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Abstract  With recent advances in multimedia technology, the involvement of digital images/videos 

in crimes has been increasing significantly. Identification of individuals in these images/videos can be 

challenging. For example, in cases of child sexual abuse, child pornography, and masked gunmen, the 

faces of criminals or victims are often hidden or covered and only some body parts (e.g., back, thigh, 

and arm) can be observed from the digital evidence. Although tattoos and scars can be used for 

identification in some cases, they are neither universal nor unique. We propose a group of skin marks 

named Relatively Permanent Pigmented or Vascular Skin Marks (RPPVSM) as a biometric trait for 

forensic identification. To support the scientific underpinnings of using RPPVSM patterns as a novel 

biometric trait, the individuality was studied. RPPVSM on the backs of 269 male subjects were 

examined. We found that RPPVSM in middle to low density patterns tend to form an independent and 

uniform distribution, while RPPVSM in high density patterns tend to form clusters. We present in this 

paper an individuality model for the independently and uniformly distributed RPPVSM patterns. 

When compared to the empirical results, this model fits the empirical distribution very well. Finally, 

the predicted error rates for verification and identification are reported. 

 

Index Terms   Skin marks, forensics, individuality, probability of random correspondence, 

statistics, predicted error rates 
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I. INTRODUCTION 

With recent advances in internet and multimedia technology, the involvement of digital images or 

videos in crimes has been increasing significantly. In cases of child sexual abuse, child pornography, 

masked gunmen, and violent protesters (e.g., the London [1] and the Rome [2] riots in 2011), 

evidence for identifying criminals or victims are often in the form of digital images or videos. 

Identifying individuals from this digital evidence can be very challenging because the criminals are 

usually careful to hide or cover their faces. According to Bureau of Justice Statistics report in 2006, 

the prosecution rate of child sex exploitation offenders was very low, largely due to inadmissible or 

weak evidence [3]. Child sex exploitation has become a very serious problem worldwide. The U.S. 

Customs Service estimated that around 100,000 websites were involved with child pornography [4]. 

In Canada alone, about 30,000 cases of child pornography were reported between 2002 and 2008 [5]. 

Although in the evidence images/videos of the above cases the faces of the criminals or victims 

are often not visible, other body parts can be visible. In child sexual exploitation offenses (e.g., child 

pornography), close-up views of the back, chest, or thighs are often present. The arms of masked 

gunmen or violent protesters are often visible since they often wear short sleeve shirts. Although 

tattoos and scars [6]-[8] can be used for identification in these cases, they are not universal. Underage 

children or adults in certain professions (e.g., school teachers and law enforcement officers) usually 

do not have tattoos. In addition, tattoos are forbidden by certain religions. Tattoos are also not unique 

since the same tattoo pattern can be found in many people as in the case of gang tattoos (e.g., Harley-

Davidson gang tattoo). As a solution to this matter, body vein patterns were recently introduced as a 

biometric trait [9]. Body vein patterns are universal since everybody has blood vessels. However, the 

visibility depends on some physiological factors such as the thickness of subcutaneous fat layer in the 

skin and pigmentation level. Since skin marks are located at the surface of the skin, they are more 

easily observable than the blood vessels. Thus, they have more potential to be applied in the above 

scenarios.  

Skin marks are used as additional means of distinctiveness in face recognition or as an alternative 

identification feature when face recognition fails [10]-[15]. In contrast to that, we propose in this 

paper relatively permanent pigmented or vascular skin marks (RPPVSM), which are applicable not 
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only on the face, but almost any part of human body. This concept originated during a criminal 

prosecution in the U.S. [16] where two co-authors (Kong and Craft) served as expert witnesses. In this 

case, a criminal sexually offended seven minors. Craft, who is a board-certified dermatologist, 

manually identified the RPPVSM in the evidence photos and on the skin of the suspect in custody and 

presented the results of his visual examination and comparisons to the jury during the trial. However, 

some aspects of the methods were challenged due to lack of previous scientific study on this subject 

[17]. One challenge that arose during the Daubert hearing preceding the trial was about the 

individuality or uniqueness of RPPVSM patterns. This paper investigates some of the concerns raised 

during this legal process. 

The contributions of this paper include: 1) analyzing spatial distribution statistics of RPPVSM, 2) 

developing an individuality model for independently and uniformly distributed RPPVSM patterns, 3) 

developing a RPPVSM matching algorithm, 4) empirically validating the model, and 5) estimating 

potential error rates for verification and identification. We collected images from 269 subjects for this 

study. Our previous study [18] reported general statistics and spatial distribution statistics of 

RPPVSM in a small database containing images from 144 subjects. It did not provide any statistical 

model, matching algorithm, and result for individuality study, which are the foci of this paper.  

The remainder of this paper is organized as follows: in section II, different types of RPPVSM are 

presented and their medical properties are given. In section III, spatial distribution statistics of 

RPPVSM are reported. In section IV, an individuality model for independently and uniformly 

distributed RPPVSM patterns is proposed. In section V, a RPPVSM matching method is presented. In 

section VI, experimental results are reported. In section VII, the predicted error rates for verification 

and identification are offered. In section VIII, discussion and future work are presented. Finally, in 

section IX, conclusion is given. 

II. RELATIVELY PERMANENT PIGMENTED OR VASCULAR SKIN MARKS (RPPVSM) 

Several types of skin marks were investigated in this study. Some skin marks change rapidly 

while some others tend to be stable. Skin marks caused by inflammatory conditions (e.g., eczema and 

psoriasis), skin trauma, skin allergy, or insect bites have a transient nature while skin marks like nevi, 
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lentigines (lentigos), cherry hemangiomas, and seborrheic keratoses (see Fig. 1) are stable over time 

(six months or longer). These four types of skin marks are also common. 98.90% of the subjects in 

our study have at least one of them on their backs. Since these skin marks occur as a result of 

increased pigmentation (e.g., nevi and lentigos) or vascular proliferation (e.g., cherry hemangiomas), 

we named this class of marks “Relatively Permanent Pigmented or Vascular Skin Marks”, abbreviated 

as RPPVSM. The term “relatively permanent” is used because in some rare cases (e.g., halo nevi) 

some skin marks can appear or disappear over a period of many years [19]-[20].  

    
(a) (b) (c) (d) 

Fig. 1.  Clinical appearance of different types of RPPVSM: (a) nevi, (b) lentigines, (c) cherry 

hemangiomas, and (d) seborrheic keratoses. 

 

Nevi (melanocytic nevi), commonly known as moles, are sharply-circumscribed and chronic 

lesions of the skin. They are typically oval or round in shape and their color ranges from skin-colored 

or brown to black. Nevi occur when melanocytes, which are pigment-producing cells that color the 

skin, hair, and eye, do not uniformly spread throughout the skin but instead grow in clusters. Most 

melanocytic nevi are acquired although some are congenital. The acquired melanocytic nevi develop 

during childhood and adolescence and become stable in middle age [21]. The number of nevi in a 

person depends on genetic factors and sun exposure [22]. 

Lentigines are flat pigmented spots on the skin. They can be irregular in shape and their color 

ranges from skin-colored to tan to brown to black. Lentigines occur as a result of hyperplasia of 

melanocytes (i.e., an increase in the number of melanocytes) which is linear in its spread [23]. This 

means that the process is restricted to the cell layer directly above the basement membrane of the 

epidermis where melanocytes normally reside. This makes lentigines different from nevi as lentigines 

do not form nests of multi-layered or clustered melanocytes found in nevi. Sometimes lentigines are 

mistaken as freckles (ephelides). Different from lentigines, freckles have relatively normal number of 

melanocytes, but an increased amount of melanin. Freckles were not included in RPPVSM because 
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they intensify and fade with sunlight exposure whereas lentigines are stable regardless of the amount 

of sunlight exposure [23]. 

Cherry hemangiomas or cherry angiomas are bright red papules on the skin containing an 

abnormal proliferation of blood vessels. They are the most common type of angiomas, which are 

benign cell growths derived from cells of the vascular or lymphatic vessel walls (epithelium) or from 

cells of the tissues surrounding these vessels. They occur as clusters of tiny capillaries at the surface 

of the skin, forming small round domes (papules) that are bright red or purple in color. Once the 

lesions appear, they are relatively permanent and stable over months to years. Cherry hemangiomas 

are generally associated with aging since many people develop them in the third or fourth decades of 

their life [24].  

Seborrheic keratoses are formed due to proliferations of keratinocytes, the predominant cell type 

in the epidermis. They can be recognized from their oval, slightly raised and ‘stuck-on’ appearance. 

Their development is also associated with aging since the frequency appears to increase with age. 

Seborrheic keratoses tend to be permanent with a varying degree of pigmentation. In pigmented 

seborrheic keratoses, the lesions also contain proliferations of melanocytes since the proliferating 

keratinocytes trigger the activation of neighboring melanocytes [24].  

III. SPATIAL DISTRIBUTION STATISTICS OF RPPVSM 

RPPVSM on skin can be treated as a point pattern, which is similar to the minutiae on a 

fingerprint. Therefore, our study refers to the existing fingerprint studies. Fingerprint studies show 

that: 1) minutiae tend to over disperse when observed on a small scale, but tend to form clusters when 

observed on a large scale [25]-[27], and 2) minutiae orientations are not independent of minutiae 

locations [28]-[29]. These properties make modeling the individuality of fingerprint difficult. About 

twenty fingerprint individuality models have been proposed to date [28]-[36]. From these studies, it 

can be seen that when accurate assumptions on minutiae properties were employed, the model 

estimations were close to the empirical results. Thus, we study the spatial distribution statistics of 

RPPVSM before modeling their individuality. 
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A common starting point for analyzing spatial point pattern distribution is the test of Complete 

Spatial Randomness (CSR) hypothesis [37]-[39]. The hypothesis states that: 1) the number of points 

in any planar region A with area |A| follows a Poisson distribution with mean λ|A|, where the constant 

λ is the intensity
1 or average number of points per unit area, and 2) given n points in the region A, they 

are independent random samples from a uniform distribution. This indicates that a point pattern which 

qualifies the CSR hypothesis corresponds to a homogeneous Poisson distribution, whose random 

variables are independently and uniformly distributed. Two alternative hypotheses against the null 

CSR hypothesis are clustering and regular tendencies. In clustered patterns, points tend to locate near 

others, while in regular patterns points tend to spread far from each other. 

Two classical methods for performing the CSR test are the quadrat counts method and the 

distance method [37]-[40]. The quadrat counts method divides a spatial pattern into quadrats (sub-

regions) of equal sizes and computes the number of points in each quadrat. The distance method 

enumerates all inter-point distances and searches for the shortest distance in order to determine the 

nearest-neighbor distance for each point. Since the number of RPPVSM in a pattern in our back torso 

image database reaches over 350, it is more efficient to perform a large scale observation via the 

quadrat counts method than the distance method. Furthermore, it was shown in [40] that variance-to-

mean ratio and Steven’s tests, which are types of the quadrat counts method, performed well in the 

detection of regular, random, and aggregated patterns. 

The quadrat counts method divides a domain D into k non-overlapping quadrats A1, A2, …, Ak with 

equal size such that  A1 ∪A2 ∪… ∪Ak = D. Let the number of points in quadrat i be ni and the total 

number of points in D be n. The expected number of points in any quadrat under the CSR hypothesis 

is /n n k= . Two criteria must be fulfilled to obtain reliable test results  the expected number per 

quadrat  n  must be greater than 1, and the total number of quadrats k must be greater than 6 [38]-

[39]. The acceptance or rejection of a CSR hypothesis is based on the standard Pearson chi-square 

statistic with (k–1) degrees of freedom given by 

                                                
1 The term intensity is used to describe average number of points per unit area (density) in the CSR 

hypothesis. 
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This chi-square statistic is also called a variance-to-mean ratio test statistic or the index of dispersion.  

 

A. Database 

Our RPPVSM database consists of three sets of back torso images from male Caucasians, Latinos, 

and Asians. The first set of images was collected in Los Angeles using a Nikon D80 camera (max. 

resolution of 3872x2592 pixels). It contained mostly Caucasian and Latino subjects. The other two 

sets of images were collected in Singapore using two cameras  a Nikon D70s camera (max. 

resolution of 3008x2000 pixels) and a Canon EOS 500D camera (max. resolution of 4752x3168 

pixels). These two sets of images contained mostly Asian subjects, which included Chinese, Malay, 

and Indian ethnic groups. The resolution of all images was 300 dpi. The second and third sets of 

images were taken in two different sessions with an interval of one week. However, due to limited 

availability of volunteers, the first set of images was mostly taken in a single session only. The 

volunteers were seated or standing at a distance between 1 and 1.5 meters from the camera, so the 

scale was similar for all images. Note that in forensic scenarios, evidence images are usually marked 

by experts. However, images of inmates or suspects collected in a controlled environment can be 

handled by automatic algorithms and therefore there is no scale problem. 

RPPVSM can be identified on almost every part of the human body. We used back torso because 

it is the largest flat area on the body where a large number of RPPVSM can be identified. After 

excluding subjects with large tattoos in their backs, 269 different subjects were used in this statistical 

study. This is significantly larger than the database used in our previous study which included only 

144 subjects [18]. The RPPVSM were manually identified by a medical researcher trained in 

dermatology and the results were verified by a board-certified dermatologist who testified in the 

previously mentioned legal case. Fig. 2 shows a raw image of a Caucasian’s back with the identified 

RPPVSM.  
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(a) (b) 

Fig. 2.  A RPPVSM pattern on the back of a Caucasian male; (a) the raw image; circles indicate 

RPPVSM identified by a researcher trained in dermatology, (b) the enlarged version of the small 

rectangular box in (a) to show the detected RPPVSM. 

 

B. CSR Test Results and Discussion 

Before performing the quadrat counts method, all images were normalized to the smallest 

maximum resolution (3008x2000 pixels). We used three different quadrat sizes, 3x2, 4x3, and 5x4 to 

prevent a specific quadrat size from influencing the CSR test results. The minimum quadrat size was 

set to 3x2 since back has a rectangular shape. Setting the minimum expected number of RPPVSM in 

each quadrat to 1, the minimum numbers of RPPVSM required for quadrat sizes of 3x2, 4x3, and 5x4 

were 6, 12, and 20 respectively. For each quadrat’s size, the window size of quadrats in pixel varied 

depending on the actual size of the back. For example, the width of a slim subject’s back is likely to 

be smaller than the width of a fat subject’s back. Similarly, the height of a tall subject’s back is likely 

to be larger than the height of a short subject’s back. To accept or reject the CSR hypothesis, we 

applied a two-tailed test with a 90% confidence interval. If the p-value was less than 0.05, the pattern 

was regarded as clustered; while if the p-value was greater than 0.95, the pattern was regarded as 

regular. 

The overall CSR test results grouped by number of RPPVSM are given in Table I. Patterns with 6 

to 11 RPPVSM were tested with quadrat size of 3x2 only, and patterns with 12 to 19 RPPVSM were 

tested with quadrat sizes of 3x2 and 4x3. Patterns which passed the tests with both quadrat sizes were 

regarded as CSR patterns. The rest of the patterns were tested with the three different quadrat sizes 

and the final results were determined via majority voting. As seen in Table I, the number of patterns 
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which qualified the CSR test decreases as the number of RPPVSM increases. A drastic decrement is 

apparent when the number of RPPVSM is 50 or more. From 161 patterns with 6 to 49 RPPVSM, 124 

patterns qualified the CSR hypothesis. However, from 61 patterns with 50 or more RPPVSM, only 4 

patterns qualified the CSR hypothesis. The remaining patterns were clustered. With this result, 

RPPVSM patterns can be grouped into two: 1) middle to low density patterns with fewer than 50 

RPPVSM, and 2) high density patterns with 50 or more RPPVSM. The RPPVSM in the middle to low 

density patterns tend to follow a CSR distribution, which is independent and uniform, while the 

RPPVSM in the high density patterns tend to form clusters.  

TABLE I. A SUMMARY OF COMPLETE SPATIAL RANDOMNESS (CSR) TEST RESULTS 

 

No. of 

RPPVSM 
No. of 

Patterns 

No. of 

Patterns 
Qualified 

CSR 

% of 

Patterns 
Qualified 

CSR 

Demographic Information 

1 to 5 47 N/A N/A 
40 Asians + 4 Caucasians + 2 Latinos + 1 

African American 

6 to 11 62 55 88.71% 52 Asians + 4 Caucasians + 6 Latinos 

12 to 19 40 29 72.5% 31 Asians + 6 Caucasians + 3 Latinos 

20 to 29 31 24 77.42% 23 Asians + 5 Caucasians + 3 Latinos 

30 to 49 28 16 57.14% 13 Asians + 13 Caucasians + 2 Latinos 

50 to 69 19 2 10.53% 8 Asians + 10 Caucasians + 1 Latino 

70 to 99 20 1 5.00% 2 Asians + 18 Caucasians 

100 or more 22 1 4.55% 22 Caucasians 

 

We also observed that Asians and Latinos tend to have fewer RPPVSM than Caucasians. From 

208 patterns which belong to middle to low density group, 84% were from Asians and Latinos, while 

from 61 patterns which belong to high density group, 82% were from Caucasians. Medical studies 

point out that race influences the incidence and distribution of nevi [41]-[47]. White subjects 

(Caucasian) were found to have an average of 14.6 to 61 nevi per subject on their whole body [41]-

[43] while Black subjects (African-American) were found to have an average of 2.0 to 11 nevi per 

subject on their whole body [41]-[45]. Asians (Chinese, Korean, and Japanese) were found to have an 

average of 2.5 to 16.1 nevi per subject on their whole body [46]-[47]. The numbers of nevi are given 

in ranges because they are compiled from different studies on over 1000 patients. Due to different 

sample sizes and various factors affecting the occurrence of nevi (e.g., location, sun exposure, and 
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age), their statistical results have some fluctuations. These medical studies show that the average 

number of nevi in Asians is slightly higher than the average number of nevi in Black subjects but 

significantly lower than the average number of nevi in White subjects. Our statistical results match 

with the results from these medical studies. Eastern Asians generally have light intermediate skin 

tone, which would not affect nevi identification. However, their average number of nevi was much 

lower than the average number of nevi in White subjects. It indicates that the higher number of 

RPPVSM observed in Caucasian population is not caused by the skin contrast between the lighter-

skinned and the darker-skinned subjects. Instead, they are most likely influenced by the racial 

differences. 

 

C. Independence Test Results and Discussion 

The CSR hypothesis test is not reliable for patterns with fewer than 6 RPPVSM, and therefore, the 

47 patterns with 1 to 5 RPPVSM in our database were tested for an independent distribution 

hypothesis only. In this test, we wanted to investigate whether the presence of RPPVSM in a sub-

region of the skin is or is not influenced by the presence of other RPPVSM in different sub-regions of 

the skin. To perform the test, a rather similar approach to the quadrat counts method was 

implemented. All patterns were divided into 2x2 grids. Then, a contingency table (see Table II) for 

testing the independence between two grids was built (e.g., grid 1 & grid 2). For testing the 

independence between grid X and grid Y, if a sample pattern had a RPPVSM in grid X but did not 

have RPPVSM in grid Y, N3 was increased by 1. Then, if another sample pattern did not have 

RPPVSM in both grid X and grid Y, N1 was increased by 1. The total value of N1+N2+N3+N4 was the 

total number of samples. For each contingency table, the Pearson chi-square statistic was computed. 

Using a significance level α = 0.05, the hypothesis of independent distribution was accepted if the p-

value was greater than 0.05. The results of the independence hypothesis test are summarized in Table 

III. The computed p-values for all grid pairs are greater than 0.05, meaning that the occurrence of 

RPPVSM in very low density patterns is an independent event. 

We have neither considered the case of weight gain or weight loss nor how it affects the 

distribution of RPPVSM because our current database cannot support such a study. The CSR test 
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divides the images into different quadrats and then computes the chi-square statistics. If numbers of 

RPPVSM in quadrats before and after weight gain (loss) are the same, the chi-square statistics from 

the two calculations will be the same. In other words, the CSR test will give the same conclusion. 

Since the CSR test counts number of RPPVSM in each of the quadrats instead of measuring the 

distance between RPPVSM, it is robust to this distortion. However, if the weight gain (loss) is very 

significant, an image normalization process should be performed to erase this distortion. 

TABLE II. A CONTINGENCY TABLE FOR THE 

INDEPENDENCE HYPOTHESIS TEST 

 

Grid Y 

 
Grid X 

RPPVSM 

= 0 
RPPVSM 

> 0 
Total 

RPPVSM 

= 0 
N1 N2 N1+N2 

RPPVSM 

> 0 
N3 N4 N3+N4 

Total 
N1+N3 N2+N4 

N1+N2+ 
N3+N4 

 

 

TABLE III. A SUMMARY OF P-VALUES IN THE 

INDEPENDENCE HYPOTHESIS TEST 

 

Grid 1 2 3 4 

1   0.2461 0.0618 0.2012 

2     0.6352 0.2012 

3       0.7059 

4         
 

IV. A RPPVSM INDIVIDUALITY MODEL 

A point matching model to estimate the probability of random correspondence (PRC) of 

RPPVSM is presented in this section. We focused on middle to low density RPPVSM patterns which 

qualified the CSR hypothesis because their statistical properties could be accurately modeled. The 

model was evaluated against empirical results obtained by matching RPPVSM patterns from different 

subjects. The following assumptions were employed in the model: 

1) The locations of RPPVSM followed an independent and uniform distribution. 

2) The locations of RPPVSM could not be too close to each other. Two RPPVSM were considered 

too close if their distance was less than or equal to 0r , where 0r  was a tolerance distance. To 

realize this assumption, a distance check was performed before matching. Two RPPVSM whose 

distance was shorter than 0r  were merged as one. The merging was performed by sorting 

RPPVSM in the x-axis direction, then keeping the first RPPVSM for matching while removing 

the other. 

3) There was one and only one correct alignment between an input pattern and a template pattern. 

Partial matching was not considered since it might result in multiple correct alignments. 
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4) Each RPPVSM in the input pattern could match one and only one RPPVSM in the template 

pattern and vice versa. To realize this assumption, if two RPPVSM were matched to the same 

correspondence RPPVSM, the two RPPVSM were considered as one RPPVSM. 

5) A correspondence between two RPPVSM from different persons was an independent event. 

6) Each correspondence was equally important. Correspondences in the peripheral area were 

weighted equal to those in the center area. 

7) Only positive correspondences were considered. Conflicting evidence (i.e., a RPPVSM in the 

input pattern does not correspond to any RPPVSM in the template pattern) was not considered. 

8) The quality of all images was equally good for manual RPPVSM detection. A salient feature 

labeled as a RPPVSM in the first image had a correspondence in the second image and vice versa. 

Our objective is to compute the probability that, given an input pattern with n RPPVSM, any 

arbitrary (template) pattern with m RPPVSM from a different person will have exactly p 

correspondences with the input pattern. The correspondences are established as follows. Taking only 

RPPVSM locations as the feature for matching, an input pattern I and a template pattern T can be 

defined as 

( ) ( ) ( ){ }1 1 2 2, , , ,... ,i i i i in inI x y x y x y= , (2) 

( ) ( ) ( ){ }1 1 2 2, , , ,... ,t t t t tm tmT x y x y x y= .
 

(3) 

Assuming that I and T have been aligned, correspondence point pairs should be located near each 

other. A correspondence between the a
th
 RPPVSM in the input pattern and the b

th
 RPPVSM in the 

template pattern is established if and only if  

0
2 2

( ) ( )tb ia tb iax x y y r− + − ≤ , (4) 

where 0r  is a tolerance distance. Even when two aligned patterns are from the same subject, the 

correspondence points may slightly deviate from one another due to local variations in the patterns. 

The parameter 0r  is introduced to accommodate these intra-class variations. Two points will still be 

allowed to match if a correspondence point is located within the tolerance distance of the other point. 

Fig. 3 illustrates a genuine match, where all correspondence pairs can be identified. Each 
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correspondence pair is connected by a line, and each input RPPVSM is within the tolerance region 

0
2

C rπ=  of its correspondence template RPPVSM. The dashed line area indicates the overlap area A 

between the input and the template patterns after alignment. 

 
Fig. 3.  An illustration of the overlap area A and the tolerance region C in aligned input and template 

RPPVSM patterns. The established correspondences are connected by lines. 

 

Now we present our model for estimating the probability of random correspondence. Let 

2 2
( ) ( )t i t id x x y y= − + −

 
be the Euclidean distance between any two arbitrary points (xi, yi) and (xt, 

yt) in the input and template patterns, respectively. The locations of the input and template RPPVSM 

are independent, because they are from different subjects. Thus, the probability that (xi, yi) falls within 

the tolerance region of (xt, yt), i.e., d ≤ 0r  is 

0 0
2

( )Pr d r r A C Aπ≤ = = . (5) 

If an input pattern has two RPPVSM and a template pattern has m RPPVSM, the probability that the 

first input RPPVSM has a correspondence with one of the m template RPPVSM is mC A, and the 

probability that the second input RPPVSM does not have a correspondence is ( ) ( )A mC A C− − . 

Thus, the probability that there is exactly one correspondence (and one non-correspondence) between 

the two patterns is given by 

( ) ( ) ( )( )( , , , 2,1) 2Pr A C m mC A A mC A C= × × − − .   (6) 

Overlap area A

r0

Tolerance 

region C
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The probability is multiplied by 2 since two scenarios are possible ― the first input RPPVSM has a 

correspondence but the second input RPPVSM does not have a correspondence, or vice versa. 

Extending the scenario to an input pattern with n RPPVSM, the probability that exactly one input 

RPPVSM has a correspondence with one of the m template RPPVSM can be calculated as the 

probability of having one correspondence multiplied by the probability of having no other 

correspondences. Thus, if the input pattern has n RPPVSM and the template pattern has m RPPVSM, 

the probability of obtaining exactly one correspondence is 

( 1) ( (( 1) 1))
( , , , ,1) ...

2 ( 1)1

n A m C A m n CmC A mC
Pr A C m n

A A C A C A n C

       
                

− + − + − −−
= × ×

− − − −
. (7) 

Now we generalize the model for the scenario with more than one correspondence. Given an input 

pattern with n RPPVSM and a template pattern with m RPPVSM, the probability that there are exactly 

p correspondences, where { }0,1, ...min( , )p m n∈ , and the probability that the remaining n-p points do 

not have correspondences is 

( 1) ( 2) ( ( 1))
( , , , , ) ...

2 ( 1)

n m C m C m p CmC
Pr A C m n p

A A C A C A p Cp

      
              

− − − −
= ×

− − − −
 

( 1) ( 2) ( (( ) 1))
...

( 1) ( 2) ( 1)

A m C A m C A m n p CA mC

A pC A p C A p C A n C

     
     
     

− + − + − + − −−
×

− − + − + − −
. 

(8) 

Let M = [A/C], where [] represents an operator of rounding to the nearest integer. Since A>>C, M ≈ 

A/C. Dividing all numerators and denominators by C, Eq. 8 can be written as 

( 1)1 2
( , , , ) ...

1 2 ( 1)

n m pm m m
Pr M m n p

M M M M pp

      
              

− −− −
= ×

− − − −
 

( ) (( ) 1))1 2
...

( 1) ( 2) ( 1)

M m n pM m M m M m

M p M p M p M n

     
     
     

− − − −− − − − −
×

− − + − + − −
, 

(9) 

which finally reduces to the following hypergeometric distribution 

( , , , )

m M m

p n p
Pr M m n p

M

n

−

−
=

  
  
  

 
 
 

.

 

(10) 
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The above model was previously used to estimate the probability of random correspondence in 

fingerprints [28]. However, when compared to the empirical results, the theoretical probabilities were 

much smaller than the empirical probabilities. It was explained in [28]-[29] that the assumption of 

independent and uniform distribution of minutiae did not reflect the actual tendency of minutiae 

which in fact form clusters, thus resulting in overestimation of fingerprint individuality. Based on the 

statistical results reported in section III, this individuality model is more suitable for RPPVSM since 

the assumption fits the empirical distribution of middle to low density RPPVSM patterns. 

V. A RPPVSM MATCHING METHOD 

A RPPVSM matching method involves registering an input pattern to a template pattern and 

establishing correspondences based on a tolerance distance 0r . There are two types of transformations 

for image registration [48]. One is the global mapping model and the other is the local mapping 

model. The former applies the same transformation to the whole image while the latter allows local 

variations. Since the images used in this study were taken in a standard pose, local variations were 

very small and thus could be ignored. Major variations came from the camera’s position, zoom factor, 

and view angle, which can be handled by rotation, scale, and translation operations. Therefore, an 

affine transformation, which is a global mapping model, was selected to handle the registration 

process. The affine transformation is defined as 

1 2 3

1 2 3
1

x
a a au

y
b b bv

 
    
    

     
 

= ,

 

(11) 

where (u, v) is the transformed coordinate of (x, y) and 
1 2 3

1 2 3

a a a

b b b

 
 
 

 is a parameter matrix that can be 

obtained by solving the above linear equation. The parameter matrix was determined by performing a 

registration of non-RPPVSM points from the input and the template patterns, which are called 

registration points. These registration points were obtained in the following way: 

1) For each point set I and T, a Voronoi diagram was generated. Since Voronoi diagrams can be 

considered as internal graph structures which are different for each pattern, we made the 

alignment insensitive to rotation variation by using this diagram to generate registration points. 
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Registration points were the vertices of the Voronoi diagram (marked as ‘+’ in Fig. 4b) located 

within a bounding box formed by the top, bottom, most left, and most right RPPVSM. The 

bounding box is the rectangular area denoted by the dashed line.  

2) To obtain a stable alignment, more points were added as registration points. The points were 

generated from the middle of the lines connecting the most left RPPVSM with the rest RPPVSM 

(see Fig. 4(c)). Similarly, the middle points of the lines connecting the most right, top, and bottom 

RPPVSM with the rest RPPVSM were also added (see Figs. 4(d)-(f)). This scheme works under 

the assumption that the four RPPVSM forming the bounding box can be recognized in different 

images of the same person. Full back torsos could be seen in our images and the RPPVSM were 

recognized by our medical researchers. Thus, this assumption could be fulfilled.  

The registration points from the input pattern were aligned to the registration points from the 

template pattern using the Coherent Point Drift (CPD) algorithm with affine transformation [49] (see 

Figs. 5(a)-(c)). Using the obtained affine transformation parameters, the RPPVSM in the input pattern 

I were subsequently aligned to the template pattern T (see Figs. 5(d)-(f)). Candidate correspondences 

between the template and the input RPPVSM were searched using a k-Nearest Neighbor algorithm 

with k = 1 and a correspondence was accepted if d ≤ 0r . The matching result is illustrated in Fig. 5f. 

The correspondences are connected by lines and the overlap area is denoted by the dashed lines. Only 

RPPVSM located inside the overlap area were considered in the matching. 

 

A. Estimation of 0r  

Five parameters A, C, m, n, and p are required by the model. The values of A, m, and n are 

obtained from the matching experiment. A is the intersection area between the input and the template 

patterns after alignment, and m and n are respectively the number of RPPVSM in the template pattern 

and the input pattern within the overlap area. The value of p ranges from 0 to min(m, n). The value of 

C depends on the tolerance distance 0r . To determine 0r , we matched the genuine RPPVSM patterns 

in our database and obtained the distribution of their correspondence distances as given in Fig. 6. It 

should be noted that there is no natural impostor correspondence. The impostor correspondence 

depends on 0r  and the matching algorithm. Images collected in the first session were used as the 
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templates and the images collected in the second session were used as the inputs. Let (xi, yi) be a 

RPPVSM in an input pattern and (xt, yt) be a RPPVSM in a template pattern. 0r  is determined from 

( )0
2 2

( ) ( )t i t ix x y y r tPr − + − ≤ ≥ , where t is a statistical threshold. From 94 genuine pairs of 

middle to low density RPPVSM patterns which qualified the CSR test, we obtained 0r  = 86.82 pixels 

and 0r  = 69.70 pixels for t = 97.5% and t = 95%, respectively. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 4. Steps to generate registration points from a pattern (registration points are labeled ‘+’); (a) the 
original RPPVSM, (b) a Voronoi diagram of the RPPVSM in (a) ― registration points are the 

Voronoi vertices within the dashed line boundary, (c)-(f) respectively lines connecting the most left, 

the most right, the top, and the bottom RPPVSM with the rest RPPVSM. The additional registration 
points are the middle of these lines.  

 

   
(a) (b) (c) 
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(d) (e) (f) 

Fig. 5. Illustration of the matching method: (a) registration points from a template pattern, (b) 

registration points from an input pattern, (c) the result of alignment, (d) RPPVSM in the template 
pattern, (e) RPPVSM in the input pattern, and (f) the matched RPPVSM indicated by the connected 

lines within the overlap area, which is denoted by the dashed lines.  

 

VI. EXPERIMENTAL RESULTS 

Empirical random correspondences were obtained by matching impostor pairs of middle to low 

density RPPVSM patterns which qualified the CSR hypothesis. We grouped 269 patterns in the 

database into middle to low density patterns (208 subjects with < 50 RPPVSM) and high density 

patterns (61 subjects with ≥ 50 RPPVSM). From the 208 subjects in the middle to low density 

RPPVSM group, we selected 124 subjects whose patterns qualified the CSR hypothesis for the 

individuality study. Since 30 subjects only had one image (from LA database), the total number of 

images used in this study became 218 images (124 images from session 1 + 94 images from session 

2). 11,562 impostor matches were generated from 124 template images and 94 input images. In this 

section, we first report our matching results and then evaluate the RPPVSM individuality model by 

comparing the empirical results to the model estimations. 

 

A. Matching Performance 

For the matching experiment, 0r was set to 80 pixels, which was obtained by rounding down the 

correspondence distance at t = 97.5% to the nearest ten. The value was rounded down to reduce the 

number of points that would be merged. The matching score was calculated using 2p/(m+n), where p 

is the number of correspondences, m is the number of RPPVSM in a template pattern, and n is the 

number of RPPVSM in an input pattern. Fig. 7 shows the receiver operating characteristic (ROC) 
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curve of the genuine and the impostor matchings. When the genuine acceptance is 96.81%, which is at 

matching score of 0.77, the corresponding false acceptance rate is 0.17%. Some genuine pairs could 

not be matched, because 0r  was selected to cover less than 97.5% of the genuine correspondences. 

Moreover, some impostor matches had high scores due to small numbers of RPPVSM in the patterns. 

  

Fig. 6.  The distribution of correspondence 

distances from 94 genuine pairs of RPPVSM 

patterns to determine 0r . 

    Fig. 7.  The ROC curve of RPPVSM matching. 

 

 
B. Model Evaluation 

A set of parameters , ,i iM m and in  and an empirical random correspondence [ ]0, min ,( )i i ip n m∈  

were generated from each impostor matching. With the parameter sets from different impostor 

matchings, the distribution of random correspondence can be estimated. Let Xi be a random variable 

and ( | , , ) ( , , , )i i i i i i iPr X p M m n Pr M m n p= = . If the theoretical model is correct, the empirical 

distribution can be approximated by  

1

1
( ) ( , , , )

N

i i i

i

Pr p Pr M m n p
N =

= ∑ , (12) 

where N is the number of impostor matchings. To standardize the unit for comparison, the theoretical 

probabilities were multiplied by N to obtain the frequencies of random correspondences. Eq. 12 is the 

average of the individual distributions with different parameter sets. Then, the difference between the 

theoretical and the empirical distributions was evaluated based on the 95% confidence interval of the 

theoretical frequency distribution. The confidence interval was generated as follows: 
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1) Let Ri be an observation of a random sample from the distribution ( | , , )i i i iPr X M m n , where i = 1,…, 

N. By counting the number of Ri with p random correspondences, where

[0, max (min( , )) ]i iip n m∈ , a frequency distribution was obtained. 

2) Step 1 was repeated 3000 times to obtain a stable sampling result. Thus, we had 3000 frequency 

distributions.  

3) Let Fj(p) be the frequency of p random correspondences from the jth sampling process. Given a 

fixed p, each Fj(p) could be considered as an observation from a one-dimensional distribution and 

its 2.5 percentile and 97.5 percentile were used to form the 95% confidence interval.  

Even though in this experiment all the original RPPVSM patterns qualified the CSR test, if the 

overlap area A was small (i.e., less than 10% of the average value of A) or the RPPVSM inside the 

overlap area were too few (i.e., m < 4 or n < 4), the RPPVSM patterns inside the overlap area might 

no longer qualify the CSR hypothesis. Thus, matchings with small values of A, n, or m were excluded. 

After the exclusion, 9,697 sets of parameters were kept for model evaluation. 

Fig. 8a shows the empirical and theoretical frequency distributions of the RPPVSM random 

correspondences using 0r  = 80 pixels, which is about 4% of the average torso heights in our database. 

It can be seen that the theoretical distribution fits the empirical distribution very well. More precisely, 

the empirical results are within the 95% confidence interval of the theoretical results. This implies that 

their difference is statistically insignificant. To confirm the result, we repeated the experiments using  

0r  = 75 pixels (see Fig. 8b), whose corresponding statistical threshold was smaller but still in the 

range of t = 95% and t = 97.5% to maintain a similar matching performance with 0r  = 80 pixels. The 

plot shows consistency with the previous result, where all empirical results are within the 95% 

confidence interval of the theoretical results.  

VII. PREDICTED ERROR RATES FOR VERIFICATION AND IDENTIFICATION 

Verification (one-to-one matching) and identification (one-to-many matching) are two important 

scenarios in forensic investigation. Verification is performed when a suspect is in custody or is 

available for comparison, while identification is performed when law enforcement officers search for 

a suspect in a previously existing database. Since the probability of random correspondence measures 
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the likelihood of finding a similar RPPVSM pattern from two different persons, the verification error 

rate can be estimated by Eq. 10 directly. 

  
(a) (b) 

Fig. 8. Comparison of the empirical and theoretical random correspondences for (a) 0r  = 80 pixels 

(4% of average torso height) and (b) 0r  = 75 pixels (3.75% of average torso height). 

 

A. Verification 

In the database used for this study, the average number of RPPVSM in the middle to low density 

patterns is 22. We started the error rate estimation with this average value (i.e., m=22, n=22, p=22). 

Subsequently, the number of RPPVSM was gradually decreased to predict the lower bound for 

reliable verification. The value of A was set to 1.5x106 pixels2, which was the mean value of A in the 

impostor matching experiment. The value of 0r  was set to 80 pixels, based on the value used in the 

experiment above. Since evidence images (input) are typically of poorer quality than reference images 

(template), which can be collected from suspects directly in a controlled setting, we considered the 

cases when n < m.  

The probabilities of random correspondence with different RPPVSM configurations are given in 

Table IV. Non-matched events increase the probability of random correspondence significantly. For 

example, in Table IV(a), when one RPPVSM is not matched (m=22, n=22, p=21), the probability of 

random correspondence increases by 3 orders of magnitude from the full match (m=22, n=22, p=22). 

Then, when only 18 out of 22 RPPVSM are matched, the probability increases by 9 orders of 

magnitude. The same trend can be seen from the other tables. The probability of random 

correspondence also increases when a few RPPVSM are missing due to poor image quality. For 
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example, when only 18 out of 22 RPPVSM can be identified from the input image and all of them can 

be matched (m=22, n=18, p=18), the probability of random correspondence increases by 5 orders of 

magnitude compared to the ideal full match scenario (m=22, n=22, p=22). It can be seen that for all 

full match scenarios highlighted in Table IV (e.g., from m=22, n=22, p=22 to m=7, n=7, p=7), the 

probabilities of random correspondence are not greater than 5.04x10-10.  

 

B. Identification 

The probability of false identification also called the False Positive Identification Rate (FPIR), 

can be estimated by 
1

1 (1 ( , , , ))
h

i i i

i

Pr M m n p
=

− −∏ , where h is the size of database and each set of (Mi, 

mi, ni) is generated from matching an input RPPVSM pattern with one template RPPVSM pattern in 

the database. In the following calculations, we assumed that all (Mi, mi, ni) were the same and 

therefore, the probability of false identification could be estimated by 1 (1 ( , , , ))h
Pr M m n p− − . We set 

the value of M based on the average value of A in the impostor matching experiment and 0r  = 80 

pixels. We considered full match scenarios where mi = ni = p (e.g., m=7, n=7, p=7).  

Table V lists probabilities of false identification with different RPPVSM configurations and 

different database sizes. A full match with 7 RPPVSM in a database containing 100 persons gives a 

performance with error rate of 5.04x10
-8

. However, when 7 RPPVSM are used to identify a person in 

a database with 100 million people, the error rate is 0.049. With this database size, a full match with 

16 RPPVSM gives an error rate of 1.11x10
-8

.  

 

TABLE IV. THEORETICAL PROBABILITIES OF RANDOM CORRESPONDENCE WITH DIFFERENT 

RPPVSM CONFIGURATIONS  

 

(A) m=22 
p 

n 
18 19 20 21 22 

22 4.15e-10 6.99e-12 6.16e-14 2.26e-16 1.94e-19 

21 8.15e-11 1.01e-12 5.82e-15 1.05e-17 N/A 

20 1.25e-11 1.02e-13 2.88e-16 N/A N/A 

19 1.35e-12 5.37e-15 N/A N/A N/A 

18 7.65e-14 N/A N/A N/A N/A 
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(B) m=17 
p 

n 
13 14 15 16 17 

17 3.40e-08 7.07e-10 7.58e-12 3.32e-14 3.37e-17 

16 8.59e-09 1.31e-10 9.23e-13 1.99e-15 N/A 

15 1.72e-09 1.73e-11 5.96e-14 N/A N/A 

14 2.46e-10 1.21e-12 N/A N/A N/A 

13 1.88e-11 N/A N/A N/A N/A 

 

(C) m=12 

p 

n 
8 9 10 11 12 

12 1.13e-05 3.34e-07 4.93e-09 2.89e-11 3.83e-14 

11 4.01e-06 8.77e-08 8.49e-10 2.45e-12 N/A 

10 1.17e-06 1.67e-08 7.96e-11 N/A N/A 

9 2.48e-07 1.75e-09 N/A N/A N/A 

8 2.93e-08 N/A N/A N/A N/A 

 

(D) m=7 

p 

n 
3 4 5 6 7 

7 0.0144 8.84e-04 2.41e-05 2.40e-07 5.04e-10 

6 0.0087 3.96e-04 7.09e-06 3.48e-08 N/A 

5 0.0046 1.38e-04 1.22e-06 N/A N/A 

4 0.0020 2.88e-05 N/A N/A N/A 

3 5.18e-04 N/A N/A N/A N/A 

 

TABLE V. THEORETICAL PROBABILITIES OF FALSE IDENTIFICATION WITH DIFFERENT RPPVSM 

CONFIGURATIONS AND DATABASE SIZES 

 

Size of 

database, h 

m=7,  

n=7, p=7 

m=10, 

n=10, p=10 

m=12, 

n=12, p=12 

m=14, 

n=14, p=14 

m=16, 

n=16, p=16 

100 5.04e-08 1.21e-10 3.83e-12 1.78e-13 1.11e-14 

1,000 5.04e-07 1.21e-09 3.83e-11 1.78e-12 1.11e-13 

10,000 5.04e-06 1.21e-08 3.83e-10 1.78e-11 1.11e-12 

100,000 5.04e-05 1.21e-07 3.83e-09 1.78e-10 1.11e-11 

1 million 5.04e-04 1.21e-06 3.83e-08 1.78e-09 1.11e-10 

10 million 0.0050 1.21e-05 3.83e-07 1.78e-08 1.11e-09 

100 million 0.0492 1.21e-04 3.83e-06 1.78e-07 1.11e-08 

VIII. DISCUSSION 

This paper presents an individuality model for the independently and uniformly distributed 

RPPVSM patterns. Our model estimates that the probability of two persons both having 7 RPPVSM 

all being matched is very low. From the 269 subjects involved in our study, 213 had at least 7 

RPPVSM on their backs. This is almost 80% of subjects in our database. It indicates that in general 

circumstances, when there is enough skin for observation, identification using RPPVSM is possible. 
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The model can tolerate and account for some intra-class variability. When some RPPVSM in two 

images from the same subject are missing or not matched (see Table IV), the probabilities of random 

correspondence were also estimated. In this scenario, the probability of random correspondence will 

increase. However, depending on the threshold and the number of non-matched RPPVSM, the 

probability can still be sufficiently low for positive verification. In actual practice, depending on 

certain variables (e.g., 0r ) and other circumstances, low numbers of RPPVSM may be sufficient for 

verification. RPPVSM can be combined with other biometric traits (e.g., tattoos [6]-[8] or vein 

patterns [9]) if they are available, especially in the cases when there are only a limited number of 

RPPVSM. 

Our work makes a significant improvement over a prior study using manual annotation for facial 

marks where high inter-observer error was reported [15]. The list of skin marks in [15] included many 

types of non-medical and non-scientific skin features, where many had ambiguous definitions. For 

example, raised skin was defined as “a solid raised mark less than 1 cm across. It has a rough texture 

and appears in red, pink, or brown in color”. They also included pimples, which are in fact a transient 

skin disease. The medical significance and the biological behavior of the specific skin marks chosen 

for biometrics are critical to consider. In this study, we considered only four types of carefully chosen 

skin marks, which are nevi (moles), lentigines, cherry hemangiomas, and seborrheic keratoses. These 

skin features are medically well-defined and relatively easy for dermatologists to identify by clinical 

observation alone. In addition to the features of the skin marks, the ability of trained medical 

professionals to accurately, confidently, and reproducibly identify them from images will affect the 

confidence level of the results. Srinivas et al. [15] provided the definitions of their skin features with a 

few sample images to their untrained observers. Our annotation process was carried out by medical 

researchers led by an American Board of Dermatology-certified dermatologist. In fingerprint 

identification, fingerprint experts may have different opinions on the presence of minutiae, especially 

when dealing with low quality images [50]. However, the variability that might occur between 

different fingerprint experts is minimized through years of training. Although specific training 

programs for identifying RPPVSM were not employed for this work, the ability to accurately identify 

the individual components of RPPVSM (nevi, angiomas, etc.) is included in the board certification 
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process in the United States. Additionally, the ability to accurately diagnose pigmented and vascular 

skin marks from digital images has been studied extensively as part of the validation of telemedicine 

practices [51]. Because of these significant differences in content and procedure, the results reported 

in [15] may not be applicable to our work. 

One may argue that this study focused on CSR patterns with middle to low density only and 

therefore the model may not be applicable to other RPPVSM patterns. We do not propose a universal 

model because RPPVSM patterns have different statistical properties. In fact, the beauty of our study 

lies on the fact that we used only RPPVSM patterns which matched the model assumptions. The 

estimation capability of our model is far stronger than many previous fingerprint individuality models. 

In those studies, fingerprint individuality was estimated based on a set of statistical assumptions 

which did not match statistical properties of fingerprint. In our study, a statistical test was performed 

to guarantee that the selected data and the model assumptions match well. As a result, the model 

estimations fit the empirical results very well (Fig. 8). The individuality of RPPVSM should be 

further studied and new models should be developed for the RPPVSM patterns which were excluded. 

Note that the individuality of other biometric traits (e.g., fingerprint, face, and iris) is still being 

studied.  

Although full back torsos were employed in this study, the method can be applied to partial back 

or other body parts (e.g., arms or thighs). The statistical model presented in this paper neither 

specifically focuses on the body location nor assumes any prior knowledge of the skin of the torso. In 

the legal case mentioned in section I, RPPVSM were identified from the left thigh of the criminal in 

evidence images. Verification was performed using photos of the entire body of the arrested suspect 

in poses simulating the position of the criminal in evidence images. In the future, if there are subject 

pose or camera viewpoint variations in evidence images, a 3D model may be used to transform the 

images into a standard pose and viewpoint so that the result in this paper can be applied directly. 

Regarding the database, one may raise a concern that our study covered three different races (i.e., 

Caucasian, Asian, and Latino) but did not include Black subjects, which according to the U.S. Bureau 

of Justice Statistics, represent about 40% of prison inmates [52]. The authors acknowledge that not 

including Black subjects is one limitation of this study. However, in child sexual exploitation cases, 
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which are the emphasis in this paper, 76% of defendants are White and only 5% of defendants are 

Black [3]. Moreover, this study is not specific to the United States because child sexual offenses could 

happen in any countries (e.g., Japan [53], England [54], and Australia [55]).   

In this paper, RPPVSM is used for forensic applications. We would like to highlight their 

difference from commercial/governmental applications. Jain et al. [56] mentioned five factors of a 

biometric trait; two of them are universality and measurability. These factors are important for 

commercial/governmental applications (e.g., border control and access control). However, in forensic 

investigations, some biometric traits may be available in evidence and have information for 

identification, but they may not be considered universal. For example, tattoos have been regularly 

used in legal cases but not everyone has tattoos. When tattoos are available in evidence images, law 

enforcement agents use them for identification. Similarly, when evidence images have RPPVSM, they 

can be used for identification. 98.90% of the subjects in our study have at least one RPPVSM. 

Moreover, nevi have been medically studied in various races [41]-[47]. These two facts indicate the 

universality of RPPVSM. In terms of measurability, RPPVSM is a subset of skin marks and skin 

marks have been used in legal cases. Besides the previously mentioned legal case [17], we have also 

identified skin marks in evidence images of other cases provided by our law enforcement partners. In 

a news release by the U.S. Immigration and Customs Enforcement (ICE), an image showing a mole 

(nevus) on the left inner thigh of a criminal in a child pornography case was released to the public for 

identification [57]. The mole can be seen clearly in the image. They show that RPPVSM are 

measurable in evidence images. 

For this study, original images were captured by digital cameras with different resolutions but 

were normalized to the smallest resolution of 6 Megapixels, which is still compatible with the 

resolution of high-definition video cameras (2 Megapixels). Furthermore, since the key for identifying 

RPPVSM is on resolution in terms of dpi (dot per inch), not number of pixels, and many evidence of 

child sexual offenses show close-up images, lower resolution images are still enough for RPPVSM 

identification. 

This paper aims to study some of the concerns raised in the previously mentioned legal case. 

However, publishing this paper does not imply that RPPVSM or the proposed model can always be 
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used in legal cases with skin images. In general legal proceedings, new scientific theories/methods 

have to be examined in Daubert hearings before they can be used in trials. A Daubert hearing is a 

session within a trial conducted before a judge only to evaluate the reliability of new scientific 

theories/methods recommended by prosecutors or defendants in a legal case. Expert witnesses are 

recruited by prosecutors and defendants to discuss the suitability of the new theories/methods for the 

particular legal case based on the evidence. The final acceptance or rejection of the theories/methods 

is decided by the judge based on the expert witnesses’ discussion and the evidence. Currently, there is 

still no scientific study about the individuality of RPPVSM. In fact, there is even no scientific study 

about the individuality of skin marks. Thus, this paper contributes to initiate legal discussions on this 

matter. 

For operational scenarios, some topics including but not limited to image/video quality, expert 

knowledge, and training schemes need to be studied in the future. To solve image compression 

problems, algorithms to remove JPEG artifacts in skin images are available [58]. However, for low 

resolution, motion blur, and video compression problems, further research is required. Note that in 

this study, we assumed that “evidence” images were not modified. If criminals put make-up on skin 

marks or modify evidence images/videos, skin marks can be hidden or even faces can be swapped. In 

these cases, image forensic techniques can be applied to authenticate tampering in evidence images. 

Our future work includes the development of an automated RPPVSM detection technique. 

Manual identification by experts can be time-consuming. Thus, an automated method will be helpful 

to speed up the identification process. The technique will include preprocessing, skin marks detection, 

and RPPVSM classification. In the preprocessing stage, images are normalized for illumination, pose, 

scale, and resolution. Then, RPPVSM candidates are located by applying blob detection techniques. 

These candidates are subsequently classified into RPPVSM and non-RPPVSM based on a set of 

features (e.g., color, contrast, etc.). The classification schemes may range from rule-based to training-

based classification. In the matching, more features besides location (e.g., RPPVSM type, color, and 

size) can be further exploited to increase the discriminative power of RPPVSM. However, the use of 

these additional features may require higher image quality and will require additional studying and 

modeling. As with fingerprint identification, the automated method can be used to retrieve a small set 
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of suspects from a database and the final authentication can be handled by experts because they are 

expected to provide higher accuracy.  

IX. CONCLUSION 

This work describes the use of RPPVSM as a novel biometric trait. RPPVSM are common but 

their uniqueness had not been studied before. We propose in this study an individuality model for the 

independently and uniformly distributed (CSR) patterns. The results demonstrated that the model 

accurately fits the empirical random correspondences, signifying that it predicts the empirical results 

accurately. Therefore, given images with similar properties as our database images, if the identified 

RPPVSM form middle to low density patterns and pass the CSR test, the proposed model can 

accurately predict their random correspondences. For CSR patterns with other properties (e.g., images 

have different resolutions or compression ratios, or a subject’s race is different from the races in the 

database), the model should be re-examined using data with similar properties. With this model, the 

potential error rates of using RPPVSM patterns for verification and identification were also estimated. 

Our result showed that the error rates can be very small. These results are important as they show the 

potential of RPPVSM for forensic investigations. As this paper is preliminary work on RPPVSM, 

further research is required. Future work will include extension of the database population, 

image/video quality assessment, and development of an automated method for RPPVSM 

identification. 
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