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Abstract

In this paper we introduce a numerical method for parabolic PDEs that combines

operator splitting with deep learning. It divides the PDE approximation problem

into a sequence of separate learning problems. Since the computational graph for

each of the subproblems is comparatively small, the approach can handle extremely

high-dimensional PDEs. We test the method on different examples from physics,

stochastic control, and mathematical finance. In all cases, it yields very good results

in up to 10,000 dimensions with short run times.
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1 Introduction

In this paper we derive a numerical scheme for parabolic PDEs of the form

∂
∂t
u(t, x) = F

(

x, u(t, x),∇xu(t, x)
)

+ 1
2
Trace

(

σ(x)[σ(x)]∗ Hessx u(t, x)
)

(1)

with u(0, x) = ϕ(x) for (t, x) ∈ [0, T ] × Rd where F : Rd × R × Rd → R, σ : Rd → Rd×d,
and ϕ : Rd → R are suitable continuous functions. Such PDEs describe various phenom-
ena in nature, engineering, economics, and finance. They typically do not admit closed
form solutions and, therefore, have to be solved numerically. In some applications, the
dimension d can be high. For instance, in physics and engineering applications, x ∈ Rd

typically models the coordinates of all components of a given system and in derivative
pricing and optimal investment problems, d usually is the number of underlying assets.
Many classical PDEs, such as the standard heat and Black–Scholes equations are linear.
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Using the Feynman–Kac representation, their solutions can efficiently be approximated in
high dimensions with simple Monte Carlo averages. But if constraints or frictions are taken
into account or the PDE describes a control problem, the function F is no longer linear
and equation (1) becomes much more challenging to solve for large d.

Numerical methods for PDEs have a long history. Classical approaches like finite dif-
ferences and finite elements (see, e.g., [11, 69, 93]) are deterministic. In their standard
form, they work well for d = 1, 2 and 3, but their complexity grows exponentially in d.
To tackle higher dimensional problems, different simulation-based approaches have been
developed that exploit a stochastic representation of the solution of the PDE. For in-
stance, the articles [1, 5, 6, 10, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 34, 35, 36, 37, 38,
39, 52, 68, 71, 72, 75, 76, 77, 82, 83, 85, 87, 88, 89, 94, 96] use BSDE representations
of PDEs and introduce and study approximation methods based on recursive polyno-
mial regressions, the articles [48, 50, 51, 80, 91, 95] suggest and analyze approximation
methods based on branching diffusion processes, and the articles [27, 28, 55, 57, 58] pro-
pose and investigate full-history recursive multilevel Picard (MLP) approximation meth-
ods. Recently, numerical methods for possibly high-dimensional PDEs have been pro-
posed in [26, 46] based on the idea to reformulate the PDE as a stochastic learning prob-
lem, which opens the door to the application of deep learning. We also refer, e.g., to
[2, 3, 4, 8, 12, 29, 31, 32, 40, 47, 49, 53, 60, 73, 74, 78, 86, 90] for modifications and ex-
tensions of such deep learning based approximation methods for PDEs. There are also
already a few rigorous mathematical results in the scientific literature which provide, at
least partially, convergence analyses for such deep learning based approximation methods
for PDEs. In particular, we refer, e.g., to [47, 90] for mathematical convergence results for
such deep learning based PDE approximation methods with no information on the con-
vergence speed and we refer, e.g., to [9, 30, 42, 54, 61, 67] for mathematical convergence
and tractability results for such deep learning based PDE approximation methods with
dimension-independent convergence rates and error constants which depend only polyno-
mially on the dimension.

In this paper we develop a new deep learning method for parabolic PDEs that splits
the differential operator into a linear and a nonlinear part. More precisely, we write

F
(

x, u(t, x),∇xu(t, x)
)

= 〈µ(x),∇xu(t, x)〉Rd + f
(

x, u(t, x),∇xu(t, x)
)

(2)

for (t, x) ∈ [0, T ]×Rd and suitable continuous functions µ : Rd → Rd and f : Rd×R×Rd →
R. This decomposition is not unique. But the idea is that µ is chosen such that the nonlin-
earity f

(

x, u(t, x),∇xu(t, x)
)

becomes small. Then we solve the PDE iteratively over small
time intervals by approximating f

(

x, u(t, x),∇xu(t, x)
)

and using the Feynman–Kac rep-
resentation locally. This requires a recursive computation of conditional expectations. We
approximate them by formulating them as minimization problems that can be approached
with deep learning. This decomposes the PDE approximation problem into a sequence of
separate learning problems. Since the computational graph for each of the subproblems is
comparatively small, the method works for very high-dimensional problems.
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The rest of the paper is organized as follows. In Section 2 we introduce the framework
and derive the deep splitting method. In Section 3 we test the approach on four differ-
ent high-dimensional examples: a Hamilton–Jacobi–Bellman (HJB) equation, a nonlinear
Black–Scholes equation, an Allen–Cahn equation, and a nonlinear heat equation.

2 Derivation of the proposed approximation algorithm

Let T ∈ (0,∞), d ∈ N, let ϕ : Rd → R be a continuous function, let µ : Rd → Rd and
σ : Rd → Rd×d be Lipschitz continuous functions, let f : Rd ×R×Rd → R be a continuous
and at most polynomially growing function, and let u = (u(t, x))(t,x)∈[0,T ]×Rd ∈ C1,2([0, T ]×
R

d,R) be a function with at most polynomially growing derivatives which satisfies for every
t ∈ [0, T ], x ∈ Rd that u(0, x) = ϕ(x) and

( ∂
∂t
u)(t, x) = f

(

x, u(t, x), (∇xu)(t, x)
)

+
〈

µ(x), (∇xu)(t, x)
〉

Rd

+ 1
2
Trace

(

σ(x)[σ(x)]∗(Hessx u)(t, x)
)

.
(3)

Our goal is to approximately calculate under suitable hypotheses the solution u : [0, T ]×
Rd → R of the PDE (3).

2.1 Temporal discretization

In this subsection we discretize the PDE (3) in time by employing the splitting-up method
(cf., for example, [41, 43, 44]) to obtain a semi-discrete approximation problem. To this
end let N ∈ N, t0, t1, . . . , tN ∈ [0, T ] be real numbers such that

0 = t0 < t1 < . . . < tN = T. (4)

Observe that (3) yields that for every t ∈ [0, T ], x ∈ R
d it holds that

u(t, x) = ϕ(x) +

∫ t

0

f
(

x, u(s, x), (∇xu)(s, x)
)

ds

+

∫ t

0

[

1
2
Trace

(

σ(x)[σ(x)]∗(Hessx u)(s, x)
)

+
〈

µ(x), (∇xu)(s, x)
〉

Rd

]

ds.

(5)

Hence, we obtain that for every n ∈ {0, 1, . . . , N − 1}, t ∈ [tn, tn+1], x ∈ Rd it holds that

u(t, x) = u(tn, x) +

∫ t

tn

f
(

x, u(s, x), (∇xu)(s, x)
)

ds

+

∫ t

tn

[

1
2
Trace

(

σ(x)[σ(x)]∗(Hessx u)(s, x)
)

+
〈

µ(x), (∇xu)(s, x)
〉

Rd

]

ds.

(6)
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This illustrates for every n ∈ {0, 1, . . . , N − 1}, t ∈ [tn, tn+1], x ∈ R
d that

u(t, x) ≈ u(tn, x) +

∫ tn+1

tn

f
(

x, u(tn, x), (∇xu)(tn, x)
)

ds

+

∫ t

tn

[

1
2
Trace

(

σ(x)[σ(x)]∗(Hessx u)(s, x)
)

+
〈

µ(x), (∇xu)(s, x)
〉

Rd

]

ds.

(7)

This, in turn, suggests for every n ∈ {0, 1, . . . , N − 1}, t ∈ [tn, tn+1], x ∈ Rd that

u(t, x) ≈ u(tn, x) + f
(

x, u(tn, x), (∇xu)(tn, x)
)

(tn+1 − tn)

+

∫ t

tn

[

1
2
Trace

(

σ(x)[σ(x)]∗(Hessx u)(s, x)
)

+
〈

µ(x), (∇xu)(s, x)
〉

Rd

]

ds.
(8)

To derive the splitting-up approximation let U : (0, T ] × Rd → R be a function which
satisfies for every n ∈ {0, 1, . . . , N − 1} that (Ut(x))(t,x)∈(tn ,tn+1]×Rd ∈ C1,2((tn, tn+1] ×
Rd,R) has at most polynomially growing derivatives, which satisfies for every x ∈ Rd

that
∫ T

0
‖(HessUs)(x)‖Rd×d + ‖(∇Us)(x)‖Rd ds < ∞, and which satisfies for every n ∈

{0, 1, . . . , N − 1}, t ∈ (tn, tn+1], x ∈ Rd that

Ut(x) = u(tn, x) + f
(

x, u(tn, x), (∇xu)(tn, x)
)

(tn+1 − tn)

+

∫ t

tn

[

1
2
Trace

(

σ(x)[σ(x)]∗(HessUs)(x)
)

+
〈

µ(x), (∇Us)(x)
〉

Rd

]

ds
(9)

(cf., for example, Hairer et al. [45, Section 4.4], Deck & Kruse [21], Krylov [65, Chapter
8], and Krylov [66, Theorem 4.32] for existence, uniqueness, and regularity results for (9)).
Note that (8) and (9) suggest for every n ∈ {1, 2, . . . , N}, x ∈ Rd that

Utn(x) ≈ u(tn, x). (10)

Next let V : [0, T ]× Rd → R be a function which satisfies for every n ∈ {0, 1, . . . , N − 1}
that (Vt(x))(t,x)∈(tn,tn+1]×Rd ∈ C1,2((tn, tn+1] × Rd,R) has at most polynomially growing

derivatives, which satisfies for every x ∈ Rd that
∫ T

0
‖(Hess Vs)(x)‖Rd×d+‖(∇Vs)(x)‖Rd ds <

∞, and which satisfies for every n ∈ {0, 1, . . . , N − 1}, t ∈ (tn, tn+1], x ∈ R
d that V0(x) =

ϕ(x) and

Vt(x) = Vtn(x) + f
(

x, Vtn(x), (∇Vtn)(x)
)

(tn+1 − tn)

+

∫ t

tn

[

1
2
Trace

(

σ(x)[σ(x)]∗(Hess Vs)(x)
)

+
〈

µ(x), (∇Vs)(x)
〉

Rd

]

ds
(11)

(cf., for example, Hairer et al. [45, Section 4.4], Deck & Kruse [21], Krylov [65, Chapter 8],
and Krylov [66, Theorem 4.32] for existence, uniqueness, and regularity results for (11)).
Note that (9) and (11) suggest for every n ∈ {1, 2, . . . , N}, x ∈ Rd that

Vtn(x) ≈ Utn(x). (12)
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Combining this with (10), in turn, suggests for every n ∈ {0, 1, . . . , N}, x ∈ R
d that

Vtn(x) ≈ u(tn, x). (13)

Observe that the function V is a specific splitting-up type approximation for the function
u (cf., for example, [23, 41, 43, 44]). In the next subsection we derive a Feynman–Kac
representation for V (cf., for example, Milstein & Tretyakov [84, Section 2]).

2.2 An approximate Feynman–Kac representation

In the following we introduce artificial stochastic processes in order to incorporate a
Feynman–Kac type representation into (11). Let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered prob-
ability space which fulfills the usual conditions, let B : [0, T ] × Ω → Rd be a standard
(Ω,F ,P, (Ft)t∈[0,T ])-Brownian motion, let ξ : Ω → Rd be an F0/B(Rd)-measurable func-
tion which satisfies for every p ∈ (0,∞) that E[‖ξ‖p

Rd] <∞, and let Y : [0, T ]×Ω → Rd be
an (Ft)t∈[0,T ]-adapted stochastic process with continuous sample paths which satisfies that
for every t ∈ [0, T ] it holds P-a.s. that

Yt = ξ +

∫ t

0

µ(Ys) ds+

∫ t

0

σ(Ys) dBs. (14)

Note that the assumption that for every p ∈ (0,∞) it holds that E[‖ξ‖p
Rd] < ∞ and the

assumption that µ : Rd → Rd and σ : Rd → Rd×d are Lipschitz continuous functions ensure
that for every p ∈ (0,∞) it holds that

sup
t∈[0,T ]

E

[

‖Yt‖pRd

]

<∞ (15)

(cf., for example, Stroock [92, Section 1.2]). Moreover, observe that (11) implies that for
every n ∈ {0, 1, . . . , N − 1}, t ∈ (tn, tn+1), x ∈ Rd it holds that

∂
∂t

[

Vt(x)
]

=
〈

µ(x), (∇Vt)(x)
〉

Rd
+ 1

2
Trace

(

σ(x)[σ(x)]∗(Hess Vt)(x)
)

. (16)

This, in turn, assures that for every n ∈ {0, 1, . . . , N − 1}, t ∈ (T − tn+1, T − tn), x ∈ Rd

it holds that

∂
∂t

[

VT−t(x)
]

+
〈

µ(x), (∇VT−t)(x)
〉

Rd
+ 1

2
Trace

(

σ(x)[σ(x)]∗(Hess VT−t)(x)
)

= 0. (17)

Next note that Itô’s formula, the hypothesis that for every n ∈ {0, 1, . . . , N − 1} it holds
that (Vt(x))(t,x)∈(tn ,tn+1]×Rd ∈ C1,2((tn, tn+1]×Rd,R) (cf. (11)), and (14) guarantee that for
every n ∈ {0, 1, . . . , N − 1}, r, t ∈ [T − tn+1, T − tn) with r < t it holds P-a.s. that

VT−t(Yt) = VT−r(Yr) +

∫ t

r

〈

(∇VT−s)(Ys), σ(Ys) dBs

〉

Rd
+

∫ t

r

(

∂
∂s

[

VT−s

])

(Ys) ds

+

∫ t

r

1
2
Trace

(

σ(Ys)[σ(Ys)]
∗(HessVT−s)(Ys)

)

ds

+

∫ t

r

〈

µ(Ys), (∇VT−s)(Ys)
〉

Rd
ds.

(18)
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Combining this with (17) implies that for every n ∈ {0, 1, . . . , N−1}, r, t ∈ [T−tn+1, T−tn)
with r < t it holds P-a.s. that

VT−t(Yt) = VT−r(Yr) +

∫ t

r

〈

(∇VT−s)(Ys), σ(Ys) dBs

〉

Rd
. (19)

Hence, we obtain that for every n ∈ {0, 1, . . . , N − 1}, t ∈ (T − tn+1, T − tn) it holds P-a.s.
that

VT−t(Yt) = Vtn+1(YT−tn+1) +

∫ t

T−tn+1

〈

(∇VT−s)(Ys), σ(Ys) dBs

〉

Rd
. (20)

Furthermore, note that (15), the hypothesis that σ : Rd → R
d×d is a Lipschitz continuous

function, and the fact that for every n ∈ {0, 1, . . . , N − 1} it holds that (tn, tn+1] × Rd ∋
(t, x) 7→ (∇Vt)(x) ∈ Rd is an at most polynomially growing function assure that for every
n ∈ {0, 1, . . . , N − 1}, t ∈ (T − tn+1, T − tn) it holds that

∫ t

T−tn+1

E

[

∥

∥[σ(Ys)]
∗(∇VT−s)(Ys)

∥

∥

2

Rd

]

ds <∞. (21)

Therefore, we obtain that for every n ∈ {0, 1, . . . , N − 1}, t ∈ (T − tn+1, T − tn) it holds
P-a.s. that

E

[
∫ t

T−tn+1

〈

(∇VT−s)(Ys), σ(Ys) dBs

〉

Rd

∣

∣

∣
FT−tn+1

]

= 0. (22)

This and (20) demonstrate that for every n ∈ {0, 1, . . . , N − 1}, t ∈ [T − tn+1, T − tn) it
holds P-a.s. that

E

[

VT−t(Yt)
∣

∣FT−tn+1

]

= E

[

Vtn+1(YT−tn+1)
∣

∣FT−tn+1

]

. (23)

The fact that for every n ∈ {0, 1, . . . , N − 1} it holds that the function Ω ∋ ω 7→
Vtn+1(YT−tn+1(ω)) ∈ R is FT−tn+1/B(R)-measurable hence implies that for every n ∈ {0, 1,
. . . , N − 1}, t ∈ [T − tn+1, T − tn) it holds P-a.s. that

E

[

VT−t(Yt)
∣

∣FT−tn+1

]

= Vtn+1(YT−tn+1). (24)

In the next step we combine the hypothesis that for every n ∈ {0, 1, . . . , N−1} it holds that
(Vt(x))(t,x)∈(tn ,tn+1]×Rd ∈ C1,2((tn, tn+1] × R

d,R) has at most polynomially growing deriva-
tives, (11), the fact that for every ω ∈ Ω it holds that [0, T ] ∋ t 7→ Yt(ω) ∈ Rd is a continu-

ous function, and the hypothesis that for every x ∈ R
d it holds that

∫ T

0
‖(Hess Vs)(x)‖Rd×d+

‖(∇Vs)(x)‖Rd ds <∞ to obtain that for every ω ∈ Ω, n ∈ {0, 1, . . . , N − 1} it holds that

lim sup
tրT−tn

∣

∣

∣
VT−t(Yt(ω))−

[

Vtn(YT−tn(ω))

+ f
(

YT−tn(ω), Vtn(YT−tn(ω)), (∇Vtn)(YT−tn(ω))
)

(tn+1 − tn)
]

∣

∣

∣
= 0.

(25)
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In addition, note that the fact that [0, T ]×R
d ∋ (t, x) 7→ Vt(x) ∈ R is an at most polynomi-

ally growing function and the fact that for every p ∈ (0,∞) it holds that supt∈[0,T ]E[‖Yt‖pRd]
<∞ guarantee that for every t ∈ [0, T ], p ∈ (1,∞) it holds that

E

[

|VT−t(Yt)|p
]

<∞. (26)

Combining (25) and, e.g., Hutzenthaler et al. [56, Proposition 4.5] therefore demonstrates
that for every n ∈ {0, 1, . . . , N − 1} it holds that

lim sup
tրT−tn

E

[

∣

∣VT−t(Yt)−
[

Vtn(YT−tn)+f
(

YT−tn , Vtn(YT−tn), (∇Vtn)(YT−tn)
)

(tn+1− tn)
]∣

∣

]

= 0.

(27)
This and (24) yield that for every n ∈ {0, 1, . . . , N − 1} it holds P-a.s. that

Vtn+1(YT−tn+1)

= E

[

Vtn(YT−tn) + f
(

YT−tn, Vtn(YT−tn), (∇Vtn)(YT−tn)
)

(tn+1 − tn)
∣

∣FT−tn+1

]

.
(28)

The tower property for conditional expectations therefore assures that for every n ∈
{0, 1, . . . , N − 1} it holds P-a.s. that

E

[

Vtn+1(YT−tn+1) |YT−tn+1

]

= E

[

Vtn(YT−tn) + f
(

YT−tn , Vtn(YT−tn), (∇Vtn)(YT−tn)
)

(tn+1 − tn)
∣

∣YT−tn+1

]

.
(29)

In addition, observe that the fact that for every n ∈ {0, 1, . . . , N − 1} it holds that the
function Ω ∋ ω 7→ YT−tn+1(ω) ∈ Rd is S(YT−tn+1)/B(Rd)-measurable assures that for every
n ∈ {0, 1, . . . , N − 1} it holds P-a.s. that

Vtn+1(YT−tn+1) = E

[

Vtn+1(YT−tn+1) |YT−tn+1

]

. (30)

This and (29) imply that for every n ∈ {0, 1, . . . , N − 1} it holds P-a.s. that

Vtn+1(YT−tn+1)

= E

[

Vtn(YT−tn) + f(YT−tn, Vtn(YT−tn), (∇Vtn)(YT−tn)) (tn+1 − tn)
∣

∣YT−tn+1

]

.
(31)

Equation (31) constitutes the Feynman–Kac type representation we were aiming at. Note
that in (3) the coefficient functions µ : Rd → Rd and σ : Rd → Rd×d and the nonlinearity
f : Rd×R×R

d → R do not depend on t ∈ [0, T ]. The above sketched derivation, however,
could under suitable assumptions also be performed in the case of time-dependent coeffi-
cient functions and nonlinearities as the classical Feynman–Kac formula holds also in the
time-dependent case. In the following subsection we employ the factorization lemma (cf.,
for example, Klenke [63, Corollary 1.97]) and the L2-minimality property of conditional
expectations (cf., for example, Klenke [63, Corollary 8.17]) to reformulate (31) as recursive
minimization problems.

8



2.3 Formulation as recursive minimization problems

In this subsection we reformulate (31) as recursive minimization problems. For this we
combine the fact that for every n ∈ {0, 1, . . . , N} it holds that R

d ∋ x 7→ Vtn(x) +
f(x, Vtn(x), (∇Vtn)(x))(tn+1 − tn) ∈ R is an at most polynomially growing function and
the fact that for every p ∈ (0,∞) it holds that supt∈[0,T ]E[‖Yt‖pRd] <∞ to obtain that for
every n ∈ {0, 1, . . . , N − 1} it holds that

E

[

∣

∣Vtn(YT−tn) + f
(

YT−tn , Vtn(YT−tn), (∇Vtn)(YT−tn)
)

(tn+1 − tn)
∣

∣

2
]

<∞. (32)

The factorization lemma, the L2-minimality property for conditional expectations, e.g., in
Klenke [63, Corollary 8.17] (with X = Ω ∋ ω 7→ Vtn(YT−tn(ω))+f(YT−tn(ω), Vtn(YT−tn(ω)),
(∇Vtn)(YT−tn(ω))) (tn+1 − tn) ∈ R, F = S(YT−tn+1), A = F in the notation of [63, Corol-
lary 8.17]), the fact that for every n ∈ {0, 1, . . . , N−1} it holds that Rd ∋ x 7→ Vtn+1(x) ∈ R

is a continuous function, and (31) hence imply that for every n ∈ {0, 1, . . . , N −1} it holds
that

(Vtn+1(x))x∈supp(YT−tn+1
(P)) = argmin

v∈C(supp(YT−tn+1
(P)),R)

E

[

∣

∣v(YT−tn+1)−
[

Vtn(YT−tn)

+ f
(

YT−tn, Vtn(YT−tn), (∇Vtn)(YT−tn)
)

(tn+1 − tn)
]∣

∣

2
]

. (33)

Therefore, we obtain that for every n ∈ {1, 2, . . . , N} it holds that

(Vtn(x))x∈supp(YT−tn
(P)) = argmin

v∈C(supp(YT−tn
(P)),R)

E

[

∣

∣v(YT−tn)−
[

Vtn−1(YT−tn−1)

+ f
(

YT−tn−1 , Vtn−1(YT−tn−1), (∇Vtn−1)(YT−tn−1)
)

(tn − tn−1)
]∣

∣

2
]

. (34)

In the following subsections we approximate for every n ∈ {1, 2, . . . , N} the function
supp(YT−tn(P)) ∋ x 7→ Vtn(x) ∈ R by suitable deep artificial neural networks.

2.4 Deep artificial neural network approximations

In this subsection we employ for every n ∈ {1, 2, . . . , N} suitable approximations for the
function

supp(YT−tn(P)) ∋ x 7→ Vtn(x) ∈ R. (35)

More specifically, let ν ∈ N and let Vn = (Vn(θ, x))(θ,x)∈Rν×Rd : Rν × R
d → R, n ∈

{0, 1, . . . , N}, be continuously differentiable functions which satisfy for every θ ∈ Rν ,
x ∈ Rd that V0(θ, x) = ϕ(x). For every n ∈ {1, 2, . . . , N}, x ∈ supp(YT−tn(P)) we
think for suitable θ ∈ Rν of Vn(θ, x) ∈ R as an appropriate approximation

Vn(θ, x) ≈ Vtn(x) (36)
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of Vtn(x). We suggest to choose the functions Vn : R
ν × R

d → R, n ∈ {1, 2, . . . , N}, as
artificial neural networks (cf., for example, [7, 70]). For example, for every k ∈ N let
Lk : R

k → Rk be the multidimensional version of the standard logistic function which
satisfies for every x = (x1, x2, . . . , xk) ∈ Rk that

Lk(x) =

(

exp(x1)

exp(x1) + 1
,

exp(x2)

exp(x2) + 1
, . . . ,

exp(xk)

exp(xk) + 1

)

, (37)

for every θ = (θ1, θ2, . . . , θν) ∈ Rν , v ∈ N0 = {0} ∪ N, k, l ∈ N with v + l(k + 1) ≤ ν let
Aθ,v

k,l : R
k → R

l be the function which satisfies for every x = (x1, x2, . . . , xk) that

Aθ,v
k,l (x) =















θv+1 θv+2 . . . θv+k

θv+k+1 θv+k+2 . . . θv+2k

θv+2k+1 θv+2k+2 . . . θv+3k
...

...
...

...
θv+(l−1)k+1 θv+(l−1)k+2 . . . θv+lk





























x1
x2
x3
...
xk















+















θv+lk+1

θv+lk+2

θv+lk+3
...

θv+lk+l















, (38)

let s ∈ {3, 4, 5, 6, . . .}, assume that s(N + 1)d(d + 1) ≤ ν, and let Vn : R
ν × Rd → R,

n ∈ {0, 1, . . . , N}, be the functions which satisfy for every n ∈ {1, 2, . . . , N}, θ ∈ Rν ,
x ∈ Rd that V0(θ, x) = ϕ(x) and

Vn(θ, x) = (39)
(

A
θ,(sn+s−1)d(d+1)
d,1 ◦ Ld ◦ Aθ,(sn+s−2)d(d+1)

d,d ◦ . . . ◦ Ld ◦ Aθ,(sn+1)d(d+1)
d,d ◦ Ld ◦Aθ,snd(d+1)

d,d

)

(x).

For every n ∈ {1, 2, . . . , N} the function Vn : R
ν × Rd → R in (39) describes an artificial

neural network with s + 1 layers (1 input layer with d neurons, s − 1 hidden layers with
d neurons each, and 1 output layer with 1 neuron) and multidimensional versions of the
standard logistic function as activation functions (see (37)). In our numerical simulations
we use as activation functions multidimensional versions of the standard rectifier function
instead of multidimensional versions of the standard logistic function. To avoid technical
difficulties, which would arise due to the fact that the rectifier function is not everywhere
differentiable, we restrict ourselves in (37)–(39) in this illustrative section to the smooth
standard logistic function instead of the rectifier function.

2.5 Stochastic gradient descent based minimization

We intend to find suitable θ1, θ2, . . . , θN ∈ R
ν in (36) by recursive minimization. More

precisely, we intend to find for n ∈ {1, 2, . . . , N}, θ0, θ1, . . . , θn−1 ∈ Rν a suitable θn ∈ Rν

as an approximate minimizer of the function

R
ν ∋ θ 7→ E

[

∣

∣Vn(θ, YT−tn)−
[

Vn−1(θ
n−1, YT−tn−1)

+ f
(

YT−tn−1 ,Vn−1(θ
n−1, YT−tn−1), (∇xVn−1)(θ

n−1, YT−tn−1)
)

(tn − tn−1)
]∣

∣

2
]

∈ R (40)
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(cf. (34) and (36) above). To this end let Bm : [0, T ]×Ω → R
d, m ∈ N0, be i.i.d. standard

(Ω,F ,P, (Ft)t∈[0,T ])-Brownian motions, let ξm : Ω → Rd, m ∈ N0, be i.i.d. F0/B(Rd)-
measurable functions, for every m ∈ N0 let Y m : [0, T ]× Ω → Rd be an (Ft)t∈[0,T ]-adapted
stochastic process with continuous sample paths which satisfies that for every t ∈ [0, T ] it
holds P-a.s. that

Y m
t = ξm +

∫ t

0

µ(Y m
s ) ds+

∫ t

0

σ(Y m
s ) dBm

s , (41)

let γ ∈ (0,∞), M ∈ N, and let ϑn = (ϑnm)m∈N0 : N0 × Ω → Rν , n ∈ {0, 1, . . . , N}, be
stochastic processes which satisfy for every n ∈ {1, 2, . . . , N}, m ∈ N0 that

ϑnm+1 = ϑnm − 2γ · (∇θVn)(ϑ
n
m, Y

m
T−tn

) ·
[

Vn(ϑ
n
m, Y

m
T−tn

)− Vn−1(ϑ
n−1
M , Y m

T−tn−1
)

− f
(

Y m
T−tn−1

,Vn−1(ϑ
n−1
M , Y m

T−tn−1
), (∇xVn−1)(ϑ

n−1
M , Y m

T−tn−1
)
)

(tn − tn−1)
]

. (42)

2.6 Discretization of the auxiliary stochastic process Y

Equation (42) provides an implementable numerical algorithm in the special case where
one can simulate exactly from the solution processes Y m : [0, T ]×Ω → R

d, m ∈ N0, of the
SDEs in (41) (cf. also (14) above). In the case where it is not possible to simulate exactly
from the solution processes Y m : [0, T ] × Ω → Rd, m ∈ N0, of the SDEs in (41), one can
employ a numerical approximation method for SDEs, say, the Euler–Maruyama scheme,
to approximatively simulate from the solution processes Y m : [0, T ] × Ω → Rd, m ∈ N0,
of the SDEs in (41). This is the subject of this subsection. More formally, note that (41)
implies that for every m ∈ N0, r, t ∈ [0, T ] with r ≤ t it holds P-a.s. that

Y m
t = Y m

r +

∫ t

r

µ(Y m
s ) ds+

∫ t

r

σ(Y m
s ) dBm

s . (43)

Hence, we obtain that for every m ∈ N0, n ∈ {0, 1, . . . , N − 1} it holds P-a.s. that

Y m
T−tn

= Y m
T−tn+1

+

∫ T−tn

T−tn+1

µ(Y m
s ) ds+

∫ T−tn

T−tn+1

σ(Y m
s ) dBm

s . (44)

This shows that for every m ∈ N0, n ∈ {0, 1, . . . , N − 1} it holds P-a.s. that

Y m
T−tN−(n+1)

= Y m
T−tN−n

+

∫ T−tN−(n+1)

T−tN−n

µ(Y m
s ) ds+

∫ T−tN−(n+1)

T−tN−n

σ(Y m
s ) dBm

s . (45)

Next we introduce suitable real numbers which allow us to formulate (45) in a more compact
way. More formally, let τn ∈ [0, T ], n ∈ {0, 1, . . . , N}, be the real numbers which satisfy
for every n ∈ {0, 1, . . . , N} that

τn = T − tN−n. (46)
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Observe that (4) ensures that

0 = τ0 < τ1 < · · · < τN = T. (47)

Moreover, note that (45) and (46) demonstrate that for every m ∈ N0, n ∈ {0, 1, . . . , N−1}
it holds P-a.s. that

Y m
τn+1

= Y m
τn

+

∫ τn+1

τn

µ(Y m
s ) ds+

∫ τn+1

τn

σ(Y m
s ) dBm

s . (48)

This suggests for every m ∈ N0, n ∈ {0, 1, . . . , N − 1} that

Y m
τn+1

≈ Y m
τn

+ µ(Y m
τn
) (τn+1 − τn) + σ(Y m

τn
) (Bm

τn+1
−Bm

τn
). (49)

Based on (49) we now introduce suitable Euler–Maruyama approximations for the solution
processes Y m : [0, T ] × Ω → Rd, m ∈ N0, of the SDEs in (41). More formally, for every
m ∈ N0 let Ym = (Ym

n )n∈{0,1,...,N} : {0, 1, . . . , N} ×Ω → R
d be the stochastic process which

satisfies for every n ∈ {0, 1, . . . , N − 1} that

Ym
n+1 = Ym

n + µ(Ym
n ) (τn+1 − τn) + σ(Ym

n ) (Bm
τn+1

−Bm
τn
). (50)

Observe that (46), (49), and (50) suggest for every m ∈ N0, n ∈ {0, 1, . . . , N} that

Ym
n ≈ Y m

τn
= Y m

T−tN−n
. (51)

This, in turn, suggests for every m ∈ N0, n ∈ {0, 1, . . . , N} that

Y m
T−tn

≈ Ym
N−n. (52)

In the next step we employ (52) to derive approximations of the stochastic processes
ϑn : N0×Ω → R

ν , n ∈ {0, 1, . . . , N}, in (42) which are also implementable in the case where
one cannot simulate exactly from the solution processes Y m : [0, T ]× Ω → Rd, m ∈ N0, of
the SDEs in (41). More precisely, let Θn = (Θn

m)m∈N0 : N0 × Ω → R, n ∈ {0, 1, . . . , N}, be
stochastic processes which satisfy for every n ∈ {1, 2, . . . , N}, m ∈ N0 that

Θn
m+1 = Θn

m − 2γ · (∇θVn)(Θ
n
m,Ym

N−n) ·
[

Vn(Θ
n
m,Ym

N−n)− Vn−1(Θ
n−1
M ,Ym

N−n+1)

− f
(

Ym
N−n+1,Vn−1(Θ

n−1
M ,Ym

N−n+1), (∇xVn−1)(Θ
n−1
M ,Ym

N−n+1)
)

(tn − tn−1)
]

. (53)

Note that (42), (52), and (53) suggest for every n ∈ {1, 2, . . . , N} and every sufficiently
large m ∈ N0 that

Θn
m ≈ ϑnm. (54)

In the following two subsections (Subsection 2.7 and Subsection 2.8) we merge the above
derivations to precisely formulate the proposed approximation algorithm, first, in a special
case (Subsection 2.7) and, thereafter, in the general case (Subsection 2.8).
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2.7 Description of the algorithm in a special case

In this subsection we depict the deep splitting method in the special case where the standard
Euler–Maruyama scheme (cf., e.g., [64, 79, 81]) is the used approximation scheme for
discretizing (41) (cf. (50)) and where the plain vanilla stochastic gradient descent method
with constant learning rate γ ∈ (0,∞) and batch size 1 is the used minimization algorithm.
A more general description of the deep splitting method, which allows to include more
advanced machine learning approximation techniques such as batch normalization (cf., for
instance, Ioffe & Szegedy [59]) and the Adam optimizer (cf., for example, Kingma & Ba
[62]), can be found in Subsection 2.8 below.

Framework 2.1 (Special case). Let T, γ ∈ (0,∞), d,N,M ∈ N, ϕ ∈ C2(Rd,R), s ∈
{3, 4, 5, . . .}, ν = s(N + 1)d(d+ 1), t0, t1, . . . , tN ∈ [0, T ] satisfy

0 = t0 < t1 < . . . < tN = T, (55)

let τ0, τ1, . . . , τn ∈ [0, T ] satisfy for every n ∈ {0, 1, . . . , N} that τn = T − tN−n, let f : R
d×

R×Rd → R, µ : Rd → Rd, σ : Rd → Rd×d be continuous functions, let (Ω,F ,P, (Ft)t∈[0,T ])
be a filtered probability space, let ξm : Ω → Rd, m ∈ N0, be i.i.d. F0/B(Rd)-measurable
random variables, let Bm : [0, T ]×Ω → Rd, m ∈ N0, be i.i.d. standard (Ω,F ,P, (Ft)t∈[0,T ])-
Brownian motions, for every m ∈ N0 let Ym : {0, 1, . . . , N} × Ω → Rd be the stochastic
process which satisfies for every k ∈ {0, 1, . . . , N − 1} that Ym

0 = ξm and

Ym
k+1 = Ym

k + µ(Ym
k ) (τk+1 − τk) + σ(Ym

k ) (Bm
τk+1

− Bm
τk
), (56)

let Ld : R
d → Rd be the function which satisfies for every x = (x1, x2, . . . , xd) ∈ Rd that

Ld(x) =

(

exp(x1)

exp(x1) + 1
,

exp(x2)

exp(x2) + 1
, . . . ,

exp(xd)

exp(xd) + 1

)

, (57)

for every θ = (θ1, θ2, . . . , θν) ∈ Rν, k, l ∈ N, v ∈ N0 = {0} ∪ N with v + l(k + 1) ≤ ν let
Aθ,v

k,l : R
k → Rl be the function which satisfies for every x = (x1, x2, . . . , xk) ∈ Rk that

Aθ,v
k,l (x) =

(

θv+kl+1 +

[

k
∑

i=1

xi θv+i

]

, . . . , θv+kl+l +

[

k
∑

i=1

xi θv+(l−1)k+i

])

, (58)

let Vn : R
ν × Rd → R, n ∈ {0, 1, . . . , N}, be the functions which satisfy for every n ∈

{1, 2, . . . , N}, θ ∈ Rν, x ∈ Rd that V0(θ, x) = ϕ(x) and

Vn(θ, x) = (59)
(

A
θ,(sn+s−1)d(d+1)
d,1 ◦ Ld ◦ Aθ,(sn+s−2)d(d+1)

d,d ◦ . . . ◦ Ld ◦ Aθ,(sn+1)d(d+1)
d,d ◦ Ld ◦Aθ,snd(d+1)

d,d

)

(x),
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let Θn : N0×Ω → R
ν, n ∈ {0, 1, . . . , N}, be stochastic processes, for every n ∈ {1, 2, . . . , N},

m ∈ N0 let φn,m : Rν ×Ω → R be the function which satisfies for every θ ∈ Rν, ω ∈ Ω that

φn,m(θ, ω) =
[

Vn

(

θ,Ym
N−n(ω)

)

− Vn−1(Θ
n−1
M (ω),Ym

N−n+1(ω)) − (tn − tn−1)

· f
(

Ym
N−n+1(ω),Vn−1(Θ

n−1
M (ω),Ym

N−n+1(ω)), (∇xVn−1)(Θ
n−1
M (ω),Ym

N−n+1(ω))
)

]2

,
(60)

for every n ∈ {1, 2, . . . , N}, m ∈ N0 let Φn,m : Rν ×Ω → Rν be the function which satisfies
for every θ ∈ R

ν, ω ∈ Ω that Φn,m(θ, ω) = (∇θφ
n,m)(θ, ω), and assume for every n ∈

{1, 2, . . . , N}, m ∈ N0 that

Θn
m+1 = Θn

m − γ · Φn,m(Θn
m). (61)

In the setting of Framework 2.1 we think under suitable hypotheses for sufficiently
large N,M ∈ N, sufficiently small γ ∈ (0,∞), every n ∈ {0, 1, . . .N}, and every x ∈ Rd of
Vn(Θ

n
M , x) : Ω → R as a suitable approximation

Vn(Θ
n
M , x) ≈ u(tn, x) (62)

of u(tn, x) where u = (u(t, x))(t,x)∈[0,T ]×Rd ∈ C1,2([0, T ] × Rd,R) is a function with at
most polynomially growing derivatives which satisfies for every t ∈ [0, T ], x ∈ Rd that
u(0, x) = ϕ(x) and

( ∂
∂t
u)(t, x) = f

(

x, u(t, x), (∇xu)(t, x)
)

+
〈

µ(x), (∇xu)(t, x)
〉

Rd

+ 1
2
Trace

(

σ(x)[σ(x)]∗(Hessx u)(t, x)
) (63)

(cf. (3), (13), and (36)).

2.8 Description of the algorithm in the general case

In this subsection we present in Framework 2.2 below a general formulation of the deep
splitting method which includes the deep splitting method derived in Subsections 2.1–2.7
above as a special case but also enables us to incorporate other minimization algorithms
(cf. (68) below and, e.g., E et al. [26, Subsections 3.2, 5.1, and 5.2]) such as the Adam
optimizer (cf. Kingma & Ba [62] and (72)–(73)) than just the plain vanilla stochastic gra-
dient descent method (see, e.g., (61) in Framework 2.1 in Subsection 2.7 above). Moreover,
Framework 2.2 also enables us to include more advanced machine learning techniques like
batch normalization (cf. Ioffe & Szegedy [59] and (67) below). In Section 3 below the
general description in Framework 2.2 is illustrated by means of several examples.

Framework 2.2 (General case). Let T ∈ (0,∞), N, d, ̺, ν, ς ∈ N, (Mn)n∈{0,1,...,N} ⊆ N,
(Jm)m∈N0 ⊆ N, t0, t1, . . . , tN ∈ [0, T ] satisfy 0 = t0 < t1 < . . . < tN = T , let τ0, τ1, . . . , τn ∈
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[0, T ] satisfy for every n ∈ {0, 1, . . . , N} that τn = T − tN−n, let f : Rd × R × R
d →

R, µ : Rd → Rd, σ : Rd → Rd×d, ϕ : Rd → R be functions, let (Ω,F ,P, (Ft)t∈[0,T ]) be
a filtered probability space, for every n ∈ {1, 2, . . . , N} let Bn,m,j : [0, T ] × Ω → Rd,
m ∈ N0, j ∈ N, be i.i.d. standard (Ω,F ,P, (Ft)t∈[0,T ])-Brownian motions, for every
n ∈ {1, 2, . . . , N} let ξn,m,j : Ω → Rd, m ∈ N0, j ∈ N, be i.i.d. F0/B(Rd)-measurable
random variables, let H : [0, T ]2 × Rd × Rd → Rd be a function, let Vj,s

n : Rν × Rd → R,
(j, s, n) ∈ N × Rς × {0, 1, . . . , N}, be functions, for every n ∈ {1, 2, . . . , N}, m ∈ N0,
j ∈ N let Yn,m,j : {0, 1, . . . , N} × Ω → Rd be a stochastic process which satisfies for every
k ∈ {0, 1, . . . , N − 1} that Yn,m,j

0 = ξn,m,j and

Yn,m,j
k+1 = H(τk+1, τk,Yn,m,j

k , Bn,m,j
τk+1

− Bn,m,j
τk

), (64)

let Θn : N0×Ω → Rν, n ∈ {0, 1, . . .N}, be stochastic processes, for every n ∈ {1, 2, . . . , N},
m ∈ N0, s ∈ Rς let φn,m,s : Rν × Ω → R be the function which satisfies for every θ ∈ Rν,
ω ∈ Ω that

φn,m,s(θ, ω) =
1

Jm

Jm
∑

j=1

[

V
j,s
n

(

θ,Yn,m,j
N−n (ω)

)

− V
j,s
n−1

(

Θn−1
Mn−1

(ω),Yn,m,j
N−n+1(ω)

)

− (tn − tn−1)

· f
(

Yn,m
N−n+1(ω),V

j,s
n−1

(

Θn−1
Mn−1

(ω),Yn,m
N−n+1(ω)

)

, (∇xV
j,s
n−1)

(

Θn−1
Mn−1

(ω),Yn,m
N−n+1(ω)

)

)

]2

, (65)

for every n ∈ {1, 2, . . . , N}, m ∈ N0, s ∈ Rς let Φn,m,s : Rν × Ω → Rν be a function which
satisfies for every ω ∈ Ω, θ ∈ {η ∈ Rν : φn,m,s(·, ω) : Rν → R is differentiable at η} that

Φn,m,s(θ, ω) = (∇θφ
n,m,s)(θ, ω), (66)

let Sn : Rς × Rν × (Rd){0,1,...,N}×N → Rς , n ∈ {1, 2, . . . , N}, be functions, for every n ∈
{1, 2, . . . , N}, m ∈ N0 let ψn

m : R̺ → Rν and Ψn
m : R̺ × Rν → R̺ be functions, for every

n ∈ {1, 2, . . . , N} let Sn : N0×Ω → Rς and Ξn : N0×Ω → R̺ be stochastic processes which
satisfy for every m ∈ N0 that

S
n
m+1 = Sn

(

S
n
m,Θ

n
m, (Yn,m,i

k )(k,i)∈{0,1,...,N}×N

)

, (67)

Ξn
m+1 = Ψn

m(Ξ
n
m,Φ

n,m,Sn
m+1(Θn

m)), and Θn
m+1 = Θn

m − ψn
m(Ξ

n
m+1). (68)

In the setting of Framework 2.2 we think under suitable hypotheses for sufficiently large

N,M ∈ N, every n ∈ {0, 1, . . .N}, and every x ∈ Rd of V
1,Sn

M

n (Θn
M , x) : Ω → R as a suitable

approximation

V
1,Sn

M

n (Θn
M , x) ≈ u(tn, x) (69)

of u(tn, x) where u = (u(t, x))(t,x)∈[0,T ]×Rd ∈ C1,2([0, T ] × R
d,R) is a function with at

most polynomially growing derivatives which satisfies for every t ∈ [0, T ], x ∈ Rd that
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u(0, x) = ϕ(x) and

( ∂
∂t
u)(t, x) = f

(

x, u(t, x), (∇xu)(t, x)
)

+
〈

µ(x), (∇xu)(t, x)
〉

Rd

+ 1
2
Trace

(

σ(x)[σ(x)]∗(Hessx u)(t, x)
) (70)

(cf. (3), (13), and (36)). The role of the processes Sn : N0 × Ω → Rς , n ∈ {1, 2, . . . , N}, is
to describe the variables needed for batch normalization.

3 Examples

In this section we illustrate the performance of the deep splitting method by means of
numerical simulations for four concrete example PDEs. In each of these numerical simula-
tions we employ the general approximation method in Subsection 2.8 in conjunction with
the Adam optimizer (cf. (72) and (73) in Framework 3.1 below and Kingma & Ba [62])
with mini-batches with 256 samples in each iteration step (see Framework 3.1 for a detailed
description).

In our implementation we employ N fully-connected feedforward neural networks to
represent Vj,s

n (θ, x) for n ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , 256}, s ∈ Rς , θ ∈ Rν , x ∈ Rd. Each
of the neural networks consists of 4 layers (1 input layer, 2 hidden layers, and 1 output
layer). In each of the numerical simulations in Subsections 3.1, 3.3, and 3.4 the input layer
is d-dimensional, the two hidden layers are (d + 10)-dimensional, and the output layer is
1-dimensional. In each of the numerical simulations in Subsection 3.2 the input layer is
d-dimensional, the the two hidden layers are (d+10+1[1,100](d) · 40)-dimensional, and the
output layer is 1-dimensional. Batch normalization (see Ioffe & Szegedy [59]) is applied
just before the first linear transformation, just before each of the two nonlinear activation
functions in front of the hidden layers, as well as just before the output layer. As nonlinear
activation functions just in front of the two hidden layers we employ the multidimensional
version of the rectifier function R ∋ x 7→ max{x, 0} ∈ [0,∞). We use Xavier initialisation
(see Glorot & Bengio [33]) to initialise all weights in the neural networks. Each of the
numerical experiments presented below is performed in Python using TensorFlow on
a NVIDIA GeForce GTX 1080 GPU with 1974 MHz core clock and 8 GB GDDR5Xmemory
with 1809.5 MHz clock rate, where the underlying system consists of an Intel Core i7-6800K
3.4 GHz CPU with 64 GB DDR4-2133 memory running TensorFlow 1.5 on Ubuntu 16.04.
We also refer to the Python codes in Section 4 below.

Framework 3.1. Assume Framework 2.2, let ν = (d+10)(d+1)+(d+10)(d+11)+(d+11)
(cf. E et al. [26, Remark 4.1] and the second paragraph of this section), ε = 10−8, β1 =

9
10
,

β2 = 999
1000

, (γm)m∈N0 ⊆ (0,∞), let Powr : R
ν → R

ν, r ∈ (0,∞), be the functions which
satisfy for every r ∈ (0,∞), x = (x1, . . . , xν) ∈ Rν that Powr(x) = (|x1|r, |x2|r, . . . , |xν |r),
let u = (u(t, x))(t,x)∈[0,T ]×Rd ∈ C1,2([0, T ]× Rd,R) be a function with at most polynomially
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growing derivatives which satisfies for every t ∈ [0, T ], x ∈ R
d that u(0, x) = ϕ(x) and

( ∂
∂t
u)(t, x) = f

(

x, u(t, x), (∇xu)(t, x)
)

+
〈

µ(x), (∇xu)(t, x)
〉

Rd

+ 1
2
Trace

(

σ(x)[σ(x)]∗(Hessx u)(t, x)
)

,
(71)

assume for every m ∈ N0, i ∈ {0, 1, . . . , N} that Jm = 256, ti = iT
N
, ̺ = 2ν, and d ∈

{10, 50, 100, 200, 300, 500, 1000, 5000, 10000}, and assume for every n ∈ {1, 2, . . . , N}, m ∈
N0, x = (x1, x2, . . . , xν), y = (y1, y2, . . . , yν), η = (η1, η2, . . . , ην) ∈ Rν that

Ψn
m(x, y, η) = (β1x+ (1− β1)η, β2y + (1− β2) Pow2(η)) (72)

and

ψn
m(x, y) =

(

[
√

|y1|
1−βm

2
+ ε

]−1 γmx1
1− βm

1

, . . . ,
[
√

|yν |
1−βm

2
+ ε

]−1 γmxν
1− βm

1

)

. (73)

3.1 Hamilton–Jacobi–Bellman (HJB) equations

In this subsection we use the deep splitting method in Framework 3.1 to approximately
calculate the solutions of PDEs of the form

( ∂
∂t
u)(t, x) = (∆xu)(t, x)− ‖(∇xu)(t, x)‖2Rd (74)

for t ∈ [0, T ], x ∈ Rd, d ∈ N. We refer to (76) below for a more precise description of
the PDEs under consideration. The deep splitting method, however, applies to much more
general Hamilton–Jacobi–Bellman (HJB) equations than just PDEs of the form (74). A key
feature of a PDE of the form (74) is that it can by means of a logarithmic transformation
(cf., for example, E et al. [26, Lemma 4.2]) be reduced to a linear heat equation which, in
turn, can be approximately solved by a classical Monte Carlo method. This enables us to
efficiently compute reference solutions in high dimensions.

Assume Framework 3.1, let α = 1/2, assume that T ∈ {1/3, 2/3, 1}, N ∈ {8, 16, 24},
assume for every n,m, j ∈ N, ω ∈ Ω that ξn,m,j(ω) = (0, 0, . . . , 0) ∈ Rd, assume for every
m ∈ N that

γm =

{

10−1
1[0,300](m) + 10−2

1(300,400](m) + 10−3
1(400,500](m) : d < 10000

10−1
1[0,400](m) + 10−2

1(400,500](m) + 10−3
1(500,600](m) : d = 10000,

(75)

and assume for every s, t ∈ [0, T ], b, x, z ∈ R
d, y ∈ R that f(x, y, z) = −‖z‖2

Rd , µ(x) =

(0, 0, . . . , 0) ∈ R
d, σ(x) =

√
2 IdRd×d, ϕ(x) = ‖x‖α, H(t, s, x, b) = x + µ(x)(t − s) + σ(x)b

(cf. (56) and (64)). The solution u : [0, T ] × Rd → R of the PDE (71) then satisfies for
every t ∈ [0, T ], x ∈ Rd that u(0, x) = ‖x‖α

Rd and

( ∂
∂t
u)(t, x) = (∆xu)(t, x)− ‖(∇xu)(t, x)‖2Rd. (76)
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d T N Mean Std. dev. Ref. value rel. L1-error Std. dev. rel. error avg. runtime
10 1/3 8 1.56645 0.00246699 1.56006 0.00410 0.00158134 18.018
10 2/3 16 1.86402 0.00338646 1.85150 0.00677 0.00182904 37.947
10 1 24 2.07017 0.00634850 2.04629 0.01167 0.00310245 58.200
50 1/3 8 2.39214 0.00151918 2.38654 0.00234 0.00063656 18.033
50 2/3 16 2.84607 0.00140300 2.83647 0.00338 0.00049463 37.922
50 1 24 3.15098 0.00275839 3.13788 0.00417 0.00087906 58.359
100 1/3 8 2.85090 0.00071267 2.84696 0.00138 0.00025033 18.149
100 2/3 16 3.39109 0.00093368 3.38450 0.00195 0.00027587 38.184
100 1 24 3.75329 0.00136920 3.74471 0.00229 0.00036564 58.329
200 1/3 8 3.39423 0.00051028 3.39129 0.00087 0.00015047 18.113
200 2/3 16 4.03680 0.00088215 4.03217 0.00115 0.00021878 38.023
200 1 24 4.46734 0.00079688 4.46172 0.00126 0.00017860 58.159
300 1/3 8 3.75741 0.00063334 3.75530 0.00056 0.00016865 18.271
300 2/3 16 4.46859 0.00049953 4.46514 0.00077 0.00011187 38.534
300 1 24 4.94586 0.00087736 4.94105 0.00097 0.00017756 58.819
500 1/3 8 4.27079 0.00051256 4.26900 0.00042 0.00012007 17.962
500 2/3 16 5.07900 0.00034792 5.07618 0.00056 0.00006854 38.001
500 1 24 5.62126 0.00045092 5.61735 0.00070 0.00008027 57.670
1000 1/3 8 5.07989 0.00022764 5.07876 0.00022 0.00004482 20.649
1000 2/3 16 6.04130 0.00030680 6.03933 0.00033 0.00005080 43.689
1000 1 24 6.68594 0.00040334 6.68335 0.00039 0.00006035 66.546
5000 1/3 8 7.59772 0.00024745 7.59733 0.00005 0.00003257 120.397
5000 2/3 16 9.03721 0.00027322 9.03466 0.00028 0.00003024 256.650
5000 1 24 9.97266 0.00047098 9.99835 0.00257 0.00004711 393.894
10000 1/3 8 9.03574 0.00022994 9.03535 0.00004 0.00002545 519.848
10000 2/3 16 10.74521 0.00026228 10.74478 0.00004 0.00002157 1105.575
10000 1 24 11.87860 0.00022705 11.89099 0.00104 0.00001909 1687.680

Table 1: Numerical simulations of the deep splitting method in Framework 3.1 in the case
of the Hamilton–Jacobi–Bellman (HJB) equation in (76).
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d Mean Stdev Ref. value rel. L1-error Stdev rel. error avg. runtime
10 40.6553107 0.1000347132 40.7611353 0.0029624273 0.0019393471 858.3129092
50 37.421057 0.0339765334 37.5217732 0.0026842068 0.0009055151 975.3706101
100 36.3498646 0.027989905 36.4084035 0.0016078403 0.000768776 1481.5484843
200 35.374638 0.035236816 35.4127342 0.0012857962 0.0006625744 951.2294598
300 34.8476466 0.0225350305 34.8747946 0.0008818254 0.0004762554 953.3183895
500 34.2206181 0.0081072294 34.2357988 0.0004701552 0.0001701012 956.0106124
1000 33.4058827 0.0050161752 33.4358163 0.0008952555 0.000150024 1039.5774061
5000 31.7511529 0.0048508218 31.7906594 0.0012427078 0.0001525864 7229.6752827
10000 31.1215014 0.0031131196 31.1569116 0.0011365119 0.00009991746 23593.212019

Table 2: Numerical simulations of the deep splitting method in Framework 3.1 in the case
of the nonlinear Black–Scholes equation with default risk in (80).

In Table 1 we use Python code 2 in Subsection 4.2 below to approximately calcu-

late the mean of V
1,SN

M

N (ΘN
M , x), the standard deviation of V

1,SN
M

N (ΘN
M , x), the relative L1-

approximation error (relative to the reference value) associated to V
1,SN

M

N (ΘN
M , x), the un-

corrected sample standard deviation of the relative approximation error (relative to the

reference value) associated to V
1,SN

M

N (ΘN
M , x), and the average runtime in seconds needed for

calculating one realization of V
1,SN

M

N (ΘN
M , x) against M ∈ {500, 600} based on 10 indepen-

dent realizations (10 independent runs of Python code 2 in Subsection 4.2 below). The
reference value has been calculated by means of Han et al. [26, Lemma 4.2] (with d = d,
T = T , α = 1, β = −1, g = ϕ in the notation of [26, Lemma 4.2]) and a classical Monte
Carlo method.

3.2 Nonlinear Black–Scholes equations

In this subsection we use the deep splitting method in Framework 3.1 to approximately cal-
culate the solutions of high-dimensional nonlinear Black–Scholes equations. In the scientific
literature there are a number of models which intend to incorporate nonlinear phenomena
such as transaction costs, default risks, or Knightian uncertainty into the classical linear
Black–Scholes model and such models typically result in nonlinear Black–Scholes partial
differential equations. In this subsection we consider the following nonlinear version of the
Black–Scholes PDE which aims to take default risks into account, that is, in this subsection
we consider PDEs of the form

( ∂
∂t
u)(t, x) = −u(t, x) (1− δ)

[

min
{

γh,max
{

γl, (γ
h−γl)

(vh−vl)

(

u(t, x)− vh
)

+ γh
}}]

−Ru(t, x) +
〈

µ̄ x, (∇xu)(t, x)
〉

Rd
+ σ̄2

2

[

d
∑

i=1

|xi|2 ( ∂2

∂x2
i

u)(t, x)

] (77)
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for t ∈ [0, T ], x ∈ R
d, d ∈ N where δ, R, γh, γl, vh, vl, µ̄, σ̄ are suitable parameters (see

(79)–(80) below for a precise description for the PDEs under consideration). We refer,
e.g., to Han et al. [46, Subsection 3.1] and E et al. [28, Subsection 3.1] for explanations
regarding the connection of the solution of the PDE in (80) to the problem of pricing
financial derivatives without ignoring default risks.

Assume Framework 3.1, assume that T = 1/3, N = 96, assume for every n,m, j ∈ N,
ω ∈ Ω that ξn,m,j(ω) = (50, . . . , 50) ∈ Rd, assume for every m ∈ N that

γm =

{

10−1
1[0,2500](m) + 10−2

1(2500,2750](m) + 10−3
1(2750,3000](m) : d ≤ 100

10−1
1[0,1500](m) + 10−2

1(1500,1750](m) + 10−3
1(1750,2000](m) : d > 100,

(78)

let R = 2
100

, δ = 2
3
, µ̄ = 0.02, σ̄ = 0.2, vh = 50, vl = 70, γh = 0.2, γl = 0.02, and assume for

every s, t ∈ [0, T ], b = (b1, b2, . . . , bd), x = (x1, x2, . . . , xd), z = (z1, z2, . . . , zd) ∈ Rd, y ∈ R

that µ(x) = µ̄x, σ(x) = σ̄x, ϕ(x) = mini∈{1,2,...,d} xi, H(t, s, x, b) = x+ µ(x)(t− s) + σ(x)b
(cf. (56) and (64)), and

f(x, y, z) = −(1− δ)min
{

γh,max
{

γl, (γ
h−γl)

(vh−vl)

(

y − vh
)

+ γh
}}

y − Ry (79)

The solution u : [0, T ]×Rd → R of the PDE (71) then satisfies for every t ∈ [0, T ], x ∈ Rd

that u(0, x) = mini∈{1,2,...,d} xi and

( ∂
∂t
u)(t, x) = −u(t, x) (1− δ)

[

min
{

γh,max
{

γl, (γ
h−γl)

(vh−vl)

(

u(t, x)− vh
)

+ γh
}}]

−Ru(t, x) +
〈

µ̄ x, (∇xu)(t, x)
〉

Rd
+ σ̄2

2

[

d
∑

i=1

|xi|2 ( ∂2

∂x2
i

u)(t, x)

] (80)

(cf., for example, Duffie et al. [25], Bender and Schweizer [6], or E et al. [28, Subsection
3.1]). The specific type of PDE in (80), the specific choice of the parameters, and the
initial condition have been adopted from E et al. [28, Subsection 3.1] and Han et al. [46,
Subsection 3.1]. In the abovenamed references the PDE in (80) is formulated as a terminal
value problem as it is usual in this kind of application. Since terminal value problems
and initial value problems can easily be transformed into each other we chose the unusual
formulation of the PDEs in (80) to keep the PDE formulations consistent across all the
examples.

In Table 2 we use Python code 3 in Subsection 4.3 below to approximately calcu-

late the mean of V
1,SN

M

N (ΘN
M , x), the standard deviation of V

1,SN
M

N (ΘN
M , x), the relative L1-

approximation error (relative to the reference value which is used as an approximation

for the unknown value of the exact solution of (80)) associated to V
1,SN

M

N (ΘN
M , x), the un-

corrected sample standard deviation of the relative approximation error (relative to the
reference value which is used as an approximation for the unknown value of the exact

solution of (80)) associated to V
1,SN

M

N (ΘN
M , x), and the average runtime in seconds needed
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for calculating one realization of V
1,SN

M

N (ΘN
M , x) against M = 500 based on 10 independent

realizations (10 independent runs of Python code 3 in Subsection 4.3 below). The refer-
ence value, which is used as an approximation for the unknown value of the exact solution
of (80), has been calculated through the deep learning-based numerical method in E et al.
[26] (see [26, Subsection 4.4]).

3.3 Allen–Cahn equations

In this subsection we use the deep splitting method in Framework 3.1 to approximately
calculate the solutions of high-dimensional Allen–Cahn equations with a cubic nonlinearity,
that is, we approximately calculate solutions of PDEs of the form

( ∂
∂t
u)(t, x) = (∆xu)(t, x) + u(t, x)− [u(t, x)]3 (81)

for t ∈ [0, T ], x ∈ Rd, d ∈ N (cf., for example, Section 4.1 in [3], E et al. [26, Section 4.2],
E et al. [28, Section 3.4], and Han et al. [46, Section 3.3] for further numerical tests for
equations of the form (81)).

Assume Framework 3.1, assume that T = 0.3, N = 10, assume for every n,m, j ∈ N,
ω ∈ Ω that ξn,m,j(ω) = (0, 0, . . . , 0) ∈ Rd, γm = 10−1

1[0,300](m) + 10−2
1(300,400](m) +

10−3
1(400,500](m), and assume for every s, t ∈ [0, T ], b, x, z ∈ Rd, y ∈ R that ϕ(x) =

arctan(maxi∈{1,2,...,d} xi), f(x, y, z) = y − y3, µ(x) = (0, 0, . . . , 0) ∈ Rd, σ(x) =
√
2 IdRd×d ,

H(t, s, x, b) = x+ µ(x)(t− s) + σ(x)b (cf. (56) and (64)). The solution u : [0, T ]×Rd → R

of the PDE (71) then satisfies for every t ∈ [0, T ], x = (x1, x2, . . . , xd) ∈ R
d that u(0, x) =

arctan(maxi∈{1,2,...,d} xi) and

( ∂
∂t
u)(t, x) = (∆xu)(t, x) + u(t, x)− [u(t, x)]3. (82)

In Table 3 we use Python code 4 in Subsection 3.3 below to approximately calcu-

late the mean of V
1,SN

M

N (ΘN
M , x), the standard deviation of V

1,SN
M

N (ΘN
M , x), the relative L1-

approximation error (relative to the reference value which is used as an approximation for

the value of the exact solution of (82)) associated to V
1,SN

M

N (ΘN
M , x), the uncorrected sam-

ple standard deviation of the relative approximation error (relative to the reference value
which is used as an approximation for the value of the exact solution of (82)) associated

to V
1,SN

M

N (ΘN
M , x), and the average runtime in seconds needed for calculating one realization

of V
1,SN

M

N (ΘN
M , x) against M = 500 based on 10 independent realizations (10 independent

runs of Python code 4 in Subsection 3.3 below). The reference value, which is used as an
approximation for the value of the exact solution of (82), has been calculated through the
Multilevel Picard approximation method (see, e.g., [27, 28, 55, 57, 58]).
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d Mean Std. dev. Ref. value rel. L1-error Std. dev. rel. error avg. runtime
10 0.89327 0.00299962 0.89060 0.00364 0.00258004 22.672
50 1.01855 0.00073173 1.01830 0.00063 0.00036976 22.196
100 1.04348 0.00029431 1.04510 0.00156 0.00028161 22.333
200 1.06119 0.00018821 1.06220 0.00096 0.00017719 22.358
300 1.06961 0.00017250 1.07217 0.00239 0.00016089 22.646
500 1.07847 0.00013055 1.08124 0.00256 0.00012074 23.111
1000 1.08842 0.00005689 1.09100 0.00236 0.00005215 25.893
5000 1.10522 0.00005201 1.10691 0.00153 0.00004699 134.552
10000 1.11071 0.00004502 1.11402 0.00296 0.00004041 473.584

Table 3: Numerical simulations of the deep splitting method in Framework 3.1 in the case
of the Allen–Cahn equation in (82).

3.4 Semilinear heat equations

In this subsection we use the deep splitting method in Framework 3.1 to approximately
calculate the solutions of semilinear heat equations of the form

( ∂
∂t
u)(t, x) = (∆xu)(t, x) +

1− [u(t, x)]2

1 + [u(t, x)]2
(83)

for t ∈ [0, T ], x ∈ Rd, d ∈ N. We refer to (84) below for a precise description of the PDEs
under consideration.

Assume Framework 3.1, assume that T = 0.3, N = 20, assume for every n,m, j ∈ N,
ω ∈ Ω that ξn,m,j(ω) = (0, 0, . . . , 0) ∈ Rd, γm = 10−1

1[0,300](m) + 10−2
1(300,400](m) +

10−3
1(400,500](m), and assume for every s, t ∈ [0, T ], b, x, z ∈ Rd, y ∈ R that ϕ(x) =

5/(10+2‖x‖2
Rd

), f(x, y, z) = 1−y2

1+y2
, µ(x) = (0, 0, . . . , 0) ∈ Rd, σ(x) =

√
2 IdRd×d, H(t, s, x, b) =

x + µ(x)(t − s) + σ(x)b (cf. (56) and (64)). The solution u : [0, T ]× Rd → R of the PDE
(71) then satisfies for every t ∈ [0, T ], x = (x1, x2, . . . , xd) ∈ Rd that u(0, x) = 5/(10+2‖x‖2

Rd
)

and

( ∂
∂t
u)(t, x) = (∆xu)(t, x) +

1− [u(t, x)]2

1 + [u(t, x)]2
. (84)

In Table 4 we use Python code 5 in Subsection 4.5 below to approximately calcu-

late the mean of V
1,SN

M

N (ΘN
M , x), the standard deviation of V

1,SN
M

N (ΘN
M , x), the relative L1-

approximation error (relative to the reference value which is used as an approximation for

the value of the exact solution of (84)) associated to V
1,SN

M

N (ΘN
M , x), the uncorrected sam-

ple standard deviation of the relative approximation error (relative to the reference value
which is used as an approximation for the value of the exact solution of (84)) associated
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d Mean Std. dev. Ref. value rel. L1-error Std. dev. rel. error avg. runtime
10 0.47138 0.00035606 0.47006 0.00282 0.00075749 46.712
50 0.34584 0.00018791 0.34425 0.00462 0.00054586 46.741
100 0.31783 0.00008298 0.31674 0.00343 0.00026198 47.375
200 0.30210 0.00002238 0.30091 0.00394 0.00007436 48.065
300 0.29654 0.00001499 0.29534 0.00406 0.00005075 48.282
500 0.29200 0.00000611 0.29095 0.00361 0.00002099 48.528
1000 0.28852 0.00000267 0.28753 0.00344 0.00000930 54.080
5000 0.28569 0.00000042 0.28469 0.00352 0.00000148 286.306
10000 0.28533 0.00000048 0.28433 0.00353 0.00000170 1013.008

Table 4: Numerical simulations of the deep splitting method in Framework 3.1 in the case
of the semilinear heat equation in (84).

to V
1,SN

M

N (ΘN
M , x), and the average runtime in seconds needed for calculating one realization

of V
1,SN

M

N (ΘN
M , x) against M = 500 based on 10 independent realizations (10 independent

runs of Python code 5 in Subsection 4.5 below). The reference value, which is used as an
approximation for the value of the exact solution of (84), has been calculated through the
Multilevel Picard approximation method (see, e.g., [27, 28, 55, 57, 58]).
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4 Source codes

4.1 Python source code for the algorithm

In Subsections 4.2–4.5 below we present Python source codes associated to the numerical
simulations in Subsections 3.1–3.4 above. The following Python source code, Python
code 1 below, is employed in the case of each of the Python source codes in Subsec-
tions 4.2–4.5 below.

1 import tensorflow as tf

2 import os

3 from tensorflow.contrib.layers.python.layers import initializers

4 from tensorflow.python.training.moving_averages \

5 import assign_moving_average

6 from tensorflow.contrib.layers.python.layers import utils

7

8

9 def neural_net(y, neurons , name , is_training ,

10 reuse=None , decay =0.9, dtype=tf.float32):

11

12 def batch_normalization(x):

13 beta = tf.get_variable(

14 ’beta’, [x.get_shape()[ -1]] , dtype ,

15 tf.zeros_initializer())

16 gamma = tf.get_variable(

17 ’gamma’, [x.get_shape()[ -1]] , dtype ,

18 tf.ones_initializer())

19 mv_mean = tf.get_variable(

20 ’mv_mean’, [x.get_shape()[ -1]] , dtype=dtype ,

21 initializer=tf.zeros_initializer(), trainable=False)

22 mv_var = tf.get_variable(

23 ’mv_var ’, [x.get_shape()[ -1]] , dtype=dtype ,

24 initializer=tf.ones_initializer(), trainable=False)

25 mean , variance = tf.nn.moments(x, [0], name=’moments’)

26 tf. add_to_collection(

27 tf.GraphKeys.UPDATE_OPS ,

28 assign_moving_average(mv_mean , mean , decay ,

29 zero_debias=True))

30 tf. add_to_collection(

31 tf.GraphKeys.UPDATE_OPS ,

32 assign_moving_average(mv_var, variance , decay ,

33 zero_debias=False))

34 mean , variance = utils.smart_cond(is_training ,

35 lambda: (mean , variance),

36 lambda: (mv_mean , mv_var ))

37 return tf.nn. batch_normalization(x, mean , variance ,

38 beta , gamma , 1e-6)

39
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40 def layer(x, out_size , activation):

41 w = tf.get_variable(

42 ’weights’, [x.get_shape().as_list()[-1], out_size],

43 dtype , initializers.xavier_initializer())

44 return activation(batch_normalization(tf.matmul(x, w)))

45

46 with tf.variable_scope(name , reuse=reuse):

47 y = batch_normalization(y)

48 for i in range(len(neurons) - 1):

49 with tf.variable_scope(’layer_%i_’ % (i + 1)):

50 y = layer(y, neurons[i], tf.nn.relu)

51 with tf.variable_scope(’layer_%i_’ % len(neurons)):

52 return layer(y, neurons[-1], tf.identity)

53

54

55 def splitting_model(y, t, n, phi , f, net ,

56 neurons , batch_size , dtype=tf.float32):

57

58 v_n = None

59

60 _y = y[:, :, 1]

61 if net == 0:

62 v_i = phi(_y)

63 else:

64 v_i = neural_net(_y, neurons , ’v_%i_’ % net ,

65 False , dtype=dtype)

66 grad_v = tf.gradients(v_i , _y)

67

68 if net == n - 1:

69 v_n = tf.get_variable(’v_%i_’ % (net + 1), [], dtype ,

70 tf.random_uniform_initializer ())

71 v_j = tf.ones([batch_size , 1], dtype) * v_n

72 else:

73 v_j = neural_net(y[:, :, 0], neurons , ’v_%i_’ % (net + 1),

74 True , dtype=dtype)

75

76 loss = (v_j - tf.stop_gradient(v_i

77 + t / n * f(_y, v_i , grad_v [0]))) ** 2

78

79 return tf.reduce_mean(loss), v_n

80

81

82 def simulate(t, n, d, sde , phi , f, neurons , train_steps , batch_size ,

83 lr_boundaries , lr_values , path , epsilon=1e -8):

84

85 for i in range(n):

86

87 tf. reset_default_graph()

88
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89 y = sde(d, n - i - 1)

90 loss , v_n = splitting_model(y, t, n, phi , f, i,

91 neurons , batch_size)

92

93 global_step = tf.get_variable(

94 ’global_step_%i_’ % (i + 1), [], tf.int32 ,

95 tf.zeros_initializer(), trainable=False)

96 learning_rate = tf.train.piecewise_constant(

97 global_step , lr_boundaries , lr_values)

98 update_ops = tf.get_collection(

99 tf.GraphKeys.UPDATE_OPS , ’v_%i_’ % (i + 1))

100 with tf.control_dependencies(update_ops):

101 train_op = tf.train.AdamOptimizer(

102 learning_rate , epsilon=epsilon).minimize(

103 loss , global_step=global_step)

104

105 with tf.Session() as sess:

106

107 sess.run(tf. global_variables_initializer ())

108 var_list_n = tf. get_collection(

109 tf.GraphKeys.GLOBAL_VARIABLES , ’v_%i_’ % (i + 1))

110 saver_n = tf.train.Saver(var_list=var_list_n)

111

112 if i > 0:

113 saver_p = tf.train.Saver(

114 var_list=tf.get_collection(

115 tf.GraphKeys.GLOBAL_VARIABLES , ’v_%i_’ % i))

116 saver_p.restore(

117 sess , os.path.join(path , ’model_%i_’ % i))

118

119 for _ in range(train_steps):

120 sess.run(train_op)

121

122 saver_n.save(

123 sess , os.path.join(path , ’model_%i_’ % (i + 1)))

124

125 if i == n - 1:

126 return sess.run(v_n)

Python code 1: SplittingModel.py

4.2 A Python source code associated to the numerical simula-

tions in Subsection 3.1

1 import tensorflow as tf

2 import numpy as np
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3 import os

4 import time

5 import shutil

6 from SplittingModel import simulate

7

8

9 def phi(y):

10 return tf.reduce_sum(y ** 2, axis=1, keepdims=True) ** 0.25

11

12

13 def f(x, y, z):

14 return -tf.reduce_sum(z ** 2, axis=1, keepdims=True)

15

16

17 def sde(_d, n):

18 x = [tf.random_normal([batch_size , _d , 1],

19 stddev=np.sqrt(2. * n * T / N)),

20 tf.random_normal([batch_size , _d , 1],

21 stddev=np.sqrt(2. * T / N))]

22 return tf.cumsum(tf.concat(x, axis=2), axis=2)

23

24

25 batch_size = 256

26 train_steps = 600

27 lr_boundaries = [400, 500]

28 lr_values = [0.1, 0.01, 0.001]

29

30 _file = open(’HJB.csv’, ’w’)

31 _file.write(’d, T, N, run , value , time\n’)

32

33 for d in [10, 50, 100, 200, 300, 500, 1000, 5000, 10000]:

34

35 neurons = [d + 10, d + 10, 1]

36

37 for N in [8, 16, 24]:

38

39 T = N / 24.

40

41 for run in range (10):

42

43 path = ’/tmp/hjb’

44 if os.path.exists(path):

45 shutil.rmtree(path)

46 os.mkdir(path)

47

48 t_0 = time.time()

49 v_n = simulate(T, N, d, sde , phi , f, neurons ,

50 train_steps , batch_size ,

51 lr_boundaries , lr_values , path)
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52 t_1 = time.time()

53

54 _file.write(’%i, %f, %i, %i, %f, %f\n’

55 % (d, T, N, run , v_n , t_1 - t_0))

56 _file.flush()

57 print d, T, N, run , v_n , t_1 - t_0

58

59 _file.close()

Python code 2: HamiltonJacobiBellman.py

4.3 A Python source code associated to the numerical simula-

tions in Subsection 3.2

1 import tensorflow as tf

2 import numpy as np

3 import os

4 import time

5 import shutil

6 from SplittingModel import simulate

7

8

9 def phi(y):

10 return tf.reduce_min(y, axis=1, keepdims=True)

11

12

13 def f(x, y, z):

14 return -(1. - delta) * tf.minimum(

15 tf.maximum((y - v_h) * (gamma_h - gamma_l) / (v_h - v_l)

16 + gamma_h , gamma_l), gamma_h) * y - R * y

17

18

19 def sde(_d, n):

20 y = [tf.ones((batch_size , _d)) * 50.]

21 for _n in range(n + 1):

22 y.append(y[-1] * (1. + mu_bar * T / N

23 + sigma_bar * tf.random_normal((batch_size , _d),

24 stddev=np.sqrt(T / N))))

25 return tf.stack(y[n:n + 2], axis=2)

26

27

28 def sde_loop(_d , n):

29 xi = tf.ones((batch_size , _d)) * 50.

30

31 def loop(_n , _x0 , _x1):

32 _x0 = _x1

28



33 _x1 = _x1 * (1. + mu_bar * T / N

34 + sigma_bar * tf.random_normal((batch_size , _d),

35 stddev=np.sqrt(T / N)))

36 return _n + 1, _x0 , _x1

37

38 _, x0 , x1 = tf.while_loop(lambda _n, _x0 , _x1: _n <= n,

39 loop ,

40 (tf.constant(0), xi, xi))

41

42 return tf.stack ([x0, x1], axis=2)

43

44

45 N, T = 96, 1. / 3.

46 delta , R = 2. / 3., 0.02

47 mu_bar, sigma_bar = 0.02, 0.2

48 v_h , v_l = 50., 70.

49 gamma_h , gamma_l = 0.2, 0.02

50 lr_values = [0.1, 0.01, 0.001]

51 _file = open(’nonlinear_BS.csv’, ’w’)

52 _file.write(’d, T, N, run , value , time\n’)

53

54 for d in [10, 50, 100, 200, 300, 500, 1000, 5000, 10000]:

55

56 neurons = [d + 10, d + 10, 1] if d > 100 \

57 else [d + 50, d + 50, 1]

58 batch_size = 256 if d > 100 else 4096

59 train_steps = 2000 if d > 100 else 3000

60 lr_boundaries = [1500 , 1750] if d > 100 \

61 else [2500 , 2750]

62

63 for run in range (1):

64

65 path = ’/tmp/bs’

66 if os.path.exists(path):

67 shutil.rmtree(path)

68 os.mkdir(path)

69

70 t_0 = time.time()

71 v_n = simulate(T, N, d,

72 sde_loop if d > 100 else sde ,

73 phi , f, neurons , train_steps ,

74 batch_size , lr_boundaries ,

75 lr_values , path)

76 t_1 = time.time()

77

78 _file.write(’%i, %f, %i, %i, %f, %f\n’

79 % (d, T, N, run , v_n , t_1 - t_0))

80 _file.flush ()

81
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82 _file.close()

Python code 3: nonlinearBlackScholes.py

4.4 A Python source code associated to the numerical simula-
tions in Subsection 3.3

1 import tensorflow as tf

2 import numpy as np

3 import os

4 import time

5 import shutil

6 from SplittingModel import simulate

7

8

9 def phi(y):

10 return tf.atan(tf.reduce_max(y, axis=1, keepdims=True))

11

12

13 def f(x, y, z):

14 return y - y ** 3

15

16

17 def sde(_d, n):

18 x = [tf.random_normal([batch_size , _d , 1],

19 stddev=np.sqrt(2. * n * T / N)),

20 tf.random_normal([batch_size , _d , 1],

21 stddev=np.sqrt(2. * T / N))]

22 return tf.cumsum(tf.concat(x, axis=2), axis=2)

23

24

25 N, T = 10, 3. / 10.

26 batch_size = 256

27 train_steps = 500

28 lr_boundaries = [300, 400]

29 lr_values = [0.1, 0.01, 0.001]

30

31 _file = open(’AllenCahn.csv’, ’w’)

32 _file.write(’d, T, N, run , value , time\n’)

33

34 for d in [10, 50, 100, 200, 300, 500, 1000, 5000, 10000]:

35

36 neurons = [d + 10, d + 10, 1]

37

38 for run in range (10):

39
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40 path = ’/tmp/allencahn’

41 if os.path.exists(path):

42 shutil.rmtree(path)

43 os.mkdir(path)

44

45 t_0 = time.time()

46 v_n = simulate(T, N, d, sde , phi , f, neurons ,

47 train_steps , batch_size ,

48 lr_boundaries , lr_values , path)

49 t_1 = time.time()

50

51 _file.write(’%i, %f, %i, %i, %f, %f\n’

52 % (d, T, N, run , v_n , t_1 - t_0))

53 print (d, T, N, run , v_n , t_1 - t_0)

54

55 _file.close()

Python code 4: AllenCahn.py

4.5 A Python source code associated to the numerical simula-

tions in Subsection 3.4

1 import tensorflow as tf

2 import numpy as np

3 import os

4 import time

5 import shutil

6 from SplittingModel import simulate

7

8

9 def phi(y):

10 return 1. / (2. + 2. / 5. * tf.reduce_sum(y ** 2, axis =1))

11

12

13 def f(x, y, z):

14 return (1. - y ** 2) / (1. + y ** 2)

15

16

17 def sde(_d, n):

18 x = [tf.random_normal([batch_size , _d , 1],

19 stddev=np.sqrt(2. * n * T / N)),

20 tf.random_normal([batch_size , _d , 1],

21 stddev=np.sqrt(2. * T / N))]

22 return tf.cumsum(tf.concat(x, axis=2), axis=2)

23

24
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25 batch_size = 256

26 train_steps = 500

27 lr_boundaries = [300, 400]

28 lr_values = [0.1, 0.01, 0.001]

29

30 _file = open(’heat_equation.csv’, ’w’)

31 _file.write(’d, T, N, run , value , time\n’)

32

33 for d in [10, 50, 100, 200, 300, 500, 1000, 5000, 10000]:

34

35 neurons = [d + 10, d + 10, 1]

36

37 for N in [20]:

38

39 T = 3./10.

40

41 for run in range (10):

42

43 path = ’/tmp/heateq ’

44 if os.path.exists(path):

45 shutil.rmtree(path)

46 os.mkdir(path)

47

48 t_0 = time.time()

49 v_n = simulate(T, N, d, sde , phi , f, neurons ,

50 train_steps , batch_size ,

51 lr_boundaries , lr_values , path)

52 t_1 = time.time()

53

54 _file.write(’%i, %f, %i, %i, %f, %f\n’

55 % (d, T, N, run , v_n , t_1 - t_0))

56 print (d, T, N, run , v_n , t_1 - t_0)

57

58 _file.close()

Python code 5: HeatEquation.py
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of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI,
1996.

[66] Krylov, N. V. On Kolmogorov’s equations for finite-dimensional diffusions. Stochas-
tic PDE’s and Kolmogorov equations in infinite dimensions (Cetraro, 1998) 1715
(1999), 1–63.

[67] Kutyniok, G., Petersen, P., Raslan, M., and Schneider, R. A theoretical
analysis of deep neural networks and parametric PDEs. arXiv:1904.00377 (2019), 42
pages.

[68] Labart, C., and Lelong, J. A parallel algorithm for solving BSDEs. Monte Carlo
Methods and Applications 19, 1 (2013), 11–39.

[69] Larsson, S., and Thomée, V. Partial differential equations with numerical meth-
ods, vol. 45 of Texts in Applied Mathematics. Springer-Verlag, Berlin, 2003.

[70] LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Nature 521 (2015),
436–444.

[71] Lemor, J.-P., Gobet, E., and Warin, X. Rate of convergence of an empirical
regression method for solving generalized backward stochastic differential equations.
Bernoulli 12, 5 (2006), 889–916.

[72] Lionnet, A., dos Reis, G., and Szpruch, L. Time discretization of FBSDE
with polynomial growth drivers and reaction-diffusion PDEs. The Annals of Applied
Probability 25, 5 (2015), 2563–2625.

[73] Long, Z., Lu, Y., Ma, X., and Dong, B. PDE-Net: Learning PDEs from Data.
arXiv:1710.09668 (2017), 15 pages.

[74] Lye, K. O., Mishra, S., and Ray, D. Deep learning observables in computational
fluid dynamics. arXiv:1903.03040 (2019), 57 pages.

38



[75] Ma, J., Protter, P., San Mart́ın, J., and Torres, S. Numerical method for
backward stochastic differential equations. The Annals of Applied Probability 12, 1
(2002), 302–316.

[76] Ma, J., Protter, P., and Yong, J. M. Solving forward-backward stochastic
differential equations explicitly—a four step scheme. Probability Theory and Related
Fields 98, 3 (1994), 339–359.

[77] Ma, J., and Yong, J. Forward-backward stochastic differential equations and their
applications, vol. 1702 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999.

[78] Magill, M., Qureshi, F., and de Haan, H. Neural networks trained to solve
differential equations learn general representations. Advances in Neural Information
Processing Systems (2018), 4075–4085.

[79] Maruyama, G. Continuous Markov processes and stochastic equations. Rendiconti
del Circolo Matematico di Palermo. Serie II 4 (1955), 48–90.

[80] McKean, H. P. Application of Brownian motion to the equation of Kolmogorov-
Petrovskii-Piskunov. Communications on Pure and Applied Mathematics 28, 3 (1975),
323–331.

[81] Milstein, G. N. Approximate integration of stochastic differential equations. Theory
of Probability & Its Applications 19, 3 (1975), 557–562.

[82] Milstein, G. N., and Tretyakov, M. V. Numerical algorithms for forward-
backward stochastic differential equations. SIAM Journal on Scientific Computing
28, 2 (2006), 561–582.

[83] Milstein, G. N., and Tretyakov, M. V. Discretization of forward-backward
stochastic differential equations and related quasi-linear parabolic equations. IMA
Journal of Numerical Analysis 27, 1 (2007), 24–44.

[84] Milstein, G. N., and Tretyakov, M. V. Solving parabolic stochastic partial
differential equations via averaging over characteristics. Mathematics of Computation
78, 268 (2009), 2075–2106.

[85] Pham, H. Feynman-Kac representation of fully nonlinear PDEs and applications.
Acta Mathematica Vietnamica 40, 2 (2015), 255–269.

[86] Raissi, M. Deep hidden physics models: Deep learning of nonlinear partial differential
equations. arXiv:1801.06637 (2018), 26 pages.

39



[87] Ruijter, M. J., and Oosterlee, C. W. A Fourier cosine method for an efficient
computation of solutions to BSDEs. SIAM Journal on Scientific Computing 37, 2
(2015), A859–A889.

[88] Ruijter, M. J., and Oosterlee, C. W. Numerical Fourier method and second-
order Taylor scheme for backward SDEs in finance. Applied Numerical Mathematics
103 (2016), 1–26.

[89] Ruszczynski, A., and Yao, J. A dual method for backward stochastic differential
equations with application to risk valuation. arXiv:1701.06234 (2017), 22 pages.

[90] Sirignano, J., and Spiliopoulos, K. DGM: A deep learning algorithm for solving
partial differential equations. Journal of Computational Physics 375 (2018), 1339–
1364.

[91] Skorokhod, A. V. Branching diffusion processes. Theory of Probability & Its
Applications 9, 3 (1964), 445–449.

[92] Stroock, D. W. Lectures on topics in stochastic differential equations, vol. 68 of
Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Tata
Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin-New York,
1982. With notes by Satyajit Karmakar.

[93] Thomée, V. Galerkin finite element methods for parabolic problems, vol. 25 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1997.

[94] Turkedjiev, P. Two algorithms for the discrete time approximation of Markovian
backward stochastic differential equations under local conditions. Electronic Journal
of Probability 20 (2015), no. 50, 49.

[95] Watanabe, S. On the branching process for Brownian particles with an absorbing
boundary. Journal of Mathematics of Kyoto University 4 (1965), 385–398.

[96] Zhang, J. A numerical scheme for BSDEs. The Annals of Applied Probability 14, 1
(2004), 459–488.

40


	1 Introduction
	2 Derivation of the proposed approximation algorithm
	2.1 Temporal discretization
	2.2 An approximate Feynman–Kac representation
	2.3 Formulation as recursive minimization problems
	2.4 Deep artificial neural network approximations
	2.5 Stochastic gradient descent based minimization
	2.6 Discretization of the auxiliary stochastic process Y
	2.7 Description of the algorithm in a special case
	2.8 Description of the algorithm in the general case

	3 Examples
	3.1 Hamilton–Jacobi–Bellman (HJB) equations
	3.2 Nonlinear Black–Scholes equations
	3.3 Allen–Cahn equations
	3.4 Semilinear heat equations

	4 Source codes
	4.1 Python source code for the algorithm
	4.2 A Python source code associated to Subsection 3.1
	4.3 A Python source code associated to Subsection 3.2
	4.4 A Python source code associated to Subsection 3.3
	4.5 A Python source code associated to Subsection 3.4


