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ABSTRACT. In this paper, we generalize the universal approximation property of single-hidden-layer
feed-forward neural networks beyond the classical formulation over compact domains. More precisely,
by assuming that the activation function is non-polynomial, we derive universal approximation results for
neural networks within function spaces over non-compact subsets of a Euclidean space, e.g., weighted
spaces, Lp-spaces, and (weighted) Sobolev spaces over unbounded domains, where the latter includes the
approximation of the (weak) derivatives. Furthermore, we provide some dimension-independent rates for
approximating a function with sufficiently regular and integrable Fourier transform by neural networks with
non-polynomial activation function.

1. INTRODUCTION

Inspired by the functionality of human brains, (artificial) neural networks have been discovered in
the seminal work of McCulloch and Pitts (see [32]). Fundamentally, a neural network consists of nodes
arranged in hierarchical layers, where the connections between adjacent layers transmit the data through
the network and the nodes transform this information. In mathematical terms, a neural network can
therefore be described as a concatenation of affine and non-affine functions. Nowadays, neural networks
are successfully applied in the fields of image classification (see e.g. [27]), speech recognition (see
e.g. [20]) and computer games (see e.g. [41]), and provide as a supervised machine learning technique an
algorithmic approach for the quest of artificial intelligence (see [35, 43]).

The universal approximation property of neural networks was first proven by Cybenko and Hornik et
al. in their seminal works [11, 21, 22], which establishes in universal approximation theorems (UATs)
the denseness of the set of neural networks within a given function space. For example, [11, 22] showed
an UAT for neural networks with sigmoidal activation function within the space of continuous function
over a compact subset of a Euclidean space, which was extended in [21] to bounded and non-constant
activation functions, and in [9, 31, 37] to non-polynomial activation functions. Moreover, [11] proved
an UAT for neural networks with sigmoidal activation within Lp-spaces whose measure is compactly
supported, which was generalized in [21] to bounded and non-constant activation function, and in [31,
Proposition 2] to non-polynomial activation functions. In addition, [21, 23] included the approximation
of the derivatives and showed UATs within Ck-spaces and Sobolev spaces over compact domains.

In this paper, we extend these universal approximation theorems (UATs) to more general activation
functions and more general function spaces over non-compact domains. More precisely, we show UATs
for neural networks with non-polynomial activation function within function spaces that are obtained
as completions of the space of bounded and k-times differentiable functions with bounded derivatives
over a possibly non-compact domain with respect to a weighted norm. This allows us to obtain UATs
for weighted spaces, Lp-spaces, and (weighted) Sobolev spaces over unbounded domains, where the
latter includes the approximation of the (weak) derivatives. To this end, we combine the Hahn-Banach
separation argument with a Riesz representation theorem (see [11, Theorem 1] and [14, Theorem 2.4])
and follow Korevaar’s distributional extension (see [26]) of Wiener’s Tauberian theorem (see [45]). This
approach also generalizes the UATs in [10, 44] for neural networks within (weighted) function spaces
over non-compact domains by including the approximation of the derivatives.

Furthermore, we prove dimension-independent rates to approximate a given function by a single-hidden-
layer neural network in a (weighted) Sobolev space. To this end, we apply the reconstruction formula in
[42] (see also [8]) and use the concept of Rademacher averages. This extends the approximation rates
for neural networks with sigmoidal activation in Lp-spaces (see [4, 5, 12, 28]), with periodic activation
function inC0-spaces and Lp-spaces (see [33, 34]), and with linear combination of polynomially decaying
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activation functions in W k,2-Sobolev spaces (see [40]) to more general weighted Sobolev spaces and
more general activation functions. For a more detailed review of the literature, we refer to [7, 37, 40].

1.1. Outline. In Section 2, we introduce neural networks and generalize their universal approximation
property from the classical formulation over compact domains to more general function spaces over
non-compact domains, e.g. weighted spaces, Lp-spaces, and (weighted) Sobolev spaces over unbounded
domains. In Section 3, we provide some dimension-independent rates for the approximation of a function
by a neural network in a weighted Sobolev space. Finally, Section 4 contains all the proofs.

1.2. Notation. In the following, we introduce the notation of some standard function spaces and the
Fourier transform of distributions. Readers who are familiar with these concepts may skip this section.

As usual, N :“ t1, 2, 3, ...u and N0 :“ NYt0u denote the sets of natural numbers, whereas Z represents
the set of integers. Moreover, R and C denote the sets of real and complex numbers, respectively,
where i :“

?
´1 P C represents the imaginary unit. In addition, for any r P R, we define rrs :“

min tk P Z : k ě ru. Furthermore, for any z P C, we denote its real and imaginary part by Repzq and
Impzq, respectively, whereas its complex conjugate is defined as z :“ Repzq ´ Impzqi. Furthermore,
for any m P N, we denote by Rm (and Cm) the m-dimensional (complex) Euclidean space, which is
equipped with the Euclidean norm }u} “

a

řm
i“1 |ui|2.

In addition, for U Ď Rm, we denote by BpUq the σ-algebra of Borel-measurable subsets of U .
Moreover, for U P BpRmq, we denote by LpUq the σ-algebra of Lebesgue-measurable subsets of U ,
while du : LpUq Ñ r0,8s represents the Lebesgue measure on U . Then, a property is said to hold true
almost everywhere (shortly a.e.) if it holds everywhere true except on a set of Lebesgue measure zero.

Furthermore, for every fixed m, d P N and U Ď Rm, we introduce the following function spaces:
(i) C0pU ;Rdq denotes the vector space of continuous functions f : U Ñ Rd.

(ii) CkpU ;Rdq, with k P N and U Ď Rm open, denotes the vector space of k-times continu-
ously differentiable functions f : U Ñ Rd such that for every multi-index α P Nm0,k :“

tα “ pα1, ..., αmq P Nm0 : |α| :“ α1 ` ...` αm ď ku the partial derivativeU Q u ÞÑ Bαfpuq :“
B|α|f

Bu
α1
1 ¨¨¨Buαmm

puq P Rd is continuous. If m “ 1, we write f pjq :“ Bjf
Buj

: U Ñ Rd, j “ 0, ..., k.

(iii) Ckb pU ;Rdq, with k P N0 and U Ď Rm (open, if k ě 1), denotes the vector space of bounded
functions f P CkpU ;Rdq such that Bαf : U Ñ Rd is bounded for all α P Nm0,k. Then, the norm

}f}Ckb pU ;Rdq :“ max
αPNm0,k

sup
uPU

}Bαfpuq}.

turns pCkb pU ;Rdq, } ¨ }Ckb pU ;Rdqq into a Banach space. Note that for k “ 0 and U Ă Rm being

compact, we obtain the usual Banach space pC0pU ;Rdq, } ¨ }C0pU ;Rdqq of continuous functions,
which is equipped with the supremum norm }f}C0pU ;Rdq :“ }f}C0

b pU ;Rdq “ supuPU }fpuq}.
(iv) Ckpol,γpU ;Rdq, with k P N0, U Ď Rm (open, if k ě 1), and γ P r0,8q, denotes the vector space

of functions f P CkpU ;Rq of γ-polynomial growth such that

}f}Ckpol,γpU ;Rdq :“ max
αPNm0,k

sup
uPU

}Bαfpuq}

p1 ` }u}qγ
ă 8.

(v) Ckb pU ;Rdq
γ
, with k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q, is defined as the closure of

Ckb pU ;Rdq with respect to } ¨ }Ckpol,γpU ;Rdq. Then, pCkb pU ;Rdq
γ
, } ¨ }Ckpol,γpU ;Rdqq is by definition

a Banach space. If U Ď Rm is bounded, then Ckb pU ;Rdq
γ

“ Ckb pU ;Rdq. Otherwise, f P

Ckb pU ;Rdq
γ

if and only if f P CkpU ;Rdq and limrÑ8 maxαPNm0,k supuPU, }u}ěr
}Bαfpuq}

p1`}u}qγ
“ 0

(see Lemma 4.1). For example, if f P Ckpol,γ0pU ;Rdq with γ0 P r0, γq, then f P Ckb pU ;Rdq
γ
.

(vi) C8
c pU ;Rdq, with U Ď Rm open, denotes the vector space of smooth functions f : U Ñ Rd such

that supppfq Ď U , where supppfq is defined as the closure of tu P U : fpuq ‰ 0u in Rm.
(vii) L1

locpU ;Rdq, with U Ď Rm, denotes the space of Lebesgue measurable functions f : U Ñ Rd
such that for every compact subset K Ă Rm with K Ă U it holds that

ş

K }fpuq}du ă 8.
(viii) SpRm;Cq denotes the Schwartz space consisting of smooth functions f : Rm Ñ C such that

the seminorms maxαPNm0,n supuPRm
`

1 ` }u}2
˘n

|Bαfpuq|, n P N0, are finite. Then, we equip
SpRm;Cq with the locally convex topology induced by these seminorms (see [17, p. 330]).
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Moreover, its dual space S 1pRm;Cq consists of continuous linear functionals T : SpRm;Cq Ñ C
called tempered distributions (see [17, p. 332]). Hereby, we say that f P L1

locpRm;Cq induces
Tf P S 1pRm;Cq if SpRm;Cq Q g ÞÑ Tf pgq :“

ş

Rm fpuqgpuqdu P C is continuous. For
example, if there exists some n P N such that

ş

Rm
`

1 ` }u}2
˘´n

|fpuq|du ă 8, then the function
f P L1

locpRm;Cq induces the tempered distribution Tf P S 1pRm;Cq (see [17, Equation 9.26]).
Conversely, for an open subset U Ď Rm, a tempered distribution T P S 1pRm;Cq is said to
coincide on U with fT P L1

locpU ;Cq if T pgq “ TfT pgq for all g P C8
c pU ;Cq. In addition, the

support of any tempered distribution T P S 1pRm;Cq is defined as the complement of the largest
open set U Ď Rm on which T P S 1pRm;Cq vanishes, i.e. T pgq “ 0 for all g P C8

c pU ;Cq.
(ix) S0pR;Cq Ď SpR;Cq denotes the vector subspace of functions f P SpR;Cq with

ş

R u
jfpuqdu “

0 for all j P N0 (see [19, Definition 1.1.1]). Using the Fourier transform (see (1) below) and [17,
Theorem 7.5 (c)], this is equivalent to pf pjqp0q “ 0 for all j P N0.

(x) LppU,Σ, µ;Rdq, with p P r1,8q, U Ď Rm, and (possibly non-finite) measure space pU,Σ, µq,
denotes the vector space of (equivalence classes of) Σ{BpRdq-measurable functions f : U Ñ Rd
such that

}f}LppU,Σ,µ;Rdq :“

ˆ
ż

U
}fpuq}pµpduq

˙
1
p

ă 8.

Then, pLppU,Σ, µ;Rdq, } ¨ }LppU,Σ,µ;Rdqq is a Banach space (see [38, p. 96]).
(xi) W k,ppU,LpUq, du;Rdq, with k P N, p P r1,8q, and U Ď Rm open, denotes the Sobolev space

of (equivalence classes of) k-times weakly differentiable functions f : U Ñ Rd such that
Bαf P LppU,LpUq, du;Rdq for all α P Nm0,k (see [2, Chapter 3]). Then, the norm

}f}Wk,ppU,LpUq,du;Rdq :“

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq}pdu

˛

‚

1
p

turns W k,ppU,LpUq, du;Rdq into a Banach space (see [2, Theorem 3.2]).
(xii) W k,ppU,LpUq, w;Rdq, with k P N, p P r1,8q, U Ď Rm open, and LpUq{BpRq-measurable

w : U Ñ r0,8q, denotes the weighted Sobolev space of (equivalence classes of) k-times weakly
differentiable functions f : U Ñ Rd such that Bαf P LppU,LpUq, wpuqdu;Rdq for all α P Nm0,k.
Moreover, w : U Ñ r0,8q is called a weight if w is a.e. strictly positive. In this case, the norm

}f}Wk,ppU,LpUq,w;Rdq :“

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq}pwpuqdu

˛

‚

1
p

turns W k,ppU,LpUq, w;Rdq into a Banach space (see [29, p. 5]).
(xiii) W 0,ppU,LpUq, w;Rdq, with p P r1,8q andU P BpRmq, is defined asLppU,LpUq, wpuqdu;Rdq.
Moreover, if the functions are real-valued, we abbreviate CkpUq :“ CkpU ;Rq, LppU,Σ, µq :“

LppU,Σ, µ;Rq, etc. Moreover, we define the complex-valued function spaces CkpU ;Cdq – CkpU ;R2dq,
LppU,Σ, µ;Cdq – LppU,Σ, µ;R2dq, etc. as in (i)-(xii) (except (viii)+(ix)) by identifying Cd – R2d.

In addition, we say that an open subset U Ď Rm admits the segment property if for every u P BU :“
UzU there exists an open neighborhood V Ď Rm around u P BU and a vector y P Rmzt0u such that for
every z P U X V and t P p0, 1q it holds that z ` ty P U (see [2, p. 54]).

Furthermore, we define the (multi-dimensional) Fourier transform of any f P L1pRm,LpRmq, du;Cdq

as

Rm Q ξ ÞÑ pfpξq :“

ż

Rm
e´iξJufpuqdu P Cd, (1)

see [17, p. 247]. Then, by using [24, Proposition 1.2.2], it follows that

sup
ξPRm

›

›

›

pfpξq

›

›

›
“ sup

ξPRm

›

›

›

›

ż

Rm
e´iξJufpuqdu

›

›

›

›

ď

ż

Rm
}fpuq}du “ }f}L1pRm,LpRmq,du;Rdq. (2)

In addition, the Fourier transform of any tempered distribution T P S 1pRm;Cq is defined by pT pgq :“
T ppgq, for g P SpRm;Cq (see [17, Equation 9.28]).

Moreover, we use the Landau notation: an “ Opbnq (as n Ñ 8) if lim supnÑ8
|an|

|bn|
ă 8.
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2. UNIVERSAL APPROXIMATION OF NEURAL NETWORKS

Inspired by the functionality of a human brain, neural networks were introduced in [32] and are
nowadays applied as machine learning technique in various research areas (see [35]). In mathematical
terms, a neural network can be described as a concatenation of affine and non-linear functions.

Definition 2.1. For ρ P C0pRq, a function φ : Rm Ñ Rd is called a (single-hidden-layer feed-forward)
neural network if it is of the form

Rm Q u ÞÑ φpuq “

N
ÿ

n“1

ynρ
`

aJ
nu´ bn

˘

P Rd (3)

with respect to some N P N denoting the number of neurons, where a1, ..., aN P Rm, b1, ..., bN P R, and
y1, ..., yN P Rd represent the weight vectors, biases, and linear readouts, respectively.

Definition 2.2. For U Ď Rm and ρ P C0pRq, we denote by NN ρ
U,d the set of all neural networks of the

form (3) restricted to U with corresponding activation function ρ P C0pRq.

Input Layer

Hidden Layer

Output Layer

Rm Q u φpuq P Rd

Figure 1. A neural network φ : Rm Ñ Rd with m “ 3, d “ 2, and N “ 5.

In this paper, we restrict ourselves to single-hidden-layer feed-forward neural networks of the form (3)
and simply refer to them as neural networks.

2.1. Universal approximation. Deterministic neural networks admit the so-called universal approxima-
tion property, which establishes the denseness of the set of neural networks in a given function space
with respect to some suitable topology. For example, every continuous function can be approximated
arbitrarily well on a compact subset of a Euclidean space (see e.g. [11, 21, 37] and the references therein).

In order to generalize the approximation property of neural networks beyond the space of continuous
functions on compacta, we now introduce the following type of function spaces. For this purpose, we fix
the input dimension m P N and the output dimension d P N throughout the rest of this paper.

Definition 2.3. For k P N0, U Ď Rm (open, if k ě 1), γ P p0,8q, we call a Banach space pX, } ¨ }Xq

an pk, U, γq-approximable function space if X consists of functions f : U Ñ Rd and the restriction map

pCkb pRm;Rdq, } ¨ }Ckpol,γpRm;Rdqq Q f ÞÑ f |U P pX, } ¨ }Xq (4)

is a continuous dense embedding.

Remark 2.4. The restriction map in (4) is a continuous dense embedding if and only if it is continuous
and its image is dense in X . By definition of Ckb pRm;Rdq

γ
in Notation (v), this is equivalent to

pCkb pRm;Rdq
γ
, } ¨ }Ckpol,γpRm;Rdqq Q f ÞÑ f |U P pX, } ¨ }Xq being a continuous dense embedding.

The continuous dense embedding in (4) ensures that the set of neural networks NN ρ
U,d Ď X is

well-defined in the function space pX, } ¨ }Xq, for all activation functions ρ P Ckb pRq
γ
.

Lemma 2.5. For k P N0, U Ď Rm (open, if k ě 1), γ P p0,8q, let ρ P Ckb pRq
γ

and let pX, } ¨ }Xq be
an pk, U, γq-approximable function space. Then, we have NN ρ

Rm,d Ď Ckb pRm;Rdq
γ

and NN ρ
U,d Ď X .

Let us give some examples of pk, U, γq-approximable function spaces in the following, which includes
in particular some of the standard function spaces introduced in Section 1.2.
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Example 2.6. For any k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q, the following Banach spaces
pX, } ¨ }Xq are pk, U, γq-approximable function spaces:

Function space pX, } ¨ }Xq Notation Additional imposed assumptions

(a) pCk
b pU ;Rdq, } ¨ }Ck

b pU ;Rdqq
(iii) U Ă Rm is bounded

k P N0 and U Ď Rm (open, if k ě 1)

(b) pCk
b pU ;Rdq

γ
, } ¨ }Ck

pol,γpU ;Rdqq
(v) none

k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q

(c)
pLppU,Σ, µ;Rdq, } ¨ }LppU,Σ,µ;Rdqq

(x)
Σ “ BpUq,

k “ 0, p P r1,8q, U Ď Rm, µ : BpUq Ñ r0,8s is a Borel-measure,
and measure space pU,Σ, µq and

ş

U
p1 ` }u}qγpµpduq ă 8

(d) pW k,ppU,LpUq, du;Rdq, } ¨ }Wk,ppU,LpUq,du;Rdqq
(xi)

U Ă Rm has the segment property
k P N, p P r1,8q, and U Ď Rm open and U Ă Rm is bounded

(e)
pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq

(xii)

U Ď Rm has the segment property,
w : U Ñ r0,8q is bounded,

k P N, p P r1,8q, U Ď Rm open, infuPB wpuq ą 0 for all bounded B Ď U ,
and weight w : U Ñ r0,8q and

ş

U
p1 ` }u}qγpwpuqdu ă 8

Now, we assume that the activation function ρ P Ckb pRq
γ

is non-polynomial. Since ρ P Ckb pRq
γ

induces the tempered distribution
`

g ÞÑ Tρpgq :“
ş

R ρpsqgpsqds
˘

P S 1pR;Cq (see [17, Equation 9.26]),
this is equivalent to the condition that the Fourier transform xTρ P S 1pR;Cq is supported at a non-zero
point (see e.g. [39, Examples 7.16]). Let us give some examples of non-polynomial activation functions.

Example 2.7. For k P N0 and γ P p0,8q, the following functions ρ P Ckb pRq
γ

are non-polynomial,
where its Fourier transform xTρ P S 1pR;Cq coincides on Rzt0u with the function f

xTρ
P L1

locpRzt0u;Cq:

ρ P Ckb pRq
γ

k P N0 γ P p0,8q f
xTρ

P L1
locpRzt0u;Cq

(a) Sigmoid function ρpsq :“ 1
1`expp´sq

k P N0 γ ą 0 f
xTρ

pξq “ ´iπ
sinhpπξq

(b) Tangens hyperbolicus ρpsq :“ tanhpsq k P N0 γ ą 0 f
xTρ

pξq “ ´iπ
sinhpπξ{2q

(c) Softplus function ρpsq :“ ln p1 ` exppsqq k P N0 γ ą 1 f
xTρ

pξq “ ´π
ξ sinhpπξq

(d) ReLU function ρpsq :“ maxps, 0q k “ 0 γ ą 1 f
xTρ

pξq “ ´ 1
ξ2

To obtain the first main result of this paper, namely the universal approximation property of neural net-
works within pk, U, γq-approximable function spaces, we combine the classical Hahn-Banach separation
argument with a Riesz representation theorem (see [11, Theorem 1] and [14, Theorem 2.4]) and follow
Korevaar’s distributional extension (see [26]) of Wiener’s Tauberian theorem (see [45]) to obtain a global
universal approximation result beyond compact subsets of Rm. The proof can be found in Section 4.2.2.

Theorem 2.8. For k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q, let pX, } ¨ }Xq be an pk, U, γq-
approximable function space and let ρ P Ckb pRq

γ
be non-polynomial. Then, NN ρ

U,d is dense in X .

Remark 2.9. Theorem 2.8 extends the following universal approximation thereoms (UATs) from particular
function spaces and activation functions to more general cases:

(i) The UATs in [11, Theorem 1], [22, Theorem 2.4] (with sigmoidal activation), in [21, Theorem 2]
(with non-constant activation), and in [31, Theorem 1], [9, Theorem 3], and [37, Theorem 3.1]
(with non-polynomial activation) for the function space C0pUq, where U Ď Rm is compact.

(ii) The UATs in [22, Corollary 2.3] (with sigmoidal activation), in [21] (with non-constant ac-
tivation), and in [31, Proposition 2] (with non-polynomial activation) for the function space
LppU,BpUq, µq, where p P r1,8q, U Ď Rm, and µ is finite and compactly supported.

(iii) The UATs in [23, Corollary 3.8] (with k-finite activation) and in [21, Theorem 3+4] (with
non-constant activation) for the function spaces CkpU ;Rdq or W k,ppU,LpUq, wq, where k P N,
p P r1,8q, U Ď Rm is open, and w : U Ñ r0,8q is a compactly supported weight.

(iv) The UATs in [10, Theorem 4.13] and [44, Theorem 2.4] for the weighted space C0
b pU ;Rdq

γ
but

without derivatives, where U Ď Rm is arbitrary in [10], and where U “ Rm in [44].
In particular, we are able to consider Lp-spaces and weighted Sobolev spaces with non-compactly
supported measures/weights as well as weighted spaces Ckb pU ;Rdq

γ
, k P N0, including the derivatives.
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3. APPROXIMATION RATES

In this section, we provide rates to approximate a given function in the weighted Sobolev space
W k,ppU,LpUq, w;Rdq by a neural network, where k P N0, p P r1,8q, and U Ď Rm (open, if k ě 1).

To this end, we apply the reconstruction formula in [42, Theorem 5.6] to obtain an integral repre-
sentation of the function to be approximated (see Proposition 3.4). For that, we first consider pairs
pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq consisting of a ridgelet function ψ P S0pR;Cq (see Notation (ix)) and
an activation function ρ P Ckpol,γpRq (see Notation (iv)) satisfying the following admissibility condition,
which is a special case of [42, Definition 5.1] (see also [8, Definition 1]).

Definition 3.1. For k P N0 and γ P r0,8q, a pair pψ, ρq P S0pR;Cq ˆCkpol,γpRq is called m-admissible

if xTρ P S 1pR;Cq coincides on Rzt0u with a function f
xTρ

P L1
locpRzt0u;Cq such that

Cpψ,ρq
m :“ p2πqm´1

ż

Rzt0u

pψpξqf
xTρ

pξq

|ξ|m
dξ P Czt0u. (5)

Remark 3.2. If pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq is m-admissible, then ρ P Ckpol,γpRq has to be non-

polynomial. Indeed, otherwise the support of xTρ P S 1pR;Cq is contained in t0u Ă R (see e.g. [39,
Examples 7.16]), which implies that (5) vanishes for any choice of ψ P S0pR;Cq.

Together with some suitable ψ P S0pR;Cq, most common activation functions satisfy Definition 3.1.

Example 3.3. For k P N0 and γ P r0,8q, let ψ P S0pR;Cq be such that pψ P C8
c pRq is non-negative

with suppp pψq “ rζ1, ζ2s for some 0 ă ζ1 ă ζ2 ă 8. Then, for every m P N and every activation
function ρ P Ckpol,γpRq listed in the table below the pair pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq is m-admissible.

ρ P Ckpol,γpRq k P N0 γ P r0,8q f
xTρ

P L1
locpRzt0u;Cq

(a) Sigmoid function ρpsq :“ 1
1`expp´sq

k P N0 γ ě 0 f
xTρ

pξq “ ´iπ
sinhpπξq

(b) Tangens hyperbolicus ρpsq :“ tanhpsq k P N0 γ ě 0 f
xTρ

pξq “ ´iπ
sinhpπξ{2q

(c) Softplus function ρpsq :“ ln p1 ` exppsqq k P N0 γ ě 1 f
xTρ

pξq “ ´π
ξ sinhpπξq

(d) ReLU function ρpsq :“ maxps, 0q k “ 0 γ ě 1 f
xTρ

pξq “ ´ 1
ξ2

Moreover, there exists Cψ,ρ ą 0 (independent of m, d P N) such that
ˇ

ˇC
pψ,ρq
m

ˇ

ˇ ě Cψ,ρp2π{ζ2qm.

Next, we follow [8, 42] and define for every ψ P S0pR;Cq the (multi-dimensional) ridgelet transform
of any function g P L1pRm,LpRmq, du;Rdq as

Rm ˆ R Q pa, bq ÞÑ pRψgqpa, bq :“

ż

Rm
ψ
`

aJu´ b
˘

gpuq}a}du P Cd. (6)

Then, we can apply the reconstruction formula in [42, Theorem 5.6] componentwise to obtain an integral
representation. The proof can be found in Section 4.3.1.

Proposition 3.4. For k P N0 and γ P r0,8q, let pψ, ρq P S0pR;Cq ˆCkpol,γpRq be m-admissible and let
g P L1pRm,LpRmq, du;Rdq with pg P L1pRm,LpRmq, du;Cdq. Then, for a.e. u P Rm, it holds that

ż

Rm

ż

R
pRψgqpa, bqρ

`

aJu´ b
˘

dbda “ Cpψ,ρq
m gpuq.

In addition, we introduce the following Barron spaces which are inspired by the works [5, 15, 25].

Definition 3.5. For k P N0, γ P r0,8q, and ψ P S0pR;Cq, we define the ridgelet-Barron space
Bk,γψ pU ;Rdq as vector space of LpUq{BpRdq-measurable functions f : U Ñ Rd such that

}f}Bk,γψ pU ;Rdq
:“ inf

g

ˆ
ż

Rm

ż

R

`

1 ` }a}2
˘γ`k`m`1

2
`

1 ` |b|2
˘γ`1

}pRψgqpa, bq}2dbda

˙
1
2

ă 8,

where the infimum is taken over all g P L1pRm,LpRmq, du;Rdq with pg P L1pRm,LpRmq, du;Cdq and
g “ f a.e. on U .

Now, we present the second main result of this paper that consits of dimension-independent approxi-
mation rates for neural networks with general activation function. The proof is given in Section 4.3.4.
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Theorem 3.6. For k P N0, p P r1,8q, U Ď Rm (open, if k ě 1), and γ P r0,8q, let w : U Ñ r0,8q be
a weight such that

C
pγ,pq

U,w :“

ˆ
ż

U
p1 ` }u}qγpwpuqdu

˙
1
p

ă 8. (7)

Moreover, let pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq be m-admissible. Then, there exists a constant Cp ą 0

(depending only on p P r1,8q) such that for every f P W k,ppU,LpUq, w;Rdq X Bk,γψ pU ;Rdq and every
N P N there exists some φN P NN ρ

U,d having N neurons satisfying1

}f ´ φN}Wk,ppU,LpUq,w;Rdq ď Cp}ρ}Ckpol,γpRq

C
pγ,pq

U,w m
k
pπ

m`1
4

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ
Γ
`

m`1
2

˘
1
2

}f}Bk,γψ pU ;Rdq

N
1´ 1

minp2,pq

. (8)

Theorem 3.6 provides us with an upper bound on the number of neurons N P N that are needed for a
neural network to approximate a given function. Let us compare Theorem 3.6 with the literature.

Remark 3.7. Theorem 3.6 generalizes the following approximation rates in the literature by including
the approximation of the weak derivatives and by using more general activation functions:

(i) The rate O
`

1{N1{2
˘

in [5, Proposition 1] for approximating functions f : Rm Ñ R with
sufficiently integrable Fourier transform by neural networks (with sigmoidal activation function)
in L2pBrp0q,BpBrp0qq, µq, where Brp0q :“ tu P Rm : }u} ď ru with r ą 0, and where
µ : BpBrp0qq Ñ r0, 1s is a probability measure.

(ii) The rate O
`

1{N1´1{minp2,pq
˘

in [12, Table 1] for approximating functions f : Rm Ñ R being
in the convex closure of NN ρ

U,1 by neural networks (with sigmoidal activation function ρ) in
LppU,BpUq, µq, where p P r1,8q, U Ď Rm, and pU,BpUq, µq is a finite measure space.

(iii) The rate O
`

1{N1{2
˘

in [40, Theorem 2] for approximating functions f : Rm Ñ R with suffi-
ciently integrable Fourier transform by neural networks (with linear combination of polynomially
decaying activation functions) in W k,2pU,LpUq, duq, where U Ď Rm is open and bounded.

For a detailed summary on approximation rates for neural networks, we refer to [40, Section 1].

Next, we give a sufficient condition for a function f : U Ñ Rd to belong to Bk,γψ pU ;Rdq. The proof of
the remaining results of this section can be found in Section 4.3.5.

Proposition 3.8. Let k P N0, U Ď Rm (open, if k ě 1), γ P r0,8q, and let ψ P S0pR;Cq such that
ζ1 :“ inf

␣

|ζ| : ζ P suppp pψq
(

ą 0. Then, there exists a constant C1 ą 0 (independent of m, d P N) such
that for any f P L1pRm,LpRmq, du;Rdq with prγs ` 2q-times differentiable Fourier transform, we have

}f}Bk,γψ pU ;Rdq
ď
C1

ζ
m
2
1

ÿ

βPNm
0,rγs`2

ˆ
ż

Rm

›

›Bβ
pfpξq

›

›

2 `
1 ` }ξ{ζ1}2

˘2rγs`k`m`5
2 dξ

˙
1
2

. (9)

In particular, if the right-hand side of (9) is finite, it follows that f P Bk,γψ pU ;Rdq.

In addition, we analyze the situation when neural networks overcome the curse of dimensionality in the
sense that the computational costs (here measured as the number of neurons N P N) grow polynomially
in both the dimensions m, d P N and the reciprocal of a pre-specified tolerated approximation error. To
this end, we estimate the constant Cpγ,pq

U,w , while a lower bound for
ˇ

ˇC
pψ,ρq
m

ˇ

ˇ is given below Example 3.3.

Lemma 3.9. Let k P N0, p P r1,8q, U Ď Rm (open, if k ě 1), γ P r0,8q, and let U Q u :“
pu1, ..., umqJ ÞÑ wpuq :“

śm
l“1w0pulq P r0,8q be a weight, where w0 : R Ñ r0,8q satisfies

ş

Rw0psqds “ 1 and Cpγ,pq

R,w0
:“

` ş

Rp1 ` |s|qγpw0psqds
˘1{p

ă 8. Then, Cpγ,pq

U,w ď C
pγ,pq

R,w0
mγ`1{p.

Proposition 3.10. For k P N0, p P p1,8q, U Ď Rm (open, if k ě 1), and γ P r0,8q, letw : U Ñ r0,8q

be a weight as in Lemma 3.9. Moreover, let pψ, ρq P S0pR;CqˆCkpol,γpRq be a pair as in Example 3.3. In
addition, let f P W k,ppU,LpUq, w;Rdq satisfy the conditions of Proposition 3.8 such that the right-hand
side of (9) satisfies O

`

msp2{ζ2qmpm` 1qm{2
˘

for some s P N0. Then, there exist some constants
C2, C3 ą 0 such that for every m, d P N and every ε ą 0 there exists a neural network φN P NN ρ

U,d

with N “

Q

C2m
C3ε

´
minp2,pq

minp2,pq´1

U

neurons satisfying }f ´ φN}Wk,ppU,LpUq,w;Rdq ď ε.

1Hereby, Γ denotes the Gamma function (see [1, Section 6.1]).
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4. PROOFS

4.1. Proof of results in Section 1. In this section, we show an equivalent characterization for functions
in the Banach space pCkb pU ;Rdq

γ
, } ¨ }Ckpol,γpU ;Rdqq introduced in Notation (v), where k P N0, U Ď Rm

(open, if k ě 1), and γ P p0,8q. This generalizes the results in [14, Theorem 2.7] and [10, Lemma 2.7]
to differentiable functions defined on an open subset of a Euclidean space Rm.

In the following, we denote the factorial of a multi-index α :“ pα1, ..., αmq P Nm0 by α! :“
śm
l“1 αl!.

Moreover, for any r ě 0 and u0 P Rm, we define Brpu0q :“ tu P Rm : }u´ u0} ă ru and Brpu0q :“
tu P Rm : }u´ u0} ď ru as the open and closed ball with radius r ą 0 around u0 P Rm, respectively.

Lemma 4.1. Let k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q. Then, the following holds true:

(i) If U Ď Rm is bounded, then Ckb pU ;Rdq
γ

“ Ckb pU ;Rdq.
(ii) If U Ď Rm is unbounded, then f P Ckb pU ;Rdq

γ
if and only if f P CkpU ;Rdq and

lim
rÑ8

max
αPNm0,k

sup
uPUzBrp0q

}Bαfpuq}

p1 ` }u}qγ
“ 0. (10)

Proof. The conclusion in (i) follows from the definition of pCkb pU ;Rdq
γ
, } ¨ }Ckpol,γpU ;Rdqq. Now, for

necessity in (ii), fix some f P Ckb pU ;Rdq
γ
. Then, by definition of Ckb pU ;Rdq

γ
, there exists a sequence

pgnqnPN Ď Ckb pU ;Rdq with limnÑ8 }f ´ gn}Ckpol,γpU ;Rdq “ 0, which implies for every fixed r ą 0 that

lim
nÑ8

max
αPNm0,k

sup
uPUXBrp0q

}Bαfpuq ´ Bαgnpuq} ď p1 ` rqγ lim
nÑ8

max
αPNm0,k

sup
uPUXBrp0q

}Bαfpuq ´ Bαgnpuq}

p1 ` }u}qγ

ď p1 ` rqγ lim
nÑ8

}f ´ gn}Ckpol,γpU ;Rdq “ 0.

This together with the Fundamental Theorem of Calculus shows that f |UXBrp0q : U XBrp0q Ñ Rd is k-
times differentiable since for every fixed α P Nm0,k the partial derivative Bαf |UXBrp0q : U XBrp0q Ñ Rd
is continuous as uniform limit of continuous functions. Hence, by using that U is locally compact, it
follows from [36, Lemma 46.3+46.4] that Bαf : U Ñ Rd is continuous everywhere on U . Since this
holds true for every α P Nm0,k, we apply again the Fundamental Theorem of Calculus to conclude that
f P CkpU ;Rdq. Moreover, in order to show (10), we fix some ε ą 0 and choose some n P N large
enough such that }f ´ gn}Ckpol,γpU ;Rdq ă ε{2. Moreover, we choose r ą 0 sufficiently large such that

p1 ` rqγ ą 2ε´1}gn}Ckb pU ;Rdq holds true, which implies that

max
αPNm0,k

sup
uPUzBrp0q

}Bαfpuq}

p1 ` }u}qγ
ď max

αPNm0,k
sup
uPU

}Bαfpuq ´ Bαgnpuq}

p1 ` }u}qγ
` max
αPNm0,k

sup
uPUzBrp0q

}Bαgnpuq}

p1 ` }u}qγ

ă
ε

2
`

}gn}Ckb pU ;Rdq

p1 ` rqγ
ă
ε

2
`
ε

2
“ ε.

Since ε ą 0 was chosen arbitrarily, we obtain (10).
For sufficiency in (ii), let f P CkpU ;Rdq such that (10) holds true and fix some ε ą 0. Moreover, we

choose some h P C8
c pRmq such that hpuq “ 1 for all u P B1p0q, hpuq “ 0 for all u P RmzB2p0q, and

that there exists a constant Ch ą 0 such that for every α P Nm0,k and u P Rm it holds that |Bαhpuq| ď Ch.
In addition, by using (10), there exists some r ą 1 such that

max
αPNm0,k

sup
uPUzBrp0q

}Bαfpuq}

p1 ` }u}qγ
ă

ε

1 ` 2kCh
. (11)

From this, we define the functions Rm Q u ÞÑ hrpuq :“ hpu{rq P R and U Q u ÞÑ gpuq :“ hrpuqfpuq P

Rd, which both have bounded support. Furthermore, note that by the binomial theorem, we have for every
α P Nm0 that

ÿ

β1,β2PNm0
β1`β2“α

α!

β1!β2!
“

ÿ

βPNm0
@l:βlďαl

m
ź

l“1

αl!

βl!pαl ´ βlq!
ď

m
ź

l“1

αl
ÿ

βl“0

αl!

βl!pαl ´ βlq!
“

m
ź

l“1

2αl ď 2|α|. (12)
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Then, by using the Leibniz product rule together with the triangle inequality, the inequality (12), that
|Bαhrpuq| “ |Bαhpu{rq| r´|α| ď Ch for any α P Nm0,k and u P Rm, and again the inequality (12), it
follows for every α P Nm0,k and u P U that

}Bαgpuq} ď
ÿ

β1,β2PNm0
β1`β2“α

α!

β1!β2!
|Bβ1hrpuq| }Bβ2fpuq} ď 2kCh max

β2PNm0,k
}Bβ2fpuq} . (13)

Hence, by using that Bαgpuq “ Bαphrpuqfpuqq “ Bαfpuq for any α P Nm0,k and u P U X Brp0q (as
hrpuq “ 1 for any u P Brp0q), and the inequalities (13) and (11), the function g P Ckb pU ;Rdq satisfies

}f ´ g}Ckpol,γpU ;Rdq “ max
αPNm0,k

sup
uPU

}Bαfpuq ´ Bαgpuq}

p1 ` }u}qγ

ď max
αPNm0,k

sup
uPUXBrp0q

}Bαfpuq ´ Bαgpuq}

p1 ` }u}qγ
` max
αPNm0,k

sup
uPUzBrp0q

}Bαfpuq}

p1 ` }u}qγ

` max
αPNm0,k

sup
uPUzBrp0q

}Bαgpuq}

p1 ` }u}qγ

ď max
αPNm0,k

sup
uPUzBrp0q

}Bαfpuq}

p1 ` }u}qγ
` 2kCh max

αPNm0,k
sup

uPUzBrp0q

}Bαfpuq}

p1 ` }u}qγ

ă
ε

1 ` 2kCh
` 2kCh

ε

1 ` 2kCh
“ ε.

Since ε ą 0 was chosen arbitrarily, it follows that f P CkpU ;Rdq
γ
. □

4.2. Proof of results in Section 2.

4.2.1. Proof of Lemma 2.5.

Proof of Lemma 2.5. Fix some ρ P Ckb pRq
γ
, y P Rd, a P Rm, and b P R, and define the constant

Cy,a,b :“ 1`maxαPNm0,k }yaα} p1`}a}`|b|qγ ą 0, where aα :“
śm
l“1 a

αl
l for a :“ pa1, ..., amqJ P Rm

and α :“ pα1, ..., αmq P Nm0,k. Then, by using the definition of Ckb pRq
γ
, there exists some rρ P Ckb pRq

such that

}ρ´ rρ}Ckpol,γpRq :“ max
j“0,...,k

sup
sPR

ˇ

ˇρpjqpsq ´ rρpjqpsq
ˇ

ˇ

p1 ` |s|qγ
ă

ε

Cy,a,b
.

Hence, by using the inequality 1 `
ˇ

ˇaJu´ b
ˇ

ˇ ď 1 ` }a}}u} ` |b| ď p1 ` }a} ` |b|qp1 ` }u}q, it follows
for the function yrρ

`

aJ ¨ ´b
˘

:“
`

u ÞÑ yrρ
`

aJu´ b
˘˘

P Ckb pRm;Rdq that

›

›yρ
`

aJ ¨ ´b
˘

´ yrρ
`

aJ ¨ ´b
˘
›

›

Ckpol,γpRm;Rdq
“ max

αPNm0,k
sup
uPRm

›

›yρp|α|q
`

aJu´ b
˘

aα ´ yrρp|α|q
`

aJu´ b
˘

aα
›

›

p1 ` }u}qγ

ď

˜

max
αPNm0,k

}yaα} p1 ` }a} ` |b|q

¸

max
αPNm0,k

sup
uPRm

›

›yρ
`

aJu´ b
˘

´ yrρ
`

aJu´ b
˘
›

›

p1 ` |aJu´ b|q
γ

ď Cy,a,b max
j“0,...,k

sup
sPR

ˇ

ˇρpjqpsq ´ rρpjqpsq
ˇ

ˇ

p1 ` |s|qγ
ă Cy,a,b

ε

Cy,a,b
“ ε.

Since ε ą 0 was chosen arbitrarily and yrρ
`

aJ ¨ ´b
˘

P Ckb pRm;Rdq, it follows that yρ
`

aJ ¨ ´b
˘

P

Ckb pRm;Rdq
γ
. Thus, by using that NN ρ

Rm,d is defined as vector space consisting of functions of the
form Rm Q u ÞÑ yρ

`

aJu´ b
˘

P Rd, with y P Rd, a P Rm, and b P R, the triangle inequality implies

that NN ρ
Rm,d Ď Ckb pRm;Rdq

γ
. Finally, by using that pX, } ¨ }Xq is pk, U, γq-approximable function

space, i.e. that the restriction map in (4) is a continuous embedding, it follows that NN ρ
U,d Ď X . □
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4.2.2. Proof of Theorem 2.8. In this section, we provide the proof of Theorem 2.8, i.e. the univer-
sal approximation property of neural networks NN ρ

U,d in any pk, U, γq-approximable function space

pX, } ¨ }Xq, where k P N0, U Ď Rm (open, if k ě 1), γ P p0,8q, and ρ P Ckb pRq
γ
.

The idea of the proof is the following. By contradiction, we assume that NN ρ
U,d Ď X is not dense in

X . Then, by using the Hahn-Banach theorem (as in [11, Theorem 1]), there exists a non-zero continuous
linear functional l : X Ñ R which vanishes on the vector subspace NN ρ

U,d Ď X . Moreover, by using

the continuous embedding in (4), we can express l : X Ñ R on the dense subspace Ckb pRm;Rdq
γ

with
finite signed Radon measures, which relies on the Riesz representation theorem in [14, Theorem 2.4].
Subsequently, we use the distributional extension of Wiener’s Tauberian theorem in [26] and that
ρ P Ckb pRq

γ
is non-polynomial to conclude that l : X Ñ R vanishes everywhere on X . This however

contradicts the initial assumption that l : X Ñ R is non-zero. Hence, NN ρ
U,d must be dense in X .

In order to prove Theorem 2.6 as outlined above, we now first generalize the Riesz representation
theorem in [14, Theorem 2.7] to this vector-valued case with derivatives. Hereby, we define MγpRmq

as the vector space of finite signed Radon measures η : BpRmq Ñ R with
ş

Rmp1 ` }u}qγ |η|pduq ă 8,
where |η| : BpRmq Ñ r0,8q denotes the corresponding total variation measure. Moreover, we denote by
Z˚ the dual space of a Banach space pZ, } ¨ }Zq which consists of continuous linear functionals l : Z Ñ R
and is equipped with the norm }l}Z˚ :“ supzPZ, }z}Zď1 |lpzq|.

Proposition 4.2 (Riesz representation). For k P N0 and γ P p0,8q, let l : Ckb pRm;Rdq
γ

Ñ R be a
continuous linear functional. Then, there exist some signed Radon measures pηα,iqαPNm0,k, i“1,...,d Ď

MγpRmq such that for every f “ pf1, ..., fdqJ P Ckb pRm;Rdq
γ

it holds that

lpfq “
ÿ

αPNm0,k

d
ÿ

i“1

ż

Rm
Bαfipuqηα,ipduq.

Proof. First, we show the conclusion for k “ 0 and d “ 1. Indeed, by defining Rm Q u ÞÑ ψpuq :“
p1 ` }u}qγ P p0,8q, the tuple pRm, ψq is a weighted space in the sense of [14, p. 5]. Hence, the
conclusion follows from [14, Theorem 2.4].

Now, for the general case of k ě 1 and d ě 2, we fix a continuous linear functional l : Ckb pRm;Rdq
γ

Ñ

R and define the number M :“ |Nm0,k| ¨ d as well as the map

Ckb pRm;Rdq
γ

Q f ÞÑ Ξpfq :“ pBαfiq
J
αPNm0,k, i“1,...,d P C0

b pRm;RM q
γ
.

Moreover, we denote by ImgpΞq :“
!

Ξpfq : f P Ckb pRm;Rdq
γ)

Ď C0
b pRm;RM q

γ
the image vector

subspace. Then, by using that Ξ : Ckb pRm;Rdq
γ

Ñ ImgpΞq is by definition bijective, there exists an
inverse map Ξ´1 : ImgpΞq Ñ Ckb pRm;Rdq

γ
. Moreover, we conclude for every f P Ckb pRm;Rdq

γ
that

›

›

›
Ξ´1ppBαfiqαPNm0,k, i“1,...,dq

›

›

›

Ckpol,γpRm;Rdq
“ }f}Ckpol,γpRm;Rdq “ max

αPNm0,k
sup
uPRm

}Bαfpuq}

p1 ` }u}qγ

“ sup
uPRm

max
αPNm0,k

}Bαfpuq}

p1 ` }u}qγ
ď sup

uPRm

}pBαfiqαPNm0,k, i“1,...,d}

p1 ` }u}qγ

“ }f}Ckpol,γpRm;RM q,

which shows that Ξ´1 : ImgpΞq Ñ Ckb pRm;Rdq
γ

is continuous. Hence, the concatenation l ˝ Ξ´1 :
ImgpΞq Ñ R is a continuous linear functional on ImgpΞq, which can be extended by using the Hahn-
Banach theorem to a continuous linear functional l0 : C0

b pRm;RM q
γ

Ñ R such that for every f P

Ckb pRm;Rdq
γ

it holds that

l0ppBαfiqαPNm0,k, i“1,...,dq “
`

l ˝ Ξ´1
˘

ppBαfiqαPNm0,k, i“1,...,dq “ lpfq. (14)

Now, for every fixed α P Nm0,k and i “ 1, ..., d, we define the linear map C0
b pRmq

γ
Q g ÞÑ lα,ipgq :“

l0pgeα,iq P R, where eα,i P RM :“ R|Nm0,k|¨d
– R|Nm0,k|

ˆ Rd denotes the pα, iq-th unit vector of
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RM :“ R|Nm0,k|¨d
– R|Nm0,k|

ˆ Rd. Then, for every g P C0
b pRmq

γ
, it follows with Z :“ C0

b pRm;RM q
γ

that
|lα,ipgq| “ |l0pgeα,iq| ď }l0}Z˚}geα,i}C0

pol,γpRm;RM q “ }l0}Z˚}g}C0
pol,γpRmq,

which shows that lα,i : C0
b pRmq

γ
Ñ R is a continuous linear functional. Hence, by using (14) and by

applying for every α P Nm0,k and i “ 1, ..., d the case with k “ 0 and d “ 1, there exist some Radon

measures pηα,iqαPNm0,k,i“1,...,d P MγpRmq such that for every f P Ckb pRm;Rdq
γ

it holds that

lpfq “
`

l ˝ Ξ´1
˘

ppBαfiqαPNm0,k, i“1,...,dq

“ l0ppBαfiqαPNm0,k, i“1,...,dq

“
ÿ

αPNm0,k

d
ÿ

i“1

lα,ipBαfieα,iq

“
ÿ

αPNm0,k

d
ÿ

i“1

ż

Rm
Bαfipuqηα,ipduq,

which completes the proof. □

Next, we show that every non-polynomial activation function ρ P Ckb pRq
γ

is discriminatory in the
sense of [11, p. 306]. To this end, we generalize the proof of [9, Theorem 1] from compactly supported
signed Radon measures to measures in MγpRmq. Hereby, we follow the distributional extension of
Wiener’s Tauberian theorem in [26, Theorem A].

Proposition 4.3. For γ P p0,8q, let η P MγpRmq be a signed Radon measure and assume that
ρ P C0

b pRq
γ

is non-polynomial. If for every a P Rm and b P R it holds that
ż

Rm
ρ
`

aJu´ b
˘

ηpduq “ 0, (15)

then it follows that η “ 0 P MγpRmq.

Proof. We follow the proof of [10, Proposition 4.4 (A3)] and assume that ρ P C0
b pRq

γ
is non-polynomial.

Then, by using e.g. [39, Examples 7.16], there exists a non-zero point t0 P Rzt0u which belongs to the
support of xTρ P S 1pR;Cq. Moreover, let η P MγpRmq satisfy (15) and assume by contradiction that
η P MγpRmq is non-zero.

Now, for every a P Rm, we define the push-forward measure ηa :“ η ˝
`

aJ¨
˘´1

: BpRq Ñ R by
ηapBq :“ η

`␣

u P Rm : aJu P B
(˘

, for B P BpRq. Moreover, for every fixed λ P Rzt0u, we define
the function R Q s ÞÑ ρλpsq :“ ρpλsq P R. Then, by applying [6, Theorem 3.6.1] (to the positive and
negative part of η P MγpRmq) and by using the assumption (15) (with λa P Rm and λb P R instead of
a P Rm and b P R, respectively), it follows for every a P Rm and b P R that

ż

R
ρλps´ bqηapdsq “

ż

Rm
ρ
`

λaJu´ λb
˘

ηpduq “ 0. (16)

Since η P MγpRmq is non-zero, there exists some a P Rm such that ηa : BpRq Ñ R is non-zero.
Hence, there exists some h P SpR;Cq such that

`

z ÞÑ fpzq :“ ph ˚ ηaqp´zq :“
ş

R hp´z ´ sqηapdsq
˘

P

L1pR,LpRq, du;Cq is also non-zero. Then, by using that the Fourier transform is injective, pf : R Ñ C
is non-zero, too, i.e. there exists some t1 P Rzt0u such that pfpt1q ‰ 0. Hence, by using [17, Table 7.2.2],
the function

`

z ÞÑ f0pzq :“ fpzqe´it1z
˘

P L1pR,LpRq, du;Cq satisfies pf0p0q “ pfpt1q ‰ 0. Moreover,
we choose λ :“ t1

t0
P Rzt0u and define the function R Q z ÞÑ ρ0pzq :“ ρλpzqe´it1z P C.

Next, we use [6, Theorem 3.6.1] (applied to |η| : BpRmq Ñ r0,8q), the inequality 1 `
ˇ

ˇλaJu´ b
ˇ

ˇ ď

1 ` |λ|}a}}u} ` |λ||b| ď maxp1, |λ|qp1 ` }a}qp1 ` |b|qp1 ` }u}q for any a, u P Rm and b, y P R, the
inequality p1 ` |b|qγ ď 2γ

`

1 ` |b|2
˘γ{2

ď 2γ
`

1 ` |b|2
˘rγ{2s for any b P R, and that for every y P R the

reflected translation R Q b ÞÑ rhypbq :“ hp´y ´ bq P R of the Schwartz function h P SpR;Cq is again a



12

Schwartz function (see [17, p. 331]) to conclude for every y P R that
ż

R

ż

R
|hp´y ´ bq||ρλps´ bq||ηa|pdsqdb “

ż

Rm
|hp´y ´ bq|

ż

R

ˇ

ˇρ
`

λaJu´ λb
˘ˇ

ˇ |η|pduqdb

ď

ż

R
|hp´y ´ bq|

˜

sup
uPRm

ˇ

ˇρ
`

λaJu´ λb
˘
ˇ

ˇ

p1 ` |λaJu´ λb|q
γ

¸

ż

R

`

1 `
ˇ

ˇλaJu´ λb
ˇ

ˇ

˘γ
|η|pduqdb

ď maxp1, |λ|qγp1 ` }a}qγ
ˆ

sup
sPR

|ρpsq|

p1 ` |s|qγ

˙ˆ
ż

R
|hp´y ´ bq|p1 ` |b|qγdb

˙
ż

R
p1 ` }u}qγ |η|pduq

ď maxp1, |λ|qγp1 ` }a}qγ}ρ}C0
pol,γpRq

˜

sup
yPR

ˇ

ˇ

ˇ

rhypbq
ˇ

ˇ

ˇ

`

1 ` |b|2
˘rγ{2s`1

¸

¨

ˆ
ż

R

1

1 ` b2
db

˙
ż

R
p1 ` }u}qγ |η|pduq ă 8.

(17)
Then, by using the substitution z ÞÑ s´ b and the identity (16), it follows for every y P R that

pf0 ˚ ρ0qpyq “

ż

R
fpy ´ zqeit1py´zqρλpzqe´it1zdz “ eit1y

ż

R
ph ˚ ηaqpz ´ yqρλpzqdz

“ eit1y
ż

R

ż

R
hpz ´ y ´ sqρλpzqηapdsqdz “ eit1y

ż

R
hp´y ´ bq

ż

R
ρλps´ bqηapdsqdb “ 0,

(18)
where (17) ensures that the convolution f0 ˚ ρ0 : R Ñ R is well-defined.

Moreover, let ϕ P SpR;Cq such that pϕpξq “ 1, for all ξ P r´1, 1s, and pϕpξq “ 0, for all ξ P Rzr´2, 2s.
In addition, for every n P N, we define

`

s ÞÑ ϕnpsq :“ 1
nϕ

`

1
n

˘˘

P SpR;Cq. Then, by following the
proof of [26, Theorem A], there exists some large enough n P N and w P L1pR,LpRq, duq such that
w ˚ f0 “ ϕ2n P SpR;Cq, Hence, by using (17), we conclude for every g P SpR;Cq that

pTρ0 ˚ ϕ2nq pgq :“ Tρ0 pϕ2np´ ¨q ˚ gq “ pg ˚ ϕ2n ˚ ρ0qp0q “ pg ˚ w ˚ f0 ˚ ρ0qp0q “ 0, (19)

where ϕ2np´ ¨q denotes the function R Q s ÞÑ ϕ2np´sq P R. Thus, by using [17, Equation 9.32]
together with (19), i.e. that yϕ2nxTρ0 “ Tρ0 ˚ ϕ2n̂ “ 0 P S 1pR;Cq, and that yϕ2npξq “ pϕp2nξq “ 1 for any
ξ P r´ 1

2n ,
1
2n s, it follows that xTρ0 P S 1pR;Cq vanishes on p´ 1

2n ,
1
2nq.

Finally, for any fixed g P C8ppt0 ´ 1
2n|λ|

, t0 ` 1
2n|λ|

q;Cq, we define
`

z ÞÑ g0pzq :“ g
`

z
λ ` t0

˘ ˘

P

C8
c pp´ 1

2n ,
1
2nq;Cq. Hence, by using the definition of xTρ P S 1pR;Cq, the substitution ζ ÞÑ ξ{λ, [17,

Table 9.2.2], and that xTρ0 P S 1pR;Cq vanishes on p´ 1
2n ,

1
2nq, we conclude that

xTρpgq “ Tρppgq “

ż

R
ρpξqpgpξqdξ “ λ

ż

R
ρpλζqpgpλζqdζ “

ż

R
ρ0pζqeit1ζ {gp¨ {λqpζqdz

“

ż

R
ρ0pζq pg0pζqdζ “ Tρ0p pg0q “ xTρ0pg0q “ 0,

(20)

where {gp¨ {λq denotes the Fourier transform of the function ps ÞÑ gps{λqq P SpR;Cq. Since the function
g P C8

c ppt0 ´ 1
2n|λ|

, t0 ` 1
2n|λ|

q;Cq was chosen arbitrary, (20) shows that xTρ P S 1pR;Cq vanishes on
the set

`

t0 ´ 1
2n|λ|

, t0 ` 1
2n|λ|

˘

. This however contradicts the assumption that t0 P Rzt0u belongs to the

support of xTρ P S 1pR;Cq and shows that η “ 0 P MγpRq. □

Next, we show some properties of measures η P MγpRmq, γ P p0,8q, whenever they are convoluted
with a bump function. To this end, we introduce the smooth bump function ϕ : Rm Ñ R defined by

ϕpuq :“

#

Ce
´ 1

1´}u}2 , u P B1p0q,

0, u P RmzB1p0q,

where C ą 0 is a normalizing constant such that }ϕ}L1pRm,LpRmq,duq “ 1. From this, we define for
every fixed δ ą 0 the mollifier Rm Q u ÞÑ ϕδpuq :“ 1

δmϕ
`

u
δ

˘

P R. Moreover, for any γ P p0,8q and
η P MγpRmq, we define the function Rm Q u ÞÑ pϕδ ˚ ηqpuq :“

ş

Rm ϕδpu´ vqηpdvq P R.

Lemma 4.4. For γ P p0,8q, let η P MγpRmq and f P C0
b pRmq

γ
. Then, the following holds true:
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(i) For every δ ą 0 the function ϕδ ˚ η : Rm Ñ R is smooth with Bαpϕδ ˚ ηqpuq “ pBαϕδ ˚ ηqpuq

for all α P Nm0 and u P Rm.
(ii) For every δ ą 0 and α P Nm0 it holds that

lim
rÑ8

sup
uPRmzBrp0q

|fpuqBαpϕδ ˚ ηqpuq| “ 0.

(iii) For every δ ą 0 and α P Nm0 it holds that Bαpϕδ ˚ ηqpuqdu
ˇ

ˇ

BpRmq
P MγpRmq.

(iv) For every δ ą 0 and α P Nm0 the map

pC0
b pRmq

γ
, } ¨ }C0

pol,γpRmqq Q f ÞÑ

ż

Rm
fpuqBαpϕδ ˚ ηqpuqdu P R

is a continuous linear functional.
(v) For every δ ą 0 it holds that

ż

Rm
fpuqpϕδ ˚ ηqpuqdu “

ż

Rm

ż

Rm
fpu` yqηpduqϕδpyqdy.

(vi) It holds that

lim
δÑ0

ż

Rm
fpuqpϕδ ˚ ηqpuqdu “

ż

Rm
fpuqηpduq.

Proof. Fix some γ P p0,8q, η P MγpRmq, f P C0
b pRmq

γ
, δ ą 0, and α P Nm0 . For (i), we first show

that Bαϕδ ˚ η : Rm Ñ R is continuous. Indeed, we observe that for every u, u0, v P Rm, it holds that

max p|Bαϕδpu´ vq| , |Bαϕδpu0 ´ vq|q ď C11 :“ sup
u1PRm

|Bαϕδpu1q| ă 8. (21)

Then, the dominated convergence theorem (with (21) and that η P MγpRmq is finite) implies that

lim
uÑu0

pBαϕδ ˚ ηqpuq “ lim
uÑu0

ż

Rm
Bαϕδpu´ vqηpdvq “

ż

Rm
Bαϕδpu0 ´ vqηpdvq “ pBαϕδ ˚ ηqpu0q,

which shows that Bαϕδ ˚ η : Rm Ñ R is continuous. Moreover, for every fixed β P Nm0 and l “ 1, ...,m
(with el P Rm denoting the l-th unit vector of Rm), we use the mean-value theorem to conclude for every
u, v P Rm and h P R that

max

ˆˇ

ˇ

ˇ

ˇ

Bβϕδpu` hel ´ vq ´ Bβϕδpu´ vq

h

ˇ

ˇ

ˇ

ˇ

, |Bβ`elϕδpu´ vq|

˙

ď C12 :“ sup
u1PRm

|Bβ`elϕδpu1q| ă 8.
(22)

Then, the dominated convergence theorem (with (22) and that η P MγpRmq is finite) implies that

BelpBαϕδ ˚ ηqpuq “ lim
hÑ0

pBβϕδ ˚ ηqpu` helq ´ pBβϕδ ˚ ηqpuq

h

“ lim
hÑ0

ż

Rm

Bβϕδpu` hel ´ vq ´ Bβϕδpu´ vq

h
ηpdvq

“

ż

Rm
Bβ`elϕδpu´ vqηpdvq “ pBβ`elϕδ ˚ ηqpuq.

Hence, by induction on β P Nm0 , it follows that Bαpϕδ ˚ ηqpuq “ pBαϕδ ˚ ηqpuq for any u P Rm. This
together with the previous step shows (i).

For (ii), we use (i), that supppϕδq “ Bδp0q implies supppBαϕδq Ď Bδp0q, the inequality 1 ` x` y ď

p1 ` xqp1 ` yq for any x, y ě 0, that the constant C13 :“ supyPRm |Bαϕδpyq| ą 0 is finite, and that
η P MγpRmq to conclude that

C14 :“ sup
uPRm

`

p1 ` }u}qγ |pϕδ ˚ ηqpuq|
˘

ď sup
uPRm

ż

Rm
p1 ` }u}qγ |Bαϕδpu´ vq| |η|pdvqdu

ď sup
uPRm

ż

Rm
p1 ` }u´ v}

loomoon

ďδ

`}v}qγ |Bαϕδpu´ vq| |η|pdvq ď C13p1 ` δqγ
ż

Rm
p1 ` }v}qγ |η|pdvq ă 8.
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Hence, by using this and that f P C0
b pRmq

γ
together with Lemma 4.1, it follows that

lim
rÑ8

sup
uPRmzBrp0q

|fpuqBαpϕδ ˚ ηqpuq| “ lim
rÑ8

sup
uPRmzBrp0q

ˆ

|fpuq|

p1 ` }u}qγ
p1 ` }u}qγ |Bαpϕδ ˚ ηqpuq|

˙

“ C14 lim
rÑ8

sup
uPRmzBrp0q

|fpuq|

p1 ` }u}qγ
“ 0,

which shows (ii).
For (iii), we first prove that Bαpϕδ ˚ ηqpuqdu

ˇ

ˇ

BpRmq
: BpRmq Ñ R is a signed Radon measure. For this

purpose, we denote its positive and negative part by ηδ,˘ :“ ˘ pBαpϕδ ˚ ηqpuqq˘ du
ˇ

ˇ

BpRmq
: BpRmq Ñ

r0,8s satisfying ηδ,` ´ ηδ,´ “ Bαpϕδ ˚ ηqpuqdu
ˇ

ˇ

BpRmq
, where s` :“ maxps, 0q and s´ :“ ´minps, 0q,

for any s P R. Moreover, we define the finite constant C15 :“ supuPRm |Bαϕδpuq| ą 0. Then, for every
u P Rm, we choose a compact subset K Ă Rm with u P K and use that η P MγpRmq is finite to
conclude that

ηδ,˘pKq “ ˘

ż

K
pBαpϕδ ˚ ηqpuqq˘ du ď

ˆ
ż

K
du

loomoon

“:|K|

˙

sup
uPK

|pBαϕδ ˚ ηqpuq|

ď |K| sup
uPK

ż

Rm
|Bαϕδpu´ vq| |η|pdvq ď C15|K||η|pRmq ă 8.

This shows that both measures ηδ,˘ : BpRmq Ñ r0,8s are locally finite. In addition, it holds for every
B P BpRmq that

ηδ,˘pBq “ ˘

ż

B
pBαpϕδ ˚ ηqpuqq˘ du

“ inf

"

˘

ż

U
pBαpϕδ ˚ ηqpuqq˘ du : U Ď Rm open with B Ď U

*

“ inf tηδ,˘pUq : U Ď Rm open with B Ď Uu ,

which shows that both measures ηδ,˘ : BpRmq Ñ r0,8s are outer regular. Moreover, it holds for every
B P BpRmq that

ηδ,˘pBq “ ˘

ż

B
pBαpϕδ ˚ ηqpuqq˘ du

“ sup

"

˘

ż

K
pBαpϕδ ˚ ηqpuqq˘ du : K Ă B relatively compact

*

“ sup tηδ,˘pKq : K Ă B relatively compactu ,

which shows that both measures ηδ,˘ : BpRmq Ñ r0,8s are inner regular. Hence, both measures ηδ,˘ :
BpRmq Ñ r0,8s are Radon measures and Bαpϕδ ˚ ηqpuqdu

ˇ

ˇ

BpRmq
“ ηδ,` ´ ηδ,´ : BpRmq Ñ r0,8s

is thus a signed Radon measure. Furthermore, by using the triangle inequality, that supppϕδq “ Bδp0q

implies supppBαϕδq Ď Bδp0q, the inequality 1`x`y ď p1`xqp1`yq for any x, y ě 0, the substitution
y ÞÑ u´ v together with }Bαϕδ}L1pRm,LpRmq,duq ă 8, and that η P MγpRmq, we have
ż

Rm
p1 ` }u}qγ |Bαpϕδ ˚ ηqpuq| du ď

ż

Rm

ż

Rm
p1 ` }u}qγ |Bαϕδpu´ vq|du|η|pdvq

ď

ż

Rm

ż

Rm
p1 ` }u´ v}

loomoon

ďδ

`}v}qγ |Bαϕδpu´ vq| du|η|pdvq

ď p1 ` δqγ
ˆ

sup
vPRm

ż

Rm
|Bαϕδpu´ vq| du

˙ˆ
ż

Rm
p1 ` }v}qγ |η|pdvq

˙

ď p1 ` δqγ}Bαϕδ}L1pRm,LpRmq,duq

ˆ
ż

Rm
p1 ` }v}qγ |η|pdvq

˙

ă 8.

This shows that Bαpϕδ ˚ ηqpuqdu
ˇ

ˇ

BpRmq
P MγpRmq is a finite signed Radon measure.



15

For (iv), we use (iii) to conclude that the constant C16 :“
ş

Rmp1` }u}qγ |pϕδ ˚ ηqpuq| du ą 0 is finite.
Then, it follows for every f P C0

b pRmq
γ

that
ˇ

ˇ

ˇ

ˇ

ż

Rm
fpuqBαpϕδ ˚ ηqpuqdu

ˇ

ˇ

ˇ

ˇ

ď

ˆ

sup
uPRm

|fpuq|

p1 ` }u}qγ

˙
ż

Rm
p1 ` }u}qγ |Bαpϕδ ˚ ηqpuq| du

“ C16}f}C0
pol,γpRmq,

which shows that C0
b pRmq

γ
Q f ÞÑ

ş

Rm fpuqBαpϕδ ˚ ηqpuqdu P R is a continuous linear functional.
For (v), we use the substitution u ÞÑ v ` y to conclude that

ż

Rm
fpuqpϕδ ˚ ηqpuqdu “

ż

Rm

ż

Rm
fpuqϕδpu´ vqηpdvqdu

“

ż

Rm

ż

Rm
fpv ` yqηpdvqϕδpyqdy.

For (vi), we define for every δ P p0, 1q the function Rm Q u ÞÑ pϕδ ˚fqpuq :“
ş

Rm ϕδpu´vqfpvqdv P

R. Then, by using the triangle inequality, that supppϕδq “ Bδp0q, the substitution y ÞÑ u´ v together
with

ş

Rm |ϕδpyq|dy “ }ϕδ}L1pRm,LpRmq,duq “ }ϕ}L1pRm,LpRmq,duq “ 1, the inequality 1 ` x ` y ď

p1 ` xqp1 ` yq for any x, y ě 0, and that f P C0
b pRmq

γ
, it follows for every u P Rm that

|pϕδ ˚ fqpuq| ď

ż

Rm
|ϕδpu´ vq|

|fpvq|

p1 ` }v}qγ
p1 ` }v}qγdv

ď

ż

Rm
|ϕδpu´ vq|

|fpvq|

p1 ` }v}qγ
p1 ` }u} ` }u´ v}

loomoon

ďδ

qγdv

ď

ˆ
ż

Rm
|ϕδpu´ vq|dv

˙ˆ

sup
vPRm

|fpvq|

p1 ` }v}qγ

˙

p1 ` }u} ` δqγ

ď

ˆ
ż

Rm
|ϕδpyq|dy

˙

}f}C0
pol,γpRmqp1 ` δqγp1 ` }u}qγ

ď 2γ}f}C0
pol,γpRmqp1 ` }u}qγ .

(23)

Moreover, by using that f P C0
b pRmq

γ
, we conclude for every u P Rm that

|fpuq| ď

ˆ

sup
uPRm

|fpuq|

p1 ` }u}qγ

˙

p1 ` }u}qγ ď }f}C0
pol,γpRmqp1 ` }u}qγ . (24)

Hence, by using (v), Fubini’s theorem, the substitution u ÞÑ v ` y, and the dominated convergence
theorem (with (23), (24), p1 ` }u}qγ P L1pRm,BpRmq, |η|q as η P MγpRmq, and [16, Theorem C.7],
i.e. that ϕδ ˚ f : Rm Ñ R converges a.e. to f : Rm Ñ R, as δ Ñ 0), it follows that

lim
δÑ0

ż

Rm
fpuqpϕδ ˚ ηqpuqdu “ lim

δÑ0

ż

Rm

ż

Rm
fpv ` yqηpdvqϕδpyqdy

“ lim
δÑ0

ż

Rm

ˆ
ż

Rm
fpv ` yqϕδpyqdy

˙

ηpdvq

“ lim
δÑ0

ż

Rm

ˆ
ż

Rm
ϕpv ´ uqfpuqdu

˙

ηpdvq

“ lim
δÑ0

ż

Rm
pϕδ ˚ fqpvqηpdvq

“

ż

Rm
fpvqηpdvq,

which completes the proof. □

Finally, we provide the proof of Theorem 2.8, i.e. the universal approximation property of neural
networks NN ρ

U,d in any pk, U, γq-approximable function space pX, } ¨ }Xq, where k P N0, U Ď Rm

(open, if k ě 1), and γ P p0,8q, and where ρ P Ckb pRq
γ

is the activation function.
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Proof of Theorem 2.8. First, we use that pX, } ¨ }Xq is an pk, U, γq-approximable function space together
with Lemma 2.5 to conclude that NN ρ

Rm,d Ď Ckb pRm;Rdq
γ

and that NN ρ
U,d Ď X .

Now, we assume by contradiction that NN ρ
U,d is not dense in X . Then, by using that pX, } ¨ }Xq is

pk, U, γq-approximable, i.e. that the restriction map in (4) is a continuous dense embedding, it follows
from Remark 2.4 that NN ρ

Rm,d cannot be dense in Ckb pRm;Rdq
γ
. Hence, by applying the Hahn-Banach

theorem, there exists a non-zero continuous linear functional l : Ckb pRm;Rdq
γ

Ñ R such that for every
φ P NN ρ

Rm,d it holds that lpφq “ 0.
Next, we use the Riesz representation result in Proposition 4.2 to conclude that there exist some signed

Radon measures pηα,iqαPNm0,k, i“1,...,d P MγpRmq such that for every f P Ckb pRm;Rdq
γ

it holds that

lpfq “
ÿ

αPNm0,k

d
ÿ

i“1

ż

Rm
Bαfipuqηα,ipduq.

Since lpφq “ 0 for any φ P NN ρ
Rm,d, it follows for every a P Rm, b P R, and i “ 1, ..., d that

l
`

eiρ
`

λaJ ¨ ´b
˘˘

“
ÿ

αPNm0,k

ż

Rm
ρp|α|q

`

aJu´ b
˘

aαηα,ipduq “ 0, (25)

where eiρ
`

λaJ ¨ ´b
˘

denotes the function Rm Q u ÞÑ eiρ
`

λaJu´ b
˘

P Rd with ei P Rd being the i-th
unit vector of Rd, and where aα :“

śm
l“1 a

αl
l for a :“ pa1, ..., amq P Rm and α :“ pα1, ..., αmq P Nm0,k.

Now, we define for every fixed δ ą 0 the linear map lδ : Ckb pRm;Rdq
γ

Ñ R by

Ckb pRm;Rdq
γ

Q f ÞÑ lδpfq :“
ÿ

αPNm0,k

d
ÿ

i“1

ż

Rm
Bαfipuqpϕδ ˚ ηqpuqdu P R.

Then, Lemma 4.4 (iv) shows that lδ : Ckb pRm;Rdq
γ

Ñ R is a continuous linear functional as it is a finite
sum of the continuous linear functionals Ckb pRm;Rdq

γ
Q f ÞÑ

ş

Rm Bαfipuqpϕδ ˚ ηqpuqdu P R taken over
α P Nm0,k and i “ 1, ..., d. Moreover, for every fixed i “ 1, ..., d, we define

Rm Q u ÞÑ hδ,ipuq :“
ÿ

αPNm0,k

p´1q|α|Bα pϕδ ˚ ηα,iq puq P R,

which satisfies hδ,ipuqdu P MγpRmq as it is a finite linear combination of finite signed Radon measures
Bα pϕδ ˚ ηα,iq puqdu P MγpRmq taken over α P Nm0,k (see Lemma 4.4 (iii)). Hence, integration by parts
together with Lemma 4.4 (ii) shows that

lδpfq “
ÿ

αPNm0,k

d
ÿ

i“1

ż

Rm
Bαfipuq pϕδ ˚ ηα,iq puqdu

“
ÿ

αPNm0,k

d
ÿ

i“1

p´1q|α|

ż

Rm
fipuqBα pϕδ ˚ ηα,iq puqdu

“

d
ÿ

i“1

ż

Rm
fipuqhδ,ipuqdu.
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Thus, by using this, Lemma 4.4 (v), and (25) (with b´ aJy P R instead of b P R), it follows for every
a P Rm, b P R, and i “ 1, ..., d that

ż

Rm
ρ
`

aJu´ b
˘

hδ,ipuqdu “
ÿ

αPNm0,k

ż

Rm
ρp|α|q

`

aJu´ b
˘

aα pϕδ ˚ ηα,iq puqdu

“
ÿ

αPNm0,k

ż

Rm
ρp|α|q

`

aJpu` yq ´ b
˘

aαηα,ipduqϕδpyqdu

“

ż

Rm
l
`

eiρ
`

aJ ¨ ´
`

b´ aJy
˘˘˘

looooooooooooooomooooooooooooooon

“0

ϕδpyqdy “ 0.

Now, for every i “ 1, ..., d, we apply Proposition 4.3 with hδ,ipuqdu P MγpRmq to conclude that
hδ,ipuqdu “ 0 P MγpRmq, and thus hδ,ipuq “ 0 for a.e. u P Rm. Hence, it follows for every
f P Ckb pRm;Rdq

γ
that

lδpfq “

d
ÿ

i“1

ż

Rm
fipuqhδ,ipuqdu “ 0,

which shows that lδ : Ckb pRm;Rdq Ñ R vanishes everywhere on Ckb pRm;Rdq.
Finally, we use Lemma 4.4 (vi) to conclude for every f P Ckb pRm;Rdq

γ
that

lpfq “
ÿ

αPNm0,k

d
ÿ

i“1

ż

Rm
Bαfipuqηα,ipduq “ lim

δÑ8

ÿ

αPNm0,k

d
ÿ

i“1

ż

Rm
fipuqpϕδ ˚ ηqpuqdu “ lim

δÑ8
lδpfq “ 0,

which shows that l : Ckb pRm;Rdq
γ

Ñ R vanishes everywhere. This however contradicts the assumption
that l : Ckb pRm;Rdq

γ
Ñ R is non-zero. Hence, NN ρ

U,d is dense in X . □

4.2.3. Proof of Example 2.6+2.7. For the proof of Example 2.6 (e), we first generalize the approximation
result for compactly supported smooth functions in unweighted Sobolev spaces (see [2, Theorem 3.18])
to weighted Sobolev spaces W k,ppU,LpUq, w;Rdq introduced in Notation (xii).

Proposition 4.5 (Approximation in Weighted Sobolev Spaces). For k P N, p P r1,8q, and U Ď Rm
open and having the segment property, let w : U Ñ r0,8q be a bounded weight such that for every
bounded subset B Ď U it holds that infuPB wpuq ą 0. Then,

␣

f |U : U Ñ Rd : f P C8
c pRm;Rdq

(

is
dense in W k,ppU,LpUq, w;Rdq.

Proof. First, we follow [2, Theorem 3.18] to show that every fixed function f P W k,ppU,LpUq, w;Rdq

can be approximated by elements from the set
␣

f |U : U Ñ Rd : f P C8
c pRm;Rdq

(

with respect to
} ¨ }Wk,ppU,LpUq,w;Rdq. To this end, we choose some h P C8

c pRmq which satisfies hpuq “ 1 for all
u P B1p0q, hpuq “ 0 for all u P RmzB2p0q, and for which there exists a constant Ch ą 0 such that for
every α P Nm0,k and u P Rm it holds that |Bαhpuq| ď Ch. In addition, we define for every fixed r ą 1

the functions Rm Q u ÞÑ hrpuq :“ hpu{rq P R and U Q u ÞÑ frpuq :“ fpuqhrpuq P Rd, which both
have bounded support. Then, by using the Leibniz product rule together with the triangle inequality, that
|Bαhrpuq| “ |Bαhpu{rq| r´|α| ď Ch for any α P Nm0,k and u P Rm, and the inequality (12), it follows for
every α P Nm0,k and u P U that

}Bαfrpuq}p ď

¨

˚

˚

˝

ÿ

β1,β2PNm0
β1`β2“α

α!

β1!β2!
|Bβ1hrpuq|}Bβ2fpuq}

˛

‹

‹

‚

p

ď 2kpCph max
β2PNm0,k

}Bβ2fpuq}p

ď 2kpCph

ÿ

β2PNm0,k

}Bβ2fpuq}p.
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Hence, by using this, it follows for every V P LpUq that

}fr}Wk,ppV,LpV q,w;Rdq “

¨

˝

ÿ

αPNm0,k

ż

V
}Bαfrpuq}pwpuqdu

˛

‚

1
p

ď
ˇ

ˇNm0,k
ˇ

ˇ

1
p

˜

max
αPNm0,k

ż

V
}Bαfrpuq}pwpuqdu

¸
1
p

ď 2kCh
ˇ

ˇNm0,k
ˇ

ˇ

1
p

¨

˝

ÿ

β2PNm0,k

ż

V
}Bβ2fpuq}pwpuqdu

˛

‚

1
p

ď 2kCh
ˇ

ˇNm0,k
ˇ

ˇ

1
p }f}Wk,ppV,LpV q,w;Rdq ă 8.

(26)

Thus, by taking V :“ U in (26), we conclude that fr P W k,ppU,LpUq, w;Rdq. Similarly, by using the
triangle inequality, that Bαfrpuq “ Bαpfpuqhrpuqq “ Bαfpuq for any α P Nm0,k and u P U X Brp0q (as
hrpuq “ 1 for any u P Brp0q), and (26) with V :“ UzBrp0q, it follows that

}f ´ fr}Wk,ppU,LpUq,w;Rdq ď }f ´ fr}Wk,ppUXBrp0q,LpUXBrp0qq,w;Rdq
looooooooooooooooooooooomooooooooooooooooooooooon

“0

`}f ´ fr}Wk,ppUzBrp0q,LpUzBrp0qq,w;Rdq

ď }f}
Wk,ppUzBrp0q,LpUzBrp0qq,w;Rdq

` }fr}Wk,ppUzBrp0q,LpUzBrp0qq,w;Rdq

ď

´

1 ` 2kCh
ˇ

ˇNm0,k
ˇ

ˇ

1
p

¯

}f}
Wk,ppUzBrp0q,LpUzBrp0qq,w;Rdq

.

Since the right-hand side tends to zero, as r Ñ 8, this shows that f P W k,ppU,LpUq, w;Rdq can be
approximated by elements of

␣

f P W k,ppU,LpUq, w;Rdq : supppfq Ď U is bounded
(

with respect to
} ¨ }Wk,ppU,LpUq,w;Rdq. Hence, we only need to show the approximation of the latter by elements from
␣

f |U : U Ñ Rd : f P C8
c pRm;Rdq

(

with respect to } ¨ }Wk,ppU,LpUq,w;Rdq.
Therefore, we now fix some f P W k,ppU,LpUq, w;Rdq with bounded support supppfq Ď U and

some ε ą 0. Moreover, by recalling that w : U Ñ r0,8q is bounded, we can define the finite constant
Cw :“ supuPU wpuq ą 0. Then, by using that fpuq “ 0 for any u P Uz supppfq, thus Bαfpuq “ 0 for
any α P Nm0,k and u P Uz supppfq, and the assumption that Cf,w :“ infuPsupppfq wpuq ą 0, we have

}f}Wk,ppU,LpUq,du;Rdq “

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq}pdu

˛

‚

1
p

“

¨

˝

ÿ

αPNm0,k

ż

supppfq

}Bαfpuq}pdu

˛

‚

1
p

ď C´1
f,w

¨

˝

ÿ

αPNm0,k

ż

supppfq

}Bαfpuq}pwpuqdu

˛

‚

1
p

“ C´1
f,w

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq}pwpuqdu

˛

‚

1
p

“ C´1
f,w}f}Wk,ppU,LpUq,w;Rdq ă 8.

This shows that f P W k,ppU,LpUq, du;Rdq. Hence, by applying [2, Theorem 3.18] (with U Ď Rm
having the segment property) componentwise, there exists some g P C8

c pRm;Rdq such that

}f ´ g}Wk,ppU,LpUq,du,Rdq “

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq ´ Bαgpuq}pdu

˛

‚

1
p

ă
ε

Cw
.
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Thus, by using that w : U Ñ r0,8q is bounded with Cw :“ supuPU wpuq ă 8, it follows that

}f ´ g}Wk,ppU,LpUq,du,Rdq “

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq ´ Bαgpuq}pwpuqdu

˛

‚

1
p

ď Cw

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq ´ Bαgpuq}pdu

˛

‚

1
p

ă Cw
ε

Cw
“ ε.

Since f P W k,ppU,LpUq, w;Rdq with bounded support supppfq Ď U and ε ą 0 were chosen ar-
bitrarily, it follows together with the first step that

␣

f |U : U Ñ Rd : f P C8
c pRm;Rdq

(

is dense in
W k,ppU,LpUq, w;Rdq. □

Proof of Example 2.6. For (a), we use that U Ă Rm is bounded to define the finite constant C21 :“
supuPU p1 ` }u}qγ . Then, it follows for every f P C0

b pRm;Rdq that

}f |U}Ckb pU ;Rdq “ max
αPNm0,k

sup
uPU

}Bαfpuq}

ď

ˆ

sup
uPU

p1 ` }u}qγ
˙

max
αPNm0,k

sup
uPU

}Bαfpuq}

p1 ` }u}qγ

ď C21}f}Ckpol,γpRm;Rdq.

Moreover, by using that
␣

f |U : f P Ckb pRm;Rdq
(

“ Ckb pU ;Rdq, the image
␣

f |U : f P Ckb pRm;Rdq
(

of
the continuous embedding (4) is dense in Ckb pU ;Rdq.

For (b), the restriction map in (4) is by definition continuous. Moreover, by using that Ckb pU ;Rdq
γ

is
defined as the closure ofCkb pU ;Rdq with respect to }¨}Ckpol,γpU ;Rdq, the image

␣

g|U : g P Ckb pRm;Rdq
(

“

Ckb pU ;Rdq of the continuous embedding (4) is dense in Ckb pU ;Rdq
γ
.

For (c), we first recall that k “ 0. Then, we use that f P C0
b pRm;Rdq is continuous to conclude

that its restriction f |U : U Ñ Rd is BpUq{BpRdq-measurable. Moreover, we define the finite constant
C22 :“

ş

U p1`}u}qγpµpduq ą 0, which implies that µ : BpUq Ñ r0,8q is finite as µpUq “
ş

U µpduq ď

C22 ă 8. Then, it follows for every f P C0
b pRm;Rdq that

}f |U}LppU,BpUq,µ;Rdq “

ˆ
ż

U
}fpuq}pµpduq

˙
1
p

ď

ˆ
ż

U
p1 ` }u}qγpµpduq

˙
1
p

sup
uPU

}fpuq}

p1 ` }u}qγ

ď C
1
p

22}f}C0
pol,γpRm;Rdq,

which shows that the restriction map in (4) is continuous. In order to show that its image is dense, we fix
some f P LppU,BpUq, µ;Rdq and ε ą 0. Then, we extend f : U Ñ Rd to the function

Rm Q u ÞÑ fpuq :“

#

fpuq, u P U,

0, u P RmzU.

Moreover, we extend µ : BpUq Ñ r0,8q to the Borel measure BpRmq Q E ÞÑ µpEq :“ µpU X

Eq P r0,8q, which implies that f P LppRm,BpRmq, µ;Rdq. Hence, by applying [6, Corollary 2.2.2]
componentwise (with µpBq “ µpU X Bq ď µpUq ď C22 ă 8 for any bounded B P BpRmq), there
exists some g P C8

c pRm;Rdq Ď C0
b pRm;Rdq with }f ´ g}LppRm,BpRmq,µ;Rdq ă ε, which implies

}f ´ g|U}LppU,BpUq,µ;Rdq “ }f ´ g}LppRm,BpRmq,µ;Rdq ă ε.

Since f P C0pU ;Rdq and ε ą 0 were chosen arbitrarily, the image
␣

f |U : f P C0
b pRm;Rdq

(

of the
continuous embedding (4) is dense in LppU,BpUq, µ;Rdq.
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For (d), we first use that f P Ckb pRm;Rdq is k-times differentiable to conclude for every α P Nm0,k that
Bαf |U : U Ñ Rd is LpUq{BpRdq-measurable. Moreover, we use that U Ă Rm is bounded to define the
finite constant C23 :“

ş

U p1 ` }u}qγpdu ą 0. Then, it follows for every f P Ckb pRm;Rdq that

}f}Wk,ppU,LpUq,du;Rdq “

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq}pdu

˛

‚

1
p

ď

ˆ

ˇ

ˇNm0,k
ˇ

ˇ

ż

U
p1 ` }u}qγpdu

˙
1
p

max
αPNm0,k

sup
uPU

}Bαfpuq}

p1 ` }u}qγp

ď
`

C23

ˇ

ˇNm0,k
ˇ

ˇ

˘
1
p }f}Ckpol,γpRm;Rdq,

which shows that the restriction map in (4) is continuous. In addition, by applying [2, Theorem 3.18]
componentwise,

␣

g|U : g P C8
c pRm;Rdq

(

is dense in W k,ppU,LpUq, du;Rdq. Hence, by using that
C8
c pRm;Rdq Ď Ckb pRm;Rdq, the image

␣

g|U : g P Ckb pRm;Rdq
(

of the continuous embedding (4) is
dense in W k,ppU,LpUq, du;Rdq.

For (e), we use that f P Ckb pRm;Rdq is k-times differentiable to conclude for every α P Nm0,k
that Bαf |U : U Ñ Rd is LpUq{BpRdq-measurable. Moreover, by using the finite constant C24 :“
ş

U p1 ` }u}qγpwpuqdu ą 0, it follows for every f P Ckb pRm;Rdq that

}f}Wk,ppU,LpUq,w;Rdq “

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq}pwpuqdu

˛

‚

1
p

ď

ˆ

ˇ

ˇNm0,k
ˇ

ˇ

ż

U
p1 ` }u}qγpwpuqdu

˙
1
p

max
αPNm0,k

sup
uPU

}Bαfpuq}

p1 ` }u}qγ

ď
`

C24

ˇ

ˇNm0,k
ˇ

ˇ

˘
1
p }f}Ckpol,γpRm;Rdq.

which shows that the restriction map in (4) is continuous. In addition, we apply Proposition 4.5
to conclude that

␣

g|U : g P C8
c pRm;Rdq

(

is dense in W k,ppU,LpUq, w;Rdq. Hence, by using that
C8
c pRm;Rdq Ď Ckb pRm;Rdq, the image

␣

g|U : g P Ckb pRm;Rdq
(

of the continuous embedding (4) is
dense in W k,ppU,LpUq, w;Rdq. □

Proof of Example 2.7. First, we observe that ρ P Ckb pRq
γ

is in each case (a)-(d) of polynomial growth,
which ensures that ρ P Ckb pRq

γ
induces

`

g ÞÑ Tρpgq :“
ş

R ρpsqgpsqds
˘

P S 1pR;Cq (see [17, p. 332]).
For (b), we recall that tanh1pξq “ coshpξq´2 holds true for all ξ P R. Moreover, the Fourier transform

of the function
`

s ÞÑ hpsq :“ πs
sinhpπs{2q

˘

P L1pR,LpRq, duq is for every ξ P R given by

phpξq “
2π

coshpξq2
“ 2π tanh1pξq. (27)

Then, by using
`

g ÞÑ
`

id ¨zTtanh
˘

pgq :“ zTtanhpid ¨gq
˘

P S 1pR;Cq, [17, Equation 9.31] with R Q s ÞÑ

idpsq :“ s P R, the definition of zTtanh P S 1pR;Cq, the identity (27), and the Plancherel theorem in [17,
p. 222], it follows for every g P C8

c pRzt0u;Cq that

zTtanhpid ¨gq “

´

id ¨zTtanh

¯

pgq “
1

i
{Ttanh1pgq “ p´iqTtanh1 ppgq

“ p´iq

ż

R
tanh1pξqpgpξqdξ “

´i

2π

ż

R
phpξqpgpξqdξ

“ p´iq

ż

R
hpξqgpξqdξ “

ż

R

´iπ

sinh pπξ{2q
pid ¨gqpξqdξ.

(28)

Hence, zTtanh P S 1pR;Cq coincides on Rzt0u with
`

ξ ÞÑ f
{Ttanh

pξq :“ iπ
sinhpπξ{2q

˘

P L1
locpRzt0u;Cq.

For (a), we denote by
`

s ÞÑ σpsq :“ 1
1`expp´sq

˘

P Ckb pRq
γ

the sigmoid function and observe that
σpsq “ 1

2

`

tanh
`

s
2

˘

` 1
˘

for all s P R. Then, by using the linearity of the Fourier transform on S 1pR;Cq,
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[17, Equation 9.30], that xT1pgq “ 2πδpgq :“ 2πgp0q for any g P SpR;Cq (see [17, Equation 9.35]), the
identity (28), and the substitution ξ ÞÑ rξ{2, it follows for every g P C8

c pRzt0u;Cq that

xTσpgq “
1

2
Ttanhp ¨

2
q̂pgq `

1

2
xT1pgq “

1

2
zTtanh

´

g
´

¨

2

¯¯

`
2π

2
gp0q

“
1

2

ż

R

´iπ

sinh
´

πrξ{2
¯g

´

rξ{2
¯

drξ “

ż

R

´iπ

sinhpπξq
gpξqdξ.

(29)

Hence, xTσ P S 1pR;Cq coincides on Rzt0u with
`

ξ ÞÑ f
xTσ

pξq :“ ´iπ
sinhpπξq

˘

P L1
locpRzt0u;Cq.

For (c), we denote by
`

s ÞÑ σp´1qpsq :“ lnp1 ` exppsqq
˘

P Ckb pRq
γ

the softplus function and observe
that d

dsσ
p´1qpsq “ σpsq for all s P R. Then, by using [17, Equation 9.31] with R Q s ÞÑ idpsq :“ s P R

and the identity (29), it follows for every g P C8
c pRzt0u;Cq that

{Tσp´1qpid ¨gq “

´

id ¨{Tσp´1q

¯

pgq “
1

i
xTσpgq “

1

i

ż

R

´iπ

sinhpπξq
gpξqdξ “

ż

R

´π

ξ sinhpπξq
pid ¨gqpξqdξ.

Hence, {Tσp´1q P S 1pR;Cq coincides on Rzt0u with
`

ξ ÞÑ f
{T
σp´1q

pξq :“ ´π
ξ sinhpπξq

˘

P L1
locpRzt0u;Cq.

For (d), we denote by
`

s ÞÑ ReLUpsq :“ maxps, 0q
˘

P C0
b pRq

γ
the ReLU function and observe

that ReLUpsq “ maxps, 0q “
s`|s|

2 for all s P R. Moreover, the absolute value R Q s ÞÑ |s| P R is
weakly differentiable with d

ds |s| “ sgnpsq for all s P R, where sgnpsq :“ 1 if s ą 0, sgnp0q :“ 0,
and sgnpsq :“ ´1 if s ă 0. Then, by using the linearity of the Fourier transform on S 1pR;Cq, that
xTidpgq “ 2πiδ1pgq :“ 2πig1p0q for any g P SpR;Cq with R Q s ÞÑ idpsq :“ s P R (see [17,
Equation 9.35]), [17, Equation 9.31], and [17, Example 9.4.4], i.e. that yTsgnpgq “ ´2i

ş

R
gpξq

ξ dξ for any
g P C8

c pRzt0u;Cq, it follows for every g P C8
c pRzt0u;Cq that

{TReLUpid ¨gq “
1

2
xTidpid ¨gq `

1

2
xT|¨|pid ¨gq “

2πi

2
pid ¨gq1p0q `

1

2

´

id ¨xT|¨|

¯

pgq

“
1

2i
yTsgnpgq “

´2i

2i

ż

R

gpξq

ξ
dξ “

ż

R

´1

ξ2
pid ¨gqpξqdξ.

Hence, {TReLU P S 1pR;Cq coincides on Rzt0u with
`

ξ ÞÑ f
{TReLU

pξq :“ ´ 1
ξ2

˘

P L1
locpRzt0u;Cq. □

4.3. Proof of results in Section 3.

4.3.1. Integral representation. In this section, we show the integral representation in Proposition 3.4. To
this end, we first prove that the ridgelet transform of a fixed function is continuous.

Lemma 4.6. Let ψ P S0pR;Cq and g P L1pRm,LpRmq, du;Rdq. Then, the function Rm ˆR Q pa, bq ÞÑ

pRψgqpa, bq :“
ş

Rm ψ
`

aJu´ b
˘

gpuq}a}du P Cd is continuous.

Proof. Fix a sequence paM , bM qnPN Ď Rm ˆ R converging to some pa, bq P Rm ˆ R. Then, by using
the constants Cψ :“ supsPR |ψpsq| ă 8 and Ca :“ supMPN }aM} ă 8, it holds for every M P N that

›

›ψ
`

aJ
Mu´ bM

˘

gpuq
›

› ď CaCψ}gpuq},

where the right-hand side is Lebesgue-integrable. Moreover, by using that ψ P S0pR;Cq is continuous, it
follows that ψ

`

aJ
Mu´ bM

˘

gpuq}aM} Ñ ψ
`

aJu´ b
˘

gpuq}a} for any u P U , as n Ñ 8, Hence, we can
apply the vector-valued dominated convergence theorem (see e.g. [24, Proposition 2.5]) to conclude that

lim
MÑ8

pRψgqpaM , bM q “ lim
MÑ8

ż

Rm
ψ
`

aJ
Mu´ bM

˘

gpuq}aM}du

“

ż

Rm
ψ
`

aJu´ b
˘

gpuq}a}du “ pRψgqpa, bq,

which completes the proof. □

In order to prove Proposition 3.4, we denote by Sm´1 :“ tv P Rm : }v} “ 1u the unit sphere in
Rm and define the space Ym`1 :“ Sm´1 ˆ p0,8q ˆ R. Then, for any ψ P S0pR;Cq, we follow [42,
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Equation 32] and define the ridgelet transform in polar coordinates of any g P L1pRm,LpRmq, du;Rdq

as

Ym`1 Q pv, s, tq ÞÑ prRψgqpv, s, tq :“

ż

Rm
gpuqψ

ˆ

vJu´ t

s

˙

1

s
du P Cd. (30)

Moreover, we follow [42, Definition 4.4] and recall that the dual ridgelet transform R:
ρ of any Q :

Sm´1 ˆ p0,8q ˆ R Ñ C satisfying Q
`

v, s, vJu ´ s ¨
˘

:“
`

z ÞÑ Q
`

v, s, vJu ´ sz
˘˘

P SpR;Cq, for
all v P Sm´1, s P p0,8q, and u P Rm, is defined by

Rm Q u ÞÑ pR:
ρQqpuq :“ lim

δ1Ñ0
δ2Ñ8

ż

Sm´1

ż δ2

δ1

Tρ
`

Q
`

v, s, vJu´ s ¨
˘˘ 1

sm`1
dsdv P Rd.

Proof of Proposition 3.4. Fix a function g “ pg1, ..., gdqJ P L1pRm,LpRmq, du;Rdq satisfying pg P

L1pRm,LpRmq, du;Cdq. Then, the latter implies for every i “ 1, ..., d that

}pgi}L1pRm,LpRmq,duq “

ż

Rm

ˇ

ˇ

pgipξq
ˇ

ˇdξ ď

ż

Rm
}pgpξq}dξ “ }pg}L1pRm,LpRmq,du;Cdq ă 8. (31)

Hence, by using that pRψgqpa, bq “ 0 for any pa, bq P t0u ˆR, that pRψgqpa, bq “ prRψfq
`

a
}a}
, 1

}a}
, b

}a}

˘

for any pa, bq P pRmzt0uq ˆ R, the substitution pRmzt0uq ˆ R Q pa, bq ÞÑ pv, s, zq :“
`

a
}a}
, 1

}a}
, aJu´

b
˘

P Sm´1 ˆ p0,8q ˆ R with Jacobi determinante dbda “ s´mdzdsdv, and [42, Theorem 5.6] applied
to fi P L1pRm,LpRmq, duq with pfi P L1pRm,LpRmq, du;Cq (see (31)), it follows for a.e. u P Rm that

ż

Rm

ż

R
pRψgqpa, bqρ

`

aJu´ b
˘

dbda “

ż

Rmzt0u

ż

R
prRψgq

ˆ

a

}a}
,
1

}a}
,
b

}a}

˙

ρ
`

aJu´ b
˘

dbda

“

ˆ
ż

Sm´1

ż 8

0

ż

R
prRψgiq

`

v, s, vJu´ sz
˘

ρpzq
1

sm`1
dzdsdv

˙J

i“1,...,d

“

˜

lim
δ1Ñ0
δ2Ñ8

ż

Sm´1

ż δ2

δ1

Tρ

´

prRψgiq
`

v, s, vJu´ s ¨
˘

¯ 1

sm`1
dsdv

¸J

i“1,...,d

“
``

rR:
ρRψgi

˘

puq
˘J

i“1,...,d
“
`

Cpψ,ρq
m gipuq

˘J

i“1,...,d
“ Cpψ,ρq

m gpuq,

which completes the proof. □

4.3.2. Properties of weighted Sobolev space W k,ppU,LpUq, w;Rdq. In this section, we show that the
weighted Sobolev space pW k,ppU,LpUq, w,Rdq, }¨}Wk,ppU,LpUq,w,Rdqq introduced in Notation (xii)+(xiii)
is separable and has Banach space type t :“ minp2, pq.

Lemma 4.7. Let k P N0, p P r1,8q, U Ď Rm (open, if k ě 1), and w : U Ñ r0,8q be a weight. Then,
the Banach space pW k,ppU,LpUq, w,Rdq, } ¨ }Wk,ppU,LpUq,w,Rdqq in Notation (xii)+(xiii) is separable.

Proof. First, we show the conclusion for k “ 0, i.e. that the Banach space pW 0,ppU,LpUq, w;Rdq, } ¨

}W 0,ppU,LpUq,w;Rdqq :“ pLppU,LpUq, wpuqdu;Rdq, } ¨ }LppU,LpUq,wpuqdu;Rdqq defined in Notation (xiii) is
separable. For this purpose, we observe that BpUq is generated by sets of the form U X

Śm
l“1rrl,1, rl,2q,

with rl,1, rl,2 P Q, l “ 1, ...,m. Moreover, by using that LpUq and BpUq coincide up to Lebesgue
nullsets and that w : U Ñ r0,8q is a weight, ensuring that the measure spaces pU,LpUq, wpuqduq and
pU,LpUq, duq share the same null sets, we conclude that pU,LpUq, wpuqduq is countably generated up to
(wpuqdu)-null sets. Hence, by using [13, p. 92] componentwise, it follows that pW 0,ppU,LpUq, w;Rdq, }¨

}W 0,ppU,LpUq,w;Rdqq :“ pLppU,LpUq, wpuqdu;Rdq, } ¨ }LppU,LpUq,wpuqdu;Rdqq is separable.
Now, for the general case of k ě 1, we consider the Banach space pW k,ppU,LpUq, w,Rdq, } ¨

}Wk,ppU,LpUq,w,Rdqq introduced in Notation (xii). Then, we define the map

W k,ppU,LpUq, w,Rdq Q f ÞÑ Ξpfq :“ pBαfqαPNm0,k P
ą

αPNm0,k

LppU,LpUq, wpuqdu,Rdq “: Z,

where Z is equipped with the norm }g}Z :“
ř

αPNm0,k
}gα}LppU,LpUq,du,Rdq, for g :“ pgαqαPNm0,k P Z.

Then, by using the previous step, we conclude that the Banach space pZ, }¨}Zq is separable as finite product
of separable Banach spaces. Hence, by using that W k,ppU,LpUq, w,Rdq is by definition isometrically
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isomorphic to the closed vector subspace ImgpΞq :“
␣

Ξpfq : f P W k,ppU,LpUq, w,Rdq
(

Ď Z, it
follows that pW k,ppU,LpUq, w,Rdq, } ¨ }Wk,ppU,LpUq,w,Rdqq is separable. □

Moreover, we recall the notion of Banach space types and refer to [3, Section 6.2], [30, Chapter 9],
and [24, Section 4.3.b] for more details.

Definition 4.8 ([24, Definition 4.3.12 (1)]). A Banach space pX, } ¨ }Xq is called of type t P r1, 2s if there
exists a constant CX ą 0 such that for every N P N, pfnqn“1,...,N Ď X , and Rademacher sequence2

pϵnqn“1,...,N on a probability space prΩ, rF , rPq, it holds that

rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

t

X

fi

fl

1
t

ď CX

˜

N
ÿ

n“1

}fn}tX

¸

1
t

.

Every Banach space pX, } ¨ }Xq is of type t “ 1 with constant CX “ 1, whereas only some Banach
spaces have non-trivial type t P p1, 2s, e.g., every Hilbert space pX, } ¨ }Xq is of type t “ 2 with constant
CX “ 1 (see [3, Remark 6.2.11 (b)+(c)]). Moreover, pLppU,Σ, µ;Rdq, } ¨ }LppU,Σ,µ;Rdqq introduced in
Notation (x) is a Banach space of type t “ minp2, pq with constant CLppU,Σ,µ;Rdq ą 0 depending only on
p P r1,8q (see [3, Theorem 6.2.14]). Now, we show that this still holds true for the weighted Sobolev
space pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq introduced in Notation (xii)+(xiii).

Lemma 4.9. Let k P N0, p P r1,8q, U Ď Rm (open, if k ě 1), and w : U Ñ r0,8q be a weight. Then,
the Banach space pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq introduced in Notation (xii)+(xiii) is
of type t “ minp2, pq with constant CWk,ppU,LpUq,w;Rdq ą 0 depending only on p P r1,8q.

Proof. First, we recall that pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq is a Banach space. Indeed,
this follows from [38, p. 96] (for k “ 0) and [2, Theorem 3.2] (for k ě 1).

Now, we fix some N P N, pfnqn“1,...,N Ď W k,ppU,LpUq, w;Rdq, and an i.i.d. sequence pϵnqn“1,...,N

defined on a probability space prΩ, rF , rPq such that rPrϵn “ ˘1s “ 1{2. Then, by using Fubini’s theorem
and the classical Khintchine inequality in [30, Lemma 4.1] with constant Cp ą 0 depending only on
p P r1,8q, it follows that

rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

p

Wk,ppU,LpUq,w;Rdq

fi

fl

1
p

“ rE

»

–

ÿ

αPNm0,k

ż

U

›

›

›

›

›

N
ÿ

n“1

ϵnBαfnpuq

›

›

›

›

›

p

wpuqdu

fi

fl

1
p

“

¨

˝

ÿ

αPNm0,k

ż

U

rE

«
›

›

›

›

›

N
ÿ

n“1

ϵnBαfnpuq

›

›

›

›

›

pff

wpuqdu

˛

‚

1
p

ď Cp

¨

˝

ÿ

αPNm0,k

ż

U

˜

N
ÿ

n“1

}Bαfnpuq}
2

¸

p
2

wpuqdu

˛

‚

1
p

.

(32)

2A Rademacher sequence pϵnqn“1,...,N on a given probability space prΩ, rF , rPq is an i.i.d. sequence of random variables
pϵnqn“1,...,N such that rPrϵn “ ˘1s “ 1{2.
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If p P r1, 2s, we use (32) and the inequality
´

řN
n“1 xn

¯p{2
ď

řN
n“1 x

p{2
n for any x1, ..., xN ě 0 to

conclude that

rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

minp2,pq

Wk,ppU,LpUq,w;Rdq

fi

fl

1
minp2,pq

“ rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

p

Wk,ppU,LpUq,w;Rdq

fi

fl

1
p

ď Cp

¨

˝

ÿ

αPNm0,k

ż

U

˜

N
ÿ

n“1

}Bαfnpuq}
2

¸

p
2

wpuqdu

˛

‚

1
p

ď Cp

¨

˝

N
ÿ

n“1

ÿ

αPNm0,k

ż

U
}Bαfnpuq}

pwpuqdu

˛

‚

1
p

“ Cp

˜

N
ÿ

n“1

}fn}
minp2,pq

Wk,ppU,LpUq,w;Rdq

¸

1
minp2,pq

.

This shows for p P r1, 2s that the Banach space pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq is of type
t “ minp2, pq, where the constant Cp ą 0 depends only on p P r1,8q.

Otherwise, if p P p2,8q, we consider the measure spaces pt1, ..., Nu,Ppt1, ..., Nuq, ηq and pNm0,k ˆ

U,PpNm0,kq b LpUq, µb wq, where Ppt1, ..., Nuq and PpNm0,kq denote the power sets of t1, ..., Nu and
Nm0,k, respectively, and where Ppt1, ..., Nuq Q A ÞÑ ηpAq :“

řN
n“1 1Apnq P r0,8q and PpNm0,kq b

LpUq Q pA,Bq ÞÑ pµ b wqpA,Bq :“
`
ř

αPNm0,k
1Apαq

˘ ş

B wpuqdu P r0,8s are both measures.
Then, by using the Minkowski inequality in [24, Proposition 1.2.22] with p ě 2, it follows for every
f P L2pt1, ..., Nu,Ppt1, ..., Nuq, η;LppNm0,k ˆ U,PpNm0,kq b LpUq, µb w;Rdqq that

}f}LppNm0,kˆU,PpNm0,kqbLpUq,µbw;L2pt1,...,Nu,Ppt1,...,Nuq,η;Rdqq

ď }f}L2pt1,...,Nu,Ppt1,...,Nuq,η;LppNm0,kˆU,PpNm0,kqbLpUq,µbw;Rdqq.
(33)

Now, we define the map t1, ..., Nu ˆ pNm0,k ˆ Uq Q pn;α, uq ÞÑ fpn;α, uq :“ Bαfnpuq P Rd satisfying

}f}L2pt1,...,Nu,Ppt1,...,Nuq,η;LppNm0,kˆU,PpNm0,kqbLpUq,µbw;Rdqq “

¨

˚

˝

N
ÿ

n“1

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfnpuq}pwpuqdu

˛

‚

2
p

˛

‹

‚

1
2

“

˜

N
ÿ

n“1

}fn}2Wk,ppU,LpUq,w;Rdq

¸

1
2

ă 8,

(34)
which shows that f P L2pt1, ..., Nu,Ppt1, ..., Nuq, η;LppNm0,kˆU,PpNm0,kqbLpUq, µbw;Rdqq. Hence,
by using first Jensen’s inequality and then by combining (32) and (33) with (34), we conclude that

rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

minp2,pq

Wk,ppU,LpUq,w;Rdq

fi

fl

1
minp2,pq

ď rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

p

Wk,ppU,LpUq,w;Rdq

fi

fl

1
p

ď Cp

¨

˝

ÿ

αPNm0,k

ż

U

˜

N
ÿ

n“1

}Bαfnpuq}
2

¸

p
2

wpuqdu

˛

‚

1
p

“ Cp}f}LppNm0,kˆU,PpNm0,kqbLpUq,µbw;L2pt1,...,Nu,Ppt1,...,Nuq,η;Rdqq

ď Cp}f}L2pt1,...,Nu,Ppt1,...,Nuq,η;LppNm0,kˆU,PpNm0,kqbLpUq,µbw;Rdqq

“ Cp

˜

N
ÿ

n“1

}f}
minp2,pq

Wk,ppU,LpUq,w;Rdq

¸

1
minp2,pq

.
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This shows for p P p2,8q that the Banach space pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq is of
type t “ minp2, pq, where the constant Cp ą 0 depends only on p P r1,8q. □

4.3.3. Randomized neurons and strong measurability. In this section, we randomly initialize the weight
vectors and biases inside the activation function to obtain the approximation rates in Theorem 3.6. To this
end, we first show that the map from the parameters to a neuron is continuous.

Lemma 4.10. For k P N0, p P r1,8q, U Ď Rm (open, if k ě 1), γ P r0,8q, and ρ P Ckpol,γpRq, let

w : U Ñ r0,8q be a weight such that the constant Cpγ,pq

U,w ą 0 defined in (7) is finite. Then, the mapping

Rd ˆ Rm ˆ R Q py, a, bq ÞÑ yρ
`

aJ ¨ ´b
˘

P W k,ppU,LpUq, w,Rdq

is continuous, where yρ
`

aJ ¨ ´b
˘

denotes the function U Q u ÞÑ yρ
`

aJu´ b
˘

P Rd.

Proof. Fix a sequence pyM , aM , bM qMPN Ď Rd ˆ Rm ˆ R converging to py, a, bq P Rd ˆ Rm ˆ R.
Then, by using that yMaαM p1 ` }aM} ` |bM |q converges uniformly in α P Nm0,k to yaαp1 ` }a} ` |b|q,
where aα :“

śm
l“1 a

αl
l for a :“ pa1, ..., amqJ P Rm and α :“ pα1, ..., αmq P Nm0,k, the constant

Cy,a,b :“ maxαPNm0,k }yaα} p1 ` }a} ` |b|q ` supMPN
`

maxαPNm0,k }yMa
α
M} p1 ` }aM} ` |bM |q

˘

ě 0 is

finite. Hence, by using that ρ P Ckpol,γpRq, i.e. that
ˇ

ˇρpjqpsq
ˇ

ˇ ď }ρ}Ckpol,γpRqp1 ` |s|qγ for any j “ 0, ..., k

and s P R, the inequality 1 `
ˇ

ˇaJ
Mu´ bM

ˇ

ˇ ď 1 ` }aM}}u} ` |bM | ď p1 ` }aM} ` |bM |qp1 ` }u}q for
any M P N and u P Rm, it follows for every α P Nm0,k, u P U , and M P N that

›

›

›
yMρ

p|α|q
`

aJ
Mu´ bM

˘

aαM

›

›

›
ď }yMa

α
M}

ˇ

ˇ

ˇ
ρp|α|q

`

aJ
Mu´ bM

˘

ˇ

ˇ

ˇ

ď }yMa
α
M} }ρ}Ckpol,γpRq

`

1 `
ˇ

ˇaJ
Mu´ bM

ˇ

ˇ

˘γ

ď }yMa
α
M} p1 ` }aM} ` |bM |qγ}ρ}Ckpol,γpRqp1 ` }u}qγ

ď Cy,a,b}ρ}Ckpol,γpRqp1 ` }u}qγ .

(35)

Analogously, we conclude for every α P Nm0,k and u P U that
›

›

›
yMρ

p|α|q
`

aJ
Mu´ bM

˘

aαM

›

›

›
ď Cy,a,b}ρ}Ckpol,γpRqp1 ` }u}qγ . (36)

Hence, by using the triangle inequality together with the inequality px` yqp ď 2p´1 pxp ` ypq for any
x, y ě 0 as well as the inequalities (35) and (36), it follows for every α P Nm0,k, u P U , and M P N that

›

›

›
yρp|α|q

`

aJu´ b
˘

aα ´ yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM

›

›

›

p

ď 2p´1
´›

›

›
yρp|α|q

`

aJu´ b
˘

aα
›

›

›

p
`

›

›

›
yMρ

p|α|q
`

aJ
Mu´ bM

˘

aαM

›

›

›

p¯

ď 2pCpy,a,b}ρ}
p

Ckpol,γpRq
p1 ` }u}qγp.

(37)

Thus, by applying the Rd-valued dominated convergence theorem (see e.g. [24, Proposition 1.2.5], with
(37) and

ş

U p1 ` }u}q
γpwpuqdu “

`

C
pγ,pq

U,w

˘p
ă 8 by assumption), we have

lim
MÑ8

›

›yρ
`

aJ ¨ ´b
˘

´ yMρ
`

aJ
M ¨ ´bM

˘›

›

Wk,ppU,LpUq,w;Rdq

“

¨

˝

ÿ

αPNm0,k

lim
MÑ8

ż

U

›

›

›
yρp|α|q

`

aJu´ b
˘

aα ´ yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM

›

›

›

p
wpuqdu

˛

‚

1
p

“ 0,

which completes the proof. □

Moreover, we fix throughout the rest of this paper a probability space pΩ,F ,Pq and assume that
panqnPN „ tm and pbnqnPN „ t1 are independent sequences of independent and identically distributed
(i.i.d.) random variables following a (multivariate) Student’s t-distribution.3 In this case, we write
pan, bnqnPN „ tm b t1. Then, we show that a randomized neuron with pan, bnqnPN „ tm b t1 used for

3For any m P N, a random variable a „ tm following a Student’s t-distribution has probability density function
Rm Q a ÞÑ papaq “

Γppm`1q{2q

πpm`1q{2

`

1 ` }a}
2
˘´pm`1q{2

P p0,8q.
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the weight vectors and biases inside the activation function, is a strongly measurable map in the sense of
[24, Definition 1.1.14], where we define the σ-algebra Fa,b :“ σptan, bn : n P Nuq.

Lemma 4.11. For k P N0, p P r1,8q, U Ď Rm (open, if k ě 1), γ P r0,8q, and ρ P Ckpol,γpRq, let

w : U Ñ r0,8q be a weight such that the constant Cpγ,pq

U,w ą 0 defined in (7) is finite. Moreover, for
n P N and an Fa,b{BpRdq-measurable random vector y : Ω Ñ Rd, we define the map

Ω Q ω ÞÑ Rnpωq :“ ypωqρ
`

anpωqJ ¨ ´bnpωq
˘

P W k,ppU,LpUq, w,Rdq. (38)

Then, Rn : Ω Ñ W k,ppU,LpUq, w,Rdq is a strongly pP,Fa,bq-measurable map with values in the
separable Banach space pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq.

Proof. First, we show that the map Rn : Ω Ñ W k,ppU,LpUq, w,Rdq takes values in the Banach
space pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq, which is by Lemma 4.7 separable. Indeed, since
ρ P Ckpol,γpRq is k-times differentiable, it follows for every fixed ω P Ω and α P Nm0,k that U Q u ÞÑ

BαRnpωq “ ypωqρp|α|q
`

anpωqJu´ bnpωq
˘

anpωqα P Rd is LpUq{BpRdq-measurable. Moreover, by
using that ρ P Ckpol,γpRq, i.e. that

ˇ

ˇρpjqpsq
ˇ

ˇ ď }ρ}Ckpol,γpRqp1 ` |s|qγ for any j “ 0, ..., k and s P R, the

inequality 1 `
ˇ

ˇanpωqJu´ bnpωq
ˇ

ˇ ď 1 ` }anpωq}}u} ` |bnpωq| ď p1 ` }anpωq} ` |bnpωq|qp1 ` }u}q

for any u P Rm, and that Cpγ,pq

U,w :“
`ş

U p1 ` }u}qγpwpuqdu
˘1{p

ą 0 is finite, we conclude that

}Rnpωq}
p
Wk,ppU,LpUq,w;Rdq

“
ÿ

αPNm0,k

ż

U

›

›

›
ypωqρp|α|q

`

anpωqJu´ bnpωq
˘

anpωqα
›

›

›

p
wpuqdu

ď

¨

˝

ÿ

αPNm0,k

}ypωqanpωqα}
p

˛

‚

ż

U

`

1 `
ˇ

ˇanpωqJu´ bnpωq
ˇ

ˇ

˘γp
wpuqdu

ď

¨

˝

ÿ

αPNm0,k

}ypωqanpωqα}
p

˛

‚p1 ` }anpωq} ` |bnpωq|qγp
ż

U
p1 ` }u}qγpwpuqdu ă 8.

This shows that Rnpωq P W k,ppU,LpUq, w;Rdq for all ω P Ω.
Finally, in order to show that the map (38) is strongly pP,Fa,bq-measurable, we use that Ω Q

ω ÞÑ pypωq, anpωq, bnpωqq P Rd ˆ Rm ˆ R is by definition Fa,b{BpRd ˆ Rm ˆ Rq-measurable
and that Rd ˆ Rm ˆ R Q py, a, bq ÞÑ yρ

`

aJ ¨ ´b
˘

P W k,ppU,LpUq, w;Rdq is by Lemma 4.10 con-
tinuous to conclude that the concatenation (38) is Fa,b{BpW k,ppU,LpUq, w;Rdqq-measurable, where
BpW k,ppU,LpUq, w;Rdqq denotes the Borel σ-algebra of pW k,ppU,LpUq, w;Rdq, }¨}Wk,ppU,LpUq,w;Rdqq.
Since pW k,ppU,LpUq, w;Rd, } ¨ }Wk,ppU,LpUq,w;Rdq is by Lemma 4.7 separable, we can apply [24, Theo-
rem 1.1.6+1.1.20] to conclude that (38) is strongly pP,Fa,bq-measurable. □

4.3.4. Proof of Theorem 3.6. In this section, we prove the approximation rates in Theorem 3.6. Let us first
sketch the main ideas of the proof. For some fixed f P W k,ppU,LpUq, w;Rdq XBk,γψ pU ;Rdq and N P N,
we use the randomized neuron Rn : Ω Ñ W k,ppU,LpUq, w,Rdq in (38) with a particular linear readout.
Then, by using the integral representation in Proposition 3.4 implying that f “ ErRns, a symmetrization
argument with Rademacher averages, and the Banach space type of W k,ppU,LpUq, w,Rdq, we obtain

E

»

–

›

›

›

›

›

f ´
1

N

N
ÿ

n“1

Rn

›

›

›

›

›

2

Wk,ppU,LpUq,w,Rdq

fi

fl

1
2

“
1

N
E

»

–

›

›

›

›

›

N
ÿ

n“1

pE rRns ´Rnq

›

›

›

›

›

2

Wk,ppU,LpUq,w,Rdq

fi

fl

1
2

ď C
}Rn}L2pΩ,F ,P;Wk,ppU,LpUq,w;Rdqq

N
1´ 1

minp2,pq

,
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where C ą 0 is a constant and where }Rn}L2pΩ,F ,P;Wk,ppU,LpUq,w;Rdqq can be bounded by }f}Bk,γψ pU ;Rdq
.

Hence, there exists some ω P Ω such that the neural network φN :“ 1
N

řN
n“1Rnpωq P NN ρ

U,d satisfies

}f ´ φ}Wk,ppU,LpUq,w,Rdq ď E

»

–

›

›

›

›

›

f ´
1

N

N
ÿ

n“1

Rn

›

›

›

›

›

2

Wk,ppU,LpUq,w,Rdq

fi

fl

1
2

ď C
}Rn}L2pΩ,F ,P;Wk,ppU,LpUq,w;Rdqq

N
1´ 1

minp2,pq

.

Proof of Theorem 3.6. Fix f P W k,ppU,LpUq, w;Rdq XBk,γψ pU ;Rdq and N P N. Then, by definition of

Bk,γψ pU ;Rdq, there exists some g P L1pRm,LpRmq, du;Rdq with pg P L1pRm,LpRmq, du;Cdq such that

ˆ
ż

Rm

ż

R

`

1 ` }a}2
˘γ`k`m`1

2
`

1 ` |b|2
˘γ`1

}pRψgqpa, bq}2dbda

˙
1
2

ď 2}f}Bk,γψ pU ;Rdq
. (39)

From this, we define for every n “ 1, ..., N the map

Ω Q ω ÞÑ Rnpωq :“ ynpωqρ
`

anpωqJ ¨ ´bnpωq
˘

P W k,ppU,LpUq, w,Rdq (40)

with

Ω Q ω ÞÑ ynpωq :“ Re

˜

pRψgqpanpωq, bnpωqq

C
pψ,ρq
m papanpωqqpbpbnpωqq

¸

P Rd, (41)

where pa : Rm Ñ p0,8q and pb : R Ñ p0,8q denote the probability density function of the (multivariate)
Student’s t-distributions.3 Then, by using that Rψ : Rm ˆ R Ñ Cd is continuous (see Lemma 4.6), we
observe that yn : Ω Ñ Rd is Fa,b{BpRdq-measurable. Hence, we can apply Lemma 4.11 to conclude that
Rn : Ω Ñ W k,ppU,LpUq, w;Rdq is a strongly pP,Fa,bq-measurable map with values in the separable
Banach space pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq.

Now, we showRn P L2pΩ,Fa,b,P;W k,ppU,LpUq, w;Rdqq and ErRns “ f P W k,ppU,LpUq, w;Rdq.
To this end, we use that ρ P Ckpol,γpRq, i.e. that

ˇ

ˇρpjqpsq
ˇ

ˇ ď }ρ}Ckpol,γpRqp1 ` |s|qγ for any j “ 0, ..., k and

s P R, the inequality 1`
ˇ

ˇaJu´ b
ˇ

ˇ ď 1` }a}}u} ` |b| ď p1` }a}qp1` |b|qp1` }u}q for any a, u P Rm
and b P R, twice the inequality px ` yq2 ď 2

`

x2 ` y2
˘

for any x, y P r0,8q, and the finite constant

C
pγ,pq

U,w ą 0 to conclude for every a P Rm, b P R, and j “ 0, ..., k that

ˆ
ż

U

ˇ

ˇ

ˇ
ρpjq

`

aJu´ b
˘

ˇ

ˇ

ˇ

p
wpuqdu

˙
1
p

ď }ρ}Ckpol,γpRq

ˆ
ż

U

`

1 `
ˇ

ˇaJu´ b
ˇ

ˇ

˘γp
wpuqdu

˙
1
p

ď }ρ}Ckpol,γpRqp1 ` }a}qγp1 ` |b|qγ
ˆ
ż

U
p1 ` }u}q

γpwpuqdu

˙
1
p

ď 4}ρ}Ckpol,γpRq

`

1 ` }a}2
˘

γ
2
`

1 ` |b|2
˘

γ
2 C

pγ,pq

U,w .

(42)
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Hence, by using the inequality
ˇ

ˇaα
ˇ

ˇ :“
śm
l“1 |al|

αl ď
`

1 ` }a}2
˘|α|{2

ď
`

1 ` }a}2
˘k{2 for any α P Nm0,k

and a P Rm, the inequality (42), that
ˇ

ˇNm0,k
ˇ

ˇ “
řk
j“0m

j ď 2mk, and the inequality (40), we obtain that

}Rn}L2pΩ,F ,P;Wk,ppU,LpUq,w;Rdqq “ E
”

›

›ynρ
`

aJ
n ¨ ´bn

˘›

›

2

Wk,ppU,LpUq,w;Rdq

ı
1
2

“ E

»

—

–

¨

˝

ÿ

αPNm0,k

ż

U

›

›Bα
`

ynρ
`

aJ
nu´ bn

˘˘›

›

p
du

˛

‚

2
p

fi

ffi

fl

1
2

“ E

»

—

–

¨

˝

ÿ

αPNm0,k

›

›

›

›

›

Re

˜

aαnpRψgqpan, bnq

C
pψ,ρq
m papanqpbpbnq

¸›

›

›

›

›

p
ż

U

ˇ

ˇ

ˇ
ρp|α|q

`

aJ
nu´ bn

˘

ˇ

ˇ

ˇ

p
du

˛

‚

2
p

fi

ffi

fl

1
2

ď 4}ρ}Ckpol,γpRq

C
pγ,pq

U,w

ˇ

ˇ

ˇ
Nm0,k

ˇ

ˇ

ˇ

1
p

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

E

«

`

1 ` }an}2
˘γ`k `

1 ` |bn|2
˘γ

papanq2pbpbnq2
}pRψgqpan, bnq}2

ff

1
2

ď 2
3` 1

p }ρ}Ckpol,γpRq

C
pγ,pq

U,w m
k
p

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

˜

ż

Rm

ż

R

`

1 ` }a}2
˘γ`k `

1 ` |b|2
˘γ

papaq2pbpbq2
}pRψgqpa, bq}2papaqpbpbqdbda

¸

1
2

ď 2
3` 1

p }ρ}Ckpol,γpRq

C
pγ,pq

U,w m
k
p

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

¨

˜

π
m`1

2

Γ
`

m`1
2

˘π

ż

Rm

ż

R

`

1 ` }a}2
˘γ`k`m`1

2
`

1 ` |b|2
˘γ`1

}pRψgqpa, bq}2dbda

¸
1
2

ď 2
4` 1

pπ}ρ}Ckpol,γpRq

C
pγ,pq

U,w m
k
pπ

m`1
4

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ
Γ
`

m`1
2

˘
1
2

}f}Bk,γψ pU ;Rdq
ă 8,

(43)
which shows that Rn P L2pΩ,Fa,b,P;W k,ppU,LpUq, w;Rdqq. Moreover, by using the probability
density functions pa : Rm Ñ p0,8q and pb : R Ñ p0,8q, Proposition 3.4, and that f “ g a.e. on U , it
follows for a.e. u P U that

ErRnpuqs “ E

«

Re

˜

pRψgqpan, bnq

C
pψ,ρq
m papanqpbpbnq

¸

ρ
`

aJ
nu´ bn

˘

ff

“

ż

Rm

ż

R
Re

˜

pRψgqpa, bq

C
pψ,ρq
m papaqpbpbq

¸

ρ
`

aJu´ b
˘

papaqpbpbqdbda

“ Re

˜

1

C
pψ,ρq
m

ż

Rm

ż

R
pRψgqpa, bqρ

`

aJu´ b
˘

dbda

¸

“ Re

˜

1

C
pψ,ρq
m

Cpψ,ρq
m gpuq

¸

“ gpuq “ fpuq.

Moreover, if k ě 1, we use integration by parts to conclude for every α P Nm0,k and h P C8
c pUq that

ż

U
BαErRnpuqshpuqdu “ p´1q|α|

ż

U
ErRnpuqspuqBαhpuqdu “ p´1q|α|

ż

U
fpuqBαhpuqdu

“

ż

U
Bαfpuqhpuqdu.

This shows for every α P Nm0,k and a.e. u P U that BαErRnspuq “ BαErRnpuqs “ Bαfpuq, which implies
that f “ ErRns P W k,ppU,LpUq, w;Rdq.
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Finally, we use that f “ E
“

Rn
‰

P W k,ppU,LpUq, w;Rdq, the right-hand side of [30, Lemma 6.3]
for the independent mean-zero random variables

`

E
“

Rn
‰

´ Rn
˘

n“1,...,N
(with i.i.d. pϵnqn“1,...,N sat-

isfying Prϵn “ ˘1s “ 1{2 being independent of
`

E
“

Rn
‰

´ Rn
˘

n“1,...,N
), the Kahane-Khintchine

inequality in [24, Theorem 3.2.23] with constant κ2,minp2,pq ą 0 depending only on p P r1,8q, that
pW k,ppU,LpUq, w;Rdq, }¨}Wk,ppU,LpUq,w;Rdqq is by Lemma 4.9 a Banach space of type minp2, pq P p1, 2s

(with constant rCp :“ CWk,ppU,LpUq,w;Rdq ą 0 depending only on p P p1, 2s), that pRnqn“1,...,N „ R1 are
identically distributed, and Jensen’s inequality, we obtain that

E

»

–

›

›

›

›

›

f ´
1

N

N
ÿ

n“1

Rn

›

›

›

›

›

2

Wk,ppU,LpUq,w;Rdq

fi

fl

1
2

“
1

N
E

»

–

›

›

›

›

›

N
ÿ

n“1

pE rRns ´Rnq

›

›

›

›

›

2

Wk,ppU,LpUq,w;Rdq

fi

fl

1
2

ď
2

N
E

»

–

›

›

›

›

›

N
ÿ

n“1

ϵn pE rRns ´Rnq

›

›

›

›

›

2

Wk,ppU,LpUq,w;Rdq

fi

fl

1
2

ď
2κ2,minp2,pq

N
E

»

–

›

›

›

›

›

N
ÿ

n“1

ϵn pE rRns ´Rnq

›

›

›

›

›

minp2,pq

Wk,ppU,LpUq,w;Rdq

fi

fl

1
minp2,pq

ď
2 rCpκ2,minp2,pq

N

˜

N
ÿ

n“1

E
”

}E rRns ´Rn}
minp2,pq

Wk,ppU,LpUq,w;Rdq

ı

¸

1
minp2,pq

“
2 rCpκ2,minp2,pq

N
1´ 1

minp2,pq

E
”

}E rR1s ´R1}
minp2,pq

Wk,ppU,LpUq,w;Rdq

ı
1

minp2,pq

ď
2 rCpκ2,minp2,pq

N
1´ 1

minp2,pq

E
”

}E rR1s ´R1}
2
Wk,ppU,LpUq,w;Rdq

ı
1
2
.

Hence, by using this, Jensen’s inequality, Minkowski’s inequality together with [24, Proposition 1.2.2],
the inequality (43), and the constant Cp :“ 4 rCpκ2,minp2,pqπ ą 0 (depending only on p P r1,8q), it
follows that

E

»

–

›

›

›

›

›

f ´
1

N

N
ÿ

n“1

Rn

›

›

›

›

›

2

Wk,ppU,LpUq,w;Rdq

fi

fl

1
2

ď
2 rCpκ2,minp2,pq

N
1´ 1

minp2,pq

E
”

}E rR1s ´R1}
2
Wk,ppU,LpUq,w;Rdq

ı
1
2

ď
4 rCpκ2,minp2,pq

N
1´ 1

minp2,pq

}R1}L2pΩ,F ,P;Wk,ppU,LpUq,w;Rdqq

ď
4 rCpκ2,minp2,pq

N
1´ 1

minp2,pq

2
4` 1

pπ}ρ}Ckpol,γpRq

C
pγ,pq

U,w m
k
pπ

m`1
4

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ
Γ
`

m`1
2

˘
1
2

}f}Bk,γψ pU ;Rdq

ď Cp}ρ}Ckpol,γpRq

C
pγ,pq

U,w m
k
pπ

m`1
4

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ
Γ
`

m`1
2

˘
1
2

}f}Bk,γψ pU ;Rdq

N
1´ 1

minp2,pq

.

Thus, there exists some ω P Ω such that φN :“ 1
N

řN
n“1Rnpωq P NN ρ

U,d satisfies

}f ´ φN}Wk,ppU,LpUq,w;Rdq “ }f ´ ΦN pωq}Wk,ppU,LpUq,w;Rdq

ď E
”

}f ´ ΦN}
2
Wk,ppU,LpUq,w;Rdq

ı
1
2

ď Cp}ρ}Ckpol,γpRq

C
pγ,pq

U,w m
k
pπ

m
4

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ
Γ
`

m`1
2

˘
1
2

}f}Bk,γψ pU ;Rdq

N
1´ 1

minp2,pq

,

which completes the proof. □
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4.3.5. Proof of Lemma 3.9+3.3 and Proposition 3.8.

Proof of Lemma 3.9. Let U Q u ÞÑ wpuq :“
śm
l“1w0pulq P r0,8q be a weight, where w0 : R Ñ

r0,8q satisfies
ş

Rw0psqds “ 1 and Cpγ,pq

R,w0
:“

` ş

Rp1 ` |s|qγpw0psqds
˘1{p

ă 8. Then, by using that
1 ` }u} ď 1 `

řm
l“1 |ul| ď

řm
l“1p1 ` |ul|q for any u :“ pu1, ..., umqJ P Rm, that px1 ` ...` xmqγp ď

mγp pxγp1 ` ...` xγpm q for any x1, ..., xm ě 0, and Fubini’s theorem, it follows that

C
pγ,pq

U,w “

ˆ
ż

U
p1 ` }u}qγpwpuqdu

˙
1
p

ď

˜

ż

U

˜

m
ÿ

l“1

p1 ` |ul|q

¸γp

wpuqdu

¸
1
p

ď mγ

˜

m
ÿ

l“1

ż

Rm
p1 ` |ul|q

γp
m
ź

i“1

w0puiqdu

¸
1
p

ď mγ

˜

m
ÿ

l“1

ˆ
ż

R
p1 ` |ul|q

γpw0pulqdul
loooooooooooooomoooooooooooooon

“

`

C
pγ,pq

R,w0

˘p

˙ m
ź

i“1
i‰l

ż

Rm
w0puiqdui

looooooomooooooon

“1

¸
1
p

ď C
pγ,pq

R,w0
m
γ` 1

p ,

which completes the proof. □

Proof of Example 3.3. First, we observe in each case (a)-(d) that ρ P Ckpol,γpRq is of polynomial growth
and thus induces the tempered distribution

`

g ÞÑ Tρpgq :“
ş

R ρpsqgpsqds
˘

P S 1pR;Cq (see [17, p. 332]).
Now, we fix some m P N and ψ P S0pR;Cq with non-negative pψ P C8

c pRq such that suppp pψq “ rζ1, ζ2s

for some 0 ă ζ1 ă ζ2 ă 8. Then, by using Example 2.7, the Fourier transform xTρ P S 1pR;Cq coincides
on Rzt0u with the function f

xTρ
P L1

locpRzt0u;Cq given in the last column of (a)-(d). Hence, in each case

(a)-(d), we use that pψ P C8
c pRq is non-negative to conclude that

Cpψ,ρq
m “ p2πqm´1

ż

Rzt0u

pψpξqf
xTρ

pξq

|ξ|m
dξ “ p2πqm´1

ż ζ2

ζ1

pψpξqf
xTρ

pξq

|ξ|m
dξ ‰ 0.

This shows that pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq is m-admissible. Moreover, in each case (a)-(d), we

define the constant Cψ,ρ :“ p2πq´1
ˇ

ˇ

şζ2
ζ1

pψpξqf
xTρ

pξqdξ
ˇ

ˇ (independent of m P N) to conclude that

ˇ

ˇ

ˇ
Cpψ,ρq
m

ˇ

ˇ

ˇ
“ p2πqm´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż ζ2

ζ1

pψpξqf
xTρ

pξq

|ξ|m
dξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż ζ2

ζ1

pψpξqf
xTρ

pξq

2π
dξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

2π

ζ2

˙m

“ Cψ,ρ

ˆ

2π

ζ2

˙m

,

which completes the proof. □

Proof of Proposition 3.8. Fix some f P L1pRm,LpRmq, du;Rdq with prγs ` 2q-times differentiable
Fourier transform. Then, for any fixed c P t0, rγs `2u, we use that pRψfqpa, bq “ prRψfqpv, s, tq for any
pa, bq P pRmzt0uq ˆ R with pv, s, tq :“

`

a
}a}
, 1

}a}
, b

}a}

˘

, where rRψf is introduced in (30), the identities
[42, Equation (36)-(40)], c-times integration by parts, and the Leibniz product rule together with the
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chain rule, to conclude for every pa, bq P pRmzt0uq ˆ R that

bcpRψfqpa, bq “
tc

sc
prRψfqpv, s, tq

“
1

2π

tc

sc

ż

R
pfpξvq pψpξsqeiξtdξ

“
1

2π

p´iqc

sc

ż

R
pfpξvq pψpξsq

Bc

Bξc

´

eiξt
¯

dξ

“
1

2π

ic

sc

ż

R

Bc

Bξc

´

pfpξvq pψpξsq
¯

eiξtdξ

“
1

2π

ic

sc

ÿ

βPNm0,c

c!

|β|!pc´ |β|q!

ż

R
vβBβ

pfpξvq pψpc´|β|qpξsqsc´|β|eiξtdξ

“
1

2π
ic

ÿ

βPNm0,c

c!

|β|!pc´ |β|q!

ż

R

´v

s

¯β
Bβ

pfpξvq pψpc´|β|qpξsqeiξtdξ.

(44)

Therefore, by taking the norm in (44) and by using the substitution ζ ÞÑ ξs as well as the inequality
ˇ

ˇpv{sqβ
ˇ

ˇ :“
ˇ

ˇ

śm
l“1pvl{sq

βl
ˇ

ˇ “
śβ
l“1 |vl{s|

βl ď
`

1 ` }v{s}2
˘|β|{2

ď
`

1 ` 1{s2
˘c{2 for any v P Sm´1,

s P p0,8q, and β P Nm0,c, we obtain for every pa, bq P pRmzt0uq ˆ R that

|b|c }pRψfqpa, bq} ď
1

2π

ÿ

βPNm0,c

c!

|β|!pc´ |β|q!

ż

R

ˇ

ˇ

ˇ

ˇ

´v

s

¯β
ˇ

ˇ

ˇ

ˇ

›

›Bβ
pfpξvq

›

›

ˇ

ˇ

ˇ

pψpc´|β|qpξsq
ˇ

ˇ

ˇ
dξ

“
1

2π

ÿ

βPNm0,c

c!

|β|!pc´ |β|q!

ż

R

ˇ

ˇ

ˇ

ˇ

´v

s

¯β
ˇ

ˇ

ˇ

ˇ

›

›

›

›

Bβ
pf

ˆ

ζv

s

˙
›

›

›

›

ˇ

ˇ

ˇ

pψpc´|β|qpζq

ˇ

ˇ

ˇ

1

s
dζ

ď
c!

2π

ˆ

1 `
1

s2

˙
c
2 1

s

ÿ

βPNm0,c

ż

R

›

›

›

›

Bβ
pf

ˆ

ζv

s

˙
›

›

›

›

ˇ

ˇ

ˇ

pψpc´|β|qpζq

ˇ

ˇ

ˇ
dζ

ď
prγs ` 2q!

2π

`

1 ` }a}2
˘

rγs`2
2

ÿ

βPNm
0,rγs`2

ż

R

›

›Bβ
pfpζaq

›

›

ˇ

ˇ

ˇ

pψprγs`2´|β|qpζq

ˇ

ˇ

ˇ
dζ.

(45)

Hence, by using the inequality px` yqs ď 2s´1
`

xs ` ys
˘

for any x, y P r0,8q and s P r1,8q and the
inequality (45), it follows for every pa, bq P pRmzt0uq ˆ R that

`

1 ` |b|2
˘

rγs`2
2 }pRψfqpa, bq} ď 2

rγs

2

´

}pRψfqpa, bq} ` |b|rγs`2}pRψfqpa, bq}

¯

ď 2
rγs

2
prγs ` 2q!

π

`

1 ` }a}2
˘

rγs`2
2

ÿ

βPNm
0,rγs`2

ż

R

›

›Bβ
pfpζaq

›

›

ˇ

ˇ

ˇ

pψprγs`2´|β|qpζq

ˇ

ˇ

ˇ
dζ.

(46)

Moreover, by using Fubini’s theorem and that pRψfqpa, bq “ 0 for any pa, bq P t0u ˆ R, we have

}f}Bk,γψ pU ;Rdq
ď

ˆ
ż

Rm

ż

R

`

1 ` }a}2
˘γ`k`m`1

2
`

1 ` |b|2
˘γ`1

}pRψfqpa, bq}2dbda

˙
1
2

ď

ˆ
ż

R

ż

Rm

`

1 ` }a}2
˘γ`k`m`1

2
`

1 ` |b|2
˘γ`2

}pRψfqpa, bq}2da
1

1 ` |b|2
db

˙
1
2

ď

¨

˝sup
bPR

ż

Rmzt0u

˜

`

1 ` }a}2
˘

rγs`k`
m`1

2
2

`

1 ` |b|2
˘

rγs`2
2 }pRψfqpa, bq}

¸2

da

˛

‚

1
2 ˜

ż

R

1

1 ` |b|2
db

loooooomoooooon

“π

¸
1
2

.

(47)
Thus, by inserting the inequality (46) into the right-hand side of (47), using Minkowski’s integral inequal-
ity (with measure spaces pRmzt0u,LpRmzt0uq, daq and pNm0,k ˆ R,PpNm0,kq b BpRq, µ b dζq, where
PpNm0,kq denotes the power set of Nm0,k, and where PpNm0,kq Q E ÞÑ µpEq :“

ř

αPNm0,k
1Epαq P r0,8q is

the counting measure), the substitution ξ ÞÑ ζawith Jacobi determinant dξ “ |ζ|mda, that ζ1 :“ inf
␣

|ζ| :
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ζ P suppp pψq
(

ą 0, and the constant C1 :“ 2rγs{2π´1{2prγs ` 2q! maxj“0,...,rγs`2

ş

R
ˇ

ˇ pψpjqpζq
ˇ

ˇdζ ą 0,
we conclude that

}f}Bk,γψ pU ;Rdq

ď 2
rγs

2
prγs ` 2q!

π

?
π

¨

˝

ż

Rm

¨

˝

`

1 ` }a}2
˘

2rγs`k`
m`5

2
2

ÿ

βPNm
0,rγs`2

ż

R

›

›Bβ
pfpζaq

›

›

ˇ

ˇ

ˇ

pψprγs`2´|β|qpζq

ˇ

ˇ

ˇ
dζ

˛

‚

2

da

˛

‚

1
2

ď 2
rγs

2
prγs ` 2q!

?
π

ÿ

βPNm
0,rγs`2

ż

R

ˇ

ˇ

ˇ

pψprγs`2´|β|qpζq

ˇ

ˇ

ˇ

ˆ
ż

Rm

›

›Bβ
pfpζaq

›

›

2 `
1 ` }a}2

˘2rγs`k`m`5
2 da

˙
1
2

dζ

ď 2
rγs

2
prγs ` 2q!

?
π

ÿ

βPNm
0,rγs`2

ż

suppp pψq

ˇ

ˇ

ˇ

pψprγs`2´|β|qpζq

ˇ

ˇ

ˇ

ζ
m
2

ˆ
ż

Rm

›

›Bβ
pfpξq

›

›

2 `
1 ` }ξ{ζ}2

˘2rγs`k`m`5
2 dξ

˙
1
2

dζ

ď
C1

ζ
m
2
1

ÿ

βPNm
0,rγs`2

ˆ
ż

Rm

›

›Bβ
pfpξq

›

›

2 `
1 ` }ξ{ζ1}2

˘2rγs`k`m`5
2 dξ

˙
1
2

,

which completes the proof. □

Proof of Proposition 3.10. Fix some m, d P N and ε ą 0. Moreover, let p P p1,8q and w : U Ñ r0,8q

be a weight as in Lemma 3.9 (with constant Cpγ,pq

R,w0
ą 0 being independent of m, d P N and ε ą 0),

let pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq be a pair as in Example 3.3 (with 0 ă ζ1 ă ζ2 ă 8 and constant
Cψ,ρ ą 0 being independent of m, d P N and ε ą 0), and fix some f P W k,ppU,LpUq, w;Rdq satisfying
the conditions of Proposition 3.8 such that the right-hand side of (9) satisfies O

`

msp2{ζ2qmpm` 1qm{2
˘

for some s P N0. Then, there exists some constant C ą 0 (being independent of m, d P N and ε ą 0)
such that for every m, d P N it holds that

C1

ζ
m
2
1

ÿ

βPNm
0,rγs`2

ˆ
ż

Rm

›

›Bβ
pfpξq

›

›

2 `
1 ` }ξ{ζ1}2

˘2rγs`k`m`5
2 dξ

˙
1
2

ď Cms

ˆ

2

ζ2

˙m

pm` 1q
m
2 . (48)

Hence, by using Proposition 3.8 together with (48), Lemma 3.9, the inequality in Example 3.3, that Γpxq ě
a

2π{xpx{eqx for any x P p0,8q (see [18, Lemma 2.4]), and that πm{4p2{ζ2qm

p2π{ζ2qmp1{p2eqqm{2 “
`2e

?
π

π2

˘m{2
ď 1

for any m P N, we conclude that there exist some constants C2, C3 ą 0 (being independent of m, d P N
and ε ą 0) such that

Cp}ρ}Ckpol,γpRq

C
pγ,pq

U,w m
k
pπ

m`1
4

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ
Γ
`

m`1
2

˘
1
2

}f}Bk,γψ pU ;Rdq

N
1´ 1

minp2,pq

ď Cp}ρ}Ckpol,γpRq

C
pγ,pq

R,w0
m
γ` k`1

p π
m`1

4

Cψ,ρ

´

2π
ζ2

¯m ´

4π
m`1

¯
1
4 `m`1

2e

˘
m`1

2

Cms

ˆ

2

ζ2

˙m

pm` 1q
m
2

ď Cp}ρ}Ckpol,γpRq

C
pγ,pq

R,w0
m
γ` k`1

p π
1
4 p2eq

1
2C3

Cψ,ρp4πq
1
4

Cms

ď
`

C2m
C3
˘1´ 1

minp2,pq .

(49)

Hence, by using that f P Bk,γψ pU ;Rdq (see Proposition 3.8), we can apply Theorem 3.6 with N “
Q

C2m
C3ε

´
minp2,pq

minp2,pq´1

U

and insert the inequality (49) to obtain a neural network φ P NN ρ
U,d with N
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neurons satisfying

}f ´ φN}Wk,ppU,LpUq,w;Rdq ď Cp}ρ}Ckpol,γpRq

C
pγ,pq

U,w m
k
pπ

m`1
4

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ
Γ
`

m`1
2

˘
1
2

}f}Bk,γψ pU ;Rdq

N
1´ 1

minp2,pq

ď

`

C2m
C3
˘1´ 1

minp2,pq

N
1´ 1

minp2,pq

ď ε,

which completes the proof. □
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