in Fig. 1 and will later be regarded as the cluster centers. We define 
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as a clustering criterion, where j is called the winning index and I is the iris image in the dimensionless 

polar coordinate system. It is equivalent to the cosine measure between Zi and ρI, i.e., 

∫ ∫=
ρ φ

ρφρρ iii
ZIddIZj /maxarg  since the four filters have the same power, i.e., ∫ ∫ =

ρ φ

φρ CddZi
2 , 

where C is a constant, which can be proved by using the orthogonal property between MR and MI i.e., 

∫ ∫ =
ρ φ

φρ 0ddMM RI . The winning index is an integer representation of ϕ. For fast matching, we have to 

encode the winning index. Table 1 gives the coding table under the heading “Coded winning indexes”. 
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The difference between two encoded winning indexes is also measured by their bitwise hamming distance, 

as in IrisCode. Table 1 compares bits of IrisCode and the binary representation of the winning indexes, 

demonstrating their equivalence. In the other words, IrisCode is a clustering algorithm and the cosine 

measure is the clustering criterion.  

 

Table 1. Comparison of IrisCode, winning index and coded winning index 
 
 

IrisCode Winning index Coded winning indexes 
Imh  Reh  Bit 2 Bit 1 
0 0 0 0 0 
0 1 1 0 1 
1 1 2 1 1 
1 0 3 1 0 

 
 

  
(a)      (b) 

  
(c)      (d) 

Fig. 1 The four filters used in IrisCode, a) Z0, b) Z1, c) Z2 and d) Z3. 

 

2.2 Properties of the Gabor Function 

Let us study the physical meaning of ϕ in the filter generating function. Reordering the terms in Eq. 8, 

)(ϕZ  can be rewritten as 

))(cos()( 0
/)(/)( 22

0
22
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It is clear that ϕ is the phase of a Gabor function and the filter generating function can be rewritten as a 
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Gabor function. According to Eqs. 9-12 and 14, it is very clear that IrisCode is a periodic feature.  

Next, we study the locus of the filter generating function, also the Gabor function in Eq. 14 with 

respect to the phase parameter. We discretize MR, MI and Z to obtain three vectors, RM
r

, IM
r

 and 

)(ϕZ
r

, respectively and define two orthonormal vectors, RRR MMv
rrr /=  and III MMv

rrr /= . Using 

these two vectors, )(ϕZ
r

 can be rewritten as 

))sin()(cos()( IIRR vMvMZ vrrrv
ϕϕϕ += ,       (15) 

a linear combination of Rvr  and Ivr . The coordinate of )(ϕZ
r

 in the two dimensional space spanned by 

Rvr  and Ivr  is ))sin(),cos(( ϕϕ IR MM  satisfying the following equality 
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Obviously, the locus of )(ϕZ
r

 with respect to ϕ is an ellipse on the two dimensional space. In fact, the 

locus can be further constrained. Under suitable parameterization, it is a circle. The mathematical proof is 

given in Appendix B. Even if the condition in Appendix B cannot be fulfilled, the locus of )(ϕZ
r

can be 

approximated by a circle in many applications of Gabor filters because their RM  is approximately 

equal to their IM  [33].  

 

3. The Precise Phase Representation Algorithm 

To design a precise phase representation, we begin by taking more sample points from the filter 

generating function to generate more prototypes for the clustering algorithm. We use uniform sampling to 

obtain the filters, i.e., 3 )/( ηπ +niZ , where i=0, 1,…2n-1 and η is an offset. For the design of bitwise 

phase distance, the number of prototypes is set to 2n, where n is called the order of the coding scheme. 

                                                 
3 Please note the i in )/( ηπ +niZ  is not 1− . 
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For IrisCode, n is 2 and η is 5π/4. It should be noted that the clustering criterion based on the cosine 

measure is independent of the contrast of the image. The brightness of the iris is normalized. To embed 

other inherent properties of IrisCode such as rapid matching and cyclic representation, we have to design 

a novel coding scheme to encode the winning indexes and a distance measure for rapid matching. In the 

following subsections, we ignore the offset η without loss of generality. 

 

3.1 Phase Distance 

Since )(ϕZ
r

 is on a two dimensional ellipse and ϕ is the phase, the distance between )(ωZ
r

 and )(γZ
r

 

can be measured by the phase distance between ω and γ defined as )2,min( γωπγω −−− . If we use 

uniform sampling to obtain )(ωZ
r

 and )(γZ
r

 i.e., np 2/2πω =  and nq 2/2πγ =  where p and q 

are two integers between 0 and 2n-1, the phase distance can be rewritten as 

( )⎟
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⎜
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n
qp

n
2,min ππ

. The phase distance can be further simplified as  

( )( )qpnqp −−− 2,min ,        (17) 

if π/n is defined as one unit distance. As a result, the phase distance between )(ωZ
r

 and )(γZ
r

 is 

defined only based on their winning indexes, p and q, the integer presentation of their phases. The phase 

distance between any two adjacent winning indexes is 1, as in IrisCode. The cyclic representation has 

been embedded in the precise phase representation.  

 

3.2 Bitwise Matching and Coding Scheme 

The bitwise hamming distance supporting high speed matching is one of the keys to large-scale iris 

identification in real time. However, the winning index and phase distance in Eq. 17 are integer 

representations. To embed high speed matching in the precise phase representation, we have to design a 

new coding scheme to encode the integer winning indexes and to develop a bitwise phase distance. A 
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coding table ][ , jiaA =  is designed for this purpose, where ni ≤≤1 ; nj 21 ≤≤  and ai,j is defined as 

in Fig. 2.  

 

jiandnjif <≤≤ 1 , 

  1, =jia  

ninjandnjelseif ≤≤−> , 

  1, =jia  

else  

  0, =jia  

 
Fig. 2. Pseudo code of the coding table. 

 

For illustration, Table 2 shows two coding tables for n=3 and 4. These tables have a structure where each 

winning index is represented by the column of A with the result that n bits are used to encode one winning 

index.  

It should be noted that when n=1 and n=2, the bitwise winning indexes form a 4cyclic code [25] and 

a gray code. However, when n is greater than two, the bitwise winning indexes do not form a cyclic code 

since cyclically shifting a bitwise winning index can generate a code that does not exist in the coding 

table. For instance, (1 0 0) is a code in Table 3a but (0 1 0) does not exist in this table. They also do not 

form a gray code since gray code uses n bits to represent 2n integers. For example, (1 0 1) is a code in 

gray code but it does not exist in Table 3a. Cyclic code and gray code are not essential properties for 

precise phase representation since we have embedded cyclic representation in it.  

When n is greater than two, the coding scheme does not fully utilize the code space. Only 2n code 

words in the space are used. This design is to ensure that adjacent phases are encoded with code words in 

which only one bit has changed, thus maintaining a distance metric. 

                                                 
4 The definitions of cyclic code [25] and cyclic representation are different. 
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 To achieve high speed matching, we need a bitwise matching for the encoded winning indexes. We 

discover that phase distance and bitwise hamming distance have an equivalent relationship, i.e. 

)2,min(
1

,, knkaa
n

i
kjiji −=⊗∑

=
+ . The mathematical proof is given in Appendix C. We refer to this 

bitwise hamming distance for precise phase representation as the bitwise phase distance since it measures 

the phase difference between two prototypes in the two dimensional ellipse. 

Table 2. The coding tables for (a) n=3 and (b) n=4 
 

(a) 

Winning index 0 1 2 3 4 5 
Bit 0 0 1 1 1 0 0 
Bit 1 0 0 1 1 1 0 
Bit 2 0 0 0 1 1 1 

 
(b) 

Winning index 0 1 2 3 4 5 6 7 
Bit 0 0 1 1 1 1 0 0 0 
Bit 1 0 0 1 1 1 1 0 0 
Bit 2 0 0 0 1 1 1 1 0 
Bit 3 0 0 0 0 1 1 1 1 

 

3.3 Phase-Steerable Filtering 

We have developed an algorithm for precise phase representation that embeds the properties of IrisCode 

including fast matching and cyclic representation. In the scheme we have presented so far, the number of 

filters needed would have to increase with the desired precision of the extracted phase 

information.  Namely, 2n filters would be needed if the desired phase precision is n bits.  However, now 

we will show that only the two cardinal filters RM  and IM  are actually required, regardless of the 

desired phase precision, because Gabor filters are phase-steerable. 

Let us consider the clustering criterion, ∫ ∫=
ρ φ

πρφρπρ )/(/)/(maxarg niZIddniIZj
i

, where 

),( φρρI  is independent of i and )/( niZ π  can be pre-computed. These two terms would not 
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dramatically increase the computational burden even when n is large. The major computation cost comes 

from ∫ ∫
ρ φ

φρπρ ddniIZ )/( . 

Substituting Eq. 8 into ∫ ∫
ρ φ

φρπρ ddniIZ )/( , we have 

∫ ∫ +
ρ φ

φρππρ ddMniMniI IR ))/sin()/(cos(  

∫ ∫∫ ∫ +=
ρ φρ φ

φρρπφρρπ ddMIniddIMni IR )/sin()/cos(           (18) 

Eq. 18 shows that )(ϕZ  is a phase-steerable filter [31] and we need only two filters, RM  and IM  

for any precision of the phase. We have successfully reduced the computation complexity of filtering 

from O(n) to O(1). If the locus of )(ϕ
→

Z  is a circle, the solution phase, 

∫ ∫
ρ φ

ϕ
ϕρφρϕρ )(/)(maxarg ZIddIZ  can be computed by 

⎟
⎟
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⎝

⎛
= ∫ ∫∫ ∫−

ρ φρ φ

φρρφρρϕ ddIMddIM RI
1tan . The mathematical proof is given in Appendix D. If the 

locus of )(ϕ
→

Z  is not a circle, ϕ  can still be approximated by 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∫ ∫∫ ∫−

ρ φρ φ

φρρφρρϕ ddIMddIM RIc
1tan  and their error bound is 

)(tan)1(tan 11 K
Kc

−− −≤−ϕϕ , where 
22 / RI MMK = . The mathematical proof is given in 

[33]. 

 

3.4 Re-implementation of IrisCode. 

To evaluate the performance of precise phase representation, we re-implemented IrisCode including pupil, 

limbus, and eyelid detection, eyelash segmentation, normalization, coding and matching for comparison. 
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Accurately re-implementing IrisCode is highly difficult since it is a complex computer vision system. 

Moreover, previously published work has not in every case clearly disclosed all details e.g. the 

computational details involved in eyelid detection. Further, since our re-implementation made use of the 

West Virginia University (WVU) iris database, which contains many challenging images, it was necessary 

to make a number of modifications in the preprocessing. Some examples are shown in Fig. 3. In the 

following we first describe iris segmentation, then normalization and filtering, and then matching. Our 

results are discussed in Section 3.5.   

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

   

Fig. 3 Iris images in WVU iris database 

 

 

3.4.1  Iris Segmentation 

In our re-implementation, we first estimate the location of the specular reflections and scrub them. To 

localize a pupil boundary, we then apply the integro-differential operator, 
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∫∂
∂

oo
oo yxr r

yxI
yxr ds

r
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,, 2
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),,( *)(max πσ  reported in Daugman’s publications. This boundary is used to 

initialize an active contour that can be used to accurately estimate the pupil boundary [3]. 

The original integro-differential operator for localizing a limbus boundary is separated to two 

integro-differential operators. One is for the left limbus boundary and the other is for the right limbus 

boundary. We also modify the integro-differential operator as follows:  

∫∂
∂

),,( )(
),(

),,( )(*)(max
oo

oo yxrS SL
yxI

yxr dssW
r

rGσ ,          (19) 

where, S is the left or right circular path controlled by r, x0 and y0, L(S) is the length of S and W(s) is a 

weighting function. The purpose of using two integro-differential operators is to handle the images 

captured under very uneven lighting environments (e.g. Fig. 3(c)). If the two boundaries have similar radii 

and centers, the center of mass of the two boundaries is regarded as the center of the limbus and the 

average distance between the center of mass and the two boundaries is regarded as the radius of the 

limbus; otherwise, we apply the integro-differential operator again on the weaker boundary and limit the 

searching space by the parameters of the stronger boundary. Then, an active contour is used to accurately 

estimate the limbus boundary [3]. 

   To detect potential points of eyelids, a set of classifiers is sent to different locations. The locations of 

the classifiers depend on the parameters of the limbus and pupil. Then, ordinal statistics is employed to 

retain partial detected points for curve fitting. Daugman does not, as is widely believed, use the 

integro-differential operator to detect eyelids, but the details of the algorithm have not been disclosed [26]. 

A statistical test and some pair knowledge are used to segment the eyelashes [4, 21]. Fig. 4 shows a 

segmented iris. 
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Fig. 4 A segmented iris 

 

3.4.2 Normalization and Filtering 

We use the dimensionless polar coordinate system to normalize an iris. Many researchers display the 

normalized iris as a rectangular sheet. Strictly speaking, the normalized iris is the surface of a cylinder 

and it has only two cuts from the pupil and limbus boundaries. The size of a normalized iris is 64 by 512 

pixels.  

We use sixteen Gabor filters with different parameters, determined by 300 different iris images to 

extract phase information. In parameter training, we have Gabor filters of two sizes, 8 by 105 and 24 by 

105 pixels. The smaller one is applied to the sample points close to pupil and limbus boundaries. The d’ 

index defined as 2/)(/' 22
igigd σσμμ +−= , where μg(i) and 2

)(igσ  are the mean and variance of a 

genuine (impostor) distribution, is employed as the objective function for training. This index measures 

the degree of separation between the two distributions in units of their standard deviations, and thus it is 
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analogous to Z-scores, Fisher scores, and other ways of measuring separation between distributions, 

which a biometric system aims to optimize. 

In the training, we first select one set of parameters for the Gabor filter closest to the pupil boundary. 

Then we retain the first optimized parameters and select another set of parameters for the same sample 

points. The other sets of parameters are selected in the same way. We independently optimize the 

parameters of precise phase representation with different orders.  

 

3.4.3 Matching 

A raw hamming distance (HDraw) is computed from Eq. 5. The number of effective bit matchings is 

different in each comparison because of eyelashes and eyelids. To obtain the same decision confidence, 

Daugman rescales the hamming distance with the following equation,  

960/)5.0(5.0 mHDHD rawnorm −−= ,       (20) 

where m is the number of actually compared bits and 960 is the average number of actually compared bits 

[3]. For precise phase presentation, normalized hamming distance is defined as 

))2/960/(()5.0(5.0 nmHDHD rawnorm −−= ,      (21) 

where n is the order of the coding scheme.  

 

3.5 Experimental Results 

5The WVU iris database contains 3,099 iris images from 472 irises. The first 300 images were used to 

train the parameters. The remainders were used in testing. In the following experiments, we will use the 

Equal Error Rate (EER) and Receiver Operating Characteristic (ROC) curves as performance indexes.  

Using the WVU database [32], Ross and Shah use geodesic active contours for segmentation and 

achieve an EER of 12.03% when matching left irises and an EER of 14.19% when matching right irises. 

They also examine Masek’s approach [19] and report EERs of 13.51% when matching left irises and  
                                                 
5 Some mislabeled images are corrected by the authors  
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13.07% when matching right irises. Furthermore, they implement integro-differential operators for 

comparison and report EERs of 35.0% when matching left irises and 33.4% when matching right irises. 

These approaches can achieve EERs in the range of 1.9% and 4.29% in the CASIA-1 iris database. These 

results show clearly that the WVU iris database contains large numbers of low quality iris images. 

 

3.5.1 Validation of Precise Phase Representation  

To validate the precise phase representation, we design the following experiment. When n=2, the 

performance of precise phase representation and IrisCode should be the same. Fig. 5 shows the ROC 

curves of IrisCode and precise phase representation with order 2. As the theoretical predication, the two 

curves overlap completely. The EER of matching left irises is 1.5% and the EER of matching right irises 

is 1.3%. Compared with the previously reported EERs on this database, the quality of our 

re-implementation should be acceptable.    

 

Fig. 5 Validation of precise phase representation 
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3.5.2 Comparison of IrisCode and Precise Phase Representation 

To examine the effectiveness of precise phase representation, we compare IrisCode and precise phase 

representation for n=3, 4, and 5. We match iris images from the same eyes and from different eyes to 

respectively obtain 9,224 genuine matchings and 3,906,518 impostor matchings for each representation. 

The genuine and impostor matchings are used to estimate the genuine and impostor distributions. From 

the ROC curves in Fig. 6 we can see that the precise phase representation of order 5 is always the most 

accurate with an EER of 1.1%. Comparing IrisCode and precise phase representation of order 5, precise 

phase representation of order 5 has 1.7% improvement in genuine acceptance rate when the false 

acceptance rate is 10-4.  

In our own previous work using the CASIA-1 database, we had found that the precise phase 

representation of order 5 does not perform better than the precise phase representation of order 4 [28]. On 

this database, however, increasing the precision of phase always improves the accuracy. This is because 

the parameters of Gabor filters in precise phase representation of different orders are optimized 

independently for the WVU database. Fig. 7 shows the ROC curves of matching left and right irises. 

It should be noted that the matching speed of precise phase representation is slower than IrisCode. 

The matching speed of precise phase representation of order n can be estimated by nTTn /2 2×= , 

where Tn is the matching speed (in the unit of number of matching per second) of the precise phase 

representation and T2 is the matching speed of IrisCode. IrisCode uses only two bits to represent one filter 

response while precise phase representation of order n requires n bits to represent one filter response. For 

some applications such as identifying a person in a residential building for access control, one million 

comparisons per second is much more than enough. We can use precise phase representation to achieve 

high accuracy for these applications. Although the WVU iris database contains many low quality iris 

images of the sort that may be acquired in less controlled environments (e.g. iris on the move) [29], 

precise phase representation is effective on these images. We cannot claim that precise phase 

representation is more accurate than IrisCode as these identification algorithms are intended for use on 
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databases of different sizes but we can say that precise phase representation does allow us to balance 

speed and accuracy. 

 

Fig. 6 ROC curves of IrisCode and precise phase representation for n=3, 4 and 5. 

 
(a) 

 
(b) 

 
Fig. 7 ROC curves of IrisCode and precise phase representation for n=3, 4 and 5. (a) Matching left irises 

and (b) matching right irises. 
 

4. Theoretical Foundation of Binomial Impostor Distribution 

In the previous sections, we used a number of properties of IrisCode to develop an algorithm for precise 

phase representation with effective filtering and rapid matching. However, we have not touched upon the 
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binomial impostor distribution in IrisCode which is used to predict the false acceptance rate under 

different thresholds and different matching condition such as the variation in the number of actually 

compared bits. The binomial impostor distribution of IrisCode has been experimentally validated on a 

large database [3].  

In practice, the impostor distribution of IrisCode is binomial. Since all of the feature values of 

similar coding methods including our precise phase representation designed for iris and palmprint [6-18, 

27] are binary and two feature codes are compared using a hamming distance, some might also expect 

that the impostor distributions of these coding methods would also follow a binomial distribution.  

 Let us review the three assumptions of a binomial distribution. A random variable X following a 

binomial distribution should satisfy the following conditions.  

1) X is defined as ∑
=

N

i
iT

1

, where Ti is a Bernoulli variable.  

2) All Ti has the same probabilities of success, p.   

3) All Ti are independent.  

We refer to (2) as a stationary condition and (3) as an independent condition. Obviously, the hamming 

distances of IrisCode and other coding methods satisfy condition (1). Daugman validated condition (2) in 

1993 [1]. However, all coding methods violate the independent condition because of correlations among 

texture features, and because of correlations introduced by the bandlimited filters. If the sum of 

correlated and stationary Bernoulli variables followed a binomial distribution unconditionally, the 

impostor distributions of all coding methods would have to be binomial. However, no such mathematical 

theorem has been discovered. Even if the correlation is of the first order Markovian type, the distribution 

of the sum of correlated stationary Bernoulli trails can be bimodal and trimodal shapes [22-23]. As a 

result, we cannot guarantee that the impostor distributions of the other coding methods and precise phase 

representation also follow binomial distributions.  
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5. The Relationship between IrisCode and Other Coding Methods.  

Many coding methods have been developed for iris and palmprint identification that are quite similar 

[6-18, 27]. The most common approach is to replace the Gabor filters in IrisCode with other linear 

transforms or filters. According to this analysis, IrisCode is a clustering with four prototypes. As it 

happens, most the other coding methods can also be regarded as clustering algorithms but with two 

prototypes. Let us formally define these approaches. Let F  be a linear filter used in their coding 

methods. Their coding schemes can be summarized in the following equations,  

∫ ∫ ≥=
ρ φ

φρ 01 dFIdifh ,         (22) 

∫ ∫ <=
ρ φ

φρ 00 dFIdifh ,         (23) 

where h is a resultant bit. We refer to this coding scheme as a standard coding scheme. To uncover the 

relationship between IrisCode and the standard coding scheme, we define a filter generating function 

F1)1( +− υ , where }1,0{∈ν . This filter generating function can generate only two filters, F and –F. 

Since these two filters have the same power, i.e., FF −= , the clustering criterion can be rewritten as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∫ ∫ +

ρ φ

φρdFIdj i

i

1)1(maxarg .        (24) 

If j=0, then we have ∫ ∫∫ ∫ >−
ρ φρ φ

φρφρ dFIddFId  and ∫ ∫>
ρ φ

φρdFId0 . If j=1, we have 

∫ ∫∫ ∫ −>
ρ φρ φ

φρφρ dFIddFId  and 0>∫ ∫
ρ φ

φρdFId . Using the first order coding scheme defined in Fig. 2 

to encode the winning index j, we obtain Eqs. 22 and 23.  

 In addition to the standard coding scheme, other coding methods based on Gabor filters and log 

Gabor filters employ the order 2 coding scheme in precise phase representation [12, 15]. The authors also 

develop a Competitive Code for palmprint identification [8]. Its filter generating function is the negative 

real part of a Gabor function. We assign different values to the orientation parameter so as to generate six 
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filters and use order 3 coding scheme to encode the winning indexes. We employ bitwise phase (angular 

[8]) distance to measure two different Competitive Codes.  

 The standard coding method, IrisCode, and Competitive Code respectively employ the order 1, 2 

and 3 coding schemes in precise phase representation. Their differences are in their filter generating 

functions. Most coding methods including standard coding method, IrisCode, Competitive Code and 

precise phase representation are under the same framework given in Fig. 8. The cores of this framework 

include filter generating function, clustering, coding scheme and bitwise phase matching. It is worth to 

mention that both loci of the filter generating functions of the standard coding method and IrisCode are 

always on two-dimensional planes. However, the locus of the filter generating function of Competitive 

Code is on a higher dimensional plane. 

 

Fig. 8 A common framework employed by most of the existing coding methods. 

 

6. Conclusion 

IrisCode first appeared sixteen years ago yet to our knowledge this is the first paper to provide a detailed 

analysis of this method. The analysis made here makes a number of contributions. It presents a complete 

analysis of IrisCode, demonstrating that IrisCode is a clustering algorithm and that the locus of a Gabor 

function is on a two dimensional ellipse with respect to the phase parameter. It also proves the equivalent 

relationship between the bitwise hamming distance and bitwise phase distance and shows that Gabor 

function can be considered as a phase-steerable filter. It then uses these properties and this relationship to 

develop a precise phase representation algorithm. This algorithm inherits the properties of IrisCode 
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including robustness against brightness and contrast variations and rapid matching based on bitwise 

operators and cyclic representation. Our experiments have shown that given the same quality of 

preprocessing precise phase representation is more accurate than IrisCode. Precise phase representation is 

a flexible representation for balancing the tradeoff between matching speed and identification accuracy. 

This paper has also discussed theoretical issues regarding the binomial impostor distribution of IrisCode 

and other coding methods. Finally, using the filter generating function and the coding scheme defined in 

this study, we have shown the relationships between IrisCode and other iris and palmprint recognition 

coding methods.     
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Appendixes  
 
A.  

The appendix shows that the coding method in [9] is based on the operators “≥” and “<” and 

hamming distance. 

Ma et al first apply a quadratic spline wavelet to decompose the one dimensional iris signals 

into several scales but only two scales are used in the their feature extraction process. They  

then record the locations, d, and types of all the local extremum points (minimum and maximum 

points) as features. To obtain stable feature points, they remove pairs of adjacent points having 

an amplitude difference smaller than a predetermined threshold. Since there are only two types of 

extremum points and since two adjacent points of a maximum point must be minimum points, 

just one pointer, pi, will suffice to denote all the type information in scale i. The pointer, pi, is set 

to 1 if the first extremum point is a minimum point; otherwise pi is set to –1. Finally, for each 

decomposed signal Si, the pointers and locations of feature points are stored as the following 

form 

},;,...,,;,...,...,{ 212121 ppdddddddf nmmmmii +++= .        (25) 

To exploit XOR operations for effective matching, as in IrisCode, the original features in each 

scale are transformed into a binary feature vector of a fixed length, L. Fig. 11 illustrates this 

process, which is called feature transform. If pj is –1, the first d1-1 components in the binary 

feature vector are set to 0; otherwise they are set to 1. Then, all the components in the binary 

feature vector corresponding to maximum and minimum points are set to 0 and 1, respectively. 

All the other components between di and di+1 are set to 0 if di corresponds to a maximum point; 
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otherwise, they are set to 1.  

 

Fig. 11 Illustration of Ma et al’s feature transform 

 

This coding scheme is more complicated than other coding schemes but is very similar to 

the standard coding scheme defined in Eqs. 22-23. To demonstrate the relationship between the 

coding scheme of Ma et al and other coding schemes, we apply a process to Si, the wavelet 

transformed signal, to obtain a signal vi for coding based on “≥” and “<”. Each extremum point 

in vi has a corresponding extremum point in Si with the same type, location and amplitude but the 

amplitude difference between each pair of adjacent extremum points in vi has to be larger than 

the predetermined threshold. A simple way to obtain vi is to interpolate the extremum points in 

Eq. 25. Since the maximum and minimum points in iv  correspond to the zero-crossings in 

dxdvi / , their coding scheme can be rewritten as follows. 

If ji xxdxdv =|/ >0, then Bj=1; 

otherwise Bj=0. 

Therefore, the Ma et al coding scheme can be rewritten based on the operators “≥” and “<” and 

can be considered as standard coding scheme. 
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B. 

Eq. 16 demonstrates that the locus of )(ϕ
→

Z  is an ellipse with respect to ϕ . In fact, the locus 

can be further constrained. Under suitable parameterization, it is a circle. Mathematically, 

0)(lim 22 =−
∞→ IRk

MM , where ωβ=k .  
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C.  

This appendix shows the equivalent relationship between the bitwise hamming distance and the 

phase distance in Eq. 17.  

Let two winning indexes be j-1, and j-1+k, where nkjj 21 <+≤≤ . Their phase distance 

is )2,min( knk − . Using the coding scheme given in Fig. 2, the winning indexes are represented 

by jth and j+kth column vectors of matrix A. We would like to prove 

).2,min(
1

,, knkaa
n

i
kjiji −=⊗∑

=
+  

Since all ai,j are either zero or one, ∑∑
=

+
=

+ −=⊗
n

i
kjiji

n

i
hjiji aaaa

1
,,

1
,,  

 

Case 1:  

If nj ≤  and nkj ≤+  

From the definition of A, we know kaa
n

i
kjiji =−∑

=
+

1
,,  

Case 2:  

If nj >  and nkj >+  

As in Case 1, we know kaa
n

i
kjiji =−∑

=
+

1
,,  

Case 3:  

If nj ≤  and nkj >+  and nk ≤  

Consider ai,j=1 and ai,j+k=1                  (26) 

From the definition of A, we have ji <≤1  and ninkj ≤≤−+  

Then, jinkj <≤−+           



 28

The number of i satisfying condition (26) is ))(,0max( nkjj −+− .           (27) 

Since nk ≤ , knnkjj −=−+− ))(,0max(  
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D.  

This appendix shows that when the locus of )(ϕ
→

Z  is a circle, 

1)(/)(maxarg ϕϕρφρϕρ
ρ φ

ϕ ∫ ∫ =ZIddIZ  or 2ϕ , where 
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have ( )RI CC1tan −=ϕ . Since IR CC )sin()cos( ϕϕ +  is a continuous periodic function, one of 

the ϕ i corresponds to a maximum and the other corresponds to a minimum  

Using the second order derivative, we can demonstrate that the ϕ i corresponding to the 

maximum satisfies the following inequalities. If 0)cos( ≠iϕ , 0)cos(/ <− iRC ϕ . If 0)cos( =iϕ , 

0)sin( <− Ii Cϕ . 


