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Previous lectures

1 Random variables
2 Discrete Random Variables
3 Continuous Random Variables
4 Expectation of a random variable
5 Variance of a random variable
6 Special random variables:

1 Binomial random variables
2 Hypergeometric random variables
3 Poisson random variables
4 Uniform random variables
5 Exponential random variables

Questions?
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This lecture

3.3.1 Normal random variables
3.3.2 Checking if the data are normally distributed

Additional reading : Chapter 3 in the textbook
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3.3 Special random variables 3.3.1 Normal random variables

The Normal distribution : introduction
- Last subchapter we introduced several useful
continuous probability distributions

- However, the most widely used, and therefore the most important,
continuous distribution is undoubtedly the

Normal distribution

- Its prevalence was first highlighted when it was observed that in
many natural processes, random variation among individuals
systematically conforms to a particular pattern :

most of the observations concentrate around one single value
(which is the mean)
the number of observations smoothly decreases, symmetrically on
either side, with the deviation from the mean
it is very unlikely, yet not impossible, to find very extreme values

; this yields the famous bell-shaped curve
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3.3 Special random variables 3.3.1 Normal random variables

The Normal distribution : introduction
The bell-shaped curve was first spotted by the French mathematician

Abraham de Moivre (1667-1754) who in his 1738 book “The Doctrine
of Chances” showed that the coefficients Cn

k =
(n

k

)
in the binomial

expansion of (a + b)n precisely follow the bell shape pattern when n is
large
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3.3 Special random variables 3.3.1 Normal random variables

The Normal distribution : introduction
Later, Carl-Friedrich Gauss (1777-1855), a German mathematician

(sometimes referred to as the Princeps mathematicorum, latin for "the Prince
of Mathematicians" or "the foremost of mathematicians") , was the first to
write an explicit equation for the bell-shaped curve :

φ(x) =
1√
2π

e−x2/2

x

φ(
x)

−2 −1 0 1 2

1

2π

When deriving his distribution, Gauss was primarily interested in errors of
measurement, whose distribution typically follows the bell-shaped curve as
well. He called his curve the “normal curve of errors”, which was to become
the Normal distribution.

In honour of Gauss, the Normal distribution is also referred to as the
Gaussian distribution
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3.3 Special random variables 3.3.1 Normal random variables

The Normal distribution : introduction
It is important to note that the Normal distribution is not just a
convenient mathematical tool, but also occurs in natural phenomena

For instance, in 1866 James Maxwell (1831-1879), a Scottish
physicist, determined the distribution of molecular velocity in a gas at
equilibrium. As a result of collisions with other molecules, molecular
velocity in a given direction is randomly distributed, and from basic
assumptions, that distribution can be shown to be the Normal
distribution
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3.3 Special random variables 3.3.1 Normal random variables

The Normal distribution : introduction
Another famous example is the “bean machine”, invented by

Sir Francis Galton (English scientist, 1822-1911) to demonstrate the
Normal distribution. The machine consists of a vertical board with
interleaved rows of pins. Balls are dropped from the top, and bounce
left and right as they hit the pins. Eventually, they are collected into
bins at the bottom. The height of ball columns in the bins
approximately follows the bell-shaped curve
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3.3 Special random variables 3.3.1 Normal random variables

The Normal distribution

A random variable is said to be normally distributed with parameters
µ and σ (σ > 0), i.e.

X ∼ N (µ, σ),

if its probability density function is given by

f (x) =
1√
2πσ

e−
(x−µ)2

2σ2 (; SX = R)

Unfortunately, no closed form exists for

F (x) =
1√
2πσ

∫ x

−∞
e−

(y−µ)2

2σ2 dy
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3.3 Special random variables 3.3.1 Normal random variables

The Normal distribution

Important remark : Be careful! Some (many?) sources use the
alternative notation

X ∼ N (µ, σ2)

; in the textbook and in Matlab, the notation N (µ, σ) is used, so we
adopt it in these slides as well
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3.3 Special random variables 3.3.1 Normal random variables

The Normal distribution

x

F
X
(x

)

µ − 2σ µ − σ µ µ + σ µ + 2σ

0

1/2

1

cdf F (x)

x

f X
(x

)

µ − 2σ µ − σ µ µ + σ µ + 2σ

1

2πσ2

pdf f (x) = F ′(x)
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3.3 Special random variables 3.3.1 Normal random variables

The Standard Normal distribution

Standard Normal distribution is the Normal distribution with
µ = 0,
σ = 1.

- This yields

f (x) =
1√
2π

e−
x2
2

- Usually, in this situation, the following particular notation is used:

f (x)
.

= φ(x) and F (x)
.

= Φ(x)
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3.3 Special random variables 3.3.1 Normal random variables

The Standard Normal distribution

x

Φ
(x

)

−2 −1 0 1 2

1/2

1

cdf Φ(x)

x

φ(
x)

−2 −1 0 1 2

1

2π

pdf φ(x) = Φ′(x)
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3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : properties

It can be shown that, for any µ and σ,∫
SX

f (x) dx =

∫ +∞

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx = 1

Similarly, we can find

E(X ) =
1√
2πσ

∫ +∞

−∞
x e−

(x−µ)2

2σ2 dx = µ

and

Var(X ) =
1√
2πσ

∫ +∞

−∞
(x − µ)2 e−

(x−µ)2

2σ2 dx = σ2
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3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : properties

Mean and variance of the Normal distribution

If X ∼ N (µ, σ),

E(X ) = µ and Var(X ) = σ2 (; sd(X ) = σ)
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3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : properties
An important observation is that all normal probability distribution
functions have the same bell shape

They only differ in where they are centred (at µ) and in their spread
(quantified by σ)
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3.3 Special random variables 3.3.1 Normal random variables

Let i :=
√
−1 ∈ C be the imaginary unit (i2 = −1)

Definition: Characteristic Function
The characteristic function ϕX : R→ C is defined by

ϕX (t) := E[eitX]

Theorem:
The characteristic function completely determines the distribution, i.e.

X ∼ F ⇐⇒ ϕX (t) = ϕF (t) ∀t ∈ R.

Property:
Let X1 and X2 be independent random variables. Then

ϕX1+X2(t) = ϕX1(t)ϕX2(t) ∀t ∈ R.

Careful:
ϕX1+X2(t) = ϕX1(t)ϕX2(t) ∀t ∈ R does NOT imply X1, X2 independent
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3.3 Special random variables 3.3.1 Normal random variables

Characteristic for various distributions

X ∼ N (µ, σ) ⇐⇒ ϕX (t) = eiµt−1
2σ

2t2 ∀t ∈ R.

X ∼ Ber(π) ⇐⇒ ϕX (t) = (πeit + 1− π) ∀t ∈ R.

X ∼ Bin(n, π) ⇐⇒ ϕX (t) = (πeit + 1− π)n ∀t ∈ R.

X ∼ P(λ) ⇐⇒ ϕX (t) = eλ(e
it−1) ∀t ∈ R.

X ∼ U[α,β] ⇐⇒ ϕX (t) = eiβt−eiαt

i(β−α)t ∀t ∈ R \ {0}.

X ∼ Exp(λ) ⇐⇒ ϕX (t) = λ
λ−it ∀t ∈ R.
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3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : standardisation

From the property of the characteristic function
(or alternatively from the expression and the shape of the Normal pdf)
one sees that:

If X ∼ N (µ, σ), then Y = aX + b ∼ N (aµ+ b,aσ)

i.e. Y is normally distributed with
mean E(Y ) = aµ+ b and variance Var(Y ) = a2σ2
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3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : standardisation

The following result directly follows from the foregoing :

Property: Standardisation
If X ∼ N (µ, σ), then

Z =
X − µ
σ
∼ N (0,1)

This linear transformation is called the standardisation of the
normal random variable X , as it transforms X into a standard normal
random variable Z

For an observed value x of X , the corresponding standardised value
z = x−µ

σ is often called z-score

Standardisation will play a paramount role in the sequel
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3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : properties
This extremely important fact allows us to deduce any required

information for a given Normal distribution N (µ, σ) from the features of
the ‘simple’ standard normal distribution

For instance, for the standard pdf φ(x), it can be found that∫ 1
−1 φ(x) dx = P(−1 < Z < 1) ' 0.6827∫ 2
−2 φ(x) dx = P(−2 < Z < 2) ' 0.9545∫ 3
−3 φ(x) dx = P(−3 < Z < 3) ' 0.9973

This automatically translates to the general case X ∼ N (µ, σ) :

P(µ− σ < X < µ+ σ) ' 0.6827
P(µ− 2σ < X < µ+ 2σ) ' 0.9545
P(µ− 3σ < X < µ+ 3σ) ' 0.9973

This is known as the 68-95-99 rule for normal distributions
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3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : properties
For instance, suppose we are told that women’s heights in a given
population follow a normal distribution with mean µ = 64.5 inches and
σ = 2.5 inches

; we expect 68.27 % of women to be between
µ− σ = 64.5− 2.5 = 62 inches and µ+ σ = 64.5 + 2.5 = 67 inches
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3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : remark

Theoretically, the domain of variation SX of a normally distributed
random variable X is R = (−∞,+∞)

However, there is 99.7% chance to find X between µ−3σ and µ+ 3σ

It almost impossible to find X outside that interval, and virtually
impossible to find it very far away from µ

; there is in general no problem in modelling the distribution of a
positive quantity with a Normal distribution, provided µ is large
compared to σ

This also explains why 6σ is sometimes called the width of the
normal distribution
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3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : examples
Example
Suppose that Z ∼ N (0,1). What is P(Z ≤ 1.25)?

In principle, this should be directly given by

P(Z ≤ 1.25) = Φ(1.25) =

∫ 1.25

−∞

1√
2π

e−x2/2 dx

However, we know that this integral cannot be evaluated analytically

; we must use a software (command normcdf in Matlab) or the

Standard Normal table

The table gives the ‘area under the standard normal curve to the left of z ’,
that is

P(Z ≤ z)

Here we have just to read : P(Z ≤ 1.25)
table
= 0.8944
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3.3 Special random variables 3.3.1 Normal random variables

Standard Normal table

Mathematical Statistics (MAS713) Ariel Neufeld 24 / 49



3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : examples
Any other kind of probabilities must be written in terms of P(Z ≤ z) and
calculated from the value found in the table

Example
Suppose that Z ∼ N (0,1). What is P(Z < 1.25)? What is P(Z > 1.25)?
What is P(−0.38 ≤ Z < 1.25)?

as Z is a continuous random variable, P(Z < z) = P(Z ≤ z) for any z
; P(Z < 1.25) = P(Z ≤ 1.25)

table
= 0.8944

P(Z > 1.25) = 1− P(Z ≤ 1.25)
table
= 1− 0.8944 = 0.1056

P(−0.38 ≤ Z < 1.25) = P(Z < 1.25)− P(Z < −0.38)
= P(Z ≤ 1.25)− P(Z ≤ −0.38)

table
= 0.8944− 0.3520
= 0.5424
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3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : examples
Example
The time it takes a driver to react to the brake light on a decelerating vehicle
can be modeled with a Normal distribution having parameters µ = 1.25 sec
and σ = 0.46 sec.
In the long run, what proportion of reaction times will be between 1 and 1.75?

We have X ∼ N (1.25,0.46) and we desire P(1 ≤ X ≤ 1.75).

P(1 ≤ X ≤ 1.75) = P(X ≤ 1.75)− P(X ≤ 1)

but ‘unfortunately’ we do not have the N (1.25,0.46) table

However, we know Z = X−1.25
0.46 ∼ N (0,1) and we do have the N (0.1) table!

P(X ≤ 1.75) = P
(

X − 1.25
0.46

≤ 1.75− 1.25
0.46

)
= P(Z ≤ 1.09)

table
= 0.8621

Similarly, P(X ≤ 1) = P(Z ≤ −0.54)
table
= 0.2946, so that

P(1 ≤ X ≤ 1.75) = 0.8621− 0.2946 = 0.5675
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3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : examples
Example
The actual amount of instant coffee that a filling machine puts into a
“4-ounce” jars may be looked upon as a random variable having a normal
distribution with σ = 0.04 ounce.
If only 2% of the jars are to contain less than 4 ounces, what should be the
mean fill of these jars?

Let X denote the actual amount of coffee put into the jar by the machine

We have X ∼ N (µ,0.04), with µ such that P(X ≤ 4) = 0.02

Hence,

0.02 = P(X ≤ 4) = P
(

X − µ
0.04

≤ 4− µ
0.04

)
= P

(
Z ≤ 4− µ

0.04

)
In the standard normal table, we can find that P(Z ≤ −2.05) ' 0.02

We conclude that 4−µ
0.04 = −2.05, that is,

µ = 4 + 0.04× 2.05 = 4.082 ounces
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3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : quantiles
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3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : quantiles
As in the previous example, we are sometimes given a probability and
asked to find the corresponding value z

For instance, for any α ∈ (0,1), let
zα be such that

P(Z > zα) = 1− α.

i.e., P(Z < zα) = α,

for Z ∼ N (0,1)

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

φ(
x)

zα

1 − α

This value zα is called the quantile of level α of the standard normal
distribution
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3.3 Special random variables 3.3.1 Normal random variables

Normal distribution : quantiles
Some particular quantiles will be used extensively in subsequent
chapters. These are the quantiles of level 0.95, 0.975 and 0.995 :

P(Z > 1.645) = 0.05, P(Z > 1.96) = 0.025, P(Z > 2.575) = 0.005

x

φ(
x)

0 1.645

0.
0

0.
1

0.
2

0.
3

0.
4

0.05

x

φ(
x)

0 1.96

0.
0

0.
1

0.
2

0.
3

0.
4

0.025

x

φ(
x)

0 2.575

0.
0

0.
1

0.
2

0.
3

0.
4

0.005

Note : by symmetry of the normal pdf, it is easy to see that

z1−α = −zα
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3.3 Special random variables 3.3.1 Normal random variables

Some further properties of the
Normal distribution
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3.3 Special random variables 3.3.1 Normal random variables

Some further properties of the Normal distribution

We know that if X ∼ N (µ, σ), then aX + b is also normally
distributed, for any real values a and b

This generalises further :

Property
Let X1 ∼ N (µ1, σ1), X2 ∼ N (µ2, σ2) and X1, X2 are independent.
Then, for any real values a and b,

aX1 + bX2 ∼ N
(

aµ1 + bµ2,
√

a2σ2
1 + b2σ2

2

)
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3.3 Special random variables 3.3.1 Normal random variables

Some further properties of the Normal distribution

As a direct application of the preceding property, we have, with
X1 ∼ N (µ1, σ1) and X2 ∼ N (µ2, σ2),

X1+X2 ∼ N
(
µ1 + µ2,

√
σ2

1 + σ2
2

)
, X1−X2 ∼ N

(
µ1 − µ2,

√
σ2

1 + σ2
2

)
Besides, the previous property can be readily extended to an

arbitrary number of independent normally distributed random variables.
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3.3 Special random variables 3.3.1 Normal random variables

Some further properties of the Normal distribution

Example
Let X1, X2, X3 represent the times necessary to perform three
successive repair tasks at a certain service facility. Suppose they are
independent normal random variables with expected values µ1, µ2 and
µ3 and variances σ2

1, σ2
2 and σ2

3, respectively.
What can be said about the distribution of X1 + X2 + X3?

Answer: From the previous property, we can conclude that

X1 + X2 + X3 ∼ N
(
µ1 + µ2 + µ3,

√
σ2

1 + σ2
2 + σ2

3

)
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3.3 Special random variables 3.3.1 Normal random variables

Some further properties of the Normal distribution

Example (ctd.)
If µ1 = 40 min, µ2 = 50 min and µ3 = 60 min, and σ2

1 = 10 min2, σ2
2 = 12

min2 and σ2
3 = 14 min2, what is the probability that the full task would take

less than 160 min?

Answer: From the above, we have

X .
= X1 + X2 + X3 ∼ N

(
150,

√
36 = 6

)
Hence,

P(X ≤ 160) = P
(

Z ≤ 160− 150
6

)
= P(Z ≤ 1.67)

table
= 0.9525

(using the standard normal table)
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3.3 Special random variables 3.3.2 Checking if the data are normally distributed

Checking if the data are normally
distributed
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3.3 Special random variables 3.3.2 Checking if the data are normally distributed

Checking if the data are normally distributed

Fact
Many of the statistical techniques presented in subsequent chapters
are based on an assumption that the distribution of the random
variable of interest is normal

; in many instances, we will need to check whether a data set
appears to be generated by a normally distributed random variable

How do we do that ?

Although they involve an element of subjective judgement, graphical
procedures are the most helpful for detecting serious departures from
normality

Some of the visual displays we have used earlier, such as the
density histogram, can provide a first insight about the form of the
underlying distribution
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Density histograms to check for normality

Realizations from two different distributions:
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3.3 Special random variables 3.3.2 Checking if the data are normally distributed

Density histograms to check for normality
Think of a density histogram as a piecewise constant function hn(x),

where n is the number of observations in the data set

; then, if the r.v. X having generated the data has density f on a
support SX , it can be shown that, under some regularity
assumptions, for any x ∈ SX ,

hn(x)→ f (x)

as n→∞ (and the number of classes→∞)

(the convergence “hn(x)→ f (x)” has to be understood in a particular
probabilistic sense, but details are beyond the scope of this course)

Concretely, the larger the number of observations, the more
similar the density histogram and the ‘true’ (unknown) density f

; look at the histogram and decide whether it looks enough like the
symmetric ‘bell-shaped’ normal curve or not
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3.3 Special random variables 3.3.2 Checking if the data are normally distributed

Density histograms to check for normality
Suppose we have a data set of size n = 50, drawn from a normal
distribution (but this, we ignore)
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; the density histogram looks like the bell-shaped curve

Besides, as both f (x) and the density histogram are scaled such that
the purple areas are 1, they are easily superimposed and compared
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Density histograms to check for normality
Look again at the (density)
histogram
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; serious departure from
normality
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Quantile plots
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3.3 Special random variables 3.3.2 Checking if the data are normally distributed

Quantile plots

Density histograms are easy to use, however they are usually not
really reliable indicators of the distribution form unless the number of
observations is very large

; another special graph, called a normal quantile plot, is more
effective in detecting departure from normality

The plot essentially compares data ordered from smallest to largest
with what to expect to get for the smallest to largest in a sample of that
size if the theoretical distribut. from which the data comes is normal

; if the data were effectively selected from the normal distribution, the
two sets of values should be reasonably close to one another

Note : the quantile plot is also sometimes called qq-plot
(; instruction in Matlab : qqplot)
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3.3 Special random variables 3.3.2 Checking if the data are normally distributed

Quantile plots
Procedure for building a quantile plot :

observations {x1, x2, . . . , xn}
ordered observations : x(1) ≤ x(2) ≤ . . . ≤ x(n)
cumulative probabilities αi = i−0.5

n , for all i = 1, . . . ,n
standard normal quantiles of level αi : for all i = 1, . . . ,n, zαi

chosen such that P(Z ≤ zαi ) = αi , where Z ∼ N (0,1)
Quantile plot : plot the n pairs (x(i), zαi )

If the sample comes from the Standard Normal distribution, x(i) ' z(i)
and the points would fall close to a 45◦straight line passing by (0,0)

If the sample comes from some other normal distribution, the points
would still fall around a straight line, as there is a linear relationship
between the quantiles of N (µ, σ) and the standard normal quantiles

Fact
If the sample comes from some normal distribution, the points should
follow (at least approximately) a straight line
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3.3 Special random variables 3.3.2 Checking if the data are normally distributed

Quantile plots : examples
The figure below displays quantile plots for the previous two examples
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; the normality assumption appears acceptable for the first data set,
not at all for the second
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Transforming observations
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3.3 Special random variables 3.3.2 Checking if the data are normally distributed

Transforming observations
When the density histogram or the qq-plot indicate that the

assumption of a normal distribution is invalid, transformations of the
data can often improve the agreement with normality.

Scientists regularly express their observations in natural logs

Let’s look again at the seeded clouds rainfall data
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3.3 Special random variables 3.3.2 Checking if the data are normally distributed

Transforming observations

Apart from log, other transformations may be useful :

−1
x
,
√

x , 4
√

x , x2, x3

If the observations are positive and the distribution has a long tail on
the right, then concave transformations like ψ(x) := log(x) or

√
x put

the large values down farther than they pull the central or small values
; observations ‘more symmetric’

Convex transformations work the other way

If the transformed observations are approximately normal (check
with a quantile plot), it is usually advantageous to use the normality of
this new scale to perform any statistical analysis

Note: transformations should be invertible (i.e. ψ−1 should exists)
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Objectives
Now you should be able to :

Calculate probabilities, determine mean, variance and standard
deviation for normal distributions
Standardise normal random variables, and understand why this is
useful
Use the table for the cdf of a standard normal distribution to
determine probabilities of interest
Explain the general concepts of estimating the parameters of a
population, in particular the difference between estimator and
estimate, and the role played by the sampling distribution of an
estimator
Illustrate those concepts with the particular case of the estimation
of the mean in a normal population

Put yourself to the test ! ; Q20 p.131, Q30 p.195
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