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Abstract
Ordinal regression aims to classify instances into
ordinal categories. As with other supervised learn-
ing problems, learning an effective deep ordinal
model from a small dataset is challenging. This
paper proposes a new approach which transforms
the ordinal regression problem to binary classifica-
tion problems and uses triplets with instances from
different categories to train deep neural networks
such that high-level features describing their ordi-
nal relationship can be extracted automatically. In
the testing phase, triplets are formed by a testing
instance and other instances with known ranks. A
decoder is designed to estimate the rank of the test-
ing instance based on the outputs of the network.
Because of the data argumentation by permutation,
deep learning can work for ordinal regression even
on small datasets. Experimental results on the his-
torical color image benchmark and MSRA image
search datasets demonstrate that the proposed al-
gorithm outperforms the traditional deep learning
approach and is comparable with other state-of-
the-art methods, which are highly based on prior
knowledge to design effective features.

1 Introduction
The ordinal regression is a supervised learning problem,
which aims at predicting the rank label of an input vector. The
natural order of the labels (e.g., 1,2,3) indicates the order of
the ranks. This problem is different from the multi-class clas-
sification problem as there is an ordinal relationship between
the categories. It is also different from the metric regression
problem because the target values to be predicted are discrete
and the distances between different categories are not defined.

From the problem setting, obviously, the most important
task of ordinal regression methods is to model the ordinal
relationship between the categories. Recently, a number of
machine learning approaches have been proposed for ordinal
regression. The main difference between these approaches is
the way to make use of the ordinal information. For exam-
ple, the max-margin based approaches [Shashua and Levin,
2002][Chu and Keerthi, 2007] predict contiguous bound-
aries to split the ordinal classes and the projection based ap-

proaches [Liu et al., 2011][Tian and Chen, 2015] map in-
stances to a new space preserving the ordinal relationship
between classes. However, few of existing works extract
and represent the ordinal relationship from instances directly.
Herbrich et al. (1999) [Herbrich et al., 1999] proposed to
explore the relationship between instances by using feature
pairs and the ordinal relationship is represented by whose
rank is greater in a pair. However, this pairwise representa-
tion cannot describe the ordinal relationship among instances
completely. For example, it cannot distinguish the difference
between pairs of instances from rank 1 and rank 2 and those
from rank 1 and rank 3. Another limitation of this method
[Herbrich et al., 1999] is that the feature pairs are constructed
highly based on prior knowledge. The strategy of the pair-
wise feature construction greatly influences the performance
of the method and thus it is task dependent.

Being able to automatically extract high-level features
from raw data, deep neural networks (DNNs), such as convo-
lutional neural networks (CNNs), have attracted great atten-
tion in these several years and performed very well on many
classification problems. However, instances are inputted in-
dividually into DNNs. To our best knowledge, there is no
any existing work employing DNNs to extract and repre-
sent high-level features describing relationship among data
instances for ordinal regression problems. Generally speak-
ing, to train a deep neural network, a large training dataset is
necessary. Using deep learning on small datasets is challeng-
ing, but many real-world ordinal regression problems are in
fact small data problems. For example, in computer-aided di-
agnostic problems, datasets of rare disease grading and tumor
staging are usually small as collecting data for these diseases
is difficult, expensive and invasive. Even for more common
diseases, the datasets are not large, because of privacy. In this
paper, representing instances relationship and small dataset
problems are two challenges that we are targeting.

This paper proposes to use triplets whose elements are
from different ranks as samples to explore the ordinal data
relationship. The intuition is simple: if a method can pre-
dict that the rank of an input x is greater than k − 1 and
smaller than k + 1, then the rank label of x will be k. There-
fore, the proposed approach transforms a m-rank ordinal re-
gression problem to m binary classification problems with
triplets as inputs. And the k-th classifier answers the ques-
tion: “Is the rank of x greater than k − 1 and smaller than



k + 1?” One of state-of-the-art ordinal regression methods
RED-SVM [Lin and Li, 2012] trained a binary classifier to
answer “Is the rank of x greater than k or not?” Compar-
ing with RED-SVM, the proposed question in this paper is
more precise so that it is straightforward to recover the rank
label from the answers. In the proposed approach, DNNs are
adopted to extract high-level features from the triplets, and for
each rank k, a separate DNN is trained for the corresponding
binary classification problem. Because the distance between
every two adjacent ranks can be different, separate DNNs are
used instead of one multi-class CNN. A significant benefit of
the proposed approach is data augmentation. If the size of a
training dataset is n, the number of triplets used for training
the CNNs will be O(n3). Therefore, the proposed approach
makes deep learning on small datasets possible.

The rest of this paper is organized as follows. Section 2 re-
views the literature of ordinal regression. Section 3 describes
the proposed deep ordinal regression framework. Section 4
reports the experimental results. Section 5 gives some con-
clusive remarks.

2 Related Work
Comprehensive reviews of ordinal regression can be found
in [McCullagh and Nelder, 1989], [O’Connell, 2006] and
[Gutierrez et al., 2016]. Gutierrez et al.’s survey [Gutierrez
et al., 2016] is the most recent one, which classifies ordinal
regression approaches into three categories: naı̈ve, binary de-
composition and threshold approaches. The naı̈ve approaches
adapt nominal classification or metric regression methods to
solve the ordinal regression problem. Binary decomposition
separates the ordinal target labels to binary ones, which are
then estimated by a single or multiple models [Herbrich et al.,
1999][Frank and Hall, 2001]. Threshold approaches assume
that there is a latent function mapping the instances to a real
line, and the categories of the instances are intervals on the
line. The natural order of interval boundaries on the real line
represents the ordinal relationship between categories [Chu
and Keerthi, 2007][Chu and Ghahramani, 2005].

However, from the data point of view, most of existing
approaches are pointwise. Their input spaces are the raw
feature spaces and they estimate weights or parameters for
instances inputted separately instead of pairs or lists of in-
stances. For example, SVOR [Chu and Keerthi, 2007], a
SVM based method, estimates the weight w for input vec-
tors x and boundaries b, and the decision criteria is that the
rank of x is k if and only if wTx ∈ [bk−1, bk], where bk is
the boundary separating rank k and rank k+ 1. A neural net-
work based approach [Cheng et al., 2008] employed a stan-
dard feedforward neural network with m outputs for the m-
rank ordinal regression problem. Also the network weights
w are estimated for input vectors x and the decision function
f(x) =

∑H
j=1 βjBj(x,wj), where H is the number of hid-

den nodes, wj is the input weight vector for the j-th hidden
node, Bj(x,wj) is a basis function, and βj is the j-th out-
put weight. A probabilistic method GPOR [Chu and Ghahra-
mani, 2005] uses Gaussian Process to estimate the parame-
ters θ for the conditional probability p(k|x,D, θ), where k is
a rank label and D is a training set. Then the rank of x is

predicted as k with the maximum conditional probability. In
all above pointwise methods, the parameters are learned from
individual data points, and therefore, the relationship between
instances is not explored explicitly. The method proposed by
Herbrich et al. (1999) [Herbrich et al., 1999] can be viewed
as a pairwise method. Input vectors are paired up first, for
example (xi, xj), and then their difference xi − xj as a fea-
ture vector is inputted into a standard SVM and the label is
sign(yi−yj), where yi is the rank of xi and sign(·) is a sign
function. However, to form the feature vector for a pair by
subtracting one element from another is ad-hoc. And sign(·)
operation is only able to indicate whose rank is greater, but
cannot show how far between the ranks of the two elements.
Furthermore, they rely on prior knowledge to design effective
features.

In the last decade, although deep learning has achieved
great success on classification, there are very few works to
adopt DNNs to ordinal regression problems. Niu et al. (2016)
[Niu et al., 2016] have recently adopted CNN for age estima-
tion and claimed that they are the first one to address ordinal
regression problems by using CNN. Their method is a point-
wise approach. The training instances are inputted to CNN
individually and the relationships between input instances are
not considered. And as traditional deep learning methods,
their method is more applicable for large scale datasets.

3 A Convolutional Neural Network for
Ordinal Regression

An ordinal regression problem with m ranks denoted by Y =
{1, 2, · · · ,m} is considered, where the natural order of the
numbers in Y indicates the order of the ranks. A training set
with labeled instances T = {(xi, yi)|xi ∈ X, yi ∈ Y } is
given, where X is the input space. The target is to predict the
rank yt ∈ Y of an input xt ∈ X . In the rest of this section, the
outline of the proposed approach will be provided first, and
then its key components, including a pre-trained CNN and a
decoding scheme will be presented.

3.1 The Proposed Approach
The proposed deep neural network for ordinal regression is
to predict rank label by answering the questions: “Is k − 1 <
yt < k + 1 true?” for all k ∈ Y . Obviously, if the answer
is “yes” for a certain k, then the predicted rank label yt will
be k. In the proposed approach, for each rank k in Y , a sepa-
rate binary classifier is trained to answer the above question.
Since convolutional neural networks are used in the current
implementation, the proposed method is named convolutional
neural network for ordinal regression (CNNOR). Algorithm
1 gives the pseudo code of the CNNOR. It consists of three
steps: pre-training (line 1), training (line 2-6) and decoding
(line 7-11). Given a training set T with labeled instances and
a testing point xt, the goal of CNNOR is to predict the rank
of xt being most likely between which two ranks. In other
words, CNNOR aims to predict whether a triplet (xi, xt, xj)
is consistent in order, where “consistent” means xi ∈ Xk−1,
xt ∈ Xk, and xj ∈ Xk+1. Therefore, Algorithm 1 starts
from training CNNreg which aims to make the ranks of xi and
xj in order first for all possible triplets (xi, xt, xj).



Algorithm 1 Pseudo code of CNNOR
Input: Training set T = {(xi, yi)|xi ∈ X, yi ∈ Y } where
X is an input space, Y = {1, 2, · · · ,m}, and a test point
xt ∈ X .
Output: yt, the predicted rank of xt.

1: Train CNNreg on T by minimizing Eq. 1.
2: Split T into m subsets X1, · · · , Xm with Xk =
{xi|(xi, yi) ∈ T, yi = k} for k = 1, · · · ,m.

3: for k = 1 to m do
4: Construct positive and negative triplet setsD+

k andD−k
using Eq. 2. (Denote Dk = D+

k ∪D
−
k )

5: Train CNNk on Dk with weights initialized from the
pre-trained CNNreg model.

6: end for
7: for k = 1 to m do
8: Construct d test triplets Dt

k by Eq. 3.
9: Input Dt

k to CNNk and assign pk = ck
d where ck is the

number of positive predictions for rank k.
10: end for
11: return yt = argmaxk(pk).

Let φ(x) denote the output of the network CNNreg which
is an one-dimensional real value, and x be an instance.
The objective of CNNreg is to learn a function φ(·) which
maps xi and xj to a real line such that φ(xi) < φ(xj) if
yi < yj . Hence, we construct the training set with lists
(x1i , x

2
i , · · · , xki , · · · , xmi ) as instances, where xki is from

rank k. The loss function is defined by Eq. 1,

n∑
i=1

m−1∑
k=1

max(0, g + w · φ(xki )− w · φ(xk+1
i )) (1)

where xki is from the k-th rank, m is the number of ranks
and n is the size of training set (i.e., the number of lists in
the training set), g is a hyperparameter which controls the
margin of mapped value between adjacent ranks. Eq. 1 is
named as Ordinal Loss, which calculates the total error of all
pairs of instances if their orders are incorrect or their margin
is smaller than g. Figure 1 illustrates the Ordinal Loss for
a 3-rank ordinal regression problem. The axis is the real line
which is the range of φ(·). The red circles are the set of points
mapped from instances of the rank 1, i.e., {φ(xi)|yi = 1}.
The green crosses are the mapped points from the rank 2,
and the blue stars are those from the rank 3. g in Eq. 1 is
the expected margin between two adjacent ranks as shown
in Figure 1. The Ordinal Loss only counts the errors from
pairs of adjacent ranks, e.g., e1, e2 and e3. But other er-
rors such as e4 are not considered explicitly, because if both
(φ(x1), φ(x2)) and (φ(x2), φ(x3))) are in order, it can be in-
ferred that (φ(x1), φ(x3))) are also in order. In other words,
when e2 is minimized, e4 is minimized implicitly.

Then, the next step of Algorithm 1 is to learn a separate
CNN for each rank to extract high level features describing
ordinal relationship. For each rank k, a new training set with
triplets as instances is derived. In line 2 of Algorithm 1, the
training set T is split into m subsets X1, · · · , Xm according

Figure 1: Illustration of Ordinal Loss for a 3-rank problem.

to the rank labels. All the instances in the subset Xk have
the same rank label which is k. The new training set Dk is
derived as Eq. 2:

Dk = D+
k ∪D

−
k

D+
k =
{((xp, xj),+1)|xp ∈ X1, xj ∈ X2} if k = 1
{((xi, xp),+1)|xi ∈ Xm−1, xp ∈ Xm} if k = m
{((xi, xp, xj),+1)|xi ∈ Xk−1, xp ∈ Xk,

xj ∈ Xk+1}
otherwise

D−k =

{((xp, xj),−1)|xp ∈ Xr, 1 < r 6 m,

xj ∈ X2}
if k = 1

{((xi, xp),−1)|xp ∈ Xr, 1 6 r < m,

xi ∈ Xm−1}
if k = m

{((xi, xp, xj),−1)|xi ∈ Xk−1, xj ∈ Xk+1,

xp ∈ Xr, r 6= k} otherwise

(2)
D+

k is a positive training set which includes triplets with three
elements from ranks k − 1, k and k + 1 and the negative
training set D−k includes the triplets whose middle elements
are from other ranks and the other two elements are from the
ranks k − 1 and k + 1. Because there is no previous rank
for rank 1, the training set is formed by pairs (xp, xj) where
xj ∈ X2. The classifier for rank 1 aims to decide whether the
rank of xi is smaller than xj . Similarly, the training samples
for rank m is the pairs (xi, xp) where xi ∈ Xm−1. Based
on the derived training set, CNNk is fine-tuned from the pre-
trained CNNreg in line 5 of Algorithm 1. Each CNNk has a
binary output, indicating whether the input is consistent in
order or not.

In the testing phase, as shown in line 7-11, given a testing
point xt, the test triplets are formed for each CNNk according
to Eq. 3.

Dt
k =

 {(xt, xj)|xj ∈ X2} if k = 1
{(xi, xt)|xi ∈ Xm−1} if k = m
{(xi, xt, xj)|xi ∈ Xk−1, xj ∈ Xk+1} otherwise

(3)
For each rank k, d pairs of xi and xj are randomly selected
fromXk−1 andXk+1 and they are constructed as triplets with
the testing point xt. The decision for the rank label of xt i.e,
yt is made by majority voting. Each classifier k predicts how
many triplets (ck) of the d inputs are consistent in order re-
spect to rank k, and the percentage ck

d indicates the probabil-
ity that xt belongs to rank k. Finally, the prediction of yt is
assigned to the rank k with maximum probability. It should
be pointed out that the proposed approach produces a set of



(a) The architecture of CNNreg (b) The architecture of CNNk

Figure 2: The architecture of CNNOR for a 5-rank problem.

testing instances for one testing point. Through reusing train-
ing data, it increases both training and testing data to over-
come the weaknesses of traditional deep learning for small
dataset problems. Increasing the size of the testing set is not
always an issue because of the advancement of hardware and
no real-time requirements in some applications e.g., health-
care.

3.2 The Architecture of CNNOR
For a m-rank ordinal regression problem, CNNOR includes
one CNNreg and m CNNs, each of which is a binary classifier
for one rank. Figure 2 shows the architecture of CNNreg for a
5-rank ordinal regression problem and the network CNNk for
the rank k. The input of CNNreg is a list (x1, · · · , xm) which
consists of m images for m-rank ordinal regression problem.
Each image xi in (x1, · · · , xm) is inputted into one of the
networks, and all the m networks share the same weights.
All the networks in CNNreg have one output neuron, and the
output value of the i-th network represents φ(xi). All the m
outputs are inputted to the Ordinal Loss layer to minimize the
loss function in Eq. 1. At each iterations of training, the error
of the loss layer is back propagated to all networks in CNNreg.

Once the well-trained CNNreg is obtained, its weights are
used to initialize the weights of the networks in CNNk. As
shown in Figure 2b, the input of CNNk is a triplet (xi, xk, xj),
which consists of three images. Each of the three images is
inputted to one of the networks denoted as Gi, Gk and Gj in
Figure 2b, and all the three networks share the same weights.
CNNk with k = 1 (k = m) in Figure 2b only has Gk and
Gj (Gi). The layers and the parameters of the networks in
CNNk are same as those in CNNreg except for the last fully-
connected layer. The last fully-connected layer of CNNreg
has only one output neuron, but it is removed in CNNk and
the features extracted from the previous fully-connected layer
are passed to the Diff layer as shown Figure 2b. Because
CNNk is trained to model the rank order of (xi, xk, xj) by
exploring the data relationship, the Diff layer is used to rep-
resent the ordinal information within triplets. Based on the
assumption that the distance between instances in the mapped
feature space indicates the distance between their ranks, the
Diff layer combines two parts of features ψ(xk) − ψ(xi)
and ψ(xj) − ψ(xk), where ψ(xi) is the feature vectors ex-
acted from the last fully-connected layers of Gi. It can be
concluded from the proposed architecture, although the aug-
mented dataset has n3 triplets, CNNOR is computational fea-
sible even for large datasets. As shown in Figure 2b, the

elements of a triplet are processed individually before the
Diff layer. For all (xi, xj , xk), only unique xi, xj and xk
are necessary to be computed. And Gi, Gk and Gj share
weights. Therefore, before the Diff layer, the computation
cost of CNNk is same as a standard CNN. The operation of
the Diff layer is a simple subtraction, which is not an issue
for a modern hardware even for huge data.

3.3 The Decoder based on Majority Voting
A simple decoder is designed to predict the rank label of a
testing point xt from the outputs of CNNk as shown in line
7-11 of Algorithm 1. Table 1 is the coding matrix of CN-
NOR for a 5-rank example. Each row is for one rank and
each column is for one CNNk. The elements in the matrix
represent the training targets for different CNNk and different
ranks. For example, the first column of Table 1 is labeled as
(xt, 2), which represents a testing triplet constructed as Eq.
3 for CNN1, and rank 1 is considered as a positive rank and
the rest are negative ranks. In the testing phase, d triplets for
each column are predicted and the rank with maximum posi-
tive predications is regarded as the rank label of xt.

Table 1: Coding matrix of CNNOR
(xt, 2) (1, xt, 3) (2, xt, 4) (3, xt, 5) (4, xt)

1 +1 -1 -1 -1 -1
2 -1 +1 -1 -1 -1
3 -1 -1 +1 -1 -1
4 -1 -1 -1 +1 -1
5 -1 -1 -1 -1 +1

4 Evaluation
The proposed CNNOR framework is evaluated on a histori-
cal color image dataset [Palermo et al., 2012] and an image
retrieval dataset MSRA-MM1.0 [Wang et al., 2009]. Two
metrics are used as performance indexes. The first one is
accuracy defined by acc = 1

|T |
∑

xt∈T [ŷt = yt], where T
is a testing set, |T | is its size, yt is the ground truth of xt,
ŷt is the predicted label for xt and [·] is the indicator func-
tion. The second one is mean absolute error (MAE) defined
by e = 1

|T |
∑

xt∈T |ŷt − yt|.

4.1 Results on the Historical Color Images Dataset
The historical color image dataset [Palermo et al., 2012] is a
benchmark dataset for algorithm evaluation, which includes



(a) 1930s (b) 1940s (c) 1950s

(d) 1960s (e) 1970s
Figure 3: Historical color image dating dataset.

(a) Very relevant

(b) Relevant

(c) Irrelevant
Figure 4: MSRA-MM1.0 dataset: cat subset.

Table 2: Baseline methods and experimental results.
Features Methods Accuracy (%) MAE
Hand-crafted Classification Palermo et al.’s method [Palermo et al., 2012] 44.92 0.93

Ordinal regression Martin et al.’s method [Martin et al., 2014] 42.76 0.87
RED-SVM [Lin and Li, 2012] 35.92 0.96

Deep learning Classification CNNm 41.07 1.06
Ordinal regression Niu et al.’s method [Niu et al., 2016] 38.65 0.95

CNNOR 41.56 1.04

Table 3: Accuracy performance of CNNm
#Iterations 2500 5000 7500 10000 12500 15000
Accuracy(%) 38.77 39.26 40.33 41.07 40.22 41.07

Table 4: Accuracy performance of Niu et al.’s method
#Iterations 7500 10000 12500 15000 17500 20000
Accuracy(%) 34.17 36.41 37.29 38.30 38.59 38.65

historical color images photographed in different decades. As
shown in Figure 3, the dataset consists of five ordinal cat-
egories corresponding to five decades from 1930s to 1970s.
Each category has 265 color images downloaded from Flickr
and non-photographic content was removed manually. For
fair comparison, the same experimental setting as [Palermo
et al., 2012] is taken in this study. In each category, 215 im-
ages are selected for training and the rest 50 images are for
testing. The same training and testing image partitions pub-
lished by Palermo et al. (http://graphics.cs.cmu.
edu/projects/historicalColor/) are used.

Two categories of baselines are used for comparison: hand-
crafted feature based methods and deep learning methods.
For each category, state-of-the-art multi-class classification
methods and ordinal regression methods are evaluated as
shown in Table 2. Palermo et al. [Palermo et al., 2012]
designed six categories of features for this task: color co-
occurrence histogram (3072 features), conditional probabil-
ity of saturation given hue (512 features), hue histogram (128
features), gist descriptor (600 features), tiny image (3072 fea-
tures), and L*a*b* color histogram (784 features), which are
8168 dimensions in total. For fair comparison, all hand-
crafted feature based methods in Table 2 are tested on these
same features. Palermo et al. [Palermo et al., 2012] focused
on feature design for this specific task, and based on that they
tackle the task as a multi-class classification problem by us-
ing a linear multi-class SVM as the classifier. Martin et al.
[Martin et al., 2014] improved the ordinal regression method
for this particular task and got better MAE result. RED-SVM
[Lin and Li, 2012] is a state-of-the-art general ordinal regres-

sion method but performs worse than Palermo et al. [Palermo
et al., 2012] and Martin et al. [Martin et al., 2014] on this
dataset.

The deep multi-class classification method (CNNm in Ta-
ble 2) and the deep ordinal regression method (Niu et al.’s
method in Table 2) based on CNN are implemented for com-
parison. The layers, parameters and organizations of the net-
works in CNNOR (i.e, G1-G5,Gi,Gj and Gk in Figure 2)
are implemented exactly same as that in CNNm and Niu et
al.’s method, except for the number of output neurons and
the loss layer. Alex’s architecture [Krizhevsky et al., 2012]
is employed in all the comparison methods. The image size
of the historical dataset is equal or greater than 315 × 315
pixels, and we crop the images to 227 × 227 pixels for in-
puting to Alex’s architecture. For each training/testing image
partition, the last 5 images in the training set are used as the
validation images, i.e., 210 images for training, 5 images for
validation, and 50 images for testing in each rank. Thus, the
total sizes of training, validation and testing sets for CNNm
and Niu et al.’s method are 1050, 25 and 250 images. For
CNNreg of CNNOR, all the possible permutations of the im-
ages in the five ranks produce 2105 training instances (i.e.,
the list (x1i , x

2
i , · · · , xki , · · · , xmi ) in Eq. 1). In the experi-

ments, 40960 instances are randomly selected from them to
train CNNreg and 40960 training triplets and 2100 validation
triplets with equal numbers of positive and negative triplets
are randomly selected to train CNNk. In the testing phase, 30
triplets for each CNNk are used to infer the label. The mini-
batch size is set to 64 in all the experiments. The learning rate
for CNNm, Niu et al.’s method and CNNreg are 0.01, and the

http://graphics.cs.cmu.edu/projects/historicalColor/
http://graphics.cs.cmu.edu/projects/historicalColor/


Table 6: Accuracy (%) result on MSRA-MM1.0 dataset.
Baby Beach Cat Rose Tiger

CNNm 48.00 50.67 47.56 55.11 53.33
Niu et al. 47.33 51.11 48.44 55.78 51.78
CNNOR 51.56 56.45 52.67 59.78 60.00

Table 7: MAE result on MSRA-MM1.0 dataset.
Baby Beach Cat Rose Tiger

CNNm 0.667 0.598 0.676 0.522 0.571
Niu et al. 0.647 0.576 0.620 0.500 0.562
CNNOR 0.640 0.551 0.627 0.513 0.523

learning rate for fine-tuning CNNk from CNNreg is 0.001. In
the training phase, it is observed that the accuracies on valida-
tion sets of both CNNm and Niu et al.’s method are fluctuated
dramatically because the validation sets are too small to re-
liably estimate the performance on the testing set. However,
for CNNOR, the size of validation set is 33 mini-batches, and
therefore, we can use the early stopping strategy to stop train-
ing when accuracy converges on the validation set. This is
a benefit from the proposed method for small datasets for
training and validation. In the experiments, the numbers of
training iterations for CNNm and Niu et al.’s method need
to be predefined. Table 3 and Table 4 show the test accura-
cies of CNNm and Niu et al.’s method on different numbers
of iterations. After 7500 iterations for CNNm and 12500 it-
erations for Niu et al.’s method the losses on both training
sets are smaller than 0.01. In Table 2, we choose the best
accuracy from Table 3 and Table 4 for comparison. For CN-
NOR, the number of iterations to train CNNreg is 2500, and
to train CNNk is 2111, which is the average value on all 20
training/testing partitions. It shows that CNNOR outperforms
the other two deep learning methods in terms of accuracy.
Though Niu et al.’s method performs better than CNNOR in
terms of MAE, its accuracy is significantly lower. It should
be emphasized that the CNNm and Niu et al.’s results in Ta-
ble 2 are the best results selected from Tables 3 and 4, where
predefined iterations are used because the small validation
sets cannot reliably estimate the testing accuracy. Compar-
ing with the methods based on the hand-crafted features, CN-
NOR performs 5.64% better than RED-SVM in terms of ac-
curacy and its performance is also comparable with the other
two methods. Note that RED-SVM is an ordinal regression
method for general ordinal regression problems but Palermo
et al. and Martin et al.s methods, which are highly based on
prior knowledge to design the classifiers and the features, are
tailed-made for this dataset.

4.2 Results on the Image Retrieval Dataset
Microsoft Research Asia Multimedia 1.0 (MSRA-MM 1.0)
dataset [Wang et al., 2009] is a benchmark dataset to evalu-
ate multimedia information retrieval algorithms and includes
an image subset and a video subset. In the image dataset,
68 representative queries are selected based on the query log

Table 5: Class distribution on MSRA-MM1.0 dataset
#Images Rank 1 Rank 2 Rank 3 Total

Baby 379 295 277 951
Beach 336 398 213 947

Cat 243 344 378 965
Rose 222 418 329 969
Tiger 277 408 335 1020

of Microsoft Live Search and then about 1000 images for
each query are collected from the image search engine of Mi-
crosoft Live Search. The relevance annotations of the im-
ages are provided. For each image, its relevance to the cor-
responding query is labeled with three levels: very relevant,
relevant and irrelevant. These three levels are indicated by
rank 2, 1 and 0, respectively. Figure 4 shows an example of
the “cat” query, where the first row lists images labeled as
“very relevant”, the second row shows some images labeled
as “relevant”, and the last row is “irrelevant” images. Given
a testing image in a query set, predicting its relevance to the
query is an ordinal regression problem. Hence, five subsets
of MSRA-MM 1.0 image dataset which are “cat”, “baby”,
“beach”, “rose” and “tiger” are used to evaluate the perfor-
mance of algorithms. The number of images in each rank
of the five subsets is shown in Table 5. The total number
of images in each subset is less than 1100 which is also a
small dataset. The experiments on MSRA-MM 1.0 evaluate
the CNNOR on data with different properties, including the
different number of ranks, non-equal number of images in
each rank and smaller image size.

The images in MSRA-MM 1.0 are thumbnails (i.e., the
small images displayed on Microsoft Live Search) which are
cropped to 3-channel 60× 60 pixels in the experiments. The
LeNet architecture [LeCun et al., 1998] is employed in all the
comparison methods: CNNm, Niu et al.’s method and CN-
NOR. The setting of mini-batch and learning rate are same as
those in Section 4.1. Tables 6 and 7 summarize the results,
which are the mean values on three random training/testing
partitions. For accuracy, CNNOR performs 5.16% higher
than CNN and 5.20% than Niu et al.’s methods averagely on
the five subsets. For MAE, CNNOR achieves better results
on three of the five subsets. Because there are not handcrafted
features for MSRA-MM 1.0 dataset published in literature, to
evaluate non-deep methods, the best baseline method in Table
2 using the 8868 features proposed for the historical dataset
is tested. The accuracy on “cat” subset is 37.11%, which is
15.56% lower than CNNOR. The results indicate that CN-
NOR performs better than the two deep learning based multi-
class classification method and ordinal regression method.

5 Conclusions
In this paper, a new ordinal regression algorithm is proposed
for small data problems. CNNs are adapted to automatically
extract high-level features to describe the ordinal relationship.
To increase training data, this paper proposes a new network
organization with triplets as instances and employs a new ob-
jective to pre-train the networks. Thus, deep learning can be
applied more effectively on small dataset problems. The ex-
perimental results show that the proposed algorithm is com-
parable with the state-of-the-art methods.
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