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Previous lectures

1 Probability theory
2 Random variables

Questions?
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This lecture

4. Interval estimation
4.1 Interval estimation
4.2 Estimation and sampling distribution
4.2 Confidence interval on the mean of a normal distribution,
variance known
4.3 Confidence interval on the mean of a normal distribution,
variance unknown
4.4. The Student’s t-distribution
4.5. General method to derive a confidence interval
4.6. Central Limit Theorem
4.7 Confidence interval on the mean of an arbitrary population
4.8 Prediction intervals

Additional reading : Chapter 9 in the textbook
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4.1 Interval estimation

Interval estimation : introduction
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4.1 Interval estimation

Introduction

The purpose of most statistical inference procedures is to generalise
from information contained in an observed random sample about the
population from which the samples were obtained

This can be divided into two major areas :
estimation, including point estimation and interval estimation
tests of hypotheses

In this chapter we will present interval estimation.
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4.1 Interval estimation

Interval estimation : introduction

There are two types of estimators:
1 Point estimator: defined by a single value of a statistic.
2 Interval estimator: defined by two numbers, between which the

parameter is said to lie
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4.1 Interval estimation

Statistical Inference : Introduction

Populations are often described by the distribution of their values
; for instance, it is quite common practice to refer to a ‘normal

population’, when the variable of interest is thought to be
normally distributed

In statistical inference, we focus on drawing conclusions about one
parameter describing the population
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4.1 Interval estimation

Statistical Inference : Introduction

Often, the parameters we are mainly interested in are
the mean µ of the population
the variance σ2 (or standard deviation σ) of the population
the proportion π of individuals in the population that belong to a
class of interest
the difference in means of two sub-populations, µ1 − µ2

the difference in two sub-populations proportions, π1 − π2
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4.1 Interval estimation

Statistical Inference : Introduction

Obviously, those parameters are unknown (otherwise, no need to
make inferences about them) ; the first part of the process is thus to
estimate the unknown parameters
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4.1 Interval estimation

Random sampling

Before a sample of size n is selected at random from the population,
the observations are modeled as random variables X1,X2, . . . ,Xn

Definition
The set of observations X1,X2, . . . ,Xn constitutes a random sample if

1 the Xi ’s are independent random variables, and
2 every Xi has the same probability distribution
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4.1 Interval estimation

Random sampling

This is often abbreviated to i.i.d., for ‘independent and identically
distributed’ ; it is common to talk about an i.i.d. sample

We also apply the terms ‘random sample’ to the set of observed values

x1, x2, . . . , xn

of the random variables, but this should not cause any confusion

Note: as usual,
the lower case distinguishes the realization of a random sample from
the upper case, which represents the random variables
before they are observed
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4.2 Estimation and sampling distribution

Statistic, estimator and sampling distribution

Any numerical measure calculated from the sample is called a
statistic

Denote the unknown parameter of interest θ (so this can be µ, σ2, or
any other parameter of interest to us)

The only information we have to estimate that parameter θ is the
information contained in the sample

An estimator of θ is thus a statistic, i.e. a function of the sample

Θ̂ = h(X1,X2, . . . ,Xn)
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4.2 Estimation and sampling distribution

Statistic, estimator and sampling distribution

Note that an estimator is a random variable, as it is a function of
random variables ; it must have a probability distribution

That probability distribution is called a sampling distribution, and it
generally depends on the population distribution and the sample size

After the sample has been selected, Θ̂ takes on a particular value
θ̂ = h(x1, x2, . . . , xn), called the estimate of θ
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4.2 Estimation and sampling distribution

An example : estimating µ in a normal population
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4.2 Estimation and sampling distribution

Interval estimation : introduction

Non-formal example:
1 Point estimate: the temperature today is 32o.
2 Interval estimate: the temperature today is between 28o and 34o

with probability 0.95.
Interval estimation gives up certainty and precision regarding the value
of the parameter, but gains confidence regarding the parameter being
inside a pre-specified interval.
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4.2 Estimation and sampling distribution

Interval estimation : introduction

When the estimator is normally distributed, we can be ‘reasonably
confident’ that the true value of the parameter lies within two standard
errors of the estimate

=⇒ 68-95-99-rule - see Chapter 3.3
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4.2 Estimation and sampling distribution

The 68-95-99 rule for normal distributions

P(µ− σ < X < µ+ σ) ' 0.6827
P(µ− 2σ < X < µ+ 2σ) ' 0.9545
P(µ− 3σ < X < µ+ 3σ) ' 0.9973
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4.2 Estimation and sampling distribution

Interval estimation : introduction

Even in cases in which the estimator is not normally distributed,
Chebyshev’s inequality guarantees that the estimate of the
parameter will deviate from the true value by as much as 4 standard
errors at most 6 percent of the time (choose k := 4σ).

Chebyshev’s inequality

Let X be a random variable with mean µ and variance σ2.
Then, for any value k > 0,

P(|X − µ| ≥ k) ≤ σ2

k2
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4.2 Estimation and sampling distribution

Interval estimation : introduction

As we see, it is often easy to determine an interval of plausible values
for a parameter

; such observations are the basis of interval estimation

; instead of giving a point estimate θ̂, that is a single value that we
know not to be equal to θ anyway, we give

an interval in which we are very confident to find the true value
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4.2 Estimation and sampling distribution

Measure of centre and of variability : the sample mean
and sample variance

Sample mean

x̄ =
1
n

n∑
i=1

xi

Sample variance

s2 =
1

n − 1

n∑
i=1

(xi − x̄)2
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4.2 Estimation and sampling distribution

Non-formal example
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4.2 Estimation and sampling distribution

Basic interval estimation : example

Example
Suppose we are given a sample of size n from a population with a Normal
distribution :

X ∼ N (µ,1)

The sample mean is given by

X̄ =
1
n

n∑
i=1

Xi

which means that
X̄ ∼ N (µ,

1√
n

)
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4.2 Estimation and sampling distribution

Basic interval estimation : example

Assume that the sample is:

41.60,41.48,42.34,41.95,41.86,42.18,41.72,42.26,41.81,42.04

The sample mean is

x̄ =
1
n

n∑
i=1

xi =
1

10
(41.60 + 41.48 + . . .+ 42.04) = 41.924

and therefore
X̄ ∼ N (µ,

1√
10

)
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4.2 Estimation and sampling distribution

Basic interval estimation : example
2 times the standard deviation is

2σX̄ = 2× 0.3162 = 0.6324,

and we are thus ‘highly confident’ (; 68-95-99 rule) that the true
mean is within the interval

[41.924± 0.6324] = [41.291,42.556]

if we cannot assume that population is normally distributed,
then we use 4 times the standard error 4× 0.3162 = 1.2648,
and we remain ‘highly confident’ (; Chebyshev) that the true
mean is within the interval

[41.924± 1.2648] = [40.6592,43.188]

; the term ‘highly confident’ obviously needs to be quantified
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4.2 Estimation and sampling distribution

Confidence intervals
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4.2 Estimation and sampling distribution

Confidence intervals

The above intervals are called confidence intervals∗

Definition
A confidence interval is an interval for which we can assert with a
reasonable degree of certainty (or confidence) that it will contain the
true value of the population parameter under consideration

∗there exist other types of interval estimates, such as prediction intervals, see later
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4.2 Estimation and sampling distribution

Confidence intervals

A confidence interval is always calculated by first selecting a
confidence level, which measures the degree of reliability of the
interval
; a confidence interval of level 100× (1− α)% means that we are

100× (1− α)% confident that the true value of the parameter is
included into the interval (obviously, α is a real number in [0,1])

The most frequently used confidence levels are 90%, 95% and 99%
; the higher the confidence level, the more strongly we believe that

the value of the parameter being estimated lies within the interval
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4.2 Estimation and sampling distribution

Confidence intervals : remarks

Information about the precision of estimation is conveyed by the length
of the interval.

a short interval implies precise estimation,
a wide interval however means that there is a great deal of uncertainty
concerning the parameter that we are estimating

Note that the higher the level of the interval, the wider it must be!
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4.2 Estimation and sampling distribution

Confidence intervals : remarks

Fact
The 100× (1− α)% refers to the percentage of all samples of the
same size possibly drawn from the population which would produce an
interval containing the true θ
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4.2 Estimation and sampling distribution

Confidence intervals : remarks

Remark 2 : (ctd.)

; if we consider taking sample after sample from the population and
use each sample separately to compute 100× (1− α)% confidence
intervals, then in the long-run roughly 100× (1− α)% of these
intervals will capture θ

A correct probabilistic interpretation lies in the realization that a
confidence interval is a random interval, because its end-points are
calculated from a random sample and are therefore random variables

However, once the confidence interval has been computed, the true
value either belongs to it or does not belong to it, and any probability
statement is pointless

; that is why we use the term “confidence level” instead of
“probability”
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4.2 Estimation and sampling distribution

Confidence intervals : remarks
As an illustration, we successively computed 95%-confidence intervals
for µ for 100 random samples of size 100 independently drawn from a
N (0,1) population

0 20 40 60 80 100

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

sample number

; 96 intervals out of 100 contain the true value µ = 0

Obviously, in practice we do not know the true value of µ, and we
cannot tell whether the interval we have computed is one of the ‘good’
95% intervals or one of the ‘bad’ 5% intervals
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal distribution, variance
known
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known

The basic ideas for building confidence intervals are most easily
understood by first considering a simple situation :

Suppose we have a normal population with
unknown mean µ and
known variance σ2

Note that this is somewhat unrealistic, as typically both the mean and
the variance are unknown

; we will address more general situations later
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known

We have thus a random sample X1,X2, . . . ,Xn, such that, for all i ,

Xi ∼ N (µ, σ),

with µ unknown and σ a known constant
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known

Suppose we desire a confidence interval for µ of level 100× (1− α)%

From our random sample, this can be regarded as a ‘random interval’,
say [L,U], where L and U are statistics, and such that

P(L ≤ µ ≤ U) = 1− α

Mathematical Statistics (MAS713) Ariel Neufeld 35 / 113



4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known

In that situation, we know that, for any integer n ≥ 1,

X̄ =
1
n

n∑
i=1

Xi ∼ N
(
µ,

σ√
n

)
We may standardise this normally distributed random variable :

Z =
X̄ − µ
σ/
√

n
=
√

n
X̄ − µ
σ
∼ N (0,1)
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known

In our situation, because
Z ∼ N (0,1), we may write

P(−z1−α/2 ≤ Z ≤ z1−α/2) = 1− α

where z1−α/2 is the quantile of level
1− α/2 of the standard normal
distribution,

x

φ(
x)

− z1−α 2 0 z1−α 2

0.
0

0.
1

0.
2

0.
3

0.
4

α 2α 2

1 − α

that is,

P
(
−z1−α/2 ≤

√
n

X̄ − µ
σ
≤ z1−α/2

)
= 1− α
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known

Hence,

P
(

X̄ − z1−α/2
σ√
n
≤ µ ≤ X̄ + z1−α/2

σ√
n

)
= 1− α

; we have found L and U, two statistics (random variables depending
on the sample) such that

P(L ≤ µ ≤ U) = 1− α

; L and U will yield the bounds of the confidence interval !
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known

; if x̄ is the sample mean of an observed random sample of size n
from a normal distribution with known variance σ2, a confidence
interval of level 100× (1− α)% for µ is given by[

x̄ − z1−α/2
σ√
n
, x̄ + z1−α/2

σ√
n

]
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known
From Chapter 3.3: z0.95 = 1.645, z0.975 = 1.96 and z0.995 = 2.575

; a confidence interval for µ of level 90% is[
x̄ − 1.645× σ√

n , x̄ + 1.645× σ√
n

]
; a confidence interval for µ of level 95% is[

x̄ − 1.96× σ√
n , x̄ + 1.96× σ√

n

]
; a confidence interval for µ of level 99% is[

x̄ − 2.575× σ√
n , x̄ + 2.575× σ√

n

]
We see that the respective lengths of these intervals are

3.29
σ√
n
, 3.92

σ√
n

and 5.15
σ√
n
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known : choice of sample size

The length of a CI is a measure of the precision of the estimation
; the precision is inversely related to the confidence level

However, it is desirable to obtain a confidence interval that is both
short enough for decision-making purposes
of adequate confidence level

; one way to reduce the length of a confidence interval with
prescribed confidence level is by choosing n large enough
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known : choice of sample size

From the above, we know that in using x̄ to estimate µ,
the error e = |x̄ − µ| is less than z1−α/2

σ√
n with confidence 1− α

; in other words, we can be 100× (1− α)% confident that the error
will not exceed a given amount e when the sample size is

n =

(
z1−α/2σ

e

)2
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known : example

Example
Ten measurements of temperature are as follows :

64.1,64.7,64.5,64.6,64.5,64.3,64.6,64.8,64.2,64.3

Assume that temperature is normally distributed with σ = 1c.
a) Find a 95% CI for µ, the mean temperature

An elementary computation yields x̄ = 64.46.
With n = 10, σ = 1 and α = 0.05, direct application of the previous results
gives a 95% CI as follows :[

x̄ − zα/2
σ√
n
, x̄ + zα/2

σ√
n

]
=

[
64.46− 1.96× 1√

10
,64.46 + 1.96× 1√

10

]
= [63.84,65.08]
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known : example

Example (ctd.)
b) Determine how many measurements we should take to ensure that the
95% CI on the mean temperature µ has a length of at most 1,

The length of the CI in part a) is 1.24.
If we desire a higher precision, namely an confidence interval length of 1,
then we need more than 10 observations

The bound on error estimation e is one-half of the length of the CI, thus use
expression on Slide 34 with e = 0.5, σ = 1 and α = 0.05 :

n =

(
zα/2σ

e

)2

=

(
1.96× 1

0.5

)2

= 15.37

; as n must be an integer, the required sample size is 16
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known : example

Example (ctd.)
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(
zα/2σ
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0.5
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known : remarks

Remark 1 : if the population is normal, the confidence interval[
x̄ − z1−α/2

σ√
n
, x̄ + z1−α/2

σ√
n

]
(?)

is valid for all sample sizes n ≥ 1
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4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known : remarks

Remark 2 : this interval is not the only 100× (1− α)% confidence
interval for µ. For instance, starting from
P(zα/4 ≤ Z ≤ z1−3α/4) = 1− α, another 100× (1− α)% CI could be[

x̄ − z1−3α/4
σ√
n , x̄ − zα/4

σ√
n

]
However, interval (?) is often preferable, as it is symmetric around x̄

Mathematical Statistics (MAS713) Ariel Neufeld 46 / 113



4.2 CI on the mean of a normal distribution, known σ2

Confidence interval on the mean of a normal
distribution, variance known : remarks

Remark 3 : in the same spirit, we have
P(Z ≤ z1−α) = P(−z1−α ≤ Z ) = 1− α

Hence, ]−∞, x̄ + z1−α
σ√
n ] and [x̄ − z1−α

σ√
n ,+∞[ are also

100× (1− α)% CI for µ

; these are called one-sided confidence intervals,
as opposed to (?) (two-sided CI) ; Slide 45.
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4.3 CI on the mean of a normal distribution, unknown σ2

Confidence interval on the mean of a normal distribution, variance
unknown
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4.3 CI on the mean of a normal distribution, unknown σ2

Confidence interval on the mean of a normal
distribution, variance unknown

Suppose now that the population variance σ2 is not known
(meaning that now bothbµ and σ2 are unknown).

; we can no longer make practical use of the core result

Z =
√

n X̄−µ
σ ∼ N (0,1)
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4.3 CI on the mean of a normal distribution, unknown σ2

Confidence interval on the mean of a normal
distribution, variance unknown
However, from the random sample X1,X2, . . . ,Xn we have a natural
estimator of the unknown σ2 : the sample variance

S2 =
1

n − 1

n∑
i=1

(
Xi − X̄

)2
,

which will provide an estimated sample variance s2 = 1
n−1

∑
i(xi − x̄)2

upon observation of a sample x1, x2, . . . , xn

; a logical procedure is thus to replace σ with the sample standard
deviation S, and to work with the random variable

T =
√

n
X̄ − µ

S
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4.3 CI on the mean of a normal distribution, unknown σ2

Confidence interval on the mean of a normal
distribution, variance unknown

The fact is that, if Z was a standardised version of a normal r.v. X̄ and
was therefore normally distributed, T is now a ratio of two random
variables (X̄ − µ and S)

; T is not N (0,1)-distributed !

Mathematical Statistics (MAS713) Ariel Neufeld 51 / 113



4.3 CI on the mean of a normal distribution, unknown σ2

Confidence interval on the mean of a normal
distribution, variance unknown

Indeed, T cannot have the same distribution as Z , as the estimation of
the constant σ by a random variable S introduces some extra variability

; the random variable T varies much more in value from sample to
sample than does Z

It turns out that, for n ≥ 2,

T follows the so-called t-distribution with n− 1 degrees of freedom
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4.4. The Student’s t-distribution

The Student’s t-distribution
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4.4. The Student’s t-distribution

The Student’s t-distribution

The first who realized that replacing σ with an estimation effectively
affected the distribution of Z was William Gosset (1876-1937), a British
chemist and mathematician who, worked at the Guinness Brewery in
Dublin

Another researcher at Guinness had previously published a paper
containing trade secrets of the Guinness brewery, so that Guinness
prohibited its employees from publishing any papers regardless of the
contained information

; Gosset used the pseudonym Student for his publications to avoid
their detection by his employer

Thus his most famous achievement is now referred to as Student’s
t-distribution, which might otherwise have been Gosset’s t-distribution
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4.4. The Student’s t-distribution

The Student’s t-distribution
A random variable, say T , is said to follow the Student’s t-distribution
with ν degrees of freedom, i.e.

T ∼ tν

if its probability density function is given by

f (t) =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

) (1 +
t2

ν

)− ν+1
2

; ST = R

for some integer ν

Note : the Gamma function is given by

Γ(y) =

∫ +∞

0
xy−1e−x dx , for y > 0

It can be shown that Γ(y) = (y − 1)× Γ(y − 1), so that, if y is a positive
integer n, Γ(n) = (n − 1)!

There is no simple expression for the Student’s t-cdf
Mathematical Statistics (MAS713) Ariel Neufeld 55 / 113



4.4. The Student’s t-distribution

The Student’s t-distribution
Student’s t distribution with 1 degree of freedom
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4.4. The Student’s t-distribution

The Student’s t-distribution
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4.4. The Student’s t-distribution

The Student’s t-distribution
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4.4. The Student’s t-distribution

The Student’s t-distribution
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4.4. The Student’s t-distribution

The Student’s t-distribution
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4.4. The Student’s t-distribution

The Student’s t-distribution
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4.4. The Student’s t-distribution

The Student’s t-distribution

Mean and variance of the tν-distribution
If T ∼ tν , E(T ) = 0 and Var(T ) =

ν

ν − 2
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4.4. The Student’s t-distribution

The Student’s t-distribution

The Student’s t distribution is similar to the standard normal
distribution in that both densities are symmetric and unimodal, and the
maximum value is reached at t = 0

However, the Student’s t distribution has heavier tails than the normal

; there is more probability to find the random variable T ‘far away’
from 0 than there is for Z

This is more marked for small values of ν

As the number ν of degrees of freedom increases, tν-distributions look
more and more like the standard normal distribution

In fact, it can be shown that the Student’s t distribution with ν degrees
of freedom approaches the standard normal distribution as ν →∞
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4.4. The Student’s t-distribution

The Student’s t-distribution : quantiles

Similarly to what we did for the Normal distribution, we can define the
quantiles of any Student’s t-distribution
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4.4. The Student’s t-distribution

The Student’s t-distribution : quantiles

Let tν;α be the value such that

P(T > tν;α) = 1− α

for T ∼ tν

Like for the standard normal
distribution, the symmetry of any
tν-distribution implies that

tν;1−α = −tν;α
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tν−distribution

t

f(t
)

tν, α

1 − α

For any ν, the main quantiles of interest may be found in the
t-distribution critical values tables
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4.4. The Student’s t-distribution

t-distribution critical values tables
t  Table

cum. prob t .50 t .75 t .80 t .85 t .90 t .95 t .975 t .99 t .995 t .999 t .9995

one-tail 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005
two-tails 1.00 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.002 0.001

df
1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62
2 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 0.000 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 0.000 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 0.000 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 0.000 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 0.000 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 0.000 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 0.000 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 0.000 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 0.000 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 0.000 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 0.000 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 0.000 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 0.000 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 0.000 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 0.000 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 3.646
40 0.000 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 0.000 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 3.460
80 0.000 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 3.195 3.416

100 0.000 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.174 3.390
1000 0.000 0.675 0.842 1.037 1.282 1.646 1.962 2.330 2.581 3.098 3.300

z 0.000 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291
0% 50% 60% 70% 80% 90% 95% 98% 99% 99.8% 99.9%

Confidence Level

t-table.xls 7/14/2007
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4.4. The Student’s t-distribution

Confidence interval on the mean of a normal
distribution, variance unknown

So we have, for any n ≥ 2,

T =
√

n
X̄ − µ

S
∼ tn−1

Note : the number of degrees of freedom for the t-distribution is the
number of degrees of freedom associated with the estimated variance
S2
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4.4. The Student’s t-distribution

Confidence interval on the mean of a normal
distribution, variance unknown

It is now easy to find a 100× (1− α)% confidence interval for µ by
proceeding essentially as we did when σ2 was known

We may write

P
(
−tn−1;1−α/2 ≤

√
n

X̄ − µ
S

≤ tn−1;1−α/2

)
= 1− α

or

P
(

X̄ − tn−1;1−α/2
S√
n
≤ µ ≤ X̄ + tn−1;1−α/2

S√
n

)
= 1− α
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4.4. The Student’s t-distribution

Confidence interval on the mean of a normal
distribution, variance unknown

; if x̄ and s are the sample mean and sample standard deviation of
an observed random sample of size n from a normal distribution, a
confidence interval of level 100× (1− α)% for µ is given by[

x̄ − tn−1;1−α/2
s√
n
, x̄ + tn−1;1−α/2

s√
n

]
This confidence interval is sometimes called t-confidence interval, as
opposed to (?) (z-confidence interval)
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4.4. The Student’s t-distribution

Confidence interval on the mean of a normal
distribution, variance unknown

Because tn−1 has heavier tails than N (0,1), tn−1;1−α/2 > z1−α/2

; this renders the extra variability introduced by the estimation of σ
(less accuracy)

Note : One can also define one-sided 100× (1− α)% t-confidence
intervals

]−∞, x̄ + tn−1;1−α
s√
n ] and [x̄ − tn−1;1−α

s√
n ,+∞[

Mathematical Statistics (MAS713) Ariel Neufeld 66 / 113



4.4. The Student’s t-distribution

Confidence interval on the mean of a normal
distribution, variance unknown : example

Example
A sample with 22 measurements of the temperature is as follows :

7.6, 8.1, 11.7, 14.3, 14.3, 14.1, 8.3, 12.3, 15.9, 16.4,
11.3, 12.0, 12.9, 15.0, 13.2, 14.6, 13.5, 10.4, 13.8,

15.6, 12.2, 11.2

Construct a 99% confidence interval for the mean temperature

Elementary computations give

x̄ = 12.67 and s = 2.47
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4.4. The Student’s t-distribution

Confidence interval on the mean of a normal
distribution, variance unknown : example

The quantile plot below provides good
support for the assumption that the
population is normally distributed
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Since n = 22, we have n − 1 = 21 degrees of freedom for t . In the table, we
find t21;0.995 = 2.831. The resulting CI is[

x̄ − tn−1;1−α/2
s√
n
, x̄ + tn−1;1−α/2

s√
n

]
=

[
12.67± 2.831× 2.47√

22

]
= [11.18,14.16]

; we are 99% confident that the mean temperature lies between 11.18 and
14.16 degress.
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4.5. General method to derive a confidence interval

General method to derive a
confidence interval
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4.5. General method to derive a confidence interval

General method to derive a confidence interval

By looking at the previous two situations (CI for µ in a normal
population, σ2 known or unknown), it is now easy to give a general
method for finding a confidence interval for any unknown parameter θ
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4.5. General method to derive a confidence interval

General method to derive a confidence interval

Let X1,X2, . . . ,Xn be a random sample, and suppose we can find a
statistic g(X1,X2, . . . ,Xn; θ) with the following properties :

1 g(X1,X2, . . . ,Xn; θ) depends on both the sample and θ ;
2 the probability distribution of g(X1,X2, . . . ,Xn; θ) does not depend

on θ or any other parameter
Now, one must find constants c and u such that

P(c ≤ g(X1,X2, . . . ,Xn; θ) ≤ u) = 1− α

Because Property 2, c and u do not depend on θ
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4.5. General method to derive a confidence interval

General method to derive a confidence interval

Finally, we must manipulate the inequalities in the probability
statement so that

P(L(X1,X2, . . . ,Xn; c,u) ≤ θ ≤ U(X1,X2, . . . ,Xn; c,u)) = 1− α

This gives L(X1,X2, . . . ,Xn; c,u) and U(X1,X2, . . . ,Xn; c,u) as the
lower and upper limits defining a 100× (1− α)% confidence interval
for θ

The quantity g(X1,X2, . . . ,Xn; θ) is often called a “pivotal quantity”
because we pivot on it to produce the confidence interval
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4.5. General method to derive a confidence interval

General method to derive a confidence interval

Example:

θ = µ in a normal population with known variance, then

=⇒ g(X1,X2, . . . ,Xn; θ) =
√

n X̄−µ
σ ∼ N (0,1)

We hace c = −z1−α/2 and u = z1−α/2

The statistics L and U are
L(X1,X2, . . . ,Xn; c,u) = X̄ − z1−α/2

σ√
n ,

U(X1,X2, . . . ,Xn; c,u) = X̄ + z1−α/2
σ√
n
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4.6. Central Limit Theorem

Central Limit Theorem
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4.6. Central Limit Theorem

Introduction

So far we have assumed that the population distribution is normal. In
that situation, we have

Z =
√

n
X̄ − µ
σ
∼ N (0,1) and T =

√
n

X̄ − µ
S

∼ tn−1

where X̄ is the sample mean and S2 is the sample variance of a
random sample of size n

These sampling distributions are the cornerstone when deriving
confidence intervals for µ, and directly follow from Xi ∼ N (µ, σ)
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4.6. Central Limit Theorem

Introduction

A natural question is now :

What if the population is not normal?

; surprisingly enough, the above results still hold most of the time, at
least approximately, due to the so-called

Central Limit Theorem
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4.6. Central Limit Theorem

The Central Limit Theorem

The Central Limit Theorem (CLT) is certainly one of the most
remarkable results in probability (“the unofficial sovereign of probability
theory”). Loosely speaking, it asserts that

the sum of a large number of independent random variables has a
distribution that is approximately normal

It was first postulated by Abraham de Moivre who used the bell-shaped
curve to approximate the distribution of the number of heads resulting
from many tosses of a fair coin
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4.6. Central Limit Theorem

The Central Limit Theorem

However, this received little attention until the French mathematician
Pierre-Simon Laplace (1749-1827) rescued it from obscurity in his
monumental work “Théorie Analytique des Probabilités”, which was
published in 1812

But it was not before 1901 that it was defined in general terms and
formally proved by the Russian mathematician Aleksandr Lyapunov
(1857-1918)
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4.6. Central Limit Theorem

The Central Limit Theorem

Central Limit Theorem
If X1,X2, . . . ,Xn is a random sample (meaning i.i.d.) taken from a
population with finite mean µ and finite variance σ2,
and if X̄ denotes the sample mean, then the limiting distribution of

1√
n

∑n
i=1 Xi − nµ

σ
=
√

n
X̄ − µ
σ

as n→∞, is the standard normal distribution
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4.6. Central Limit Theorem

The Central Limit Theorem

When Xi ∼ N (µ, σ),
√

n X̄−µ
σ ∼ N (0,1) for all n

What the CLT states is that, when Xi ’s are not normal,√
n X̄−µ

σ ∼ N (0,1) when n is infinitely large

; the standard normal distribution provides a reasonable
approximation to the distribution of

√
n X̄−µ

σ when “n is large”
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4.6. Central Limit Theorem

The Central Limit Theorem

The power of the CLT is that it holds true for any population
distribution, discrete or continuous ! For instance,

Xi ∼ Exp(λ) (µ =
1
λ
, σ =

1
λ

) =⇒
√

n
X̄ − 1/λ

1/λ
a∼ N (0,1)

Xi ∼ U[a,b] (µ =
a + b

2
, σ =

b − a√
12

) =⇒
√

n
X̄ − a+b

2
b−a√

12

a∼ N (0,1)

Xi ∼ Bern(π) (µ = π, σ =
√
π(1− π)) =⇒

√
n

X̄ − π√
π(1− π)

a∼ N (0,1)

Note : a∼ is for ‘approximately follows’
(or ‘asymptotically (n→∞) follows’)
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4.6. Central Limit Theorem

The Central Limit Theorem

Facts :
the larger n, the better the normal approximation
the closer the population is to being normal, the more rapidly the
distribution of

√
n X̄−µ

σ approaches normality as n gets large
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4.6. Central Limit Theorem

The Central Limit Theorem : illustration
Probability density functions for

√
n X̄−µ

σ

Xi ∼ U[−
√

3,
√

3] (µ = 0, σ = 1) Xi ∼ Exp(1)− 1 (µ = 0, σ = 1)
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4.6. Central Limit Theorem

The Central Limit Theorem : illustration
Probability density functions for
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The Central Limit Theorem : illustration
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4.6. Central Limit Theorem

The Central Limit Theorem : illustration
Probability density functions for
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4.6. Central Limit Theorem

The Central Limit Theorem : illustration
Probability mass functions for

∑n
i=1 Xi , Xi ∼ Bern(π)

π = 0.5 :
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4.6. Central Limit Theorem

The Central Limit Theorem : further illustration

Matlab example
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4.6. Central Limit Theorem

The Central Limit Theorem : remarks

Remark 1 :

The Central Limit Theorem not only provides a simple method for
computing approximate probabilities for sums or averages of
independent random variables

It also helps explain why so many natural populations exhibit a
bell-shaped (i.e., normal) distribution curve :

indeed, as long as the behaviour of the variable of interest is dictated
by a large number of independent contributions, it should be (at least
approximately) normally distributed
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4.6. Central Limit Theorem

The Central Limit Theorem : remarks

For instance, a person’s height is the result of many independent
factors, both genetic and environmental. Each of these factors can
increase or decrease a person’s height, just as each ball in Galton’s
board can bounce to the right or the left. The Central Limit Theorem
guarantees that the sum of these contributions has approximately a
normal distribution
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4.6. Central Limit Theorem

The Central Limit Theorem : remarks
Remark 2 :

a natural question is ‘how large n needs to be’ for the normal
approximation to be valid

; that depends on the population distribution !

A general rule-of-thumb is that one can be confident of the normal
approximation whenever the sample size n is at least 30

n ≥ 30

Note that, in favourable cases (population distribution not severely
non-normal), the normal approximation will be satisfactory for much
smaller sample sizes (like n = 5 in the uniform case, for instance)

The rule “n ≥ 30” just guarantees that the normal distribution provides
a good approximation to the sampling distribution of X̄ regardless of
the shape of the population
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4.7 Confidence interval on the mean of an arbitrary population

Confidence interval on the mean of
an arbitrary population

Mathematical Statistics (MAS713) Ariel Neufeld 89 / 113



4.7 Confidence interval on the mean of an arbitrary population

Confidence interval on the mean of an arbitrary
distribution

The Central Limit Theorem also allows to use the procedures
described in the previous slides to derive confidence intervals for µ
in an arbitrary population, bearing in mind that these will be
approximate confidence intervals (whereas they were exact in a
normal population)
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4.7 Confidence interval on the mean of an arbitrary population

Confidence interval on the mean of an arbitrary
distribution

Indeed, we have, if n is large enough,

Z =
√

n
X̄ − µ
σ

a∼ N (0,1)

Hence,

P
(
−z1−α/2 ≤

√
n

X̄ − µ
σ
≤ z1−α/2

)
' 1− α,

where z1−α/2 is the quantile of level 1− α/2 of the standard normal
distribution
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4.7 Confidence interval on the mean of an arbitrary population

Confidence interval on the mean of an arbitrary
distribution

It follows

P
(

X̄ − z1−α/2
σ√
n
≤ µ ≤ X̄ + z1−α/2

σ√
n

)
' 1− α,

so that if x̄ is the sample mean of an observed random sample of size
n from any distribution with known variance σ2, an approximate
confidence interval of level 100× (1− α)% for µ is given by[

x̄ − z1−α/2
σ√
n
, x̄ + z1−α/2

σ√
n

]
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4.7 Confidence interval on the mean of an arbitrary population

Confidence interval on the mean of an arbitrary
distribution

Note : because this result requires “n large enough” to be reliable, this
type of interval, based on the CLT, is often called large-sample
confidence interval

One could also define large-sample one-sided confidence intervals of
level 100× (1− α)% : (−∞, x̄ + z1−α

σ√
n ] and [x̄ − z1−α

σ√
n ,+∞)
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4.7 Confidence interval on the mean of an arbitrary population

Confidence interval on the mean of an arbitrary
distribution

What if the population standard deviation is unknown ?
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4.7 Confidence interval on the mean of an arbitrary population

Confidence interval on the mean of an arbitrary
distribution

; as previously, it is natural to replace σ by the sample standard
deviation S and to work with

T =
√

n
X̄ − µ

S

One might then expect to base the derivation of the CI on T ∼ tn−1
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4.7 Confidence interval on the mean of an arbitrary population

Confidence interval on the mean of an arbitrary
distribution

However, remind that, when ν is large, tν is very much like N (0,1)

; in large samples, estimating σ with S has very little effect on the
distribution of T , which in turn is well approximated by the standard
normal distribution :

T a∼ N (0,1)
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4.7 Confidence interval on the mean of an arbitrary population

Confidence interval on the mean of an arbitrary
distribution

Consequently, if x̄ and s are the sample mean and the sample
standard deviation of an observed random sample of size n from any
distribution, an approximate confidence interval of level
100× (1− α)% for µ is given by[

x̄ − z1−α/2
s√
n
, x̄ + z1−α/2

s√
n

]
This expression holds regardless of the population distribution, as long
as n is large enough

As usual, corresponding one-sided confidence intervals could be
defined : (−∞, x̄ + z1−α

s√
n ] and [x̄ − z1−α

s√
n ,+∞)
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4.7 Confidence interval on the mean of an arbitrary population

Confidence interval on the mean of an arbitrary
distribution : example
Example
A lab reports the results of a study to investigate mercury contamination
levels in fish. A sample of 53 fish was selected from some Florida lakes, and
mercury concentration in the muscle tissue was measured (in ppm) :

1.23, 0.49, 1.08, . . ., 0.16, 0.27
Find a confidence interval of level 95% on µ, the mean mercury concentration
in the muscle tissue of fish

An histogram and a quantile plot for the data
histogram
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4.7 Confidence interval on the mean of an arbitrary population

Confidence interval on the mean of an arbitrary
distribution : example
; both plots indicate that the distribution of mercury concentration is
not normal (positively skewed)

However, the sample is large enough (n = 53) to use the Central
Limit Theorem and derive approximate confidence interval for µ

Elementary computations give x̄ = 0.525 ppm and s = 0.3486 ppm.
A large sample confidence interval is given by[
x̄ − z1−α/2

s√
n , x̄ + z1−α/2

s√
n

]
With z0.975 = 1.96 and the above values, we have[

0.525− 1.96
0.3486√

53
,0.525 + 1.96

0.3486√
53

]
= [0.4311,0.6189]

; we are ± 95% confident that the true average mercury
concentration is between 0.4311 and 0.6189 ppm
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4.7 Confidence interval on the mean of an arbitrary population

Confidence intervals for the mean :
summary
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4.7 Confidence interval on the mean of an arbitrary population

Confidence intervals for the mean : summary

The several situations leading to different confidence intervals for the
mean can be summarised as follows :
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4.7 Confidence interval on the mean of an arbitrary population

Confidence intervals for the mean : summary

The first thing is : is the population normal ? (check from a
histogram and/or a quantile plot, for instance)

- if yes, it is normal, is σ known ?
if yes, use a z-confidence interval like[
x̄ − z1−α/2

σ√
n , x̄ + z1−α/2

σ√
n

]
if no, use a t-confidence interval like[
x̄ − tn−1;1−α/2

s√
n , x̄ + tn−1;1−α/2

s√
n

]
- if no, it is not normal, use an approximate z-confidence interval like[
x̄ − z1−α/2

s√
n , x̄ + z1−α/2

s√
n

]
,

provided the sample size is large (large sample CI)
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4.7 Confidence interval on the mean of an arbitrary population

Confidence intervals for the mean : summary

What if the sample size is small and the population is not normal ?
; check on a case by case basis (beyond the scope of this course)
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4.8 Prediction intervals

Prediction intervals
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4.8 Prediction intervals

Prediction interval for a future observation

In some situations, we may be interested in predicting a future
observation of a variable

; different than estimating the mean of the variable !

; instead of confidence intervals, we are after
100× (1− α)% prediction interval on a future observation
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4.8 Prediction intervals

Prediction interval for a future observation

Suppose that X1,X2, . . . ,Xn is a random sample from a normal
population with mean µ and standard deviation σ

; we wish to predict the value Xn+1, a single future observation

As Xn+1 comes from the same population as X1,X2, . . . ,Xn,
information contained in the sample should be used to predict Xn+1

; the predictor of Xn+1, say X ∗, should be a statistic
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4.8 Prediction intervals

Prediction interval for a future observation

Let’s define an estimator for µ as the sample mean, so we take it as
predictor :

X ∗ = X̄ =
1
n

n∑
i=1

Xi

Now, let’s look at the error term

e = Xn+1 − X̄

X̄ ∼ N (µ,
σ√
n

)

Xn+1 ∼ N (µ, σ)
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4.8 Prediction intervals

Prediction interval for a future observation

So we have that

e ∼ N (µe, σe)

We have that µe = 0 and
the variance of the prediction error is

Var(e) = Var(Xn+1 − X ∗) = Var(Xn+1 − X̄ ) = Var(Xn+1) + Var(X̄ )

= σ2 + σ2

n = σ2 (1 + 1
n

)
(because Xn+1 is independent of X1,X2, . . . ,Xn and so of X̄ )

e ∼ N
(

0,
√
σ2
(
1 + 1

n

))
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4.8 Prediction intervals

Prediction interval for a future observation

Hence,
Z =

Xn+1 − X̄

σ
√

1 + 1
n

∼ N (0,1)

Replacing the possibly unknown σ with the sample standard deviation
S yields

T =
Xn+1 − X̄

S
√

1 + 1
n

∼ tn−1
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4.8 Prediction intervals

Prediction interval for a future observation

Manipulating Z and T as we did previously for CI leads to the
100× (1− α)% z- and t-prediction intervals on the future observation :[

x̄ − z1−α/2 σ
√

1 + 1
n , x̄ + z1−α/2 σ

√
1 + 1

n

]
[
x̄ − tn−1;1−α/2 s

√
1 + 1

n , x̄ + tn−1;1−α/2 s
√

1 + 1
n

]
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4.8 Prediction intervals

Prediction interval for a future observation : remarks

Remark 1 :

Prediction intervals for a single observation will always be longer than
confidence intervals for µ, because there is more variability associated
with one observation than with an average
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4.8 Prediction intervals

Prediction interval for a future observation : remarks

Remark 2 :

As n gets larger (n→∞):

the width of the CI for µ decreases to 0
(we are more and more accurate when estimating µ),

but

this is not the case for a prediction interval :
the inherent variability of Xn+1 never vanishes, even when we have
observed many other observations before!
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Objectives
Now you should be able to :

Understand the basics of interval estimation

Explain what a confidence interval of level 100 × (1 − α)% for a given parameter
is

Construct confidence intervals on the mean of a normal distribution, advisedly
using either the normal distribution or the Student’s t distribution

Understand the Central Limit Theorem

Explain the important role of the normal distribution as a sampling distribution

Construct large sample confidence intervals on a mean of an arbitrary
distribution

Explain the difference between a confidence interval and a prediction interval

Construct prediction intervals for a future observation in a normal population

Put yourself to the test ! ; Q34 p.457, Q35 p.457, Q57 p.462, Q57 p.462,
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