SECRET KEY CRYPTO

Anwitaman DATTA SCSE, NTU Singapore

Acknowledgement: The following lecture slides are based on, and uses material from the text book **Cryptography** and Network Security (various eds) by William Stallings

ℜ Stream and Block ciphers

ℜ DES and AES algorithms

 \mathfrak{H} Modes of operations

SECRET KEY CRYPTO

System model

H Secret key (a.k.a symmetric key) cryptography

Stream ciphers

Process one symbol (e.g. bit/byte) at a time, e.g.:

- Vigenère and Vernam ciphers
- one time pad
- ChaCha20 used in TLS/SSL implementations

Block ciphers

A block of plaintext is processed together, to create a block of ciphertext (of same size). e.g.: DES, AES, ...

- can be used to create a stream cipher

Essentially *a mapping* (for a *b*-bits block)

- Input space: 2^b
- Output space: 2^b

How many such mappings exist?

- In general?
- That are reversible? $(2^b)!$

Block ciphers 4-bits example

 4×2^4 bits required to represent mapping

- Ideal block cipher
- Practical?

Plaintext	Ciphertext
0000	1110
0001	0100
0010	1101
0011	0001
0100	0010
0101	1111
0110	1011
0111	1000
1000	0011
1001	1010
1010	0110
1011	1100
1100	0101
1101	1001
1110	0000
1111	0111

In absence of an ideal cipher ...

Use tractable building blocks

H Often achieved with a Substitution-Permutation network

e.g., AES, somewhat open to interpretation: Feistel network (used in DES)

Check also: https://en.wikipedia.org/wiki/Confusion_and_diffusion

Feistel cipher

Horst Feistel 1915-1990

- Split input in two halves
- Alternatively repeat:
- Substitution with round
 - function
 - $F(-,K_i)$ and XOR
- Permutation: swap to halves

Feistel cipher

Considerations

- Block size
- Key size
- Number of rounds

DES: Data Encryption Standard Based on Feistel's work at IBM since late 1960s

DES Big picture

3 phases

- Initial permutation (IP)
- Repeated rounds Feistel structure
- IP⁻¹

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

DES Big picture

3 phases

- Initial permutation (IP)
- Repeated rounds Feistel structure
- **IP**-1

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

DES Inside a round of DES

DES Inside a round of DES

Self study: Sections 4.1 through 4.3 of the (7ed) Stallings textbook

AES: Advanced Encryption Standard

Vincent Rijmen born in 1970 Joan Daemen born in 1965

AES: Advanced Encryption Standard

All AES operations are on 8-bit byte strings

- Addition, multiplication and division in GF(2⁸)
- Recall: need polynomial arithmetic
- All AES GF(2⁸) computations are based on the *irreducible polynomial*

$$x^8 + x^4 + x^3 + x + 1$$

AES Big picture

Substitution-Permutation network:

- 128 bits plaintext input
- 16/24/32 byte keywords AES-128, AES-192, AES-256
- 10/12/14 rounds
- Four types of transforms per round

AES Big picture

Inputs:

- Plaintext 4×4 column major order matrix of bytes (termed as the state)
- Cipher key
 - which is expanded into round keys
 - serves as an input to AddRoundKey transformation in each round

in ₀	in ₄	in ₈	<i>in</i> ₁₂
in ₁	in_5	in ₉	<i>in</i> ₁₃
in ₂	in ₆	<i>in</i> ₁₀	<i>in</i> ₁₄
in ₃	in ₇	<i>in</i> ₁₁	<i>in</i> ₁₅

AES Key expansion: round keys generation

Expand into N+1 round keys

- Four word (16 byte) key mapped into a linear array of 44 words (176 bytes)
- Function g() involves byte rotation, substitution and XOR with some round constant

Purpose

- Diffusion of cipher key differences
- Non-linearity and elimination of symmetries

AES Substitute Bytes Transform

AES S-box: look-up table

AES S-box: calculation web demo

V 5 С F 0 1 2 3 4 6 7 8 9 Α В D E 63 7C 77 7BF2 6B 6F C5 30 01 67 2BFE D7 AB 76 0 9C CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF A4 72 C0 1 CC 34 E5 71 2 **B**7 FD 93 26 36 3F F7 A5 F1 D8 31 15 C7 23 C3 18 07 12 E2 27 75 3 04 96 05 9A 80 EB **B**2 83 2C1B6E 5A A052 **3**B D6 **B**3 29 E3 2F4 09 1A84 5 53 D1 00 ED 20 FC **B**1 5B6A CB BE 39 4A4C58 CF D0 EF AA FB 43 4D 33 85 50 3C 9F A8 6 e.g., $95 \rightarrow 2A$ F5 7 51 A3 40 8F 92 9D 38 21 10 FF F3 D2 x 7E 8 CD 0C13 EC 5F 44 C4 A7 3D 64 5D 19 73 22 2ADC 88 9 60 81 4F 46 EE **B**8 10 Contains permutation for all 49 06 24 C20A5C Α E0 32 3A D3 256 possible 8-bit values F4 37 8D 4EA9 6C 56 6D D5 1CE8 74 8A 2E A6 **B**4 C6 DD 1FσB 4BDD left 4-bits to determine row 35 57 66 48 03 F6 0E61 **B**9 86 C1 1D 9E right 4-bits for column 98 69 D9 **8**E **9B** 1E87 **E**9 CE 55 28 DF 11 94 F 8C A1 89 0DBF E6 42 68 41 99 2D0F **B**0 54 BB 16

1-SubBytes

2-ShiftRows

3-MixColumns

4-AddRoundKey

AES S-box: design rationale

- Low correlation between input/output bits
- Output a non-linear function of input using multiplicative inverse provides non-linearity
- Constant chosen so that:
 there are no fixed points: S(a)=a
 there are no opposite fixed points: S(a)=ā
 ā is the bit-wise complement of a
- S-box is invertible, but there are no self-inverses
 S(a)≠IS(a)

1-SubBytes

2-ShiftRows

3-MixColumns

4-AddRoundKey

AES ShiftRows Transform

- ith row gets i-1left circular shift

4 bytes of a column are spread to four different columns

AES MixColumns Transform

AES MixColumns Transform

1-SubBytes

2-ShiftRows

3-MixColumns

4-AddRoundKey

AES MixColumns Transform: Example

02	03	01	01
01	02	03	01
01	01	02	03
03	01	01	02

87	F2	4D	97
6 E	4C	90	EC
46	E7	4A	C3
A 6	8C	D8	95

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A 6	BC

Note (see Section 6.3, Stallings text book, 7ed):

- Multiplication by 2 (is essentially multiplication by x in polynomial representation) can be realized using a 1-bit left shift
- Followed by a conditional XOR with 00011011 if leftmost bit of original value prior to shift is 1.
 Why? Hint: Something to do with the irreducible polynomial ...

AES MixColumns Transform: Example

1-SubBytes 2-ShiftRows 1 3-MixColumns 1 4-AddRoundKey

AES AddRoundKey Transform: Example

 \oplus

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A6	BC

AC	19	28	57
77	FA	D1	5C
66	DC	29	00
F3	21	41	6A

EB	59	8B	1B
40	2E	A1	C3
F2	38	13	42
1E	84	E7	D6

=

The 128 bits of the state are bitwise XORed with the 128 bits of the round key

AES: Wrap-up

- The cipher begins and ends with an AddRoundKey stage. Why?
 It's in effect a Vernam (one-time pad) cipher
- The other three stages together provide confusion, diffusion and non-linearity, but by themselves, they provide no security.
 Why? No secrets involved in the other steps

Self study: Sections 6.1 through 6.5 of the (7ed) Stallings textbook

Beyond a block cipher

- Making do with a broken/obsolete cipher
- Encrypting data larger than the block size
- Realizing stream cipher using a block cipher

Someone broke DES, now what?

1998

Electronic Frontier Foundation (EFF) breaks DES w/ \$250K machine

Someone broke DES, now what?

Use DES multiple times in a cascade! How many times?

Double DES

Use DES multiple times in a cascade!
How many times?
Use DES twice, with two keys
It "may" help us achieve an effective key size of 2×56 = 112 bits?

Double DES: Two potential issues

Use **DES twice**, with two keys

- It "may" help us achieve an effective key size of $2 \times 56 = 112$ bits?

Potential issue #1:

- What if: $E(K_2, E(K_1, P)) \equiv E(K_3, P)$ Turns out not to be of concern!

Double DES: Two potential issues

Use **DES twice**, with two keys

- It "may" help us achieve an effective key size of $2 \times 56 = 112$ bits?

Potential issue #2:

- Exploit: $C = E(K_2, E(K_1, P)) \implies \exists X = E(K_1, P) = D(K_2, C)$ Meet-in-the-middle attack using known plain/cipher-text pairs

Meet-in-the-middle (MITM) attack

A generic attack, but why double DES is not used ...

- A known plain-text/cipher-text pair attack
- Encrypt the plain-text with all possible 2⁵⁶ keys
- Likewise, "decrypt" the cipher-text with all possible 2⁵⁶ keys
- Look for matching "X"es
- One such match: 2⁴⁸ false alarms
- Two such matches: Chance of false alarm 2⁻¹⁶

With two pairs of known plain-text/cipher-text, double DES key can be guessed with very high confidence, for roughly same computational complexity as breaking DES itself!

Use DES multiple times in a cascade! How many times? Use DES thrice: third time lucky!

If three stages of DES are used, with three keys:

- Uses a rather long 3*56=168 bits key
- MITM attack cost will be 2^{112}

3DES with two keys:

- Equivalent security (as with 3 keys) against standard MITM

 $C = E(K_1, D(K_2, E(K_1, P)))$

 $P = D(K_1, E(K_2, D(K_1, P)))$

1 byte of data comes intermittently, block cipher has128 bits input/128 bits output

1KB data, block cipher has 128 bits input

1TB data, block cipher has 128 bits input

Scenario: Plaintext is larger than block size

- Simplest solution: Just chunk the plaintext and encrypt separately
- This is known as **Electronic Code Book** (ECB)

 $C_j = E(K, P_j)$

Scenario: Plaintext is larger than block size

- Simplest solution: Just chunk the plaintext and encrypt separately
- This is known as **Electronic Code Book** (ECB)

 $C_j = E(K, P_j)$

- ECB is good for short messages, but not for large ones (particularly if plain-text is likely to repeat, since then, so will the cipher-text!)

Cipher block chaining (CBC) $C_j = E(K, C_{j-1} \bigoplus P_j)$

- Design concern: choosing a good initial vector (IV)
- Limitation: No "random access" since decryption is possible only in stages

Stream cipher with a block cipher?

Cipher Feedback Mode (CFB)

- The plain-text is not itself being input to the cipher, but the bit-string being XORed with the plaintext depends on the prior plain-text

- Note: there are other ways to realize a stream cipher using a block cipher

Block cipher operations

Self study: Sections 7.1 through 7.7 of the (7ed) Stallings textbook

- Note: there are several modes of operations not discussed in lectures. (self study)