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ABSTRACT 
 
An elementary function that is now commonly referred to as 
Gabor filter was derived from uncertainty relation for 
information by Gabor to overcome the representation limit 
of Fourier analysis. For image-based applications (e.g. 
biometric recognition), researchers amend the weights of 
Gabor filters to produce zero DC (direct current) Gabor 
filters. This amendment can significantly change the shape 
of Gabor filters, when they use a special range of 
parameters. The aim of this paper is to develop a new Gabor 
filtering scheme to overcome this problem. Two different 
types of zero DC Gabor filters are compared with the 
proposed scheme on face recognition. FERET database is 
employed in the experiments. The Gabor phase from the 
proposed filtering scheme gives improvement in the range 
between 11% and 8.5%, and the performance of its 
magnitude is comparable with other schemes.   
 
Index Terms— Filtering, Interpolation, Image processing 
 
 

1. INTRODUCTION 
 
To break the representation limit of Hitherto communication 
theory that describes signals either in time domain or 
Fourier domain, Gabor proposed a method of analyzing 
signals in which time and frequency information can be 
captured simultaneously. This method was especially 
designed for the signals having finite duration and whose 
frequencies very with time (e.g., sound) [1]. It is constituted 
by three fundamental components, uncertainty relation for 
information, elementary functions that are now generally 
referred to as Gabor functions, Gabor filters and Gabor 
wavelets, and an algorithm for computing decomposition 
coefficients. The uncertainty relation for information said 
that for any function, the product of its effective width in 
time domain and its effective width in frequency domain is 
limited by an infimum 2/1 [1]. Based on the uncertainty 
relation for information, Gabor discovered that an 
elementary function, 
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where σ controls the resolution of the analysis and µ and w 
are the positions of the function in time and frequency 
domains, respectively, reaches the theoretical limit. Given a 
signal f, Gabor attempted to decompose f in terms of the 

elementary functions (i.e., 
j

jj gcf ), where gjs are the 

elementary functions with different parameters and cjs are 
the corresponding coefficients [1]. This decomposition 
approach is called Gabor expansion. Since the elementary 
functions are not orthogonal, several algorithms were 
proposed to compute the Gabor expansion coefficients [2-3]. 
 Gabor was interested in Gabor expansion for one-
dimensional signals, whereas since 1980, the two-
dimensional (2D) versions of the elementary functions 
(called 2D Gabor filters) have been extensively used as 
convolution filters, which was motivated by the research 
results in biological vision systems. 2D Gabor filters have 
been regarded as an important tool for a variety of image 
processing and pattern recognition problems (e.g. biometric 
recognition). A 2D Gabor filter in spatial domain is defined 
as 
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where  sin)(cos)(' 00 yyxxx   and 

 cos)(sin)(' 00 yyxxy  [4]. There are seven 

degrees of freedom in 2D Gabor filters: ),( 00 yx  is the 

center of the filter in spatial domain, 2
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00 vu   is the 

spatial frequency, )/(tan 00

1 uv  is the relative orientation 

between the complex wave and the Gaussian function, a and 
b control the shape of the Gaussian function and   is the 
orientation of the Gaussian function. Fig. 1 shows a Gabor 
filter. Without loss of generality, in the rest of this paper, 

),( 00 yx  is set to (0, 0) and   is also set to 0. To eliminate 

the influence of the power of Gabor filter, a normalized 
Gabor filter, gggn /  is commonly used. Its spatial 

filtering outputs, phase and magnitude are    
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where I is a 2D signal; gnr and gni represent the real and 
imaginary parts of the Gabor filter gn. For convenience, gn is 
used to denote gn(x, y). The same notations are employed for 
other symbols. 

(a)  
(b) 

Fig. 1 (a) The real part and (b) the imaginary part of a Gabor filter 
  

 In many image-based applications, variation of DC 
components generally deteriorates systems performance. To 
deal with this problem, researchers commonly use zero DC 
Gabor filters. A zero DC Gabor filter [5] can be generated 
by   
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Fig. 2 shows two Gabor filters and the corresponding zero 
DC Gabor filters generated by Eq. 5. The first and second 
rows are the real and imaginary parts of the two original 
Gabor filters, respectively and the third row is the real parts 
of the zero DC Gabor filters. Fig. 2 does not include the 
imaginary parts of the zero DC Gabor filters because Eq. 5 
amends real parts only. This figure demonstrates that the 
shape of Gabor filters can be modified significantly by the 
redistributed filter weights, especially when the number of 
cycles of the complex wave in the Gaussian function is few.  

A recent paper [6] shows that under some conditions, 
the Gabor filter can be used to detect the corresponding 
Gabor atom, which is defined as      
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More precisely, the phase and magnitude defined in Eqs. 3-4 
are approximated AZ and  , respectively. Using the Gabor 

atom as a part of a target signal and Gabor expansion, a new 
Gabor filtering scheme is proposed in this paper to 
overcome the weakness of the current zero DC Gabor filters.   
 The rest of this paper is organized as follows. Section 
2 derives a new Gabor filtering scheme from a detection 
point of view. Section 3 evaluates the proposed Gabor 
filtering scheme on face recognition. Section 4 offers some 
concluding remarks.  
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Fig. 2 Comparison of Gabor filters and zero DC Gabor filters 
generated by Eq. 5. The first and second columns are two sets of 
Gabor filters. The first and second rows are the real and imaginary 
parts of Gabor filters. The third row is the real part of the 
corresponding zero DC Gabor filter. 

 
2. NEW GABOR FILTERING SCHEMES DERIVED 

FROM GABOR EXPANSION 
 
Originally, Gabor used the elementary functions for signal 

decomposition (i.e., 
j

jj gcf ) [1]. Each pair of cj and gj 

was referred to one quantum of information by Gabor. If gjs 
are given, cjs can be computed through optimizing 
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quanta of information depend on the parameters of Gabor 
filters, the number of Gabor filters, the signal and the 
objective function. The following subsections firstly show 
that the spatial filtering output of Gabor filters is in fact the 
coefficient, cj in a quantum of information derived from 
least squares objective function and then the proposed 
Gabor filtering scheme is derived from Gabor expansion.   
 
2.1. Assumptions and Notations 

For clear presentation, a set of notations and assumptions is 
essential. Gabor filters are functions in L2 space, i.e.,
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* , where * represents a complex 

conjugate and the signals considered in this paper are 
assumed to be real-valued functions in L2 space. Their 
norms and inner product are respectively defined as 
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product is in fact a continuous version of spatial filtering. 
Since I is a real-valued function in L2 space, 
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2.2. The Relationship between Gabor Expansion and 

Gabor Filtering 
 

Given a Gabor filter and a signal, the coefficient c0 in the 
quantum of information can be calculated from 

)minarg(
2

0 nc
cgIc  , where c is a complex number 

denoted as ir iccc  . We have  nrr gIc ,  and 

 nii gIc , . If 0c  represents the information in the 

form, iMec 0 , we obtain 22 ,,  ninr gIgIM  

and 



 

nr

ni

gI

gI

,

,
tan 1 . In other words, the coefficient in 

the quantum of information is equivalent to the filtering 
output. This equivalent relationship further implies that the 
current Gabor filtering scheme is a special case of Gabor 
expansion when a single filtering output is considered.  
 
2.3 A New Gabor Filtering Scheme  

Using the previous result, a new Gabor filter is designed 
based on Gabor expansion. It is noted that Gabor filters have 
representation power solely around their filter centers, while 
the least squares objective function in Section 2.2 neglects 
positions of errors. Furthermore, it does not handle the DC 
component in the signal explicitly. To respond to these two 
new considerations, a new Gabor filtering scheme is 
proposed in this subsection, especially for image-based 
applications. Its corresponding Gabor expansion is 

formulated as 

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Eq. 9 is an approximation of Eq. 8 because 0,  nin gGu . 

If the distance between the center of ng  and the boundary 

of the signal domain is longer than three standard deviations 
of the Gaussian function of ng , 0,  nin gGu . Computing 

partial derivatives of 
2
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Finally, the magnitude and phase of this Gabor filtering 
scheme are defined as 
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 The Gaussian function of gn is a natural choice for the 
weighting function G because it reflects the importance of 
the approximation errors at different locations. Fig. 3 
illustrates the usefulness of the weighting function. Fig. 3(a) 
is constituted by three signals, two Gaussian signals and one 
Gabor atom. )ˆRe( un dugc   is used to approximate the 

Gabor atom. Fig. 3(b) employs no weighting function, while 
Fig. 3(c) is the result of using the Gaussian function as the 
weighting function. Fig. 3(b) shows that the coefficient d is 
seriously influenced by the two Gaussian signals; as a result, 
it is not zero. The corresponding coefficient ĉ  is also 
affected because these two coefficients are connected. Fig. 
3(c) shows that the Gaussian weighting function effectively 
prevents the influence of the Gaussian signals. This figure 
clearly demonstrates the essentiality of the weighting 
function in the formulation. In the following section, the 
Gaussian function is employed as the weighting function 
and this filtering scheme is called G-Gabor filtering scheme 
(G-Gabor-FS). 

(a) (b) 

(c) 

 

 
Fig. 3 Illustration of the importance of the weighting function in 
Eq. 8. (a) The original signal, (b) and (c) the approximations of the 
Gabor atom in the original signal by Eq. 8 using constant and 
Gaussian weighting functions, respectively. 
 
 



3.  EXPERIMENTS 

In this section, we compare two types of zero DC Gabor 
filters with the proposed scheme. The first one is given in 
Eq. 5, and the second one is generated by redistributing the 
excess filter weights evenly [7]. The second approach in fact 
considers a Gabor filter as a finite digital filter. For the sake 
of convenience, the current filtering scheme using the first 
and second types of zero DC Gabor filters is respectively 
called N-Gabor-FS and L-Gabor-FS.  

To quantitatively compare the three filtering schemes, 
they are applied to face recognition, a challenging research 
problem in computer vision and pattern recognition. FERET 
database is employed in this evaluation [8-9]. Two hundred 
subjects are randomly selected from it and three images of 
each subject are chosen from sets fa, fb and dup1. Images 
from set fa are considered as galleries for FERET and the 
others are used as probes. The eye positions are manually 
located for alignment. The aligned images are cropped and 
normalized to 128 by 128 preprocessed images.  

The parameters of Gabor filters used in this study are 
00 u , b/a=2,  }6/5,3/2,2/,3/,6/,0{  p , 

,6/1 a  and 6/2 bfv qo  , where 

}5.4,5.3,5.2,5.1,5.0{qf . fq is the number of cycles of the 

complex wave within 6 standard deviations at 'y  direction. 

To extract stable features, the magnitude and phase 
generated by the Gabor filters having maximum magnitude 
are used for matching. In other words, we only use features 
generated from gpq if ),(),(

11)2(1)2(1 qppq gIMgIM  , where  

1pp   or 1qq  . Cosine measure, )),(),(cos( yxyx ts   , 

where ),( yxs  and ),( yxt  are two phases from two 

different images at the same position (x, y) is used for phase 
matching. If they are generated by two different Gabor 
filters, it is no reason to compare them. Thus, the cosine 
measure for comparing two images is defined as
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, where ),( yxms  

and ),( yxmt  are two magnitudes from two images at 

position (x, y) is used to compare two image magnitudes. 
Although the eye positions are manually located, they are 
still not perfect. One of the features is required to translate 
vertically and horizontally, and then matching is performed 
again. Both the ranges of the vertical and the horizontal 
translation are –3 to 3. The maximum similarity obtained by 
translated matching is regarded as the final similarity 
measure.  

Table 1 lists the accuracies and shows that G-Gabor-FS 
is always the best, except in case 1. This comparison points 
out that the recognition power of Gabor phase is seriously 
suppressed by the current Gabor filtering scheme for face 
recognition.   
 

Table 1 The experimental results for FERET database 

Case Probe Features L-Gabor-FS N-Gabor-FS G-Gabor-FS
1 Fb Magnitude 0.9100 0.8800 0.9050 
2 Phase 0.6900 0.6950 0.7850 
3 Dup1 Magnitude 0.600 0.6150 0.6150 
4 Phase 0.6050 0.6300 0.7150 

 
4. CONCLUSION 

This paper pinpoints that the scheme used to remove DC 
component in Gabor filters can significantly change their 
shape. To overcome this problem, a new Gabor filtering 
scheme is proposed. Comparing the current and proposed 
Gabor filtering schemes on face recognition, the phase of G-
Gabor-FS gives improvement in the range between 11% and 
8.5%, and the performance of its magnitude is comparable 
with other schemes.   
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