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Abstract 
 

IrisCode, a widely deployed iris recognition 
algorithm, developed in 1993 and continuously 
modified by Daugman has attracted considerable 
attentions. IrisCode using a coarse phase 
representation has number of properties such as rapid 
matching, binomial imposter distribution and 
predictable false acceptance rate. Although many 
similar coding methods have been developed for irises 
and palmprints based on IrisCode, a theoretical 
analysis of IrisCode has not been provided. In this 
paper, we aim at studying (1) the nature of IrisCode, (2) 
the property of the phase of Gabor function, (3) the 
extension of bitwise hamming distance and (4) the 
theoretical foundation of the binomial imposter 
distribution and extending the coarse phase 
representation to a precise phase representation. 
Precisely, we demonstrate that IrisCode is a clustering 
algorithm with four prototypes; the locus of a Gabor 
function is a two-dimensional ellipse with respect to 
the phase parameter and bitwise hamming can be 
regarded as angular distance. Using these properties, 
we provide a precise phase representation for IrisCode 
with an effective implementation for filtering and 
matching. Practically, the imposter distribution of 
IrisCode follows binomial distribution. However, the 
theoretical evidence is incomplete according to our 
analysis.  

 
1. Introduction 
 
Many of the biometric systems that have been 
proposed and implemented for civil and commercial 
applications can verify, 1-to-1 match, or identify from 
a small database. Large databases still present a 
challenge in terms of accuracy and computational 
speed. Of existing biometric technologies, IrisCode, 
developed in 1993 and continuously improved by 
Daugman [1-2] is able to effectively identify a person 
in an extremely large database in real-time. This high 
level of has held considerable attention in the recent 
years. Following the key idea of IrisCode, various 
coding methods have been developed for iris and 

palmprint [3-4]. Many researchers believe that the 
cores of IrisCode are the operators, “≥” and “<” in 
coding equations and the bitwise hamming distance. 
Using these two operators, each feature value is 
encoded in one bit and two features are compared by 
bitwise hamming for rapid matching. However, this 
understanding of IrisCode is incomplete. According to 
our best knowledge, no one provides an analysis of 
IrisCode for understanding the inherent properties. In 
this paper, we aim at investigating (1) the nature of 
IrisCode, (2) the property of the phase of Gabor 
function, (3) the extension of bitwise hamming 
distance and (4) the theoretical foundation of the 
binomial imposter distribution. Using these properties, 
we present an algorithm for precise phase 
representation with an effective implementation. 

To compute an IrisCode, 2-D Gabor functions with 
zero DC are applied to an iris image in dimensionless 
polar coordinate system, I(ρ, φ). The responses are 
coded according to the following inequalities: 

,0),(Re1 )(/)(/)(
Re

0
2222

0 ≥









= ∫ ∫ −−−−−−

ρ

φθω

φ

βφθαρ φρρφρ ddeeeIifh ir o

,0),(Re0 )(/)(/)(
Re

0
2222

0 <









= ∫ ∫ −−−−−−

ρ

φθω

φ

βφθαρ φρρφρ ddeeeIifh ir o

,0),(Im1 )(/)(/)(
Im

2222
0 ≥










= ∫ ∫ −−−−−−

ρ

φθω

φ

βφθαρ φρρφρ ddeeeIifh oo ir

,0),(Im0 )(/)(/)(
Im

0
2222

0 <









= ∫ ∫ −−−−−−

ρ

φθω

φ

βφθαρ φρρφρ ddeeeIifh ir o

where r0, θ0, ω, α and β are the parameters of the 
Gabor functions [2]. In this coding scheme, two bits 
(hRe, hIm) represent a sample point. Since the elements 
of IrisCodes are zeros and ones, hamming distance can 
be used to compare two IrisCodes with an effective 
implementation using a bitwise operator XOR. 
Hamming distance (HD) of the first version of 
IrisCode is defined as ∑ =

⊗= 2028

1
2048/
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where Ai and Bi are the bits of two IrisCodes; ⊗ 
represents bitwise operator, XOR.  

IrisCode has number of properties: 1) It is robust to 
local brightness and contrast variations. 2) It is a 
realization of cyclic code: in rotating between any 



adjacent phase quadrants, only a single bit changes. 
Cyclic code provides extra robustness to the genuine 
distribution. 3) The imposter distribution can be 
modeled as a binomial distribution with high degrees-
of-freedom. This model provides a predictable false 
acceptance rate to control the decision threshold. 
Therefore, the false match rate of IrisCode is always 
zero. 4) Since the binomial imposter distribution has 
high degrees-of-freedom, the probability of hamming 
distance from two different irises being shorter than 
0.333 is extremely low about 1 in 16 million. Even 
though two iris images from the same iris is poor 
degree of match say 70% agreement, the decision 
confidence is still very high. 5) Using the bitwise 
hamming distance, IrisCode can perform 1 million 
comparisons per second.  

The rest of this paper is organized as follows. 
Section 2 demonstrates that IrisCode is a clustering 
algorithm. Section 3 presents the properties of the 
phase of Gabor function and an algorithm for precise 
phase representation. Section 4 discusses the 
theoretical base of the binomial imposter distribution. 
Section 5 offers some concluding remarks.  
 
2. IrisCode  a clustering algorithm 
 
A complete understanding of IrisCode is important for 
designing new coding methods and extending 
IrisCode. Let the real and imaginary parts of a Gabor 
function with zero DC be MR(ρ,φ) and MI(ρ,φ), 
respectively. Their definitions are given below: 
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where K is a constant to remove the DC of a Gabor 
funtion. For the sake of convenience, we use MR to 
represent MR(ρ,φ). For other symbols, we use the 
similar notations. We define a filter-generating 
function, 

IR MMZ )sin()cos()( ϕϕϕ +=                                      (3) 
where ϕ∈[0, 2π). It is a continuous periodic function 
with respect to the parameter, ϕ. By substituting 5π/4, 
7π/4, π/4, and 3π/4 to ϕ, we can obtain four filters,  

2/)()4/5(0 IR MMZZ −−== π ,                                  (4) 

2/)()4/7(1 IR MMZZ −== π ,                                  (5) 

2/)()4/(2 IR MMZZ +== π ,                                  (6) 

2/)()4/3(3 IR MMZZ +−== π ,                                  (7) 
These four filters are the cluster centers. We employ a 
clustering criterion defined as 

( )∫ ∫=
ρ φ

ρφρρ iii ZIddIZj /maxarg , where j is called 

the winning index. This criterion can be regarded as 

the cosine measure between Zi and ρI. Since 
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ρ φ

φρ 0ddMM RI
, from Eqs. 4-7, we know that the 

four filters have the same power, ∫ ∫ =
ρ φ

φρ CddZi
2 , 

where C is a constant. We can rewrite the clustering 
criterion as ( )∫ ∫=

ρ φ
φρρ ddIZj iimaxarg . To obtain a 

binary representation of the winning indexes, we 
encode the winning indexes according to the right part 
of Table 1. We use bitwise hamming distance to 
measure the difference between two encoded winning 
indexes as IrisCode. Comparing the binary 
representation of winning indexes and IrisCode in 
Table 1, we know that they are equivalent. In the other 
words, IrisCode is a clustering algorithm based on 
maximum cosine measure to assign an image patch to 
one of the prototypes, Zi.  
 
Table 1. Comparison of IrisCode, winning index and coded 

winning index 
IrisCode Coded winning 

indexes 
hIm hRe 

Winning index 

Bit 2 Bit 1 
0 0 0 0 0 
0 1 1 0 1 
1 1 2 1 1 
1 0 3 1 0 

 
3. Precise phase representation 
 
We have demonstrated that IrisCode is a clustering 
algorithm. To give more precise phase representation, 
we firstly need more prototypes, which can be obtained 
by taking more sample points from the filter-
generating function in Eq. 3. It should be noted that the 
filters generated by the filter-generating function have 
zero DC and the clustering criterion is independent of 
the contrast of the image. To embed the other inherent 
properties of IrisCode such as rapid matching, we need 
a novel coding scheme to encode the winning indexes 
and distance measure for matching.  
 
3.1. Properties of the filter-generating function 
 
Let the number of prototypes be 2N defined as 

)/( NiZ π , where i=0, 1, …, 2N-1 and N is called the 
order of coding scheme. To measure the difference 
between two winning indexes, we need to understand 
the physical meaning of ϕ and the property of Z(ϕ). 
One important property is that the locus of the filter-
generating function is on a two dimensional ellipse 
with respect to ϕ. We discretize MR, MI and Z(ϕ) to 
obtain three vectors, RM , 

IM  and )(ϕZ , respectively. 



We define two new vectors, 
RRR MMv /=  and 

III MMv /= . Since MR and MI are orthogonal, Rv  

and Iv  can be regarded as orthonormal bases of a two 
dimensional subspace. )(ϕZ  can be rewritten as 

IIRR vMvMZ )sin()cos()( ϕϕϕ += ,                         (8) 

a linear combination of Rv  and Iv . Obviously, )(ϕZ  is 
on the two dimensional space spanned by Rv  and Iv . 
Using these bases Rv  and Iv  to represent )(ϕZ , the 
coordinate of )(ϕZ  in this two dimensional space is 

))sin(),cos(( ϕϕ IR MM  fulfilling the following 
equality, 
( ) ( ) 1/)sin(/)cos( 2222 =+ IIRR MMMM ϕϕ .      (9) 

It means that the locus of )(ϕZ  is an ellipse with 
respect to ϕ.  

The physical meaning of ϕ is also important. 
Assuming that the patches of iris to be clustered have 
zero DC, we can ignore the term K in MR and rewrite 
Z(ϕ) as 
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It is clear that that ϕ  is the phase of Gabor function. In 
order words, winning indexes and IrisCode store the 
same information. 
 
3.2. Angular distance 
 
We demonstrate that )(ϕZ  is always on a two 
dimensional ellipse and ϕ is the phase. The distance 
between )(ωZ  and )(γZ  can be defined as 

)2,min( γωπγω −−− , the angular distance between 

ω and γ. If ω and γ are obtained by uniform sampling 
i.e, ω=2πp/2N and γ=2πq/2N where p and q are two 
integers between 0 and 2N-1, we can rewrite the 
angular distance as ( ))2(/,/min qpNNqpN −−− ππ . 

We define π/N as one unit distance. The angular 
distance can be rewritten as ( )( )qpNqp −−− 2,min . 
Therefore, the distance between two winning indexes, 
p and q, the integer presentation of the phase can also 
be defined as ( )( )qpNqp −−− 2,min . It should be 
noted that the angular distance between any two 
adjacent winning indexes is 1. Thus, the cyclic code 
property in IrisCode is embedded. 
 
3.3. Coding scheme and bitwise matching 
 
One important property of IrisCode is rapid matching 
supporting real-time large database identification. The 

bitwise hamming distance is the key. However, the 
winning indexes and the angular distance are not 
bitwise representation. To embed this property in the 
precise phase representation, we need a new coding 
scheme and bitwise angular distance. We provide a 
coding matrix A=[au,v], where 1≤u≤N; 1≤v≤2N and au,v 
defined in Fig. 1.  
 

vuandNvif <≤≤ 1 , then 1, =vua  

NuNvandNvifelse ≤≤−> , then 1, =vua  
else  0, =vua  

Figure 1. Pseudo code of the coding table. 
 

Table 2 gives a coding table when N=3. Winning index, 
j is represented by the j+1th column of the matrix A. 
Each winning index is represented by N bits. Using this 
coding scheme, we can prove the equivalent 
relationship between bitwise hamming distance and the 
angular distance. Mathematically, we can show 

∑ = + −=⊗N

u kvuvu kNkaa
1 ,, )2,min( , where 1≤v≤v+k≤2N. 

However, we do not have enough space to provide this 
proof.  
 

Table 2 The coding table for N=3 
Winning index 0 1 2 3 4 5 
Bit 0 0 1 1 1 0 0 
Bit 1 0 0 1 1 1 0 
Bit 2 0 0 0 1 1 1 
 
3.4. Effective filtering 
 
Considering IrisCode as a clustering algorithm helps us 
to develop the novel coding scheme and angular 
distance for precisely representing and rapidly 
matching the phase information. However, number of 
filtering increases with respect to the precision of the 
phase. If we use N bits to represent one winning index, 
we need 2N filters. The computation cost increases 
dramatically. Let us consider the clustering criterion 
again 
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ρ φ

πρφρπρ )/(/)/(maxarg NiZIddNiIZj
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, (11) 

where Iρ  is independent of i and )/( NiZ π  can be 
pre-computed. These two terms would not greatly 
increase the computation cost. The main problem 
comes from ∫ ∫ρ φ

φρπρ ddNiIZ )/( . Substituting Eq. 3 

into ∫ ∫ρ φ
φρπρ ddNiIZ )/( , we have 

∫ ∫ +
ρ φ

φρππρ ddMNiMNiI IR ))/sin()/(cos(  

IR CNiCNi )/sin()/cos( ππ += ,                               (12) 



where ∫ ∫=
ρ φ

φρρ ddIMC RR
 and ∫ ∫=

ρ φ
φρρ ddIMC II

. 

Therefore, no matter what precision of the phase, we 
need only two filters, RM  and IM . We have 
successfully reduced the number of filtering from 2N 
to 2.  
 
4. Discussion of binomial imposter 
distribution 
 
In the previous sections, we have analyzed IrisCode 
and developed an algorithm for precisely representing 
the phase. In this representation, the winning indexes 
are represented by zeros and ones and compared by 
their hamming distance, exactly same as IrisCode. A 
famous and important property of IrisCode is the 
binomial imposter distribution, which has been 
experimentally validated by large datasets. Some may 
expect that the imposter distributions of the precise 
phase representation and other coding methods [3-4] 
also follow binomial distribution. 

Let us firstly study the theoretical base of the 
binomial imposter distribution of IrisCode. A random 
variable X following a binomial distribution should 
satisfy:  
(1) X is defined as ∑ =

M

i iT
1

, where Ti is a Bernoulli 

variable;  
(2) all Ti has the same probability p for success and  
(3) all Ti are independent.  
We refer (2) as stationary condition and (3) as 
independent condition. Bitwise hamming distance used 
in IrisCode can be regarded as the sum of Bernoulli 
variables. Daugman verified the stationary condition in 
1993 [1]. However, IrisCode violates the independent 
condition since the texture features in the iris are 
inherently correlated. If the sum of correlated 
stationary Bernoulli trails would unconditionally 
follow binomial distribution, the imposter distribution 
of IrisCode had to be binomial. However, we do not 
have any mathematical evidence for it. Even if the 
correlation is the first order Markovian type, the 
distribution can be bimodal and trimodal shape [5]. 
Although the imposter distribution of IrisCode follows 
binomial distribution practically, theoretical evidence 
is not enough. Therefore, the imposter distributions of 
other coding methods and the precise phase 

representation are not guaranteed to be binomial. Some 
may interest why the imposter distribution of IrisCode 
practically follows binomial distribution. Under some 
conditions and making use of central limit theorem, 
sum of correlated Bernoulli trails can be approximated 
by normal distribution. Binomial distribution with high 
degrees-of-freedom can be approximated by normal 
distribution. It may be the theoretical base of the 
binomial imposter distribution of IrisCode. Interested 
readers can refer [6].  
 
5. Conclusion 
 
In this paper, we have provided a detailed analysis of 
IrisCode and made use of the properties for precise 
phase representation. In this paper, we demonstrate that 
IrisCode is a clustering algorithm; the locus of Gabor 
function is on a two dimensional ellipse with respect to 
the phase parameter and bitwise hamming distance is a 
special case of angular distance. Using these 
properties, we have presented an algorithm with 
effective filtering and rapid matching for precise phase 
representation. We have also discussed the theoretical 
foundation of the binomial distribution of IrisCode. In 
this paper, we concentrate only on the theoretical study 
because of the page limit. The experimental results of 
precise phase representation will be presented in a 
coming paper. 
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