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Abstract ⎯ As a result of the growing demand for accurate and reliable personal 

authentication, biometric recognition, a substitute for or complement to existing 

authentication technologies, has attracted considerable attention. It has recently been 

reported that, along with its variants, BioHashing, a new technique that combines 

biometric features and a tokenized (pseudo-) random number (TRN), has achieved 

perfect accuracy, having zero equal error rates (EER) for faces, fingerprints and 

palmprints. There are, however, anomalies in this approach. These are identified in this 

paper, in which we systematically analyze the details of the approach and conclude that 

the claim of having achieved a zero EER is based upon an impractical hidden 

assumption. We simulate the claimants’ experiments and find that it is not possible to 

achieve their reported performance without the hidden assumption and that, indeed, the 

results are worse than when using the biometric alone. 

 

Keywords: BioHashing, FaceHashing, PalmHashing, biometrics, verification, security, 

user identity, password. 

 

1. Introduction 

Accurate automatic personal authentication systems, which have been deployed in 
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many applications including access control, computer login and e-commerce for 

protecting our lives, physical properties and digital information, are essential for many 

security systems. There are two classical personal authentication approaches [1, 2]: 

token based approach, which relies on physical items such as smart cards, physical keys 

and passports and knowledge based approach which replies on private knowledge such 

as passwords. Both of these approaches have their limitations: it is possible for both 

“tokens” and “knowledge” to be forgotten, lost, stolen, or duplicated. Further, 

authorized users may share their “knowledge” and “tokens” with unauthorized users. 

These limitations do not apply to biometric means of authentication, which identify a 

person based on physiological characteristics, such as the iris, fingerprint, face or 

palmprint, and/or by behavioral characteristics, such as a person’s signature or gait [1]. 

Although biometric authentication has several inherent advantages over the classical 

approaches, all of biometric verification systems make two types of errors [2]: 1) 

misrecognizing measurements from two different persons to be from the same person, 

called false acceptance and 2) misrecognizing measurements from the same person to be 

from two different persons, called false rejection. The performance of a biometric 

system is commonly described by its false acceptance rate (FAR) and false rejection rate 

(FRR). These two measurements can be controlled by adjusting a threshold, but it is not 
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possible to exploit this threshold by simultaneously reducing FAR and FRR. FAR and 

FRR must be traded-off, as reducing FAR increases FRR and vice versa. Another 

important performance index of a biometric system is its equal error rate (EER) defined 

as at the point where FAR and FRR are equal. A perfect system in terms of accuracy 

would have EER of zero. Unfortunately, however, over thirty years’ investigation, a 

perfect biometric verification system has not been developed. Numerous biometric 

researchers thus continue to work in this area, looking for new biometrics, developing 

new feature representations and matching methods and combining the existing 

techniques [3-9]. 

Recently, a group of researchers proposed a new personal authentication approach 

called BioHashing [10] (and its variants [11-17]) that combines a tokenized (pseudo-) 

random number (TRN) and biometric features. The authors reported zero EERs for 

faces, fingerprints and palmprints and demonstrated that BioHashing does not rely on 

specific biometrics, advanced feature representations or complex classifiers. Even with 

Fisher discrimination analysis for face recognition, BioHashing can still achieve perfect 

accuracy [13]. The authors say [10] that “The BioHashing has significant functional 

advantages over solely biometrics i.e. zero equal error rate point and clean separation of 

the genuine and impostor populations, thereby allowing elimination of false accept rates 
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without suffering from increased occurrence of false reject rates”. In addition, they also 

mention [11] that “the proposed PalmHashing technique is able to produce zero equal 

error rate (EER) and yields clean separation of the genuine and impostor populations. 

Hence, the false acceptance rate (FAR) can be eliminated without suffering from the 

increased occurrence of the false rejection rate (FRR)”. In general, a result of zero EER 

is the ultimate goal but it is extremely hard to achieve if not impossible. Naturally, 

reports of such impressive results and claims of perfection aroused our interest and 

motivated this further study. 

This paper is organized as follows. Section 2 presents a general review of biometric 

verification systems. Section 3, highlights the details of the Biohashing approach. 

Section 4, provides a comprehensive analysis of this approach and Section 5 reports the 

results of our simulation tests. Section 6 offers our conclusions. 

 

2. An Overview of Biometric Verification System 

In this paper, we concentrate on biometric systems for verification tasks in which 

BioHashing and its variants are operated. Fig. 1 illustrates the operation flow of such 

biometric systems. To validate the user’s claimed identity, verification systems conduct 

one-to-one comparison using two pieces of information: a claimed identity and 
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biometric data. The input biometric data is compared with biometric templates 

associated with the claimed identity in a given database. Generally speaking, user 

identities can be inputted via various devices such as keypads and smart card readers 

and should be unique to each person, like a primary key in a database. It should be 

noted that user identities in such forms can be shared, lost, forgotten and duplicated, just 

like the keys/cards of token-based and the PINs/passwords of knowledge-based 

authentication systems. Nonetheless, because biometric authentication is also required, 

to pass through the verification system requires more than the mere possession of a 

valid user identity i.e. an impostor cannot gain access unless the input biometric data 

matches the template of the claimed identity. We have to emphasize here that the 

performance of a biometric verification system should not depend solely on user 

identity or its equivalent and therefore, many biometric systems accept obvious user 

identities such as personal names. 

A biometric verification system has five possible input combinations. For the sake 

of convenience, we use the notation {I, B} to represent the pair-wise information, a 

claimed user identity I and its associated biometric data B. A registered user X stores 

his/her user identity and biometric template, {IX, BXD}, in a database after enrollment. 

Suppose user X provides his/her user identity and biometric data, {IX, BXV} at the time of 
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verification. Even though BXD and BXV are from the same person, because of various 

noises, they are not identical. We also assume that an impostor Y, an unregistered person 

has an invalid user identity IY (which may have been obtained by, for example guessing) 

and biometric data BYV. 

 

Case 1 {IX, BXV} vs. {IX, BXD} 

User X inputs his/her user identity and biometric data {IX, BXV} to the system to 

compare {IX, BXD} in the database. The system would compare BXD and BXV and give a 

matching score. From this matching score, there are two possible responses: either 

“correct acceptance” or “false rejection”. 

Case 2 {IX, BYV} vs. {IX, BXD} 

Assume an impostor Y has the user identity of X and inputs X’s identity together 

with his/her biometric {IX, BYV} to the system. The input will then be compared with {IX, 

BXD} in the database. As Case 1, we have two possible responses, “false acceptance” 

and “correct rejection”. 

Case 3{IY, BYV} 

An impostor Y provides his/her user (invalid) identity and biometric data to the 

system. Since the user identity, IY, does not match any identity in the system, the system 
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simply rejects the user without error and will not attempt to match any biometric 

information. 

Case 4 {I~X, BXV} 

A registered user X inputs a wrong user identity I~X, i.e. not his/her valid user 

identity, IX. If I~X. is a valid user identity, the system would output its decision based on 

matching the biometric information and the threshold, {I~X, BXV} vs. {I~X, B~XD}, as in 

Case 2. If I~X. is an invalid user identity, the system would simply reject the user, as in 

Case 3. 

Case 5 {NULL, BXV} OR {NULL, BYV} 

No matter who operates the verification system, a registered user or an 

unregistered user, a user identity is required. A biometric verification system cannot 

operate without user identities, i.e. NULL. It would also be unreasonable to assign a 

temporary user identity to any user who did not provide a user identity at the time of 

verification. 

From these analyses, we conclude the following: Case 5 is invalid; and testing a 

verification system on Case 3 produces trivial rejection; and Case 4 can be resolved to 

be either Case 2 or Case 3 depending on the user identity provided. As it happens, to 

evaluate the performance of a verification system, all biometric researchers assume a 
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situation in which impostors have obtained a valid user identity. Performance evaluation 

for genuine distributions are estimated using the matching scores from Case 1, for 

impostor distributions, those from Case 2. 

If “knowledge” or “token” representing the user identity in verification would not be 

forgotten, lost or stolen, it made the introduction of biometric system less meaningful 

except for guarding against multiple users using the same identity through sharing or 

duplicating “knowledge” or “token”. If, further, “knowledge” or “token” would not be 

shared or duplicated, introducing biometrics became meaningless. 

 

3. BioHashing 

3.1 Summary of BioHashing 

Fig. 2 illustrates two major processes in BioHashing and its variants [10-17]: 

biometric feature extraction and discretization. The process of extraction, shown on the 

right hand side of the figure includes signal acquisition, preprocessing and feature 

extraction, just as general biometric verification systems. Different biometric signals 

exploit different techniques in the first process but the focus of our analysis is 

discretization, the secret of BioHashing, consisting of four steps. Here, we review the 

most-reported discretization method used in [10-12, 14-17], while another method has 



 9

been reported which differs by thresholding and selection of basis forming TRN [13]. 

Discretization is conducted in four steps. 

 

1) Employ the input token to generate a set of pseudo-random vectors, 

},.....,1|{ mir M
i =ℜ∈  based on a seed. 

2) Apply the Gram-Schmidt process to },.....,1|{ mir M
i =ℜ∈  and thus obtain TRN, 

a set of orthonormal vectors },.....,1|{ mip M
i =ℜ∈ . 

3) Calculate the dot product of v, the feature vector obtained from Step 1 and each 

orthnonormal vector in TRN, pi, such that ipv, . 

4) Use a threshold τ to obtain BioCode, b whose elements are defined as 

⎩
⎨
⎧

>
≤

=
τ
τ

i

i
i pvif

pvif
b

,1
,0
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where i is between 1 and m, the dimensionality of b. Two BioCodes are compared 

by hamming distance. 

 

3.2 Implementation of BioHashing 

In order to have a better understanding of BioHashing and its variants, we decided 

to re-implement one of the variants, FaceHashing [12-15], as a demonstration. We have 

taken face images as our input biometrics since face recognition is a well known hard 



 10

problem, which has attracted considerable attention over ten years. A publicly available 

face database, the AR face database[18] from Purdue University, and a well known 

feature extraction technique, Principal Component Analysis (PCA), also called 

Eigenface for face recognition [19-20] are chosen for this demonstration so that all the 

results reported in this paper are reproducible. We do not employ other effective face 

recognition algorithms and other accurate biometrics such as fingerprint for this 

demonstration so that readers can clearly observe the performance differences due to the 

unrealistic assumption. 

The AR face database contains over 4,000 color frontal still images obtained in 2 

sessions (with 14 days apart between the 2 sessions) from 126 subjects (70 men and 56 

women). In each session, 13 images were taken from each subject in an indoor 

environment; however, each of the 13 images is taken under various conditions: 

different facial expressions, illumination settings or occlusions (sunglasses and scarves). 

There were no limitations on the participant’s clothes, make-up, ornaments or hair styles. 

[19] 

The original AR database images are made up of raw, 768×576 colour images. We 

have converted these into 192×144 gray scale images. Since there is only one face per 

image and the face is roughly located at the center of the image, no face detection is 
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performed. The face subimages for feature extraction are 96×96 in size and were 

cropped from the central canvas of a gray scale face image. Since we are only doing a 

demonstration to facilitate our analysis and discussion, 50 subjects were randomly 

selected from the face database. Eight images of each subject were selected, four from 

each session. The facial expression in the four images from each session is neutral but 

the illuminations vary. Fig. 3 shows a set of sample images of a subject used in our 

demonstration; Figs. 3(a)-(d) are taken from the first session and Figs. 3(e)-(d) are taken 

from the second session. 

The four images from the first session were used to determine the principal 

components and were stored in the database as gallery images. The four images from 

the second session were then used as query images to match against gallery images. 

This is known as matching “duplicates” [19]. 

Although we demonstrate here only FaceHashing, it does not lose any generality to 

analyze BioHashing and its variants. In this test, we first selected two hundred Principal 

Components in order to generate BioCode with different dimensions for our analysis. 

Table 1 lists the dimensions of the BioCode and the corresponding thresholds (τ) 

according to the deduction of made in [11, 14]. Each subject has a unique TRN and the 

same TRN is used for different dimensions of the BioCode under consideration. 



 12

 

3.3 Experimental Results 

We simulated FaceHashing [12-15] with different dimensions of BioCode and their 

performances are reported in the form of Receiver Operating Characteristic (ROC) 

curves as a plot of the genuine acceptance rates (GAR) against the false acceptance rates 

(FAR) for all possible operating points in the first column of Fig. 4, i.e. (a), (c), (e), (g) 

and (i). It can be seen that as the BioCodes increase in dimensionality, the EERs 

gradually decrease to zero. Fig. 5 (a), (c), (e), (g) and (i) shows the corresponding 

genuine and imposter distributions. Here, as the BioCodes increase in dimensionality, 

the gap between the two distribution increases. The results of our demonstration are 

inline with the reported results. As in their reported results [10-17], it was possible to 

achieve zero EER when the dimensions of BioCode are large enough, for example, 100 

or above. 

 

4. Analysis of BioHashing 

4.1 The Condition of zero EER 

In Section 3, we demonstrated the “power” of FaceHashing, a variant of BioHashing, 

in achieving zero EER, as claimed in their published papers [10-17]. Obviously, the 



 13

high performance of BioHashing is resulted from the TRN, not from the biometric 

features. In our demonstration, we are able to obtain a zero EER by applying only a 

simple feature extraction approach, PCA, but in general, even with advanced classifiers, 

such as support vector machines, PCA is impossible to yield 100% accuracy along with 

zero EER. 

The outstanding performance reported in [10-17] is based on the use of TRN’s. In 

[10-14], the authors mentioned that a unique seed among different persons and 

applications is used to calculate the TRN such that 1) the seed and thus the TRN for 

each user used in enrollment and verification is the same; 2) different users (and 

applications) have different seeds and thus different TRNs. In other words, the seed and 

TRN are unique across users as well as applications. They also pointed out that the seed 

for calculating the TRN can be stored in a USB token or smart card. Comparing the 

properties of the seed in BioHashing (and its variants) and the user identity of a 

biometric verification system as described in Section 2, it is obvious that the seed, and 

thus the TRN can serve as a user identity. As the seed is stored in a physical media, 

TRN also suffers from the problems of “token”, e.g. they can be lost, stolen, shared and 

duplicated. 

The TRN has a central role in BioHashing and its variants and is requisite for 
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achieving zero EER. The authors assume that no impostor has the valid seed/TRN. That 

is, they assume that the “token” will not be lost, stolen, shared and duplicated. If their 

assumption is true, introducing any biometric becomes meaningless since the system 

can rely solely on the “tokens” without any risk. Undoubtedly, their assumption does 

not hold in general. In their experiments, they determine the genuine distribution using, 

in our notation, Case 1. However, they determine the impostor distribution using Case 3 

in which no biometric should be involved because of the mismatch of with the “pseudo 

user identity”, the seed/TRN. 

 

4.2 The True Performance of BioHashing 

To establish the true performance of BioHashing and its variants, we reran the 

demonstration again under the assumption that impostors have valid TRNs, just as the 

general practice of evaluating a biometric verification system. In our notation, Cases 1 

and 2 are for genuine and imposter distributions, respectively. Fig. 4 (b), (d), (f), (h) and 

(j) show the performance in the form of ROC curves for each dimension of BioCode 

tested in Section 3 and their corresponding genuine and imposter distributions are 

shown in Fig. 5 (b), (d), (f), (h) and (j). In contrast with the reports in [10-17], it is clear 

that the performance is far from perfect. For ease of comparison, Fig. 6 provides an 
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integrated plot of the ROC curves shown in Fig. 4. The solid line without any marker is 

the ROC curve when using PCA and Euclidean distance. The dashed lines with markers 

are the ROC curves when assuming no loss of user identity/token/smart card. The dotted 

lines with markers are the ROC curves when using the general assumption for 

evaluating a biometric verification system. It can be seen that the true performance of 

BioCode is even worse than that of using PCA and Euclidean distance since BioHashing 

uses a random projection, which does not serve for any objective function. 

 

5. Conclusion 

After reviewing the key concepts and components of a biometric verification system, 

we have revealed that the outstanding achievements of BioHashing and its variants, zero 

EER are under a hidden and unpractical assumption ⎯ that the TRN would never be 

lost, stolen, shared or duplicated that does not hold generally. We also point out that if 

this assumption held, there would be no need for biometrics to combine the TRN since 

the TRN could serve as a perfect password. To further support our argument, we used a 

public face database and PCA to simulate their experiments. It is possible to achieve a 

zero EER by using the combination of a TRN and a biometric under their assumption. 

Adopting an assumption generally used in the biometric community, our experimental 
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results show that the true performance of BioHashing is far from perfect. 
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Figures: 
 
Fig. 1 Operation flow of a biometric verification system 
 
Fig. 2 A schematic diagram of BioHashing 
 
Fig. 3 Sample face images used in our demonstration. (a)-(d) images are collected 

from 1st session and (e)-(h) images are collected from 2nd session. 
 
Fig. 4 ROC curves of various dimensions of BioCode. The dimensions of BioCodes 

are (a) and (b) 10, (c) and (d) 50, (e) and (f) 100, (g) and (h) 150 and (i) and (j) 
200. The ROC curves of (a), (c), (e), (g) and (i) are under the assumption that 
impostors do not have valid TRN. The ROC curves of (b), (d), (f), (h) and (j) 
are under the assumption that impostors have valid TRN. 

 
Fig. 5 The corresponding Genuine and Impostor distributions of Figs. 4. 
 
Fig. 6 Comparison of ROC curves of various dimensions of BioCode under different 

assumptions 
 

Tables: 
 
Table 1 Thresholds used for various dimensions of BioCode 
 



 21

 

 
Fig. 1 
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Fig. 2 
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(e) (f) (g) (h) 

Fig. 3 
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Fig. 6 
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Table 1 

 
BioCode dimension Threshold for BioCode (τ) 

10 0 
50 0 
100 0 
150 0 
200 0 

 
 


