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A deep learning approach to data-driven
model-free pricing and to martingale optimal

transport
Ariel Neufeld and Julian Sester

Abstract

We introduce a novel and highly tractable supervised learning approach based on neural networks that can be
applied for the computation of model-free price bounds of, potentially high-dimensional, financial derivatives and for
the determination of optimal hedging strategies attaining these bounds. In particular, our methodology allows to train
a single neural network offline and then to use it online for the fast determination of model-free price bounds of a
whole class of financial derivatives with current market data. We show the applicability of this approach and highlight
its accuracy in several examples involving real market data. Further, we show how a neural network can be trained to
solve martingale optimal transport problems involving fixed marginal distributions instead of financial market data.

I. INTRODUCTION

F INANCIAL derivatives are financial contracts between the corresponding seller, typically a bank, and a buyer, typically another
financial institution or a private person, with a future uncertain payoff depending on another (typically simpler) financial

instrument, often a stock, to which we refer as the underlying security. Options are a large class of financial derivatives which
allow, but do not oblige the owner of the option to buy or sell the underlying securities involved in the contract. The most common
types of traded financial derivatives are call and put options which allow to buy and sell, respectively, the underlying single security
at a future maturity at a predetermined price, the so called strike of the option. Due to the uncertainty involved in the future cashflow,
today’s price of the financial derivative is a priori unclear and subject to a high degree of ambiguity. The classical paradigm in
mathematical finance, which is commonly applied to determine the fair value of some financial derivative, consists in capturing the
developments of the real underlying market by a sophisticated financial market model1. This model is then calibrated to observable
market parameters such as current spot prices, prices of liquid options, interest rates, and dividends, and is thus believed to capture
the reality appropriately, see e.g. [53] for details of this procedure. However, such an approach evidently involves the uncontrollable
risk of having a priori chosen the wrong type of model - this refers to the so called Knightian uncertainty ([42]).

To reduce this apparent model risk the research in the area of mathematical finance recently developed a strong interest in the
computation of model-independent2 and robust price bounds for financial derivatives (compare among many others [7], [13], [16],
[17], [20], [27], [35], [36], [38], [46], and [47]). We speak of model-independent price bounds if realized prices within these bounds
exclude any arbitrage opportunities3 under usage of liquid market instruments independent of any model assumptions related to
potential underlying stochastic models, whereas robust price bounds refer to the exclusion of model-dependent arbitrage within a
range of models that are deemed to be admissible.

We present an approach enabling the fast and reliable computation of model-independent price bounds of financial derivatives.
This approach is mainly based on supervised deep learning ([43], [52]) and proposes how a deep4 feed-forward neural network5

can be trained to learn the relationship between observed financial data and associated model-independent price bounds of any
potentially high-dimensional financial derivative from an entire parametric class of exotic6 options. The great advantage of the
presented methodology is that, in contrast to computational intensive and therefore potentially time-consuming pricing methods
which have to be reapplied for each new set of observed financial data and each derivative one wants to valuate, it allows to use
a sole pre-trained neural network for real time pricing of every financial derivative from a pre-specified class of payoff functions.
Let us consider some family of financial derivatives defined through payoff functions

Φθ : Rnd+ → R, θ ∈ Θ,
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J. Sester is with the Department of Mathematics,
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1Examples for sophisticated financial market models include among many others the Heston model (compare [33]) and Dupire’s local volatility

model (compare [22]).
2The terms model-free and model-independent are used synonymously in the literature.
3Arbitrage refers to a profit that can be realized without taking any risk. Prices of a derivative that allow for arbitrage are considered as not

reasonable as the arbitrage profit would be immediately exploited by arbitrageurs.
4We speak of deep neural networks if there are at least 2 hidden layers involved.
5As a convention we refer to feed-forward simply as neural networks throughout the paper.
6Every option that is neither a call nor a put option is called exotic.
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which determines the payoff an investor receives at time tn in case he bought the derivative Φθ at initial time t0. The payoff
depends on the values of d ∈ N underlying securities at n ∈ N future times t1 < t2 < · · · < tn, i.e., the derivative depends
on each security Sk = (Skt1 , . . . , S

k
tn) for k = 1, . . . , d. The goal is then to determine all possible today’s prices for each Φθ

such that a potential investor cannot profit from one of these prices to exploit model-independent arbitrage. This notion refers to
strategies that involve trading in underlying securities and/or in liquid options which are cost-free and lead to a profit independent
of any model assumptions, i.e., for any possible future evolvement of the underlying security, see also [2]. As a canonical example
we consider the class of payoffs associated to basket options, which are financial derivatives that allow (but not oblige) at a future
time to buy a weighted sum of financial assets (with weights denoted by (wki )i,k) at a predetermined strike L. Such an option is
only executed if it is favorable for the option-holder to do so, which is the case if the difference between the weighted sum and
the strike is positive and therefore the set of payoffs is given by{

Φθ(S1, . . . ,Sd); θ ∈ Θ
}

:=

{
max

{ n∑
i=1

d∑
k=1

wki S
k
ti
− L, 0

}
where θ :=

(
(wki )i,k, L

)
∈ Rnd × R

}
. (I.1)

To find the arbitrage-free upper price bounds of a financial derivative Φθ , we consider model-independent super-replication strategies
(also called super-hedging strategies) of Φθ , i.e., trading strategies that lead for every possible evolvement of the underlying securities
to a greater or equal outcome than the payoff of Φθ , which is referred to as the trading strategy super-replicating Φθ . Prices of
such strategies need to be at least as high as the price of Φθ , since otherwise the market would admit model-independent arbitrage,
which can indeed be seen by buying the strategy and by selling the derivative Φθ at initial time. Thus, the smallest price among
all model-independent super-replication strategies leads to the arbitrage-free upper price bound of Φθ . Analogue, the greatest price
among sub-replication strategies yields the arbitrage-free lower price bound. Moreover, it is a consequence of (adaptions of) the
fundamental theorem of asset pricing (see [2] and [19]) that there exist a dual method to approach the valuation problem: One may
also consider all martingale models7 which are consistent with bid and ask prices of liquidly traded option prices written on the
underlying securities S = (S1, . . . ,Sd) and expire at the future maturities (ti)i=1,...,n as candidate models. Then, minimizing
and maximizing the expectations EQ[Φθ(S)] among all associated martingale / risk-neutral measures Q of potential models leads
to the desired price bounds, compare e.g. [2] and [15] for such results in the discrete time model-independent setting.

Given a payoff function Φθ from a (parametric) set of payoff functions {Φθ, θ ∈ Θ}, for example from the set of basket options
as in (I.1), we use the sub/super-replication method to compute the lower and upper price bound of Φθ for various different sets
of financial data and for several choices of θ ∈ Θ, i.e., we compute the bounds in dependence of different observed financial data.
The observable market parameters comprised in the financial data include prices of the underlying securities as well as bid and
ask prices of liquidly traded call and put options and its associated strikes. After having computed the price bounds for various
different sets of financial data, we let, in accordance with the universal approximation theorem from [37], a specially designed
neural network learn the relationship between observed financial data and the corresponding model-independent price bounds for
a parametric family of payoff functions, compare also Figure 1a.

{Yi}i =
{Price bounds of Φθ}

{Xi}i =
{Market parameters

and θ}

Precise algorithm
(possibly time

consuming)

NN learns relation
between {Xi}i

and {Yi}i.
Trained NN

(a)

{Yi}i =
{Price bounds of Φ}

{Xi}i =
{Discretized

Marginals (µ1, µ2)}

Linear Programming
NN learns relation

between {Xi}i
and {Yi}i.

Trained NN

(b)

Fig. 1. (a): Illustration of the presented approach, that is described in detail in Algorithm 1, in order to train a neural network (NN) to learn the
model-independent price bounds of a derivative Φθ from a family {Φθ, θ ∈ Θ} in dependence of given market prices.
(b): Illustration of Algorithm 2 which is applied to learn price bounds of MOT problems from marginals. The price bounds contained in Yi correspond
to the solutions of MOT problems, i.e., to infQ∈M(µ1,µ2) EQ[Φ(St1 , St2 )] and supQ∈M(µ1,µ2) EQ[Φ(St1 , St2 )], where M(µ1, µ2) denotes
the set of martingale measures with fixed marginal distributions µ1 and µ2, compare also equation (III.2).

While there exist several numerical routines to compute model-free price bounds of financial derivatives, the only numerical
routine that allows to compute model-free price bounds in a purely data-driven approach without imposing any probabilistic
assumptions on the market is the approach from [47] which we therefore use to construct a training set of price bounds. Indeed,
while [23], [24], [29], [31], [32] all provide methods to compute price bounds of financial derivatives, they all rely fundamentally
on the assumption that the marginal distributions of each single asset are known exactly. Moreover, each established methodology
so far requires for every new set of financial data to employ a potentially time-consuming valuation method to find price bounds for
every financial derivative of interest. Our approach circumvents this problem as it enables to train offline a single neural network
for a whole family of related payoff functions, such as e.g. basket options with different weights and strikes, and then to determine
model-free price bounds in real time by using the already trained neural network. Thus, in practice, it suffices to train a couple of
neural networks (one for each relevant family of payoffs) and then to use the pre-trained neural networks for valuation-purposes.
We refer to Remark II.9 (e) for further possible examples of parametric families {Φθ, θ ∈ Θ}, where we highlight that only a few
neural networks are necessary to cover the most relevant payoff functions of financial derivatives.

7One often refers to martingale models as risk-neutral models, in which an investor is indifferent of either investing in the underlying security
or keeping her money in a bank account with constant interest rate (where typically one assumes the interest rate to be zero for simplicity).
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In Section II, we first present our approach in a very general setting including multiple assets, multiple time steps, as well as
market frictions. To justify our methodology, we show, by proving a continuous relationship between market data and resultant
model-free price bounds, that the universal approximation theorem from [37] is indeed applicable, see Theorem II.2. More
precisely, under some continuity assumptions on the parametric family of payoff functions θ 7→ Φθ which are typically satisfied
for the relevant families of payoff functions in finance (see Section II-C), we prove that both upper and lower arbitrage-free
price bound depend continuously on the relevant inputs: strike prices and bid-ask prices of the liquid call and put options, the
current prices of the underlying stocks, as well as the parameter determining the payoff function. This, together with the universal
approximation property of neural networks proves that a single neural network can indeed learn the arbitrage-free price bounds of
a parametric family of payoff functions. To the best of our knowledge, Theorem II.2 (as well as Theorem III.1) is the first result
which proves a continuous relationship between the respective inputs and outputs. This result justifies to learn model-free price
bounds by neural networks, and hence provides an important novel contribution to the field. In particular, this means that it is
possible to train a single neural network offline on past market data and then to use it online with current market data to compute
price bounds of each financial derivative Φθ, θ ∈ Θ. Additionally, we show accuracy and tractability of our presented approach in
various high-dimensional relevant examples involving real market data.

In Section III, we show that the methodology can also be applied to compute two-marginal martingale optimal transport (MOT)
problems, see also Figure 1b for an illustration of the approach where instead of market data entire marginal distributions are the
input to the neural network, we refer to Theorem III.1 for the novel theoretical justification of that approach. The knowledge about
marginal distributions can be motivated by the findings from [11] which lead to the insight that complete information about the
marginal distributions is equivalent to the knowledge of prices of call options written on the underlying securities for a whole
continuum of strikes.

We further show within several examples the applicability of the presented approach. Mathematical proofs of the theoretical
results are provided in Section IV.

II. APPROXIMATING MODEL-FREE PRICE BOUNDS WITH NEURAL NETWORKS

In this section we present an arbitrage-free approach to determine model-free price bounds of a possibly high-dimensional
financial derivative when real market data is given. In addition to prices of underlying securities we observe bid and ask prices of
call and put options written on these securities , where bid and ask prices refer to the quotations for which the options can be sold
and bought. Moreover, we explain how model-independent price bounds can be approximated through neural networks.

A. Model-independent valuation of derivatives
We consider at the present time t0 ∈ [0,∞) d ∈ N underlying securities and n ∈ N future times t0 < t1 < · · · < tn <∞, i.e.,

the underlying process is given by

S :=
(
S1, . . . ,Sd

)
= (St1 , . . . ,Stn) = (Skti)

k=1,...,d
i=1,...,n

with Sk := (Skti)i=1,...,n denoting the k-th underlying security and Sti := (Skti)k=1,...,d denoting the values of the underlying
securities at time ti. The process S is modelled as the canonical process on Rnd+ equipped with the Borel σ-algebra denoted by
B(Rnd+ ), i.e., for all i = 1, . . . , n, k = 1, . . . , d we have

Skti(s) = ski for all s = (s1
1, . . . , s

d
1, . . . , s

1
n, . . . , s

d
n) ∈ Rnd+ .

As we want to consider real market data, we cannot - as usual in a vast majority of the mathematical literature on model-independent
finance - neglect bid-ask spreads as well as transaction costs. Thus, we assume that option prices do not necessarily coincide for
buyer and seller, instead we take into account a bid price and an ask price. Let k ∈ {1, . . . , d}, i ∈ {1, . . . , n}, j ∈ {1, . . . , nopt

ik },
where nopt

ik denotes the amount of tradable put and call options8 with maturity ti written on Skti . Then a call option on Sk with
maturity ti for strike Kcall

ijk ∈ R+ can be bought at price π+
call,i,j,k and be sold at price π−call,i,j,k. As a call option entitles the

owner of the option to buy the underlying security at price Kcall
ijk at time ti it is only exercised if the difference between underlying

security and strike Kcall
ijk is positive, and therefore possesses the payoff max

{
Skti −K

call
ijk , 0

}
. Similarly, bid and ask prices for

traded put options are denoted by π−put,i,j,k and π+
put,i,j,k, respectively. Put options give the right to sell the underlying security

at price Kput
ijk at time ti. Hence, put options are only exercised if the difference between strike Kcall

ijk and underlying security is

positive, leading to the payoff max
{
Kput
ijk − S

k
ti , 0

}
.

Moreover, we assume proportional transaction costs, similar to the approaches in [15, Section 3.1.1.] and [21]. This means, at each
time ti, after having observed the values St1 , . . . ,Sti , rearranging a dynamic self-financing9 trading position in the underlying
security from10 ∆k

i−1 ∈ B
(
R(i−1)d

+ ,R
)

, which was the trading position after having observed only the values St1 , . . . ,Sti−1
, to

a new trading position ∆k
i ∈ B(Rid+ ,R), causes transaction costs11 of

κ|Skti |
∣∣∣∆k

i (Sti , . . . ,St1)−∆k
i−1(Sti−1 , . . . ,St1)

∣∣∣
8We assume the same amount of traded put and call options. This simplifies the presentation, but can without difficulties be extended to a more

general setting.
9Self-financing means that at any time there is neither consumption nor any money injection. The profit of the trading strategy is purely a

consequence of the trading in the underlying security.
10For m,n ∈ N and some set K ⊆ Rm, we denote by B (K,Rn) the set of all functions f : K → Rn which are B(K)/B(Rn)-measurable,

whereas C(K,Rn) denotes the set of all continuous functions f : K → Rn.
11Here also different approaches to measure transaction costs would have been possible. Compare for example the presentations in [12] and [15].
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for some fixed κ ≥ 0. We denote for each k = 1, . . . , d by Skt0 ∈ R+ the observable and therefore deterministic current
value of the k-th security, also called the spot price of Sk. Then, given spot prices St0 = (S1

t0 , . . . , S
d
t0) and strikes K :=(

(Kcall
ijk )i,j,k, (K

put
ijk )i,j,k

)
, we consider trading strategies with profits of the form12

Ψ
(K,St0 )

(a,cijk,pijk,∆
k
i )

(S) := a+

n∑
i=1

d∑
k=1

n
opt
ik∑
j=1

(
c+ijk − c

−
ijk

)
max

{
Skti −K

call
ijk , 0

}
+

n∑
i=1

d∑
k=1

n
opt
ik∑
j=1

(
p+
ijk − p

−
ijk

)
max

{
Kput
ijk − S

k
ti
, 0
}

+

d∑
k=1

n−1∑
i=0

(
∆k
i (Sti , . . . ,St1 )

(
Skti+1

− Skti
)
− κ|Skti |

∣∣∣∆k
i (Sti , . . . ,St1 )−∆k

i−1(Sti−1 , . . . ,St1 )
∣∣∣ )
(II.1)

for an amount of cash a ∈ R, non-negative long positions c+ijk, p
+
ijk ∈ R+ and non-negative short positions c−ijk, p

−
ijk ∈ R+ in call

and put options, respectively, for j = 1, . . . , nopt
ik , i = 1, . . . , n, k = 1, . . . , d. In equation (II.1) and for the rest of the paper we

use the abbreviations cijk = (c+ijk, c
−
ijk) ∈ R2

+ and pijk = (p+
ijk, p

−
ijk) ∈ R2

+. Further, the strategies involve self-financing trading
positions ∆k

i ∈ B(Rid+ ,R) with the convention ∆k
0 ∈ R, i.e., to be deterministic, as well as ∆k

−1 :≡ 0. The costs for setting up
the position Ψ

(K,St0 )

(a,cijk,pijk,∆
k
i )

with respect to the bid-ask prices

π :=

((
π−call,i,j,k

)
i,j,k

,
(
π+

call,i,j,k

)
i,j,k

,
(
π−put,i,j,k

)
i,j,k

,
(
π+

put,i,j,k

)
i,j,k

)
are given by

C
(

Ψ
(K,St0 )

(a,cijk,pijk,∆
k
i )
,π

)
:= a+

n∑
i=1

d∑
k=1

n
opt
ik∑
j=1

(
c+ijkπ

+
call,i,j,k − c

−
ijkπ

−
call,i,j,k

)
+

n∑
i=1

d∑
k=1

n
opt
ik∑
j=1

(
p+
ijkπ

+
put,i,j,k − p

−
ijkπ

−
put,i,j,k

)
.

(II.2)
For a strategy Ψ

(K,St0 )

(a,cijk,pijk,∆
k
i )

with parameters (a, cijk,pijk,∆
k
i )i,j,k we introduce the function

Σ(cijk,pijk,∆
k
i ) :=

n∑
i=1

d∑
k=1

n
opt
ik∑
j=1

(c+ijk + c−ijk + p+
ijk + p−ijk) +

d∑
k=1

|∆k
0 |+

n−1∑
i=1

d∑
k=1

‖∆k
i ‖∞,

where ‖ · ‖∞ denotes the supremum norm. Imposing a universal upper bound on the function Σ, i.e., Σ(·) ≤ B < ∞ for some
B ∈ R+, relates to a restriction on the maximal position an investor is willing/allowed to invest. We want to valuate a derivative
with payoff Φ ∈ B(Rnd+ ,R). Hence, given strikes K, spot prices St0 , and bid-ask prices π, our goal is to solve the following
super-hedging problem

D
B,B
(K,π,St0 ) (Φ) := inf

a∈R,
cijk,pijk∈R2

+,

(∆ki )∈B(Rid+ ,R)

{
C
(

Ψ
(K,St0 )

(a,cijk,pijk,∆
k
i )
,π

)
s.t. Ψ

(K,St0 )

(a,cijk,pijk,∆
k
i )

(s) ≥ Φ(s) for all s ∈ [0, B]nd,

and Σ(cijk,pijk,∆
k
i ) ≤ B

}
,

(II.3)

for some bounds B, B ∈ (0,∞], where the bound B corresponds to a restriction of the form Skti ≤ B for all i, k. It is economically
reasonable to assume a large but finite B for the securities under consideration, since it imposes no severe restriction and reduces
artificial high prices which were not realistic in practice.13 A solution of (II.3) defines the largest model-independent arbitrage-free
price of the derivative Φ and simultaneously comes with a strategy that enables to exploit arbitrage if prices for Φ lie above this
price bound.

In analogy to (II.3), the smallest model-independent arbitrage-free price of Φ is given by the corresponding sub-hedging problem

DB,B
(K,π,St0 )

(Φ) := sup
a∈R,

cijk,pijk∈R2
+,

(∆ki )∈B(Rid+ ,R)

{
C
(

Ψ
(K,St0 )

(a,cijk,pijk,∆
k
i )
,π

)
s.t. Ψ

(K,St0 )

(a,cijk,pijk,∆
k
i )

(s) ≤ Φ(s) for all s ∈ [0, B]nd,

and Σ(cijk,pijk,∆
k
i ) ≤ B

}
.

B. Training a neural network for option valuation
Next, we focus on the supervised learning approach we pursue in this paper. This approach is implemented using neural networks,

thus we start this section with a short exposition on neural networks which can be found in similar form in [18], [5], [12], [23],
[24], [26], or in every standard textbook on the topic (e.g. [9], [28], or [30]).

12To simplify the presentation we assume zero interest rates and zero dividend yields.
13We still allow a priori B, B =∞ in case one does not want to make restrictions on the trading strategies or exclude unbounded price paths.
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1) Neural networks: In the following we consider a fully-connected neural network which is for input dimension din ∈ N,
output dimension dout ∈ N, and number of layers l ∈ N defined as a function of the form

Rdin → Rdout

x 7→ Al ◦ϕl ◦Al−1 ◦ · · · ◦ϕ1 ◦A0(x),
(II.4)

where (Ai)i=0,...,l are functions of the form

A0 : Rdin → Rh1 , Ai : Rhi → Rhi+1 for i = 1, . . . , l − 1, (if l > 1), Al : Rhl → Rdout , (II.5)

and where for i = 1, . . . , l we have ϕi(x1, . . . , xhi) = (ϕ(x1), . . . , ϕ(xhi)), with ϕ : R → R being a non-constant function
called activation function. Here h = (h1, . . . , hl) ∈ Nl denotes the dimensions (the number of neurons) of the hidden layers, also
called hidden dimension. Moreover, for all i = 0, . . . , l, the function Ai is assumed to have an affine structure of the form

Ai(x) = Mix+ bi

for some matrix Mi ∈ Rhi+1×hi and some vector bi ∈ Rhi+1 , where h0 := din and hl+1 := dout. We then denote by Nl,h
din,dout

the set of all neural networks with input dimension din, output dimension dout, l hidden layers, and hidden dimension h. Moreover,
we consider the set of all neural networks with input dimension din, output dimension dout, a fixed amount of l hidden layers, but
unspecified hidden dimension

Nl
din,dout

:=
⋃
h∈Nl

Nl,h
din,dout

,

as well as the set of all neural networks mapping from Rdin to Rdout with an unspecified amount of hidden layers

Ndin,dout :=
⋃
l∈N

Nl
din,dout

.

One fundamental result that is of major importance for the approximation of functions through neural networks is the universal
approximation theorem from e.g. [37, Theorem 2], stating that, given some mild assumption on the activation function ϕ, every
continuous function can be approximated arbitrarily well by neural networks on compact subsets.

Proposition II.1 (Universal approximation theorem for continuous functions [37]). Assume that ϕ ∈ C(R,R) and that ϕ is not
constant, then for any compact K ⊂ Rdin the set Ndin,dout |K is dense in C(K,Rdout) w.r.t. the topology of uniform convergence
on C(K,Rdout).

Popular examples for activation functions are the ReLU function given by ϕ(x) := max{x, 0} or the logistic function ϕ(x) :=
1/(1 + e−x), which fulfil the assumptions of Proposition II.1. Further, we remark that the original statement from [37, Theorem
2] only covers output dimension dout = 1, and l = 1 hidden layer, but can indeed be generalized to the above statement, compare
e.g. [40, Theorem 3.2.].

2) Approximation of the super-replication functional through neural networks: We consider for i = 1, . . . ,S, where
S ∈ N denotes the number of samples, input data of the form

Xi = (K,π,St0 , θ)

and we aim at predicting via an appropriately trained neural network the following target

Yi =
(
DB,B

(K,π,St0 ) (Φθ) , D
B,B
(K,π,St0 ) (Φθ)

)
,

for a parametrized family {Φθ, θ ∈ Θ}. If we are additionally interested in predicting the optimal super-replication strategy, then
Ỹi contains instead the associated parameters of the strategies, i.e.,

Ỹi =
(
a, (cijk)i,j,k, (pijk)i,j,k, (∆

k
i )i,k

)
,

for the minimal super-replication strategy Ψ
(K,St0 )

(a,cijk,pijk,∆
k
i )

(and analogue also for the maximal sub-replication strategy), which
implicitly also contains the minimal super-replication price by calculating the corresponding cost using (II.2). However, after having
trained a neural network to predict Ỹi given market data Xi, due to a different training error, the implied price bounds are expected
to differ to a larger extent from Yi than those from a neural network which directly predicts the prices Yi, see also Example II.6
in which we compare both approaches.

According to Proposition II.1, a trained neural network can be used to predict price bounds and optimal strategies if price bounds
and strategies, respectively, are continuous functions of the input, i.e., of Xi. The following result stated in Theorem II.2 ensures
that, under mild assumptions which we discuss subsequently in Remark II.3, this requirement is fulfilled. For this, we denote for
all k ∈ N by ‖ · ‖k some norm on Rk. Since all norms on Euclidean spaces are equivalent, the specific choice of the norm is
irrelevant for the following assertions. The induced metric for k ∈ N is denoted by dk(x,y) = ‖x − y‖k. Moreover, we define
for every B ∈ (0,∞) the norm ‖f‖∞,B := supx∈[0,B]nd |f(x)| and d∞,B(f, g) := ‖f − g‖∞,B for f, g ∈ C(Rnd+ ,R). In the
case B =∞ we set

d∞,∞(f, g) :=
‖f − g‖∞

1 + ‖f − g‖∞
.
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To the best of our knowledge, the following Theorem II.2 proves for the first time a continuous relation between the market
inputs and the corresponding price bounds. This novel result justifies to apply neural networks to determine model-independent
price bounds and hence provides a significant contribution to the literature.

Theorem II.2. Let B ∈ (0,∞],B ∈ (0,∞), and M :=
∑n
i=1

∑d
k=1 n

opt
ik . Let {Φθ, θ ∈ Θ}, for some Θ ⊂ Rp and p ∈ N, be a

(parametric) family of functions in C(Rnd+ ,R) such that

(Θ, dp)→
(
C(Rnd+ ,R), d∞,B

)
θ 7→ Φθ

(II.6)

is continuous and let Ninput := 2M + 4M + d+ p. Then, the following holds.
(a) Let K1 ⊂ R2M

+ × R4M × Rd+ ×Θ be a compact set such that both

DB,B
(K,π,St0 ) (Φθ) , D

B,B
(K,π,St0 ) (Φθ) ∈ (−∞,∞) (II.7)

holds for all (K,π,St0 , θ) ∈ K1. Then, the map(
K1, dNinput

)
→
(
R2, d2

)
(K,π,St0 , θ) 7→

(
DB,B

(K,π,St0 )
(Φθ) , D

B,B
(K,π,St0 ) (Φθ)

)
is continuous.

(b) Let K1 be defined as in (a). Then, for all ε > 0 there exists a neural networkN1 ∈ NNinput,2 such that for all (K,π,St0 , θ) ∈
K1 it holds ∥∥∥∥N1(K,π,St0 , θ)−

(
DB,B

(K,π,St0 ) (Φθ) , D
B,B

(K,π,St0 ) (Φθ)
)∥∥∥∥

2

< ε. (II.8)

(c) Let n = 1. Let K2 ⊂ R2M
+ × R4M × Rd+ × Θ be a compact set such that for all (K,π,St0 , θ) ∈ K2 we have that (II.7)

holds and D
B,B
(K,π,St0 )(Φθ) is attained by a unique strategy(

a∗, (c∗1jk)j,k, (p
∗
1jk)j,k, (∆

k
0

∗
)k
)

(K,π,St0 , θ)

satisfying
sup

(K,π,St0 ,θ)∈K2

|a∗ (K,π,St0 , θ)| <∞. (II.9)

Then the map (
K2, dNinput

)
→
(
R1+4M+d, d1+4M+d

)
(K,π,St0 , θ) 7→

(
a∗, (c∗1jk)j,k, (p

∗
1jk)j,k, (∆

k
0

∗
)k

)
(K,π,St0 , θ)

is continuous.
(d) Let n = 1 and let K2 be defined as in (c). Then, for all ε > 0 there exists a neural network N2 ∈ NNinput,1+4M+d such

that for all (K,π,St0 , θ) ∈ K2 it holds∥∥∥∥N2(K,π,St0 , θ)−
(
a
∗
, (c
∗
1jk)j,k, (p

∗
1jk)j,k, (∆

k
0

∗
)k

) (
K,St0 , θ

) ∥∥∥∥
1+4M+d

< ε. (II.10)

Proof. See Section IV.

Remark II.3. (a) Assumption (II.7) means that the market with its parameters K, π, St0 is arbitrage-free, compare e.g. [47,
Assumption 2.1. and Theorem 2.4.] for the case n = 1, [10, Definition 1.1. and Theorem 5.1.] for the multi-period case
with traded options, and [15, Theorem 2.1.] for the general case with market frictions. Note that assuming an arbitrage-free
market is a necessity to determine arbitrage-free price bounds of financial derivatives. Indeed, if the market offers arbitrage,
then we can identify a trading strategy fulfilling Ψ

(K,St0 )

(a,cijk,pijk,∆
k
i )

(s) ≥ 0 for some parameters (a, cijk,pijk,∆
k
i )i,j,k with

price C
(

Ψ
(K,St0 )

(a,cijk,pijk,∆
k
i )
,π
)
< 0. Now, consider a super-replication strategy (ã, c̃ijk, p̃ijk, ∆̃

k
i )i,j,k of some derivative Φ

satisfying Ψ
(K,St0 )

(ã,c̃ijk,p̃ijk,∆̃
k
i )

(s) ≥ Φ(s). Then we have for all λ > 0 that

Ψ
(K,St0 )

(ã,c̃ijk,p̃ijk,∆̃
k
i )

(s) + λ ·Ψ(K,St0 )

(a,cijk,pijk,∆
k
i )

(s) = Ψ
(K,St0 )

(ã+λa,c̃ijk+λcijk,p̃ijk+λpijk,∆̃
k
i +λ∆ki )

(s) ≥ Φ(s)

meaning that (ã+λa, c̃ijk+λcijk, p̃ijk+λpijk, ∆̃
k
i +λ∆k

i ) is another super-replication strategy, whose price is given by

C
(

Ψ
(K,St0 )

(ã+λa,c̃ijk+λcijk,p̃ijk+λpijk,∆̃
k
i +λ∆ki )

,π
)

= C
(

Ψ
(K,St0 )

(ã,c̃ijk,p̃ijk,∆̃
k
i )
,π
)

+ λ · C
(

Ψ
(K,St0 )

(a,cijk,pijk,∆
k
i )
,π
)
. (II.11)

By scaling up λ > 0, we see from (II.11) that the corresponding price decreases, which in turn implies D
B,B
(K,π,St0 ) (Φ)� 0

(for B large enough).
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With an analogue argument we conclude that if the market offers arbitrage, then we have DB,B
(K,π,St0 ) (Φ) � 0, preventing

the computation of reasonable price bounds.
(b) In an arbitrage-free market, a necessary requirement for the existence of a unique optimizer, as assumed in Theorem II.2 (c),

is that the considered market instruments are non-redundant, i.e., that the payoffs of the market instruments are linear
independent. In our case, this means that to avoid ambiguity of minimal super-replication strategies, one should only consider
put options that are written on other strikes than the ones for the call options under consideration.

(c) As a canonical example for a parametric family of payoff functions, we consider for example basket call options with payoffs{
Φθ = max

{ n∑
i=1

d∑
k=1

wki S
k
ti − L, 0

}
where θ ∈ Θ := {((wki )i,k, L)} = Rnd × R+

}
,

i.e., the strike L and the weights (wki )i,k are inputs to the trained neural network. For any 0 < B < ∞, we have the
continuity of the map

(Θ, dnd+1)→
(
C(Rnd+ ,R), d∞,B

)
, θ 7→ Φθ.

Thus, we can find a neural network which fulfils (II.8) with respect to DB,B and D
B,B

. We remark that assuming a uniform
large bound B on the possible values of Skti imposes no severe constraint for practical applications with real market data
and allows to reduce the difference between the no-arbitrage price bounds by not considering unbounded prices which are
unrealistic in practice. For further examples of parametric families of payoff functions, e.g., best-of-call options or call-on-max
options, we refer to [47, Example 3.2. (i)–(vi)].

(d) Theorem II.2 is also applicable to a single pre-specified continuous payoff function Φ when setting Φθ = Φ for all θ ∈ Θ.
(e) Note that we restrict the assertion of Theorem II.2 (d) to n = 1 to make sure that ∆k

i , which is the output of the neural
network, is a number, not a function.

(f) An analogue result as in Theorem II.2 (c) and Theorem II.2 (d) for optimal sub-hedging strategies can be obtained in the
same way.

(g) We highlight that our approach computes model-independent price bounds, i.e., no assumptions on underlying financial models
are imposed and market prices of call and put options are considered as exogenous inputs. Nevertheless, in a frictionless
market, it is possible for each arbitrage-free sample (K,π,St0 , θ) to find a stochastic model (in which call option prices
are given endogenously) that is consistent with this data, compare e.g. [34]. Therefore one could understand the model-
independent price bounds obtained with respect to the given sample (K,π,St0 , θ) also as the prices of hedging strategies
in such a consistent model. However, note that such a model (expressed by a probability measure) would be different for each
considered sample.

Finally, Algorithm 1 describes, relying on the results from Theorem II.2, how one can train a neural network which approximates
these price bounds.

Algorithm 1: Training of a neural network via back-propagation for the computation of the price bounds
DB,B

(K,π,St0 ) (Φθ) , D
B,B

(K,π,St0 ) (Φθ) of a class of financial derivatives {Φθ}θ∈Θ.

Data: Call and put option prices (bid and ask) on different securities and maturities; Associated strikes, maturities, and
spot prices;

Input : Algorithm to compute price bounds of exotic derivatives; Family {Φθ, θ ∈ Θ} of payoff functions Φθ : Rnd+ → R
fulfilling the requirements of Theorem II.2; Hyper-parameters of the neural network; Number nsubset of
considered functions from {Φθ, θ ∈ Θ} for each sample; Transaction costs κ ≥ 0; Bounds B and B;

for each sample (Ki,πi,St0 i) of data considering exactly n maturities and d securities do
X̃i ← (Ki,πi,St0 i);

end
S ← #{X̃i}; // Assign number of samples and call it S.
for i in {1, . . . ,S} do

Generate a (random) subset {Φθj , j = 1, . . . , nsubset} ⊂ {Φθ, θ ∈ Θ};
for j in {1, . . . , nsubset} do

Compute for X̃i the corresponding price bounds
(
D

B,B
(Ki,πi,St0 i

)

(
Φθj

)
, D

B,B
(Ki,πi,St0 i

)

(
Φθj

))
;

X(i−1)nsubset+j ← (X̃i, θj);
Y(i−1)nsubset+j ←

(
DB,B

(Ki,πi,St0 i)

(
Φθj
)
, D

B,B
(Ki,πi,St0 i)

(
Φθj
))

;
// In this step it would be possible to use any algorithm that can compute

these bounds reliably, see Remark II.4
end

end
Train with back-propagation ([50]) a neural network N ∈ Ndin,2 with a sufficient number of neurons and hidden layers

such that N (Xi) ≈ Yi;
Output: Trained neural network N ∈ NNinput,2 with Ninput as in Theorem II.2;
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Remark II.4. To compute model-independent price bounds given option prices, we can use e.g. a linear programming approach
based on grid discretization as proposed in [23], [29], or [31]. If the payoff function only depends on one future maturity and is
continuous piecewise affine (CPWA, see e.g. [47, Example 3.2.]) we can also use the numerically very efficient algorithm proposed
in [47]. If the payoff function fulfils a so-called martingale Spence–Mirrleess condition14 one can apply the algorithm presented
in [32]. For multiple time-steps, another possibility is to apply the penalization approach presented in [24]. The minimization is
then performed using a stochastic gradient descent algorithm with some penalization parameter γ which enforces the optimizing
strategy to be a super-hedge.

C. Examples
In this section we present, in selected examples, the results of our approach when applied to real market data.
1) Training data: We consider for the training of all neural networks financial market data received from Thomson Reuters

Eikon that was observed on 10th June 2020. The data includes bid and ask prices on call options written on all 500 constituents
of the American stock market index S&P 500. Note that, in Example II.6, we also predict the optimal super-hedging strategy and
not only optimal price bounds. Thus, to avoid ambiguity of the optimal strategy, as explained in Remark II.3, we do not consider
any put options there. We consider for each constituent and each available maturity of an option the 20 most liquid strikes, i.e.,
the bid and ask prices of options with the highest trading volume.

2) Test data: For testing the trained neural networks we consider - as for the training data - option prices on all constituents
of the S&P 500. The data was observed on 23rd August 2020. We highlight that, in particular, the test data comes from a different
dataset than the training data.

3) Implementation: The training of each of the neural networks is performed using the back-propagation algorithm ([50]) with
an Adam optimizer ([41]) implemented in Python using Tensorflow ([1]). For the optimization with the Adam optimizer we use a
batch size of 256. The architecture involves a L2-loss function, the neural networks comprise 3 hidden layers with 512 neurons
each and ReLU activation functions. The samples are normalized before training with a min-max scaler. Moreover, we assign 10%
of the training data to a validation set to be able to apply early stopping (compare [28, Chapter 7.8.]) to prevent overfitting to
the training data. To reduce the internal covariate shift of the neural network and to additionally regularize it, we apply batch
normalization ([39]) after each layer. All the codes related to the examples below15, as well as the trained neural networks are
provided under https://github.com/juliansester/deep model free pricing. For all examples we assume no transaction costs, i.e., we
have κ = 0.

Example II.5 (Training of the valuation of call options given prices of other call options). We want to train the valuation of call
options for arbitrary strikes, i.e., we consider payoff functions from the set

{Φθ, θ ∈ Θ} =

{
ΦL(S1

t1) := max
{
S1
t1 − L, 0

}
, with L ∈ R+

}
.

Note that the assumptions of Theorem II.2 are met for any B ∈ (0,∞],B < ∞, which we choose therefore large enough to not
impose a restriction. Thus Theorem II.2 (b) ensures that we can train a single neural network for the above mentioned parameterized
family of payoff functions.

In this example, a single sample Xi consists of 62 total entries which comprise 20 bid prices, 20 ask prices, 20 associated
strikes of call options, as well as the underlying spot price and the strike L of the call option ΦL which we want to price.

We apply Algorithm 1 to train a neural network, in particular, for each of the prices from the training data, we create several
different random strikes L, for which we compute a corresponding Yi which consists of lower and upper model-independent price
bounds for all samples according to the algorithm from [47]. With this methodology we create a training set with 100000 samples.
We then train, as described in Section II-C3, a neural network using back-propagation and test it on the test data, described in
Section II-C2, which was observed at a later date (August 2020). The test set consists of 10000 samples.

The results of the training yield a mean absolute error of 2.2033 as well as a mean squared error of 25.8779 on the test set
and are depicted in Figure 2a. To be able to compare the error independent of the size of the spot price of the underlying security,
we report a mean absolute error of 0.0111 when dividing the predicted prices by the spot prices. We call this value the relative
mean absolute error. The corresponding squared distance after division by the spot prices amounts to 0.0003 and is called relative
mean squared error. Compare also Figure 2b, where we depict the relative error of each sample in the test set, i.e., the difference
of each prediction from its target value, after division with the spot price.

Example II.6 (Optimal strategies of basket options). We consider payoff functions of basket options written on two assets, i.e., the
class of payoff functions is defined through

{Φθ, θ ∈ Θ} =

{
Φw1,w2,L(S1

t1 , S
2
t1) = max

{
w1S

1
t1 + w2S

2
t1 − L, 0

}
, with w1, w2, L ∈ R+

}
.

When B,B <∞, the assumptions of Theorem II.2 (b), respectively those of Remark II.3 (c), are fulfilled. For each of the considered
market prices from the training set and test set, respectively, we create in accordance with Algorithm 1 several different weights
w1, w2 and some strike L. Thus, a sample Xi consists of the spot prices S1

t0 , S
2
t0 , the generated values w1, w2, L as well as of

bid and ask prices with associated strikes of both assets, i.e., in total each Xi consists of 125 numbers.
We aim at simultaneously predicting the minimal super-replication strategy and the maximal sub-replication strategy. Therefore,

we compute the parameters of the strategies attaining the price bounds according to the algorithm from [47]. Thus, in our case

14This means that ∂3

∂xy2 Φ(x, y) exists and satisfies ∂3

∂xy2 Φ(x, y) > 0 for all x, y.
15For copyright reasons we can only provide the used code, but we cannot provide the used data.

https://github.com/juliansester/deep_model_free_pricing
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(a) (b)

Fig. 2. (a): This figure illustrates the accuracy of the predictions on the test set. The left panel shows a plot of all target values (x-values) and its
predictions (y-values), the right panel depicts a histogram of the prediction error, i.e., the error between target values and predicted values.
(b):This figure shows the accuracy of the predictions of call option prices on the test set when considering the relative error, i.e., when dividing
the predicted prices Yi by the corresponding spot prices.

each sample Yi comprises 86 values, which constitute, for both lower and upper bound, of the initial investment a (1 parameter),
the buy and sell positions in call options16 (c1jk)j,k

j=1,...,20,
k=1,2

(40 parameters) and the investment positions in the underlying
securities (∆k

0)k=1,2 (2 parameters).
Moreover, training a neural network to learn the relationship between market parameters and optimal super-replication strategy

(without the price bound) is possible due to Theorem II.2 (d), which implies that the difference in absolute values between
predicted parameters

(
a, (c1jk)j,k, (∆

k
0)k
)

and true parameters
(
a∗, (c∗1jk)j,k, (∆

k
0
∗
)k
)

of the optimal strategy should not differ
significantly after training. We train the neural network on 150000 samples, test it on 10000 samples, and obtain indeed a small
relative mean absolute error of 0.0015. We highlight that the training set remains the same, in particular does not consist of
trading strategies.

After having trained the neural network to predict the minimal super-hedging strategies, we are able to derive from these
strategies the optimal price bounds using (II.2) and compare it with the predictions from a neural network which is trained on
predicting lower and upper price bounds directly instead of predicting optimal strategies. In Figure 3 we show that however, as
expected, the neural network that predicts prices directly performs by far better than the price bound predictions that are derived
via (II.2) from the trained strategies, when evaluated on the test set. The relative17 mean absolute error of the direct prediction
of the price bounds is 0.0319, whereas the relative mean absolute error of the prediction relying on the strategies is 0.1804. The
corresponding relative mean squared errors are 0.0148 and 0.5045, respectively.

Fig. 3. This figure compares the accuracy of prediction of price bounds derived from the trained strategies using (II.2) (left) with those predictions
from neural networks that are trained to predict the prices directly (right). We depict the relative error of the predictions by dividing the prediction
error through the weighted sum of spot prices, where the weights are according to the weights in the payoff of the basket option.

The larger approximation error when approximating first the strategies by a neural network and then deriving price bounds from
this approximation can be explained as follows.

When approximating the price bounds directly, then we have, after sufficient training of a neural network, according to
Theorem II.2 (b), a maximal absolute approximation error of order ε1 between the upper price bound and the output of the
neural network, given a tolerance level of ε1 > 0.

16 Here, by slight abuse of notation, we denote by cljk ∈ R the net position invested in the option, i.e., cljk is also allowed to attain negative
values.

17Note that here the relative error refers to the error after division with the weighted sum of the spot prices, where the weights are determined
by the weights in the payoff of the basket option.
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In contrast, when approximating the optimal super-replication strategy
(
a∗, (c∗1jk)j,k, (p

∗
1jk)j,k, (∆

k
0
∗
)k

)
(K,π,St0 , θ) by

the output of a neural network, denoted by
(
aNN , (cNN1jk )j,k, (p

NN
1jk )j,k, (∆

k
0
NN

)k

)
(K,π,St0 , θ) at some tolerance level

ε2 > 0, then the absolute error between the upper price bound D
B,B
(K,π,St0 ) (Φθ) = C

(
Ψ

(K,St0 )

(a∗,c1jk∗,p1jk∗,∆k0
∗
)
,π
)

and the price

C
(

Ψ
(K,St0 )

(aNN ,c1jkNN ,p1jkNN ,∆k0
NN

)
,π

)
derived from the approximated strategy computes by (II.2) as

∣∣∣∣∣a∗ − aNN +

d∑
k=1

n
opt
1k∑
j=1

(
(c+1jk

∗ − c+1jk
NN

)π+
call,1,j,k − (c−1jk

∗ − c−1jk
NN

)π−call,1,j,k

)

+

d∑
k=1

n
opt
1k∑
j=1

(
(p+

1jk

∗ − p+
1jk

NN
)π+

put,1,j,k − (p−1jk
∗ − p−1jk

NN
)π−put,1,j,k

) ∣∣∣∣∣
which is, according to (II.10), as large as of order

ε2 ·max

{
max
j,k

π+
call,1,j,k, max

j,k
π−call,1,j,k, max

j,k
π+

put,1,j,k, max
j,k

π−put,1,j,k

}
.

However, C := max
{

maxj,k π
+
call,1,j,k, maxj,k π

−
call,1,j,k, maxj,k π

+
put,1,j,k, maxj,k π

−
put,1,j,k

}
is typically significantly larger

than 1 (the largest call option price in the considered test set was 349$). Therefore, to obtain similar approximation results for
the prices derived from strategies as those when approximating prices directly, one needs to consider a tolerance level of ε2 = ε1

C
which usually is significantly smaller than ε1. In our case, the training set was not large enough to obtain such a high precision
in the approximation of the strategies18.

The above outlined reasoning is supported by a comparatively large approximation error which is already observed on the
training set. When predicting prices from strategies via (II.2), we have a relative mean absolute error of 0.1311 on the training
set, which is only marginally smaller than the relative mean absolute error of 0.1804 which we reported for predictions on the
test set. In comparison, the relative mean absolute error for directly predicting prices is 0.0160 on the training set, whereas we
reported a relative mean absolute error of 0.0319 on the test set.

We conclude that, even though it is theoretically possible to derive price bounds with an arbitrarily high precision from
approximated strategies, in practice it turns out to be more efficient (and requires a smaller training set) to train a neural network
that approximates the price bounds directly if one is only interested in the prediction of these.

Example II.7 (Neural networks trained for basket options applied to call options). We reconsider the trained neural network from
Example II.6 predicting the price bounds of basket options written on two assets.
• We now test this neural network on the same test set as in Example II.5 which takes into account call options instead of basket

options. To be able to apply the neural network that takes inputs with 125 entries, we modify the original samples Xi from
Example II.5 (originally containing 62 entries) by duplicating the original entries (except for the strike of the call option)
and by additionally adding weights of 0.5 and 0.5 as well as the original strike, leading to 2 · 61 + 2 + 1 = 125 entries. This
means that we consider a basket option with payoff of the form max{0.5S1

t1 + 0.5S1
t1 −K, 0} = max{S1

t1 −K, 0} which
is a call option.

• We then observe a relative mean absolute error of 0.0230 and a relative mean squared error of 0.0023 (in comparison with
0.0111 and 0.0003, respectively for the neural network from Example II.5 that was only trained on call options).

• This shows that the more general neural network performs reasonably well also on the more specific payoffs, but is less
specifically trained and therefore is outperformed by the neural network solely trained on call options.

• To improve the performance of this neural network, we retrain the neural network by adding in addition to the 150000 samples
containing basket options from Example II.6 also the 100000 samples containing call options from Example II.5.

• Indeed, the result is a trained neural network that performs well on both basket options and call options. On the test set for
call options we obtain a relative mean absolute error of 0.0112 and a relative mean squared error of 0.0004 (compared to
0.0111 and 0.0003 obtained in Example II.5). On the test set for basket options we compute a relative mean absolute error
of 0.0292 and a relative mean squared error of 0.0374 (compared to 0.0319 and 0.0148 obtained in Example II.6). See also
Figure 4, where we depict the accuracy of the predictions before and after adding the additional samples. This shows that
training the neural network on an additional task (call option price bounds) did improve notably the approximation quality
on this specific task while the approximation quality on the well-known task (basked option price bounds) is barely affected.

This example showcases that it is possible to train a single neural network that approximates price bounds reasonably well for
different types of payoff functions given that these payoff functions are represented appropriately in the training set. For an overview
of different types of payoff functions that can be covered by a single neural network we refer to Table I. Moreover, the approach
pursued in Example II.7 can be considered as an instance of transfer learning, since we used an existing neural network as a
starting point to improve the approximation quality on a more specific class of payoff functions.

18One certainly could enlarge the training set to improve the approximation results. However, the goal of this example is to showcase that on a
fixed training set predicting price bounds directly is more efficient than predicting price bounds via (II.2) after having approximated the optimal
strategies.
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Fig. 4. This figure compares the accuracy of prediction of price bounds of call options using the neural network trained solely on basket options
(left) with those predictions from a neural network that is trained additionally also on call options (right). We depict the relative error of the
predictions by dividing the prediction error by the spot prices.

Example II.8 (High-dimensional payoff function). We train a neural network to predict prices of a basket option depending on
30 underlying securities, i.e., we consider a family of payoff functions of the form

{Φθ, θ ∈ Θ} =

{
Φw1,··· ,w30,L(S1

t1 , · · · , S
30
t1 ) = max

{∑30
k=1wkS

k
t1 − L, 0

}
, with w1, . . . , w30, L ∈ R+

}
.

We train the neural network only on 8000 different samples, where each sample consists of bid and ask prices of call options for
20 different strikes of 30 different underlying securities from data observed in June 2020 with randomly generated weights wk,
k = 1, . . . , 30, and randomly generated strikes L, i.e., one single sample Xi consists of 1861 entries. These entries consist of
30 · 20 strikes of call options, 30 · 20 bid prices of call options, 30 · 20 ask prices of call options, as well as 30 spot prices and 1
strike L of the basket option and 30 associated weights wk, k = 1, . . . , 30.

The corresponding prices are computed with the algorithm from [47] which enables to compute precise price bounds even in
this high-dimensional setting19.

After having trained the neural network, we test on 2000 samples from data on options on the S&P 500 that were observed in
August 2020, as described in Section II-C2. We test only for the lower bound of the basket option and achieve a relative20 mean
absolute error of 0.0101 and a relative mean squared error of 0.0002 on the test set. Compare Figure 5, where we depict the
relative error, i.e., we divide predictions and prices by the weighted sum of the spot prices.

Fig. 5. This figure shows the relative error when predicting the lower price bound of a basket option that depends on 30 underlying securities. We
divide the target prices (and predicted prices) by the weighted spot prices, where the weights are the ones in the payoff function under consideration.

Remark II.9. (a) It turns out that indeed our proposed approach can be executed significantly faster than comparable methods
that can be applied to compute model-free price bounds. The computation of 100 price bounds in the setting of Example II.8
takes 225.31 seconds on a standard computer21 when using the LSIP approach22 from [47]. The execution of a trained neural
network to predict 100 price bounds however only takes 0.00303 seconds. The execution of the neural network is therefore
approximately 75000 times faster. This highlights the computational advantage of our proposed approach over comparable

19With this algorithm it is even possible to compute price bounds of basket options that depend on 60 securities.
20Note that here, as in Example II.6, the relative error refers to the error after division with the weighted sum of the spot prices, where the

weights are determined by the weights in the payoff of the basket option.
21 We used for the computations a Gen Intel(R) Core(TM) i7-1165G7, 2.80 GHz processor with 40 GB RAM.
22The Matlab-code for the execution of the LSIP approach is provided under https://github.com/qikunxiang/ModelFreePriceBounds.

https://github.com/qikunxiang/ModelFreePriceBounds
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numerical methods, and further indicates that our approach indeed allows almost in real time the model-free valuation of
financial derivatives.

(b) We report quite fast training times that are required to train the neural networks. The computationally most expensive setting
considered in Example II.8 involves, after applying early stopping, the training of 284 Epochs on 7200 samples with a batch
size of 256. This training procedure takes in total only 142.88 seconds23.

(c) Note that even though the underlying approach is presented in a great generality, it can be easily modified to meet the
potentially more specific requirements of applicants.
If less call or put options are traded than the trained neural network contains, then one can simply set several strikes and
prices to the same value and then apply the trained neural network on the smaller financial market. Moreover, if the payoff
function considered in the trained neural network depends on more assets than the same-type payoff function which one wants
to price, then this is possible within our approach by adjusting the parameters from the more general payoff function. For
example it is possible to determine the price bounds of call options after having trained price bounds of basket options as
it was shown in Example II.7, compare also the overview provided in Table I which clarifies which payoffs are of the same
type. Moreover, if one wants to take into account asset-specific investment constraints, both universal bounds B and B can be
replaced by asset-specific bounds (Bi)i=1,...,n and option specific bounds (Bi,j,k)

i=1,...,n,k=1,...,d,j=1,...,n
opt
ik

. The assertion
of Theorem II.2 remains valid as the continuity mainly relies on a compactness argument which still can be applied.

(d) One major implicit assumptions of the presented approach is that the considered call and put options can be traded liquidly.
Even though this assumption is usually fulfilled in practice one should verify this assumption carefully. Moreover, given that
other traded options are considered sufficiently liquid, the presented approach can be extended in a straightforward way by
including these options in (II.1) and (II.2).

(e) If one is not interested in imposing a proper trading restriction through the bound B, then setting B to a sufficiently large
value does lead in practice to the same price bounds as in an unbounded setting. Therefore, also the optimal parameters
of the neural networks that approximate these bounds are the same as in an unbounded setting. This holds true since both
the trained parameters of the neural network and the corresponding trained trading strategy a posteriori turn out to remain
bounded over the whole training period, compare e.g. [5, Fig. 4].

(f) It is noteworthy that the presented approach allows to determine model-free price bounds of the most common types of traded
financial derivatives by only training a couple of neural networks (one for each type of payoff function), compare the non-
exhaustive Table I for an overview which relies partly on the presentation provided in [47]. Table I shows in particular which
payoff functions are of the same type and can therefore be trained with a single neural network. Note that with Example II.7
we provide empirical evidence that this approach not only works in theory but indeed in practice. Recall that in Example II.7
we trained a neural network to predict price bounds of call options and basket options that are both of the same type.

Type Name Payoff Parameters Θ

I. Basket call option with weights (wk)k=1,...,d and strike L max{
∑d
k=1 w

kSkt1 − L, 0} Θ = {w1, . . . , wd ∈ R, L ∈ R}
I. Basket put option with weights (wk)k=1,...,d and strike L max{L−

∑d
k=1 w

kSkt1 , 0} Θ = {w1, . . . , wd ∈ R, L ∈ R}
I. Call option on the i-th asset with strike L max{Sit1 − L, 0} Θ = {L ∈ R}
I. Put option on the i-th asset with strike L max{L− Sit1 , 0} Θ = {L ∈ R}
I. Spread call options with weights wi, wj and strike L max{wiSit1 − w

jSjt1 − L, 0} Θ = {wi, wj ∈ R, L ∈ R}
I. Spread put options with weights wi, wj and strike L max{L− (wiSit1 − w

jSjt1 ), 0} Θ = {wi, wj ∈ R, L ∈ R}
II. Call-on-max with strike L max{max{Skt1 , k = 1, . . . , d} − L, 0} Θ = {L ∈ R}
II. Put-on-max with strike L max{L−max{Skt1 , k = 1, . . . , d}, 0} Θ = {L ∈ R}
III. Call-on-min with strike L max{min{Skt1 , k = 1, . . . , d} − L, 0} Θ = {L ∈ R}
III. Put-on-min with strike L max{L−min{Skt1 , k = 1, . . . , d}, 0} Θ = {L ∈ R}
IV. Best-of-calls option with strikes L1, . . . , Ld max

{
max{Skt1 − Lk, 0}, k = 1, . . . , d

}
Θ = {L1, . . . , Ld ∈ R}

IV. Best-of-puts option with strikes L1, . . . , Ld max
{

max{Lk − Skt1 , 0}, k = 1, . . . , d
}

Θ = {L1, . . . , Ld ∈ R}

TABLE I
THE TABLE DEPICTS THE MOST COMMON TYPES OF FINANCIAL DERIVATIVES THAT CAN BE TRAINED BY THE PRESENTED APPROACH. THE

LEFTMOST COLUMN IDENTIFIES THE TYPE OF THE RESPECTIVE FINANCIAL DERIVATIVE, WHERE THE PRICE BOUNDS OF PAYOFFS OF THE
SAME TYPE CAN BE LEARNED FROM A SINGLE NEURAL NETWORK.

III. MARTINGALE OPTIMAL TRANSPORT

The presented approach from Section II-B can easily be adjusted to modified market settings given that it is possible to establish
a continuous relationship between the prevailing market scenario and resultant model-free price bounds of derivatives. In this section
we show how the approach can be adapted to the setting used in martingale optimal transport (compare among many other relevant
articles [7], [8], [14], and [20]), where instead of observing a finite amount of call and put option prices, one assumes that the
entire one-dimensional marginal distributions of the underlying assets at future dates are known. This situation is according to the
Breeden-Litzenberger result [11] equivalent to the case where one can observe call and put option prices for a continuum of strikes

23See footnote 21,
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on each of the associated maturities on which the financial derivative Φ ∈ B(Rnd+ ,R) depends. In the martingale optimal transport
case, one wants to compute the arbitrage-free upper price bound24 of Φ which leads to the maximization problem

sup
Q∈M(µ1,...,µn)

EQ[Φ(S)], (III.1)

where25

M(µ1, . . . ,µn) :=

{
Q ∈ P(Rnd+ )

∣∣∣∣ Q ◦ (Skti)−1

= µki ,EQ[Skti+1
| Sti , . . . ,St1 ] = Skti Q-a.s. for all i, k

}
(III.2)

describes the set of all n-step martingale measures with fixed one-dimensional marginals µi = (µ1
i , . . . , µ

d
i ), i = 1, . . . , n, of all

involved securities.
We show that, when considering a single asset and two future maturities, (III.1) can be approximated by a properly constructed

neural network. To that end, let

P1(R+) :=

{
Q ∈ P(R+)

∣∣∣∣∣
∫
R+

xdQ(x) <∞

}
denote the set of probability measures on R+ with existing first moment. Further, we introduce the 1-Wasserstein-distance W(·, ·)
between two measures µ1, µ2 ∈ P1(R+), which is defined through

W(µ1, µ2) := inf
π∈Π(µ1,µ2)

∫
R2

+

|u− v| dπ(u, v),

with Π(µ1, µ2) denoting the set of all couplings26 of µ1 and µ2, compare e.g. [55].
We recall the construction of the U-quantization from [6]. Given some probability measure µ ∈ P1(R+) and some N ∈ N we

set for i = 1, . . . , N

x
(N)
i (µ) := N

∫ i/N

(i−1)/N

F−1
µ (u) du,

where F−1
µ (u) := inf{x ∈ R+ : Fµ(x) ≥ u} denotes the u-quantile associated to the cumulative distribution function Fµ of µ,

and we denote x(N)(µ) :=
(
x

(N)
l (µ)

)
l=1,...,N

. Then, by [6, Theorem 2.4.12.] it holds that

U (N)(µ) :=
1

N

N∑
i=1

δ
x

(N)
i (µ)

(III.3)

converges weakly to µ for N → ∞. Since the mean of U (N)(µ) and µ coincide for all N ∈ N due to [6, Lemma 2.4.4.] and
µ, U (N)(µ) ∈ P1(R+), we further obtain convergence in the 1-Wasserstein-distance, compare [55, Definition 6.8]. This means
particularly that for all µ ∈ P1(R+) and for all δ > 0 there exists some N ∈ N such that W(U (N)(µ), µ) < δ.

We derive the following novel result which asserts for the first time that two-marginal martingale optimal transport problems
can be approximated arbitrarily well by neural networks.27

Theorem III.1. Let Φ : R2
+ → R be continuous such that supx1,x2∈R+

|Φ(x1,x2)|
1+x1+x2

<∞. Then, for all ε > 0, N ∈ N, and compact
sets K ⊂ RN+ , there exists a neural network N ∈ N2N,2 such that for all (µ1, µ2) ∈ P1(R+) × P1(R+) with µ1 � µ2

28, there
exists some δ > 0 such that if W(U (N)(µ1), µ1) < δ, W(U (N)(µ2), µ2) < δ, and x(N)(µ1),x(N)(µ2) ∈ K, then∥∥∥∥N (x(N)(µ1),x(N)(µ2)

)
−

(
inf

Q∈M(µ1,µ2)
EQ[Φ], sup

Q∈M(µ1,µ2)

EQ[Φ]

)∥∥∥∥
2

< ε. (III.4)

Proof. See Section IV.

Remark III.2. The assumption in Theorem III.1 stating that the atoms of the approximating U-quantizations are contained in
some prespecified compact set K can always be fulfilled if one only considers marginals with support in K.

If one does not want to restrict to compactly supported marginals, one can start with µ̂1, µ̂2 ∈ P1(R+) and consider for every
r > 0 the sets Br(µ̂i) := {µi ∈ P1(R+) : W (µi, µ̂i) ≤ r} for i = 1, 2. Then there exists some compact set K ⊂ RN+ s.t.
x

(N)
l (µi) ∈ K for all l = 1, . . . , N , µi ∈ Br(µ̂i), i = 1, 2.

Indeed, there exists some constant C > 0 such that∣∣∣x(N)
l (µ̂i)

∣∣∣ ≤ C for all l = 1, . . . , N, i = 1, 2. (III.5)

24We implicitly assume absence of a bid-ask spread and of transaction costs.
25P(Rnd+ ) denotes the set of all Borel probability measures on Rnd+ .
26More precisely, the set Π(µ1, µ2) is defined as Π(µ1, µ2) :=

{
π ∈ P1(R2

+) : π ◦ S−1
ti

= µi, i = 1, 2
}

27We recall that ‖ · ‖2 is an arbitrary norm on R2.
28Here � denotes the convex order for measures (µ1, µ2) ∈ P1(R+)× P1(R+), i.e., µ1 � µ2 means∫

R+
fdµ1 ≤

∫
R+

fdµ2 for all convex functions f : R+ → R.
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Moreover, for all µi ∈ Br(µ̂i), i = 1, 2, we have for all l = 1, . . . , N that∣∣∣x(N)
l (µ̂i)− x(N)

l (µi)
∣∣∣ =

∣∣∣∣∣N
∫ l/N

(l−1)/N

F−1
µ̂i

(u)− F−1
µi (u) du

∣∣∣∣∣ ≤ N
∫ l/N

(l−1)/N

∣∣F−1
µ̂i

(u)− F−1
µi (u)

∣∣ du
≤ N

∫ 1

0

∣∣F−1
µ̂i

(u)− F−1
µi (u)

∣∣ du
= N ·W (µ̂i, µi) ≤ N · r, (III.6)

see for the last equality in (III.6) also [49, Equation 3.1.6] and [51, Equation 3.5]. This implies for all i = 1, 2 that(
x

(N)
1 (µi), . . . , x

(N)
N (µi)

)
∈ K :=

{
(x1, . . . , xN ) ∈ RN+ | |xj | ≤ C +N · r for all j

}
.

Remark III.3. If we are only interested in predicting the upper bound supQ∈M(µ1,µ2) EQ[Φ], then one can see, by carefully
reading the proof of Theorem III.1, that it suffices to assume that Φ is upper semi-continuous (and linearly bounded) to obtain
the existence of a neural network N ∈ N2N,1 that approximates the bound as in (III.4) w.r.t. ‖ · ‖1. Similarly, to derive the
existence of a neural network approximating the lower bound infQ∈M(µ1,µ2) EQ[Φ] it is only necessary to assume that Φ is lower
semi-continuous (and linearly bounded).

In the case with two marginals, the training routine from Algorithm 1 modifies to the below presented Algorithm 2 which is
also depicted in Figure 1b.

Algorithm 2: Training of a neural network for the computation of the price bounds of some financial derivative
Φ in the MOT setting

Input : Payoff function Φ : R2
+ → R fulfilling the assumptions of Theorem III.1;

N describing the number of maximal supporting values of the approximating distribution; Number of samples S;
Method to create samples such that the associated marginal distributions increase in convex order (cf.
Remark III.4 (a));

for i in {1, . . . ,S} do
Create samples Xi = (xi1, . . . , x

i
N , y

i
1, . . . , y

i
N ) ∈ R2N

+ such that 1
N

∑N
j=1 δxij

� 1
N

∑N
j=1 δyij

;
Compute, e.g. via linear programming (compare [29]), the target value

Yi =

(
inf

Q∈M
(

1
N

∑N
j=1 δxi

j
, 1
N

∑N
j=1 δyi

j

)EQ[Φ], sup

Q∈M
(

1
N

∑N
j=1 δxi

j
, 1
N

∑N
j=1 δyi

j

)EQ[Φ]

)
∈ R2;

end
Train via back-propagation a neural network N ∈ N2N,2 to predict Yi given Xi, i.e., such that N (Xi) ≈ Yi (which is

possible due to Theorem III.1);
Output: Trained neural network N ∈ N2N,2;

Remark III.4.
(a) The critical point in Algorithm 2 is the method which is employed to create discrete samples of marginals that are increasing

in convex order. It is a priori not obvious how to create a good sample set. One working methodology is to draw samples
from marginals that are similar to marginals one wants to predict, then to apply U-quantization and to discard measures that
do not increase in convex order. Compare also Example III.5. Being similar can for example mean to be close in Wasserstein
distance or being from the same parametric family of probability distributions.

(b) Since the proof of Theorem III.1 relies on the continuity of the MOT problem, as stated in [4], [48], and [56], for which -
at the moment - no extension to the case with more than two marginals or in multidimensional settings is known, we stick to
the two marginal case in the one-dimensional setting.

(c) The approach can be extended to the case with information on the variance as in [44], with Markovian assumptions as imposed
in [25] and [54], or even more general constraints on the distribution (see e.g. [3]), whenever it is possible to establish
a continuous relationship between marginals and prices. Compare also Example III.6, where we consider a constrained
martingale optimal transport problem.

To compute the robust bounds infQ∈M(µ1,µ2) EQ[Φ] and supQ∈M(µ1,µ2) EQ[Φ] for arbitrary (possibly continuous) marginal
distributions µ1 � µ2, with the above explained approach, we approximate µ1 and µ2 in the Wasserstein distance by U (N)(µ1) �
U (N)(µ2) and then compute the resultant price bound via N (x(N)(µ1),x(N)(µ2)), where N ∈ N2N,2 denotes the neural network
which was trained according to Algorithm 2.

A. Examples
We train a neural network according to Algorithm 2. Thus, the input features are, in contrast to the examples from Section II-C, not

directly option prices but are given by marginal distributions which are discretized according to the U-quantization. In the following
we fix a payoff function Φ(St1 , St2) = |St1 − St2 | and present the results when predicting infQ∈M(µ1,µ2) EQ[Φ(St1 , St2)] and
supQ∈M(µ1,µ2) EQ[Φ(St1 , St2)] via neural networks in dependence of the marginals µ1 and µ2.
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1) Implementation: To train the neural network we create according to Algorithm 2 numerous artificial marginals with a fixed
number N ∈ N of supporting values. In the examples below we choose N = 20. To discretize continuous marginal distributions
we apply the U-quantization as introduced in (III.3). Below, we describe which marginal distributions µi1, µi2 we generate for
i = 1, . . . ,S with S being the total number of samples.

1) Log-Normally distributed marginals
(if i mod 4 = 0)
µi1 ∼ LN (µi − (σi1)2/2, (σi1)2) with µi ∼ U([−2, 2]) and σi1 ∼ U([0, 0.5]),
µi2 ∼ LN (µi − (σi2)2/2, (σi2)2) with σi2 = σi1 · σ̃2

i, where σ̃2
i ∼ U([1, 2]);

2) Uniform marginals
(if i mod 4 = 1)
µi1 ∼ U([µi − ai, µi + ai]),
µi2 ∼ U([µi − bi, µi + bi]) with µi ∼ U([10, 20]), ai ∼ U([0, 5]), bi ∼ U([ai, ai + 5]);

3) Continuous and discrete uniform marginals
(if i mod 4 = 2)
µi1 ∼ U([µi − ai, µi + ai]),
µi2 ∼ U({µ− ai, µ+ ai}) with µi ∼ U([5, 10]), ai ∼ U([0, 5]);

4) Uniform and triangular marginals
(if i mod 4 = 3)
µi1 ∼ U([mi − li/2,mi + li/2]) for li ∼ U([0, 5]), mi ∼ U([li, li + 10]) and triangular marginals µi2 with lower limit li,
upper limit ui ∼ U([mi,mi + 10]) and mode mi.

If the generated marginals are in convex order29, then we add the discretized values U (N)(µi1), U (N)(µi2) to the sample set
(Xi)i=1,...,S and compute via linear programming infQ∈M(µi1,µ

i
2) EQ[Φ] as well as supQ∈M(µi1,µ

i
2) EQ[Φ] which we then add as

corresponding target values to (Yi)i=1,...,S .
2) Architecture of the neural networks: Given a set of samples (Xi)i=1,...,S and a set of targets (Yi)i=1,...,S we train a

neural network using the back-propagation algorithm with an Adam optimizer implemented in Python using Tensorflow similar to
Section II-C. The loss function is a L2-loss function, the neural networks comprise 3 hidden layers with 512 neurons each, and
with ReLU activation functions.
For further details of the code we refer to https://github.com/juliansester/deep model free pricing.

Example III.5 (MOT without constraints). We report the results for a neural network trained to S = 100, 000 samples that are
generated according to the procedure described above. We split the samples in training set, test set (10% of the samples) and
validation set (20% of the training samples) and report a mean absolute error of 0.0082 as well as mean squared error of 0.0001
on the test set after 1000 epochs of training with early stopping. The accuracy of the trained neural network on the test set is
displayed in Figure 6. Additionally, we test the neural network in the following specific situations.
(a) µ1 = LN (0.5− 0.5 · 0.252, 0.252),

µ2 = LN (0.5− 0.5 · 0.52, 0.52)
(b) µ1 = LN (−0.05, 0.1), µ2 = LN (−0.1, 0.2)
(c) µ1 = U([8, 12]), µ2 = U([5, 15])
(d) µ1 = U([5, 10]), µ2 = U({5, 10})
(e) µ1 = U([2, 4]),

dµ2
dλ

(x) = (x− 1)/31l[1,2](x) + (1/3)1l[2,4](x) + (5− x)/31l[4,5](x), where λ denotes the Lebesgue-measure.
The results are displayed in Table II and indicate that the bounds can indeed be approximated very precisely.

TABLE II
THE TABLE DISPLAYS FOR DIFFERENT MARGINALS THE APPROXIMATED LOWER BOUNDS AND UPPER BOUNDS THAT ARE COMPUTED VIA

TRAINED NEURAL NETWORKS (NN) AND VIA A LINEAR PROGRAMMING APPROACH (LP).

Lower bound (LP) Lower bound (NN) Upper bound (LP) Upper bound (NN) Cumulative Error

(a) 0.2363 0.2573 0.4226 0.4210 0.0226
(b) 0.0814 0.0939 0.1870 0.1946 0.0202
(c) 1.7491 1.7503 2.6220 2.6082 0.0150
(d) 1.6688 1.6659 1.6687 1.6636 0.0080
(e) 0.3587 0.3626 0.7215 0.7151 0.0103

In the next example we show how the introduced methodology can be applied to constrained martingale optimal transport
problems.

Example III.6 (MOT with variance constraints). We train the neural network with the same artificial samples of marginals as in the
previous Example III.5. In addition to the discretized marginals U (N)(µi1), U (N)(µi2), we consider as an additional feature a pre-
specified level of the variance of the returns as in [44]. This means we only consider martingale measures Q which additionally

29This can be easily checked by verifying that
∫
R+

(x − L)+dµ1(x) ≤
∫
R+

(x − L)+dµ2(x) for all atoms L as well as
∫
R+

xdµ1(x) =∫
R+

xdµ2(x), compare e.g. [45].

https://github.com/juliansester/deep_model_free_pricing
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Fig. 6. This figure illustrates the accuracy of the predictions of the trained neural network in the MOT setting, evaluated on the test set.

fulfil VarQ(St2/St1) = σ2
12. In particular, σ12 is thus, an additional feature of the samples Xi. It was already indicated in

Remark II.4 (c), that the approximation through neural networks, as stated in Theorem III.1, can also be obtained in this case due
to [44, Theorem A.6.] ensuring continuity of the map

(µ1, µ2) 7→ sup
{
EQ[Φ]

∣∣ Q ∈M(µ1, µ2) and VarQ(St2/St1) = σ2
12

}
when Φ is Lipschitz-continuous and when the marginals have compact support. Then, an adaption of Theorem III.1 is straightfor-
ward. The results of a neural network approximation for the payoff function Φ(St1 , St2) = |St2−St1 | for the marginal distributions
(c) and (e) from Example III.5 are displayed in Figure 7a. The marginals from (a) and (b) are omitted as they do not satisfy the
conditions from [44, Theorem A.6.], whereas the marginals from (d) are omitted, since the value of lower and upper bound coincide
and they therefore do not depend on a pre-specified level of the variance. The neural network was trained on 500000 samples
for 1000 epochs with early stopping. We assign 10% of the samples to the test set and 20% of the remaining training samples to
the validation set (which is relevant for the early stopping rule). The resulting mean absolute error on the test set is 0.0044, the
mean squared error is 0.00003. In Figure 7b we show to which degree the predictions deviate from the target values on the test
set implying that the accuracy of the predictions is indeed very high on the test set.

(a) (b)

Fig. 7. (a): This figure shows the accuracy of a neural network that was trained with 500000 samples. The accuracy is displayed for the test
marginals from (c) and (e) of Example III.5. The points indicate the upper and lower bounds for the prices under the influence of variance information
obtained from the trained neural network (NN) in comparison with the precise bounds, computed with a linear programming (LP) approach, that
are indicated by the solid lines.
(b): This figure illustrates the accuracy of the predictions of the trained neural network in the MOT setting with variance constraints, evaluated on
the test set.

IV. PROOFS

Proof of Theorem II.2 (a). We prove the continuity of (K,π,St0 , θ) 7→ D
B,B
(K,π,St0 ) (Φθ). The continuity of (K,π,St0 , θ) 7→

DB,B
(K,π,St0 ) (Φθ) can be obtained analogously.

Let ε > 0 and let (K,π,St0 , θ) ∈ K1. For any δ̃ > 0, by the continuity of

(Θ, dp)→
(
C(Rnd+ ,R), d∞,B

)
θ 7→ Φθ,
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we can choose δ > 0 sufficiently small such that for all θ̃ ∈ Θ we have that

‖θ − θ̃‖p < δ (IV.1)

implies that
‖Φθ − Φθ̃‖∞,B < δ̃. (IV.2)

Moreover, we can choose δ̃ and δ small enough to ensure that

δ̃ + δ(1 + κ)B + δB < ε/2. (IV.3)

We pick some δ > 0, δ̃ > 0 such that the implication from (IV.1) to (IV.2) is satisfied, and such that (IV.3) holds true and let
(K̃, π̃, S̃t0 , θ̃) ∈ K1 satisfy for all i, j, k that∣∣∣Kcall

ijk − K̃call
ijk

∣∣∣ < δ,
∣∣∣Kput

ijk − K̃
put
ijk

∣∣∣ < δ,

‖θ − θ̃‖p < δ, |Skt0 − S̃
k
t0 | < δ,

|π+
call,i,j,k − π̃

+
call,i,j,k| < δ, |π−call,i,j,k − π̃

−
put,i,j,k| < δ,

|π+
put,i,j,k − π̃

+
call,i,j,k| < δ, |π−put,i,j,k − π̃

−
put,i,j,k| < δ.

(IV.4)

First, assume that
D

B,B

(K̃,π̃,S̃t0 )

(
Φθ̃
)
≥ DB,B

(K,π,St0 ) (Φθ) . (IV.5)

In this case, consider parameters â, (ĉijk)i,j,k, (p̂ijk)i,j,k, (∆̂k
i )i,k such that Ψ

(K,St0 )

(â,ĉijk,p̂ijk,∆̂
k
i )

(s) ≥ Φθ(s) for all s ∈ [0, B]nd,

Σ
(
ĉijk, p̂ijk, ∆̂

k
i

)
≤ B, and such that

C
(

Ψ
(K,St0 )

(â,ĉijk,p̂ijk,∆̂
k
i )
,π
)
≤ DB,B

(K,π,St0 ) (Φθ) + ε/2, (IV.6)

which is possible due to (II.7). Then, we obtain by definition of the semi-static strategies defined in (II.1) and by (IV.4) that∣∣∣∣Ψ(K,St0 )

(â,ĉijk,p̂ijk,∆̂
k
i )

(s)−Ψ
(K̃,S̃t0 )

(â,ĉijk,p̂ijk,∆̂
k
i )

(s)

∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

d∑
k=1

n
opt
ik∑
j=1

[
(ĉ +
ijk − ĉ

−
ijk) ·

(
max

{
ski −Kcall

ijk , 0
}
−max

{
ski − K̃call

ijk , 0
})]

+

n∑
i=1

d∑
k=1

n
opt
ik∑
j=1

[
(p̂ +
ijk − p̂

−
ijk) ·

(
max

{
Kput
ijk − s

k
i , 0
}
−max

{
K̃put
ijk − s

k
i , 0
})]

+

d∑
k=1

(
∆̂k

0(S̃kt0 − S
k
t0) + κ|∆̂k

0 |(|S̃kt0 | − |S
k
t0 |)
)∣∣∣∣∣

≤ δ(1 + κ) · Σ
(
ĉijk, p̂ijk, ∆̂

k
i

)
≤ δ(1 + κ)B

for all s = (s1
1, . . . , s

d
1, . . . , s

1
n, . . . , s

d
n) ∈ [0, B]nd. Thus it holds pointwise on [0, B]nd that

Ψ
(K̃,S̃t0 )

(δ̃+δ(1+κ)B+â,ĉijk,p̂ijk,∆̂
k
i )

= δ̃ + δ(1 + κ)B + Ψ
(K̃,S̃t0 )

(â,ĉijk,p̂ijk,∆̂
k
i )
≥ δ̃ + Ψ

(K,St0 )

(â,ĉijk,p̂ijk,∆̂
k
i )
≥ δ̃ + Φθ ≥ Φθ̃, (IV.7)

where the last inequality follows due to (IV.2), since ‖Φθ − Φθ̃‖∞,B < δ̃. This then yields by the definition of the cost function
in (II.2), by (IV.2), (IV.3), and by (IV.4) that

∣∣∣∣C(Ψ
(K̃,S̃t0 )

(δ̃+δ(1+κ)B+â,ĉijk,p̂ijk,∆̂
k
i )
, π̃

)
− C

(
Ψ

(K,St0 )

(â,ĉijk,p̂ijk,∆̂
k
i )
,π

) ∣∣∣∣ ≤ δ̃ + δ(1 + κ)B + δ

 n∑
i=1

d∑
k=1

n
opt
ik∑
j=1

(ĉ +
ijk + ĉ −ijk + p̂ +

ijk + p̂ −ijk)


≤ δ̃ + δ(1 + κ)B + δB < ε/2.

(IV.8)
Hence, we obtain that

D
B,B

(K̃,π̃,S̃t0 )

(
Φθ̃
)
−DB,B

(K,π,St0 ) (Φθ)

= inf
(a,cijk,pijk,∆

k
i ):

Ψ
(K̃,S̃t0

)

(a,cijk,pijk,∆
k
i

)
≥Φ

θ̃
,

Σ(cijk,pijk,∆k0)≤B

C
(

Ψ
(K̃,S̃t0 )

(a,cijk,pijk,∆
k
i )
, π̃

)
− inf

(a,cijk,pijk,∆
k
i ):

Ψ
(K,St0

)

(a,cijk,pijk,∆
k
i

)
≥Φθ,

Σ(cijk,pijk,∆k0)≤B

C
(

Ψ
(K,St0 )

(a,cijk,pijk,∆
k
i )
,π
)

≤C
(

Ψ
(K̃,S̃t0 )

(δ̃+δ(1+κ)B+â,ĉijk,p̂ijk,∆̂
k
i )
, π̃

)
− C

(
Ψ

(K,St0 )

(â,ĉijk,p̂ijk,∆̂
k
i )
,π
)

+ ε/2 < ε,
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where the last two inequalities are consequences of (IV.3), (IV.5), (IV.6), and (IV.8).
If instead the inequality D

B,B
(K,π,St0 ) (Φθ) ≥ D

B,B

(K̃,π̃,S̃t0 )

(
Φθ̃
)

holds, then in this case we choose parameters ̂̃a, (̂̃cijk)i,j,k,

(̂̃pijk)i,j,k, (
̂̃
∆
k

i )i,k such that Ψ
(K̃,S̃t0 )

(̂̃a,̂̃cijk,̂̃pijk, ̂̃∆ki )
(s) ≥ Φθ̃(s) for all s ∈ [0, B]nd, Σ

(̂̃cijk, ̂̃pijk, ̂̃∆k

i

)
≤ B, and such that

C
(

Ψ
(K̃,S̃t0 )

(̂̃a,̂̃cijk,̂̃pijk, ̂̃∆ki )
, π̃

)
≤ DB,B

(K̃,π̃,S̃t0 )

(
Φθ̃
)

+ ε/2,

and then we repeat the following line of argumentation. This shows part (a).

Remark IV.1. For all ε > 0, (K,π,St0 , θ) ∈ K1, there exists some δ > 0 such that if (IV.4) holds for (K̃, π̃, S̃t0 , θ̃) ∈ K1,
then for all strategies Ψ

(K,St0 )

(a,cijk,pijk,∆
k
i )

satisfying Ψ
(K,St0 )

(a,cijk,pijk,∆
k
i )
≥ Φθ on [0, B]nd and Σ

(
cijk,pijk,∆

k
i

)
≤ B, there exists

some ã ∈ R with
|a− ã| < ε/2 (IV.9)

such that Ψ
(K̃,S̃t0 )

(ã,cijk,pijk,∆
k
i )
≥ Φθ̃ on [0, B]nd. Indeed, let ε > 0, (K,π,St0 , θ) ∈ K1, and choose δ, δ̃ > 0 analogue as in

the proof of Theorem II.2 (a), such that (IV.1), (IV.2), (IV.3), and (IV.4) hold. Then according to (IV.7) we see that the strategy

Ψ
(K̃,S̃t0 )

(δ̃+δ(1+κ)B+a,cijk,pijk,∆
k
i )

fulfils (IV.9).

Proof of Theorem II.2 (b). According to Theorem II.2 (a), the map

(K,π,St0 , θ) 7→
(
D

B,B
(K,π,St0 ) (Φθ) , D

B,B
(K,π,St0 ) (Φθ)

)
is an element of C(K1,R2). Hence, we find according to Proposition II.1 a neural network N1 ∈ NNinput,2 such that (II.8) holds
on K1.

Proof of Theorem II.2 (c). Consider a sequence
(
K(n),π(n),St0

(n), θ(n)
)
n∈N
⊂ K2 with

lim
n→∞

dNinput

(
(K(n),π(n),St0

(n), θ(n)), (K,π,St0 , θ)
)

= 0

for some (K,π,St0 , θ) ∈ K2. Since by assumption B <∞ and by (II.9), the sequence

x
(n)

:=
(
a
∗
, (c
∗
1jk)j,k, (p

∗
1jk)j,k, (∆

k
0

∗
)k

)
(K

(n)
,π

(n)
,St0

(n)
, θ

(n)
),

n ∈ N, is bounded. Thus, there exists at least one accumulation point x ∈ R1+4M+d. Hence, we can find a subsequence (x(nk))k∈N

with limk→∞ d1+4M+d

(
x(nk), x

)
= 0. Then, we obtain by the continuity of D

B,B
, shown in Theorem II.2 (a), and by the

continuity of the cost function C, defined in (II.2), w.r.t. all its arguments, that

D
B,B
(K,π,St0 ) (Φθ) = lim

k→∞
D

B,B

(K(nk),π(nk),St0
(nk))

(
Φ
θ(nk)

)
= lim
k→∞

C
(

Ψ
(K(nk),St0

(nk))

x(nk) ,π(nk)

)
= C

(
Ψ

(K,St0 )
x ,π

)
.

Using the continuity of Ψ w.r.t. its parameters and the continuity of θ 7→ Φθ as in (II.6), we also obtain that Ψ
(K,St0 )
x ≥ Φθ

on [0, B]nd. Moreover, x :=
(
a, (c1jk)j,k, (p1jk)j,k, (∆

k
0)k
)
∈ R1+4M+d satisfies Σ(c1jk,p1jk,∆

k
0) ≤ B. Thus, x is indeed

a minimal super-replication strategy of Φθ for parameters (K,π,St0 , θ). So we have shown that any accumulation point x is
a minimal super-replication strategy of Φθ for parameters (K,π,St0 , θ). Since we assumed that the minimizer is unique, the
accumulation point x is unique and is necessarily the limit of the sequence (x(n))n∈N. Therefore, we have shown that

lim
n→∞

(
a∗, (c∗1jk)j,k, (p

∗
1jk)j,k, (∆

k
0
∗
)k

)
(K(n),π(n),St0

(n), θ(n)) =
(
a∗, (c∗1jk)j,k, (p

∗
1jk)j,k, (∆

k
0
∗
)k

)
(K,π,St0 , θ) .

Proof of Theorem II.2 (d).
According to Theorem II.2 (b), the map

(K,π,St0 , θ) 7→
(
a∗, (c∗1jk)j,k, (p

∗
1jk)j,k, (∆

k
0

∗
)k

)(
K,π,St0 , θ

)
,

is an element of C(K2,R1+4M+d). Thus, by Proposition II.1, there exists some N2 ∈ NNinput,1+4M+d such that (II.10) holds on
K2.

Proof of Theorem III.1. Let ε > 0, N ∈ N, and pick some compact set K ⊂ RN+ . We observe that the map

D(N) :
(
RN+ , dN

)
→ (P1(R+),W)

(x1, . . . , xN ) 7→ 1

N

N∑
i=1

δxi
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is continuous. Indeed, if
RN+ 3 xm = (xm1 , . . . , x

m
N )→ x = (x1, . . . , xN ) ∈ RN+

for m→∞, then we can consider for all m ∈ N the coupling πm := 1
N

∑N
i=1 δ(xi,xmi ) and obtain that

W
(
D(N)(x),D(N)(xm)

)
≤
∫
R2

+

|u− v|dπm(u, v) =
1

N

N∑
i=1

|xi − xmi | → 0 for m→∞. (IV.10)

Since by assumption Φ is upper semi-continuous with supx1,x2∈R+

|Φ(x1,x2)|
1+x1+x2

< ∞, we can apply [56, Theorem 2.9.] which
ensures that for any (µ1, µ2) ∈ P1(R+)× P1(R+) with µ1 � µ2 and (µm1 , µ

m
2 ) ∈ P1(R+)× P1(R+) with µm1 � µm2 , m ∈ N,

satisfying W(µm1 , µ1)→ 0, W(µm2 , µ2)→ 0 for m→∞, it holds

lim
m→∞

∣∣∣∣∣ sup
Q∈M(µm1 , µ

m
2 )

EQ[Φ]− sup
Q∈M(µ1, µ2)

EQ[Φ]

∣∣∣∣∣ = 0. (IV.11)

Since for any set of measures M ⊂ P(R2
+) we have infQ∈M EQ[Φ] = − supQ∈M EQ[−Φ], and since −Φ is also upper semi-

continuous with supx1,x2∈R+

|−Φ(x1,x2)|
1+x1+x2

<∞, we can apply the same arguments to see that

lim
m→∞

∣∣∣∣ inf
Q∈M(µm1 , µ

m
2 )

EQ[Φ]− inf
Q∈M(µ1, µ2)

EQ[Φ]

∣∣∣∣ = 0. (IV.12)

Define the closed set30 C(N) :=
{

(x,y) ∈ RN+ × RN+ : D(N)(x) � D(N)(y)
}

. Then, we obtain by (IV.10), (IV.11), and (IV.12)
the continuity of

(x,y) 7→

(
inf

Q∈M(D(N)(x), D(N)(y))
EQ[Φ], sup

Q∈M(D(N)(x), D(N)(y))
EQ[Φ]

)
on C(N). (IV.13)

Hence, the universal approximation theorem from Proposition II.1 guarantees the existence of a neural network N ∈ N2N,2 such
that

sup
x,y∈K∩C(N)

∥∥∥∥∥N (x,y)−

(
inf

Q∈M(D(N)(x), D(N)(y))
EQ[Φ], sup

Q∈M(D(N)(x), D(N)(y))
EQ[Φ]

)∥∥∥∥∥
2

< ε/2. (IV.14)

Now let (µ1, µ2) ∈ P1(R+)× P1(R+) with µ1 � µ2. Then [6, Theorem 2.4.11.] ensures that

U (N)(µ1) � U (N)(µ2). (IV.15)

This and the continuity of the two-marginal MOT problem with respect to its marginals, as stated in (IV.11) and (IV.12), implies
that there exists some δ > 0 such that if W(U (N)(µ1), µ1) < δ, W(U (N)(µ2), µ2) < δ, then∥∥∥∥( inf

Q∈M(µ1,µ2)
EQ[Φ], sup

Q∈M(µ1,µ2)

EQ[Φ]

)
−

(
inf

Q∈M(U(N)(µ1),U(N)(µ2))
EQ[Φ], sup

Q∈M(U(N)(µ1),U(N)(µ2))

EQ[Φ]

)∥∥∥∥
2

< ε/2.

(IV.16)
By definition of the map D(N) it holds that D(N)

(
x(N)(µi)

)
= U (N)(µi) for i = 1, 2. In particular, we have by (IV.15) that(

x(N)(µ1),x(N)(µ2)
)
∈ C(N). Thus, the triangle inequality and (IV.14) combined with (IV.16) implies that if W(U (N)(µ1), µ1) <

δ, W(U (N)(µ2), µ2) < δ, and x(N)(µ1),x(N)(µ2) ∈ K, then∥∥∥∥∥N (x(N)(µ1),x(N)(µ2)
)
−
(

inf
Q∈M(µ1,µ2)

EQ[Φ], sup
Q∈M(µ1,µ2)

EQ[Φ]

)∥∥∥∥∥
2

≤

∥∥∥∥∥N (x(N)(µ1),x(N)(µ2)
)
−
(

inf
Q∈M(U(N)(µ1),U(N)(µ2))

EQ[Φ], sup
Q∈M(U(N)(µ1),U(N)(µ2))

EQ[Φ]

)∥∥∥∥∥
2

+

∥∥∥∥∥
(

inf
Q∈M(U(N)(µ1),U(N)(µ2))

EQ[Φ], sup
Q∈M(U(N)(µ1),U(N)(µ2))

EQ[Φ]

)
−
(

inf
Q∈M(µ1,µ2)

EQ[Φ], sup
Q∈M(µ1,µ2)

EQ[Φ]

)∥∥∥∥∥
2

<ε,

which shows the assertion.
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