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ABSTRACT. We show how inter-asset dependence information derived from market prices of options can
lead to improved model-free price bounds for multi-asset derivatives. Depending on the type of the traded
option, we either extract correlation information or we derive restrictions on the set of admissible copulas
that capture the inter-asset dependencies. To compute the resultant price bounds for some multi-asset op-
tions of interest, we apply a modified martingale optimal transport approach. Several examples based on
simulated and real market data illustrate the improvement of the obtained price bounds and thus provide
evidence for the relevance and tractability of our approach.
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1. INTRODUCTION

In recent years model-free valuation approaches for exotic derivatives attracted enormous attention.
In such approaches the aim is to determine arbitrage-free price bounds for an exotic, and therefore not
liquidly traded, option Φ while imposing no assumptions on the dynamics or probability distributions of
a potential underlying stochastic model of the financial market. Put differently, to price Φ one allows for
all arbitrage-free pricing models and associated pricing measures Q, and computes the extreme prices for
Φ as minimial and maximal expectations EQ[Φ] among these models, resulting in a range of arbitrage-
free prices (see e.g. [1, 13, 20, 22, 23, 25]). In this way, the model-free pricing approach respects the not-
quantifiable Knightian uncertainty [47] of having chosen a wrong financial model for option valuation,
which is particularly important in periods in which financial models calibrated to historical data do not
depict the real behaviour of the market appropriately, for instance due to unforeseen financial crises.

However, a major drawback of the model-free approach evidently is that the resultant range of pos-
sible arbitrage-free prices for Φ turns out to be too large and therefore the usefulness of the original
model-free pricing approach in practice is limited, see also [28, 59]. To decrease the range of pos-
sible arbitrage-free prices, one follows an inverse approach by inferring information from the mar-
ket and then reducing the set of admissible models to those models that are consistent with the con-
sidered information. This market information usually is related to market beliefs ([11, 23, 45, 61]),
or to the prices of liquidly traded options either directly ([1, 19, 20, 23, 42, 44, 60]) or indirectly
through the marginal distributions that are derived from liquidly traded options by using the Breeden–
Litzenberger result ([18, 63, 72]). The latter case relates to the so called martingale optimal transport
problem ([13, 14, 15, 22, 29, 37, 38, 39, 41, 49, 73] to name but a few).

In this paper, we combine copula theory and martingale optimal transport to construct improved price
bounds for multi-asset derivatives. To this end, we first utilize the well-known relationship between
prices of certain derivatives depending on multiple underlying assets at a single time point and expecta-
tion operators defined in dependence of copulas and quasi-copulas (see [5, 17, 51, 64, 74]). If the payoff
function of the derivative fulfils certain monotonicity properties (∆-monotonicity, ∆-antitonicity, or su-
permodularity), then the extreme expectations can be associated to so-called Fréchet-bounds (see, for
instance, [55, 66, 67]) which then represent model-free price bounds for these derivatives. By following
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the approaches pursued in [10, 51, 64, 74] one can further restrict the class of admissible (quasi-) copulas
through the inclusion of additional market information which then leads to improved price bounds for
the financial derivative of interest in a single period framework. We extend this single-period model-free
pricing approach relying on copula theory to a multi-period setting by connecting it with model-free
pricing approaches relying on martingale optimal transport theory.

Our paper contributes to the literature on model-independent pricing in various aspects. First, we
show how price information on certain derivatives, that depend on multiple assets, leads to restrictions
on possible inter-asset dependencies expressed either in terms of correlations if prices of basket options
are observable, or through restrictions on the set of admissible copulas if prices of options with ∆-
monotone or ∆-antitone payoff function are observable. These market implied dependence restrictions
can be translated into linear equality and inequality constraints specifying the set of admissible pricing
measures. To that end, we prove in Proposition 2.1 a model-independent super-hedging duality result
which allows to include these additional constraints and thereby adapts results in [1, 13, 20, 23] among
others to our setting. This contribution can be seen in line with the various approaches that were recently
established to improve model-free price bounds, see [33, 50, 61, 70]. For improvements in the multi-
asset case we refer to the recent contributions [26, 31, 60, 64]. In [60] algorithms were developed to
exactly compute price bounds using market implied information in a single-period model. While most
of the mentioned approaches yield tighter price bounds mainly through restrictions on admissible pricing
measures based on the distributions of single underlying securities, our approach includes restrictions
imposed on the inter-asset dependencies.

Second, we utilize the common component dependence model approach, in which one assumes that
the inter-asset dependencies of all assets with respect to a specific reference asset are known or can be
derived from price information. In this situation the maximal inter-asset dependencies can no longer be
described by copulas and we therefore use the concept of quasi-copulas. In Theorem 3.7, as a main result
of our paper, we characterize the supermodular ordering of upper products in common component de-
pendence models which enables us to derive price bounds of a broad class of multi-asset derivatives with
supermodular payoff functions as analytical expressions in dependence of the limiting quasi-copulas.
Our result is based on an application of a multivariate integration by parts formula (see [5]) and gener-
alizes [7, Theorem 1] to quasi-copulas.

Finally, we provide several numerical examples based on simulated and real data to illustrate the
significant improvement of price bounds when inter-asset dependencies are taken into account. More
specifically, we show in many relevant cases how upper and lower price bounds can be substantially
tightened when the set of admissible pricing measures is reduced due to market-implied dependencies.
Note that in the common component dependence model approach, knowledge of only a few prices writ-
ten on pairs of assets can already considerably improve the price bounds for options written on several
underlyings.

The remainder of the paper is as follows. In Section 2 we present the underlying setting and de-
rive an adjusted model-free pricing-hedging duality. Section 3 introduces the concept of copulas and
quasi-copulas and the most important associated results. In Section 4 we explain how we can use price
information of traded derivatives to derive restrictions on the set of resulting pricing measures and com-
patible copulas. In Section 5 we provide several examples illustrating how model-free price bounds can
be computed within our approach and how existing conventional price bounds can be improved. The
proofs of all mathematical statements are provided in Section 6.

2. SETTING AND DUALITY RESULT

The underlying problem of the present article is a model-independent approach to the pricing of
financial derivatives depending on several assets. At time t0 ∈ R, we consider a financial market with d ∈
N ∩ [2,∞) securities with non-negative values S1

0 , . . . , S
d
0 ∈ R+, and we denote by S := (Sk

ti)
k=1,...,d
i=1,...,n

their future values at times t1 < t2 < · · · < tn for n ∈ N. We model S by the canonical process
on (Rnd

+ ,B(Rnd
+ )), where B(Rnd

+ ) denotes the Borel-σ-algebra on Rnd
+ , i.e., the components of S are

defined via Sk
ti : (x11, . . . , x

d
n) 7→ xki . For simplicity, we normalize interest rates to zero and assume

absence of dividends. This means, Sk
ti denotes the price of the k-th security at time ti. Further, we fix

some payoff function c : Rnd
+ → R of a financial derivative depending on S. Our goal is to calculate

an arbitrage-free price interval for c in a model-independent way, i.e., by using only information that is
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implied by market prices without imposing any assumptions on the dynamics or joint distributions of S.
Therefore, we proceed as follows to define our set of pricing measures.

(i) First, we observe for all k = 1, . . . , d, i = 1, . . . , n prices of European call options written on
the k-th security maturing at ti for a continuum of strikes. We refer to such options as liquidly
traded options. According to [18] we can then infer the one-dimensional risk-neutral marginal
distributions µki of Sk

ti from this data for all i, k. This means for all i, k and for any pricing
measure Q that we have Q ◦ Sk

ti

−1
= µki , where µki has mean Sk

0 ∈ R+. Denote for each such
µ = (µki )

1≤k≤d
1≤i≤n by

Π(µ) :=
{
Q ∈ P(Rnd

+ )
∣∣∣ Q ◦ Sk

ti

−1
= µki for all i, k

}
the set of transport plans that consists of all Borel probability measures on Rnd

+ , denoted by
P(Rnd

+ ), with univariate marginals µ11, . . . , µ
d
n having finite first moments equal to S1

0 , . . . , S
d
0 .

Further, we denote by F k
i (·) =

∫ ·
−∞ dµki the cumulative distribution function of µki .

(ii) Moreover, to ensure absence of model-independent-arbitrage1, we assume that for every pricing
measure Q the martingale property

EQ[Sti |Stj , . . . , St1 ] = Stj Q-a.s. and for all tj ≤ ti (2.1)

holds true, where (Sti)0≤i≤n is the d-variate process with components Sti = (Sk
ti)

k=1,...,d for
i = 0, 1, . . . , n. According to a straightforward extension of [13, Lemma 2.3], the equality
in (2.1) may be rewritten as

∫
Rnd
+
δ(x11, . . . , x

d
j )(x

k
j+1 − xkj ) dQ(x11, . . . , x

d
n) = 0 for all k =

1, . . . , d, j = 0, . . . , n − 1 and δ ∈ Cb(Rjd
+ ), which is the class of continuous and bounded

functions on Rjd
+ . We denote by M(µ) ⊂ Π(µ) ⊂ P(Rnd

+ ) the set of martingale measures on
Rnd
+ with fixed univariate marginal distributions µ = (µki )

1≤k≤d
1≤i≤n .

(iii) Besides the marginal distributions and the martingale property, we impose additional linear con-
straints that are implied by observations on the market. These constraints additionally restrict
the dependence structure of the underlying assets S. More precisely, we consider linear equality
constraints of the form

EQ[f
eq
i (S)] = Keq

i (2.2)

for problem-tailored Borel-measurable functions f eqi : Rnd
+ → R and Keq

i ∈ R with i in
some index set Ieq. We will adjust the choices of f eqi to the specific problems. Additionally,
we implement inequality constraints of the form

EQ[f
ineq
i (S)] ≤ K ineq

i (2.3)

for Borel-measurable f ineqi : Rnd
+ → R, K ineq

i ∈ R, and i ∈ I ineq.
The set of measures which fulfil these additional constraints is denoted by

Mlin
f
eq
i

,K
eq
i

,Ieq,

f
ineq
i

,K
ineq
i

,Iineq

(µ) := M(µ) ∩
{
Q ∈ P(Rnd

+ )
∣∣∣ EQ[f

eq
i (S)] = Keq

i for all i ∈ Ieq
}

∩
{
Q ∈ P(Rnd

+ )
∣∣∣ EQ[f

ineq
i (S)] ≤ K ineq

i for all i ∈ I ineq
}
.

(2.4)

For the sake of readability we abbreviate this set by Mlin and consider it as our set of pricing measures.
An arbitrage-free and model-independent upper price bound for a payoff c under the above men-

tioned equality and inequality constraints can then be obtained by pursuing two different approaches.
First, in the primal approach, we consider the supremum of the expected values among all martingale
measures consistent with available price information on options and the imposed equality and inequality
constraints given by

PMlin := sup
Q∈Mlin

EQ[c(S)]. (2.5)

A corresponding lower price bound PMlin can be obtained as the infimum over all measures Q ∈ Mlin.
Second, in the dual approach, the price bounds of the derivative c can be calculated by using trading

strategies instead of pricing measures. For the upper bound we consider the problem of finding the

1in the sense of [1, Definition 1.2.]
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cheapest super-replication price of c. More precisely, we consider strategies Ψ(uk
i ),(δ

k
i ),(αi),(βi)

: Rnd
+ →

R of the form

Ψ(uk
i ),(δ

k
i ),(αi),(βi)

(x11, . . . , x
d
n) :=

d∑
k=1

n∑
i=1

uki (x
k
i ) +

n−1∑
i=1

d∑
k=1

δki (x
1
1, . . . , x

d
i )(x

k
i+1 − xki )

+
∑
i∈Ieq

αi

(
f eqi (x11, . . . , x

d
n)−Keq

i

)
+
∑

i∈Iineq

βi

(
f ineqi (x11, . . . , x

d
n)−K ineq

i

)
(2.6)

with uki ∈ C :=

{
u : R+ → R

∣∣∣∣ u(x) = a + bx +
∑m

i=1 λi(x − di)+ , a, b, λi, di ∈ R ,m ∈ N
}

and

with each δki ∈ Cb(Rid
+), αi ∈ R, βi ∈ R+ such that αi = 0, βj = 0 for all but finitely many i ∈ Ieq,

j ∈ I ineq. This means, we consider trading strategies allowing for static positions in the European
options uki , in derivatives with payoffs f eqi traded for a price Keq

i and long positions in f ineqi traded
for a price not higher than K ineq

i . Moreover, we consider dynamic self-financing trading positions δki
in the underlying securities. In line with our model-free approach, we are interested in strategies which
super-replicate the payoff of the derivative pointwise, i.e., for every possible path, independent of any
associated probability. We use the notation f ≥ c to express pointwise inequalities, i.e., f(x) ≥ c(x)
for all x ∈ Rnd

+ . The following result shows that - under mild assumptions - minimizing the prices of
such super-replication strategies yields the same value as maximizing expectations w.r.t. measures from
Mlin. To this end, we set

S :=

{
Ψ(uk

i ),(δ
k
i ),(αi),(βi)

∣∣∣∣ ∃ uki ∈ C, δki ∈ Cb(Rid
+), αi ∈ R, βi ∈ R+with αi = 0, βj = 0

for all but finitely many i ∈ Ieq, j ∈ I ineqs.t. Ψ(uk
i ),(δ

k
i ),(αi),(βi)

≥ c

}
,

and denote by DS(c) := infΨ∈S

{∑d
k=1

∑n
i=1 Eµk

i
[uki ]

}
the minimal price among all super-replicating

strategies Ψ := Ψ(uk
i ),(δ

k
i ),(αi),(βi)

for the payoff c. When there is no ambiguity about the payoff c, we
abbreviate the notation as DS . We define for m ∈ N by

Clin(Rm
+ ) :=

{
f : Rm

+ → R

∣∣∣∣∣ f continuous, sup
(x1,...,xm)∈Rm

+

|f(x1, . . . , xm)|
1 +

∑m
i=1 xi

<∞

}
,

Llin(Rm
+ ) :=

{
f : Rm

+ → R

∣∣∣∣∣ f lower semicontinuous, sup
(x1,...,xm)∈Rm

+

|f(x1, . . . , xm)|
1 +

∑m
i=1 xi

<∞

}
,

Ulin(Rm
+ ) :=

{
f : Rm

+ → R

∣∣∣∣∣ f upper semicontinuous, sup
(x1,...,xm)∈Rm

+

|f(x1, . . . , xm)|
1 +

∑m
i=1 xi

<∞

}
the set of continuous, lower semicontinuous, and upper semicontinuous functions, respectively, with at
most linear growth. We then adapt the model-independent super-hedging duality results from, e.g., [1],
[13], [20], [22], [29], [52], and [77], to our situation by formulating the following proposition.

Proposition 2.1 (Duality with additional constraints).
Assume that c ∈ Ulin(Rnd

+ ), f eqi ∈ Clin(Rnd
+ ), and f ineqj ∈ Llin(Rnd

+ ) for all i ∈ Ieq, j ∈ I ineq, and
assume that Mlin ̸= ∅. Then it holds

PMlin = DS . (2.7)

Moreover, there exists Q ∈ Mlin such that

PMlin = EQ[c(S)] . (2.8)

Remark 2.2.
(a) The set M(µ) of martingale measures with fixed univariate marginals is non-empty if and only

if the d-dimensional marginals (µ1i , . . . , µ
d
i )i=1,...,n increase in convex order2, see [71]. Thus, the

2A finite set of probability measures {P1, · · · ,Pn} on Rd is said to increase in convex order if
∫
Rd f(x) dPi(x) ≤∫

Rd f(x) dPi+1(x) for all convex functions f : Rd → R and for all i = 1, . . . , n− 1 such that the integrals are finite.
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latter condition is necessary for the non-emptiness of Mlin(µ). To derive sufficient conditions
for the non-emptiness of the set Mlin we proceed as follows in the case that both I ineq and Ieq

are at most countable. Assume M(µ) ̸= ∅ and w.l.o.g. Ieq = N, I ineq = N. We observe that if
infQ∈M(µ) EQ[f

eq
1 ] ≤ Keq

1 ≤ supQ∈M(µ) EQ[f
eq
1 ], then we get as a convex combination of the

minimal and maximal measure the existence of a measure Q ∈ M(µ) with EQ[f
eq
1 ] = Keq

1 . We
proceed inductively, and see that if for all i = 2, 3, . . . , we have

inf
Q∈Mlin

f
eq
i

,K
eq
i

,{1,...,i−1},

f
ineq
i

,K
ineq
i

,∅

(µ)
EQ[f

eq
i ] ≤ Keq

i ≤ sup
Q∈Mlin

f
eq
i

,K
eq
i

,{1,...,i−1},

f
ineq
i

,K
ineq
i

,∅

(µ)

EQ[f
eq
i ],

then it holds thatMlin
f
eq
i

,K
eq
i

,Ieq,

f
ineq
i

,K
ineq
i

,∅

(µ) ̸= ∅. In the same way we can check consistency of the

inequality constraints. Thus, if we have supQ∈Mlin
f
eq
i

,K
eq
i

,Ieq,

f
ineq
i

,K
ineq
i

,∅

(µ) EQ[f
ineq
1 ] ≤ K ineq

1 , and for all

i = 2, 3, . . . , that supQ∈Mlin
f
eq
i

,K
eq
i

,Ieq,

f
ineq
i

,K
ineq
i

,{1,...,i−1}

(µ) EQ[f
ineq
i ] ≤ K ineq

i , then Mlin ̸= ∅ holds.

(b) In the one-period case, i.e., if n = 1 , the martingale property (2.1) only constrains the marginal
distributions of Sk

t1 for k = 1, . . . , d but not the dependence structure of (S1
t1 , . . . , S

d
t1) , because

(2.1) simplifies to the mean constraint EQ[S
k
t1 ] = Sk

0 for some deterministic values Sk
0 ∈ R+

for k = 1, . . . , d representing today’s spot values of the respective securities.

A major contribution of this paper is the specification of situations, where the (countable) choices of
f eqi , Keq

i , Ieq and f ineqi , K ineq
i , I ineq, respectively, can explicitly be inferred from market data. These

specifications are given in detail in Section 4 and require the concept of copulas and quasi-copulas which
will be introduced in the following Section 3.

As a main result of our paper, we characterize for a finite number of bivariate copulas their pointwise
maximum (which is in general only a quasi-copula) by the supermodular comparison of copula products
where we extend the supermodular ordering to the class of quasi-copulas; we refer to Theorem 3.7.
This result is meaningful because dependence information that improves the upper Fréchet bound yields
in general only a quasi-copula as improved pointwise upper bound for the dependence structure, see,
e.g., [16, 51, 52, 56, 74]. As an application, we determine in Section 4.1 improved price bounds for
European basket options under dependence information related to the structure of a common component
dependence model.

3. DEPENDENCE MODELLING

In this section, we introduce the basic notions for copulas, quasi-copulas, and dependence orderings
which we use in Section 4 to restrict the inter-asset dependencies when prices of specific financial
derivatives are given. Further, as a main result we extend with Theorem 3.7 the characterization of the
supermodular ordering of upper products in common component dependence models from [7, Theorem
1] to the case of a quasi-copula as upper bound. We build on this result in Section 4 to derive closed-
form expressions for improved price bounds of supermodular payoff functions like basket options, when
dependence information related to the setting of a common component dependence model is available.

3.1. Basic Notions. For the analysis of dependence structures, we consider some well-known function
classes. We often focus on functions with non-negative domain because we are only interested in those
functions which can be interpreted as payoff functions depending on the non-negative underlying assets.
Denote by R+ := R+ ∪ {∞} the extended real non-negative numbers.

An m-variate copula is a distribution function on [0, 1]m with uniform univariate marginal distri-
butions. Due to Sklar’s theorem, every m-variate distribution function F can be decomposed into an
m-copula C and its univariate marginal distribution functions F1, . . . , Fm by

F (x) = C(F1(x1), . . . , Fm(xm)), x = (x1, . . . , xm) ∈ Rm . (3.1)

The copula C is uniquely determined on Ran(F1)×· · ·×Ran(Fm) , where Ran(Fi) denotes the range
of Fi . Conversely, for every copula C and for arbitrary univariate distribution functions F1, . . . , Fm ,
the function F defined by the right-hand side of (3.1) is an m-variate distribution function, see, e.g.,
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[30] and [55]. Denote by Cm the class of m-copulas, and by Wm and Mm the lower and upper Fréchet
bound which are defined by Wm(u) := max {

∑m
i=1 ui −m+ 1, 0} and Mm(u) := min1≤i≤m{ui} ,

respectively, for u = (u1, . . . , um) ∈ [0, 1]m . It holds that

Wm(u) ≤ C(u) ≤Mm(u) for all u ∈ [0, 1]m (3.2)

and for all copulas C ∈ Cm. The bounds are sharp, where Mm is a copula for all m ∈ N and where Wm

is a copula only for m ≤ 2 , see [55] and [67].
Knowledge of values or bounds of some functionals, for example, knowledge of prices or price bounds

as given by the linear functionals in (2.2) and (2.3), may restrict the class of copulas to a subclass of
dependencies. If the functionals are consistent w.r.t. the lower orthant ordering (i.e., w.r.t. the pointwise
ordering of distribution functions), then the Fréchet bounds Wm and Mm may be improved w.r.t. the
lower orthant ordering, see [51], where, however, the improved bounds are generally no longer copulas
but quasi-copulas defined as follows. Denote by Fm the class of m-variate distribution functions, and
by Fm

+ the subclass of m-variate distribution functions F defined by (3.1) such that Fi(0) = 0 for all
i ∈ {1, . . . ,m} .

Definition 3.1 (Quasi-copula, quasi-distribution function). Let m ∈ N .3

(a) A function Q : [0, 1]m → [0, 1] is called m-variate quasi-copula if
(i) Q is grounded, i.e., Q(u) = 0 if at least one coordinate of u is 0 ,

(ii) Q has uniform marginals, i.e.,Q(1, . . . , 1, ui, 1, . . . , 1) = ui for all ui ∈ [0, 1], 1 ≤ i ≤ m,
(iii) Q is non-decreasing in each component, and
(iv) Q fulfils the Lipschitz condition |Q(v)−Q(u)| ≤

∑m
i=1 |vi−ui| for all u = (u1, . . . , um),

v = (v1, . . . , vm) ∈ [0, 1]m .
(b) We call a function H : Rm → [0, 1] quasi-distribution function if there exist F1, . . . , Fm ∈ F1

and an m-variate quasi-copula Q such that

H(x) = Q(F1(x1), . . . , Fm(xm)) for all x = (x1, . . . , xm) ∈ Rm .

We also say H is the quasi-distribution function of Q w.r.t.F1, . . . , Fm.

We denote by Qm the set of m-variate quasi-copulas, by Hm the class of m-variate quasi-distribution
functions, and by Hm

+ ⊂ Hm the subclass with Fi ∈ F1
+ for all i ∈ {1, . . . ,m} .

Note that Cm ⊂ Qm and thus Fm ⊂ Hm as well as Fm
+ ⊂ Hm

+ . Moreover, the lower Fréchet bound
Wm is a quasi-copula for all m ; as in the case of copulas, all quasi-copulas satisfy the bounds given in
(3.2). An important property of quasi-copulas is that for any subset N ⊂ Qm , the pointwise supremum
QN defined by

QN (u) := sup{Q(u) |Q ∈ N}, for u ∈ [0, 1]m, (3.3)

is again a quasi-copula, see [57, Theorem 2.2] (where the proof for m = 2 can be extended to arbitrary
dimension m ≥ 2). In contrast, the pointwise supremum of copulas is generally not a copula, which
motivates using quasi-copulas.

For improving price bounds under dependence information, we make use of some dependence order-
ings defined on the class Qm of quasi-copulas. To avoid technical difficulties, we will often consider
functions f : Θm → R that are continuous at the boundary of Θ , where Θ ∈ {R+, [0, 1), [0, 1]}, i.e.,
whenever a := inf(Θ) ∈ Θ and/or b := sup(Θ) ∈ Θ , respectively, then we will often require f to
satisfy

lim
h↓0

f(x1, . . . , xi−1, a+ h, xi+1, . . . , xm) = f(x1, . . . , xi−1, a, xi+1, . . . , xm) (3.4)

and/or

lim
h↓0

f(x1, . . . , xi−1, b− h, xi+1, . . . , xm) = f(x1, . . . , xi−1, b, xi+1, . . . , xm) , (3.5)

respectively, for all i ∈ {1, . . . ,m} and for all xj ∈ Θ , j ̸= i . We define for a bounded function
f : Θm → R which is in each component either increasing or decreasing, which fulfils (3.5), and which

3We also allow the trivial case m = 1 which is considered in the definition of the quasi-expectation operator, see (3.16).
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is defined on Θ ∈ {[0, 1), [0, 1],R+,R} , its survival function f̂ : Θm → R by4

f̂(x) :=
∑

J⊆{1,...,m}

(−1)m−|J |f(y) , (3.6)

where y = (y1, . . . , ym) satisfies for all i ∈ {1, . . . ,m} that yi = sup(Θ) if i ∈ J and yi = xi if i /∈ J ,
and where we set

f(w1, . . . , wl−1,∞, wl+1, . . . , wm) := lim
z→∞

f(w1, . . . , wl−1, z, wl+1, . . . , wm). (3.7)

for all (w1, . . . , wm) ∈ Θm, l ∈ {1, . . . ,m}. We say Q̂ is a quasi-survival function if Q̂ is the survival
function of a quasi-copula Q . The orthant orders on Qm are defined as follows, see [51].

Definition 3.2 (≤lo , ≤uo). Let m ∈ N, and let Q, Q′ ∈ Qm be quasi-copulas.

(a) The quasi-copula Q is smaller than Q′ in the lower orthant order, written Q ≤lo Q
′ , if Q(u) ≤

Q′(u) for all u ∈ [0, 1]m .

(b) The quasi-copula Q is smaller than Q′ in the upper orthant order, written Q ≤uo Q
′ , if Q̂(u) ≤

Q̂′(u) for all u ∈ [0, 1]m .

For a copula C ∈ Cm and some measurable function f : [0, 1]m → R, we define the expectation
operator ψf (C) as the Lebesgue-Stieltjes integral

ψf (C) :=

∫
[0,1]m

f(u) dC(u). (3.8)

Then, for a copula C ∈ Cm associated by (3.1) with the distribution function F (·) = Q(X ≤ ·), for
some measure Q ∈ P(Rm

+ ) , we obtain

ψ(F1,...,Fm)
c (C) :=ψc ◦(F−1

1 ,...,F−1
m )(C) =

∫
Rm
+

c(x) dF (x) = EQ[c(X)] , (3.9)

applying the transformation formula for Stieltjes integrals, see, e.g., [76, Theorem (2)]. Hence, in finan-
cial contexts, the expectation operator ψ(F1,...,Fm)

c (C) can be interpreted as the price of c under some
pricing measure Q .

For copulas C1, C2 ∈ Cm , it is well-known that the orthant orders are characterized by5

C1 ≤lo C2 ⇐⇒ ψf (C1) ≤ ψf (C2) for all ∆-antitone functions f : [0, 1]m → R ,
C1 ≤uo C2 ⇐⇒ ψf (C1) ≤ ψf (C2) for all ∆-monotone functions f : [0, 1]m → R ,

(3.10)

such that the expectations exist, see [66, 68] and [54]. An important extension of the orthant orders on
Cm is the supermodular ordering defined by6

C1 ≤sm C2 : ⇐⇒ ψf (C1) ≤ ψf (C2) for all supermodular functions f : [0, 1]m → R (3.11)

such that the expectations exist. Note that every ∆-monotone or ∆-antitone function is supermodular
and, thus, C1 ≤sm C2 implies C1 ≤lo C2 and C1 ≤uo C2 . Denote by F∆ the set of ∆-monotone
functions, by F−

∆ the set of ∆-antitone functions, and by Fsm the set of supermodular functions.
An extension of the right-hand side of (3.10) and of (3.11) to quasi-copulas is not immediate since a

quasi-copula does not in general induce a signed measure (see [58]) and therefore the integral in (3.8)
may not be defined. However, by an application of an integration by parts formula for measure-inducing
functions, an extension to quasi-copulas may be achieved, which enables to determine bounds for the
price in (3.9) under dependence information as discussed before.

4We stress that the sum in the definition of the survival function in (3.6) also takes into account the summand J = ∅.
5For a function f : Rm

+ ⊃
Śm

i=1[ai, bi] → R , the difference operator △i
ε , ε > 0 , 1 ≤ i ≤ m, is defined by △i

εf(x) :=
f((x + εei) ∧ b) − f(x), where x ∈

Śm
i=1[ai, bi], b = (b1, . . . , bm), ei denotes the i-th unit vector, and ∧ denotes the

componentwise minimum. Then f is ∆-monotone / ∆-antitone if △i1
ε1 · · ·△

ik
εkf(x) ≥ 0 , resp., (−1)k△i1

ε1 · · ·△
ik
εkf(x) ≥ 0

for all x ∈
Śm

i=1[ai, bi], k ∈ {1, . . . ,m}, any subset J = {i1, . . . , ik} ⊆ {1, . . . ,m} , and all ε1, . . . , εk > 0 . Note that, by
definition, a ∆-monotone function is componentwise increasing and a ∆-antitone function is componentwise decreasing.

6f : Rm
+ ⊃

Śm
i=1[ai, bi] → R is supermodular if △i

εi△
j
εjf(x) ≥ 0 for all x ∈

Śm
i=1[ai, bi] , i ̸= j and εi, εj > 0 .
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Therefore, denote by B(Θm) the Borel σ-algebra on Θm . A left-continuous, resp., right-continuous
function7 g : Θm → R, Θ ∈ {[0, 1), [0, 1],R+}, is said to be measure-inducing if there exists a signed
measure ηg on B(Θm) such that

ηg([x1, x1 + ε1)× · · · × [xm, xm + εm)) = △1
ε1 · · ·△

m
εmg(x) , resp., (3.12)

ηg((x1, x1 + ε1]× · · · × (xm, xm + εm]) = △1
ε1 · · ·△

m
εmg(x) (3.13)

for all x = (x1, . . . , xm) ∈ Θm and ε1, . . . , εm ∈ R+ .
Further, for I = {i1, . . . , ik} ⊆ {1, . . . ,m} , the I-marginal gI of g is defined by

gI : Θ
k ∋ (ui1 , . . . , uik) → g(u1, . . . , um) , where uj = 0 for all j /∈ I . (3.14)

In particular, by (3.12) and (3.13), for all I ⊆ {1, . . . ,m} , I ̸= ∅ , the I-marginal of every left-/
right-continuous ∆-monotone function induces a non-negative measure, and the I-marginal of every
left-/right-continuous ∆-antitone function induces a non-negative measure on B([0, 1]|I|) if |I| is even
and a non-positive measure if |I| is odd, see, e.g., [5, Corollary 2.24], cf. [64, Proposition 2.1]. In general,
a left-/right-continuous measure-inducing function defined on a compact domain like [0, 1]m always
induces a finite signed measure, and if all I-marginals are measure-inducing, this equivalently means
that the function has bounded Hardy-Krause variation, see [5, Theorem 2.12], see also [3, Theorem 3
and, for a precise definition of the Hardy-Krause variation, Section 2.1]8.

We will often assume that for Θ ∈ {R+, [0, 1), [0, 1]} a measure-inducing function f : Θm → R is
continuous at the boundary of Θ. To this end, we denote by

Fc,l
mi(Θ) :={f : Θm → R | f satisfies (3.4) and (3.5),

fI is measure-inducing for all I ⊆ {1, . . . ,m} , I ̸= ∅}
(3.15)

the class of measure-inducing functions that satisfy the continuity conditions at the boundary of the
domain and for which all I-marginal functions are measure-inducing.

Definition 3.3 (Quasi-expectation).
LetH = Q◦(F1, . . . , Fm) : Rm

+ → [0, 1] be a quasi-distribution function ofQ ∈ Qm w.r.t.F1, . . . , Fm ∈
F1
+ and let c ∈ Fc,l

mi(Rm
+ ) be left-continuous. Then, the quasi-expectation of c w.r.t.H is defined by∫

Rm
+

c(x) dH(x) := πc(Ĥ) :=
∑

I⊆{1,...,m}
I ̸=∅

∫
R|I|
+

ĤI(x) dηcI (x) + c(0, . . . , 0) (3.16)

=

m∑
k=1

∑
I⊆{1,...,m}
I={i1,...,ik}

∫
R|I|
+

Q̂I(Fi1(x1), . . . , Fik(xik)) dηcI (x1, . . . , xk) + c(0, . . . , 0) ,

whenever the integrals exist. We also write

πµc (Q̂) := π(F1,...,Fm)
c (Q̂) := πc(Ĥ) = πc(Q̂ ◦ (F1, . . . , Fm)) (3.17)

where, for µ = (µ1, . . . , µm) , Fi is the distribution function of the marginal distribution µi ∈ P(R+) ,
1 ≤ i ≤ m.

Note that for 1 ≤ i ≤ m, every Fi ∈ F1
+ is, by definition of F1

+, increasing and fulfils Fi(0) = 0

which implies that ĤI = Q̂I ◦ (F1, . . . , Fm) and thus proves the last equality in (3.17).

Remark 3.4. (a) By a multivariate integration by parts formula, for every copula C ∈ Cm and thus by
(3.1) for every distribution function F ∈ Fm

+ it holds true that

ψf (C) = πf (Ĉ) and
∫
Rm
+

c(x) dF (x) = ψc(F ) = πc(F̂ ) , (3.18)

7We call a multivariate function left-continuous/right-continuous if the function is componentwise left-
continuous/componentwise right-continuous at every point.

8In this reference, the authors show the statement for a right-continuous function f : [0, 1]m → R . However, it also applies
for a left-continuous function g : [0, 1]m → R by setting g(x) = f(1− x) .
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whenever f ∈ Fc,l
mi([0, 1]

m) and c ∈ Fc,l
mi(Rm

+ ) are left-continuous. More generally, for every left-
continuous function ξ ∈ Fc,l

mi(Θ
m) and for every bounded, grounded, right-continuous, and measure-

inducing function h : Θm → R satisfying continuity conditions (3.4) and (3.5), it holds true that

ψξ(h) = πξ(ĥ) (3.19)

whenever the integrals exist, see [5, Theorem 3.1], with ψξ and πξ defined as in (3.8) and (3.16).
(b) For every left-continuous, measure-inducing function c : Rm

+ → R and for all distribution functions
F1, . . . , Fm ∈ F1

+ such that g := c ◦ (F−1
1 , . . . , F−1

m ) ∈ Fc,l
mi([0, 1)

m) , a sufficient condition for the
existence of

πc(Q̂ ◦ (F1, . . . , Fm)) = πc

(
Q ◦ (F1, . . . , Fm)
∧)

= πg(Q̂) (3.20)

is that u 7→ gI(u, . . . , u) is Lebesgue-integrable on [0, 1) for all I ⊆ {1, . . . ,m} , I ̸= ∅ , see [5,
Corollary 3.12]. Note that the last equality in (3.20) holds true by the transformation formula for the
integration by parts operator which is similar to (3.9) given by

πc(h ◦ (F1, . . . , Fm)) = πc ◦(F−1
1 ,...,F−1

m )(h) (3.21)

for all functions g := c◦(F−1
1 , . . . , F−1

m ) ∈ Fc,l
mi([0, 1)

m) and for all distribution functionsF1, . . . , Fm ∈
F1
+ , whenever the integrals exist, see [5, Proposition 3.6].

When lower and upper orthant dependence restrictions are imposed by quasi-copulas, analytic ex-
pressions for improved price bounds w.r.t. lower and upper orthant payoff functions are given by the
characterizations

Q ≤lo Q
′ ⇐⇒ πf (Q̂) ≤ πf (Q̂′) for all left-continuous f ∈ F−

∆ , (3.22)

Q ≤uo Q
′ ⇐⇒ πf (Q̂) ≤ πf (Q̂′) for all left-continuous f ∈ F∆ ,

such that the expectations exist, see [51, Theorem 5.5]. This, in particular, implies for a copula C
with C ≤lo Q

′ resp. C ≤uo Q
′ that ψf (C) ≤ πf (Q̂) for f ∆-antitone/-monotone. In Theorem 4.4,

we also derive analytic expressions for improved price bounds w.r.t. supermodular payoff functions,
which requires an extension of the supermodular ordering to the class Qm . To that end, denote by
Ck([0, 1]m) ≡ Ck , k ∈ N ∪ {∞} , the class of functions f : [0, 1]m → R such that all (mixed) partial
derivatives of order k exist and are continuous. We make use of the following lemma.

Lemma 3.5 ([5], Corollary 2.19). Let f : [0, 1]m → R be a Cm-function. Then f ∈ Fc,l
mi([0, 1]

m) .

Since the supermodular ordering on Cm is generated by the class C∞ ∩Fsm of smooth supermodular
functions, see [27, Theorem 3.2], and since all I-marginals of a smooth function induce a signed measure
due to Lemma 3.5, we can extend the supermodular ordering to Qm as follows.

Definition 3.6 (Supermodular ordering for quasi-copulas).
LetQ,Q′ ∈ Qm . ThenQ is said to be smaller thanQ′ in the supermodular ordering, writtenQ ≤sm Q′ ,

if πf (Q̂) ≤ πf (Q̂′) for all supermodular and left-continuous functions f ∈ Fc,l
mi([0, 1]

m).

Note that f in the above definition is defined on a compact domain and thus induces a finite measure.
Hence, πf (Q̂) is finite for every quasi-copula Q ∈ Qm , compare [5, Theorem 3.7].

3.2. Common component dependence models. In this section we give a brief overview on the no-
tion of the upper product of bivariate copulas which describes the worst case dependence structure
(w.r.t.≤sm) in partially specified factor models (PSFMs). This allows to establish Theorem 3.7 which
yields improved price bounds for supermodular payoff functions. In Section 4, we build on Theorem 3.7
which extends the upper product ordering result in [7, Theorem 1] to quasi-copulas, to derive an upper
price bound for a supermodular payoff function which improves the comonotone standard bound9 based
on knowledge of the marginal distributions.

9For R-valued random variables X1, . . . , Xm with distribution functions F1, . . . , Fm , the vector Xc :=

(Xc
1 , . . . , X

c
m) := (F−1

1 (U), . . . , F−1
m (U)) , with U uniformly distributed on (0, 1) , is comonotone. It holds that Xc

i
d
= Xi

for all i and the copula of Xc is the upper Fréchet copula Mm . Hence, Xc has the maximal distribution (w.r.t. the super-
modular ordering) in the class of all distributions with fixed marginals F1, . . . , Fm , and thus it is referred to as (comonotone)
standard upper bound.
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In a PSFM, a random vector X = (Xi)1≤i≤m := (fi(Z, εi))1≤i≤m , is expressed through Borel-
measurable functions fi : R2 → R of an R-valued random variable Z and R-valued random variables εi
for i = 1, . . . ,m, where the common (risk) factor Z is w.l.o.g. assumed to be independent of (εi)1≤i≤m.
Moreover, the bivariate distributions (Xi, Z)1≤i≤m are specified, i.e., the univariate distributions of Xi

and Z as well as the common copula Di are known for all 1 ≤ i ≤ m. However, in contrast to
the usual independence assumption, the dependence structure among the vector of idiosyncratic risks
(εi)1≤i≤m is not specified, see [16]. The maximal random vector (w.r.t. ≤sm) in the PSFM is given by

the conditionally comonotone vector Xc
Z :=

(
F−1
Xi|Z(U)

)
1≤i≤m

, where F−1
Xi|Z denotes the generalized

inverse of the conditional distribution function of Xi given Z and where U is uniformly distributed
on (0, 1) and independent of Z . If Z has a continuous distribution function, the copula of Xc

Z , in the
sense of (3.1), is given by the upper product

∨m
i=1D

i ≡ D1 ∨ · · · ∨ Dm of the bivariate copulas
D1, . . . , Dm which is an m-copula defined by

∨m
i=1D

i(u) :=
∫ 1
0 min1≤i≤m{∂2Di(ui, t)} dt for u =

(u1, . . . , um) ∈ [0, 1]m , see [6], where ∂2 denotes the partial derivative w.r.t. the second component.
In a (partially specified) common component dependence model10 (CCD model), it is assumed that

the factor Z = X1 is a component of the vector (X1, . . . , Xm) and, thus, the first bivariate dependence
constraint D1 is imposed by the upper Fréchet copula, i.e., D1 = M2 . For a bivariate copula E ∈ C2 ,
the class of CCD models with dependence specifications Dk ≤lo E , k = 2, . . . ,m , has a greatest
element w.r.t. the supermodular ordering given by the m-variate upper product

M2 ∨ E ∨ · · · ∨ E (u) = E

(
min

2≤i≤m
{ui}, u1

)
, (3.23)

for u = (u1, . . . , um) ∈ [0, 1]m , see [7, Theorem 1].
As a main result, Theorem 3.7 extends this result to dependence specifications Dk ≤lo Q2 , k =

2, . . . ,m , for a fixed given bivariate quasi-copula Q2 ∈ Q2 which serves as an upper bound for each
D2 , . . . , Dm . Thus, if Q2 is implied by market price information, this allows us to incorporate bivariate
dependence information inferred from market prices. This is of particular relevance as, according to [51,
Theorem 3.1], such price information often only corresponds to a quasi-copula that serves as an upper
bound for the dependence structure.

We use that whenever a left-continuous function f : [0, 1]m → R is supermodular and componentwise
increasing/componentwise decreasing and m ≥ 2 , the function ϕf : [0, 1]2 → R defined by

ϕf (x1, x2) := f(x2, x1, . . . , x1) (3.24)

is ∆-monotone/-antitone and, thus, for all I ⊆ {1, . . . ,m} , I ̸= ∅ , the I-marginal induces a positive
measure by (3.12), see, e.g. [5, Corollary 2.24]. This enables us to establish an m-variate quasi-copula
Q∗ as an upper bound (w.r.t. the supermodular ordering) for the upper products M2 ∨D2 ∨ · · · ∨Dm ,
Dk ≤lo Q2 , which describe the worst case dependence structures in CCD models. The quasi-copula
Q∗ ∈ Qm,

Q∗(u) := Q2

(
min

2≤i≤m
{ui}, u1

)
, u = (u1, . . . , um) ∈ [0, 1]m , (3.25)

relates to the conditionally comonotone structure in (3.23) and can be associated with the two-dimensional
case. The non-intuitive arrangement of the arguments in (3.24) and (3.25) is due to the definition of the
upper product where the copulas in the integrand are differentiated w.r.t. the second component.

The main result of this section is the characterization provided in the following theorem.

Theorem 3.7. Let D2, . . . , Dm ∈ C2 be bivariate copulas and Q2 ∈ Q2 a bivariate quasi-copula. Then,
Q∗ defined by (3.25) is a quasi-copula, and the following statements are equivalent.

(a) Di ≤lo Q2 for all 2 ≤ i ≤ m,
(b) M2 ∨D2 ∨ . . . ∨Dm ≤lo Q

∗ ,
(c) M2 ∨D2 ∨ . . . ∨Dm ≤uo Q

∗ ,
(d) M2 ∨D2 ∨ . . . ∨Dm ≤c Q

∗ ,
(e) M2 ∨D2 ∨ . . . ∨Dm ≤sm Q∗ .

(f) ψf (M
2 ∨D2 ∨ · · · ∨Dm) ≤ πϕf

(Q̂2)
for all left-continuous, supermodular functions f : [0, 1)m → R which are componentwise
increasing/componentwise decreasing such that (ϕf )I is Lebesgue integrable on [0, 1)|I| for

10This model is in [7] denoted as internal factor model.
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I ⊆ {1, 2} , I ̸= ∅ , where ϕf is defined by (3.24), and such that f is lower bounded by some
function which is integrable w.r.t.M2 ∨D2 ∨ . . . ∨Dm.

Remark 3.8. (a) In the special case that Q2 = E ∈ C2 is a copula, the upper bound Q∗ in Theorem 3.7
simplifies by (3.25) and (3.23) to M2 ∨E ∨ · · · ∨E , which implies the result from [7, Theorem 1].

(b) Let D2, . . . , Dm ∈ C2 be copulas and Q2, . . . , Qm ∈ Q2 be quasi-copulas with Di ≤lo Q
i for

all i = 2, . . . ,m . Then, Q2(u) := maxi=2,...,m{Qi(u)} , u ∈ [0, 1]2 , is by (3.3) a quasi-copula.
Hence, Theorem 3.7 (e) implies that M2 ∨D2 ∨ · · · ∨Dm ≤sm Q∗ with Q∗ defined by (3.25).

(c) Note that Theorem 3.7 (f) improves the standard bound E[c(Xc
1, . . . , X

c
m)] for the expectation

E[c(X1, . . . , Xm)] of a random vector (X1, . . . , Xm) w.r.t. a continuous and supermodular payoff
function c : [0, 1]m → R if for all k the copula of (X1, Xk) is upper bounded by Q2 ∈ Q2 in the
lower orthant order, even if c is not measure-inducing. An example of such a payoff function is the
continuous and supermodular function c(u) := (

∑m
i=1 ui −K)+ , u = (u1, . . . , um) ∈ [0, 1]m ,

for K > 0. But c is measure-inducing only if m ≤ 2, which can be seen from the fact that the
lower Fréchet bound Wm induces a signed measure if and only if m ≤ 2 , see [58, Theorem 2.4].
However, since ϕc given by ϕc(u1, u2) = ((m− 1)u1 + u2 −K)+ is measure-inducing, we obtain
by Theorem 3.7 (f) that πϕc(Q̂2) is an upper bound for ψc(M

2 ∨D2 ∨ · · · ∨Dm) if Di ≤lo Q2 for
all i ∈ {2, . . . ,m} , see also Lemma 5.2. In Example 5.3 we apply the characterization in Theo-
rem 3.7 (f) and determine an improved upper price bound for a basket call option under dependence
information related to an common component dependence model.

4. IMPROVED PRICE BOUNDS UNDER DEPENDENCE INFORMATION

In this section, we make use of the notions and results of Section 3 to derive price bounds on finan-
cial derivatives under dependence restrictions. First, we consider the case of ∆-monotone or ∆-antitone
payoff functions and derive price bounds that take into account upper and lower quasi-copula bounds
which can be inferred from market prices of multi-asset derivatives. These bounds are derived analo-
gously to the approach from [51]. Through an application of the duality in Proposition 2.1, we show
how these price bounds can be significantly improved when the martingale property is incorporated as
a linear constraint. Further, we state an upper price bound for supermodular payoff functions, where
we assume a common component dependence model with additional dependence information derived
from multi-asset options which restrict the bivariate (1, k)-marginal copula of Sti = (S1

ti , . . . , S
d
ti) for

all k = 2, . . . , d, i.e. the copula CQ1,k
i

of the risk-neutral distribution Q1,k
i of (S1

ti , S
k
ti) , k = 2, . . . , d ,

under some Q ∈ M(µ).
We demonstrate that already the information on prices on a small amount of multi-asset derivatives

traded in the market reduces the arbitrage price bounds of the financial derivative under consideration.
This is crucial, as multi-asset derivatives are typically only traded OTC and hence only limited informa-
tion on their prices is available to a financial trader.

Finally, in Section 4.2, we present various scenarios where dependence information related to the
risk-neutral correlation is inferred from option prices and incorporated by linear constraints restricting
the class M(µ) of martingale measures with fixed marginal distributions.

4.1. Dependence Information Through Copulas. For any i = 1, . . . , n, k = 1, . . . , d, and for any
probability measure Q ∈ M(µ), we recall that we denote by F k

i the univariate marginal distribution
function of the component Sk

ti under Q . By Sklar’s Theorem, the multivariate distribution function
FQ = Q(S ≤ ·) is decomposed by

FQ(x) = CQ(F
1
1 (x

1
1), . . . , F

d
n(x

d
n)), for all x = (x11, . . . , x

d
n) ∈ Rnd

+ , (4.1)

into the univariate marginal distribution functions F k
i and a copula CQ ∈ Cnd which describes the

dependence structure among S under Q . As we will show in Section 5, when traded market prices of
appropriate multi-asset options can be observed in the market, this allows to infer restrictions on the
dependence structure of the underlying assets through (pointwise) upper and lower quasi-copula bounds
Q and Q on the copula CQ. In the sequel we explain how these bounds can be included as inequality
constraints in the Problem (2.5) to derive improved price bounds for a given payoff c.

First, we discuss some relevant classes of models where the copulas of the models, with associated
risk-neutral distributions in M(µ), are restricted w.r.t. the lower and upper orthant ordering, respectively.
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1) Copula bounds w.r.t. the orthant orders
Let Q,Q ∈ Qnd be nd-variate quasi-copulas such that Q ≤lo Q . Then, we consider the class

Mlo
Q,Q

:=
{
Q ∈ M(µ)

∣∣Q ≤lo CQ ≤lo Q
}
. (4.2)

If the quasi-copula Q coincides with the lower Fréchet bound Wnd, or if Q coincides with the
upper Fréchet bound Mnd, then the dependence structure in (4.2) is only restricted from one-side.
Moreover, if both quasi-copulas Q and Q coincide with the respective Fréchet bounds, then no addi-
tional dependence restriction on the class M(µ) is imposed and we have that Mlo

Wnd,Mnd = M(µ) .

The following observation turns out to be crucial for the implementation of copula constraints via
trading strategies in Theorem 4.2.

Lemma 4.1. Let Q,Q ∈ Qnd and define for x ∈ Rnd the functions fx := 1l{·≤x}, gx := 1l{·<x},
f̃x := 1l{·>x}, g̃x := 1l{·≥x} where the inequalities in the indicator functions are meant componen-
twise. Let F k

i (·) =
∫ ·
−∞ dµki , 1 ≤ k ≤ d, 1 ≤ i ≤ n, and let Q+ denote the set of non-negative

rational numbers. Then the following holds.
(a) We have that Q ≤lo CQ ≤lo Q for Q ∈ M(µ) is equivalent to a countable number of inequality

constraints of the form

EQ [gx(S)] ≤ Q(F 1
1 (x

1
1), . . . , F

d
n(x

d
n))

EQ [−fx(S)] ≤ −Q(F 1
1 (x

1
1), . . . , F

d
n(x

d
n))

∀x =
(
x11, . . . , x

d
n

)
∈ Qnd

+ . (4.3)

(b) We have thatQ ≤uo CQ ≤uo Q for Q ∈ M(µ) is equivalent to a countable number of inequality
constraints of the form

EQ

[
f̃x(S)

]
≤ Q(F 1

1 (x
1
1), . . . , F

d
n(x

d
n))

EQ [−g̃x(S)] ≤ −Q(F 1
1 (x

1
1), . . . , F

d
n(x

d
n))

∀x =
(
x11, . . . , x

d
n

)
∈ Qnd

+ . (4.4)

On account of Lemma 4.1 the inequality constraints (4.3) specify (f ineqi )i∈Iineq and (K ineq
i )i∈Iineq

in (2.4). In the following Theorem 4.2, which is partly a consequence of Proposition 2.1, we identify
the upper price bound PMlo

Q,Q
of a payoff c ∈ Ulin(Rnd

+ ) with the infimal price over all super-

replicating strategies which involve trading in digital options with payoffs gx, −fx, x ∈ Qnd
+ . As

a consequence of Definition 3.6, if c ∈ F−
∆ is a ∆-antitone, left-continuous, and measure-inducing

payoff function, an upper bound for PMlo
Q,Q

is given by a quasi-expectation w.r.t.Q .

Similar to the model in (4.2), by means of Lemma 4.1 (b) we also derive improved price bounds
for the class Muo

Q,Q
:= {Q ∈ M(µ) |Q ≤uo CQ ≤uo Q} of risk-neutral distributions with depen-

dence restrictions w.r.t. the upper orthant order. In this case, we obtain for every ∆-monotone payoff
function c ∈ F∆ which is left-continuous and measure-inducing, an upper bound for PMuo

Q,Q
which

is given by a quasi-expectation w.r.t.Q . Examples of typical ∆-antitone and ∆-montone payoff func-
tions are provided in [51, 65, 74, Table 1].

Theorem 4.2 (Upper price bounds with ≤lo- and ≤uo-contraints).

(a) Let c ∈ Ulin(Rnd
+ ) . If Mlo

Q,Q
̸= ∅ , then

PMlo
Q,Q

= max
Q∈Mlo

Q,Q

EQ [c(S)] = DS . (4.5)

In particular, if c ∈ F−
∆ ∩ Ulin(Rnd

+ ) is left-continuous, then

PMlo
Q,Q

≤ πµc (Q̂) . (4.6)

(b) Let c ∈ Ulin(Rnd
+ ) . If Muo

Q,Q
̸= ∅ , then

PMuo
Q,Q

= max
Q∈Muo

Q,Q

EQ [c(S)] = DS .
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In particular, if c ∈ F∆ ∩ Ulin(Rnd
+ ) is left-continuous, then

PMuo
Q,Q

≤ πµc (Q̂) . (4.7)

Remark 4.3. (a) Similar to Theorem 4.2, we also obtain dual lower bounds under consideration of
the martingale property as well as lower bounds πµc (Q̂) and πµc (Q̂) for PMlo

Q,Q
and PMuo

Q,Q
in

the case of a left-continuous, measure-inducing, and ∆-antitone / ∆-monotone payoff function.
(b) By incorporating the martingale condition as a linear constraint, Theorem 4.2 improves the dual

risk bounds considered in [52, Theorem 3.2] as well as the quasi-copula bounds obtained in [51].
(c) Since the martingale property also restricts the dependence structure of M(µ) , the class Mlo

Q,Q

might be empty for too restrictive choices of the quasi-copulasQ andQ . However, if the market
is free of model-independent arbitrage, compare [1, Definition 1.2.], and if the dependence
restrictions are inferred from option prices with continuous payoff functions, then there exists a
martingale measure Q ∈ M(µ) for which the boundsQ andQ for the copula of Q are consistent.
This follows by [1, Theorem 1.3.], for which we additionally need to assume the existence of a
convex superlinear payoff that can be bought.

(d) Note that by Definition 3.2 (b) we have

Muo
Q,Q

=
{
Q ∈ M(µ)

∣∣∣ Q̂(u) ≤ ĈQ(u) ≤ Q̂(u) for all u ∈ [0, 1]nd
}
.

This allows to extend (4.7) to bounded measurable functions Q̂, Q̂, defined on [0, 1]nd which
are not survival functions of quasi-copulas. Indeed, the identity in (4.7) is still valid due to the
positivity of the measures ηcI induced by the ∆-monotone function c applied in (3.16) for the

definition of πµc and due to the pointwise upper bound Q̂I for ĈI
Q for all I ⊆ {1, . . . , nd} .

2) Upper bounds in common component dependence models
Liquidly traded options written on each pair of the underlying assets S1, . . . , Sd which allow to derive
inter-asset dependence information are often not available. However, prices of derivatives written on
a main reference asset S1

ti and another asset Sk
ti at the same time ti may be available for k = 2, . . . , d .

For example, basket or digital options on S1 and S2 as well as on S1 and S3 may be traded. Therefore,
we consider the case where prices of specific derivatives as a function of an asset S1

ti and assets Sk
ti

at time ti are known for k = 2, . . . , d . This price information then implies by [51, Theorem 3.1] an
upper quasi-copula bound Qk ∈ Q2 (w.r.t. the lower orthant ordering) for the copula CQ1,k

i
of the

risk-neutral distribution Q1,k
i of (S1

ti , S
k
ti) , k = 2, . . . , d , under some Q ∈ M(µ) because then the

value of the copula CQ1,k
i

is known on a corresponding compact set. Here Q1,k
i denotes the bivariate

(1, k)-marginal distribution of Q at time ti . Taking the pointwise maximum Q2 := maxk=2,...,dQ
k

over these quasi-copula bounds then yields a quasi-copula Q2 ∈ Q2 as a pointwise upper bound for
the associated copulas {CQ1,k

i
, k = 2, . . . , d}, see Example 5.3.

Given marginal distributions µ = (µ11, . . . , µ
d
n) with µki ∈ P(R+) for all i = 1, . . . , n, k =

1, . . . , d, a quasi-copula Q2 ∈ Q2, and some time ti, we consider the class

MCCD
Q2

:=
{
Q ∈ M(µ)

∣∣∣CQ1,k
i

≤lo Q2 for all k = 2, . . . , d
}

(4.8)

of measures Q in M(µ) such that for all k = 2, . . . , d the copula CQ1,k
i

associated with the bivariate

component (S1
ti , S

k
ti) under Q is upper bounded by Q2 w.r.t. the lower orthant ordering. In particular,

this class is another example for a specification of the set Mlin. Elements of this class correspond
to common component dependence models (CCD model) with bivariate dependence specification
sets as described in Section 3.2. Here the market-implied dependence structure of (S1

ti , . . . , S
d
ti) is

restricted to the subclass of copulas having the property that the bivariate marginal copula CQ1,k
i

associated with (S1
ti , S

k
ti) belongs to the constrained specification set {C ∈ C2 , C ≤lo Q2} for all

k = 2, . . . , d , see also [7]. If Q2 is the upper Fréchet copula M2, no dependence restrictions are
imposed, hence MCCD

Q2
= M(µ) .

As a consequence of Theorem 3.7, the dependence structure of Sti = (S1
ti , . . . , S

d
ti) in MCCD

Q2
has

an upper bound w.r.t. ≤sm given by the quasi-copula in (3.25). This yields even for a supermodular
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payoff function c ∈ Fsm a representation of an upper bound for PMCCD
Q2

in form of an analytic
expression depending on the quasi-copula Q2 . To apply the duality result from Proposition 2.1, we
denote by Rnd

+ ∋ x = (x11, . . . , x
d
n) 7→ projki (x) = xki ∈ R+ the projection of x onto its (i, k)-th

component. In this setting, we take inequality constraints of the form

EQ[gx,y(S
1
ti , S

k
ti)] ≤ Q2(F

1
i (x), F

k
i (y)) , gx,y(·) := 1l{·<(x,y)} , (x, y) ∈ Q2

+ , 2 ≤ k ≤ d ,

into account. Then, we derive the following duality result.

Theorem 4.4 (Upper price bounds with contraints related to CCD models).
Assume that MCCD

Q2
̸= ∅ . Then, the following holds.

(a) Let c ∈ Ulin(Rnd
+ ), then

PMCCD
Q2

= max
Q∈MCCD

Q2

EQ[c(S)] = DS . (4.9)

(b) Let c̃ ∈ Fsm ∩ Clin(Rnd
+ ) be componentwise increasing/componentwise decreasing. Then, we

have that the function c :=
(
c̃ ◦ proj1i , · · · , c̃ ◦ projdi

)
∈ Fsm∩Clin(Rd

+) is also componentwise
increasing/componentwise decreasing and

PMCCD
Q2

≤ πϕ
c ◦((F1

i
)−1,...,(Fd

i
)−1)

(Q̂2) for all i = 1, . . . , n, (4.10)

with ϕc ◦((F 1
i )

−1,...,(F d
i )

−1) defined by (3.24).

In particular, Theorem 4.4 (b) can be applied to payoff functions that depend on multiple assets
but only on one specific maturity.

Remark 4.5. (a) Theorem 4.4 allows a closed-form representation of an upper price bound for a
componentwise increasing/componentwise decreasing supermodular payoff function by an in-
tegral of the bivariate dependence constraint Q2 . Examples for common supermodular payoff
functions which are componentwise increasing/componentwise decreasing are listed in [51, 65,
74, Table 1]. In particular, if φ : R → R is (increasing and) convex, then φ

(∑d
i=1 xi

)
is (in-

creasing and) supermodular.
(b) A similar result as the equalitity in (4.9) holds true for lower bounds. However, an analogue of

(4.10) for lower bounds cannot be obtained for general dimension since upper product ordering
results are different from ordering results for lower products which correspond to lower bounds
in partially specified factor models, see [8].

4.2. Dependence Information Related to Correlations. In addition to martingale and marginal con-
straints, we take into account additional market-implied dependence information related to the inter-asset
correlation.
3.) Knowledge of risk-neutral correlations

We incorporate additional information on the covariance of the assets. This approach is motivated
by the observation of basket options with payoff structure

(a1S
k
ti + a2S

l
tj −K)+, (4.11)

for some fixed weights a1, a2 ∈ R with a1a2 ̸= 0 and k, l ∈ {1, . . . , d}, i, j ∈ {1, . . . , n}. If prices
of such options are observable for all strikesK ∈ R and Q ∈ M(µ) is consistent11 with these prices,
then we deduce that12 ∂

∂KEQ

[
(a1S

k
ti + a2S

l
tj −K)+

]
= Q

(
a1S

k
ti + a2S

l
tj ≤ K

)
− 1. We hence

obtain the distribution13 of a1Sk
ti + a2S

l
tj . This allows in particular to compute its second moment.

11We call a measure Q consistent with a price p for a derivative c if it holds EQ[c] = p.
12Here we implicitly assume that the prices are differentiable as a function of the strike. If this is not the case, then we

consider instead the right derivative and still obtain a one-to-one relation between the risk-neutral distribution of the sum and
the basket option prices. Compare for the case of call options e.g. [43, Lemma 2.2] and the discussion thereafter.

13We remark that in practice one may only observe the prices of basket options for a (small) finite number of strikes.
Depending on the number of observed strikes this might impose restrictions on the applicability of the approach. However,
if the number of observed strikes is sufficiently high, then it is possible to consider finite differences to compute the inferred
distribution and its second moments. Compare also, e.g., [12] and [24] where this method is applied to obtain the marginal
distribution of stocks implied from call option prices.



IMPROVED MULTI-ASSET PRICE BOUNDS 15

In addition, observe that

EQ

[
Sk
tiS

l
tj

]
=

EQ

[(
a1S

k
ti + a2S

l
tj

)2]
− a21EQ

[(
Sk
ti

)2]− a22EQ

[(
Sl
tj

)2]
2a1a2

, (4.12)

assuming that the second moments of the marginal distributions exist. Since Q ∈ M(µ), all values
of the right-hand side of (4.12) are known and hence so is the left-hand side. Moreover, by the
martingale property, the correlation is given by

CorrQ

(
Sk
ti , S

l
tj

)
=

EQ

[
Sk
tiS

l
tj

]
− Sk

0S
l
0√

Eµk
i

[
(Sk

ti
)2
]
− (Sk

0 )
2

√
Eµl

j

[
(Sl

tj
)2
]
− (Sl

0)
2

, (4.13)

which by (4.12) is known, too, since Sk
0S

l
0 is some constant value. Therefore, price information on

options of (4.11)-type for all strikes K is sufficient to obtain information on the correlation between
Sk
ti and Sl

tj . To model the risk-neutral correlation ρklij := CorrQ

(
Sk
ti , S

l
tj

)
∈ [−1, 1] between Sk

ti

and Sl
tj with respect to a measures Q ∈ M(µ), we specify the equality constraints in equation (2.4)

by f eq(i,j,k,l) ∈ Clin(Rnd
+ ) with

f eq(i,j,k,l)(x
1
1, . . . , x

d
n) =

xki x
l
j − Sk

0S
l
0√

Eµk
i

[
(Sk

ti
)2
]
− (Sk

0 )
2

√
Eµl

j

[
(Sl

tj
)2
]
− (Sl

0)
2

, (x11, . . . , x
d
n) ∈ Rnd

+ . (4.14)

such that EQ

[
f eq(i,j,k,l)

]
= Keq

(i,j,k,l), where Keq
(i,j,k,l) := ρklij for all measures Q consistent with

the correlation structure. In Example 5.4, we investigate two examples in the case n = 2, d = 2
and include additional information on the correlation between the assets. This information leads
to several constraints which restrict the set of possible pricing measures in different degrees and
therefore effectively influence robust price bounds.

4.) Knowledge of the risk-neutral distribution of sums
Next, we consider not just correlation information, but the entire information on the sum of the
underlying assets. This corresponds to considering prices of basket options directly. Then we specify
f(i,j,k,l,m) ∈ Clin(Rnd

+ ) in (2.2) by f eq(i,j,k,l,m)(x
1
1, . . . , x

d
n) = (a

(i,j,k,l)
1 xki + a

(i,j,k,l)
2 xlj − Km)+,

(x11, . . . , x
d
n) ∈ Rnd

+ , for all i, j ∈ {1, . . . , n}, k, l ∈ {1, . . . , d}, m ∈ {1, . . . , N(i,j,k,l)}, where

a
(i,j,k,l)
1 , a

(i,j,k,l)
2 ∈ R denote the corresponding weights of the basket options under consideration,

Km ∈ R the strike of the option and N(i,j,k,l) ∈ N corresponds to the amount of observable options
for this asset-maturity combination. Moreover, we denote byKeq

(i,j,k,l,m) the price of the basket option
with payoff function f eq(i,j,k,l,m). If the price information implied by basket options is consistent with
risk-neutral correlations as considered in 3.), then respecting the prices instead of the correlations
may lead to a further improvement of the price bounds, as not only the second moment of the
underlying distribution is taken into account.

5.) Risk-neutral correlation is constant over time
In Section 5.3.1, we discuss situations for d = 2 in which it is reasonable to assume for any Q ∈
M(µ) that CorrQ(S1

ti , S
2
ti) = CorrQ(S

1
tj , S

2
tj ) for all i, j ∈ {1, . . . , n}. This leads to equality

constraints of the form

f eq(i,j)(x
1
1, . . . , x

d
n) =

(
x1
i x

2
i−S1

t0
S2
t0√

E
µ1
i

[(
S1
ti

)2
]
−
(
S1
t0

)2
√

E
µ2
i

[(
S2
ti

)2
]
−
(
S2
t0

)2

−
x1
jx

2
j−S1

t0
S2
t0√

E
µ1
j

[(
S1
tj

)2
]
−
(
S1
t0

)2
√

E
µ2
j

[(
S2
tj

)2
]
−
(
S2
t0

)2

)
, (x11, . . . , x

d
n) ∈ Rnd

+ ,

(4.15)

and Keq
(i,j) = 0 for all i, j = 1, . . . , n, i ≤ j.

6.) Risk-neutral correlation is bounded from below by the real world correlation
In Section 5.3.2, we discuss situations in d = 2 in which it makes sense to assume for every Q ∈
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M(µ) that CorrQ(S1
ti , S

2
ti) ≥ CorrP(S

1
ti , S

2
ti), where P ∈ P(Rnd

+ ) denotes some underlying real-
world measure. Thus, we model the inequality constraints in (2.3) by setting

f ineqi (x11, . . . , x
d
n) = −

x1ix
2
i − S1

t0S
2
t0√

Eµ1
i

[(
S1
ti

)2]− (S1
t0

)2√Eµ2
i

[(
S2
ti

)2]− (S2
t0

)2 , (x11, . . . , x
d
n) ∈ Rnd

+ ,

(4.16)
and K ineq

i = −CorrP(S
1
ti , S

2
ti) for i = 1, . . . , n, where CorrP(S

1
ti , S

2
ti) can often be estimated

empirically with statistical methods.

5. EXAMPLES AND NUMERICS

In accordance with the scenarios described in Sections 4.1 and 4.2, we provide several examples for
the improvement of the upper multi-asset price bound PM(µ). This improvement is due to the consid-
eration of appropriate market-implied dependence information. The following examples cover the case
where a restriction on the dependence structure is imposed through (quasi-) copulas as well as the case
where additional information on the correlation is taken into account. The Python codes for the nu-
merical examples from this section are provided under https://github.com/juliansester/
improved-dependence-pricing.

5.1. Improved price bounds through copula bounds. We consider for K ∈ R the payoff functions

c1,K(S1
t1 , S

2
t1 , S

3
t1 , S

1
t2 , S

2
t2 , S

3
t2) :=

 min
i=1,2

k=1,2,3

{Sk
ti} −K


+

, (5.1)

c2,K(S1
t1 , S

2
t1 , S

3
t1) :=

(
S1
t1 + S2

t1 + S3
t1

3
−K

)
+

. (5.2)

For every K ∈ R, the payoff function c1,K is ∆-monotone and c2,K is increasing and supermodular, but
neither ∆-antitone nor ∆-monotone. For the sake of readability, we sometimes abbreviate ci := ci,K ,
i = 1, 2 . In the following, we apply Theorem 4.2 and Theorem 4.4 to determine price bounds for these
options under consideration of the martingale property and of copula bounds for the risk-neutral distri-
butions inferred from dependence information based on prices of some options. More specifically, we
determine price bounds by considering minimal and maximal expectations w.r.t. measures from Muo

Q,Q
,

and MCCD
Q2

, respectively, where the quasi-copulasQ,Q, andQ2 are inferred from option prices pkℓi (K ′)

of digital options dkℓi (K ′) with a payoff function defined by

dkℓi (K ′)
(
Sk
ti , S

ℓ
ti

)
:= 1l{max{Sk

ti
,Sℓ

ti
}≤K′}, k, ℓ ∈ {1, 2, 3}, i ∈ {1, 2}. (5.3)

We assume that prices pkℓi (K ′) are observed in the market for strikes K ′ ∈ K := {K1, . . . ,Km}, where
m ∈ N describes the number of observed digital options. Knowledge of such option prices restricts the
set of consistent pricing measures and therefore, via Sklar’s theorem, prescribes the values of the associ-
ated (survival) copula on a finite set. This set is implied by the choice of K and the marginal distributions
µ . In such a case, lower orthant and upper orthant copula bounds for the dependence structure of the
underlying assets are given by the quasi-copulas obtained from the following two results, see [51, The-
orem 3.1 and Proposition A.1]. Several examples are provided in this section. More generally, prices of
options with payoff functions that are increasing w.r.t. the lower or upper orthant ordering allow to infer
bounds for the partially known copula of the underlying asset, see [51, Theorem 3.3 and Proposition
A.1] and [51, 65, 74, Table 1].

In the following Examples 5.1 and 5.3, we determine upper price bounds for the options c1,K and
c2,K for different strikes K under the assumption that prices of some digital options as specified in (5.3)
are given. We generate prices pkℓi , similar to [51, Example 6.8], by assuming an underlying multivariate
Black-Scholes model S = (S1

t , S
2
t , S

3
t )t≥0 with

Sk
t = Sk

0 exp
(
− (σk)2

2 t+ σkXk
t

)
, k = 1, 2, 3, t ≥ 0, (5.4)

https://github.com/juliansester/improved-dependence-pricing
https://github.com/juliansester/improved-dependence-pricing
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where X = (X1
t , X

2
t , X

3
t )t≥0 is a Brownian motion with dependent components that are distributed

(X1
1 , X

2
1 , X

3
1 ) ∼ N(0,Σ) with covariance matrix Σ =

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

 . We specify the parameters

Sk
0 , σ

k , and ρkℓ , as well as the set of strikes K of the observed digital options in Example 5.3.

Example 5.1 (∆-monotone payoff function). We specify t1 = 1 , t2 = 2 , σk = 0.5 for all k = 1, 2, 3 ,
S1
0 = 9 , S2

0 = 10 , and S3
0 = 11 as well as the risk-neutral correlations ρ12 = ρ13 = ρ23 = 0.8 . Further,

we assume that the prices pkℓ2 (K ′) of the digital options dkℓ2 (K ′) , 1 ≤ k < ℓ ≤ d = 3 , can be observed
for strikes K ′ ∈ K := {8, 9, 10, 11, 12} . Knowledge of such option prices pkℓ2 (K ′) means knowledge
of the value of the survival functions Ĉkℓ associated with the copula Ckℓ of (Sk

t2 , S
ℓ
t2) given by

Ĉkℓ(F k
2 (K

′), F ℓ
2(K

′)) = Ckℓ(F k
2 (K

′), F ℓ
2(K

′)) + 1− F k
2 (K

′)− F ℓ
2(K

′)

= EQ[d
kℓ
2 (K ′)] + 1− F k

2 (K
′)− F ℓ

2(K
′) = pkℓ2 + 1− F k

2 (K
′)− F ℓ

2(K
′)
(5.5)

for all Q ∈ Mlin fulfilling the equality constraint EQ[d
kℓ
2 (K ′)] = pkℓ2 (K ′) for K ′ ∈ K . Hence, we

obtain from [51, Proposition A.1] pointwise a lower bound Q̂ and an upper bound Q̂ for Ĉ.

Now, for K ∈ R, we compute the upper bound πµc1(Q̂) in (4.7) for the price of the option c1 = c1,K
as specified in (5.1) under knowledge of the digital option prices pkℓ2 (K ′) , 1 ≤ k < ℓ ≤ 3 , K ′ ∈ K . To

compute πµc1(Q̂) we apply Theorem 4.2 (b) and use that Q̂ is a pointwise upper bound for Ĉ , see also
Remark 4.3 (d).

Figure 5.1 illustrates the price bounds πµc1(Q̂) and PMuo
Q,Q

for the option c1 = c1,K obtained from

Theorem 4.2 (b) in dependence of the strikeK. Moreover, we illustrate the corresponding lower bounds.
We observe that the bound which incorporates the martingale property improves the bound πµc2(Q̂) sig-
nificantly. The price bound PMuo

Q,Q
is computed through an adaption of the algorithm provided in [26],

which relies on a neural network approximation of the optimal dual hedging strategy. We observe that
in this setting including information on prices of digital options improves the price bounds only slightly,
whereas in combination with the martingale property the price bounds can be improved significantly.
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FIGURE 5.1. In the setting of Example 5.1, the figure depicts different lower and up-
per price bounds of c1,K in dependence on the strike K. We show price bounds without
knowledge of prices of digital options, price bounds which additionally respect the mar-
tingale property, price bounds which one obtains after the inclusion of price information
of digital option prices as well as PMuo

Q,Q
, PMuo

Q,Q
which take into account the martin-

gale property and the prices of digital options.

For the determination of an improved upper price bound for the basket call option c2,K when depen-
dence information is related to the setting of a common component dependence model, we make use of
the following lemma, whose proof is provided at the end of Section 6.
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Lemma 5.2 (European basket options).
Let C(x1, . . . , xd) =

(∑d
i=1 αixi −K

)
+

be the payoff function of the European basket call option

with strikeK ∈ R and let P(x1, . . . , xd) =
(
K −

∑d
i=1 αixi

)
+

be the payoff function of the European

basket put option with weights αi > 0 , 1 ≤ i ≤ d , and strike K ∈ R. Then, the following statements
hold true:

(a) P and C are measure-inducing if and only if d ≤ 2 .
(b) Let F1, . . . , Fd ∈ F1

+ be continuous with finite first moments. IfD2, . . . , Dd ∈ C2 andQ2 ∈ Q2

with Di ≤lo Q2 for 2 ≤ i ≤ d , then

ψ
(F1,...,Fd)
C (M2 ∨D2 ∨ · · · ∨Dd) ≤ π

(G,F1)
ϕC

(Q̂2), and (5.6)

ψ
(F1,...,Fd)
P (M2 ∨D2 ∨ · · · ∨Dd) ≤ π

(G,F1)
ϕP

(Q̂2),

whereG is the distribution function defined by its generalized inverseG−1(u) :=
∑d

i=2 αiF
−1
i (u)∑d

i=2 αi
,

u ∈ [0, 1] , and where ϕC and ϕP are defined as in (3.24).

In the following example, we determine improved upper price bounds for the European basket call
option c2,K in the setting of a common component dependence model.

Example 5.3 (Supermodular payoff function). We determine the upper price bound πµ1

ϕc2
(Q̂2) , µ1 =

(µk1)
k=1,2,3 , for the option c2 = c2,K specified in (5.2) when the quasi-copula boundQ2 is inferred from

prices p1ℓ1 (K ′) of the digital14 options d1ℓ1 (K ′) , ℓ = 2, 3 , in (5.3) for strikesK ′ ∈ K = {8.5, 9, 9.5, 10, 10.5} .
Note that c2 is a continuous supermodular payoff function which is componentwise increasing but nei-
ther measure-inducing nor ∆-antitone nor ∆-monotone, see Lemma 5.2 and compare [54, Example
3.9.4]. However, the transformed function ϕc2 given by (3.24) is measure-inducing because it is ∆-
monotone, compare Lemma 5.2 (a).

To generate option prices p1ℓ1 (K ′) according to the underlying model from (5.4), we specify t1 = 1 ,
the volatility σ = 1 , the initial time asset values S1

0 = 10 , S2
0 = 9 , and S3

0 = 11. For the correlation,
we consider the four different cases (ρ12, ρ13) ∈ {(−1,−1), (−0.5,−0.5), (0, 0), (0.5, 0.5)}.

In Figure 5.2, we illustrate the standard upper price bound PM based on knowledge of the marginals
and the improved upper price bounds π(G,F 1

1 )
ϕc2

(Q̂2) for the payoff function c2 = c2,K in dependence on

the strike K . The improved bounds are inferred from prices of the digital option d1ℓ1 (K ′) , ℓ = 2, 3 ,
K ′ ∈ K , which are computed according to the multivariate Black-Scholes model with dependent com-
ponents explained by (5.4). For an illustration, we choose different specifications to model the depen-
dencies between the components of the underlying Brownian motion expressed by the correlations ρ1ℓ ,
ℓ = 2, 3 . We find that the more negatively correlated the components, the better the price bounds.

5.2. Improved price bounds through correlations. In this section, we show within several examples
how information on the risk-neutral correlation can improve model-independent price bounds of deriva-
tives. Before discussing the improvement in an explicit setting in Example 5.4, we stress the influence
of the chosen filtration for the martingale formulation on the set of admissible martingale measures and
therefore on the resultant price bounds, as discussed in Remark 2.2 (a).

Suppose for all examples in this section that n = d = 2 and that S has the following marginal
distributions

S1
t1 ∼ µ11 = U({8, 10, 12}), S2

t1 ∼ µ21 = U({8, 10, 12}),
S1
t2 ∼ µ12 = U({7, 9, 11, 13}), S2

t2 ∼ µ22 = U({4, 7, 10, 13, 16}).
(5.7)

14The methodology can also be applied to any other option written on two assets with ∆-monotone or ∆-antitone payoff
function like basked options. We mainly chose digital options for the sake of exposition since they result in simpler formulas.
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FIGURE 5.2. Regarding Example 5.3, we illustrate upper price bounds π(G,F 1
1 )

ϕc2
(Q̂2) for

the basket put option c2 = c2,K in dependence on the strike K for several correlations
ρ1ℓ of the underlying Brownian motion in the Black-Scholes model from which the
prices p1ℓ1 (K ′) of the digital options d1ℓ1 (K ′) , K ′ ∈ K , ℓ = 2, 3 , are calculated.

We consider, similar to [69, Example 5.12] and [69, Example 5.34], the following four payoff functions

c3(S
1
t1 , S

1
t2 , S

2
t1 , S

2
t2) :=

(
1/4 · (S1

t1 + S1
t2 + S2

t1 + S2
t2)− 10

)
+
,

c4(S
1
t1 , S

1
t2 , S

2
t1 , S

2
t2) :=

(
10−min

{
S1
t1 , S

1
t2 , S

2
t1 , S

2
t2

})
+
,

c5(S
1
t1 , S

1
t2 , S

2
t1 , S

2
t2) :=

1

4

(
S2
t2 − S1

t2

)
+
·
(
S2
t1 − S1

t1

)
+
,

c6(S
1
t1 , S

1
t2 , S

2
t1 , S

2
t2) :=

(
S1
t2 − S1

t1

S1
t1

)2

·
(
S2
t2 − S2

t1

S2
t1

)2

.

(5.8)

All numerical price bounds in this setting are computed using a linear programming approach, compare
for further details e.g. [37] and [40], which deliver a fast and accurate solution for a small amount of
marginals. Note that our approach does not depend on the numerical method applied as long as it is
computationally feasible. In fact, Figure 5.1 was derived based on the neural networks approach of [32]
which avoids a discretization of the continuous marginals and is also applicable in higher dimensions.

Example 5.4. In Figure 5.3, we combine correlation information at times t1 and t2 and study the impact
on the lower and upper price bound of c3, c4, c5, and c6. As a result, we obtain a significant improvement
of the price bounds for each of the payoff functions.

5.3. Additional market-implied assumptions. In this section, we study how to take into account sev-
eral additional conditions that reflect observations made on financial markets. In contrast to the inclusion
of conditions that are directly linked to the prices of basket options and/or other liquidly traded options
these conditions are rather implied by properties that can be observed on financial markets. In addition
to equality constraints for a pricing measure Q, we will in the sequel also consider inequality constraints.
For the sake of illustration, we formulate in the following all assumptions only for two underlying assets
(i.e. the case d = 2). It is then straightforward to generalize the implied conditions to a larger number of
underlying securities.

5.3.1. Correlation is constant over time. In this section, we assume the risk-neutral correlation between
two securities to be constant over time, i.e.,

CorrQ(S
1
ti , S

2
ti) = CorrQ(S

1
tj , S

2
tj ) for all i, j ∈ {1, . . . , n}. (5.9)

The study [2] finds that real-world correlations can reasonably be considered to be constant over time.
Based on an empirical analysis of pairs of 40 stocks, bonds, commodities, and currencies, their findings
imply that, for 26% of the pairs, constant real-world correlations for the whole period 2000–2014 can be
assumed. For 54% of pairs there appeared exactly one break in the correlation relationship and for 10%
there were two breaks. Only for the remaining 10% of the pairs there were three and more breaks in this
14 year period. The breaks were mostly corresponding to respective crises.
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FIGURE 5.3. This figure shows, in the setting of Example 5.4, the impact of combined
information on the correlations between S1 and S2 at t1 as well as at t2 on the lower
(blue) and upper (red) price bounds of derivatives c3, c4, c5, and c6 . The bounds without
the consideration of additional information are indicated by colored wireframes.

Moreover, [21] assume that CorrQ(S1
ti , S

2
ti) − CorrP(S

1
ti , S

2
ti) = α

(
1− CorrP(S

1
ti , S

2
ti)
)

for some
constant α ∈ (0, 1), where P denotes the underlying real-world probabilty measure15. In combination
with [2], this motivates us to assume a constant risk-neutral correlation as in equation (5.9).

Regarding all these empirical findings, equation (5.9) should not be assumed in all market situations,
but can be a reasonable assumption when no break in the correlation relationship, e.g. due to a change
of market behavior, is expected or when the time period is short. We refer to [36, 48] for a discussion
of various time periods over the last 20 years. We also stress that most options of interest have rather
short maturities such that a breakdown in the correlation relationship until maturity is rather unlikely.
The condition (5.9) can be included as equality constraints in the dual formulation of the robust pricing
problem, as shown in (4.15).

5.3.2. Correlation is bounded from below by the real world correlation. Following the argumenta-
tion in [21], i.e., assuming the existence of some α ∈ (0, 1) such that for all i = 1, . . . , n, it holds
CorrQ(S

1
ti , S

2
ti)− CorrP(S

1
ti , S

2
ti) = α

(
1− CorrP(S

1
ti , S

2
ti)
)
≥ 0, we obtain the condition

CorrQ(S
1
ti , S

2
ti) ≥ CorrP(S

1
ti , S

2
ti) for all i = 1, . . . , n. (5.10)

Since in most situations, the right-hand side CorrP(S
1
ti , S

2
ti) can be well estimated using historical data

(see e.g. [34]), we obtain a lower bound for the risk-neutral correlation CorrQ(S
1
ti , S

2
ti). In combination

with the assumption of a time-independent correlation we assume the same lower bound for all risk-
neutral correlations. In general, the higher the lower bound for the correlation, the more restrictive is the

15Note that real-world correlations can be estimated based on historical observations.
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resulting linear constraint and consequently more significant improvement of robust price bounds can
be expected.

Remark 5.5. The estimation of CorrP(S1
ti , S

2
ti) may be subject to uncertainty, such that CorrP(S1

ti , S
2
ti)

lies within some confidence interval [c, c] with a pre-specified probability. In this case, we can substitute
(5.10) by

CorrQ(S
1
ti , S

2
ti) ≥ c for all i = 1, . . . , n. (5.11)

Equation (4.16) allows implementing dual strategies of the form described in (2.6) to incorporate
(5.11), where CorrP(S

1
ti , S

2
ti) is estimated.

We test in two numerical examples the effect of the additional constraints on the associated robust
price bounds.

Example 5.6. We suppose again that S = (S1, S2) has the marginal distributions as specified in (5.7),
and we consider the four payoff functions in (5.8). In Table 5.1 we summarize the improvement obtained
through incorporating different additional conditions. Price bounds that are improved under additional
assumptions are written bold. The results are computed using a linear programming approach.

No additional Constant Correlation Correlation Constant corr. Constant corr.
assumptions correlation lower bounded lower bounded lower bounded lower bounded

by −0.5 by 0.5 by −0.5 by 0.5

infQ∈Mlin EQ[ci(S)]

c3 0.25 0.2781 0.3179 0.5375 0.329 0.639
c4 1.9611 1.9611 1.9611 1.9611 1.9611 1.9611
c5 0.0 0.0795 0.0 0.0 0.0795 0.0795
c6 0.0012 0.0012 0.0012 0.0012 0.0012 0.0014

supQ∈Mlin EQ[ci(S)]

c3 1.0111 0.9781 1.0111 1.0111 0.9781 0.9781
c4 3.2167 3.198 3.1615 2.9714 3.1615 2.893
c5 1.9778 1.9778 1.9778 0.8083 1.9778 0.6784
c6 0.0207 0.0207 0.0207 0.0207 0.0207 0.0207

TABLE 5.1. Improvement of the price bounds described in Example 5.6 under different
additional assumptions

Although the marginal distributions possess a quite simple discrete structure, the results described in
Table 5.1 allow several important insights concerning the effect of additional constraints on the resultant
price bounds. First, we observe that the improvements are highly payoff-dependent. Indeed, while the
price bounds for c7 are barely affected through the inclusion of additional constraints, the price bounds
for c4 can be improved strongly by any kind of constraint we investigated. Second, the improvements
can either concern only the lower bound (e.g. correlation constrained from below by -0.5 for c4), only
the upper bound (correlation constrained from below by 0.5 for c6) or affect both bounds (constant
correlation for c4). Third, a combination of different constraints can improve the price bounds even
more than the sum of the improvements of both constraints when considered separately (upper bound of
c5 in the case that the correlation is constant and constrained from below by 0.5).

5.4. Real-world examples. In this section we study price bounds of multi-asset derivatives with under-
lying marginal distributions that are implied from real market data. In particular, we study how the price
bounds behave under additional constraints on the joint distributions.

Deriving the marginals. On t0 = 17th August 2020, we observe prices of put and call options written
on S1 := the stock of Apple Inc. and on S2 := the stock of Microsoft Corp. We take into account options
with maturities lying 11 days and 32 days ahead respectively. This means we set t1 − t0 = 11/365 and
t2 − t0 = 32/365.

We consider mid prices of call and put options, i.e., we take the average of bid and ask prices. These
prices are then cleaned in two ways: the mid prices shall not allow for static arbitrage (call prices should
decrease w.r.t. increasing strikes, put prices should increase w.r.t. increasing strikes). Further, we exclude
butterfly arbitrage involving these prices, basically meaning prices as a function of the strikes should
possess a convex shape.
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After having cleaned the prices we apply the Breeden-Litzenberger result16 in [18] to obtain marginal
distributions associated to the underlying securities at maturities t1, t2. The density of the marginals can
be computed as the second derivative of the prices w.r.t. the strikes. For this step, to approximate the sec-
ond derivative, we use the finite differences method, i.e., given strikes (Kj)j=1,...,Nstrikes

with Nstrikes ∈
N and mid (call or put) prices (P(Kj , ti))j=1,...,Nstrikes

, the time-ti density pi(Kj) evaluated at Kj for

j = 2, . . . , Nstrikes is approximated by ∂2 P(K,ti)
∂K2

∣∣
K=Kj

≈ pi(Kj) :=
P(Kj+1,ti)−2P(Kj ,ti)+P(Kj−1,ti)

(Kj+1−Kj−1)2

and we further set pi(K1) = pi(KNstrikes
) = 0. We then approximate the one-dimensional marginal

distribution of the asset through Sk
ti ∼

1∑Nstrikes
j=1 pi(Kj)

∑Nstrikes
j=1 δKj pi(Kj) for i, k = 1, 2, where δKj

denotes the Dirac measure at point Kj .
To ensure an increasing convex order of the marginals of each stock we equalize the means of Sj

t1
, Sj

t2
for j = 1, 2, compare also [4]. Finally we apply U-quantization introduced in [9, Section 2.4.] in a
similar way as in [62, Section 3] such that each marginal is supported on 20 values which can then be
implemented into a linear program to compute robust price bounds. Additionally, we remark that we
neglect interest rates and dividend yields for these rather short maturities.

Computation of price bounds under correlation information. We study the payoff functions of deriva-
tives c3, c4, c5, and c6 given by (5.8), where we modify c3 and c4 by considering a strike of 250, i.e.,
we have c3(S1

t1 , S
1
t2 , S

2
t1 , S

2
t2) :=

(
1/4 · (S1

t1 + S1
t2 + S2

t1 + S2
t2)− 250

)
+

and c4(S1
t1 , S

1
t2 , S

2
t1 , S

2
t2) :=(

250−min
{
S1
t1 , S

1
t2 , S

2
t1 , S

2
t2

})
+
. In Figure 5.4, we display the influence of information on the time-

t1 and time-t2 correlation, respectively, on the price bounds of these derivatives. As elaborated, such
information can be extracted from prices of basket options, if observable. Since we have no access to
price quotes of basket options, we instead show the improvement obtained if certain levels of correla-
tion are given as an input. As already observed in the examples with artificial marginals, in general, the
improvement of the price bounds becomes stronger for information concerning the time t2 correlation.
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FIGURE 5.4. The price bounds of the options c3, c4, c5, c6 in dependence of correlation
information (either regarding time t1 or time t2) while the marginal distributions are
implied by vanilla option prices written on Apple and Microsoft.

5.4.1. Computation of price bounds under additional assumptions. Eventually, we investigate the influ-
ence of additional assumptions on the price bounds. We first observe that, under the real-world measure
P, which is here set to be the empirical measure based on historical data from 2 January 2018 until 17th
August 2020, the stocks of Apple Inc. and Microsoft Corp. seem to be highly correlated.

The idea is to make use of this apparently strong relation between the two assets to obtain tighter price
bounds for derivatives ci written on both assets by using only such pricing measures that are consistent
with an assumption on the strictly positive correlation.

To obtain an indication for the level of the correlation between the two assets in an 11 and 32 day
period, we consider the empirical bivariate return distribution of the two assets in an observation period
ranging from 2nd January 2018 until 22 July 2020. From this empirical distribution we simulate in a

16We refer also to [72] for a multidimensional version of [18], as well as [63] for a non-asymptotic version of [18], [72].
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bootstrapping approach 100, 000 paths of length 11 and 32 respectively, and then compute the respective
correlation coefficients. We obtain an estimate of 0.7948 for CorrP(S1

t1 , S
2
t1) and an estimate of 0.7952

for CorrP(S1
t2 , S

2
t2).

Thus, evidence is provided to include the weaker assumption CorrQ(S
1
ti , S

2
ti) ≥ CorrP(S

1
ti , S

2
ti) ≥

0.75 for i = 1, 2 and pricing measures Q. Here, 0.75 can obviously be substituted by any other number
associated to another degree of physical correlation that is believed to be more accurate. The higher
this number, the more improvement of the price bounds can be expected. However, to compute price
bounds among consistent martingale measures Q, this number must lie within the interval of correlations
that are consistent with the marginals. According to Remark 2.2, the bounds of this interval can be

computed through minimizing and maximizing Q 7→ EQ

 S1
ti
S2
ti
−S1

t0
S2
t0√

E
µ1
i
[
(
S1
ti

)2
]−

(
S1
t0

)2
√

E
µ2
i
[
(
S2
ti

)2
]−

(
S2
t0

)2


w.r.t. measures Q ∈ M(µ). We compute the bounds as solutions of linear programming problems using
the empirical distributions derived according to the presented discretization scheme and obtain at t1 the
interval [−0.588, 0.799] and at t2 the interval of possible prices given by [−0.487, 0.8490].

In Table 5.2, we display the results revealing that indeed the assumption on a lower bound of the cor-
relation has a strong impact on the quality of the price bounds. The assumption on constant correlations
has only in combination with the assumption of the lower bound of the correlation an influence on the
lower bound of c4, while for the other price bounds we cannot report any influence of the assumption
of constant correlations. For the sake of readability, price bounds showing improvement in comparison
with the original bounds are displayed in bold characters.

No additional Constant Correlation Constant correlation
assumptions correlation lower bounded by 0.75 lower bounded by 0.75

infQ∈Mlin EQ[ci(S)]

c3 31.9339 31.9344 34.4798 35.3573
c4 55.5357 55.5357 55.5359 55.5398
c5 0.0 0.0 0.0 0.0
c6 0.0 0.0 0.0 0.0023

supQ∈Mlin EQ[ci(S)]

c3 37.7576 37.7576 37.7576 37.7576
c4 66.5152 66.3507 64.0369 60.6242
c5 31.6319 31.6319 2.1662 2.1662
c6 0.0116 0.0116 0.0116 0.0116

TABLE 5.2. Improvement of the price bounds under different additional assumptions

6. PROOFS

In this section, we provide all proofs that were omitted in the previous sections of the paper.
To verify the lower semicontinuity of Mlin ∋ Q 7→ EQ[c] and to prove the compactness of the set

Mlin we make use of the following continuity result, see [13, Lemma 2.2] and [75, Lemma 4.3].

Lemma 6.1. Let f : Rnd → R be (lower/upper semi-)continuous and linearly bounded. Then, the map-
ping π 7→

∫
Rnd f(x) dπ(x) is (lower/upper semi-)continuous on Π(µ) w.r.t. weak topology.

Proof of Proposition 2.1. To prove the duality in (2.7), we abbreviate

Φ(δki ),(αi),(βi)
(x) := Ψ(uk

i ),(δ
k
i ),(αi),(βi)

(x)−
n∑

i=1

d∑
k=1

uki (x
k
i )

=
n−1∑
i=1

d∑
k=1

δki (x1, . . . , xi)(x
k
i+1 − xki ) +

∑
i∈Ieq

αi(f
eq
i (x)−Keq

i ) +
∑

i∈Iineq

βi(f
ineq
i (x)−K ineq

i )

for x = (x1, . . . , xn) = (x11, . . . , x
d
n) ∈ Rnd

+ , δki ∈ Cb(Rid
+), αi ∈ R, βi ∈ R+, i = 1, . . . , n, k =

1, . . . , d such that αi = 0, βj = 0 for all but finitely many i ∈ Ieq, j ∈ I ineq. Note that Φ(δki ),(αi),(βi)
∈
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Llin(Rnd
+ ), because all δki and f eqi are linearly bounded and continuous for all i, k, and all βif

ineq
i are

linearly bounded and lower semicontinuous. Therefore, we obtain that

DS = inf
(uk

i ),(δ
k
i ),(αi),(βi)

inf
Ψ

(uk
i
),(δk

i
),(αi),(βi)

≥ c

{
n∑

i=1

d∑
k=1

∫
R+

uki (x
k
i ) dµ

k
i (x

k
i )

}

= inf
(uk

i ),(δ
k
i ),(αi),(βi)

inf
u1
1⊕···⊕ud

n≥ c−Φ
(δk

i
),(αi),(βi)

{
n∑

i=1

d∑
k=1

∫
R+

uki (x
k
i ) dµ

k
i (x

k
i )

}

= inf
(δki ),(αi),(βi)

sup
π∈Π(µ)

{∫
Rnd
+

(
c(x)− Φ(δki ),(αi),(βi)

(x)
)
dπ(x)

}
(6.1)

Indeed, Equation (6.1) is a consequence of the Monge–Kantorovich duality (see [13, Proposition 2.1]
and [75, Chapter 5]) using that c − Φ(δki ),(αi),(βi)

∈ Ulin(Rnd
+ ) because c and Φ(δki ),(αi),(βi)

are both
linearly bounded and c is upper semicontinuous, whereas Φ(δki ),(αi),(βi)

is lower semicontinuous. Next,
we apply the minimax theorem by Ky–Fan, see, e.g., [52, Lemma 3.1], to the compact convex set Π(µ) ,
the convex set{

(δki ), (αi), (βi) ∈
(
Cb(Rd

+)× · · · × Cb(R
(n−1)d
+ )

)
× R|Ieq| × R|Iineq|

+ s.t.

αi = 0, βj = 0 for all but finitely many i ∈ Ieq, j ∈ I ineq

}
,

and the function f given by

f
(
π, ((δki ), (αi), (βi))

)
:=

∫
Rd
+

(
c(x)− Φ(δki ),(αi),(βi)

(x)
)
dπ(x).

The compactness of Π(µ) is meant w.r.t. the weak topology and can be obtained from [75, Lemma 4.4]
and Prokhorov’s Theorem. Due to Lemma 6.1, f is upper semicontinuous in π because c−Φ(δki ),(αi),(βi)

is upper semicontinuous and linearly bounded. Further, f is linear, and thus concave in π, as well as
linear w.r.t. ((δki ), (αi), (βi)) and hence convex. Thus, the minmax theorem is indeed applicable and we
obtain with Equation (6.1) that

DS = sup
π∈Π(µ)

inf
(δki ),(αi),(βi)

{∫
Rnd
+

c(x) dπ(x)−
∫
Rnd
+

n−1∑
i=1

d∑
k=1

δki (x1, . . . , xi)(x
k
i+1 − xki ) dπ(x) (6.2)

−
∫
Rnd
+

∑
i∈Ieq

αi(f
eq
i (x)−Keq

i ) dπ(x)−
∫
Rnd
+

∑
i∈Iineq

βi(f
ineq
i (x)−K ineq

i ) dπ(x)


(6.3)

= sup
Q∈Mlin

∫
Rnd
+

c(x) dQ(x) = PMlin . (6.4)

For the equality in (6.4), we note that
∫
c dπ is uniformly bounded in π ∈ Π(µ) using that all µki have

finite first moments and that c is linearly bounded. We observe that the second integral in (6.2) vanishes
whenever π ∈ Π(µ) is a martingale. If π ∈ Π(µ) fulfils the equality constraints Eπ[f

eq
i ] = Keq

i for all
i , the first integral in (6.3) is 0 , and if π ∈ Π(µ) fulfils the inequality constraints Eπ[f

ineq
i ] ≤ K ineq

i for
all i, the second integral in (6.3) is non-positive using that βi ≥ 0 . Hence, for π ∈ Mlin , the infimum of
the expression in the curly brackets is given by

∫
c(x) dπ(x) > −∞. If π ∈ Π(µ) is not a martingale or

does not fulfil one of the equality or inequality constraints, then there exist δki , αi , and βi , respectively,
such that at least one of the corresponding integrals is positive. By scaling, we conclude that in this case
the infimum over (δki ), (αi), (βi) is −∞ .

Next, we prove that the supremum is attained. By [13, Proposition 2.4], the set M(µ) is compact
in the weak topology. We show that Mlin is a closed subset of M(µ) . Let (πm)m∈N ⊂ Mlin be a
sequence that converges weakly to some π ∈ Mlin. Then, Lemma 6.1 implies for all i ∈ Ieq that
Keq

i = Eπn [f
eq
i ] → Eπ[f

eq
i ] as n → ∞ , and, thus, Eπ[f

eq
i ] = Keq

i , where we use that f eqi is lin-
early bounded and continuous. For the inequality constraints, we obtain from Lemma 6.1 that for all
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i ∈ I ineq we have Eπ[f
ineq
i ] ≤ lim infn→∞ Eπn [f

ineq
i ] ≤ K ineq

i using that f ineqi is linearly bounded
and lower semicontinuous. Hence, also Mlin is compact. Now, let (Qm)m ⊂ Mlin be a sequence such
that PMlin ≤ EQm [c] +

1
m for all m ∈ N . Since Mlin is compact, there exists a measure Q∗ ∈ Mlin

and a subsequence (Qmk
)k∈N which converges weakly to Q∗ . Since c is upper semicontinuous and

linearly bounded, we obtain from Lemma 6.1 that lim supk→∞ EQmk
[c] ≤ EQ∗ [c] . This implies that

PMlin = EQ∗ [c] .

□

For the proof of Theorem 3.7, we apply the following lemmas.

Lemma 6.2. Let m ∈ N, let Q2 ∈ Q2. Then, it holds that Q∗ ∈ Qm defined in (3.25) is a quasi-copula
with survival function Q̂∗ given by Q̂∗(u1, . . . , um) = Q̂2 (max2≤i≤m{ui}, u1) for (u1, . . . , um) ∈
[0, 1]m .

Proof of Lemma 6.2. The function Q∗ fulfils the defining properties of a quasi-copula because Q2 is a
quasi-copula.
Due to the definition of Q̂∗ , we may consider for (u1, . . . , um) ∈ [0, 1]m w.l.o.g. the case that u2 ≥
. . . ≥ um . Then, it holds true that

Q̂∗(u1, . . . , um) =
∑

I⊆{1,...,m}
vi:=1 ∀i∈I , vi:=ui ∀i/∈I

(−1)m−|I|Q∗(v1, . . . , vm)

= 1−
∑

J⊆{1,...,m},J ̸=∅ ,
vi:=ui ∀i∈J , vi:=1 ∀i/∈J

(−1)|J |+1Q∗(v1, . . . , vm)

= 1− u1 −
∑

J⊆{1,...,m},
1∈J,|J|≥2

(−1)|J |+1Q2

(
min

j∈J\{1}
{uj}, u1

)
−

∑
J⊆{2,...,m},

J ̸=∅

(−1)|J |+1min
j∈J

{uj}.

(6.5)
Indeed, to see that (6.5) holds, note that the first equality follows from the definition of a survival function
in (3.6). For the second equality, we sum over J = {1, . . . ,m} \ I and use that Q∗(1, . . . , 1) = 1. The
third equality follows from the definition of Q∗ and the uniform marginal property of Definition 3.1 (b)
for quasi-copulas. With (6.5) we obtain

Q̂∗(u1, . . . , um) = 1− u1 −
m∑
k=2

k−2∑
j=0

(−1)j+1

(
k − 2

j

)
Q2(uk, u1)−

m∑
k=2

k−2∑
j=0

(−1)j
(
k − 2

j

)
uk

= 1− u1 +Q2(u2, u1)− u2

= 1− u1 − max
2≤i≤m

{ui}+Q2( max
2≤i≤m

{ui}, u1) = Q̂2( max
2≤i≤m

ui, u1).

(6.6)

Indeed, to see that (6.5) note that the first equality holds true for the following reason: in the first sum,
we consider for every k = 2, . . . ,m, the subsets J ⊆ {1, . . . , k} with 1, k ∈ J . Then k is the maximal
element of J and hence minj∈J\{1}{uj} = uk. There are

(
k−2
j

)
subsets of {2, . . . , k − 1} with j

elements and we have |J | = j + 2. In the second sum, we consider subsets J ⊆ {2, . . . , k} with
k ∈ J for every k = 2, . . . ,m. Here again there are

(
k−2
j

)
subsets of {2, . . . , k − 1} with j elements

but now |J | = j + 1. The second equality follows from the symmetry of the binomial coefficients
given by

∑N
i=0

(
N
i

)
(−1)i = 1l{N=0} for N ∈ N and the third equality by the definition of the survival

function. □

Denote by Km
n := { 1

n+1 ,
2

n+1 , . . . ,
n

n+1}
m ⊂ [0, 1]m the canonical m-dimensional n-grid with edge

length 1
n+1 contained in [0, 1]m . Denote by diag(Km

n ) := {( 1
n+1 , . . . ,

1
n+1), . . . , (

n
n+1 , . . . ,

n
n+1)} the

diagonal of Km
n . For a finite signed measure σ on [0, 1]m , we define by

Gσ(u1, . . . , um) := σ([0, u1], . . . , [0, um]) , (u1, . . . , um) ∈ [0, 1]m , (6.7)

its measure generating function.
Conversely, by embedding Km

n ⊆ [0, 1]m and identifying f : Km
n → R with f : [0, 1]m → R

defined by f(x1, . . . , xm) := f
(
⌊x1·(n+1)⌋

n+1 ∧ n
n+1 , . . . ,

⌊xn·(n+1)⌋
n+1 ∧ n

n+1

)
where ⌊x⌋ := max{n ∈
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N0 : n ≤ x}, x ∈ R+, we see that every function f : Km
n → R has bounded Hardy–Krause variation as

Km
n ⊆ [0, 1]m is discrete, and hence induces a finite signed measure on Km

n . We refer to the discussion
after (3.14), see also, e.g. [3, Theorem 3] or [35, Theorem 3.29].

Lemma 6.3. Let m,n ∈ N, and let σ be a finite signed measure on Km
n . Then the following statements

hold true:
(a) There exists a finite signed measure µ on K1

n such that

Gσ(u1, . . . , um) = Gµ( min
i=1,...,m

{ui}) for all (u1, . . . , um) ∈ Km
n , (6.8)

if and only if the mass of σ is concentrated on the diagonal of Km
n , denoted by diag(Km

n ), i.e.,
σ({x}) = 0 for all x ∈ Km

n \ diag(Km
n ) . In this case µ is defined by

µ([0, u]) := σ ([0, u]× · · · × [0, u]) , u ∈ [0, 1]. (6.9)

(b) Assume that σ(Km
n ) = 1 . In the case that σ fulfils (6.8) for some signed measure µ on K1

n , it
follows that∫

[0,1]m
f(u1, . . . , um) dGσ(u1, . . . , um) =

∫
[0,1]

f(v, . . . , v) dGµ(v) (6.10)

for all σ-integrable functions f : [0, 1]m → R .

Proof. To show (a), first assume that (6.8) holds and let x = (x1, . . . , xm) ∈ Km
n \ diag(Km

n ) . Then,

σ({x}) = △1
1/n · · ·△

m
1/nGσ(x1, . . . , xm) = △1

1/n · · ·△
m
1/nGµ

(
min

i∈{1,...,m}
{xi}

)
= 0 ,

because there exists j ∈ {1, . . . ,m} such that xj > mini∈{1,...,m}{xi} and thus

△j
1/nGµ

(
min

i∈{1,...,m}
{xi}

)
= Gµ

(
min
i ̸=j

{xi}
)
−Gµ

(
min
i ̸=j

{xi}
)

= 0 .

For the reverse direction, assume that the mass associated with σ is concentrated on diag(Km
n ). Then µ

defined by µ([0, u]) := σ([0, u]× · · · × [0, u]) , u ∈ K1
n , is a signed measure with the property that

Gσ(u1, . . . , um) = σ([0, u1]× · · · × [0, um])

= σ([0, min
i=1,...,m

{ui}]m) = µ([0, min
i=1,...,m

{ui}]) = Gµ( min
i=1,...,m

{ui}) ,

where the second equality holds true because σ({x}) = 0 for all x ∈ Km
n \ diag(Km

n ) .
To show (b), let us first consider the case where σ is a probability measure, i.e., all mass (which is by

(a) distributed on diag(Km
n )) is non-negative.

Let U1, . . . , Um be random variables on a probability space (Ω,A, σ) such that (U1, . . . , Um) ∼ σ.

Since σ is concentrated on the diagonal, we have that Ui
d
= Uj and that Ui, Uj are comonotone for all

i, j ∈ {1, . . . ,m}. Hence, with U :
d
= U1, we obtain (U1, . . . , Um)

d
= (U, . . . , U). This implies∫

[0,1]m
f(u1, . . . , um) dGσ(u1, . . . , um) =

∫
Ω
f(U1, . . . , Um) dP

=

∫
Ω
f(U, . . . , U) dP =

∫
[0,1]

f(v, . . . , v) dGµ(v) ,

(6.11)

which proves (6.10) in the case where σ is a probability measure.
Now, consider the general case where σ is a finite signed measure satisfying σ(Km

n ) = 1. By (6.3) all
mass of σ is concentrated on diag(Km

n ) which is a finite set. So, there exists M ∈ N such that σ(x) ≥
−M for all x ∈ diag(Km

n ) . Denote by σu the uniform distribution on diag(Km
n ) , i.e., σu({x}) = 1

n for
all x ∈ diag(Km

n ) and σu({x}) = 0 for all x ∈ Km
n \ diag(Km

n ) . Then, since σ(Km
n ) = 1,

σM :=
nMσu + σ

nM + 1
(6.12)

defines a probability measure on Km
n with non-negative mass and which is concentrated on diag(Km

n ) .
Then, by (6.9), the measure µM defined by µM ([0, v]) := σM ([0, v]× · · · × [0, v]) , is related to σM by
GσM (u1, . . . , um) = GµM (mini=1,...,m{ui}) , (u1, . . . , um) ∈ [0, 1]m . Hence, we obtain by (6.11) that∫
[0,1]m f(u1, . . . , um) dσM (u1, . . . , um) =

∫
[0,1] f(u, . . . , u) dµ

M (u) . For µu defined by µu([0, v]) :=



IMPROVED MULTI-ASSET PRICE BOUNDS 27

σu([0, v]×· · ·× [0, v]) , v ∈ [0, 1] , we obtain, by using (6.12), the identity µ = (nM+1)µM −nMµu .
This yields∫

[0,1]m
f(u) dσ(u) = (nM + 1)

∫
[0,1]m

f(u) dσM (u)− nM

∫
[0,1]m

f(u) dσu(u)

= (nM + 1)

∫
[0,1]

f(v, · · · , v) dµM (v)− nM

∫
[0,1]

f(v, · · · , v) dµu(v)

=

∫
[0,1]

f(v, · · · , v) dµ(v) ,

which proves (6.10). □

Proof of Theorem 3.7. (f) =⇒ (c): For any fixed u = (u1, . . . , um) ∈ (0, 1)m , let f(x) := 1l{u<x},
f̃(x) := 1l{u≤x}, x = (x1, . . . , xm) ∈ [0, 1)m , and let (Φn)n∈N be a sequence of N(u, Im/n)-
distribution functions, i.e., Φn is the distribution function of the m-variate normal distribution with
mean vector u and covariance matrix Im/n , where Im denotes the (m ×m)-unit matrix. Then, Φn is
∆-monotone and, thus, supermodular and measure-inducing for all n ∈ N . Note that ηΦn → η

f̃
= δ{u}

weakly as n → ∞ , where δ{u} denotes the one-point probability measure in u. Moreover, note that
η
f̃
= ηf . Further, ϕf defined via (3.24) by

ϕf (x1, x2) = f(x2, x1, . . . , x1) = 1l{u1<x2,max2≤i≤m{ui}<x1} (6.13)

is componentwise left-continuous and induces the one-point probability measure ηϕf
= δ{max2≤i≤m{ui},u1} .

Thus, for the survival function of the upper product, it follows by (3.6), and since M2 ∨D2 ∨ · · · ∨Dm

is a copula, that

M2 ∨D2 ∨ · · · ∨Dm
∧

(u) =

∫
[0,1]m

1l{u<v} d(M
2 ∨D2 ∨ · · · ∨Dm)(v)

= lim
n→∞

∫
[0,1]m

Φn(v) d(M
2 ∨D2 ∨ · · · ∨Dm)(v)

= lim
n→∞

ψΦn(M
2 ∨D2 ∨ · · · ∨Dm) ≤ lim

n→∞
πϕΦn

(Q̂2)

(6.14)

Indeed, to see that (6.14) holds, note that the second equality follows from the dominated convergence
theorem and by using that M2 ∨D2 ∨ · · · ∨Dm is continuous. The third equality is due to (3.8) using
that the upper product is a copula and thus continuous and measure-inducing. The inequality holds by
assumption using that u → Φn(u, . . . , u) is Lebesgue-integrable and that ϕΦn is ∆-monotone and thus
measure-inducing. Now, (6.14) implies

M2 ∨D2 ∨ · · · ∨Dm
∧

(u) ≤ lim
n→∞

∑
I⊆{1,2}

I ̸=∅

∫
[0,1]|I|

(Q̂2)I(v) dη(ϕΦn )I
(v) + ϕΦn(0, 0)

=

∫
[0,1]2

Q̂2(u) dηϕf
(u) = Q̂2( max

2≤i≤m
{ui}, u1) = Q̂∗(u1, . . . , um) ,

(6.15)

Indeed, the first line follows from (3.16). For the first equality, we apply that (ηϕΦn
)n converges

weakly to ηϕf
, and that the measures η(ϕΦn ){1}

and η(ϕΦn ){2}
induced by the marginals of ϕΦn converge

weakly to the null-measure because, as u ∈ (0, 1)m, (ϕΦn){1}(x) = ϕΦn(x, 0) → 0 = ϕf (x, 0) =
(ϕf ){1}(x) for all x ∈ [0, 1]m , and similarly for (η(ϕΦn ){2}

)n . Further, we use that ϕΦn(0, 0) → 0 =

ϕf (0, 0) . The second equality follows from (6.13), and the last equality holds due to Lemma 6.2. Since

u 7→ M2 ∨D2 ∨ · · · ∨Dm
∧

(u) and u 7→ Q̂∗(u) are both continuous on [0, 1]m, we obtain that (6.14)
holds also for u ∈ [0, 1]m.
(c) =⇒(a): For i ∈ {2, . . . ,m} let u = (u1, . . . , um) ∈ [0, 1]m with uj = 0 for all j ∈ {2, . . . ,m} \ {i} .
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Then, the survival function of Q2 satisfies that

Q̂2(ui, u1) = Q̂2

(
max

2≤j≤m
{uj}, u1

)
= Q̂∗(u1, . . . , um) ≥M2 ∨D2 ∨ · · · ∨Dm
∧

(u)

= 1−
∫ 1

0
max{1l{u1>t}, ∂2D

2(u2, t), . . . , ∂2D
m(um, t)} dt

= 1− u1 −
∫ 1

u1

max
2≤j≤m

{∂2Dj(uj , t)} dt = 1− u1 − ui +Di(ui, u1) .

(6.16)

Indeed, to see that (6.16) holds, note that the second equality follows with Lemma 6.2. The inequal-
ity holds by assumption (c). The third equality follows with [6, Proposition 2.4 (viii)] by using that
∂2M

2(u1, t) = 1l{u1>t} for all t ∈ [0, 1] with t ̸= u1 . The fourth equality is a consequence of
0 ≤ ∂2D

j(uj , t) ≤ 1 for Lebesgue-almost all t ∈ [0, 1] and for j = 2, . . .m , see [55, Theorem 2.2.7].
The last equality holds true by [55, Theorem 2.2.7] because ∂2Di(ui, t) ≥ ∂2D

i(0, t) = ∂2D
j(uj , t) for

Lebesgue-almost all t ∈ [0, 1] and for all j ̸= i , using that D2, . . . , Dm are copulas. Hence, it follows
that

Di(ui, u1) ≤ Q̂2(ui, u1)− 1 + u1 + ui = Q2(ui, u1) .

(a) =⇒ (b): For u = (u1, . . . , um) ∈ [0, 1]m , we have

M2 ∨D2 ∨ . . . ∨Dm (u) =

∫ u1

0
min

2≤i≤m
{∂2Di(ui, t)} dt ≤ min

2≤i≤m
{Di(ui, u1)}

≤ min
2≤i≤m

{Q2(ui, u1)} = Q2( min
2≤i≤m

{ui}, u1) = Q∗(u).
(6.17)

Indeed, to see that (6.17) holds, note that the first equality follows from the definition of the upper
product, from ∂2M

2(u1, t) = 1l{u1>t} and by 0 ≤ ∂2D
i(ui, t) ≤ 1 for all i = 1, . . . ,m and for

Lebesgue-almost all t ∈ [0, 1] . The first inequality is a consequence of Jensen’s inequality, the funda-
mental theorem of calculus, and property (i) in Definition 3.1 of copulas. The second inequality holds
by assumption (a). The second equality follows because Q2 is a quasi-copula and, thus, non-decreasing
in each argument.
(b) =⇒ (a): Let i ∈ {2, . . . ,m} . For u = (u1, . . . , um) ∈ [0, 1]m such that uj = 1 for all j ∈
{2, . . . ,m} \ {i} it follows that

Di(ui, u1) =M2 ∨D2 ∨ · · · ∨Dm (u) ≤ Q∗(u) = Q2(ui, u1) ,

where the first equality is given by [6, Proposition 2.4 (iv),(vi)] and the inequality holds by assump-
tion (b).
((b) and (c)) ⇐⇒ (d): This holds by the definition of the concordance ordering.

(a)=⇒(e): We extend the proof of the main result in [7, Chapter 3] to a quasi-copulaQ2 ∈ Q2 instead
of a copulaE ∈ C2 , cf. Remark 3.8 (a). Analogously, we first prove the statement in a discretized version
using that all discretized copulas and quasi-copulas induce (signed) measures with finite support. Then,
we show the statement by an approximation of the discretized version, which differs from the proof of
[7, Theorem 1] because we need to apply the quasi-expectation operator w.r.t. a quasi-copula instead of
the expectation w.r.t. a probability measure.

For the first step, we make use of the same ideas and concepts as in the first part of the proof of
[7, Theorem 1], namely applying mass transfer theory from [53] which requires a discretization of the
distributions to a finite grid as follows. For n ∈ N and m ≥ 1 denote by

Gm
n : =

{
( i1n , . . . ,

im
n )
∣∣ ik ∈ {1, . . . , n} for all k ∈ {1, . . . ,m}

}
,

Gm
n,0 : =

{
( i1n , . . . ,

im
n )
∣∣ ik ∈ {0, . . . , n} for all k ∈ {1, . . . ,m}

}
the (extended) uniform unit n-grid of dimension m with edge length 1

n .
For the discretization of copulas and quasi-copulas, we use the concept of a (signed) n-gridm-copula

D : [0, 1]m → R which is the measure-generating function (see (6.7)) of a (signed) measure µ on Gm
n

that satisfies for all u = (u1, . . . , um) ∈ [0, 1]m

(i) D(u) = D
(
⌊nu1⌋

n , . . . , ⌊num⌋
n

)
= µ

(
[0, ⌊nu1⌋

n ]× · · · × [0, ⌊num⌋
n ]

)
,

(ii) for all i = 1, . . . ,m , it holds D(u) = k
n for all k = 0, . . . , n , if ui = k

n and uj = 1 for all j ̸= i ,
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where ⌊·⌋ is the componentwise floor function. Denote by Cm,n (respectively Cs
m,n) the set of all (signed)

n-grid m-copulas. Note that, as discussed after (6.7), a (signed) n-grid m-copula induces a (signed)
measure with support on the finite grid Gm

n . Hence, for every m-variate quasi-copula Q ∈ Qm , the
canonical n-grid quasi-copula Gn(Q

′) defined by Gn(Q
′)(u) := Q′( ⌊nu⌋n ) , u ∈ [0, 1]m , induces a

signed measure.
For a function g : [0, 1]m → R , denote the difference operator of length 1

n w.r.t. the i-th variable by
δing(u) := g(u) − g(max{u − 1

nei, 0}) , where ei is the i-th unit vector. Then, we define the upper
product

∨
: (C2,n)m → Cm,n for grid copulas D1

n, . . . , D
m
n ∈ C2,n by

m∨
i=1

Di
n(u1, . . . , um) : =

n∑
k=1

min
1≤i≤m

{
δ2nD

i
n(ui,

k
n)
}
=

1

n

n∑
k=1

min
1≤i≤m

{
nδ2nD

i
n(ui,

k
n)
}

(6.18)

for (u1, . . . , um) ∈ [0, 1]m .
The upper product for signed grid copulas D1, . . . , Dm is defined analogously where

∨m
i=1D

i
n ∈

Cs
m,n whenever δ2nD

i
n(·, t) ≤ 1

n for all i ∈ {1, . . . ,m} and t ∈ [0, 1] .

Let Di
n := Gn(D

i), M2
n := Gn(M

2), Q2,n := Gn(Q2), and Q∗
n := Gn(Q

∗) be the canon-
ical n-grid (quasi-)copulas of Di , i = 2, . . . ,m , M2, Q2, and Q∗ . Then it holds that Q∗

n(u) =
Q2,n(min2≤i≤m{ui}, u1) and Di

n(u1, ui) ≤ Q2,n(u1, ui) for all u = (u1, . . . , um) ∈ [0, 1]m and
i ∈ {2, . . . ,m} . Similar to [7, Proof of Theorem 1], there exists for every n ∈ N a finite sequence
(Q∗

n,k)0≤k≤n of signed n-grid quasi-copulas such that

Q∗
n,0 =M2

n ∨D2
n ∨ · · · ∨Dm

n , Q∗
n,n = Q∗

n , (6.19)

Q∗
n,k−1 ≤sm Q∗

n,k for all 1 ≤ k ≤ n and for all n ∈ N . (6.20)

Note that the supermodular ordering can also be defined w.r.t. finite signed measures ν1 and ν2 with finite
support because the inequality

∫
f dν1 ≤

∫
f dν2 depends only the difference ν2 − ν1 by

∫
f d(ν2 −

ν1) ≥ 0 for f ∈ Fsm . So, the comparison in (6.20) is well-defined because the expressions on both
sides are signed grid copulas which correspond to signed measures with finite support Gm

n . Hence, each
Q∗

n,k induces a signed measure which we can integrate against.
Due to the transitivity of the supermodular ordering, (6.19) and (6.20) imply that M2

n ∨ D2
n ∨ · · · ∨

Dm
n ≤sm Q∗

n for all n ∈ N , i.e.,

∫
[0,1]m

f(u) d(M2
n ∨D2

n ∨ · · · ∨Dm
n )(u) ≤

∫
[0,1]m

f(u) dQ∗
n(u) , (6.21)

for all f ∈ Fsm such that the integrals exist. This proves the statement in the discretized version for grid
copulas.

For the second step, let f ∈ Fc,l
mi([0, 1]

m) be a left-continuous and supermodular function. Note
that f is bounded because it is measure-inducing and defined on a compact domain. In the first step,
we chose for notational conveniences the grid Gm

n = { 1
n , . . . ,

n−1
n , 1}m as support of the discretized

copulas and quasi-copulas Cn := M2
n ∨D2

n ∨ · · · ∨Dm
n = M2 ∨D2 ∨ · · · ∨Dm ◦ (Fn, . . . , Fn) and

Q∗
n := Q∗ ◦ (Fn, . . . , Fn) , respectively, where Fn : [0, 1] → [0, 1] is now defined as

Fn(x) =


0 if x < 1

n+1 ,
k
n if x ∈

[
k

n+1 ,
k+1
n+1

)
, k = 1, . . . , n ,

1 if x ≥ 1 .

(6.22)

Note that the range of Fn is also {0, 1n , . . . ,
n−1
n , 1} . Then, Cn and Q∗

n are distributions with finite
support on the grid Km

n := { 1
n+1 , . . . ,

n
n+1}

m . Applying mass transfer theory analogously to the first
step, we also obtain (6.21), now for the discretization w.r.t. Fn, i.e., we have

∫
[0,1]m f(u) dCn(u) ≤
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[0,1]m f(u) dQ

∗
n(u). Then, it follows that

πf (M
2 ∨D2 ∨ · · · ∨Dm) =

∑
I⊆{1,...,m}

I ̸=∅

∫
[0,1]m

lim
n→∞

(Ĉn)I(u) dηfI (u) + f(0, . . . , 0)

= lim
n→∞

∑
I⊆{1,...,m}

I ̸=∅

∫
[0,1]m

(Ĉn)I(u) dηfI (u) + f(0, . . . , 0)

= lim
n→∞

∫
[0,1]m

f(u) dCn(u)

≤ lim
n→∞

∫
[0,1]m

f(u) dQ∗
n(u) = lim

n→∞
ψQ∗◦(Fn,...,Fn)(f) = πf (Q̂∗)

(6.23)

Indeed, to see that (6.23) holds, note that for the first equality, we apply (3.18) using that f ∈ Fc,l
mi and

thus fI induce a finite signed measures, I ⊆ {1, . . . ,m} . Further, we apply that the grid approximation
Cn converges weakly and, thus, pointwise to (3.16) see [6, Proposition 2.12], using that M2 ∨ D2 ∨
· · · ∨Dm is a copula and thus continuous. Moreover, we use that M2 ∨D2 ∨ · · · ∨Dm

∧

(0, · · · , 0) = 1.
The second equality holds due to the dominated convergence theorem applying again that f induces a
finite signed measure. The third and fourth equality follow from (3.19) using that the discretized copula
Cn and the discretized quasi-copula Q∗

n = Q∗ ◦ (Fn . . . , Fn) are right-continuous, grounded, bounded,
measure-inducing, and fulfil the continuity conditions (3.4) and (3.5). The last equality follows from the
approximation due to [5, Theorem 3.7]. The inequality is a consequence of the discretized supermodular
ordering result (6.21) in the modified version discretizing w.r.t. the grid Km

n .
(e) =⇒ (f): Let f : [0, 1)m → R be lower bounded by some M2 ∨ D2 ∨ · · · ∨ Dm-integrable func-

tion, left-continuous, supermodular, and componentwise increasing/componentwise decreasing such that
(ϕf )I is Lebesgue integrable on [0, 1)|I| for I ⊆ {1, 2} , I ̸= ∅ ,

For n ∈ N , let Fn be the distribution function given by (6.22). We first show that

πf◦(F−1
n ,...,F−1

n )(Q̂
∗) = πϕf◦(F−1

n ,F−1
n )(Q̂2) . (6.24)

Define Q(n)(u1, . . . , um) := Q∗(Fn(u1), . . . , Fn(um)) and Q2,(n)(u1, u2) := Q2(Fn(u2), Fn(u1)) for
u1, . . . , um ∈ [0, 1] . Then Q(n) and Q2,(n) induce by (3.13) finite signed measures on B([0, 1]m) and
B([0, 1]2) with mass concentrated on the n-grid Km

n = { 1
n+1 , . . . ,

n
n+1}

m and K2
n = { 1

n+1 , . . . ,
n

n+1}
2,

respectively. For u1 ∈ K1
n = { 1

n+1 , . . . ,
n

n+1}, consider the conditional measure generating functions

Qu1

(n)(u2, . . . , um) := n ·
[
Q(n)(u1 +

1
n+1 , u2, . . . , um)−Q(n)(u1, u2, . . . , um)

]
, and Qu1

2,(n)(u2) :=

n ·
[
Q2,(n)(u1 +

1
n+1 , u2)−Q2,(n)(u1, u2)

]
. Then we obtain that

πf◦(F−1
n ,...,F−1

n )(Q̂
∗) = πf (Q̂∗ ◦ (Fn, . . . , Fn)) =

∫
[0,1]m

f(u) dQ(n)(u)

=

∫
[0,1]

∫
[0,1]m−1

f(u1, u2, . . . , um) dQu1

(n)(u2, . . . , um) dFn(u1)

=

∫
[0,1]

∫
[0,1]m−1

f(u1, u2, . . . , um) dQu1

2,(n)( min
2≤i≤m

{ui}) dFn(u1)

=

∫
[0,1]

∫
[0,1]m−1

f(u1, v, . . . , v) dQ
u1

2,(n)(v) dFn(u1)

=

∫
[0,1]m

ϕf (v, u1) dQ2,(n)(v, u1) = πϕf
(Q̂2 ◦ (Fn, Fn)) = πϕf◦(F−1

n ,F−1
n )(Q̂2) .

(6.25)
Indeed, to see that (6.25) holds, note that the first and last equality follow from the marginal trans-
formation formula (3.21). Since Q(n) and Q2,(n) are defined on [0, 1)m and [0, 1)2 , respectively, they

are grounded and satisfy Q̂∗ ◦ (Fn, . . . , Fn) = Q̂(n) and Q̂2 ◦ (Fn, Fn) = Q̂2,(n). Hence, the second
and seventh equality follows with (3.19) using that Q(n) and Q2,(n) are right-continuous and measure-
inducing. The third and sixth equality hold true by the disintegration theorem applied on the positive part
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and the negative part of the Hahn-Jordan decomposition of the signed measures induced by Q(n) and
Q2,(n) , respectively. The fourth equality follows from Q∗(u1, u2, . . . , um) = Q2(min2≤i≤m{ui}, u1) .
The fifth equality holds by Lemma 6.3 using that Qu1

(n) and Qu1

2,(n) are measure generating functions
of signed measures with Qu1

(n)(u2, . . . , um) = Qu1

2,(n)(mini={2,...,m}{ui}) for all u1 ∈ K1
n and for all

(u2, . . . , um) ∈ Km−1
n . As a consequence of (6.24), we now obtain that

ψf (M
2 ∨D2 ∨ · · · ∨Dm) ≤ lim inf

n→∞
ψf◦(F−1

n ,...,F−1
n )(M

2 ∨D2 ∨ · · · ∨Dm)

= lim inf
n→∞

πf◦(F−1
n ,...,F−1

n )(M
2 ∨D2 ∨ · · · ∨Dm
∧

)

≤ lim inf
n→∞

πf◦(F−1
n ,...,F−1

n )(Q̂
∗) = lim inf

n→∞
πϕf◦(F−1

n ,F−1
n )(Q̂2)

= lim inf
n→∞

πϕf
(Q̂2 ◦ (Fn, Fn)) = lim inf

n→∞
ψϕf

(Q2 ◦ (Fn, Fn)) = πϕf
(Q̂2) ,

(6.26)
Indeed, to see that (6.26) holds observe that the first inequality follows by an application of Fatou’s
Lemma using that f is lower bounded by some integrable function. The first equality is a consequence of
(3.18). The second inequality holds true by assumption using that f ◦(F−1

n , . . . , F−1
n ) is left-continuous,

supermodular, and measure-inducing. The third equality follows from the marginal transformation for-
mula (3.21). The fourth equality follows from (3.19) noting that Q2 ◦ (Fn, Fn) is grounded. The last
equality is a consequence of [5, Corollary 3.12]using that ϕf ∈ Fc,l

mi([0, 1)
2) is left-continuous and

(ϕf )I is Lebesgue integrable for I ⊆ {1, 2} , I ̸= ∅ , as well as Fn(x) → x for all x ∈ [0, 1] . This
proves (f).

□

Proof of Lemma 4.1. We only prove the assertion of Lemma 4.1 (a). The assertion of Lemma 4.1 (b)
follows analogously.

We observe that for each sequence (x(N))N∈N ⊂ Qnd
+ with x(N) ↓ x ∈ Qnd

+ for N → ∞ we have for
all Q ∈ M(µ) that

lim
N→∞

EQ [gx(N)(S)] = lim
N→∞

Q
(
S < x(N)

)
= Q (S ≤ x) = EQ[fx(S)] (6.27)

and
lim

N→∞
Q
(
F 1
1

(
x11

(N)
)
, . . . , F d

n

(
xdn

(N)
))

= Q
(
F 1
1 (x

1
1), . . . , F

d
n(x

d
n)
)
. (6.28)

Thus, if we have

EQ [gx(S)] ≤ Q(F 1
1 (x

1
1), . . . , F

d
n(x

d
n)) for all x =

(
x11, . . . , x

d
n

)
∈ Qnd

+ , (6.29)

then we may choose for each x ∈ Qnd
+ a sequence (x(N))N∈N ⊂ Qnd

+ with x(N) ↓ x ∈ Qnd
+ forN → ∞,

and it follows with (6.27) and (6.28) that

EQ [fx(S)] ≤ Q(F 1
1 (x

1
1), . . . , F

d
n(x

d
n)) for all x =

(
x11, . . . , x

d
n

)
∈ Qnd

+ . (6.30)

Moreover, (6.30) implies (6.29) by definition of the respective indicator functions, thus (6.29) and (6.30)
are equivalent. The assertion follows, since Q ≤lo CQ ≤lo Q is, by definition of the lower orthant order,
equivalent to EQ [fx(S)] ≤ Q(F 1

1 (x
1
1), . . . , F

d
n(x

d
n)) and EQ [−fx(S)] ≤ −Q(F 1

1 (x
1
1), . . . , F

d
n(x

d
n))

for all x =
(
x11, . . . , x

d
n

)
∈ Qnd

+ . □

Proof of Theorem 4.2. We only prove part (a), part (b) follows analogously. Equation (4.5) is a conse-
quence of Proposition 2.1 and Lemma 4.1. Inequality (4.6) follows from

PMlo
Q,Q

= sup
Q∈Mlo

Q,Q

EQ[c(S)] ≤ sup
Q∈Qnd

Q≤loQ≤loQ

πµc (Q̂) = πµc (Q̂), (6.31)

where we neglect the martingale property and the requirement that Q needs to be a probability measure
for the inequality in (6.31). The last equality is a consequence of the characterization of the lower orthant
order for quasi-copulas in (3.22) noting that, by Remark 3.4 (b), πµc (Q̂) exists because∫ 1

0
|cI((F j1

i )−1(u), . . . , (F jk
i )−1(u))| du ≤ α

∫ 1

0

(
1 +

∑
j∈I

|(F j
i )

−1(u)|
)
du = α

(
1 +

∑
j∈I

E
µj
i
[|Sj

ti
|]
)
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is finite for all I = {j1, . . . , jk} ⊆ {1, . . . , nd} , I ̸= ∅ , and for some α > 0 using that c ∈ Ulin(Rnd
+ )

and using that the first moments of µ exist. □

For the proof of Theorem 4.4, we formulate an auxiliary lemma based, for some fixed time ti and a
quasi-copula Q ∈ Qd , on the class Mlo

Q,ti(µ) := {Q ∈ M(µ) |CQi ≤lo Q} of probability measures
Q ∈ M(µ) such that the copula CQi ∈ Cd at time ti defined by CQi(F

1
i (x1), . . . , F

d
i (xd)) = Q(S1

ti ≤
x1, . . . , S

d
ti ≤ xd), x = (x1, . . . , xd) ∈ Rd , is upper bounded by Q ∈ Qd w.r.t. the lower orthant

ordering, and where Qi = Q ◦ S−1
ti

. Note that we have Mlo
Md,ti(µ) = M(µ) in the case that no

additional dependence restriction is included.

Lemma 6.4. For Q2 ∈ Q2 , let Q∗ ∈ Qd be the d-variate quasi-copula given by (3.25). Then it holds
for all i = 1, . . . , n that MCCD

Q2,ti
(µ) = Mlo

Q∗,ti(µ) .

Proof of Lemma 6.4. For i ∈ {1, . . . , n} let Q ∈ MCCD
Q2,ti

(µ) and Dk = CQ1k
i

∈ C2 be the copula as-

sociated with the bivariate (1, k)-marginal Q1k
i ∈ P(R2

+) of Qi = Q ◦ S−1
ti
, 2 ≤ k ≤ d . Then, [6,

Proposition 2.4 (i)] and Theorem 3.7 imply CQi ≤lo M
2 ∨D2 ∨ · · · ∨Dd ≤lo Q

∗ , which means that
Q ∈ Mlo

Q∗,ti(µ) .

For the reverse inclusion, let Q̃ ∈ Mlo
Q∗,ti(µ) . From the closure of the lower orthant ordering un-

der marginalization17 we obtain for the copula of the bivariate (1, k)-marginal distribution of Qi that
CQ1k

i
≤lo Q2 , 2 ≤ k ≤ d , which means that Q̃ ∈ MCCD

Q2
(µ) . □

Proof of Theorem 4.4. The statement (4.9) in Theorem 4.4 (a) follows from Proposition 2.1 and Lemma 4.1
with the inequality constraints

EQ[gx,y(S
1
ti , S

k
ti)] ≤ Q2(F

1
i (x), F

k
i (y)) , gx,y := 1l{·<(x,y)} , (x, y) ∈ Q2

+ , 2 ≤ k ≤ d .

To prove (4.10), first note that the definition of super-modularity c̃ ∈ Fsm ∩ Clin(Rnd
+ ) and that c̃ is

componentwise increasing/componentwise decreasing implies that c =
(
c̃ ◦ proj1i , · · · , c̃ ◦ projdi

)
∈

Fsm∩Clin(Rd
+) and that c is componentwise increasing/componentwise decreasing. Moreover, we obtain

by Lemma 6.4 that

PMCCD
Q2

= sup
Q∈MCCD

Q2
(µ)

EQ

[
c(S1

ti , . . . , S
d
ti)
]
= sup

Q∈Mlo
Q∗,ti (µ)

EQ

[
c(S1

ti , . . . , S
d
ti)
]

≤ sup
C≤loQ∗

ψ
(F 1

i ,...,F
d
i )

c (C) ≤ sup
C=M2∨D2∨···∨Dd ,

Dk≤loQ2 ,k=2,...,d

ψ
(F 1

i ,...,F
d
i )

c (C) ≤ πϕ
c ◦((F1

i
)−1,...,(Fd

i
)−1)

(Q̂2) .

(6.32)
Indeed, to see that (6.32) holds, observe that we neglect the martingale property for the first inequality.
For the second inequality, let Dk ∈ C2 , 2 ≤ k ≤ d , such that the transposed copula (Dk)′ ∈ C2
(defined by (Dk)′(u, v) := Dk(v, u) for u, v ∈ [0, 1]) is the bivariate (1, k)-marginal copula of C .
Then, C ≤lo Q

∗ implies Dk ≤lo Q2 . Since the upper product M2 ∨ D2 ∨ · · · ∨ Dd is the greatest
element w.r.t.≤sm in the class of copulas with bivariate (1, k)-marginal specifications Dk , 2 ≤ k ≤ d ,
see [6, Proposition 2.4], it follows that C ≤sm M2 ∨D2 ∨ · · · ∨Dd . This implies the second inequality
using that c is supermodular. The last inequality is a consequence of Theorem 3.7 (f) using that u 7→
cI ◦

(
(F j1

i )−1, . . . , (F jk
i )−1

)
(u, . . . , u) is Lebesgue-integrable for all I = {j1, . . . , jk} ⊆ {1, . . . , d} ,

I ̸= ∅ , since c ∈ Clin(Rd
+) and the first moments of F 1

i , . . . , F
d
i exist, see (6.31). Moreover, we use that

c ∈ Clin(Rd
+) which implies that c ◦ ((F 1

i )
−1, . . . , (F d

i )
−1) is lower bounded by a function of the form

(x1, . . . , xd) 7→ K

(
1+

∑d
j=1

∣∣(F j
i )

−1(xj)
∣∣) for K ∈ R, which is M2 ∨D2 ∨ · · · ∨Dd-integrable due

to the existing first moments of the marginals. □

17The lower orthant ordering is closed under marginalization in the sense that Q ≤lo Q′ , Q,Q′ ∈ Qd , implies
QI(u1, . . . , uk) ≤lo Q′I(u1, . . . , uk) for all k = 1, . . . , d , I = {i1, . . . , ik} ⊆ {1, . . . , d} , and u1, . . . , uk ∈ [0, 1]k ,
where the QI , and analogously Q′I , is defined by QI(ui1 , . . . , uik ) := Q(u1, . . . , ud) for all u1, . . . , ud) ∈ [0, 1]d with
uj = 1 whenever j ̸= I .
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Proof of Lemma 5.2: (a): If d ≤ 2 , then C and P induce signed measures, see [74, Table 1]. If d ≥ 3 ,
then P and C do not induce signed measures because they can be linearly transformed into the lower
Fréchet bound W d which is a quasi-copula that does not induce a signed measure, see [58, Theorem
2.4].

(b): We show the statement for the payoff function C . The proof for P follows analogously. By
definition of ϕ and G−1 , we have for all x1, x2 ∈ R that

ϕC◦(F−1
1 ,...,F−1

d )(x1, x2) =

(
α1F

−1
1 (x2) +

d∑
i=2

αiF
−1
i (x1)−K

)
+

=

(
α1F

−1
1 (x2) +

d∑
i=2

αiG
−1(x1)−K

)
+

= ϕC ◦ (G−1, F−1
1 )(x1, x2) .

First, consider the special case where for all i = 1, . . . , d the generalized inverse distribution functions
F−1
i are continuous on the range of Fi, which is equivalent to Fi being strictly increasing. Then, we

obtain that

ψ
(F1,...,Fd)
C (M2 ∨D2 ∨ · · · ∨Dd) = ψC◦(F−1

1 ,...,F−1
d )(M

2 ∨D2 ∨ · · · ∨Dd)

≤ πϕC◦(G−1,F−1
1 )(Q̂2) = π

(G,F1)
ϕC

(Q̂2) ,
(6.33)

where the first equality is given by (3.9). The inequality follows from Theorem 3.7 (f) using that
C ◦ (F−1

1 , . . . , F−1
d ) is continuous and increasing supermodular applying that it is an increasing trans-

formations of the increasing supermodular function C . Note that
∫ 1
0 C ◦ (F−1

1 , . . . , F−1
d )(u, . . . , u) du

exists because C ∈ Clin(Rm
+ ) and the first moments of F1, . . . , Fd exist. Further, we use that ϕC and thus

ϕC ◦ (G−1, F−1
1 ) are continuous and hence, by (a), measure-inducing. The last equality follows from

(3.16).
In the case that for i ∈ N Fi is continuous (but not F−1

i ), approximate Fi pointwise by a sequence
(Fi,n)n∈N of strictly increasing distribution functions supported on R+ with finite first moments such
that Fi,n → Fi, Fi,n ≥ Fi pointwise and

∫
R+
x dFi,n(x) →

∫
R+
x dFi(x) as n → ∞ . Note that

for all i ∈ {1, . . . , d} , the first moment of Fi exists by assumption. We approximate G pointwise by
a sequence (Gn)n∈N with Gn(x) ≥ G(x) for all n and such that Gn → G pointwise for n → ∞.
Consider for (U1, . . . , Ud) ∼ M2 ∨D2 ∨ · · · ∨Dd , the random variables Xn,i := F−1

n,i (Ui) and Xi :=

F−1
i (Ui) . Then, by Scheffé’s lemma, we have that Xn,i converge in L1 to Xi for all i. This implies also∑d
i=1Xn,i →

∑d
i=1Xi in L1 (see, e.g., [46, Theorem 6.25]) and thus for Xn := (Xn,1, . . . , Xn,d) and

X := (X1, . . . , Xd) , we obtain C(Xn) → C(X) in L1 .
Since by Sklar’s Theorem Xn ∼ M2 ∨D2 ∨ · · · ∨Dd(F1,n, . . . , Fd,n) and X ∼ M2 ∨D2 ∨ · · · ∨

Dd(F1, . . . , Fd) , we then obtain that

ψ
(F1,...,Fd)
C (M2 ∨D2 ∨ · · · ∨Dd)

=

∫
C(x) d(M2 ∨D2 ∨ · · · ∨Dd)(F1(x1), . . . , Fd(xd))

= lim
n→∞

∫
C(x) d(M2 ∨D2 ∨ · · · ∨Dd)(F1,n(x1), . . . , Fn,d(xd))

(6.34)

Indeed, to see that (6.34) holds, note that the third equality is given by (3.9). Now, (6.34) implies

ψ
(F1,...,Fd)
C (M2 ∨D2 ∨ · · · ∨Dd) = lim

n→∞
ψ
F1,n,...,Fd,n

C (M2 ∨D2 ∨ · · · ∨Dd) ≤ lim
n→∞

π
(Gn,F1,n)
ϕC

(Q̂2)

= lim
n→∞

πϕC
(Q̂2 ◦ (Gn, F1,n)) = πϕC

(Q̂2 ◦ (G,F1)) = π
(G,F1)
ϕC

(Q̂2).

(6.35)
Indeed, the inequality in (6.35) follows from the special case (6.33) where F−1

i,n is continuous and in-
tegrable. The fourth and the last equality hold due to the notation in (3.16), and the fifth equality is a
consequence of the dominated convergence theorem using that ϕC induces a positive measure and that
Fi,n(x) ≥ Fi(x) and Gn(x) ≥ G(x) for all n and x ∈ R as well as Fi,n(x) → Fi(x), Gn(x) → G(x)
for all x ∈ R using the continuity of Fi , i ∈ {1, . . . , d} and of G. □
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[6] Jonathan Ansari and Ludger Rüschendorf. Ordering risk bounds in factor models. Depend. Model., 6:259–287, 2018.
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[38] Ivan Guo and Grégoire Loeper. Path dependent optimal transport and model calibration on exotic derivatives. Ann. Appl.

Probab., 31(3):1232–1263, 2021.
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