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We consider a general class of two-stage distributionally robust optimization (DRO) problems which includes
prominent instances such as task scheduling, the assemble-to-order system, and supply chain network design.
The ambiguity set is constrained by fixed marginal distributions that are not necessarily discrete. We develop
a numerical algorithm for computing approximately optimal solutions of such problems. Through replacing
the marginal constraints by a finite collection of linear constraints, we derive a relaxation of the DRO
problem which serves as its upper bound. We can control the relaxation error to be arbitrarily close to
0. We develop duality results and transform the inf-sup problem into an inf-inf problem. This leads to a
numerical algorithm for two-stage DRO problems with marginal constraints which solves a linear semi-
infinite optimization problem. Besides an approximately optimal solution, the algorithm computes both an
upper bound and a lower bound for the optimal value of the problem. The difference between the computed
bounds provides a direct sub-optimality estimate of the computed solution. Most importantly, one can
choose the inputs of the algorithm such that the sub-optimality is controlled to be arbitrarily small. In our
numerical examples, we apply the proposed algorithm to task scheduling, the assemble-to-order system, and
supply chain network design. The ambiguity sets in these problems involve a large number of marginals,
which include both discrete and continuous distributions. The numerical results showcase that the proposed
algorithm computes high-quality robust decisions along with their corresponding sub-optimality estimates

with practically reasonable magnitudes that are not over-conservative.
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1. Introduction

Decision problems in uncertain environments are naturally present in many important application
areas. Examples of such problems include portfolio selection (Delage and Ye 2010, Gao and Kley-
wegt 2017, Mohajerin Esfahani and Kuhn 2018), inventory management (Wang, Glynn, and Ye
2016), scheduling (Chen, Ma, Natarajan, Simchi-Levi, and Yan 2021, Kong, Li, Liu, Teo, and Yan
2020, Mak, Rong, and Zhang 2015), resource allocation (Wiesemann, Kuhn, and Rustem 2012),
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and transportation (Bertsimas, Doan, Natarajan, and Teo 2010, Hu, Ramaraj, and Hu 2020, Wang,
Kuo, Shen, and Zhang 2021). For these decision problems, the two-stage stochastic programming
model (see, e.g., (Shapiro, Dentcheva, and Ruszczyriski 2009)), in which a random event occurs
between the two stages, is widely adopted. In the two-stage stochastic programming model, the
decision maker makes the so-called here-and-now decision in the first stage. Subsequently, in the
second stage, after the outcome of the random event is observed, the decision maker makes the
so-called wait-and-see decision which depends on the random outcome. Let us denote the first-stage
decision by a, denote the cost incurred in the first stage by c¢;(a), denote the outcome of the ran-
dom event by x € X where X denotes the set of all possible outcomes, and denote the minimized
cost in the second-stage decision problem by Q(a,x). Moreover, the decision maker has access to
a probability distribution g of the random outcome x. Hence, the first-stage decision is made by
minimizing the sum of the first-stage cost and the expected second-stage cost, i.e., the decision
maker solves: minimize{cl(a) + [, Qa,x) ,u(da:)}. Since stochastic programming can be highly
sensitive to the choaice of the probability distribution p, robust optimization has been proposed as a
conservative alternative; see, e.g., (Ben-Tal, El Ghaoui, and Nemirovski 2009, Simchi-Levi, Wang,
and Wei 2019, Zeng and Zhao 2013). In robust optimization, rather than minimizing the expected
cost, the decision maker minimizes the worst-case cost where the random outcome @ can be any
element of the set X, i.e., the decision maker solves: minimize {¢;(a) + sup,cx{Q(a,x)}}.

Compared to stochastic programming and robust optim?zation, distributionally robust optimiza-
tion (DRO) (Bertsimas et al. 2010, Delage and Ye 2010, Goh and Sim 2010) achieves a balance
between performance and robustness. In DRO, the decision maker specifies a collection of proba-
bility distributions Px on X, termed the ambiguity set, which contains all plausible candidates of
the probability distribution of the random outcome «, and subsequently minimizes the worst-case
expected cost where the probability distribution p of the random outcome can be any element of
Px, i.e., the decision maker solves: miniamize {ci(a)+ SUD,cp { [+ Q(a,z)pu(dx)}}. Consequently,
DRO is more robust than stochastic programming and less conservative than robust optimization.
The choice of the ambiguity set is central to the performance of DRO. A good choice of the ambi-
guity set should encode the prior beliefs of the decision maker, and be rich enough to contain a
good approximation of the true underlying probability distribution. Moreover, for practical consid-
erations, the choice of the ambiguity set should also allow tractable computation of the resulting
DRO problem. A variety of ambiguity sets have been considered in the literature, including but
not limited to those that are:

— based on moments (Delage and Ye 2010, Goh and Sim 2010, Wiesemann, Kuhn, and Sim

2014),
— based on the Kullback—Leibler distance (Calafiore 2007, Huang, Qu, Yang, and Liu 2021),
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— based on likelihood (Wang et al. 2016),

— based on the Wasserstein distance (Chen, Sim, and Xiong 2020, Gao and Kleywegt 2016,
Hanasusanto and Kuhn 2018, Mohajerin Esfahani and Kuhn 2018, Wozabal 2012, 2014, Zhao
and Guan 2018), and

— based on fixed marginal distributions (Chen et al. 2021, Gao and Kleywegt 2017).

In this paper, we study two-stage DRO problems in which the first-stage cost ¢;(-) is linear
and the second-stage decision problem is a linear programming problem where the right-hand side
of the constraints has a jointly affine dependence on the first-stage decision a and the random
outcome x (see Assumption 2.2). Moreover, we consider ambiguity sets based on fixed marginal
distributions, i.e., they contain all couplings of the given probability measures (see Definition 2.1).
This class of two-stage DRO models contains prominent decision problems in operations research
including but not limited to: the scheduling problem with uncertain job duration (see (Chen et al.
2021, Section 5.1) as well as Example 2.5), the multi-product assembly problem (also known as
the assemble-to-order system) with uncertain demands (see Example 2.6), and the supply chain
network design problem with uncertain demands and edge failure (see Example 2.7). The use of
ambiguity set with fixed marginal distributions is motivated by the observation that one typically
has much less ambiguity about the marginal distributions of a multivariate uncertain quantity than
about its dependence structure, as discussed by Eckstein, Kupper, and Pohl (2020). For example,
when managing multiple types of risks, the probability distributions of individual risk types can
be modeled and estimated from historical data, and there exist a plethora of parametric and
non-parametric methods for doing so. On the other hand, modeling the dependence structure of
different types of risks would require access to time-synchronized historical data, which is typically
much more challenging to obtain and is often unavailable. Compared to moment-based constraints
and Wasserstein distance based constraints with respect to a discrete measure, another advantage
of ambiguity sets with marginal constraints is that they rule out highly unrealistic probability
distributions such as those supported on a small number of points; see, for example, (Long, Qi,
and Zhang 2021, Proposition 1) and (Wozabal 2012, Theorem 3.3). Couplings of a given collection
of marginals have also been considered by Natarajan, Song, and Teo (2009) for modeling uncertain
objective coefficients in discrete optimization problems.

For the class of two-stage DRO problems described above, we develop a numerical method for
computing their approximately optimal solutions, which also yields computable sub-optimality
estimates that can be controlled to be arbitrarily close to 0. Specifically, we first relax the inner
maximization in the two-stage DRO problem by replacing the marginal constraints on the ambi-
guity set with a finite collection of linear constraints, that is, we replace the set of couplings with

a so-called moment set (see, e.g., (Winkler 1988)), which is rigorously defined in Definition 3.2.
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This yields a point-wise upper bound for the worst-case expected value of the second-stage cost
with respect to the first-stage decision, as well as an upper bound for the optimal value of the
two-stage DRO problem, as shown in Theorem 3.5. Subsequently, by proving the strong duality
tailored to the inner maximization problem, we derive a linear semi-infinite programming formu-
lation of the relaxed two-stage DRO problem in (LSIP) and show that the strong duality holds
between (LSIP) and its dual which is given in (LSIP™). Moreover, through introducing the notion of
partial reassembly in Definition 3.3, which is an extension of the notion of reassembly introduced
by Neufeld and Xiang (2022), we derive a lower bound for the optimal value of the two-stage DRO
problem in Theorem 3.17. Most notably, we introduce an explicit method to construct moment sets
such that the difference between the aforementioned upper and lower bounds can be controlled to
be arbitrarily close to 0. Equipped with these theoretical results, we develop a numerical algorithm
for computing an approximately optimal solution of the two-stage DRO problem. Concretely, we
first develop a cutting-plane algorithm (i.e., Algorithm 2) tailored to solving (LSIP), which, for any
given € > 0, is capable of computing a pair of e-optimal solutions of (LSIP) and (LSIP™), as detailed
in Theorem 4.4. Similar algorithms have been developed by Neufeld and Xiang (2022) for approx-
imating multi-marginal optimal transport problems and by Neufeld, Papapantoleon, and Xiang
(2020) for computing model-free upper and lower price bounds of multi-asset financial derivatives.
Then, we combine Algorithm 2 and a procedure for explicitly constructing a partial reassembly
introduced in Proposition 3.7 to develop Algorithm 3. Algorithm 3 computes an approximately
optimal solution of the two-stage DRO problem with marginal constraints as well as upper and
lower bounds for its optimal value, as shown in Theorem 4.6. Moreover, the difference between
the computed bounds provides a direct estimate of the sub-optimality of the computed solution,
and we are able to control a theoretical upper bound on this difference to be arbitrarily close
to 0. Finally, we demonstrate the performance of Algorithm 3 in three examples of DRO problems

involving a large number of marginals and showcase its practically desirable properties.

Literature review

A widely adopted approach for solving two-stage optimization problems is called adaptive opti-
mization (also known as adjustable optimization); see, e.g., (Ben-Tal, Goryashko, Guslitzer, and
Nemirovski 2004, Bertsimas and Bidkhori 2015, Bertsimas and de Ruiter 2016, Bertsimas and
Goyal 2012, Bertsimas and Shtern 2018, Bertsimas, Sim, and Zhang 2019, El Housni and Goyal
2021, Goh and Sim 2010, Xu and Burer 2018). In adaptive optimization, rather than letting the
second-stage decision be optimal given the first-stage decision and the uncertain quantities, one
restricts the second-stage decision to depend on the uncertain quantities via a pre-specified para-

metric decision rule, typically affine or piece-wise affine. Chen et al. (2020) propose a framework
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for adaptive DRO with the so-called event-wise ambiguity set. Under the event-wise affine decision
rule, the problem is computationally tractable and conservative solutions can be computed using
state-of-the-art commercial solvers. It has been empirically shown by Saif and Delage (2021) in a
distributionally robust capacitated facility location problem that the conservative solutions pro-
duced by adaptive DRO with an affine decision rule is comparable to the exact solutions. Despite
this, to the best of our knowledge, there is no theoretical bound for the sub-optimality of the
conservative solutions resulted from adaptive DRO. In fact, the use of adaptive decision rules may
even lead to infeasibility, as shown by Bertsimas et al. (2019, Equation (13)).

DRO problems with ambiguity sets constrained by marginals have been studied by Gao and
Kleywegt (2017) and Chen et al. (2021). Specifically, Gao and Kleywegt (2017) develop duality
results for the inner maximization problem in DRO when the ambiguity set is subject to marginal
constraints as well as a Wasserstein distance based constraint on its dependence structure. However,
the computational tractability of the resulting dual formulation only holds under the restrictive
assumptions that the (second-stage) cost function is given by the maximum of finitely many affine
functions and that the given marginal distributions all have finite support. Chen et al. (2021) deal
with a particular class of DRO problems, most notably the appointment scheduling problem, in
which the ambiguity set is constrained by marginals that are not necessarily discrete. They derive
sufficient conditions for the polynomial time solvability of this problem class, but the analyses
are theoretical and no concrete numerical algorithm is provided. Compared to (Chen et al. 2021),
the numerical method that we develop in this paper is applicable to a more general class of two-
stage DRO problems presented in Assumption 2.2, which contains, for example, the appointment
scheduling problem as a special case (see Example 2.5). Moreover, we develop a concrete numerical
algorithm which can compute an approximately optimal solution of any problem in this class and
allows us to control its sub-optimality to be arbitrarily close to 0.

We would also like to highlight the connection between our problem of interest and the multi-
marginal optimal transport problem (see, e.g., (Benamou 2021, Pass 2015) and the references
therein). Since the ambiguity set in the two-stage DRO problem we are considering is only con-
strained by the fixed marginals, its inner maximization problem corresponds to a multi-marginal
optimal transport problem, with the cost function being the optimal value of the second-stage
decision problem. Most numerical methods for multi-marginal optimal transport and related prob-
lems with non-discrete marginals rely on discretization (see, e.g., (Carlier, Oberman, and Oudet
2015, Eckstein, Guo, Lim, and Ob14j 2021, Guo and Obléj 2019, Neufeld and Sester 2021a)) and/or
regularization techniques (see, e.g., (Cohen, Arbel, and Deisenroth 2020, De Gennaro Aquino
and Bernard 2020, De Gennaro Aquino and Eckstein 2020, Eckstein and Kupper 2019, Eckstein,
Kupper, and Pohl 2020, Henry-Labordere 2019, Neufeld and Sester 2021b)) and do not provide



6 Neufeld, Xiang: Numerical method for two-stage DRO with marginal constraints

computable estimates of approximation errors. Recently, Neufeld and Xiang (2022) developed a
numerical method that is capable of computing feasible and approximately optimal solutions of
high-dimensional multi-marginal optimal transport problems. Moreover, this method results in
computable upper and lower bounds for the optimal value and thus provides a direct sub-optimality

estimate for the computed approximate solution.

Contributions and organization of this paper

The main contributions of this paper are summarized as follows.

(1) We develop a relaxation scheme for the inner maximization in the two-stage DRO problem
with marginal constraints which results in a linear semi-infinite programming formulation of a
conservative relaxation of the two-stage DRO problem. We are able to control the relaxation
error to be arbitrarily close to 0.

(2) We develop a numerical algorithm (i.e., Algorithm 3), which, for any given € > 0, is capable of
computing an é-optimal solution of the two-stage DRO problem with marginal constraints. It
also computes a pair of upper and lower bounds on the optimal value. The difference between
these bounds provides a direct estimate of the sub-optimality of the computed solution that
is typically much smaller than its theoretical upper bound é.

(3) We perform numerical experiments to demonstrate the proposed algorithm in three prominent
decision problems: task scheduling, multi-product assembly, and supply chain network design.
The ambiguity sets in these problems involve a large number of marginals, which include
both discrete and continuous distributions. The numerical results show that the computed
approximately optimal solutions are very close to being optimal.

The rest of this paper is organized as follows. Section 2.1 introduces the notations in the paper
and presents our two-stage DRO model with marginal constraints. Three prominent examples
of decision problems where our model applies are discussed in Section 2.2. Section 3 contains
the theoretical results for approximating the two-stage DRO problem with marginal constraints.
Specifically, in Section 3.1, we introduce the notions of partial reassembly and moment sets, and
subsequently derive a relaxation of the inner maximization problem. In Section 3.2, we develop
results for characterizing and explicitly constructing partial reassemblies. In Section 3.3, we provide
an explicit construction of moment sets such that the error of the relaxation scheme in Section 3.1
can be controlled to be arbitrarily small. Section 3.4 presents the linear semi-infinite programming
formulation of the relaxed DRO problem as well as a lower bound for the original unrelaxed
problem. The numerical algorithms used for approximately solving the two-stage DRO problem as
well as their theoretical properties are presented in Section 4. Finally, in Section 5, we showcase
the performance of the proposed numerical method in the three decision problems discussed in

Section 2.2. The appendices contain the proofs of the theoretical results in this paper.
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2. Model for two-stage DRO problems with marginal constraints

2.1. Settings

Let us first introduce the notions and notations that are used throughout this paper. We let
R:=RU{—00,00} denote the extended real line. We assume all vectors to be column vectors and
denote vectors and vector-valued functions by boldface symbols. In particular, for n € N, we denote

by 0,, the vector in R™ with all entries equal to zero, i.e., 0, := (0,...,0)"T. We also use 0 when the
N——

n times

dimension is unambiguous. For n € N and two vectors € = (xy,...,2,)" €R", y = (y1,...,yn)" € R",

we let € <y and x > y denote the corresponding component-wise inequalities, i.e.,

r<y & Ty <Y1y ooy Ty S Yp,

iBZ’y = $12y1,~--7$n2yn~

Moreover, we denote by (-,-) the Euclidean dot product, i.e., (x,y) := 'y, and we denote by || ||,
| - ||oo the 1-norm and the infinity norm, respectively. We call a subset of a Euclidean space a
polyhedron or a polyhedral convex set if it is the intersection of finitely many closed half-spaces.
In particular, a subset of a Euclidean space is called a polytope if it is a bounded polyhedron. For
a subset A of a Euclidean space, we use aff(A), conv(A), cone(A) to denote the affine hull, convex
hull, and conic hull of A, respectively. Moreover, let cl(A), int(A), relint(A) denote the closure,
interior, and relative interior of A, respectively. For a polyhedral convex set P, we use vert(P)
to denote the finite set of vertices (also known as extreme points) of P and we let rec(P) denote
the recession cone of P (see, e.g., (Rockafellar 1970, p.61)). Furthermore, for a,b € R, we let a A b
denote min{a, b}, let a Vb denote max{a,b}, and let (a)™ denote max{a,0}.

For any closed set Y CR™ with n € N, we let B()) denote the Borel subsets of ) and let P(}))
denote the set of Borel probability measures on ). We use I'(+,...,-) to denote the set of couplings
of measures, i.e., the set of measures with fixed marginals, as detailed in the following definition.

DEFINITION 2.1 (COUPLING). For m € N closed subsets Yi,...,V,, of R and probability mea-
sures v; € P(M1), -« vy Vm € P(Vin), let T'(vy,. ..,y denote the set of couplings of vy, ..., v, defined

as

L(vy,...,vm) = {767’())1 X +++ X V) : the marginal of v on Y; is v; forjzl,...,m}.

For any closed set Y C R and any p,v € P(Y), let Wi (u,v) denote the Wasserstein metric of order 1

between p and v, which is given by

Wi(u,v):= inf {/)}Xy|x—y|’y(dx,dy)}. (2.1)

~vET (p,v)
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In this paper, we consider a two-stage distributionally robust optimization (DRO) problem with
marginal constraints in which both the first-stage and the second-stage optimization problems
have linear objectives and constraints. Specifically, the decision process involves two stages, and a
random event occurs between the two stages. Hence, the first-stage decision (i.e., the here-and-now
decision) needs to be made before observing the outcome of the random event, while the second-
stage decision (i.e., the wait-and-see decision) is made after observing the outcome of the random
event and may depend on the outcome. We denote the first-stage and second-stage decisions by
vectors a € R¥1 and z € R¥2 for K, K, € N, respectively. The outcome of the random event
is denoted by a vector & € RV for N € N. We assume that the probability distribution of x is
only specified up to the one-dimensional marginal distributions of its individual components and
the information about the dependence among the components is absent. The concrete details of
our setting is presented below in Assumption 2.2. A special case of the setting below has been
previously considered by Chen et al. (2021). We present the details of their setting in Example 2.5

in Section 2.2.

ASSUMPTION 2.2. In the two-stage distributionally robust optimization problem, we assume the
following:
(DRO1) NeN; fori=1,...,N, X; is a non-empty compact subset of R, and u; € P(X;); X :=
Xy X X Xy
(DRO2) K, €N, ¢; e R¥1, §;:={a e RF : Li,a < q,,, Leqa = q.,} is non-empty, where n, €
Z+7 neq € Z+7 Lin € anXKl; qin € an7 Leq S Rncqx}(l; qeq S Rncq 5
(DRO3) (a) K, €N, S; x X 3 (a,z)— Q(a,x) :=inf.cs,(a,) {(cg,z>} €R, where c, € RX2,

Sy(a,x) = {z eR®2: ALz < Via+ W,z + by, A,z=V,a+Wx+ beq},

Min S Ny meq S Z+7 Ain S RmmXKg} Vin c RmmXKly Win S Rmian} bin € Rmin;
Aeq c Rmequg’ Veq c RmeqXKl, Weq c Rmequ’ beq c Rmeq ;
(b) there exists a € R such that —oco < Q(a,x) <« for alla€ S; and all x € X.

Under Assumption 2.2, Q(a,x) corresponds to the optimal value of the second-stage decision
problem, which is a linear minimization problem with objective vector ¢, € R%2 and a polyhedral
feasible set Ss(a,x). Specifically, the right-hand side of the equality and inequality constraints in
the second-stage decision problem has a jointly affine dependence on the first-stage decision a and
the uncertain quantities x. This type of problem structure has been widely studied in the literature
in the context of robust optimization (see, e.g., (Bertsimas et al. 2010, Bertsimas and Goyal 2012,
Bertsimas and Bidkhori 2015, Bertsimas and de Ruiter 2016, Bertsimas and Shtern 2018, El Housni
and Goyal 2021, Xu and Burer 2018)) and DRO (see, e.g., (Long et al. 2021)).
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Given a fixed first-stage decision a € Sy, let ¢(a) denote the worst-case expected cost incurred
in both stages where the probability measure of the random event can be any coupling of the given

marginals p1, ..., uy, that is,
¢(a):={(c;,a)+  sup / Qa,z) u(dx) Va € 5;. (2.2)
pel JAN)

In the problem above, (c;,a) corresponds to first-stage cost when the decision is a and
[, Q x pu(dx) corresponds to the expected second-stage cost under the probability measure
Hy and SUD,er(uy . un) J5 @ v Q(a,x) pu(dx) corresponds to the worst-case expected second-stage cost
when the probability measure can be any coupling of the given marginals 1, ..., uy. The overall
goal is to minimize the worst-case expected cost in both decision stages, which corresponds to the

following two-stage DRO problem:

doro = inf éla) = inf {<cl,a>+ o / Q(a,w)ﬂ(dw)}- (DRO)

acSy

In order to make the subsequent analyses tractable, let us first replace Q(a,x) in (DRO) by its

dual optimization problem.
LEMMA 2.3. Under Assumption 2.2, the following statements hold.
(i) The following duality holds for all a € Sy and all x € X:

Q(a’7w) = sup {<Vina+Winw+bin7Ain> + <Veqa+weqw+ beqv)\eq>}u

AL AT )Tess

in’

where

S5 ={(AAs) A €R™ A €R™a AT N + Al Aeg =5} (2.3)

n?

(ii) One can assume without loss of generality that the set S; in statement (i) is a polytope.
Specifically, there exists a polytope B C R™int™ea gych that

Qla,xz) = max {(Vina + Wi+ bin, Ain) + (Veq@ + Weqx + beg, /\eq>}

Al AL)TesinB

in’

Vae S, Ve X.

Proof of Lemma 2.3 See Appendix EC.2.
Due to Lemma 2.3, we make the following alternative assumptions that are equivalent to Assump-

tion 2.2 in order to simplify the subsequent analyses.

ASSUMPTION 2.4. In addition to the assumptions (DRO1)-(DRO2) in Assumption 2.2, we make
the following assumption:
(DRO3*) S} x X 3 (a,z) = Q(a,x) := maxres; { (Va+ Wz +bA)} €R, where K; €N, Ve
RE: K1 W e RE2*N pc R¥2 | and S; € RX? is a non-empty polytope.
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2.2. Examples

The model for two-stage DRO problems with marginal constraints introduced in Section 2.1 covers
a wide range of decision problems in practice. In this subsection, we discuss in detail three examples
of the model which are prominent decision problems in operations research. There are many other
problems that can be covered by our model, including but not limited to: the newsvendor problem
(Shapiro et al. 2009, Wang et al. 2016, Wiesemann et al. 2014), lot sizing on a network (Bertsimas
and de Ruiter 2016, Xu and Burer 2018), and resource allocation in a temporal network (Wiesemann
et al. 2012).

EXAMPLE 2.5 (TASK SCHEDULING (Chen et al. 2021, Section 5.1)). In this problem, there are
N € N tasks arranged in a fixed order and need to be scheduled within a fixed time window [0, 7]
for T>0. For i=1,..., N, let a; € R, denote the scheduled duration of the i-th task. Hence, the
i-th task will be scheduled to begin at time 22;11 ag. The actual duration of the i-th task, which
is denoted by z;, is a random variable with probability distribution u,; € P([O,Ti]) fori=1,...,N,
where ; > 0 is an upper bound on the duration of the i-th task. There is no information about the
dependence among the duration of different tasks. It is assumed that the (i 4+ 1)-th task can only
begin after the i-th task is completed. Since the actual duration may be longer than the scheduled
duration, the ¢-th task may incur a delay, denoted by z;, which is defined recursively as follows:
z1:=(x1 —a1)", z;:=(zi.1+x; —a;)" for i =2,... N, that is, z; is the difference between the
actual and the scheduled completion time of the i-th task if it is positive, and otherwise z; := 0.
The objective of the task scheduling problem is to minimize a weighted total delay, i.e., ZZ\; CiZis
where ¢; > 0,...,cy >0 are the weights of the delays.

Formulating this problem into our two-stage DRO model in Assumption 2.2, we have X} =
[0,71],..., Xy =[0,Zn]. The first-stage decision is the vector a := (ai,...,ax)", and we have K, :=
N, S, := {(al, coay)T €RN: Efil a; <T,a;>0V1<:i< N}. Since no cost is incurred in the first

stage, we have ¢; := 0y. The second-stage cost function Q(a,x) is given by
Qa,x) ::min{Zf\ilcizi:zl >0, 21221 —aq, 2 >0, 2; > 24 +xi—aiv2§i§N},

which has the required form in (DRO3) with K, := N. Moreover, since z; < 22:1 xpfori=1,..., N,
0<Q(a,x) < Zﬁ\;l(N—l— 1 —1i)c;w; holds for all @ € S; and all € X and thus part (b) of (DRO3)
is satisfied.

EXAMPLE 2.6 (MULTI-PRODUCT ASSEMBLY). This example is the distributionally robust ver-
sion of the multi-product assembly problem adapted from Chapter 1.3.1 of (Shapiro et al. 2009).
This is also known as the assemble-to-order system; see, e.g., the review about assemble-to-order

systems by Atan, Ahmadi, Stegehuis, de Kok, and Adan (2017) and the references therein. In this
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problem, let us consider a manufacturer that produces IV € N products. The production of these
products requires K; € N different parts that need to be ordered from suppliers with prices per unit
¢1>0,...,ck, > 0. Producing each unit of product ¢ requires u; ; > 0 units of part j fori=1,..., N,
j=1,...,K;. The demand for product ¢, denoted by z;, is a random variable with probability dis-
tribution pu; € P([O,@]) fori=1,...,N, where T; > 0 is an upper bound on the demand for product
i. There is no information about the dependence among the demands for different products. Once
the demands for the products are known, the manufacturer needs to decide on how many units of
each product to produce. The amount z; of product ¢ produced shall not exceed its demand z;. The

production of each unit of product ¢ earns the manufacturer a return of ¢; > 0. After production,

the unused parts hq, ..., hg, have salvage values si,...,5k, such that 0 <s; <c¢; for j=1,..., K;.
Formulating this problem into our two-stage DRO model, we have X; = [0,7],..., Xy =[0,Zx].
The first-stage decision is the vector a:=(ay,...,ax,)", which corresponds to the amount of parts

to be ordered from the suppliers. We have S; := Rfl and ¢ :=(c1,...,cx,) . Let g:=(q1,...,qn)" €
RN, s:=(81,...,8k,) ERF1, z:=(21,...,28)", h:=(hy,...,hg,)T7, and let U € RV*X1 be a matrix
with entries [U];; :=w; j fori=1,...,N, j=1,..., K;. Then, the second-stage cost function Q(a, )

is given by
Q(a,x):zmin{—(q,z>—(s,h):UTz+h:a, 0<z<z,h>0,zcR", heRKl},

which has the required form in (DRO3) with K5 := K; + N. Moreover, —oco < Q(a, ) <0 holds for
all @ € S; and all x € X and thus part (b) of (DRO3) is satisfied.

EXAMPLE 2.7 (SUPPLY CHAIN NETWORK DESIGN WITH EDGE FAILURE). This example is a
distributionally robust supply chain network design problem inspired by Chapter 1.5 of (Shapiro
et al. 2009). It is also inspired by the studies of Atamtiirk and Zhang (2007), Cheng, Qi, Zhang, and
Rousseau (2018), and Matthews, Gounaris, and Kevrekidis (2019). In this problem, we consider a
supply chain network (V,E) of a certain type of goods in which the vertices V:=8UPUC consist
of suppliers S, processing facilities P, and customers C. The edges E := Eg.p U Epy¢ consist of edges
Egp € S X P from the suppliers to the processing facilities and edges Ep,c C P x C from the processing
facilities to the customers. Each supplier s € S can supply a fixed amount of goods us > 0 which
is known prior to the first decision stage. Fach processing facility p € P has a fixed maximum
processing capability ¢, >0 and is associated with a fixed investment cost cél) > () for each unit of
processing capability. Each customer ¢ € C has demand d. which is a random variable with prob-
ability distribution p. € P([O,Ec]) where d, > 0 is the maximum demand of the customer c. Each
edge (s,p) € Egyp is associated with a fixed cost ¢{?) > 0 which contains the per-unit transportation

cost along this edge as well as the per-unit processing cost at the processing facility p. Similarly,
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each edge (p,c) € Epyc is associated with a fixed per-unit transportation cost C;(fc) > (0. Moreover,
each edge (s,p) € Es,p has a maximum transportation capacity rs, >0 and each edge (p,c) € Epyc
has a maximum transportation capacity r, . > 0. Furthermore, there are subsets of edges Es>p C Egpp
and Ep»c C Epyc that are susceptible to failure. For each edge (s,p) € Es»p, let I , ~ Bernoulli(7s ) be
a Bernoulli random variable indicating whether the edge (s, p) will fail (/5, =1 indicates a failure),
where 7 , > 0 is its failure probability. Similarly, for each edge (p, c) € Epse, let I, . ~ Bernoulli(r, )
be a Bernoulli random variable indicating whether the edge (p, c¢) will fail, where 7, . > 0 is its fail-
ure probability. There is no information about the dependence among the demands of the customers
and the failure of the edges.

In the first decision stage, the decision maker determines the amount of investment for the
processing capability ¢, > 0 of each processing facility p € P. In the second decision stage, with the
processing capabilities (;)pep, the demands (d.)cec, and the edge failures (Isp) (s pyeeps (lpic) (p.c)cBroc
known, the decision maker minimizes the total operational cost including the transportation costs
and the processing costs. Let s := {p' €P: (s,p’) €Egp}, p*:={s' €8S:(s',p) €EEsup}, p*:={c €
C:(p,c’) €Epmc), c:={p €P:(p/,c) EEmc} for all s €S, p€eP, c€C. The second-stage decision

problem can be formulated as follows:

minimize E CSP)’ Zs,p + § C}(JQC) Zp,c

(2s,p) CEgpp’
(= )(S’p) s>P (s,p)EEspp (p,c)EEppc
P»¢/(p,c)EEppc

subject to (Z zs7p> - (Z zp,c> =0 Vp EP,

sep” c€p”

> zep<us Vs€s,

pes>

Z Zpe > de Ve ec,

p€c?

Zzsmﬁtp Vp €P,

sep?

0<zsp <Tsp V(s,p) € Essp \ Esop,

<

(s,p)
0< 2 <Tpec (p,c) € Epsc \EPl>Ca
0<zp <rop(l—lsp) V(s,p) € Esp,
(p,c)

OSZP»C STP)C(l_lP,C) V p,c GEP>C-

In the above problem, the decision variables (25 ) (s p)crsss @0d (Zp.c) (p,c)cEpc TEPTEsent the amount of
goods flowing through the edges in the supply chain network. The objective (Z(S,p) CEsop cgzs,p> +
<Z (p.c)CEpc cl(fg zp’c) corresponds to the total transportation and processing cost of transporting the

goods from the suppliers to the processing facilities and then transporting them to the customers
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after processing. The constraints (Zsepq zsyp) — (Zcep> zpyc) =0 Vp € P correspond to the flow
conservation condition, which requires that, for each processing facility p € P, the amount of goods
that flow into p must equal the amount of goods that flow out of p. The constraints Zp6s> Zgp < U
Vs € S require that, for each supplier s € S, the amount of goods that flow out of s must not exceed
its total supply us. The constraints Zpaq Zp,c > d. Ve € C require that, for each customer c € C, the
amount of goods that flow into ¢ must meet its demand d.. The constraints ZS ep< Zop <t,VpeP
require that, for each processing facility p € P, the amount of goods that flow into p must not exceed
its processing capability t,. The constraints 0 < z,, <75, V(s,p) € Espp \Es>p and 0 <z, <7y
V(p,c) € Epsc \AEJPDC require that, for each edge in the supply chain network that is not susceptible
to failure, the amount of goods flowing through it must be non-negative and must not exceed its
maximum capacity. The constraints 0 < z;, <rs,(1—1s,) ¥(s,p) € Egp and 0 < Zpe <Tpc(l—1pe)
Y(p,c) € Epsc Tequire that, for each edge in the supply chain network that is susceptible to failure,
the amount of goods flowing through it must be non-negative and must not exceed its maximum
capacity, and, in the event that the edge fails, the amount of goods flowing through it must be
zero. The overall objective of the decision maker is to minimize the total investment in the first
stage, i.e., Zpep cr()l)tp, and the total transportation and processing costs in the second stage. With
appropriate vectorizations of the decision variables and the parameters, the second-stage decision
problem can be represented as:
minimize (¢, z)

z

subject to Bz =0,

0<z<r-Fli,
z e RE
for suitable choices of ¢, € REI B € RFIXEEl S ¢ RISIXIEL 4 ¢ RISI, D € RICXEl d € RIS P € RIPIXIEL
t e RPI r ¢ REI F € REXEl | € REI where ¢, represents the transportation and/or processing
costs of the edges, u represents the supplies from the suppliers, d represents the demands of the
customers, t represents the processing capabilities of the processing facilities, r represents the
maximum transportation capacities of the edges, and I represents the failure of edges. Since we need
to guarantee that (2.4) is feasible for all feasible first-stage decisions, we introduce the auxiliary

variable z, € Rl to the first-stage decision variables, and define

Si={(t",2])T:0<t <% Bz =0, 8z)<u, Dz >d, Pz <t,0< 2 <r—F1},
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where d and T are the vectorized version of (d¢)eec and (%,)pep, and 1 € REl is the vector with all
entries equal to 1. We assume in addition that S; is non-empty.

Formulating this problem into our two-stage DRO model, we have N :=|[C| + [E|, K; :=
B+ Bl K = (B, ()i = (0,d])ece, and (Xo)iaz = {0,1}F. Subsequently, let
Q((t",2{)T,(d",1")T) denote the optimal value of (2.4). One can check that Q((¢",2])7,(d",1")7)
has the required form in (DRO3). Moreover, —oo < Q((¢t", )T, (d",1")T) < (Z(S’p)aw cg}),rs,p) +

<E(p,c)€Ep>c cl(fzrw) < oo holds for all (t",2])T € S; and all (d',1")T € X and thus part (b) of
(DRO3) is satisfied.

3. Approximation of two-stage DRO problems with marginal
constraints

In this section, we develop the theoretical machinery for approximately solving (DRO) under
Assumption 2.4. Specifically, in Section 3.1, we develop an equivalent formulation of (DRO) as well
as an approximation scheme which corresponds to a relaxed optimization problem. The developed
approximation scheme utilizes the notions of moment sets (see Definition 3.2) and reassembly (see
(Neufeld and Xiang 2022, Definition 2.2.2)) which were previously used by Neufeld and Xiang
(2022) for approximately solving multi-marginal optimal transport problems. We will show that
the approximation error of this scheme can be controlled via the Wasserstein “sizes” of the moment
sets. In Section 3.2, we characterize partial reassemblies defined in Definition 3.3 which are crucial
for obtaining lower bounds for the optimal value of (DRO), and develop a procedure for construct-
ing a partial reassembly of a discrete measure with finite support. In Section 3.3, we show that
moment sets with arbitrarily small Wasserstein “sizes” can be constructed, which allows one to
control the error of the approximation scheme developed in Section 3.1 to be arbitrarily close to 0.
Section 3.4 discusses the duality results linking the relaxed optimization problem in Section 3.1 and
a linear semi-infinite programming (LSIP) formulation of this problem. In addition, in Section 3.4,

we also derive a lower bound for the optimal value of (DRO) via partial reassembly.

3.1. The approximation scheme

Before discussing the approximation approach, let us first introduce the following augmented for-
mulation of (DRO). In the augmented formulation, instead of optimizing over probability measures
on X with fixed marginals pq,...,uyn, we optimize over probability measures on X x S5 with

marginals ft1,...,puy on Xy, ..., Xy. Under Assumption 2.4, let Qaug : S1 X X X S5 — R be given by
Qang(a,z, X)) :=(Va+ Wz +b, ). (3.1)
Thus, it holds that

Q(a,x) = max Q.uz(a,x, ) Ya €S, Ve e X.

xess
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Moreover, let I'aug(ft1, .- -, tn) denote the set of augmented measures defined as follows:
Cong(p1, -y i) i= {,uaug € P(X x S3) : the marginal of f1,,, on &; is p; for i=1,.. .,N}. (3.2)

The following lemma introduces the augmented formulation and shows that it is equivalent to the

original formulation in (2.2) and (DRO).

LEMMA 3.1. Let Assumption 2.4 hold and let Qaug(+,-,-) and Laug (i1, - .., pn) be defined in (5.1)
and (3.2), respectively. Then,
¢(a)={c1,a)+ sup / Qang (@, T, A) flayg (da, dX) Va € S, (3.3)
MaugEFaug(Nl ~~~~~ “N) XXS;

and

¢pro = inf {(cl,a> + sup / Qaug(@,z, X) uaug(dm,d)\)}. (3.4)
acs paug€lang (11 ,-un) J X x S35

Proof of Lemma 3.1 See Appendix EC.2.1.

In the augmented formulation (3.3), one may notice that, for every fixed a € S;, the inner
maximization problem sup,,. . cr..(u1.....un) fos; Qaug(@, T, A) flang (dx, dA) has a form that is sim-
ilar to a multi-marginal optimal transport problem. The difference is that the marginal of ft,,, €
Faug (1, .., ) on Sy is unconstrained. Therefore, we adopt the relaxation scheme of Neufeld and
Xiang (2022) to approximate the inner maximization problem. Specifically, for i =1,..., N, we
consider convex subsets of P(X;) that are known as moment sets; see, e.g., (Winkler 1988). Let us
first recall the following definition of moment set from (Neufeld and Xiang 2022).

DEFINITION 3.2 (MOMENT SET (Neufeld and Xiang 2022, Definition 2.2.5)). For a collection G
of real-valued Borel measurable functions on a closed set X C R, let P(X;G) := {u eEPX):GC
LY(X,p)}. Let £ be defined as the following equivalence relation on P(X;G): for all p,v € P(X;G),

,ur%y & Vgeg,/gdu:/gdu. (3.5)
x x

For every u € P(X;G), let [ulg:= {V ePX;G):v £ u} be the equivalence class of  under &. We
call [u]g the moment set centered at u characterized by G. In addition, let W, ,([u]g) denote the
supremum W;-metric between p and members of [u]g, i.e.,

Wi([ulg) = sup {Wi(p,v)}. (3.6)

velulg

Let span, (G) denote the set of finite linear combinations of functions in G plus a constant intercept,
i.e., span,(G) := {yo + Z§:1 yigik €Zy, (y;)j=o CR, (g5)j=16 C g}. By the definition of £ in
(3.5), it holds that if v € [u]g, then [, gdu= [, gdv for all g € span,(G). In particular, we have

I v if and only if P ) v, and [p]g = [H]spanl(g)-
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Under Assumption 2.4 and given N collections of functions G; € LY(X), 1), ..., Gn € LY ( Xy, v ),

we define Taug ([tt1]gy,-- - [1n]gy ) as follows:

Faug([ul]gl,..., [[LN]gN) = {'yaug ETlaug(V1, - V) 115 € [14]g, V1 <i < N}. (3.7)

Then, we consider the following function ¢g,,(-), which is a point-wise upper bound of ¢(-) due to

Lemma 3.1, and is hence referred to as the surrogate function:

s (@) = (c1,a) + sup {/ Qaug(a,z, N) uaug(dw,d)\)} VaeS;. (3.8)
enlgy) LS axss

g €T g ([11]gy oo

Subsequently, we minimize the surrogate function ¢, (-) in order to approximate the optimal value

¢DRO of (DRO)

ngRO-sur = lIlf ¢sur(a)
acsSy

= inf {(cl,a>+ sup {/ Qavg(a@, x, ) paug(dm,d)\)}}.
a€s /laugEFaug([lf'l]gl ~~~~~ [NN]QN) XXS;

Before presenting the theoretical results, we introduce the following notion of partial reassembly,

(3.9)

which is adapted from the notion of reassembly in (Neufeld and Xiang 2022, Definition 2.2.2).
DEFINITION 3.3 (PARTIAL REASSEMBLY). Let Assumption 2.4 hold. Let X; := &; for i =
1,...,N in order to differentiate different copies of the same set. For fi,, € P(X; X -+ X Xy x S3),
let its marginals on Aj,..., Xy be denoted by fi1,...,[in, respectively. flaug € Dang(i1,- -5 pin) C
P(X; x -+ x Xy x S5) is called a partial reassembly of fi,,, with marginals py,...,uy on Xy,..., Xn
if there exists v € P(Xy X --- X Xy x X} x -+ x Xy x S3) which satisfies the following conditions.
(i) The marginal of v on &} X -+ X Xy X S5 1S flaug-
(ii) For i=1,..., N, the marginal of v on &; x X;, denoted by ~;, satisfies v; € I'(i;, it;) as well as
[ oo )= WG ).
X x X
(iii) The marginal of v on X} X « -+ X Xy X S5 iS flaug-
Let Rpart (ftaug; f1, - - 4n) C Daug(ft1,- .., tn) denote the set of partial reassemblies of fi,,, with
marginals fi1,. .., 1y.
The difference between partial reassembly and reassembly is that the partial reassembly only
replaces the marginals of a probability measure fi,,, € P(X; X --- x Xy x S3) on Xy,..., Xy and
leaves its marginal on S; unchanged. The following lemma shows that the set of partial reassemblies

is non-empty.

LEMMA 3.4. Let Assumption 2.4 hold. Then, for any fiag € P(X x S3), there exists fiaug €
Rpart(ﬂaug;,ula s 7HN)'
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Proof of Lemma 3.4 See Appendix EC.2.1.
The following theorem provides theoretical guarantee on the error resulted from the approxima-

tion scheme.

THEOREM 3.5 (Approximation of DRO). Let Assumption 2./ hold. For i =1,....N, let
Gi C LY X, i) Moreover, let € >0 be arbitrary, let €:= (ELWW([M]%)) SUDxcs; {IWT ||},
and let € := e+ €. Then, the following statements hold.

(i) For every fiaug € Lavg([ft1]gy, -5 [n]gy ) and every flang € Rpart(flaugs 1, - -, i), the following
inequality holds:

/ (W + b, A) g (A, AA) — / (W + b, A) fiang (A, AN) < 2.
X XS5

X xS3
(i1) Let a € Sy be arbitrary. Suppose that [i..g is an e-optimal solution of the sup term in (3.8),

i.e.,

Qaug(@, T, A) flang (daz, dA)

XXS;
> sup { / Qang (@, T, X) flang (d, d)\)} — €.
unlgn) LJ xSy

Maugeraug([ﬂl]gl »»»»»

(3.10)

Then, every fiang € Rpart (flaug; 115 - - -, fin) 1S an €-optimal solution of the sup term in (3.3),
i.€.,

/ Qang (@, X, A) [layg (d,dX) > sup { Qang (@, T, A) flayg (dex, d}\)} — €.
X xS} “N) X xS}

MHaug eraug (#1 -----

(111) dsur(@) —€< P(a) < dour(@) for all a € S;.

(1v) dpRO-sur — € < PpRO < PDRO s -

Proof of Theorem 3.5 See Appendix EC.2.1.

Since supxcg; {IWTA|| } < o0, if we can choose the collections of functions Gi,...,Gy in the
statement of Theorem 3.5 such that Zilwl,m([ui]gi) is arbitrarily close to 0, then, by Theo-
rem 3.5(iv), we are able to control the approximation error of the relaxation (3.9) to be arbitrarily

close to 0. We will discuss how this can be achieved in Section 3.3.

3.2. Explicit construction of partial reassembly with one-dimensional marginals

In this subsection, we consider the explicit construction of partial reassembly in Definition 3.3.
Since under Assumption 2.4 the sets X},..., Xy are all one-dimensional, one can use Sklar’s the-
orem from the copula theory (see, e.g., McNeil, Frey, and Embrechts (2005, Theorem 5.3)) to
decompose any probability measure fi,,, € P(X x S5) into a copula C' and its N + K marginals

Aty AN N1, - - - It iy - Subsequently, by the explicit characterization of an optimal coupling



18 Neufeld, Xiang: Numerical method for two-stage DRO with marginal constraints

in the one-dimensional case, one can partially reassemble a fiang € Rpart (flang: f1, - - - » ) by compos-
ing the copula C' with the marginals pu, ..., i, fin1, - - - v+ - This is detailed in the following

proposition.

PROPOSITION 3.6 (Characterization of a partial reassembly). Let Assumption 2./ hold

and let flo,g € P(X x S3). Let Fj,,, R [0,1] denote the distribution function of fiag, i-€.,
N K3
Fﬂaug(xh - ,iL'N,)\l, A ’)\KQ*) = ,aaug <(X X S;) N (X(—oo,xl] X ><(—OO,)\]]>>
i=1 j=1

—=N+K3
V(.l?l,...,l’N,)\l,...,)\KQ*)TER 2,

For j=1,...,N+ K3, let F, :R — [0,1] denote the distribution function of the j-th marginal of

Haug, €.,

F-

]

(2):= gaug((x X S3) N (RI~! x (—00, 2] X RN+K5—J‘)) vz eR.

Moreover, fori=1,...,N, let F,, : R — [0,1] denote the distribution functions of w;, i.e., F,,(z) :=
1i (X; N (—00,2]) for z€R. Then, the following statements hold.
(i) There exists a distribution function C:[0,1]N+52 — [0,1] with uniform marginals such that

—N+K
for all (xl,...,xN,)\l,...,)\K;)TGR - )

Fﬂaug(lila"'axN,Ala“'7>‘K;):C(Fﬂl(l‘l)v'-'7F[LN(‘TN)3F;1N+1()‘1)7'"7F/lN+K5(>‘K§))'

(ii) Let C : [0,1]Nt52 — [0,1] satisfy the conditions in statement (i) and let

Fﬂaug(xl)‘“7$N7)\17"'7AK§‘) = C(Fﬂl(xl)V"7FILN(xN)7FﬂN+1(A1)7'"7FﬂN+K5(>\KS)) fOT’
(ml,...,xN,)\l,...,)\Kg)T e RV, Then, Fy,,, 1is the distribution function of a unique

probability measure fioaug € P(X X S5) and flang € Rpart (flang; f1, - - UN)-

Proof of Proposition 3.6 See Appendix EC.2.2.
In the following, let us consider a special case where fi,,, € P(X x 53) is a discrete measure with
finite support, i.e., flang = ijl

(], A\[)T€ X x S3) with JEN, a; >0, x; € X, X\; €S; for j=1,...,J, such that (], A])]_,

0z, ;) (here 6z, x,) € P(X x S3) denotes the Dirac measure at

are distinct and Z;}:l a; = 1. In this case, a partial reassembly fiang € Rpart(flaug; 1, - - -, fin) CAD

be constructed through the procedure described in the following proposition.

PRrROPOSITION 3.7 (Construction of a partial reassembly of a discrete measure). Let
Assumption 2.4 hold. Let [l := Z;.]ZI @0z, x;) € P(X x S3) with JEN, a; >0, &, € X, A\; €S
for 5 =1,...,J, such that (:B]T-,)\]T-)]T-ZLJ are distinct and Z;}:l a; =1. For j=1,...,J, denote
x;=(xj1,...,x5n) . Fori=1,...,N, let F,'(t):=inf {x € X; : p; (X;N (—00,2]) >t} fort€[0,1].
Moreover, let (Q, F,P) be a probability space and let ()Z'l, . ,)N(N,AT)T Q= X x S5 be a random

vector that is constructed via the following procedure.
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Step 1: fori=1,...,N, sort the sequence (z1,...,2z,) into ascending order wz(-l) < 371(2) <<
xl(.‘]) and let 0,(j) denote the order of x;; in the sorted sequence, i.e., {ai(j) 1< < J} =

{1,...,J} and :rggi(j)) =x;,; forj=1,...,J.

Step 2: fori=1,...,N and 1=0,1,...,J, let F;(l):= Zlgng,ai(j)glaj‘

Step 3:let Z:Q—{1,...,J} be a categorical random variable with probabilities P[Z = j] := «;
forj=1,...,J.

Step 4: let A:Q— S5 be a random vector defined by A:= Xz, i.e., A:=X\; on {Z=j} for
j=1,...,J.

Step 5: let (Cy,...,Cn)": Q — [0,1]Y be a random vector with uniform marginals (i.e., its
distribution function is a copula) that is independent of Z.

Step 6: fori=1,...,N, let X, :Q— X, be a random variable defined by

X;:=F (C;Fi(0,(2)) + (1 - C))Fy(0i(Z) — 1)).

Then, the law fia,g of the random vector ()Z'l, e ,)~(N, AT satisfies frang € Rpart (faungs 415 - -5 AN )-

Proof of Proposition 3.7 See Appendix EC.2.2.

Algorithm 1: Generation of independent samples from a partial reassembly

-

10

11

In

put: M eN, NeN, ji = ijlozjé(mjyx].), (Fu_il('))izuv (see Proposition 3.7), copula
C:[0,1]Y —[0,1]

Output: M independent samples {(i&],A&])T :1<k<M} from a

ﬂaug S Rpart (ﬂaug; My 7,U/N)

for:=1,...,N do

Sort the sequence (x4 ,...,2;) into ascending order 2P <2 <o <2 and let 0,(j)
denote the order of z;; in the sorted sequence, i.e., {ai(j) 1< < J} ={1,...,J} and
azga"(j)) =z;, forj=1,...,J.

Fi(D) 2 1<jcr o @ for 1=0,1,...,J.

for k=1,...,M do

Generate a random sample zp from the categorical distributions with values {1,...,J}
and corresponding probabilities (o, ..., ay).

Generate (cp,1,---,cp,n)" from the copula C' independently from z,.

)\[k] — )‘Z[k] .

fori=1,...,N do
L j[k],i — F}:il (C[k]’iFi(Ui(z[k])) + (1 — C[k],i)E(Ui(z[k]) — 1))

i[k] — (fi'[k],la R ,i’[k]yN)T.

return {(&(,, A} :1<k<M}.
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Since the procedure described in Proposition 3.7 involves only a categorical random variable
as well as a random vector from a given copula, the procedure in Algorithm 1 allows one to
efficiently generate M € N independent samples {(:i;c] , )\;C])T 1<kE<M } from a partial reassembly
frang € Rpart (flaug; 415 - - -5 i) When [l is a discrete measure with finite support. The correctness

of Algorithm 1 follows directly from Proposition 3.7.

3.3. Explicit construction of moment sets to control the approximation error
In this subsection, we control the approximation error of the relaxation introduced in Theorem 3.5
via explicitly constructing collections of functions Gi,...,Gy such that the supremum W;i-metric
between p; and members of [w]g., i.e., W1 ,.([1i]g,) defined in (3.6), can be made arbitrarily close
to 0 for i =1,...,N. To achieve this, let us introduce the class of (one-dimensional) continuous
piece-wise affine (CPWA) functions.

DEFINITION 3.8 (CONTINUOUS PIECE-WISE AFFINE (CPWA) FUNCTIONS). Let X C R be

compact. For any m € N and any —oco < kg < k1 < -+ < K, < 00, let go,91,---,Gm : X = R be

defined as

)t

gol) = L Ve,
K1 — Ko
e )t )t

gj(a:)::(x 1) /\(HJJrl z) Vee X, forj=1,...,m—1,
kj = HKj-1 Rj+1— R
_ +

gm(x)::m Vee X.
Rm — Rm-1

Moreover, denote Gopwa (Kos - -« s Km; X) :={G1, -, gm } if m>1 and let G(ko; X) := 0 for any ko € R
if m=0.

In the following, we will focus on the case where the underlying spaces X,..., Xy are each a
union of finitely many disjoint compact intervals. Each compact interval in the union is allowed
to be a singleton set. For such a space X and any pu € P(&X'), we derive the following results which

explicitly control W, ,,([u]g) via a finite collection of CPWA functions G.

ProrosiTION 3.9 (Explicit construction of moment set). Let X = Ule[@l,ﬁl] for ke N
and —00 < Kk} <Ry < Ky <Ro <+ < Ky, <R, <00, and let p € P(X). For l=1,...,k, let m; €N
and K1, ..., Kim, satisfy the following conditions:

o if K, =K, then m;=1 and K;1 = K;;

o if Ky <Ky, then m;>2 and k)= Ky < Ko <+ < Kigm, = Ky
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Let G := Gepwa(Ki1,---sKimys---s Bty -y K, X). Moreover, for every 1 € {1,...,k}, let

(&1,5)j=0:m; CR be given by
-1
Sl,o = ZM([ﬁwﬁi])a
=1

Ky io1—2) T —(k) i—2)T 3.11
é.l-,j ::£170+/ B M(d.ﬁU) forj:L...,ml—l, ( )
[ry71]

FlLj+17FLj

Simy i =&0+ M([ﬁz,ﬁz])-
Furthermore, let F,7'(t) :=inf {x € X : u(X N (—o0,x]) >t} fort€0,1]. Then, the following state-
ments hold.
(i) Letm := (Zle ml) —1 andlet (K11, . Kimys--esKkas--o s Kim,) be re-labelled as (Ko, ..., Km)

while retaining the order. Let g1,..., g, be the functions in G defined in Definition 3.8. Then,

conv({(gl(:n),...,gm(:r:))T 1x € X}) = {(vl, o Um) v >0, L v >0, v < 1}.
(ii) The following inequality holds:

Wi u(lwlg) == sup {Wi(p,v)}

ve(ulg
my
_ _ (3.12)
S Y[ o)V e F0)
1=1,....k, j=1 * (€1,j—1,81,5]
K <RK|
In particulaT’, Wl,u([lu’]g) S Zf:l ,U,([ﬁbﬁl]) maxlgjgml {I{L(jJrl)/\ml — K’l,(jfl)\/l}-
(iii) For any € >0, there exist K11, ..y Kimys -5 Kk1y - Kkm, satisfying the conditions above

and G :=Gepwa (K115, Blmys > Blds - - > Bloymg s X ) such that Wl,u([u]g) <e.
Proof of Proposition 3.9 See Appendix EC.2.3.
REMARK 3.10. We would like to remark that the collection of functions G in Proposition 3.9

is a particular case of the abstract concept of an interpolation function basis associated with the

following polyhedral cover of X
{{ﬁl}:lﬁlﬁk‘, ﬁlzﬁl}u{[ﬁl,jyﬁl,j—o—l]:1§l§ka Ky < Fi, 1§j§mz—1},

which was introduced in (Neufeld and Xiang 2022, Definition 3.2.2 & Definition 3.2.4).
Now, in order to apply Proposition 3.9 to control the approximation error in Theorem 3.5, let

us make the additional assumptions as follows.

ASSUMPTION 3.11. In addition to the assumptions (DRO1), (DRO2), and (DRO3*) in Assump-
tion 2.4, we make the following assumption:
(DRO1+) fori=1,...,N, &, = Ufil[ﬁi,l’ﬁi,l]; where k; €N, —00 <k, | <Fi1 <HK;g SFip < - <

Kk, < Rigk; < 00.
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Moreover, we make the following assumption about the functions characterizing the moment sets

[iul]glf Ry [MN]QN:
(MS) fori=1,...,N, G, := gCPWA("%,l,l, ces Ritmg gy s Rk 1, - w"ii,ki,mi’ki;Xi); where, for
l=1,...;ki, miy €N and Kip1, ... Kim,, satisfy the following conditions:

o if@u =Fiy, then mi; =1 and ki1 =K, y;
o if ;) <Ky, thenm;; >2 and k; ;= ki1 < kKo< < Kitmg, = Ril;
my = (0 mig) = 1 me= 3L m.

EXAMPLE 3.12 (UNCERTAIN QUANTITIES). The list below contains examples of uncertain quan-
tities in practice which take value in the union of finitely many compact (possibly singleton)
intervals.

(a) In the multi-product assembly problem (i.e., Example 2.6), the demand for a product can take
value in a compact interval, e.g., [0,%], where & > 0 is the maximum possible demand for this
product.

(b) In the supply chain network design problem (i.e., Example 2.7), the failure of an edge in the
supply chain network corresponds to a Bernoulli random variable which can take value in
{0,1}.

(c) One could extend the failure of an edge in the supply chain network design problem to more
than two scenarios (i.e., fail and not fail). For example, it can be modeled by a discrete random
variable taking value in {0,0.1,0.5,1}, which means that an edge in the supply chain network
may fail completely, fail while retaining 10% of its capacity, fail while retaining 50% of its
capacity, or not fail.

(d) Another way to extend the model for the failure of an edge in the supply chain network
design problem is to consider a mixed discrete-continuous random variable that takes value in
{0} U [k, %], where 0 indicates the failure of the edge. In the case that the edge does not fail,
its (relative) capacity is randomly distributed in the interval [k, &].

(e) In general, one may model an uncertain quantity via a scenario-based approach, in which one
considers k € N possible scenarios and assumes that the uncertain quantity takes value in a

(possibly singleton) compact interval [k,,%] in the [-th scenario, for [=1,... k.

3.4. Duality results

In this subsection, we analyze the dual optimization problem of ¢g,(a) and prove the respective
strong duality. This allows us to transform the inf-sup problem in (3.9) into an inf-inf problem,
which can be subsequently recast into a linear semi-infinite programming (LSIP) problem. More-
over, we establish a lower bound for ¢pro based on reassembly. These results allow us to develop

the algorithms in Section 4 for computing an approximately optimal solution of (DRO).
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Let us first introduce the vectorized notations used in the LSIP formulation. Let Assumption 2.4
hold, let G; ={gi1,---,Gim, } C LY(X;, i) with m; €N for i =1,...,m; and let m := Zfil m;. Let
the vector-valued functions g,(+), ..., gn(-), and g(-) be defined as

X oz g,(x):=(gi1(2),. ., Gim, ()" €R™ fori=1,...,N,

. (3.13)
X3 (zy,...,on) =gz, an) = (g.(x1),...,gn(zN)") €R™
Moreover, let the vectors vy, ..., vy, and v be defined as
T
v; = 4 di,..., zmd 1) € R™i forizl,...,N,
(fxig,l His- s [y i, dpa (3.14)
vi=(v],...,v5) €ER™.
Then, for every fixed a € S, the dual of the maximization problem in (3.8) is given by
minimize yo + (v,y)
Y0,y
subject to  yo + (g(x),y) > (Va+ Wz +b,\) Ve e X, VAeS;, (3.15)

Yo € R, ye R™.
The following lemma establishes the strong duality between the maximization problem in (3.8)

and (3.15) when all functions in Gy, ..., Gy are continuous.

LEMMA 3.13 (Duality for the inner maximization problem). Let Assumption 2./ hold.
Fori=1,...,N, let G; = {giyl, e ,gi,mi} C LYX;, i) be a collection of m; € N continuous func-
tions. Let m := Zivzl m; and let g(-), v be defined as in (3.13) and (3.14). Then, the strong duality

between (3.15) and the mazimization problem in (3.8) holds, i.e., the optimal value of (3.15) is

equal to ¢su(a) — (c1,a) for all a € S;.

Proof of Lemma 3.13 See Appendix EC.2.4.
Following Lemma 3.13, if we substitute (3.15) into (3.9), we obtain the following LSIP reformu-
lation of (3.9), where Lj,, L., are defined in (DRO2) of Assumption 2.2:
minimize (c¢1,a) +yo + (v,y)
a,yo,y
subject to 3o+ (g(x),y) — (VA a) > (Wx + b, \) Ve e X, VAeS;,
Li.a < gy, (LSIP)
Lan’ = qeq7
acR™, yeR, yeR™
This LSIP problem admits the following dual:
sup {<qin7 £in> + <qeq7 Eeq> + / <‘A[:C + b7 A> ,uaug(da:, dA) £in € R"iin’ éeq € Rneq’
X% S5
e (LSIP¥)
Haug € Paug([lufl]glv AR [MN]QN)a L;I;lgin + Ll—qgeq - VT(fXxS; A,U/aug(dw7 dA)) = Cl}?
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where | J- A llang (A, dX) denotes the component-wise integral of A with respect to plaue. The
2

following theorem establishes the strong duality between (LSIP) and (LSIP™). The proof follows

duality results in the theory of linear semi-infinite optimization (see, e.g., (Goberna and Lépez

1998, Chapter 8)).

THEOREM 3.14 (Duality for the DRO problem). Let Assumption 2./ hold. For i =
1,...,N, let G, = {gi,l,...,gi,mi} C LYX;, i) be a collection of m; € N continuous functions. Let
m:= Zf\ilmv and let g(-), v be defined as in (3.13) and (3.14). Then, the following statements
hold.

(i) The optimal value of (LSIP) is equal to ¢ppro-sur-
(i) The strong duality holds between (LSIP) and (LSIP"), i.e., they have identical optimal values.

In particular, the optimal value of (LSIP) is larger than or equal to ¢pro-

Proof of Theorem 3.1/ See Appendix EC.2.4.

Under the more specific assumptions (DRO1+) and (MS) about &}, ..., Xy and Gy, ..., Gy stated
in Assumption 3.11, the following proposition provides sufficient conditions for the boundedness
of the set of optimizers of (LSIP), which is a crucial ingredient for proving the convergence of the

numerical algorithm in Section 4.

PROPOSITION 3.15 (Boundedness conditions for the optimal set of (LSIP)). Suppose
that Assumption 3.11 holds. For ¢ = 1,...,N, let ¢;0,9i1,---,9im; be the elements of
QCPWA(ni,171,...,ni,lvmi’l,...,/a,-7ki71,...,niyk“ni,ki;Xi) defined in Definition 3.8. Let g(-) and v be
defined as in (3.13) and (3.14). Assume further that the two following conditions hold:

(A1) fori=1,...,N and j=0,1,...,m;, ingi’jdui >0;
(A2) ¢, €int(C), where C CR¥1 is defined by

C:= cone({—VTA ‘Ae S;}) +{LTg, &, eRY )+ {LT g, 1€, €R™a),

Then, the set of optimizers of (LSIP) is non-empty and bounded.

Proof of Proposition 3.15 See Appendix EC.2.4.

REMARK 3.16. The condition (A1) holds whenever the support of u; is A; for i =1,..., N.
Moreover, if the set S; defined in (DRO2) is bounded, then the condition (A2) holds.

The following theorem allows us to obtain a lower bound on ¢pro from an approximate optimizer
of (LSIP") via partial reassembly, and the quality of this lower bound depends on Zil Wi, (e,
We would like to remark that, by Proposition 3.9, the quality of this lower bound can be controlled

to be arbitrarily closed to 0 under Assumption 3.11.
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THEOREM 3.17 (Lower bound for ¢pro with controlled quality). Let Assumption 2.)
hold. Fori=1,...,N, let G, = {gm, . ,ngi} C LY, i) be a collection of m; € N continuous
functions. Let m:= Y~ m; and let g(-), v be defined as in (3.13) and (3.14). Moreover, let € >0
be arbitrary and let € := e+ (Zf\;l W ([1ila,)) SUD ¢ 53 {IWTX||}. Then, for every e-optimizer
(&in> &gy flang) of (LSIPY) and every fiag € Ryart(flaugs H1, - - -, fin), the following inequalities hold:

om0~ < (@) + (@) + [ (Wt b X s (d2. AN oo, (3.10)

X xS3

Proof of Theorem 3.17 See Appendix EC.2.4.

4. Numerical method

In Section 3, we have shown through Theorem 3.5 and Theorem 3.14 that an upper bound for the
optimal value of (DRO), i.e., ¢pro, can be obtained through the linear semi-infinite programming
problem (LSIP). Moreover, in Theorem 3.17, we have derived a lower bound for ¢pro through the
dual (LSIP™) of (LSIP), and the quality of this lower bound can be controlled to be arbitrarily
close to 0 under Assumption 3.11. In this section, we work under Assumption 3.11 and propose a
numerical method for approximately solving (DRO). We first develop a cutting-plane discretization
algorithm (i.e., Algorithm 2) tailored to solving (LSIP) and (LSIP") in Section 4.1. This cutting-
plane discretization algorithm is inspired by the Conceptual Algorithm 11.4.1 in (Goberna and
Loépez 1998), and it is capable of simultaneously computing both an e-optimizer of (LSIP) and an
e-optimizer of (LSIP™), for any € > 0. The e-optimizer of (LSIP) also provides an upper bound for
¢pro- Subsequently, in Section 4.2, we develop an algorithm (i.e., Algorithm 3) for computing a
lower bound for ¢pro based on the outputs of Algorithm 2. The difference between the computed
upper and lower bounds for ¢pro provides a direct estimate of the sub-optimality of the computed

approximately optimal solution. The code used in this work is available on GitHub?.

4.1. Cutting-plane discretization algorithm for solving (LSIP)
A key step in approximately solving (LSIP) is to approximately solve the following global opti-

mization problem associated with (LSIP):

minimize g+ (y.9(2)) — (Va +b,A) — (Wa, )
= (4.1)
subject to xze€ X, A€ S,

for fixed a € S1, y € R, and y € R™. Intuitively, this corresponds to finding the most violated

constraint(s) in (LSIP) given an infeasible solution.

Yin the case where ¢ =0, the e-optimizer (éin,écq,ﬂaug) of (LSIP*) is an optimizer of (LSIP*)
Zhttps://github.com/qikunxiang/TwoStageDROuMarginals
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The following proposition analyzes some important properties of the global optimization problem
(4.1). These properties allow us to efficiently solve it and also help us construct a feasible solution

of (LSIP) from a possibly infeasible one.

PROPOSITION 4.1. Suppose that Assumption 5.11 holds. For i=1,...,N, let gi0,Gi1;---,Gim,
be the elements of gchA(KJLLl,...,li@l,,,%l,...,/i@ki,h...,/ﬁ:Lki,miyki;Xi) defined in Definition 35.8.
Let g(+), v be defined as in (3.13) and (3.14). For i=1,...,N and for any y; = (Yi1,---,Yim,)' €
R™i, let ug(w;y;) := D0 vii9i5(2) for x € X, let ui(-5y,) :R =R denote the convex conjugate of
wi(-3y,), dee, w(;y) = sup,cx {nx —wi(z;y,)} for n€R, and let uj*(-;y,) : X — R denote the
convex bi-conjugate of u;(-;y,), i.e., uj*(x;y,) :=sup, cp {nx —uf(n; yl)} for x € X;. Moreover, for
any y=(yl,...,yN)T €R™ where y, e R™ fori=1,...,N, let u*(n1,...,0n; ) = S0, ul (05 y,)
for (m,...,nn)7 € RY. Furthermore, for i =1,...,N, let X, := {Rig; 1 <1<k, 1<j<m}.
Then, the following statements hold.

(i) Fori=1,...,N and for any y, € R™, uj(n;y,) = max, 5 {nz —u;(z;y,)} for allneR.
(ii) For any a € Sy, yo €R, and any y= (y],...,yN)" € R™ where y, e R™ fori=1,...,N, let

A" € S3 be an optimizer of the following problem:

minimize yo — (Va+b,A) —u*(W'X;y)
A (4.2)
subject to A€ S;.

Fori=1,...,N, let x} € argmax, 3 {[WTX); 2 — u;(w;y,) }, where [WTX']; denotes the i-th
component of the vector WTA* € RN. Moreover, let * := (z7,...,2%)". Then, (x*,\*) is an
optimizer of (4.1) and the optimal values of (4.1) and (4.2) are identical.

(i1i) Fori=1,...,N and any y, € R™, there exists y¢ € R™ that satisfies y; <y, and u;(x;ys) =
u*(xyy;) for all x € X;.

(iv) For any a € Si, yo €R, and any y= (y],...,yN)" € R™ where y, e R™ fori=1,...,N, let

yo =S, ..., yN)T, where yS eR™L, .. y& € R™N satisfy the conditions in statement (iii),
and let yg := yo — infaesy {yo —(Va+b,A) — u*(WT)\;y)}. Then, (a,ys,y°) is feasible for
(LSIP).

Proof of Proposition /.1 See Appendix EC.3.1.

REMARK 4.2 (SOLVING (4.2) VIA MIXED-INTEGER LINEAR PROGRAMMING). The global opti-
mization problem (4.2) can be solved via a mixed-integer linear programming formulation as follows.
Let Assumption 3.11 hold and let @ € S1, yo ER, y, ER™, ..., yy ER™ y:=(y],...,y\)  €R™
be fixed. Let —oo < w, < @; < oo for i=1,...,N satisfy (xle@i,m]) O {WTA: A€ 85}, which
is possible due to the compactness of S;. For i =1,..., N, Proposition 4.1(i) implies that there

exists n; € N and w; =: w; o <w; 1 < -+ < W ,, :=w; such that u}(-;y,) is continuous on [w; o, w; .|
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and piece-wise affine on [w; g, w; 1], ..., [Win,—1,w,,]. Then, (4.2) can be equivalently formulated as

the following mixed-integer linear programming problem:

i%?%?fﬁ Yo —(Va+b,X) - <§:u Uhmyz‘FE: T (wijy,) 1ﬁﬁmJnyJ)%J>

subject to fori=1,...,N:

zij €R V1< j<n,,
Li; €{0,1} V1<ij<n;—1, (4.3)
2i1 <1, 2, >0,
Zij+1 Sty < 24 Vi<j<n;—1,
W; 0+ 27;1 (wi; —wij—1)zi;=[WTA,
AESs.

This mixed-integer linear programming formulation lifts the epigraph of each continuous piece-wise
affine function [w;,w;] > n— —u(n;y,) € R into a space of higher dimension through the introduc-
tion of continuous and binary-valued auxiliary variables. This follows from Equations (11a) and
(11b) in Vielma, Ahmed, and Nemhauser (2010) (with @ + [WTA];, K < n;, k + j, dy + w;,
di < w; j, Ok < 2 5, f(do) < —uf(wi0;y,), f(di) < —u;(w; ;3Y,;), Y < i ; in the notation of (Vielma
et al. 2010)). Subsequently, state-of-the-art numerical solvers for mixed-integer programming prob-
lems such as Gurobi Optimization, LLC (2022) can be used to efficiently compute an optimizer of
(4.2).

We are now ready to present the cutting-plane discretization algorithm tailored for solving
(LSIP) and (LSIP"). The cutting-plane discretization method replaces the semi-infinite constraint
Yo + (g(x),y) — (VT A,a) > (Wzx +b,A\) Ve € X, YA € S; in (LSIP) by a finite subcollection of
constraints. These constraints are referred to as feasibility cuts and are denoted by a finite set
€ C X x S3, where each (x,A) € € corresponds to a linear constraint yo + (g(x),y) — (V' A\, a) >

(Wz+b,\) on (a,yo,y). This relaxes (LSIP) into the following linear programming (LP) problem:

minimize (¢i,a)+yo + (v,y)
a,yo,y
subject to  yo + (g(x),y) — (V' A,a) > (Wzx +b,\) V(x,\) e,
Li,a <g,, (LSIP eiax (€))

Leqa' - qeq?

acR", yeR, yeR™.



28

Neufeld, Xiang: Numerical method for two-stage DRO with marginal constraints

The dual LP problem of (LSIP ..(€)) is given by:

maximize (@, &) + (Qep€eq) + D Haa(Wz+b,A)

€in-€eqs(Ha, ) (®,N)EC

subject to Li&y, + Ll — | Y. teaV'A| =ci,

(e,A)eC
D Hea=1, (LSIPL,,(€))
()€€
D teag(x) =v,
(z,N)eC

£in S R"i’in’ ch € R”eq’
far >0 V(x,A) €.

In the cutting-plane discretization algorithm, feasibility cuts are iteratively added to € until

the approximation error falls below a pre-specified tolerance threshold. In the following, Algo-

rithm 2 shows the detailed implementation of the proposed cutting-plane discretization algorithm.

Remark 4.3 explains the assumptions and the inputs of Algorithm 2 as well as its details. Theo-

rem 4.4 presents the properties of Algorithm 2.

REMARK 4.3 (DETAILS OF ALGORITHM 2). In Algorithm 2, we require that Assumption 3.11
holds and require in addition that the conditions (A1) and (A2) in Proposition 3.15 hold. The

following list explains the inputs of Algorithm 2 as well as some assumptions about them.

(Xi)i=1:n, €1, Lin, @iy Leqy @y V, W, b, and S5 are specified in (DRO1), (DRO1+), (DRO2),
and (DRO3*) of Assumption 3.11.

(Gi)i=1.n are defined as in (MS) of Assumption 3.11. Moreover, same as in Proposition 4.1, we
let /’E::{mi,l,j:lglgki, 1<j<my,}fori=1,...,N.

g(:) and v are defined in (3.13) and (3.14).

¢ c X x S} corresponds to a finite set of constraints defining the initial relaxation
(LSIP oy (€)) of (LSIP). We require that the LP problem (LSIP . (€(®)) has bounded sub-
level sets. The existence of such € is shown in Theorem 4.4(i).

€ > 0 specifies the numerical tolerance value of the Algorithm 2. This is detailed in Theorem 4.4.

The list below provides further explanations of some lines in Algorithm 2.

Line 3 solves the LP relaxation (LSIP . (€™)) of (LSIP). When solving (LSIP,..(€™)) by
the dual simplex algorithm (see, e.g., (Vanderbei 2020, Chapter 6.4)) or the interior point
algorithm (see, e.g., (Vanderbei 2020, Chapter 18)), one can obtain an optimizer of the corre-
sponding dual LP problem (LSIP;,

relax

to the strong duality of LP problems, the optimal values of (LSIP ¢, (€™)) and (LSIP.,,, (€™))

(€M) from the output of these algorithms. Moreover, due

coincide.
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Algorithm 2: Cutting-plane discretization algorithm for solving (LSIP) and (LSIP™)

IHPUt: (Xi)iZI:Nv clv Lina qina Leqa qeq7 Vu Wa b7 S;; (gi)i:LNa (‘i\‘i)iZI:N) g()a ’U,

COCcx xS e>0

~

e

OutPUt ¢DRO sur? (bDRO sury @ Yo, Y, £in7 €eq7 Maug

1 r<0.

2 while true do

3

10
11

12

13

14

15

16

17 a+a ,g)0<—g] R )]

Solve the LP problem (LSIP ., (€()). Denote the computed optimizer as

( ,g](()r), y(r)) denote the computed optimal value as ¢ (") and denote the computed

dual optimizer, i.e., optimizer of (LSIP}, (€()), as Em ,éi; (f (mT)A)(m Neen - Denote

@( = (@1 ’ ,@(NT)T) where y(r) eR™, .., Q(Nf‘) cR™~.

(r)

Solve the optimization problem (4.2) with a +—a""”’, yo < g)(()r), y + ¢, Denote the

computed optimizer as A* and denote the computed optimal value as s"). Let ®* C S}
be a finite set such that A* € D*.

fori=1,...,N do

L Let 4. € R™ be a vector that satisfies " < 9" and w;(z;95") = ur*(z;9") for

all x € X; (see Proposition 4.1(iii)).

~o(r ~o(r)T ~o(r)T ~ ~(r r) —(r ~ (7
g = N B i) s, B0 e (e, a) + 4

if 3™ —E(T) < e then
| Skip to Line 16.
for each A€ ®* do
fori=1,...,N do
L Let 2x; € argmax, g {[WTA]; 2 — u;(z; ! )}

Ty < (.’L’A71,...,$>\7N)T.

¢t ¢ U {(z2,A) : A€ D* ).

r<—r+1.

~o(r

' (,5°).

UB LB
DRO-sur «— 90 ’ d)DRO -sur — SO(T)

7o)

18 £, é’l(; , Eeq — Seq  flaug < D ayee /lg;)’/\)(S(m,)\), where d(,,x) denotes the Dirac measure

at (27, A")T.

~ ~

19 return ¢DRQ sur? ¢DRO surr @ Yo, Y, Eina Ecq? Haug-

e Line 4 solves (4.2) which is an equivalent reformulation of the global optimization problem
(4.1), as shown in Proposition 4.1(ii). The problem (4.2) can be further reformulated into a
mixed-integer linear programming problem (4.3) in Remark 4.2 and subsequently solved by a

mixed integer programming solver such as Gurobi Optimization, LLC (2022). One can let ©*
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be a set containing optimizer(s) and approximate optimizers of (4.2) (which can be obtained
from optimizer(s) and approximate optimizers of (4.3)).

e Line 6 computes a vector 7" which satisfies 97" <\" and w;(z; 9°") = ur* (2;9\") for all

x € X;. Such a vector exists due to Proposition 4.1(iii). @f(r) can be computed from the values

of the convex envelop function @:*(z;4") := sup, cp {nT — u} (n;@z(r))} of u;(-;9'") for each
z € X; (see the proof of Proposition 4.1(iii)).

e Lines 10-14 construct a set of (approximate) optimizers of the global optimization problem
(4.1) from a set of (approximate) optimizers ©* of (4.2). In particular, when A = X", i.e., the
computed optimizer of (4.2), the computed pair (€x«,A") is an optimizer of (4.1) according
to Proposition 4.1(ii).

e Line 16 provides both an upper bound ¢{% ... and a lower bound ¢5,, . ~on the optimal
value ¢pro.sur Of (LSIP) (recall Theorem 3.14), as shown in Theorem 4.4(iii).

e Line 17 provides an e-optimal solution of (LSIP) as shown in Theorem 4.4(iv).

e Line 18 constructs an e-optimal solution of (LSIP") as shown in Theorem 4.4(v).

THEOREM 4.4 (Properties of Algorithm 2). Suppose that Assumption 3.11 holds and that
the conditions (A1) and (A2) in Proposition 3.15 hold. Then,

(i) there erists a finite set €0 C X x S3 such that (LSIP . (€?))) has bounded sublevel sets.
Moreover, suppose that the inputs of Algorithm 2 are set according to Remark 4.3. Then, the
following statements hold.

(ii) Algorithm 2 terminates after finitely many iterations.

(ii1) PBho-sur < PDRO-sur < PDRO-sur WhETE PDRO sur — PBRO-sur < €-

(iv) (@,9o,Y) is an e-optimal solution of (LSIP) and {(c1,a) + §o + (v,9) = d %0 cue-

(v) (éin,éeq,ﬂaug) is an e-optimal solution of (LSIP*) and (q,,,&,) + <qeq,éeq> +
s (W -+ B A) g (A, 00) = 880,

Proof of Theorem 4.4 See Appendix EC.3.1.

4.2. Algorithm for solving the two-stage DRO problem

In this subsection, we introduce an algorithm for computing an approximately optimal solution of
(DRO) along with upper and lower bounds for its optimal value ¢pro. The computed upper and
lower bounds also provide a direct estimate of the sub-optimality of the computed approximate
solution. This algorithm is based on Algorithm 2 and is presented in Algorithm 3. Remark 4.5
provides explanations of the details of Algorithm 3. The properties of Algorithm 3 are detailed in
Theorem 4.6.
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Algorithm 3: Procedure for solving the two-stage DRO problem (DRO)
Input: (p1;)i=1.n, (Xi)i=1:n €15 Lin, @iy Lieg, 9oy Vo W, b, S5, (Gi)i=1.n, ()?i)i:l:Na q(-); v,
COCA xS e>0

LB ~ ~
Output: ¢P%6, dpro, € @

(ngRO s PER 0 s @ Jos Q,éin,éeq,ﬂaug) + the outputs of Algorithm 2 with inputs
((Xi)i:I:Na Cy, Lina qina Leqv qeq’ Va Wa ba S;, (gi)i:I:N, (/?i)i:I:Na g()7 v, Q:(O) ’ 6) .

=

2 Let (€2, F,P) be a probability space and let (Xi,..., Xy, AT)7:Q — X x S} be the random
vector constructed via the procedure in Proposition 3.7. Let X = ()Z'l, ce )Z'N)T.

3 ¢DRO <Z5DR0 sur? ]LDBRO A <qin7éin> + <qeq7éeq> +E[<WX +b, Aﬂ

4 €4 dpro — Pbro-

LB~ 4
5 return ¢pro, Ppros € -

REMARK 4.5 (DETAILS OF ALGORITHM 3). In Algorithm 3, we continue to assume that
Assumption 3.11 and the conditions (A1), (A2) in Proposition 3.15 hold. The following list provides
further explanations of Algorithm 3.

e Apart from the input (p;);=1.v, which are specified in (DRO1) of Assumption 3.11, the rest
of the inputs of Algorithm 3 are identical to the inputs of Algorithm 2 and we assume that
they satisfy the assumptions in Remark 4.3.

e Line 2 constructs a partial reassembly via the procedure in Proposition 3.7, as the law fi5,, of
the random vector ()?1, . )?N, AT)T satisfies flang € Rpart (flaug; f1, - - -, o) by Proposition 3.7.

e Line 3 provides both an upper bound ¢, and a lower bound ¢t for the optimal value
¢pro of (DRO), as shown in Theorem 4.6(i).

e In practice, the expectation E [(WX + b, A)] in Line 3 often cannot be computed exactly and
needs to be approximated via Monte Carlo integration. This can be done by first generating
a large number M € N of independent samples {( k],/\[k])T 1<k M } using Algorithm 1
and then approximating ¢t by

M

~ 1 ~
¢DRO <q1n’ £1n> <qeq7 Eeq> + M Z<Wx[k] + b7 A[’€]>

k=1
The computation of the above quantity does not involve solving optimization problems and
can naturally be parallelized.

e Line 4 computes the difference ¢ between the computed upper bound ¢, and lower bound
BB, which serves as a direct estimate of the sub-optimality of the computed approximate

solution @ of (DRO), as shown in Theorem 4.6(ii).
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THEOREM 4.6 (Properties of Algorithm 3). Suppose that Assumption 3.11 holds and that
the conditions (A1) and (A2) in Proposition 3.15 hold. Moreover, suppose that the inputs of Algo-
rithm 3 are set according to Remark /.3 and Remark 4.5. Then, the following statements hold.

(i) #bro < PprRO < G(G) < PdRO-
(ii) a is an é-optimal solution of (DRO).
fiii) e < e+ (27, W ([iils,)) subacss {IWTAlL}.

Proof of Theorem 4.6 See Appendix EC.3.2.

We can now combine Theorem 4.6(ii), Theorem 4.6(iii), and Proposition 3.9(iii) to show that
the sub-optimality of the approximately optimal solution a of (DRO) computed by Algorithm 3
can be controlled to be arbitrarily close to 0 when the probability measures p1, ...,y have full

support. This is presented in the following corollary.

COROLLARY 4.7 (Controlling the sub-optimality in Algorithm 3). Let Assumption 3.11
hold and assume that for i =1,...,N, the support of u; is X;. Assume further that the condi-
tion (A2) in Proposition 3.15 holds. Then, for any € >0, there exists inputs (G;)i=1.n, (-)?i)i:l:N;
g(), v, €O C X x S}, € >0 that satisfy the assumptions in Remark 4.5 such that the outputs
(¢DR0, DRO,E a) of Algorithm 3 satisfy:

(i) ¢DRO o—€<6

(ii) a is an é-optimal solution of (DRO).

Proof of Corollary 4.7 See Appendix EC.3.2.

REMARK 4.8 (ITERATIVE REFINEMENT STRATEGY). Corollary 4.7 states that, given any € > 0,
one can construct the inputs of Algorithm 3 to compute an approximately optimal solution a
of (DRO) whose sub-optimality is at most €. However, in practice this upper bound for the sub-
optimality is typically over-conservative, while the computed value of € often provides a realistic
estimate of the sub-optimality of the computed approximately optimal solution. This can be seen
in the numerical examples in Section 5. Therefore, a more practical approach is to first compute an
approximately optimal solution @ along with its sub-optimality estimate € using Algorithm 3 with
a “coarse” choice of {K;11,... 7/€i:17mi,1""”{iakivh'"7Hi=kiami,ki} for i=1,..., N. Subsequently, the
choice of {“iyl,lv'-':“i717m¢,1""”‘i,ki,17---v’fi,ki,mi,ki} for i=1,...,N can be iteratively “refined”

until the sub-optimality estimate é falls below a suitable threshold.

5. Numerical examples

5.1. Task scheduling
In this numerical example, we solve the distributionally robust task scheduling problem discussed

in Example 2.5. Specifically, we consider the scheduling of 20 tasks within a fixed time window
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[0, 20]. We let the probability distribution of the actual task duration to be identical for all 20 tasks
and let the maximum duration be 2. Moreover, in the objective, we place an equal weight of 1 on
each delay, that is, we let ¢; =cy =--- =cy = 1. As discussed in Example 2.5, we can formulate
this problem into our two-stage DRO model in Assumption 2.2 with K; = K, =N =20, X} =X, =
=Xy =1[0,2], and p; = py =+ = Uy = fdur, Where pgu € P([0,2]). We let pg,, be a mixture
of three distributions: w;trunc-N(&;, 07, [0, 2]) + watrunc-N (&2, 03, [0, 2]) + wstrunc-N (&3, 03, [0, 2]),
where trunc-N (€, 02,0, 2]) denotes the truncated normal distribution with mean & € R and variance
0% > 0 truncated to the interval [0,2], w; = 0.7, & = 0.1, o1 = 0.5, wy = 0.2, & = 0.5, 09 = 0.2,
wy =0.1, & =1.0, 03 = 0.1.

Subsequently, we adopt the iterative refinement strategy discussed in Remark 4.8 and vary m, ;
from 5 to 100 for i =1,...,N (note that k; =1 for ¢ =1,...,N in this example; see (MS) in
Assumption 3.11). For each value of m;;, we choose {/@Z—,M,...,Hi,l,mi’l} by a greedy procedure,
where, in each iteration, we bisect one of the existing intervals [k 1.1, i1.2]s - -+ [Kitmg -1, Kitm, 1]
in order to achieve the maximum reduction in an upper bound for Wl,m ([,ui]gi). Since for G; :=
Gopwa (ﬁi,1,1,--.,/€i,1,mi71, .. '”iivkhl?"'7Hixkivmi,ki;Xi)7 every g € span,(G;) is continuous and piece-
wise affine on [Ki11,Ki12], - [/ii71)ml.,1_1, Ki1m,.], we refer to m;, as the number of knots, in the
sense of one-dimensional linear spline functions. In Algorithm 3, we set e = 1072 and approximate
the expectation IE[(W)? + b,/\>] in Line 3 via Monte Carlo integration where we generate 10”
independent samples using Algorithm 1. In addition, we independently repeat the Monte Carlo
integration process 1000 times in order to quantify the Monte Carlo error.

Figure 1 shows the results of this numerical experiment. The top-left panel shows the values
of p¥8  and ¢tB, ) computed by Algorithm 3 as the number of knots increases from 5 to 100. By
Theorem 4.6, ¢¥%  and ¢tB ) are upper and lower bounds for the optimal value ¢pro of (DRO),
where ¢pro corresponds to the optimized worst-case expected total delay of the tasks in this
example. Since the lower bound ¢, was approximated by Monte Carlo integration, we show box
plots of the 1000 approximate values from independent repetitions to visualize the Monte Carlo
error. The result shows that, when the number of knots increased, both ¢&% , and ¢t improved
drastically at first, and then gradually improved until they become very close. In fact, when at
least 42 knots were used for each dimension, L% fell within the 95% Monte Carlo error bounds
of phno- When 100 knots were used for each dimension, the difference between ¢35, and the mean
of the approximate values of @5, from the 1000 independent repetitions was around 2.7 x 1073,
which indicates that the approximately optimal solution @ computed by Algorithm 3 was very
close to being optimal for this problem.

Next, to compare the sub-optimality estimate é computed from Algorithm 3 and its theoretical

upper bound € in Corollary 4.7, we plot the computed value of € and the value of a theoretical
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Figure 1 Results in the task scheduling example. Top-left: ¢'5o and ¢5;5 versus the number of knots in each
dimension (i.e., m;,1). Top-right: ¢ and a theoretical upper bound verses the number of knots in each dimension.

Bottom: the approximately optimal scheduled execution time of the tasks.

upper bound for é against the number of knots in the top-right panel of Figure 1. Specifically,
this theoretical upper bound is computed as follows. For ¢ =1,..., N, we bound lem([ui}gi)
from above by Z;”zif(/@i’l?(jﬂ)m,,m — Ki1,—1yv1) (&1 —&i1j—1) where (fi,m)j:l”%1 are defined as
in (3.11); see also (EC.2.17) in the proof of Proposition 3.9. Moreover, in this example, we have
SUDxcs; {||WT)\||OO} = N. Hence, the theoretical upper bound in the top-right panel of Figure 1 is
given by N(Zil Z;”zi’ll(/@,;717(j+1)m,,m — Kia—1yv1) (&g — fi,l7j_1)). It can be observed that the

computed sub-optimality estimates are only around 0.02% to 0.6% of their respective theoretical
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upper bounds, which shows that the theoretical upper bounds are over-conservative. This confirms
what we have discussed in Remark 4.8 and demonstrates the practicality of the iterative refinement
strategy. This numerical example also showcases a valuable feature of the proposed method, as it
produces computable upper and lower bounds for ¢pro as well as a practically reasonable estimate
of the sub-optimality of the computed approximately optimal solution, without relying on over-
conservative theoretical estimates.

Finally, the bottom panel of Figure 1 shows the approximately optimal solution a of (DRO)
computed by Algorithm 3 when the number of knots is equal to 100 for each dimension. The
approximately optimal solution corresponds to the scheduled duration of the 20 tasks. The result
shows a decreasing pattern where earlier tasks are allocated more time compared to later tasks.
This is due to the fact that the delay of an early task may lead to a chain reaction causing later

tasks to be delayed.

5.2. Multi-product assembly (assemble-to-order system)

In this numerical example, we solve the distributionally robust multi-product assembly problem
introduced in Example 2.6. We consider a manufacturer which produces 20 products that require
50 types of parts in total. The demand of each product is capped at 10 and is modeled by a random
variable. As discussed in Example 2.6, we can formulate this problem into our two-stage DRO model
in Assumption 2.2 with K; =50, K, =70, N =20, X; =X, =--- =Xy =(0,10], and py,...,uyx €
P([0,10]). For i=1,...,N, we let u; be a mixture of three equally weighted distributions, in which
each mixture component is a truncated normal distribution with randomly generated parameters.
Moreover, the per-unit prices and salvage values of the parts ¢; > s; >0, ..., c50 > s50 > 0 and
the per-unit returns from selling the products ¢; > 0,..., ¢y > 0 are all randomly generated. The
matrix U € RV*E1 that represents the type and amount of parts needed for producing each unit
of product is a randomly generated sparse matrix with random entries.

Similar to Section 5.1, we adopt the iterative refinement strategy discussed in Remark 4.8 and
vary m;; from 5 to 100 for i =1,..., N (again, k; =1 for i =1,..., N in this example). For each
value of m; 1, {Ki11,-- .,/@-,Lmi’l} is again chosen by a greedy procedure. In Algorithm 3, we set
e =103 and approximate the expectation E[(W)z + b, /\>] in Line 3 via Monte Carlo integration
where we generate 107 independent samples using Algorithm 1. In addition, we independently
repeat the Monte Carlo integration process 1000 times in order to quantify the Monte Carlo error.

The results of this numerical experiment are shown in Figure 2. The left panel shows the values
of p¥8, and @8, computed by Algorithm 3 as the number of knots increases from 5 to 100,
and the right panel shows a magnification of the top-right part of the left panel. Here, ¢p5, and

LB o are upper and lower bounds for ¢pro, where ¢pro corresponds to the optimized worst-case
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Figure 2 Results in the multi-product assembly example. Left: ¢\5,, and ¢, versus the number of knots in

each dimension (i.e., m;1). Right: magnification of the top-right part of the left panel.

expected value of the total cost of the parts minus the total return from selling the products
and the unused parts. In the right panel of Figure 2, we show box plots of the 1000 independent
Monte Carlo approximations of ¢t to visualize the Monte Carlo error. The result shows that,
when the number of knots increased, both ¢P%, and ¢, improved drastically at first, and then
gradually improved until they become very close. When 100 knots were used for each dimension, the
difference between ¢¥%  and the mean of the 1000 approximate values of ¢t from independent
repetitions was around 1.45, which is around 0.26% of |¢ppgo |- This indicates that the approximately
optimal solution a computed by Algorithm 3 was very close to being optimal for this problem. This

observation is also in agreement with the results in the task scheduling example in Section 5.1.

5.3. Supply chain network design with uncertain demand and edge failure

In this numerical example, we solve the distributionally robust supply chain network design prob-
lem with uncertain demand and edge failure introduced in Example 2.7. We consider a supply
chain network (V,E) consisting of 15 suppliers, 20 processing facilities, and 10 customers, that is,
V:=SUPUC with |S| =15, |[E| =20, |C| = 10. The edges E in the supply chain network are randomly
generated. In total, there are 90 edges from the suppliers to the processing facilities and 60 edges
from the processing facilities to the customers, that is, E:= Egyp UEpy¢ With |Egsp| = 90, |Epyc| = 60.
For each customer c € C, its demand d. is modeled by a random variable with probability distri-
bution . € P([0,2]), which is a mixture of three equally weighted truncated normal distributions

with randomly generated parameters. For each supplier s € S, its supply us is randomly generated



Neufeld, Xiang: Numerical method for two-stage DRO with marginal constraints 37

suppllers 5092 _ upperbound
50.91 |
50.9 -
% 50.89 [
processing 35"'“ r
facilities g s0e7
g 50.86 [ ‘Tf
50.85 - lower bound E b
50.84 |- L
4
customers 8!

Figure 3 Results in the supply chain network design example. Left: the supply chain network configuration and

the approximately optimal processing capabilities of the processing facilities. Right: ¢Y5 o and ¢t..

and then fixed. For each processing facility p € P, its maximum processing capability ¢, is fixed at 2
and its investment cost c}gl) is randomly generated. Moreover, the transportation/processing costs

of the edges, i.e., (c{2) (2)

S7p) (5.0) CEsop’ (cp,c) (p.0)CEpne’ 35 well as their maximum transportation capacities,

i.e., (Tsp)(sp)cEsnrr (Tp.c)(p,c)cErncs ar€ Tandomly generated. Subsequently, we take the 15 edges from
Eg.p with the least costs and the 10 edges from Ep,¢ with the least costs and set them to be suscep-
tible to failure. Thus, we have |Egyp| = 15, |Epsc| = 10. The failure probabilities of these susceptible
edges, i.e., (Tep)(s.p)chspr (Mpic) (p.c)chpse> A€ randomly generated. The configuration of this supply
chain network is illustrated in the left panel of Figure 3, in which the suppliers are represented
by magenta circles, the processing facilities are represented by blue circles, and the customers are
represented by green circles. The sizes of the magenta circles represent the supplies (ug)ses, the
sizes of the outer blue circles represent the maximum processing capabilities (¢,)pep, and the sizes
of the green circles represent the mean values of the demands of the customers. In addition, the
opacities of the outer blue circles represent the investment costs (cél))pep of the processing facilities,
where an outer circle that is more opaque represents a higher investment cost. As for the edges,

the widths represent their maximum transportation capacities (7s)(s.p)ersrs (Tpc)(p.c)cirse a0d the

(2)

(.0 CEspp? (cp’c) (p.)CEpc” The edges Egyp, Eppc that are susceptible

opacities represent their costs (022}2)
to failure are colored red, and their labels show their respective failure probabilities (7 p) (c o) e
(7rp7c)(p’c)€gp‘>c in percentage. As discussed in Example 2.7, we can formulate this problem into our
two-stage DRO model in Assumption 2.2 with K; =170, K, =150, N =35, X, =X, =--- =X =
[0,2], p1,...,p10 € P([0,2]), X113 =Xip == X35 ={0,1}, and p11,...,pu35 € P({0,1}).
Subsequently, we set m; ; =40 for i =1,...,10 (note that k; =1 for i =1,...,10 in this example).
Fori=11,...,35, since X; = {0, 1}, the conditions in (DRO1+) and (MS) require that k; =2, m; ; =

mi» =1, and G; = Gepwa (0,1, X;). In Algorithm 3, we set e = 1072 and approximate the expectation
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E [(W)Z' + b, /\>] in Line 3 via Monte Carlo integration where we generate 10® independent samples
using Algorithm 1. In addition, we independently repeat the Monte Carlo integration process 1000
times in order to quantify the Monte Carlo error.

The values of ¢pP, and ¢t of this example computed by Algorithm 3 are shown in the right
panel of Figure 3. They correspond to upper and lower bounds for ¢pro, which is the optimized
worst-case expected value of the total investment plus the total operational costs. Same as in
Section 5.1 and Section 5.2, a box plot of the 1000 independent Monte Carlo approximations of

LB o is shown to visualize the Monte Carlo error. From the result, the difference between @Y%
and the mean of the 1000 approximate values of ¢t from independent repetitions was around
0.07, which is around 0.14% of ¢P%,. Hence, the approximately optimal solution a computed by
Algorithm 3 was very close to being optimal for this problem. This is again in agreement with the
results in the examples in Section 5.1 and Section 5.2. Finally, the sizes of the inner blue circles

in the left panel of Figure 3 represent the approximately optimal investments for the processing

facilities, which is a sub-vector of @ computed by Algorithm 3.
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Appendices

EC.1. Proof of results in Section 2

Proof of Lemma 2.3 1t follows from part (b) of the assumption (DRO3) that Q(a,x) corre-
sponds to a feasible and bounded linear programming problem for all @ € S; and all € X.
Statement (i) then follows from the strong duality of linear programming problems.

In the following, let

L Vin L Win L T T\T
V= [ch],w._ [ch],b._(bin,beq) ,

for notational simplicity. It then follows from statement (i) that

Q(a,xz)=sup {(Va+Wz+b,A)}. (EC.1.1)

AESE
Subsequently, it follows from part (b) of the assumption (DRO3) that the linear maximization
problem (EC.1.1) is bounded above by some a € R. Therefore, for every y € rec(S;), every a € Sy,
and every x € X, it holds that (Va+ Wz +b,y) < 0. By (Rockafellar 1970, p.170 & Theorem 19.1
& Theorem 19.5), the polyhedron S; can be expressed as Sj = conv({A1,...,Ay}) + rec(S;) for
some k € N and {\,..., A} C S;. Consequently, one observes that S5 in (EC.1.1) can be replaced
by g; = conv({)\l, .. .,)\k}) without changing the value of Q(a,x). Letting B be any polytope
that satisfies B DS, completes the proof of statement (ii).

EC.2. Proof of results in Section 3

EC.2.1. Proof of results in Section 3.1
Proof of Lemma 3.1 Let us fix an arbitrary a € S;. By the definition of ¢(-) in (2.2), we need
to show that

sup Qaung(@, T, A) flayg (dx, ). (EC.2.1)

ll«augeraug(ﬂl ----- ;U'N) XXS;

w /X Q(a.z) p(de)

s
HED (p1,5ee,
Since the function X x S5 3 (€, A) = Qaug(a@, z,A) € R is continuous and S; is compact, it follows
from (Bertsekas and Shreve 1978, Proposition 7.33) that there exists a Borel measurable function

A": X — S5 such that
Qang(@, 2, X" () = sup {Qang(a,z,\)} =Q(a,x) Vee X. (EC.2.2)

A€Ss

Now, let pu* € I'(t41,...,pun) be an optimizer of the left-hand side of (EC.2.1), which exists due
to the boundedness and the continuity of the function X > x — Q(a,x) € R as well as a multi-

marginal extension of (Villani 2009, Theorem 4.1). Let u7,, € P(X x S5) be the push-forward of
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p* under the mapping X > x +— (x, A" (x)) € X x S5, i.e., pf,, = p* o (id,\")~" where id: X — X
denotes the identity mapping on X. It holds that j,, € Taug(p1,- - -, pn). Subsequently, it follows

from (EC.2.2) that

Q.2 iy (d2,0X) = | Quupla,2 X (@) (de)= [ Qla,w)p*(da),

X xS} x x

and thus the left-hand side of (EC.2.1) is less than or equal to the right-hand side of (EC.2.1).
To prove the reverse inequality, let flang € Taug(ft1,- - -, i) be arbitrary and let 4 be the marginal
Of flang on X. It thus holds that g€ T'(uy,. .., un). Moreover, since Qaug(a,z,A) < Q(a,z) for all

x € X and all A€ S, it holds that

| Gulae N indean< [ Qs iz [ Qla.s) i)

X xS}
This shows that the right-hand side of (EC.2.1) is less than or equal to the left-hand side of
(EC.2.1). Finally, (3.4) follows from (3.3) and (DRO). The proof is now complete.

Proof of Lemma 3.4 This result follows from the gluing lemma (see, e.g., (Villani 2009,
Lemma 7.6)) and an inductive argument similar to the proof of (Neufeld and Xiang 2022,
Lemma 2.2.3).

Proof of Theorem 3.5 This proof is adapted from the proof of (Neufeld and Xiang 2022, The-
orem 2.2.8). To prove statement (i), let us fix an arbitrary flaug € aug([1t1]g,, - - -, [tn]gy ). For i =
1,...,N, let ii; denote the marginal of ji,,, on &; and let &; := X;. We have by (3.7) and (3.2) that
fi; € [ji)g,- By the assumption that fiae € Rpart (flaug; i1, - - -5 on) and Definition 3.3, there exists a
probability measure v € P(X; x -+ X Xy x Xy X -+ x Xy x S%), such that the marginal of v on &} x
oo X Xy X 83 1S flaug, the marginal v, € I'(f;, ;) of v on &; x X, satisfies inX)Ei |x — Z|v;(dz,dz)=

Wi (fu, p15) for i =1,..., N, and the marginal of 7 on X; X - -+ x Xy x S} is flaug- Let X=X %X
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Xy. We have

/ (W4 b, A) fiang (da, dX)— / (W2 + b, A) fiag (dz, dX)
X XS5

X XS5

:/ (Wx+b,A) — (Wx+b,\)y(de,dx,d)
XXX xS}

= / (WX, z —z)y(dz,dz,d\)
XXX xS}

<swp (WAL} [ e alliy(de,de,d)
AesSs X x .J?XSS
N (EC.2.3)
= sup {|W'A|} (Z/ g _xi|’7i(d$iad$i)>
)‘GS; i=1 XiXXi
N
= sup {HWT)\Hoo} <ZW1([M;/M)>
AESE p—
N JR—
< sup {HWT)‘HOO} (ZWLM([IU@]Q«L)>
A€S3 i—1
=E€.
This proves statement (i).
To prove statement (ii), let us fix an arbitrary a € S;. Since Taug(pt1,...,1n) C
FaUg([Ml]QN sy [MN]GN)a we have
sup { Qang (@, T, A) flayg (de, d)\)}
Haugeraug([ﬂl]gl ~~~~~ [:uN]QN) XXSS (EC 9 4)
> sup { Qaung (@, T, A) flang (d, dX) }
paug€laug (1,---, HN) X x S;

Statement (ii) then follows by combining (3.1), (EC.2.3), (3.10), and (EC.2.4).

Next, let us prove statement (iii). Let us fix an arbitrary a € S; as well as an arbitrary fla,, €
Long([11]gys - - -5 [in] gy )s and let flang € Rpart (flang; 415 - - -, 4w ). Since flayg € Tang (11, - - -, pn), it fol-
lows from (3.1) and statement (i) that

Qaung (@, 2, A) flayg(dx, dX)— €

X xS

< / Qug (@@, A) fiaug (A, dN) (BC.2.5)
.Dc‘><S§k

< sup {/ Qavg(a@, x, ) uaug(dm,d)\)}.
nN) LJxxs;

raug €T aug (115
Taking supremum over fiaug € Laug([tt1]gy5-- -5 [in]gy) and then adding (c;,a) to the two sides of
(EC.2.5) yields ¢gu(a) — € < ¢(a). The other inequality ¢(a) < ¢g,(a) follows from (EC.2.4).
Finally, statement (iv) follows from statement (iii) by taking infimum over a € S;. The proof is

now complete.
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EC.2.2. Proof of results in Section 3.2
Before proving Proposition 3.6, let us first prove the following lemma. This lemma will also be used

later in the proof of Proposition 3.7 as well as the proof of Proposition 3.9.

LEmMA EC.2.1 (Characterization of an optimal coupling in one dimension). Let X C
R be compact, let p€ P(X), and let F,,: R —[0,1] be defined as

F,(2):=p(XN(—o0,z]) vz eR.
Moreover, let F, ' :[0,1] — X be defined as

F'(t):=inf{zeX:F,(z) >t} Vte[0,1].

m

Then, the following statements hold.

(i) F;'(t)=inf {z€R: F,(z) >t} for all t € (0,1].

(i1) If (0, F,P) is a probability space, U : Q — [0,1] is a random variable with the uniform distribu-
tion, and X : Q — X is a random variable defined as X := Fljl(U), then 1ix<sy = Liv<r, ()
P-a.s. for all x € R and the law of X is .

Let v € P(X) and let F,(-), F,'(-) be defined as F,(-), F,'(-) but with respect to v. Then, the

following statements hold.

(i) W) = [y 1B ()~ F 0] .

() If (Q,F,P) is a probability space, U : Q — [0,1] is a random variable with the uniform dis-
tribution, X : Q@ — X is a random variable defined as X := F,*(U), Y :Q — X is a random
variable defined as Y := F;'(U), and v € P(X x X) is the law of the random vector (X,Y)T,
then v € T(p,v) and Wy(p,v) = [, |z —y|y(dz,dy).

Proof of Lemma EC.2.1 Let us define ﬁ;l(t) :=inf{z€R: F,(z) >t} for t € [0,1]. Since X is
bounded, it holds that F;'(t) € R for all t € (0,1]. It follows from the definitions that F,'(t) <
F;'(t) for all t € (0,1]. Suppose, for the sake of contradiction, that there exists ¢ € (0,1] such
that F,'(t t) > F () =: § € R. Then, it follows from the monotonicity and the right continuity
of the function F,(-) that F,(z) >t for all z > §. Since § < F(t £), this implies that § ¢ X.
Subsequently, it follows from the closedness of X that there exists e > 0 such that (§—e€,9] CR\ X,
and thus £ < F,(9) = p(X N (=00, §]) = p(XN(—00,§—€]) +u(XN(J—¢,9]) = (Xﬂ(—oo j—€]) =
F,(§ —¢€). This contradicts the assumption that § = fu‘ '(t) =inf{z €R: F,(2) > t}. The proof of
statement (i) is complete.

To prove statement (ii), let us define X: Q> Rby X := ﬁ;l(U). We have for all z € R that
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where we have used the non-decreasing property of F),, ﬁlj 1 and the two inequalities: U <
F]L(FVJI(U)), ﬁjl(Fﬂ(x)) <, which are consequences of statements (vi) and (v) in (McNeil et al.
2005, Proposition A.3). Hence, we have for all z € R that 1 gcn (W) =Lir<r, @) (w) for all w e Q.
Moreover, since F,'(0) = —oo and F;'(0) = min{z : x € X'} > —oo, we have by statement (i)
that {X # X} = {U = 0}. Since U has the uniform distribution on [0,1], P[U = 0] =0, and thus
lix<s} = Lw<r, ()} P-a.s. for all z € R. This also implies that P[X <] =P[U < F,(z)] = F,(2)
for all x € R and hence the law of X is u. This completes the proof of statement (ii).

Next, let us prove statements (iii) and (iv). To that end, let us make the assumptions in state-
ment (iv). It follows from statement (ii) that v € I'(u,v). Let 7 € P(R?) be defined by 7'(E) :=
7((X x X)NE) for all E € B(R?). Similarly, let us define uf, vt € P(R) by puf(E) := p(X N E) and
VI(E) == v(X NE) for all E € B(R). Then, it holds that v' € I'(ut, ). Moreover, let F(t) :=
inf {z € R: F,(z) >t} for ¢t € [0,1]. Notice that F,(z) = pu'((—o0,2]) and F,(z) =v((—o0,z]) for
all z € R. We have

/ |z —yly'(dz, dy)= / |z =yl y(dz,dy)
RxR XxX

—E[X -]
=E[|F () - E7 )]

—/ F7 () — F (1) e

[0,1]

:/ |FN(t) — F ()| dt
(0,1)

_/ [Fo (1) — F ()] dt
(0,1)

SWl(“TvyT)v

where the last equality follows from statement (i) and the inequality follows from (Rachev and

Riischendorf 1998, Equation (3.1.6)). This shows that
| o= [ je-ylandi= [ (EO-E @)= Wil o). (€C20)
RxR XxX [0,1]

Now, let 7 € T'(i, v) be arbitrary and let n' € P(R?) be defined by nf(E) :=n((X x X) N E) for all
E € B(R?). Subsequently, since n' € I'(u,v"), we have by (EC.2.6) that

/ & — y|n(de, dy) = / 2 — y|nf(de, dy)
XxX RxR

> Wl (MTvl/T)
:/ |EN() — F ()| dt
[0.1]

— / 12—yl 7(d, dy),
XXX
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which proves that [, |z —y|y(dz,dy)= [, [F;1(¢) — F7H ()] dt = Wi(u,v). This proves state-
ments (iii) and (iv). The proof is now complete.

Proof of Proposition 3.6 Statement (i) follows from Sklar’s theorem in the copula theory (see,
e.g., McNeil et al. (2005, Theorem 5.3)). Let us prove statement (ii). For j=1,..., K}, let 7;(S5) C
R denote the projection of S5 onto the j-th coordinate, which is a compact interval since S; is a
polytope. Subsequently, let i; € P(X;) denote the marginal of fi,,, on X; for i=1,..., N, and let
fintj € P(mj(S5)) denote the marginal of ji,,, on the (N + j)-th coordinate for j =1,..., K3. It thus
holds for i =1,..., N and all z € R that F,(z) = fi;(X; N (—00,2]) and F,,(2) = p; (X; N (—00,2]).
It also holds for j =1,...,K; and all z € R that F;

AN+

F(t):=inf {x € X;: Fj,(z) > t}, F, ' (t):=inf {x € X;: F,,(x) >t} for t € [0,1] and i =1,..., N,

and let FF{NlH(t) :=inf {\ € m;(S3) : Fiy,,(A) > t} for t€0,1] and j=1,...,K;. Moreover, let
(Q,F,P) be a probability space and let (Uy,...,Un,Vi,...,Vkz)": Q — [0,1]¥+%2 be a random

(2) = fing; (m;(S3) N (—00,2]). Now, let

vector with distribution function C'. Consequently, Uy, ..., Uy, Vi,..., Vk; are all uniform random
variables on [0,1]. Fori=1,..., N, let X;:Q — &, and )A(J,' : Q0 — X, be two random variables defined
as X, := F, '(U;) and X, = E N(U;). For j=1,...,K;, let A;:Q— m;(S;5) be a random variable
defined as A; := Fu_Nlﬂ(V}) Then, for all (zy,...,zx5)" eR" and all Aty AT ERK;, it follows

from Lemma EC.2.1(ii) that
PXy <zy,..., Xy <oy, A <Ay, Agg < kg
B\ K3
=E Hi:l ]l{XiSM} X Hj:21 H{Ajékj}]

N K3
=K Hi:l ]]-{UiSng(xi)} X Hj:21 1 V,<F, ()\])}:|

L AN+j (EC.2.7)
=P U1 S Fﬂ1($1),. . '7UN SFﬂN(xN)u‘/l SFﬂNJrl()\l),...,VK; S FﬂNJrK; ()\KS):|
:C(Fﬂl(xl)V"7FﬂN(xN)7FﬂN+1()\1)""’FﬂN_;,_K;()\K;))

:Fﬂaug($la---axNv)\la"'u)\K;)-
By the same argument, we also have for all (Z,,...,Zx)" eR" and all Aty Areg)T eR™ that
P[Xl§3~317-~-’XNSi“N,/hS)\h---,AK; < Ak;]
_}P’[Ul < B (@), Un S Fug (B3), Vi < Fa s ), Vig < Fiy s Orp) ECas)

=C(Fuy (Z1)s- - Fuy (@n), Fay oy (A1), - ,FﬂNH(; (Akz))

:_F1~ (i’l,...,ij,)\l,...,)\Kg).

The result in (EC.2.7) shows that the law of the random vector (Xi,..., Xy, 41,..., AKS)T iS flaug-
Since flaug € P(X x S3), we have P[(44,..., Agz)T € S3] =1. Consequently, (EC.2.8) implies that
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there exists a unique fi,ug € P(X x S5) which satisfies

N K3
Fﬁaug(xl’""xN?Ah"'?)\K;) :,aaug ((X X S;) N <><(—OO,JJ1] X X(—OO,)\J]>>
i=1 j=1

T _=N+K;
V(l‘l,...,x]\r,)\l,...,)\}(;) eR z,

Thus, fiau is the law of the random vector ()Z'l, e ,)~(N, Ay, .. .,AKS)T. Let X;: =X, fori=1,...,N
and let X := X} x --- x Xy in order to differentiate copies of the same set. Let v € P(X x X x
S5) be the law of the random vector (Xl,...,XN,)Z},...,X’N,Al,...,/lK;)T, and let 7; be the
marginal of v on &; x X; for i =1,..., N. It follows from Lemma EC.2.1(iv) that ~; € I'(f1;, ;) and
inX&_ |z — Z|v;(dz,dZ)= Wi (f1;, ;) for i=1,..., N. Since the marginal of v on X X S iS [, and
the marginal of v on X x S} is flaug, 7y satisfies all the required properties in Definition 3.3. Thus,
fang € Rpart (flang; 41, - - -, oy) and the proof is complete.

Proof of Proposition 3.7 Fori=1,...,N, let U, := C;F;(0,(Z))+ (1 —C;)F;(0:(Z) — 1). Thus,
we have X, = E Y(U;) fori=1,...,N. Let us first fix an arbitrary i € {1,..., N} and show that U;
has the uniform distribution on [0, 1]. By the definition of F;(-), we have 0 = F;(0) < F;(1)< -+ <
F;(J) =1. Moreover, by the definition of U;, it holds for j =1,...,J that P[Fi(c;(j) — 1) < U; <
Fy(04(j))|Z = j] =1, and that conditional on {Z = j}, U; has the uniform distribution on [F;(c;(j) —
1), F;(04(j))]. Hence, for all u € [0,1] and for j=1,...,J, it holds that

if u< Fi(o;(5) — 1),
P[U, <ulZ=j]={1 if > F(0,(7)), (EC.2.9)
el i Fi(04(f) — 1) < u < Fi(04(4))-
Furthermore, the definitions of F;(-) and Z imply that

Fi(o:(j) —Fi(o:() )= > ax]|- > i |=0;=P[Z=4]. (EC2.10)
1<k<J, 1<k<J,
o;(k)<o;(j) oi(k)<o;(j)—1

Therefore, for k=1,...,J and for every u satisfying F;(o;(k) — 1) <u < F;(0;(k)), we have by
(EC.2.9) and (EC.2.10) that

J

PU, <u] =) P[U, <ulZ=j]P[Z = j]

- = u—Fi(oi(k) 1) _

|2 " R - Rem -0 2
Fy(o(5)<u

— Z (Fl(gl(]))_Fl(al(J)_l)) +u—Fy(oi(k)—1)
Flos ()<
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Since P[U; < 1] =1, we have shown that P[U; <u] =wu for all u € [0,1]. Hence, U; has the uniform
distribution on [0,1] for i=1,..., N.

Next, for i=1,..., N, let fi; denote the marginal of fl,,; on X;, let Fj, (2) := fi; (X; N (—o0, z]) for
2z €R, let Fl;il :[0,1] — A&; be defined by Flil(t) :=inf {z € X;: F,,(z) > t} for t €[0,1], and let X, :=

FJZI(UZ) We now show that the law of the random vector (Xi,..., Xy, A7 is flang- To that end,

let us fix an arbitrary i € {1,..., N}. By step 1 in the procedure, we have fi; = ijl agi(j)ém(gi@)),

where 5Z(oi(j)) € P(X;) denotes the Dirac measure at xgoi(j », Subsequently, it holds for all z € R
that

() e <z<aV™ forj=1,...,J-1,
F(J) ifz>z!".

i

F(0) if z<alV
F,

Fﬂi(z):

This implies that for j =1,...,.J and for all t € (F;(0:(j) — 1), Fi(0:(4))], F;.'(t) = 270 =g
Consequently, since we have by (EC.2.9) that U; conditional on {Z = j} has the uniform distribution
on [Fy(0;(j)—1), Fi(0:(5))], we get P[X; =x;,|Z =j]=1fori=1,...,Nand j =1,...,J. Moreover,
we have P[A=X;|Z=j]=1for j=1,...,J. Thus, for j=1,...,J, we have

J

P[(Xy,.... Xy, AN = (2], A)T] =) P[(X1,.... Xy, AN = (2], X)) Z = j|P[Z = j]
=P[Z=]]

= ftas ({(x], A))T}).

where the second equality follows from the assumption that (cch, )\JT-)jT-:L ; are distinct. This proves
that the law of (Xi,..., Xy, A7)T is exactly flaug-

Finally, let X; := X; for i = 1,...,N in order to differentiate different copies of the same
set, and let v € P(X; X -+ x Xy X Xy X - X Xy X S3) be the law of the random vector
(Xl,...,XN,f(l, e ,)N(N,AT)T. Fori=1,..., N, let 7, be the marginal of v on X; x X;. Since for i =
1,...,N, X, =F; (U,), X; = F,'(U;), and U; has the uniform distribution on [0, 1], it follows from
Lemma EC.2.1(iv) that ~; € I'(f1;, ;) and inXXi |z — z|v;(dz, dT)= Wi (ji;, pu;). Combined with the
fact that the law of (X1, ..., Xn, A")T 8 flayg and the law of ()21, v A")T S fiaug, one can check
that v satisfies all the required properties in Definition 3.3, and thus fiaug € Rpart (fang; f1s - - - 5 fbxc)-

The proof is now complete.

EC.2.3. Proof of results in Section 3.3
Proof of Proposition 3.9 Let us first prove statement (i). Let go(+) be defined as in Definition 3.8.

Since ko = k1,1 =k =min{z :x € X} and Ky, = K, = A = max{z : x € X'}, it follows from the
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definitions of gy, ..., gn that, for all yo,...,y,, €R, the function X > x> >7"" jy;g;(x) €R is piece-
wise affine on X N[k, K1), ..., XN [Km_1, K], and it takes the value y; at x;, for j=0,...,m. In
particular, we have Z;»n:o gj(z) =1for all z € X, and thus gy € span,(G). Conversely, any h: X — R
that is piece-wise affine on X' N [ko, k1], ..., XN [Kp_1, K] can be expressed as h =Y 7" h(k;)g;

and is an element of span, (G). Therefore, g;(k;) = 1y;—;; for all ¢,j € {0,...,m}, and thus

(91(/430), e 7gm(50))T - Om;

(gl(’ij)v'”vgm(/{/j))-r:ej, fOrj:1,...,m,

where e; denotes the j-th standard basis vector in R™. This shows that

CODV({(QI('T)) o gm(@) iz e X}) 2 COHV({Om’el’ - .,em})

:{(vl,...,vm)T;mZO, e U >0, Z}L%Sl}-

On the other hand, for any 2 € &, it holds that g;(x) >0 for j =0,...,m and > g,;(x) = 1, which
imply that 3 7", g;(2) =1 — go(x) < 1. This shows that

{(gl(x),...,gm(x))T:xeX}Q{(Ul,...,vm)T:vle, ey U >0, Z;n:lngl},

which, by the convexity of the set {(vl, e U) i >0, . vy, >0, Z;nzl v; < 1}, implies that

conv({(gl(x),...,gm(a:))T:xeX}) - {(vl,...,vm)T:vl >0,y U >0, 37 0y < 1}.

This completes the proof of statement (i).

Next, let us prove statement (ii). In the following, let wus again re-label
(Ki1y-- s Blmys-e s Bkty- - Kk, ) 88 (Ko,...,Km,) while retaining the order, and let go,..., g, be
the functions in G defined in Definition 3.8. Moreover, for any v € P(X), let F, (z) := v(X N(—00, 2])
for z€ RU{—o00,00}, and let F'(t):=inf{x € X : F,(z) >t} for t €[0,1]. Let us fix an arbitrary
v € [p)g. By Lemma EC.2.1(iii), we have

Wl(u,u)—/[ol] \Ful(t)—Ful(t)|dt—Z/ IF7 () — F (1) . (EC.2.11)

1=1 Y (€1,061,m;]

The properties of go, .. ., g,, that we derived in the proof of statement (i) imply that, for [ =1,... k,
there exists h; € span, (G) such that h(z) =1, (=) for all z € X'. Since p £ v, we hence have

v([k, ") = p([k, Ri)) forl=1,... k. (EC.2.12)

In the following, we control each summand in the rightmost term of (EC.2.11). To that end, let
us fix an arbitrary [ € {1,...,k}. For all t € (§,0,&.m,], it follows from (EC.2.12) as well as the
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definitions of F;* and F, " that F,'(t) € [5;, %] and F, '(t) € [5;,7]. In the case where k, = F;, we

have
[ mrwo-rrola-o (BC2.13
(€1,0:61,m,]

Subsequently, let us consider the case where k, < &;. For all x € [k,, %], it holds that

PR A b S )Tt
0 S ]]'[ﬁlaﬂl,j](x) < (Hl’JJrl :L‘) (Kll’j x) fOI' .7 = 17 cees Ty — 17

o Kl j+1 — Kij
EC.2.14
(g1 — 2)* — (g — )" (EC2.14)

Kij = Kij-1

121[ﬁl,nl,j]($)2 for j=2,...,my.

e (ko
Since for j =1,...,m; — 1 the function X > z (ot g1 —2) 7 = (1,5 =)

€ R is piece-wise affine on

Kl,j+1—Kl,j5
XN[ki_1,k;] for i=1,...,m, it is contained in span,(G), and hence
R vt (e )t )
/ (Ri g1 3_:) (’”’_7 z) I/(dx)—/ (m541 ?) (l’? 2) p(dz) for j=1,...,m;— 1.
x Kl j+1—Rl,j5 ¥ Kl j+1—FKl,j5

It thus follows from the definition of (& ;);—0.m, and (EC.2.14) that
§0<F (ki) <&1 < Fy(Ri2) &2 < Fo(kis) < &mp-1 < Fu(Kim,) < &m,-
Hence, the following inequalities hold:
frG-nv1 < F () < Kuginam, Vte (&-1,8,], for j=1,...,m,. (EC.2.15)

In particular, (EC.2.15) holds when v is replaced by p since p € [u]g. It thus holds for j=1,...,m,
that

/ |FA(t) —Fyl(t)‘dtﬁ/ (FH (1) = K g-ova) V (Keganam, — F (1)) dt
(&1,5—1:81,5] (&1,5-1:81,5)
< (K Ganyamg, — B G-1ve) (& — &j—1)-
(EC.2.16)
Subsequently, summing up all parts of (EC.2.16) over j=1,...,m; yields
/ [P () — Fy ()] dt
(£1,0:81,m;]
my
:Z/ |FM(t) — F ()| de
j=1" (& -1:8,5]
my
< Z/ (F (1) = Rig-np) V (BLG+nam, — F ' (2)) dt
j=1 7 (Cg-18] (EC.2.17)
my
<Y R roam — Frg-nv) (= &)
=1
my
< (Zl(glg - fml)) 1%2}15” {/iz,(j+1)Aml — /ﬂ,(j71)v1}
=

= u([w, ) 58% {KLG+vAm — K-}
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Combining (EC.2.13), (EC.2.17), and the fact that v € [u]g is arbitrary proves statement (ii).

To prove the statement (iii), let us fix an arbitrary € > 0. Let K11, ..., Kimys -« K1y - o Kk,
satisfy the conditions in the statement of the proposition, and, in addition, satisfy x;; — ;-1 < 5
for j=2,...,m; and for all [ € {1,...,k} with k;, <&,. Therefore, it follows from statement (ii) that

Wi u( ([5,71)) H}?f” {Ki.G4vam — K G-—1vi } < Z,u([ﬁlﬁz])

HM?:-

The proof is now complete.

EC.2.4. Proof of results in Section 3.4

Proof of Lemma 5.15 Let us fix an arbitrary a € S;. Since X x S5 is compact, the functions
in Gy,...,Gy are all continuous, and the function X x S5 5 (x,A) — (Va+ Wz + b, A) € R is
continuous, the strong duality follows from (Neufeld and Xiang 2022, Proposition 2.3.3(iii) &
Theorem 2.3.1(ii)). The proof is now complete.

Proof of Theorem 5.1/ It follows from Lemma 3.13 and the definition of ¢pro.sur in (3.9) that
the optimal value of (LSIP) is equal to ¢pro.sur- This proves statement (i).

Next, let us prove statement (ii). For j =1,...,ni,, let l;, ; € Rt denote the j-th row of Ly, as
a column vector and let ¢, ; € R denote the j-th component of g;,. Moreover, for j =1,...,n., let
loq; € R¥1 denote the j-th row of Le, as a column vector and let g, ; € R denote the j-th component
of q,,. Let us study the so-called first- and second-moment cones of (LSIP) (see (Goberna and

Lépez 1998, p.81)), which are the sets C; C RE1H1+™ and C, C RF1H1+m+! defined as follows:

Uy = {((—VT,\)T, Lgx)) ixeXx, Ae s;}

u{(- mJ,OOTT1<j<nm}U{,Bl 0,00,)" :1<j<neg, Be{-1,1}},

€q,j’
Cy := cone(Uy),
Usy = {((—VTA)T, Lg(x)',(Wa+b X)) :zeX, Ae s;}, (EC.2.18)

U2,2 3:{( 0,0, qm,j)T:lngnin}

m]’ »¥m)

U{(Bleq150,001, Beq) 1 1 < j <neq, B €{~1,1}},
Cy :=cone(Us 1) + cone(Us ).
It follows from the continuity of the functions in G;, ..., Gy and the compactness of X x S
that the set U,; is compact. Moreover, observe that O, ot ¢ conv(Us). Since cone(Us ;) =
cone(conv(Us, 1)), it follows from (Rockafellar 1970, Theorem 17.2 & Corollary 9.6.1) that cone(Us ;)
is closed. On the other hand, since U, is a finite set, it follows from (Rockafellar 1970, p.170
& Theorem 19.1) that cone(Us,s) is also closed. Suppose that z; € cone(Us ;) and 2z, € cone(Us,2)
satisfy z; 4+ 25 =0, then it follows from the definitions of U, ; and U, that z; = 2z, = 0. Hence,
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(Rockafellar 1970, Corollary 9.3.1) implies that C5 is closed. Subsequently, by the assumption that
Si is non-empty and by the compactness of X x S5, (LSIP) is feasible, and it thus follows from (Gob-
erna and Lopez 1998, Theorem 4.5), with M < Cy, N <= Cs, K < cone(Co U {(0%, 414 —1)"})
in the notation of (Goberna and Lépez 1998), that cone(Cy U {(0f 41.,,,—1)"}) is also closed.
Therefore, we get from (Goberna and Lépez 1998, Theorem 8.2) (see the fifth, the sixth, and the
seventh cases in (Goberna and Lépez 1998, Table 8.1)) that the optimal value of (LSIP) is equal
to the optimal value of the following problem which is known as Haar’s dual problem (see, e.g.,

(Goberna and Lépez 1998, p.49)):

k
maximize <qin7 Sin> + <qeq7 geq> =+ Z o7 <W$T‘ + b? AT>

€in;€eq;(ar7m'r7)\r) —1

k
subject to L/ & + quﬁeq - (Z aTVT)\T> =cy,
r=1
k
> o =1, (EC.2.19)
r=1

k
Zarg(:cr) =,
r=1
£, ERY™ £ ERM,
k S Na (ar)rzltk - RJr) (mr)rzl:k - X7 (Ar)rzlzk C S;

Now, let us fix an arbitrary feasible solution &, éeq, (G, &y Ay),_y Of (EC.2.19) and define
[lang 1= Zle Q04 5,y Where 65 5 ) denotes the Dirac measure at (ﬁ::, S\I)T By the constraints
(60),_yi CRyy (@), 10 C X, (A),_i C© S5, oand Gy = 1, we have fiag € P(X x S5).
Moreover, it holds by the constraints Zle G,g(&,) =v and LT €, + quéeq - (Zle d,.VTﬁ\r) =
¢, that &, éeq, and flayg Satisty faug € Dang ([1]gys- -, [n]gy) as well as LT¢ + qué’eq —
VT (L5 Miang(dz, X)) = e, This shows  that (€ins €oqs flang) s feasible for (LSIP”). Since
fosg (WZA4b, ) flag (A, dN)= 3" 4, (W, +b, A,.), we have thus shown that the optimal value
of (EC.2.19) is less than or equal to the optimal value of (LSIP).

It remains to show that the optimal value of (LSIP) is larger than or equal to the optimal value
of (LSIP™). To that end, let us fix an arbitrary feasible solution (&, 9o, 9) of (LSIP) as well as an
arbitrary feasible solution (éiméeqvﬂaug) of (LSIP™). We thus have

Li.a <gq,, (EC.2.20)
Leg@ = q,q, (EC.2.21)
Go+(g(x),g) — (V'A,a) > (Wz+b,A) VreX, VAES;, (EC.2.22)
fraug € Dang ([11)gy s -+ [n]ay ) (EC.2.23)
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VT(fXxs; A ftaug (A, dX)) = L&, + quéeq —Ci, (EC.2.24)

£,<0, . (EC.2.25)
Integrating both sides of (EC.2.22) with respect to fi,., and using (EC.2.23), (EC.2.24) yields

/ (Wx + b, A) flayg (da, dA) < / Jo+(g(®),9) — (V' X, @) fiang(d, dN)
X xS

X xS3

= (e — L&, —LlLE..a) +J0+ (v, 7).

eq?

Combining this with (EC.2.20), (EC.2.21), and (EC.2.25), we obtain

(e1,a) +io+ (0,9) > (Lin@, &;,) + (L, €.) + / (Wz +b,A) flang(de, dA)
X XS5

> () Qi) + [ (Wt ) g (dad).
X xS}

Taking the infimum over all (a, gy, y) that are feasible for (LSIP) and taking the supremum over all
(é’in,éeq, flang) that are feasible for (LSIP") in the above inequalities proves that the optimal value
of (LSIP) is larger than or equal to the optimal value of (LSIP"). Finally, it follows directly from
statement (i) and Theorem 3.5(iv) that the optimal value of (LSIP) is larger than or equal to ¢pro.
The proof is now complete.

Proof of Proposition 3.15 In this proof, let us again study the so-called first-moment cone C}

of (LSIP) defined in (EC.2.18). By the definitions of the sets Uy, Cy, and C, we have
C,=Cx cone({(l,g(m)T)T x € X})

Let B:=conv({(1,g(x)")":x € X}) = {1} x conv({g(x) : x € X}) C R**™. In the following, we

will show that (1,v")" € int(cone(B)) via two steps: we will first show that (1,v")" € relint(cone(B))

and then show that int(cone(B)) = relint(cone(B)). For i =1,..., N, let B; :=conv({g,(z;): z; €

X;}) CR™, where g,(-) is defined in (3.13). It follows from (Rockafellar 1970, Corollary 6.8.1) and
the definition of g(-) that

relint(cone(B)) = {(a, aw")":a >0, w € relint (conv ({g(z) : x € X})}

(EC.2.26)

= {(a,aw{, coowi) T ra> 0, w; € relint(B;) V1 <i < N}.

Fori=1,..., N, the assumptions (DRO1+), (MS) in Assumption 3.11 and Proposition 3.9(i) yield

that

B, = {(wl,...,wmi)T:wl >0, 0y Wy >0, Y w; < 1}. (EC.2.27)

Moreover, the condition (A1) guarantees that [, g;;du; >0 for j=0,...,m;. Since 37" g; ;(x) =
1 for all x € X;, this also guarantees that Z?Zlf)( gijdpi =1 — [, giodp; < 1. Thus, we have
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v, € relint(B;), where the vector v; is defined in (3.14). Combining this with (EC.2.26) shows that
(1,v")" € relint(cone(B)).

Next, for j =1,...,m, let e; denote the j-th standard basis vector of R™. One can observe
from the identity B = {1} x (Xj\; Bi> and (EC.2.27) that (1,0;,)" € B and (1,e])" € B for j =
1,...,m. Consequently, cone(B) contains 0,,.1,(1,07 )7, (1,e])7,...,(1,e] )T, which are (m + 2)

affinely independent vectors in R™*!, and thus int(cone(B)) = relint(cone(B)). This completes the
proof that (1,v7)" € int(cone(B)).

In addition, since the condition (A2) guarantees that ¢; € int(C'), the identity int(C}) = int(C') x
int(cone(B)) implies that (e],1,v7)" € int(C}). Subsequently, the set of optimizers of (LSIP) is
non-empty and bounded by (Goberna and Lépez 1998, Theorem 8.1(v) & Theorem 8.1(vi)), with
M « Cy, c+(c],1,0")T in the notation of (Goberna and Ldpez 1998). The proof is now complete.

Proof of Theorem 3.17 Recall from Theorem 3.14 that the optimal value of (LSIP") is equal to
®DRO-sur- Let us fix an arbitrary e-optimizer (Ein,éeq,ﬂaug) of (LSIP*). Thus, we have & € R™n,
&oq €R™, flang € Do ([t)gy s - - - [1iv]gy ), and

Li&in+ Ligbeq = VT ( Ly Mane(da,dN)) = 1, (EC.2.28)
(@) + (e €ea) + / (W +b, ) fiang (A2, dX) > GpRo.ur — € (EC.2.29)
X %S5

Let fiang € Rpart (flaug; f15 - - -, o) and define

P(@; fiaug) := (€1, @) + Qang (@, T, A) flang(d, dX)
X x S5
={c1 + VT(fXXs; A flaug(d, dN)), @) + / (Wx 4 b, ) flang(de, dA)
XS5

for all @ € S;. Thus, S;>a— (Z)(a;ﬂaug) € R is an affine mapping, and the minimization problem

inf,es, #(@; flang) can be formulated as the following linear programming problem with a constant

in the objective:

minimize (¢ + V' ([, g Aftaug(dz,dN)), @) + / (W + b, A) flayg (daz, dX)
2

a X XS5

subject to  Liza < g;,, (EC.2.30)

Leqa = qeq7
a c R*1,
By the strong duality of linear programming problems, the optimal value of (EC.2.30) is equal to

the optimal value of its dual:

maximize (@60 + (@uqred + [ (Wt bX) s (dedA)

in»Seq XXS;

subject to L&, +Li &, =c1+V' (fos; A fiang (dzz, AN)), (EC.2.31)
Ein € Rﬁina goq S Rneq.
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Observe that, by the definition of partial reassembly in Definition 3.3, the marginal of fi,u,
on S coincides with the marginal of fl.,, on S;. Thus, we have fXXS;)\/laug(dzc,d)\) =
Jix x5 M ftang (A, dX). Combining this with (EC.2.28) shows that (€in, o) is feasible for (EC.2.31).
Moreover, it follows from Lemma 3.1 that ¢(a; fiang) < ¢(a) for all a € S;. Consequently, we get

<qin7 éin> + <qeq7 éeq) + / <W.’B + b7 )‘> ﬂaug(dw7 dA) S aiggl é(av Iaaug) S aigsfl (b(a’) = ¢DRO-

X' XS5

To prove the other inequality, we get from Theorem 3.5(i) that

/ (W + b, ) flaug (dz, dX) — / (W + b, ) flaug (da, dX)
X xS X

xS
N —_
< <ZW1,M([M]@)> sup { | W'l }.
i—1 AESS

Combining (EC.2.29), (EC.2.32), and Theorem 3.5(iv), we obtain

(EC.2.32)

<qin7 éin> + <qeq7 éeq> + / <W$ + b? A) laa‘lg(dx7 dA)
X xS%

2 <qin7éin> + <qeq7éeq> +/

X xS3

(WX + b, ) flang (daz, dX) — (Zm s ([)a ) sup {|WTA[|}
AeSs

N
Z ¢DRO—sur —€— <ZW17M([MZ]Q1)> fg_}?)* {HWT)‘HOO}
=1 2

- ¢DRO—sur —€

> ¢pro — €.
(EC.2.33)

The proof is now complete.

EC.3. Proof of results in Section 4

EC.3.1. Proof of results in Section 4.1

Proof of Proposition 4.1 To prove statement (i), let us fix an arbitrary i € {1,..., N} and an
arbitrary y; € R™:. By the conditions in (MS), for [ =1,...,k;, either x,, =&, ; holds, in which case
[, Fi,1] is a singleton, or the function X; > o+ u,(z;y;) € R, as well as the function X; >z~ nr —
u;(z;y,;) € R for any n € R, is continuous and piece-wise affine on [k, 1, ki1 2], -, [/1“77%1_1, “leli,z]‘
This implies that, for all n € R, the supremum in the definition of u}(n;y,) is necessarily attained
at some point in X;. This proves statement (i).

To prove statement (ii), let a € Sy, yo € R, y, € R™, ..., yy € R™N be arbitrary and let y :=
(y7,...,yn)"T € R™. Let us first remark that a minimizer A* of (4.2) exists by the continuity of

u*(+), which is a consequence of statement (i), and the compactness of S;. Let * := (z7,...,2%)"
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be defined as in the statement. Subsequently, for any & = (xy,...,2x)" € X and any X € S5, we

have
Yo + <y,g(sc)) - <V(1,+ bv )‘> - <WSL‘, )‘>

=yo— (Va+b,A)— (Z[WTA]N% _ui(xi;yi)>

i=1
N

>yo—(Va+bA)— (ZU:([WTM“%)>
i—1

=yo— (Va+bA)—u (W' y)

>yo— (Va+bX) —u (WA y)

=yo— (Va+b,A") - (Zuf([WTA*h;yi)>

=1

N
=yo— (Va+b,\") - (Z[WTAW x; —ui(x7; yz-))
=1

=yo+ (y,g(x*)) — (Va+b,\*) — (Wzx* \").
This shows that (x*, A*) is optimal for (4.1) and that the optimal values of (4.1) and (4.2) coincide.
To prove statement (iii), let us first fix an arbitrary ¢ € {1,...,N} and an arbitrary y, =
(Y1, Ym,)" €R™, and define @ (2;y,) :=sup, g {1z — v} (n;y,) } € RU{oo} for z € R. We thus
have u}*(x;y,) = u*(z;y,) for all z € X;. Moreover, it follows from well-known results in convex

analysis that @;*(-;y,) is convex and lower semi-continuous, and that
(s y,) <wi(zy,;) Vx € AX;. (EC.3.1)

In the following, we re-label the elements of /E as Ko, kK1,...,km; while keeping their ascending
order. Now, for j =0,...,m;, let us define I;(n) :=nx; — u;(x;5y;) for n € R, and let [5(-) denote

the convex conjugate of /;(-), which is given by

fr=r  yper (EC.3.2)
00 if © # K,

I (x) = sup {nz—14;(n)} = {ui(“jéyi)

Since u}(x;y) = maxo<j<m, [;(z) for all x € R by statement (i), we have by (Rockafellar 1970,
Theorem 16.5) that the epigraph of @;*(-;y;) is given by

epi(@* (- y,)) = conv(U;n:io epi(z;)) CR?. (EC.3.3)

Since (EC.3.2) implies that the epigraph of I7 is a vertical ray starting at (s, u;(x;;y,))" and going

upwards indefinitely, i.e.,

epi(l}) = {(kj,ui(r;;9,;))" } +cone({(0,1)"}) CR? for j=0,...,m,,
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we have by (EC.3.3) that
epi(a*(-;y,)) = conv({(nj,ui(mj;yi))T 0<5< m,-} —i—cone({(O, 1)T}),

which shows that epi(@*(-;y;)) is a polyhedral convex set in R? whose set of extreme points is
a subset of {(rj,u;(k;;y;))":0<j<m;}. Consequently, @**(-;y,) is piece-wise affine on [k, K],
(K1, k2], -y [Fmy—1, Bm,). In particular, (ko,u;(Ko;y;))" is an extreme point of epi(a;*(-;y;)), and

thus we have
ﬂ:*(’%%yi) = u;(ko3y;) =0, (EC.3.4)

where the second equality follows from the definition of u,(-;y,) and the definitions of g;, ..., gi,m,
in Definition 3.8. Since @;*(z;y,) = u;*(x;y,) for all x € &}, u*(-;y,) is piece-wise affine on X; N
(Ko, k1], X;N[K1, Kal, - ..y XN [Km,—1, Km,]. Combining this with (EC.3.4), we can express u*(-;y,) =
S (k53 Y:) i () = 200w (K3 y,) 90,5 (). Thus, letting y§ = (u;™ (Kk159,), - - 7Uf*(/€mi;y¢))T €
R™i, we get Z;n:ll Y5 ;9. (x) =u*(z;y,) for all z € X;. Moreover, it follows from the definitions of
Gits- -5 9im; and (EC.3.1) that

uit (ky5Y,) = 0" (3 9:) S wi(ki5Y,) = Vi for j=1,...,m;,

and thus y¢ <y, is satisfied. This proves statement (iii).

Finally, to prove statement (iv), let us fix arbitrary a € Sy, yo € R, y;, e R™ | ..., yy € R™N,
and let y:= (y!,...,yN)". Let y¢ satisfy the conditions in statement (iii) for i =1,...,N and
let y° := (y7',...,y%)". Moreover, let y§ := yo — infacs; {yo — (Va +b,X) —u*(WTA;y)}. For
i=1,...,N, the identity u}(n;y,;) =sup,c, {1z —u*(2;y,)} for all n € R implies that

w(WIAiy®) =Y u (W A;597)
= sup {[W'ALiz—u*(z;9,)}
zEX;
1
=u (WA y) vAeSs.
Subsequently, for any x € X and any A € 53, it follows that

Yo+ (Y% g(x)) —(Va+b,A) — (Wz,A)

=yo— (Va+b,A) — (Z[WTA]NBZ — ul(xz,yf)>

i=1
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>yo— (Va+b,A) — (Zu WTA]Z,yZ)>

i=1
=yo— (Va+b,A) —u (WA y°)
=yo— (Va+b,X) —u (W'X;y)

> inf {yo— (Va+b,X\') — *(WT)\/§y)}a

Nes;

which shows that y + (y°,g(x)) — (VT A,a) > (Wz + b, A) for all z € X and all A € S;. Thus,
(a,ys,y°) satisfies the semi-infinite constraint in (LSIP). Moreover, since a € S, the constraints
Li,a < g;, and L.qa = q, in (LSIP) are also satisfied, and therefore (a,yg,y°) is feasible for (LSIP).
The proof is now complete.

Proof of Theorem 4.4 Since the conditions (A1) and (A2) hold, Proposition 3.15 guarantees
that the set of optimizer of (LSIP) is non-empty and bounded. Statement (i) then follows from the
equivalence between (i) and (iii) in (Goberna and Lépez 1998, Corollary 9.3.1).

To prove statement (ii), we will first show that 7" — %) (1 < —5(" in each iteration and then
show that if we allow the algorithm to run without termination then —s( < e after finitely many
iterations. To begin, it follows from Line 3 that ¢ = (¢, a"y + 98 4 (v, 4. Combining it with
Line 7, the fact that v > 0 (recall its definition in (3.14) as well as Definition 3.8), and ¢ o) < g

we get

P =g = ((en,a") +45" +<v ) = (e, @) +457 + (v,97)
:go(r) y(r) + (v, y @(T)>

= _S(T) + <v7@0 r) _ @(7‘)>

< —s".

Moreover, it follows from Lines 10-14 and Proposition 4.1(ii) that the set {(@x,A): A € D*}
contains an optimizer (zx+,A*) of the global optimization problem (4.1). Therefore, since (4.1) is
bounded from below, {g(x): € X} is bounded, and { — VTA: X € S;} is bounded, it follows
from (Goberna and Lépez 1998, Theorem 11.2) that (") — ol < —s(" < e will occur after finitely
many iterations for any e > 0. This proves statement (ii).

Next, in order to prove statements (iii)—(v), we will show that (a, 9o, ¥) is feasible for (LSIP) with
objective value ¢¥8,, . . and that (£,,, éeq, flaug) is feasible for (LSIP™) with objective value ¢ .-
Once these are shown, statements (iii)—(v) will follow from Line 16 and the termination condition
in Line 8. The feasibility of (a, 3o, y) for (LSIP) follows from Line 17, Line 6, the definition of gg(”
in Line 7, Line 4, and Proposition 4.1(iv). In addition, it follows from Line 7 and Line 16 that the

objective value of (@,%o,¥) i AP%o e On the other hand, if we let r denote the iteration index



e-companion to Neufeld, Xiang: Numerical method for two-stage DRO with marginal constraints ecl9

when the algorithm terminates, then Line 3 and the strong duality of LP problems imply that,

2(r)

" g ( ) ) is optimal for (LSIP},, (€)) with objective value ¢, ie., &, € R™",

511’1 7€eq ) lam )\)(w )\)GQ(T
g cRrea, 40 >0 for all (,A) € €¢), and

2(r) ~(r)
<qin7 Ein > + <qeq7£eq > + Z ,Um )\<W$ + b )\> ,

(z,A)ee(r)
T2 1™ (1) 7T
Linﬁin +Leq€eq - Z Mm,)\v A :Cl7
(z,2\)ee(™)
> e
(x, )\)EQ(T)
> k(@
(z,A)ee(r)
Combining these with Line 18 and Line 16, we get jlau, € Faug([,ul]gl, e [uN]gN) as well as

<qin’éin> + <qeq7 éeq> +/ <W$ + b A> Naug(dz dA) DRO sur’
X xS3
1n£1n + L-e!—qécq - VT (fXXSé“ A ,aaug (d$, dA)) =Cy.
This shows that (éin,éeq, flaug) is feasible for (LSIP™) and its objective value is equal to ¢thq ...
We have thus finished the proof of statements (iii)—(v). The proof is now complete.

EC.3.2. Proof of results in Section 4.2

Proof of Theorem 4.6 Since the random vector ()?1, . ,)A(:N, AT)T 10— X x 55 is constructed
via the procedure in Proposition 3.7, its law [l € P(X x S5) satisfies flaung € Rpart (Laug; 15 -+ -, UN)-
It thus follows from Line 3 and Theorem 3.17 that

]L:)Bilo <q1n7 £1n> <qeq7 éeq) + E [(WX + b7 A>j|
= <qin7 Ein> + (qeq7 éeq) + / (WCU =+ b7 >‘> /jaug(dx7 dA) (ECB5)
X xS3
< ¢proO-
On the other hand, since (g, ¥) is feasible for (3.15) with a < a, it follows from Lemma 3.13 that
<clv a’> +Q0 + <’U7@> > ¢sur(a’)‘

Combining this with (DRO), Theorem 3.5(iii), Theorem 4.4(iii), and Line 3 yields

(bDRO S (b(&) S ¢sur<d) S <cl7 &> + :&0 + <,U7 @> = DRO sur ¢DRO7

which completes the proof of statement (i). Since ¢ = ¢¥%  — ¢t by Line 4, statement (ii) follows

directly from statement (i).
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Finally, to prove statement (iii), notice that Theorem 4.4(iii) and Theorem 4.4(v) imply that

(éin,éeq, flaug) 18 @ (ODRO-sur — PERro_cur)-ODtImIzer of (LSIP™) where ¢prosur — Phno.sur > 0- It then
follows from Line 3, (EC.3.5), (EC.2.33), and Theorem 4.4(iii) that

~__ JUB LB
€= ®pro DRO

= ]%%O—sur - (<qin7éin> + <qeq7 éeq> +/

X xS3

(W -+.) ldz. ) )
N —_

S (b%?:io—sur + ((bDRO-SUT - (b]lE)BRO—sur) _'_ (Z Wla#i ([/“Ll]gz)) fué) {HWT)\HOO} - ¢DRO-SUF
i=1 €53

<e+ (ZWW([M@)) sup {IIWTA[ }-

i=1

The proof is now complete.

Proof of Corollary 4.7 Let us fix an arbitrary e € (0,€) and let M := supycgs {IW™Al }-
For i =1,...,N, since &; = ngl[ﬁi,hﬁi,l} by (DROI1+) of Assumption 3.11, it follows from
Proposition 3.9(iii) that there exist Kii1, ..oy Kitimgyr -+ Kikpls oo Kikimg and G; :=

gCPWA(’fi,171,~~’“i,l,mi,la---a’ii,ki,lv---»"ﬂi,ki,mi,ki§Xi) satisfying the conditions in (MS) such that

Wi ([te,) < 555, Moreover, by the assumption that the support of p; is X; for i =1,..., N,
the condition (A1) is satisfied for this choice of (G;);=1.n. Furthermore, let X, = {Kis;
1<1<ky1<j<my} for i=1,...,N, let g(-), v be defined as in (3.13), (3.14), and
let €© C X x S} be such that the LP problem (LSIP...(€®)) has bounded sublevel sets,
which exists due to Theorem 4.4(i). Now, let (¢P%0, dEho:€ @) be the outputs of Algorithm 3
with inputs <(ui)i:1:N, (X)im1:v, €1, Lin, @i Lieqs o, V. W, 0,55, (Gi) i1, (.)?i)i:LN,g('),’U,Qt(O),E>.
Subsequently, we get from Theorem 4.6(i) and Theorem 4.6(iii) that

UB LB _ 2
DRO DRO — €

o
(

M=
=

LM([ui]gi)) sup {[|WT [l }
1 A€S3

i
1

Moreover, since @ is an é-optimal solution of (DRO) by Theorem 4.6(ii) and é <€, it follows that

.
Il

™M

<e+

2 ™

-
Il

=€

a is an é-optimal solution of (DRO). The proof is now complete.



e-companion to Neufeld, Xiang: Numerical method for two-stage DRO with marginal constraints ec21

References

See references list in the main paper.

Bertsekas DP, Shreve SE (1978) Stochastic optimal control: the discrete time case, volume 139 of Mathematics
in Science and Engineering (Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-

London).
Goberna MA, Lépez MA (1998) Linear semi-infinite optimization (John Wiley & Sons).

McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management: Concepts, techniques and tools.

Princeton Series in Finance (Princeton University Press, Princeton, NJ).

Neufeld A, Xiang Q (2022) Numerical method for feasible and approximately optimal solutions of multi-

marginal optimal transport beyond discrete measures. Preprint, arXiv:2203.01633.

Rachev ST, Riischendorf L (1998) Mass Transportation Problems: Volume I: Theory (Springer Science &

Business Media).

Rockafellar RT (1970) Convex analysis. Princeton Mathematical Series, No. 28 (Princeton University Press,
Princeton, N.J.).

Villani C (2009) Optimal transport: Old and new, volume 338 of Grundlehren der mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences] (Springer-Verlag, Berlin).



	1 Introduction
	2 Model for two-stage DRO problems with marginal constraints
	2.1 Settings
	2.2 Examples
	3 Approximation of two-stage DRO problems with marginal constraints
	3.1 The approximation scheme
	3.2 Explicit construction of partial reassembly with one-dimensional marginals
	3.3 Explicit construction of moment sets to control the approximation error
	3.4 Duality results
	4 Numerical method
	4.1 Cutting-plane discretization algorithm for solving (LSIP)
	4.2 Algorithm for solving the two-stage DRO problem

	5 Numerical examples
	5.1 Task scheduling
	5.2 Multi-product assembly (assemble-to-order system)
	5.3 Supply chain network design with uncertain demand and edge failure


	EC.1 Proof of results in Section 2
	EC.2 Proof of results in Section 3
	EC.2.1 Proof of results in Section 3.1
	EC.2.2 Proof of results in Section 3.2
	EC.2.3 Proof of results in Section 3.3
	EC.2.4 Proof of results in Section 3.4
	EC.3 Proof of results in Section 4
	EC.3.1 Proof of results in Section 4.1
	EC.3.2 Proof of results in Section 4.2




