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Abstract. Neural operators (NOs) are a class of deep learning models designed to simultaneously solve infinitely many related
problems by casting them into an infinite-dimensional space, whereon these NOs operate. A significant gap remains between theory and
practice: worst-case parameter bounds from universal approximation theorems suggest that NOs may require an unrealistically large
number of parameters to solve most operator learning problems, which stands in direct opposition to a slew of experimental evidence.
This paper closes that gap for a specific class of NOs, generative equilibrium operators (GEOs), using (realistic) finite-dimensional
deep equilibrium layers, when solving families of convex optimization problems over a separable Hilbert space X . Here, the inputs
are smooth, convex loss functions on X , and outputs are the associated (approximate) solutions to the optimization problem defined by
each input loss.

We show that when the input losses lie in suitable infinite-dimensional compact sets, our GEO can uniformly approximate the
corresponding solutions to arbitrary precision, with rank, depth, and width growing only logarithmically in the reciprocal of the ap-
proximation error. We then validate both our theoretical results and the trainability of GEOs on three applications: (1) nonlinear PDEs,
(2) stochastic optimal control problems, and (3) hedging problems in mathematical finance under liquidity constraints.

Keywords: Exponential Convergence, Proximal Splitting, Convex Optimization, Operator Learning, Sto-
chastic Optimal Control, Non-Linear PDEs, Quadratic Hedging, Mathematical Finance.

1. Introduction. Neural operators (NOs) amortize the computational cost of solving large families of
problems by learning reusable structure across infinitely many related tasks. Unfortunately, there is currently
a large gap between NO theory and practice, since the approximation guarantees for neural operators suggest
that, though NOs can approximately solve most infinite-dimensional problems [22, 30, 39, 40, 42, 58] they
may need an exorbitant number of parameters [44, 45] to do so; unless the target operators is extremely
smooth [2, 51]. This is surprising, as most operators encountered in practice are not that smooth; yet,
there is a vast and well-documented literature showing that neural operators can successfully resolve most
computational problems using a feasible number of parameters; e.g. [4, 10, 36, 41, 48, 54, 61, 70]. This large
gap between theory and practice, thus cannot be resolved using tools from classical approximation theory.

This paper focuses precisely on closing this gap. We do so by 1) exhibiting a non-smooth but iterative
structure which NOs can favourably leverage using their depth; and 2) tweaking standard NOs with deep
equilibrium layers to provably take advantage of this structure and solve broad classes of infinite families
of optimization problems with sub-linear parametric complexity. More precisely, we develop a NO solving
(infinite) families of expressible as solutions to convex optimization problems of a “splittable” form

(1.1) g ÞÑ argmin
xPX

ℓf,gpxq with ℓf,gpxq
def.
“ fpxq ` gpxq

where X is a separable Hilbert space, f : X Ñ p´8,8s is a proper, convex, and lower semicontinuous
function, and g : X Ñ R is convex and Gâteaux differentiable with pp ´ 1q-Hölder continuous gradient for
some p ě 2. We approximate the associated loss-to-solution (g ÞÑ minimizer of f ` g, for fixed f ) using
neural operator-based foundation models for problems of the form (1.1) since they are core to a variety
of scientific issues ranging from: parametric families of non-linear PDEs [8, 12, 14, 31, 35, 38, 38, 43,
46, 48, 50, 51, 52], stochastic optimal control [5, 9, 13, 19, 27, 34, 47, 67, 68], and quadratic hedging in
mathematical finance [17, 32, 49, 56, 57, 62, 65, 66]. Additionally, any foundation model for the above
can rapidly generate high-fidelity solutions that may either be used directly with minimal computational
overhead or serve as inputs to a classical, case-specific downstream solver, yielding highly accurate solutions
to a given convex optimization problem of the above form with little additional computational cost.
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Our solutions come in the form of a newly-designed variant on NOs using deep equilibrium (DE) lay-
ers, which is both non-deterministic, i.e. generative, and does not rely on infinite-dimensional DE layers
(which, in general, need not be compatible with real-world computation). Our Generative deep Equilibrium
Operator (GEO) architecture whose implicit bias encodes proximal forward-backward splitting procedures
of [21] directly into its internal logic, allowing it to simultaneously solve infinite families of the convex
optimization problems in (1.1) with minimal computational overhead. Our model leverages proximal oper-
ators as multivariate implicit nonlinear activation functions, thus extending standard deep equilrium models
(DEQ) [6] to infinite dimension, reflecting the recent developments in monotone DEQs [69], and which en-
joy the convergence benefits of models leveraging fixed point iterations; e.g. DEQs with guarantees [29] in
finite dimensions, or DEQs in infinite dimensions which either implicitly [28] or explicitly [26, 52] perform
fixed point iterations. Additionally, the generative aspect of our neural operator model builds on the genera-
tive adversarial neural operators of [63] and allows for a greater diversity in its predictions through internal
sources of randomness. Our generative DEQ lies at the intersection of deep equilibrium and generative
modelling in infinite dimensions, specialized in convex optimization problems of a “splittable” form (1.1).

1.1. Main Contributions. Our main result (Theorem 3.2) shows that GEOs can approximate the loss-
to-solution mapping of any admissible g in (1.1) for the corresponding splittable convex optimization prob-
lem over X . Critically, when the set of all admissible g is sufficiently well-behaved (formalized in (3.2)),
the approximation can be achieved by GEOs whose depth grows at-most logarithmically in the reciprocal
of the approximation error ε ą 0, and whose width and rank do not grow exponentially therein. Moreover,
if both f and all admissible g are Lipschitz with a shared worst-case Lipschitz constant, then our second
main result (Theorem 3.3) shows that the optimal value itself can be recovered to roughly the same precision
as the approximation accuracy of the loss-to-solution operator. Hence, feasibly small GEOs can approxi-
mately solve infinitely many (nonlinear) splittable convex optimization problems to high accuracy, thereby
bypassing known limitations of general neural operator solutions when approximating arbitrary continuous
or smooth solution operators [30, 45]. Our proof is based on the idea of approximately “unrolling” the
proximal forward-backward splitting iterations of [21], which have recently found quantitative foundations
in [16, 33], onto the layers of our neural operator architecture. Each of these results are predicated on
the existence of a continuous approximate (η-)selectors for the coefficient (g) to solution operator for each
splittable convex optimization problem in (1.1), with slack parameter η ą 0 (Proposition 3.1).

1.2. Secondary Contributions. We then apply our main results to problems in non-linear partial dif-
ferential equations (PDEs) (Section 4.1), stochastic optimal control (Section 4.2), and finally to optimal
hedging in mathematical finance (Section 4.3). Each application explains and derives the relevant family of
(non-linear) convex splittable optimization problems and is accompanied by a numerical illustration show-
ing the reproducibility of our theoretical claims in each setting. An additional finite-dimensional application
is included in our supplementary material (Section A.2).

1.3. Related Work. Our NO analysis resonates with recent efforts in scientific machine learning to
embed algorithmic priors into learned architectures. These include PDE solvers using deep operator net-
works [48, 50, 52], neural realizations of classical schemes such as multi-grid or fixed-point constructions,
e.g. Cauchy-Lipschitz, Lax-Milgram, Newton-Kantorovich theorems (see [26]), and the design of structured
nonlinear mappings with guaranteed geometric convergence via nonlinear Perron-Frobenius theory [29]. We
further highlight the connection between our neural operator architecture and the recent literature on opera-
tor learning in infinite dimensions [40, 46, 50] which typically suffers from the curse of dimensionality [45],
algorithm unrolling [53, 55] which writes various forms of algorithmic logic directly into neural network
layers and monotone operator theoretic perspectives on DEQ [7].

1.4. Organization of Paper. Section 2 compiles the preliminary background and notation required in
the formulation of our main result and it introduces our GEO model. Section 3 contains the existence of
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a continuous (approximate) loss-to-solution operator and our main approximation guarantees thereof. Sec-
tion 4 contains worked out applications of our results to PDEs, stochastic optimal control, and mathematical
finance. Section 5 contains a conclusion, whereas all proofs are relegated to Section 6. Additional back-
ground on proximal operators is included in our paper’s supplementary material (see Appendix A).

2. Preliminaries. We now cover the background and terminology required to formulate our results.
Notation. Let N def.

“ t0, 1, 2, . . . , u and N`
def.
“ tn P N : n ą 0u. Given a vector field V : Rd Ñ Rd, we

denote its support by supp pV q
def.
“ tx P Rd : V pxq ‰ 0u where Ā denotes the closure of a subset A Ď Rd in

the norm topology. For each N P N`, we define the N -simplex ∆N
def.
“ tw P r0, 1sN :

řN
n“1 wn “ 1u. Let

Γ0pXq denote the set of lower semi-continuous, proper, and convex (non-linear) maps from X to p´8,8s.
We fix a probability space pΩ,F ,Pq on which all our random variables are defined.

For any R P N`, we define the finite dimensional vector subspace ER
def.
“ spanpteju

R´1
j“0 q Ď X and

consider the projection operator

X Q x ÞÑ PRpxq
def.
“

R´1
ÿ

j“0

xx, ejyej P ER,(2.1)

the lifting operator

RR Q z
def.
“ pz0, ..., zR´1qJ ÞÑ zÒ:R def.

“

R´1
ÿ

j“0

zjej P ER,(2.2)

and the real-encoding operator

X Q x ÞÑ xÓ:R def.
“ pxx, ejyq

R´1
j“0 P RR.(2.3)

Observe that pxÓ:RqÒ:R “ x for any x P ER and R P N`. Thus, in this sense, the operators ¨Ò:R and ¨Ó:R are
purely formal identifications of ER with RR and visa-versa.

The topology on Continuously Fréchet-Differentiable Operators. We henceforth equip CpX,Xq with
the topology of uniform convergence on compact subsets of X . We equip C1pX,Rq with the locally-convex
topology τ generated by the family of semi-norms tpKuK defined for any g P C1pX,Rq by

pKpgq
def.
“ sup

xPK
|gpxq| ` }∇gpxq}X

where the family tpKuK is indexed over all non-empty compact subsetsK ofX . Note that, by construction,
the locally-convex topology τ on C1pX,Rq is not metrizable when X is not hemicompact; e.g. when X
is a locally-compact metric space. Now, by definition of τ on C1pX,Rq and the uniform convergence on
compact sets, the topology on CpX,Xq guarantees the continuity of the following non-linear operator from
C1pX,Rq to CpX,Xq sending any g P C1pX,Rq to

(2.4) C1pX,Rq Q g ÞÑ ∇g P CpX,Xq.

Convex Analysis in Banach Spaces. The sub-differential of f P Γ0pXq is defined as the set-valued
mapping Bf : X Ñ X‹ given for every x P X by

(2.5) Bfpxq “ tx‹ P X‹ : xx‹, y ´ xy ď fpyq ´ fpxq, @y P Xu.

A point x̂ P X is a minimizer of f if and only if 0 P Bfpx̂q. The sub-differential mapping x ÞÑ Bfpxq has
the property of monotonicity, i.e.,

(2.6) xx‹
1 ´ x‹

2, x1 ´ x2y ě 0, @x1, x2 P X, @x‹
1 P Bfpx1q, x‹

2 P Bfpx2q.
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Let g : X Ñ p´8,`8q be convex and Gâteaux differentiable with the gradient operator ∇g being pp´ 1q-
Hölder-continuous on X with p ě 2, i.e., there exists a constant L such that:

(2.7) }∇gpxq ´ ∇gpyq} ď L}x´ y}p´1, @x, y P X.

Our activation functions are defined using proximal operators, sometimes called the proximity operator,
associated to any given f P Γ0pXq by

(2.8) proxf pxq
def.
“ argminzPX fpzq `

1

2
}z ´ x}2X

which is a well-defined Lipschitz (non-linear) monotone operator by; see e.g. [7, Chapter 24]. In the case
where f is additionally Gâteaux differentiable, then we observe that

(2.9) y “ proxf pxq ðñ y “ pidX `∇fq
´1

pxq,

where X Q y ÞÑ ∇fpyq P X is such that x∇fpyq, vyX‹ˆX “ Dfpyqpvq for all v P X , and where the
notation pidX `∇fq

´1 is defined in terms of a von Neumann series expansion. Henceforth X will be a
separable infinite-dimensional Hilbert space with a distinguished orthonormal basis peiq

8
i“1.

2.1. Our Generative Equilibrium Operator. We would ideally like to use deep equilibrium layers to
introduce nonlinearity into our neural operator, via the proximal operator proxf : X Ñ X associated to f
(see (2.8)). In general, however, these operators may involve genuinely infinite-dimensional computations
and thus may not be implementable on real-world machines. Using the projection operator PR any f P

Γ0pXq defines a rank R multi-variate activation function σf : X Ñ X sending any x P X to

(2.10) σf pxq
def.
“

R´1
ÿ

j“0

xproxf pxq, ejy ej .

If infinitely many parameters were processable on our idealized computer, then by setting R “ 8, the
activation function σf would coincide with the proximal operator.

Importantly, unlike standard deep equilibrium layers for NOs, e.g. [52], the map σf is by construction
implementable using on a finitely parameterized subspace of X; which need not be true for the proximal
operator (equilibrium layer) in (2.8). Independently of the generative aspect of our neural operator, our
model diverges from the standard NO build in a number of subtle but key ways. Most strikingly, we do not
leverage a univariate activation, acting pointwise, but rather a structurally-dependent multivariate activation
function. For every problem 1.1, the (potentially) non-differentiable component of the objective function,
namely f , includes a finite-rank operator which introduces non-linearity into our neural operator’s updates.

We additionally incorporate a gated residual connection, which allows information to be passed forward
following the non-linear processing occurring at each layer. At first glance, this is motivated by the empir-
ically [15] and theoretically observed loss-landscape regularization effects of residual connections [64].
However, as we will see in the proofs section, the connection runs deeper in our setting in connection with
Forward-backward proximal splitting algorithms [21].

DEFINITION 2.1 (Generative Equilibrium Operator). Fix a rank R P N`, a sampling level M P N`,
a depth L P N`, a source of noise ξ P L1pERq, and some f P Γ0pXq. Then, a Generative Equilibrium
Operator with activation function σf is a map G : Ω ˆ CpXq Ñ ER given for any x P X by

Gpω, gq
def.
“
`

ApL`1qxpL`1qÓ:M
˘Ò:M

,
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and iteratively for l “ 0, . . . , L` 1 via

xpl`1q def.
“ γplqxplq

loomoon

Skip Connection

`

Gating
hkkkkikkkkj

p1 ´ γplqqσf

´

Aplqxplq
loomoon

Weights

`
“

g-Dependent weights
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

Bplq
`

gpxplq ` xplq
m q

loooooomoooooon

Adaptive Sampling

˘M

m“1
` bplq
loomoon

Bias

‰Ò:M
¯

,

xp0q def.
“ ξpωq,

whereAplq P RRˆR are weight matrices,Bplq P R ˆ M are weight matrices, and bplq P RR are bias vectors,
tx

plq
m u

M,L
m,l“0 Ă X are sample points, and γplq P r0, 1s are gating coefficients, l “ 0, ..., L.

3. Main Guarantee. We begin by establishing the existence of a (nonlinear), continuous, approxi-
mate optimal selection operator, which we aim to approximate using our Generative Equilibrium Operator
for (1.1). Note that, in general, a continuous optimal selector (corresponding to η “ 0) may not exist.
Moreover, even if a Borel-measurable selector does exist, it typically cannot be approximated by continuous
objects such as our Generative Equilibrium Operator.
Since we are only implementing an approximate solution operator, an approximation error is inevitable.
Consequently, there is no issue in introducing an additional—but arbitrarily small—sub-optimality error in
the solution operator in exchange for continuity, and hence, approximability. Of course, both sources of
error can be asymptotically driven to zero, as is standard in approximation theory.
Importantly, the near optimality is independent of the input in the class Xλ of inputs g P C1pXq with
uniformly bounded Fréchet gradient defined by

(3.1) Xλ
def.
“

!

g P C1pXq : ∇g is convex and λ-Lipschitz
)

.

PROPOSITION 3.1 (Existence of a randomized Opηq-optimal selector). For every approximate solution
parameter η ą 0 and any λ ą 0 there exists an “approximation solution” operator Sη : Ω ˆ C1pXq Ñ X
satisfying: for every ω P Ω, Sηpω, ¨q : C1pXq Ñ X is continuous and for every g P Xλ it holds that

ℓf,gpSηpω, gqq ´ inf
xPX

ℓf,gpxq Àω η,

where ℓf,g is defined in (1.1) and Àω hides a multiplicative constant depending only on ω and on λ (thus
independent of g and of η).

For any r, λ ě 0, we consider the functions in Xλprq whose Fréchet gradient is well-explained with few
basis factors. More precisely,

(3.2) Xλprq
def.
“

"

g P Xλ :
8
ÿ

i“R

ˇ

ˇpBtgpx` teiqq|t“0

ˇ

ˇ

2
ď r2´R{2 for all x P X and R P N

*

.

The set Xλprq are a take on the exponentially ellipsoidal sets of [3, 30], which abstract the Fourier analytic
characterization of smooth and rapidly decaying functions [60] where the rapid decay conditions are on the
function’s Fréchet gradient and not on the function itself. Now that we know there exists a well-posed,
continuous Opηq-optimal solution operator for the family of convex optimization problems in (1.1), indexed
by g P Xλprq for any given η ą 0 and r, λ ą 0, we can meaningfully consider approximating them.

THEOREM 3.2. For any r, λ ě 0, and f P Γ0pXq, and any approximation error ε ą 0 there is a Gener-
ative Equilibrium Operator of rank R P Oplogp1{εqq, depth L P Oplogp1{εqq, and with M P Oplogp1{εqq

sample points satisfying

(3.3) sup
gPXλprq

›

›Sηpω, gq ´ Gpω, gq
›

›

X
Àω ε P-a.s.
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where Àω hides a multiplicative constant depending only on the draw of ω P Ω and is independent of η, ε,
and of any g P Xλprq.

If the function f in (1.1) is Lipschitz, then the Generative Equilibrium Operator G from Theorem 3.2 ap-
proximately solves the splitting problem in (1.1) for any suitably regular input g.

THEOREM 3.3 (Simultaneous Approximately Optimal Splitting). Fix λf , λg, λ ě 0, consider the
setting of Theorem 3.3, and let G be a GEO satisfying (3.3). If f is additionally λf -Lipschitz, then for any
g P Xλprq with λ-Lipschitz Fréchet gradient we additionally have

(3.4) ℓf,gpGpgqq ´ inf
xPX

ℓf,gpxq Àω ε` η

where Àω hides a constant depending only on the draw of ω P Ω and is independent of η, ε, and of any
g P Xλprq.

Why Approximate the η-Solution Operator Instead of the True Solution Operator?. A subtle but impor-
tant point is that the continuity of the η-approximate solution operator Sη allows it to be approximated by
continuous objects, such as our GEO models in Theorem 3.2, even when the true solution operator may not
be approximable in this way. Crucially, since Sη always achieves an η-optimal loss and is continuous, it ad-
mits such approximations with only an additional additive error of at most η in the final loss (Theorem 3.3).
Note that η may be chosen arbitrarily small.

4. Numerical Experiments. We illustrate in four different numerical examples how Generative Equi-
librium Operators can be implemented on a computer to learn convex splitting problems of the form (1.1)1.

4.1. Learning the solution of a parametric family of non-linear PDEs. Before applying the forward-
backward proximal splitting algorithm to non-linear partial differential equations (PDEs), we first recall
that the proximal operator can be understood as implicit Euler discretization of a gradient flow differential
equation. More precisely, for a Hilbert space X and a proper, lower semicontinuous, and convex function
f : X Ñ p´8,8s, we consider the differential

(4.1) Btyptq P ´Bfpyptqq, t P r0,8q.

The solution y : r0,8q Ñ X of (4.1) is called the gradient flow of f : X Ñ p´8,8s. If f : X Ñ p´8,8s

is differentiable, then an implicit Euler discretization of (4.1) along a partition 0 ă t0 ă t1 ă ... leads to

yptk`1q ´ yptkq

tk`1 ´ tk
« ´∇fpyptk`1qq, k P N.

Hence, we observe that

yptk`1q “ pidX `ptk`1 ´ tkq∇fq´1pyptkqq “ proxptk`1´tkqf pyptkqq, k P N.

Thus, the proximal minimization algorithm coincides with the implicit Euler method for numerically solving
the gradient flow differential equation (4.1). Now, for X def.

“ L2pUq
def.
“ L2pU,LpUq, duq with U Ď Rd and a

given initial condition y0 P L2pUq, we consider a non-linear partial differential equation (PDE) of the form

(4.2)
By

Bt
pt, uq ` pA˚Aypt, ¨qqpuq ` qpypt, uqq “ 0, pt, uq P p0, T q ˆ U,

1All numerical experiments have been implemented in Python using the Tensorflow package and were executed on a high-
performing computing (HPC) cluster provided by the Digital Research Alliance of Canada. The code can be found under the following
link: https://github.com/psc25/GenerativeEquilibriumOperator.

https://github.com/psc25/GenerativeEquilibriumOperator
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with initial condition yp0, uq “ y0puq, u P U , where A : dompAq Ď L2pUq Ñ L2pUq is a (possibly
unbounded) linear operator2 with adjoint A˚, and where q : R Ñ R is a continuous non-linear function with
q ˝ x P L2pUq for all x P L2pUq, whose antiderivative Q : R Ñ R is convex and satisfies Q ˝ x P L1pUq

for all x P L2pUq. Then, by applying an explicit Euler step to A˚Ayptk, ¨q and an implicit Euler step to
q ˝ yptk, ¨q along a partition 0 ă t0 ă t1 ă ..., we obtain that

yptk`1, ¨q ´ yptk, ¨q

tk`1 ´ tk
« ´A˚Ayptk, ¨q ´ qpyptk`1, ¨qq,

which is known as forward-backward splitting of PDEs (see also [8, 59]). Moreover, we define the function
fpxq “

ş

U
Qpxpuqqdu and gpxq

def.
“ 1

2}Ax}2L2pUq
satisfying for every v P L2pUq that

Dfpxqpvq “
d

dh

ˇ

ˇ

ˇ

h“0

ˆ
ż

U

Qppx` hvqpuqqdu

˙

“

ż

U

qpxpuqqvpuqdu “ xq ˝ x, vyL2pUq

and

Dgpxqpvq “
d

dh

ˇ

ˇ

ˇ

h“0

ˆ

1

2
}Apx` hvq}2

˙

“ xAx,AvyL2pUq “ xA˚Ax, vyL2pUq,

which shows that ∇fpxq “ q ˝ x and ∇gpxq “ A˚Ax. Hence, by using (2.9), we observe that

yptk`1, ¨q “ pidX `ptk`1 ´ tkq∇fq´1pidX ´ptk`1 ´ tkqA˚Aqyptk, ¨q

“ proxptk`1´tkqf pyptk, ¨q ´ ptk`1 ´ tkqA˚Ayptk, ¨qq ,

which shows that the proximal operator can be applied to learn the solution of the PDE (4.2).

EXAMPLE 4.1. For the Hilbert space X def.
“ L2pRq

def.
“ L2pR,LpRq, duq and T, ν ą 0, we consider the

PDE (4.2) of linear reaction–diffusion type with A˚Ax def.
“ ´νx2 and qpxpuqq “ minpxpuq, 0q, i.e.

(4.3)
By

Bt
pt, uq ´ ν

B2y

Bu2
pt, uq `

1

2
minpypt, uq, 0q “ 0, pt, uq P p0, T q ˆ R,

with initial condition y0pyq “ 5u e´u2

, u P U , where Ax def.
“

?
νx1 with A˚x “ ´Ax due to integration

by parts, and where Qpsq
def.
“ 1p´8,0qpsq s2

4 . The proximal operator of fpxq
def.
“

ş

RQpxpuqqdu is given by
proxf pxq “

`

u ÞÑ xpuq ´ 1
4 minpxpuq, 0q

˘

, whereas gνpxq
def.
“ 1

2}Ax}2L2pRq
“ ν

2 }x1}2L2pRq
. In this setting,

we aim to learn the operator

(4.4) R Q ν ÞÑ Spgνq
def.
“ ypT, ¨q “ argmin

xPX
pfpxq ` gνpxqq P L2pRq,

by a Generative Equilibrium Operator G of rank R “ 8, depth L “ 10, and width M “ 20. To
this end, we choose the Hermite-Gaussian functions pejqjPN as basis of L2pRq, which are defined by

ejpuq
def.
“

Hjpuq

p2jj!q1{2
e´u2{2

π1{4 , for u P R, where pHjqjPN are the physicist’s Hermite polynomials (see [1, Equa-
tion 22.2.14]). Moreover, we apply the Adam algorithm over 20000 epochs with learning rate 10´4 to train
the Generative Equilibrium Operator on a training set consisting of 400 randomly initialized parameters
ν1, ..., ν400 P r0.01, 0.4q. In addition, we evaluate its generalization performance every 250-th epoch on a
test set consisting of 100 randomly initialized parameters ν401, ..., ν500 P r0.01, 0.4q. Hereby, the reference
solution ypT, ¨q

def.
“ Spgνq of the non-linear PDE (4.3) is approximated by using a Multilevel Picard (MLP)

algorithm (see, e.g., [24, 25]). The results are reported in Figure 4.1.

2However, this is not an issue as we can simply consider a bounded linear extension thereof by the Benyamini-Lindenstrauss
theorem; see e.g. [11, Theorem 1.12]; which we may somewhat abusively also denote by A.
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(a) Learning performance (b) Solution of the PDE (4.3) for two νk of the test set

Fig. 4.1: Learning the map (4.4) returning the solution of the parametric PDE (4.3) by a Generative Equilibrium Oper-
ator G. In (a), the learning performance is displayed in terms of the mean squared error (MSE) 1

|K|

ř

kPK }Spgνk q ´

Gpgνk q}
2 on the training set (label “Train”) and test set (label “Test”). In (b), the predicted solution Gpgνk q (label

“Predict”) is compared to the true solution ypT, ¨q “ Spgνk q (label “True”) for two νk of the test set.

4.2. Stochastic optimal control. In this section, we apply the proximal learning framework to solve
the stochastic optimal control problem. For T ą 0, a filtered probability space pΩ,A,F,Pq with filtration
F def.

“ pFtqtPr0,T s satisfying the usual conditions, and an F-adapted processes x : r0, T s ˆ Ω Ñ Rn with
E
“ şT

0
}xt}

2dt
‰

ă 8, we assume that y : r0, T s ˆ Ω Ñ Rd is a unique strong solution of the SDE

dyt “ µpt, yt, xtqdt` σpt, yt, xtqdWt, t P r0, T s,

where y0 P Rd, µ : r0, T s ˆ Rd ˆ Rn Ñ Rd and σ : r0, T s ˆ Rd ˆ Rn Ñ Rdˆd are sufficiently regular
functions, and where W is a d-dimensional Brownian motion. We denote by X the Hilbert space of F-
adapted processes x : r0, T s ˆ Ω Ñ Rn with }x}X

def.
“ E

“ şT

0
}xt}

2dt
‰

ă 8. Besides using f : X Ñ

p´8,8s to implement some constraints, we minimize the objective function g : X Ñ R given by

gpxq “ E

«

ż T

0

p´cqpt, yt, xtqdt` p´uqpyT q

ff

,

which is equivalent to expected utility maximization from consumption (with function c : r0, T sˆRdˆRn Ñ

R) and from terminal wealth (with function u : Rd Ñ R). Under regularity assumptions on µ, σ, c, and u,
the corresponding value function satisfies a Hamilton-Jacobi-Bellman equation (see [27, 67, 68] for details).

EXAMPLE 4.2. We consider Merton’s optimal investment problem over a finite time horizon T ą 0.
For r, σ ą 0 and µ P R, we model the stock price S and the “risk-less” bond price B by

dSt “ Stpµdt` σdWtq, dBt “ Btrdt, t P r0, T s,

with initial values S0 ą 0 andB0 “ 1, whereW is a d-dimensional Brownian motion. Moreover, we assume
that F is the P-completion of the filtration generated by W . In this case, if x def.

“ pxtqtPr0,T s denotes the value
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invested into the stock, then the wealth process y def.
“ pytqtPr0,T s of the corresponding self-financing trading

strategy satisfies

yt
Bt

“ y0 `

ż t

0

xs
Bs

ppµ´ rqds` σdWsq, t P r0, T s,

for some initial value y0
def.
“ 1 (see [37, Equation 3.1]). In addition, we define the objective functions

fpxq “

#

0, if xtpωq P r0,8q for all pt, ωq P r0, T s ˆ Ω

8, otherwise,
gupxq “ E rp´uqpyT qs ,

which corresponds to utility maximization from terminal wealth (with utility function u) under the constraint
that xtpωq P r0,8q for all pt, ωq P r0, T s ˆ Ω. The proximal operator of f : X Ñ p´8,8s is given by

proxf pxq “ projr0,8qpxp¨qq,

for all x P X . Furthermore, by using the market price of risk λ def.
“

µ´r
σ P R, we define the process

Zt
def.
“ exp

`

´λWt´ λ2

2 t
˘

, t P r0, T s and conclude that pSt{BtqtPr0,T s is by Girsanov’s theorem a martingale
under the equivalent measure Q „ P with density dQ

dP
def.
“ ZT . We can apply [37, Theorem 3.7.6] to obtain

that the optimal portfolio x def.
“ pxtqtPr0,T s with respect to the above utility maximization problem is given by

xt “
ψt

σHt
`

λ

σHt
E rHT ξ|Fts , t P r0, T s,

where H def.
“ pHtqtPr0,T s

def.
“ pZt{BtqtPr0,T s, where ξ def.

“ IpYpy0qHT q with I being a left-inverse of u1 and
Y being a right-inverse of X pyq

def.
“ ErHT IpyHT qs, and where ψ def.

“ pψtqtPr0,T s satisfies y0 `
şt

0
ψsdWs “

ErHT ξ|Fts for all t P r0, T s. In Table 4.1, we compute the optimal portfolios for some utility functions.

upxq Ipyq X pyq Ypy0q ξ
#

px´x0q
1´η

1´η , η ‰ 1,

lnpx´ x0q, η “ 1.
1

y1{η ` x0
1

y1{η E
”

H
1´1{η
T

ı

´ x0

BT

E
”

H
1´1{η
T

ıη

py0´x0{BT qη
y0´x0{BT

E
”

H
1´1{η
T

ı

H
1{η
T

` x0

ErHT ξ|Fts ψt xt
´

y0 ´ x0

BT

¯

Z
1´1{η
t

exp
´

λ2

2
1´η

η2 t
¯ ` x0Zt

BT
´λ

´

y0 ´ x0

BT

¯

p1´1{ηqZ
1´1{η
t

exp
´

λ2

2
1´η

η2 t
¯ ´ λx0Zt

BT

µ´r
σ2η

py0´x0{BT qZ
1´1{η
t

Ht exp
´

λ2

2
1´η

η2 t
¯

Table 4.1: Computation of optimal portfolios for power and logarithmic utility functions given by upxq
def.
“

px´x0q1´η

1´η

if η P p0,8qzt1u and upxq
def.
“ lnpx ´ x0q if η “ 1, where x0 P R is the reference point.

Now, we consider the closed vector subspace X Ď L2pr0, T s ˆ Ω,Bpr0, T sq b A, dt b dPq of W -
Markovian processes, i.e. F-predictable processes x def.

“ pxtqtPr0,T s such that xt is σpWtq-measurable, for all
t P r0, T s. In this setting, we learn the solution operator of the utility maximization problem
(4.5)

tu : D Ď R Ñ R is concaveu Q u ÞÑ Spguq
def.
“ argmin

xPX
xtě0

E rp´uqpyT qs “ argmax
xPX
xtě0

E rupyT qs P X

by a Generative Equilibrium Operator of rank R “ 10, depth L “ 10, and width M “ 40. To this
end, we choose the non-orthogonal basis pej1,j2qj1,j2PN of X defined by ej1,j2ptq

def.
“ tj1W j2

t , t P r0, T s,
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whence the coefficients of any x P X with respect to pej1,j2qj1,j2PN can be computed with the help of the
Gram matrix (see the code). Moreover, we apply the Adam algorithm over 5000 epochs with learning rate
5 ¨ 10´5 and batchsize 100 to train the Generative Equilibrium Operator on a training set consisting of
400 utility functions ukpyq

def.
“

py´x0,kq
1´ηk

1´ηk
, k “ 1, ..., 400. In addition, we evaluate its generalization

performance every 125-th epoch on a test set consisting of 100 utility functions ukpyq
def.
“

py´x0,kq
1´ηk

1´ηk
,

k “ 401, ..., 500. Hereby, the risk aversion parameters η1, ..., η500 P r0.25, 0.75q and the reference points
x0,1, ..., x0,500 P r0,8q are randomly initialized. The results are reported in Figure 4.2.

(a) Learning performance
(b) Optimal portfolio x for two ηk of the test set and some fixed
ω P Ω

Fig. 4.2: Learning the solution operator S of the utility maximization problem (4.5) by a Generative Equilibrium Oper-
ator G. In (a), the learning performance is displayed in terms of the mean squared error (MSE) 1

|K|

ř

kPK }Spguk q ´

Gpguk q}
2 on the training set (label “Train”) and test set (label “Test”). In (b), the predicted solution Gpguk q (label

“Predict”) is compared to the true solution Spguk q (label “True”) for two ηk of the test set and some fixed ω P Ω.

4.3. Quadratic hedging with liquidity constraint. In an incomplete financial market model, we learn
the pricing/hedging operator that returns for a given financial derivative an approximation of the optimal
hedging strategy in the sense of quadratic hedging under an additional liquidity constraint. For T ą 0, a
filtered probability space pΩ,A,F,Pq with filtration F def.

“ pFtqtPr0,T s satisfying the usual conditions, and
a continuous strictly positive semimartingale S def.

“ pStqtPr0,T s with decomposition St “ S0 ` At ` Mt,
t P r0, T s, into a process of finite variation A def.

“ pAtqtPr0,T s and a local martingale M def.
“ pMtqtPr0,T s with

A0 “ M0 “ 0, we consider the Hilbert space R‘L2pSq of tuples px, θq P R‘L2pSq equipped with the inner
product xpx, θq, py, ϑqyR‘L2pSq “ xy`xθ, ϑyL2pSq, where L2pSq denotes the Hilbert space of F-predictable

processes θ def.
“ pθtqtPr0,T s such that E

“` şT

0
|θtdAt|

˘2‰1{2
`E

“ şT

0
θ2t dxMyt

‰1{2
ă 8, equipped with the inner

product xθ, ϑyL2pSq “ E
“` şT

0
|θtdAt|

˘` şT

0
|ϑtdAt|

˘‰

` E
“ şT

0
θtϑtdxMyt

‰

. For a given liquidity constraint
C ą 0 and a financial derivative H P L2pPq, we aim to minimize the hedging error

inf
px,θqPR‘L2pSq

xPr0,Cs

E

»

–

˜

H ´ x´

ż T

0

θtdSt

¸2
fi

fl “ inf
px,θqPR‘L2pSq

pfpx, θq ` gHpx, θqq ,
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where fpx, θq
def.
“ 0 if x P r0, Cs, and fpx, θq

def.
“ 8 otherwise, and gHpx, θq

def.
“ E

“`

H ´ x ´
şT

0
θtdSt

˘2‰
.

Hereby, we observe that the proximal operator of f : R ‘ L2pSq Ñ p´8,8s is given by

proxf px, θq “ argmin
py,ϑqPR‘L2pSq

´

fpy, ϑq ` }py, ϑq ´ px, θq}2R‘L2pSq

¯

“

´

projr0,Cspxq, pθtqtPr0,T s

¯

,

where projr0,Cspsq
def.
“ argmintPr0,Cs |s´ t| “ maxpminps, Cq, 0q.

EXAMPLE 4.3. We consider the Heston model with stock price S def.
“ pStqtPr0,T s and stochastic volatility

V
def.
“ pVtqtPr0,T s following the SDEs

dSt “
a

VtStdW
1
t ,

dVt “ κpθ ´ Vtqdt` σ
a

VtdW
2
t ,

where κ, θ, σ ą 0 and dxW 1,W 2yt “ ρdt for some ρ P r´1, 1s. Moreover, we assume that F is the P-
completion of the filtration generated by W 1 and W 2. Hereby, we restrict ourselves to the closed vector
subspace X Ď R ‘ L2pSq of tuples px, θq P R ‘ L2pSq such that θ is pS, V q-Markovian in the sense that
xt is σpSt, Vtq-measurable, for all t P r0, T s. In this setting, we learn the operator returning the price and
optimal trading strategy in the sense of quadratic hedging by a Generative Equilibrium Operator, i.e.

(4.6) L2pPq Q H ÞÑ SpgHq
def.
“ argmin

px,θqPX
xPr0,Cs

E

»

–

˜

H ´ x´

ż T

0

θtdSt

¸2
fi

fl P X

by a Generative Equilibrium Operator G of rank R “ 11, depth L “ 10, and width M “ 40. We thus
choose the non-orthogonal basis pej1,j2,j3qj1,j2,j3PN of X given by ej1,j2,j3ptq

def.
“ tj1 lnpSt{S0qj2pVt{V0qj3 ,

t P r0, T s. Moreover, we apply the Adam algorithm over 5000 epochs with learning rate 5 ¨ 10´5 and
batchsize 100 to train the Generative Equilibrium Operator on a training set consisting of 200 European call
options Hk

def.
“ maxpST ´ Kk, 0q, k “ 1, ..., 200, and 200 European put options Hk

def.
“ maxpKk ´ ST , 0q,

k “ 201, ..., 400. In addition, we evaluate its generalization performance every 125-th epoch on a test
set consisting of 50 European gap call options Hk

def.
“ pST ´ Kk,1q1tST ěKk,2u, k “ 401, ..., 450, and

50 European gap put options Hk
def.
“ pKk,2 ´ ST q1tST ďKk,1u, k “ 451, ..., 500. Hereby, the parameters

K1, ...,K400 ě 0 and K401,1,K401,2, ...,K500,1,K500,2 ě 0 are randomly initialized with Kk,1 ď Kk,2,
whereas the optimal prices and hedging strategies pxk, θkq “ SpgHk

q are computed with the help of the
minimal equivalent local martingale measure (see [62, 66]) and the Fourier arguments in [18]. The results
are reported in Figure 4.3.

5. Conclusion. This paper helps close the gap between neural operator theory which suggests that solv-
ing infinite-dimensional problems requires exponentially large models, whereas reasonably sized neural op-
erators have consistently succeeded in experimental practice. We address this gap by designing a generative
neural operator, the GEO model, whose internal architecture efficiently encodes proximal forward-backward
splitting algorithms at scale. Our main results (Theorems 3.2 and 3.3) demonstrate that this architecture does
not suffer from the theory–practice gap: it can uniformly approximate the (approximate) solution operator
for infinite families of convex splitting problems of the form (1.1), to arbitrary accuracy, with complexity
that scales only logarithmically in the residual approximation error.

To illustrate the broad scope of our results, we show that solution operators for a broad class of prob-
lems—including parametric nonlinear PDEs (Section 4.1), stochastic optimal control problems (Section 4.2),
and dynamic hedging problems under liquidity constraints in mathematical finance (Section 4.3), can all be
cast in the form (1.1), and are therefore tractable using small GEOs. Each of these theoretical claims is also
validated through empirical experiments.



12 KRATSIOS, NEUFELD, AND SCHMOCKER

(a) Learning performance (b) Optimal tuple px, θq P X for one gap call option and one gap
put option of the test set and some fixed ω P Ω

Fig. 4.3: Learning the pricing/hedging operator S in (4.6) by a Generative Equilibrium Operator G. In (a), the learning
performance is displayed in terms of the mean squared error (MSE) 1

|K|

ř

kPK }SpgHk q ´ GpgHk q}
2 on the training set

(label “Train”) and test set (label “Test”). In (b), the predicted solution GpgHk q (label “Predict”) is compared to the true
solution SpgHk q (label “True”) for one k of the test set and some ω P Ω.
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6. Proof of Theorem 3.2. We now prove our main results in a sequence of steps.

6.1. Step 0 - Idealized Forward-Backwards Splitting Scheme. We first recall and reformat the main
results of [33] to our setting. Briefly, these produce a quadratically (or in some cases linearly) convergent
sequence in X , converging to an optimizer of ℓf,g, as defined in (1.1); for any suitable f and g.

LEMMA 6.1 (Convergence of the Proximal FB-Splitting Scheme with Identity Perturbations). Suppose
that f P Γ0pXq, g P C1pXq, and ∇g is λ-Lipschitz for some λ ą 1. Fix sequences pλlq

8
l“0 and pαlq

8
l“0 in

p0, 1s and in p0, 1{λq, respectively. For any x0 P X , and each l P N` define the sequence pxlq
8
l“0 in X by

the FB proximal splitting iteration

(6.1) xl`1
def.
“ p1 ´ αlqxl ` αl proxf

`

xl ´ λl∇gpxlq
˘

.

If for all l P N` we have λl ď 1{pλαlq and if suplPN }xl} ă 8 then: for every time-horizon L P N`

(6.2) ℓf,gpxLq ´ inf
xPX

ℓf,gpxq À
1

L

3https://vectorinstitute.ai/partnerships/current-partners/

https://www.sharcnet.ca
https://alliancecan.ca/en
https://vectorinstitute.ai/partnerships/current-partners/
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where À hides an (positive) absolute constant (independent of f ).
Moreover, pxlq

8
l“0 converges weakly in X to a minimizer of ℓf,g .

Before continuing with the proof of Theorem 3.2, we take a moment to establish Proposition 3.1. For
every η ą 0 define the operator Sη : Ω ˆ C1pXq Ñ X sending any ω P Ω and g P C1pXq to

(6.3) Sηpω, gq
def.
“ xgL

where x def.
“ ξpωq, ξ is as in Definition 2.1, and xgL is as in (6.1) with x0

def.
“ x “ ξpωq. This explicitly defines

the operator in Proposition 3.1; note that its initial condition is intentionally coupled to that of the Generative
Equilibrium Operator (meaning that their iterations always start at the same initial condition).

Proof of Proposition 3.1. Set L def.
“ rηs. Then, the conclusion follows from Lemma 6.1 as well as the

definitions of Xλ and of Sη .
To establish the continuity of Sηpω, ¨q, it is enough to show the continuity of one of its iterates. Indeed, since
the proximal operators proxf is 1-Lipschitz and the map C1pXq Q g ÞÑ ∇g P CpX,Xq is continuous with
respect to the semi-norm topology τ on C1pXq (see above (2.4)), we have for every g, g̃ P C1pX,Rq that

›

›

›

`

p1 ´ αlqx` αl proxf px´ λl∇gpxqq
˘

´
`

p1 ´ αlqx` αl proxf px´ λl∇g̃pxqq
˘

›

›

›

X

“ αl

›

›

›
proxf px´ λl∇gpxqq ´ proxf px´ λl∇g̃pxqq

›

›

›

X

ď αl Lippproxf q

›

›

›
x´ λl∇gpxq ´ x´ λl∇g̃pxq

›

›

›

X

“ αlλl

›

›

›
∇gpxq ´ ∇g̃pxq

›

›

›

X

ď max
j“1,...,J

sup
uPKj

αlλl

›

›

›
∇gpuq ´ ∇g̃puq

›

›

›

X
`
ˇ

ˇgpuq ´ g̃puq
ˇ

ˇ

“ max
j“1,...,J

pKj
pg ´ g̃q

“ pYK
j“1 Kj

pg ´ g̃q.

Therefore, for each t P N` and every x P X , the map

(6.4) C1pX,Rq Q g ÞÑ p1 ´ αlqx` αl proxf px´ λl∇gpxqq

is continuous. The continuity of Sηpω, ¨q now follows.

Proof. For any x0 P X , define the sequence obtained by a forward-backwards (FB) proximal splitting
iteration with a convex combination of the current and previous step, iteratively for each l P N` by (6.1).

Our first objective is re-expressing the FB iteration in (6.1) as in [33]. We first consider the 2-duality
mapping J2 : X Ñ X‹ – X , defined for each x P X by

(6.5) J2pxq “ tx‹ P X‹ | xx‹, xy “ }x‹}}x}, }x‹} “ }x}u.

As shown in [20, Proposition 4.8, page 29], it holds for every x P X that J2pxq “ B
`

1
2} ¨ }2

˘

pxq. Moreover,
since we are in the Hilbert (not the general Banach) case when there is a single element in the sub-differential
set B 1

2

`

} ¨ }2
˘

pxq; namely the identity map idX ; thus

(6.6) J2pxq “ x

for all x P X . Note that for every f P Γ0pXq, g P C1pXq, λ ą 0, and each x P X

proxf
`

x´ λ∇gpxq
˘

“ argminyPX fpyq `
1

2
}y ´ px´ λ∇gpxqq}2
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“ argminyPX fpyq `
1

2
}y}2 ´

2

2
xy, x´ λ∇gpxqy

“ argminyPX fpyq `
1

2
}y}2 ´ xy, xy ` xy, λ∇gpxqy

“ argminyPX

1

2
}y ´ x}2 ` λ xy,∇gpxq ` J2p0qy ` fpyq.(6.7)

Consequently, (6.1) and (6.7) imply that for each l P N` we have

(6.8) xl`1
def.
“ p1 ´ αlqxl ` αl

´

argminyPX

1

2
}y ´ xl}

2 ` λ xy,∇gpxlq ` J2pzlqy ` fpyq

¯

where zl
def.
“ 0 for all l P N`. Now, under the boundedness assumption suplPN }xl} ă 8 and since 0 ă λl ă

1{λ then [33, Proposition 2 (iii)] implies that (6.2) holds and [33, Proposition 2 (iii)] guarantees that pxlq
8
l“0

converges weakly to a minimizer of ℓf,g in X .

6.2. Step 1 - Approximately Implementing the Gradient Operator. Since, in general, we cannot
assume that we can directly implement the gradient operator ∇, our first step is to approximate it via a finite
difference as follows. Recall that the Gâteaux derivative Df of a real-valued function f on X which is
Gâteaux differentiable function at some x P X is given by

(6.9) Dfpxqpyq
def.
“ lim

ηÓ0

fpx` ηyq ´ fpxq

η
.

We denote by C1pXq the set of functions f : X Ñ R which are Gâteaux differentiable functions at all
points in X with bounded Gâteaux derivative. If f is Gâteaux differentiable at x, then its Fréchet gradient
∇fpxq, see e.g. [7, Remark 2.55], must satisfy

(6.10) Dfpxqpyq “ xy,∇fpxqy

for each y P X . Upon fixing an orthonormal basis peiqiPI ofX , we may re-write the right-hand side of (6.10)
by

(6.11) Dfpxqpyq “ x
ÿ

iPI

xy, eiyei,∇fpxqy “
ÿ

iPI

xy, eiy xei,∇fpxqy.

By definition of both derivatives, we have: for each i P I

(6.12) xei,∇fpxqy “ Dfpxqpeiq “ lim
ηÓ0

fpx` ηeiq ´ fpxq

η
“ pBtfpx` teiqq|t“0.

Consequently, (6.11) implies that Dfpxqpyq “
ř

iPI xy, eiy pBtfpx` teiqq|t“0; whence

(6.13) ∇fpxq “
ÿ

iPI

pBtfpx` teiqq|t“0 ei.

Without loss of generality, we identify I with an initial segment of N. We consider the case where I is
infinite, with the case where #I ă 8 being more straightforward but similar; whence, for us I “ N.

This motivates our finite-rank, finite-difference operator. Fix a rank R P N` and a precision parameter
δ ą 0. Given any f P C1pXq. We approximate the Fréchet gradient in (6.13) by the rank R-δ-divided
difference operator ∆δ

R. In what follows, we consider the δ-divided difference operator defined for each
f P C1pXq at every x P X by

(6.14) ∆R
δ pfqpxq

def.
“

R´1
ÿ

i“0

fpx` δeiq ´ fpxq

δ
ei.
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As one may expect, the rankR-δ-divided difference operator provides a rankR approximation to the Fréchet
gradient of any C1pXq function. Interestingly, if the target function’s gradient’s “higher frequencies” (coef-
ficients of the ei for large i) are exponentially small, then R need only grow logarithmically in the reciprocal
approximation error ε ą 0.

LEMMA 6.2 (Finite Difference Approximation of Gradient Operator). Suppose that f P C1pXq and
let K be a non-empty compact subset of X . If δ ą 0 and R P N, then

(6.15) sup
xPK

}∆R
δ pfqpxq ´ ∇fpxq}X À Rδ `

g

f

f

e

8
ÿ

i“R

ˇ

ˇpBtfpx` teiqq|t“0

ˇ

ˇ

2
.

For instance, if there exist constants r, C ą 0 such that: for all x P K and i P N we have
ˇ

ˇpBtfpx ` teiqq|t“0

ˇ

ˇ

2
ď C e´2r i, then there is a constant c ą 0 such that for every ε ą 0 we may pick δ

small enough and R P Opc` logp1{εqq satisfying

(6.16) sup
xPK

}∆R
δ pfq ´ ∇fpxq}X ď ε.

Proof of Lemma 6.2. Suppose that: there are C, r ą 0 such that for all x P K and each i P N`

(6.17) |x∇fpxq, eiy| ď Ce´ri.

Fix δ ą 0. Then, for every x P K, we have

}∆R
δ pfqpxq ´ ∇fpxq}X ď

›

›

›

›

R´1
ÿ

i“0

´fpx` δeiq ´ fpxq

δ
´ pBtfpx` teiqq|t“0

¯

ei

`

8
ÿ

i“R

pBtfpx` teiqq|t“0ei

›

›

›

›

X

ď

R´1
ÿ

i“0

ˇ

ˇ

ˇ

fpx` δeiq ´ fpxq

δ
´ pBtfpx` teiqq|t“0

ˇ

ˇ

ˇ
}ei}X

`

g

f

f

e

8
ÿ

i“R

ppBtfpx` teiqq|t“0q2}ei}2X

ď RC̃ δ `

g

f

f

e

8
ÿ

i“R

ˇ

ˇpBtfpx` teiqq|t“0

ˇ

ˇ

2
,(6.18)

where we have used Taylor’s theorem/standard 1-dimensional finite (forward) difference estimates to ob-
tain (6.18); where 0 ď C̃

def.
“ suppx,tqPXˆr0,δs |pBtfpx ` teiqq| and C̃ ă 8 by the continuity of ∇f and the

compactness of K ˆ r0, δs. Now, if there are constant C, r ą 0 such that
ˇ

ˇpBtfpx ` teiqq|t“0

ˇ

ˇ

2
ď C e´2r i

for all i P N; then
g

f

f

e

8
ÿ

i“R

ˇ

ˇpBtfpx` teiqq|t“0

ˇ

ˇ

2
ď

?
C

g

f

f

e

8
ÿ

i“R

e´i2R “

?
C

?
1 ´ e2r

e´Rr.(6.19)

Setting C 1 def.
“ maxt

?
C{

?
1 ´ e2r, C̃u yields the bound

(6.20) sup
xPX

}∆R
δ pfqpxq ´ ∇fpxq}X ď C 1Rδ ` C 1e´Rr.
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Let ε ą 0 be given. Retroactively setting R def.
“ rlnpp2C 1q1{rq ` 1

r lnpε´1qs and δ “ ε{p2C 1Rq completes our
proof.

6.3. Step 2 - Approximate Implementation of Proximal Forward-Backwards Splitting. We first
approximate the idealized proximal forward-backward splitting scheme considered in Lemma 6.1 by a vari-
ant where the Fréchet gradient operator is replaced by a finite-rank finite-difference variance. Thus, the next
lemma takes the “differentiation” component of our problem one step closer to an implementable object on
a computer processing finite-dimensional linear algebra.

LEMMA 6.3 (Approximate Proximal Splitting Scheme). Let R P N`, and δ, λ ą 0, f P C1pXq and
suppose that ∇g is λ-Lipschitz. Let pαlq

8
t“0, pλlq

8
l“0 be as in Lemma 6.1. Define the approximate proximal

splitting iteration, for each l P N` by

(6.21) x̂l`1
def.
“ p1 ´ αlqx̂l ` αl proxf

`

x̂l ´ λl∆
R
δ pgqpx̂lq

˘

.

Then, for every L P N` we have

(6.22)
›

›xL ´ x̂L
›

›

X
À
`

Rδ ` τpR, gq
˘`

1 ´ 2´pL`1q
˘

where τpR, gq2
def.
“
ř8

i“R

ˇ

ˇpBtgpx` teiqq|t“0

ˇ

ˇ

2
.

Proof of Lemma 6.3. Recall that proxf is firmly non-expansive, see e.g. [7, Proposition 12.28]; thus it
is 1-Lipschitz. Consequently, for every l P N` we have
›

›xl`1 ´ x̂l`1

›

›

X

ď
›

›p1 ´ αlqxl ` αl proxf
`

xl ´ λl∇gpxlq
˘

´ p1 ´ αlqx̂l ´ αl proxf
`

x̂l ´ λl∆
R
δ pgqpx̂lq

˘
›

›

X

ď p1 ´ αlq}xl ´ x̂l}X ` αl

›

› proxf
`

xl ´ λl∇gpxlq
˘

´ proxf
`

x̂l ´ λl∆
R
δ pgqpx̂lq

˘
›

›

X

ď p1 ´ αlq}xl ´ x̂l}X ` αl

›

›

`

xl ´ λl∇gpxlq
˘

´
`

x̂l ´ λl∆
R
δ pgqpx̂lq

˘
›

›

X

ď p1 ´ αlq}xl ´ x̂l}X ` αl}xl ´ x̂l}X ` αlλl
›

›∇gpxlq ´ ∆R
δ pgqpx̂lq

›

›

X

ď p1 ´ αlq}xl ´ x̂l}X ` αl}xl ´ x̂l}X ` αlλl
›

›∇gpxlq ´ ∇gpx̂lq
›

›

X
` αlλl

›

›∇gpx̂lq ´ ∆R
δ pgqpx̂lq

›

›

X

ď p1 ´ αlq}xl ´ x̂l}X ` αl}xl ´ x̂l}X ` αlλlλ
›

›xl ´ x̂l
›

›

X
` αlλl

›

›∇gpx̂lq ´ ∆R
δ pgqpx̂lq

›

›

X

“ p1 ` αlλlλq}xl ´ x̂l}X ` αlλl
›

›∇gpx̂lq ´ ∆R
δ pgqpx̂lq

›

›

X

ď p1 ` 1
1

λ
λq}xl ´ x̂l}X ` αlλl

›

›∇gpx̂lq ´ ∆R
δ pgqpx̂lq

›

›

X

(6.23)

ď 2 }xl ´ x̂l}X ` αlλl
›

›∇gpx̂lq ´ ∆R
δ pgqpx̂lq

›

›

X
loooooooooooooomoooooooooooooon

(I)

,

(6.24)

where (6.23) held by assumption that for each l P N` we had αl P r0, 1s and that λl P p0, 1{λq. Now, under
our assumptions, term (I) can be bounded using Lemma 6.2. Let τpR, gq2

def.
“

ř8

i“R

ˇ

ˇpBtgpx ` teiqq|t“0

ˇ

ˇ

2
.

The right-hand side of (6.24) can further be controlled, for every l P N`, by

(6.25)
›

›xl`1 ´ x̂l`1

›

›

X
ď 2 }xl ´ x̂l}X ` αlλl

`

Rδ ` τpR, gq
˘

.

Recursively applying the estimate in (6.25) we find that

›

›xL ´ x̂L
›

›

X
ď 2L}x0 ´ x̂0}X `

`

Rδ ` τpR, gq
˘

L
ÿ

s“0

αsλs

t
ź

u“s

p1 ` αuλuλgq
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ď 2L }x0 ´ x̂0}X
looooomooooon

(II)

`
`

Rδ ` τpR, gq
˘

L
ÿ

s“0

αsλs2
pL´s´1q` .(6.26)

Note that x0 “ x̂0; whence, (II) vanishes. Next, if for each l P N` with l ď L, we constrain αl ď λl{2
L´2l

then (6.26) can be further controlled as

›

›xL ´ x̂L
›

›

X
ď
`

Rδ ` τpR, gq
˘

L
ÿ

s“0

αsλs2
pL´s´1q`

ď
`

Rδ ` τpR, gq
˘

L
ÿ

s“0

1

2L´2s
λs2

pL´s´1q`

ď
`

Rδ ` τpR, gq
˘

L
ÿ

s“0

1

2s

ď 2
`

Rδ ` τpR, gq
˘`

1 ´ 2´pL`1q
˘

.

Unfortunately, the proximal operator proxf need not map spanpteju
R´1
j“0 q into itself. Thus, we further

modify the iteration in Lemma 6.3 to incorporate a projection step following the application of proxf back
down onto the span of spanpteju

R´1
j“0 q.

LEMMA 6.4 (Approximation by Projected (Finite-Dimensional) Proximal Splitting Scheme).
Let R P N`, δ, λ ą 0, f P C1pXq and suppose that ∇g is λ-Lipschitz. Let pαlq

8
l“0, pλlq

8
l“0 be as in

Lemma 6.1. Define the approximate proximal splitting iteration for each l P N` by

(6.27) zl`1
def.
“ p1 ´ αlqzl ` αlσf

`

zl ´ λl∆
R
δ pgqpzlq

˘

.

Then, for every L P N`, if the hyperparameters α0, . . . , αT satisfy

(6.28) 0 ă αl ď 2´l´L

ˆ

max

"

sup
uPproxf pKq

›

›proxf puq ´ PRpuq
›

›

X
, 1

*˙´pL´l´1q`

then, for each l “ 0, . . . L we have

(6.29) }x̂L ´ zL} ď 21´L,

where Cr ą 0 depends only on r.

The proof of Lemma 6.4 relies on the following two technical lemmata elucidating some elementary prop-
erties of the operator ∆R

δ .

LEMMA 6.5 (Finite Difference-Type Operator ∆R
δ are Bounded). Let δ ą 0, λ ě 0, R P N`, and

g : X Ñ R be λ-Lipschitz. Then, ∆R
δ pgq is 2Rλ

δ -Lipschitz.

Proof. Let x, x̃ P X . Then,

›

›∆R
δ pgqpxq ´ ∆R

δ pgqpx̃q
›

›

X
“

1

δ

ˇ

ˇ

ˇ

R´1
ÿ

i“0

gpx` δeiq ´ gpxq ´ gpx̃` δeiq ` gpx̃q

ˇ

ˇ

ˇ

ď
1

δ

R´1
ÿ

i“0

`
ˇ

ˇgpx` δeiq ´ gpx̃` δeiq
ˇ

ˇ `
ˇ

ˇgpxq ´ gpx̃q
ˇ

ˇ

˘
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ď
λ

δ

R´1
ÿ

i“0

`
›

›x` δei ´ x̃` δei
›

›

X
`
›

›x´ x̃
›

›

X

˘

“
2λR

δ
}x´ x̃}X .

Thus, ∆R
δ is p2λRq{δ-Lipschitz.

LEMMA 6.6 (Projection Operator Approximation Properties). Let r ą 0, C ě 0, R P N` and let
K def.

“ tx P X : |xx, eiy| ď Ce´riu. Then the projection operator PR : X ÞÑ spanteiu
R´1
i“0 satisfies

(i) PRpKq Ď K and
(ii) supxPK }PRpxq ´ x}X ď Cr e

´rR,
where Cr

def.
“ C{

?
1 ´ e2r ą 0.

Proof. Let x P K. Then by linearity of PR,

PRpxq “

8
ÿ

i“0

xx, eiyPRpeiq “

8
ÿ

i“0

xx, eiy eiIiăR “

R´1
ÿ

i“0

xx, eiy ei.

Therefore, for each i P N, we have |xPRpxq, eiy| ď C e´riIiăR ď C e´ri. Thus, PRpxq P K and (i) is
verified. Moreover,

}PRpxq ´ x} “

g

f

f

e

R´1
ÿ

i“0

|xx, eiy|2}ei}2 ď C

g

f

f

e

R´1
ÿ

i“0

e´ri2 “ Cre
´Rr.

Thus, (ii) holds.

Proof of Lemma 6.4. Fix R P N` and δ ą 0. Then, for every t P N`, we have that

}x̂l ´ zl}X(6.30)

ď p1 ´ αlq
›

›xl´1 ´ zl´1

›

›

X

` αl

›

›proxf px̂l´1 ´ λl∆
R
δ pgqpx̂l´1qq ´ PR ˝ proxf pzl´1 ´ λl∆

R
δ pgqpzl´1qq

›

›

X

ď p1 ´ αlq
›

›xl´1 ´ zl´1

›

›

X

` αl

›

›proxf px̂l´1 ´ λl∆
R
δ pgqpx̂l´1qq ´ proxf pzl´1 ´ λl∆

R
δ pgqpzl´1qq

›

›

X

` αl

›

›proxf pzl´1 ´ λl∆
R
δ pgqpzl´1qq ´ PR ˝ proxf pzl´1 ´ λl∆

R
δ pgqpzl´1q

›

›

X

ď p1 ´ αlq
›

›xl´1 ´ zl´1

›

›

X

` αl Lippproxf q
›

›x̂l´1 ´ λl∆
R
δ pgqpx̂l´1q ´ zl´1 ´ λl∆

R
δ pgqpzl´1q

›

›

X

` αl

›

›proxf pzl´1 ´ λl∆
R
δ pgqpzl´1qq ´ PR ˝ proxf pzl´1 ´ λl∆

R
δ pgqpzl´1q

›

›

X

ď p1 ´ αlq
›

›xl´1 ´ zl´1

›

›

X

` αl Lippproxf q
›

›x̂l´1 ´ λl∆
R
δ pgqpx̂l´1q ´ zl´1 ´ λl∆

R
δ pgqpzl´1q

›

›

X

` αl sup
uPproxf pKq

›

›proxf puq ´ PRpuq
›

›

X
(6.31)

ď p1 ´ αlq
›

›xl´1 ´ zl´1

›

›

X

` αl

›

›x̂l´1 ´ λl∆
R
δ pgqpx̂l´1q ´ zl´1 ´ λl∆

R
δ pgqpzl´1q

›

›

X
(6.32)

` αl sup
uPproxf pKq

›

›proxf puq ´ PRpuq
›

›

X
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ď p1 ´ αlq
›

›xl´1 ´ zl´1

›

›

X

` αl

›

›λl∆
R
δ pgqpx̂l´1q ´ λl∆

R
δ pgqpzl´1q

›

›

X
` αl

›

›x̂l´1 ´ zl´1

›

›

X

` αl sup
uPproxf pKq

›

›proxf puq ´ PRpuq
›

›

X

“
›

›xl´1 ´ zl´1

›

›

X
` αlλl

›

›∆R
δ pgqpx̂l´1q ´ ∆R

δ pgqpzl´1q
›

›

X

` αl sup
uPproxf pKq

›

›proxf puq ´ PRpuq
›

›

X

ď
›

›xl´1 ´ zl´1

›

›

X
` αlλl

αl2R

δ

›

›x̂l´1 ´ zl´1

›

›

X
` αl sup

uPproxf pKq

›

› proxf puq ´ PRpuq
›

›

X
(6.33)

ď

´

1 `
2R

δ

¯

›

›xl´1 ´ zl´1

›

›

X
` αl sup

uPproxf pKq

›

› proxf puq ´ PRpuq
›

›

X
,(6.34)

where we used (6.32) again held by the firm non-expansiveness of proxf (see, e.g., [7, Proposition 12.28]),
implying that proxf is 1-Lipschitz, we used Lemma 6.5 to deduce (6.33), and we used the constant αl ď 1
to deduce (6.34).

Moreover, by compactness of K and by continuity of proxf , we have that proxf pKq is compact. Thus,
by the metric approximation property in separable Hilbert spaces we have that

(6.35) C1:R
def.
“ sup

uPproxf pKq

›

› proxf puq ´ PRpuq
›

›

X
ă 8.

Fix a time-horizon L P N`. Incorporating (6.35) in the right-hand side of (6.34) and iterating we obtain the
bound

}x̂L ´ zL}X ď

L
ź

l“0

´

1 `
2R

δ

¯

}x0 ´ z0}X

looooooooooooooomooooooooooooooon

(III)

`

L
ÿ

l“0

αsC
pL´l´1q`

1:R

looooooooomooooooooon

(IV)

.(6.36)

Now, since x0 P ER we may indeed pick x0 “ z0; implying that (III) vanishes. Likewise, if

(6.37) αlC
pL´l´1q`

1:R ď
1

2L`l

for each l “ 0, . . . , L then
řl

s“0 αlC
pl´s´1q`

1:R ď 1
2L

řl
s“0

1
2s ď 21´L. Now the constraint (6.37) is

equivalent to the condition (6.28). Consequently, (IV) is also controllable and the estimate (6.36) reduces to

}x̂L ´ zL}X ď
1

2L

l
ÿ

s“0

1

2s
ď 21´L.

6.4. Step 4 - Convergence Under Additional Regularity of f and g. Under more regularity on f and
on the input g, we may guarantee that the neural operator is minimizing the loss function.

PROPOSITION 6.7 (Convergence of Objective Function). Fix x P X . Let λ, λf , λg, δ ą 0, L,R P N`,
f P ΓpXq be coercive and bounded from below. Let pαlq

8
l“0, pλlq

8
l“0 be sequences satisfying the conditions

of Lemma 6.1 and the decay condition

(6.38) 0 ă αl ď 2´l´L

ˆ

max

"

sup
uPproxf pKq

›

›proxf puq ´ PRpuq
›

›

X
, 1

*˙´pL´l´1q`
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and let pxlq
8
l“0 and pzlq

8
l“0 be given by (6.21) and (6.27), respectively, with x0

def.
“ z0

def.
“ x P X . Then, for

any g P C1pXq with λ-Lipschitz Fréchet gradient

(6.39) }xl ´ zl}X À 21´L `
`

Rδ ` τpR, gq
˘`

1 ´ 2´pL`1q
˘

and À hides a constant independent of δ,R, g, and L. If, additionally, f is λf -Lipschitz and if g is λg-
Lipschitz with λ-Lipschitz Fréchet gradient then (6.39) strengthens to

(6.40) ℓf,gpzT q ´ inf
xPX

ℓf,gpxq À
1

L
` pλf ` λgq

´

21´L `
`

Rδ ` τpR, gq
˘`

1 ´ 2´pL`1q
˘

¯

where τpR, gq2
def.
“
ř8

i“R

ˇ

ˇpBtgpx` teiqq|t“0

ˇ

ˇ

2
.

Proof of Proposition 6.7. We first establish (6.39); indeed

ď
›

›zL ´ xL
›

›

X
(6.41)

ď
›

›zL ´ x̂L
›

›

X
`
›

›xL ´ x̂L
›

›

X

ď21´L `
›

›xL ´ x̂L
›

›

X
(6.42)

À21´L `
`

Rδ ` τpR, gq
˘`

1 ´ 2´pL`1q
˘

,(6.43)

where (6.42) held by Lemma 6.4 due to our decay assumptions on α¨ made in (6.29), and (6.43) held by
Lemma (6.3) by our assumptions on the Lipschitzness of the gradient of g.
Next, we establish (6.40). We first show the existence of a minimizer to ℓf,g overX , which we will routinely
use momentarily. Since f was assumed to be coercive, then for every η P R the level set f´1rp´8, ηss is
relatively compact in X (see e.g. [23, Definition 1.12]). Since g was assumed to take non-negative values
then, the level set pf ` gq´1rp´8, ηss Ď f´1rp´8, ηss is relatively compact; i.e. f ` g is coercive. Now,
since f is also bounded below, then Tonelli’s direct method, see e.g. [23, Theorem 1.15], implies that there
exists a minimizer x‹

f,g P X of ℓf,g; i.e.

(6.44) inf
xPX

ℓf,gpxq “ ℓf,gpx‹
f,gq.

Now, using the Lipschitzness of f ` g and the minimality of x‹
f,g in (6.44) we have

ℓf,gpzLq ´ inf
xPX

ℓf,gpxq “
ˇ

ˇℓf,gpzLq ´ inf
xPX

ℓf,gpxq
ˇ

ˇ

“
ˇ

ˇℓf,gpzLq ´ ℓf,gpx‹
f,gq

ˇ

ˇ

ď
ˇ

ˇℓf,gpzLq ´ ℓf,gpxLq
ˇ

ˇ `
ˇ

ˇℓf,gpxLq ´ ℓf,gpx‹
f,gq

ˇ

ˇ

“
ˇ

ˇℓf,gpzLq ´ ℓf,gpxLq
ˇ

ˇ ` ℓf,gpxLq ´ ℓf,gpx‹
f,gq

À
ˇ

ˇℓf,gpzLq ´ ℓf,gpxLq
ˇ

ˇ `
1

L
(6.45)

Àpλf ` λgq

´

21´L `
`

Rδ ` τpR, gq
˘`

1 ´ 2´pL`1q
˘

¯

`
1

L
(6.46)

where (6.45) held by Lemma 6.1, (6.41) held by our Lipschitzness assumptions on f and on g, and (6.46)
held by (6.39).

We are now in place to establish Theorem 3.2. Indeed, we only need to show that zL (as defined in
(6.27)) can be computed by a Generative Equilibrium Operator of depth L and we only need to verify that
xL (as defined in (6.1)) is the output of Sηpω, gq (as defined in (6.3)). We prove both our main theorems
together, as this yields the most streamlined treatment thereof.
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Proofs of Theorem 3.2 and 3.3. Fix ω P Ω, η,ą 0, and let Sη
def.
“ Sηpω, ¨q : C1pXq Ñ X be defined as

in (6.3). Set x0
def.
“ z0

def.
“ ξpωq P X and couple

δ
def.
“ 2´L{R ą 0.

Fix any R P N`, set M def.
“ R, L def.

“ r1{ηs, and for each l P t1, . . . , Lu fix any αl, λl P p0, 1{λq such that
pαlq

L
l“1 satisfies the decay condition in (6.38). For each l P t1, . . . , Lu we iteratively define the GEO layers

Lplq (see Definition 2.1) by

(6.47) Lplq
g pxq

def.
“ γplqx` p1 ´ γplqqσf

´

Aplqx`
“

Bplq
`

gpx` xplq
m q

˘M

m“1
` bplq

‰Ò:M
¯

where, for each m “ 1, . . . , R, we set xplq
m “ em, Aplq “ IR (the R ˆ R identity matrix) and Bplq def.

“
λl

δ ID,
bplq “ 0R (the zero vector in RR), and γl

def.
“ 1 ´ αl. Then, by definition of rank R, δ-divided difference

operator ∆R
δ p¨q (defined in (6.14)), the lifting/embedding operator ¨Ò:M (defined in (2.2)), and each GEO

layer Lplq in (6.47) we have that

(6.48) Lplq
g pxq

def.
“ p1 ´ αplqqx` γplqσf

`

x` λl∆
R
δ pxq

˘

.

Consequently, we find that

(6.49) LpLq
g ˝ ¨ ¨ ¨ ˝ Lp1q

g px0q “ zL

where zL is defined in (6.21). Now, observe that Gpω, gq
def.
“ LpLq ˝ ¨ ¨ ¨ ˝ Lp1qpx0q is a well-defined GEO

(with dependence on ω implicitly in x0 “ ξpωq and on g by the definitions of each GEO layer in (6.47)).
Consequently, Proposition 6.7 and the definition of the Opηq-approximate solution operator Sη in (6.3) imply
that

(6.50) sup
gPXλ

›

›Sηpω, gq ´ Gpω, gq
›

›

X
À 21´L `

`

2´L ` τpR, gq
˘`

1 ´ 2´pL`1q
˘

with À hiding a constant independent of δ, R, L (and thus of η), and of any g P Xλ. Restricting the
supremum in (6.39) to the set Xλprq (defined in (3.2)) we find that

sup
gPXλprq

›

›Sηpω, gq ´ Gpω, gq
›

›

X
À 21´L `

`

2´R ` r 2´R
˘`

1 ´ 2´pL`1q
˘

(6.51)

ď 21´L `
`

2´R ` r 2´R
˘

À 2´L ` 2´R.(6.52)

Fix an approximation error ε ą 0. Retroactively, setting R def.
“ L

def.
“ rεs; then (6.51)-(6.52) implies that

sup
gPXλprq

›

›Sηpω, gq ´ Gpω, gq
›

›

X
À ε(6.53)

yielding (3.3). If, additionally, f is λf -Lipschitz and if g is λg-Lipschitz with λ-Lipschitz Fréchet gradient
then (6.40) in Lemma 6.7 yields (3.4).
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Appendix A. Supplementary Material.

A.1. Examples of Proximal Operators. For some prominent Hilbert spaces X and functions f :

X Ñ p´8,8s, we compute the corresponding activation function σf : X Ñ X defined as σf pxq
def.
“

PRpproxf pxqq, for x P X , where R P N`. For example, on any Hilbert space X , the proximal opera-
tor of fpxq

def.
“ 1

2}x}2 is given by proxf pxq “ 1
2x. Hence, we obtain a linear R-rank operator σf pxq “

PRpproxf pxqq “ 1
2PRpxq as activation function.

EXAMPLE A.1. For d P N`, let X def.
“ Rd, set R def.

“ d ´ 1, and define f : X Ñ p´8,8s by fpxq “ 0

if x P r0,8qd, and fpxq “ 8 otherwise. Then, for every x def.
“ px1, ..., xdqJ P Rd, it holds that proxf pxq “

ReLUdpxq
def.
“ pmaxpx1, 0q, ...,maxpxd, 0qqJ. Hence, by using that PR “ idRd , we obtain the multivariate

ReLU activation function

σf pxq “ proxf pxq “ ReLUdpxq.

Moreover, the linear operators Aplq P LpRd;Rdq – Rdˆd and Bplq P RdˆM in Definition 2.1 correspond to
matrices, while bplq P Rd are classical bias vectors.

EXAMPLE A.2. For the sequence space X def.
“ l2

def.
“

␣

x
def.
“ pxiqiPN : }x}

def.
“

ř8

i“0 x
2
i ă 8

(

and some
fixed R P N`, we define f : X Ñ p´8,8s by fpxq “ }x}l1

def.
“

ř8

i“1 |xi|, for x P l2. Then, for every
x

def.
“ pxiqiPN P l2, it holds that proxf pxq “

`

pxi ` 1q1txiă´1u ` pxi ´ 1q1txią1u

˘

iPN. Thus, by using the
projection PR, we obtain a non-linear R-rank activation function

σf pxq “

R´1
ÿ

j“0

xproxf pxq, ejyej

“
`

px0 ` 1q1tx0ă´1u ` px0 ´ 1q1tx0ą1u, ..., pxR´1 ` 1q1txR´1ă´1u ` pxR´1 ´ 1q1txR´1ą1u, 0, 0, ...
˘

.

Moreover, the linear operators Aplq P Lpl2R; l
2
Rq – RRˆR in Definition 2.1 are of the form l2R Q x

def.
“

px0, ..., xR´1, 0, 0, ...q ÞÑ Aplqx “
`
řR´1

j“0 a
plq
0,jxj , ...,

řR´1
j“0 a

plq
R´1,jxj , 0, 0, ...q P l2R for some aplq def.

“

pa
plq
i,jqi,j“0,...,R´1 P RRˆR, while Bplq P RRˆM and bplq P RR are classical matrices and vectors.

EXAMPLE A.3. For the L2-space X def.
“ L2pµq

def.
“ L2pΩ,A, µq, a basis pejqjPN of L2pµq, some fixed

R P N, and some ´8 ă c1 ă c2 ă 8, we define the function f : L2pµq Ñ p´8,8s by fpxq “ 0 if
xpΩq Ď rc1, c2s, and fpxq

def.
“ 8 otherwise. Then, the proximal operator proxf pxq “ projrc1,c2spxp¨qq is

the pointwise projection to rc1, c2s defined by projrc1,c2spuq
def.
“ minpmaxpu, c1q, c2q for u P R. Hence, we

obtain a non-linear R-rank activation function

σf pxq “

R´1
ÿ

j“0

xproxf pxq, ejyej “

R´1
ÿ

j“0

xprojrc1,c2spxp¨qq, ejyej .

Moreover, the linear operators Aplq P LpL2pµqR;L
2pµqRq – RRˆR in Definition 2.1 are of the form

L2pµqR Q x ÞÑ Aplqx “
řR´1

i,j“0 a
plq
i,jxx, eiyej P L2pµqR for some aplq def.

“ pa
plq
i,jqi,j“0,...,R´1 P RRˆR, while

Bplq P RRˆM and bplq P RR are classical matrices and vectors.

A.2. A Finite-Dimensional Application: Learning a minimization operator. As an additional sanity
check, we first consider a splitting problem over a finite dimensional Hilbert space. For the Hilbert space
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X “ Rd and a convex subset C Ď Rd, we aim to learn the operator

␣

g : Rd Ñ R is convex
(

Q g ÞÑ argmin
xPC

gpxq “ argmin
xPRd

pfpxq ` gpxqq P Rd,

where f : Rd Ñ p´8,8s is defined by fpxq “ 0 if x P C, and fpxq “ 8 otherwise. In this case, the
proximal operator of f is given as proxf pxq “ projCpxq

def.
“ argminyPC }x´ y}, for all x P Rd.

(a) Learning performance

k True Predict

9001
ˆ

1.000
1.000

˙ ˆ

0.998
0.985

˙

9002
ˆ

1.000
1.000

˙ ˆ

0.889
0.916

˙

9501
ˆ

´1.000
´1.000

˙ ˆ

´0.692
´1.000

˙

9502
ˆ

´1.000
´1.000

˙ ˆ

´1.000
´0.961

˙

(b) Solution of (A.1) for four functions gk of the test set.

Fig. A.1: Learning the minimization operator S in (A.1) by a Generative Equilibrium Operator G. In (a), the learning
performance is displayed in terms of the mean squared error (MSE) 1

|K|

ř

kPK }Spgkq ´ Gpgkq}
2 on the training set

(label “Train”) and test set (label “Test”). In (b), the predicted solution Gpgkq (label “Predict”) is compared to the true
solution Spgkq (label “True”) for four k of the test set.

EXAMPLE A.4. For d “ 2, we consider the Hilbert spaceX “ Rd and the convex subsetC “ r´1, 1sd.
In this setting, we aim to learn the minimization operator

(A.1)
␣

g : Rd Ñ R is convex
(

Q g ÞÑ Spgq
def.
“ argmin

xPr´1,1sd
gpxq “ argmin

xPRd

pfpxq ` gpxqq P Rd,

by a Generative Equilibrium Operator G of rank R “ d “ 2, depth L “ 20, and sample points M “ 20.
Hereby, the function f : Rd Ñ p´8,8s is defined as above.

To this end, we choose the standard orthonormal basis of Rd. Moreover, we apply the Adam algorithm
over 10000 epochs with learning rate 2 ¨ 10´4 to train the Generative Equilibrium Operator on a training
set consisting of 9000 convex functions Rd Q x ÞÑ gkpxq

def.
“ 1

2x
JAkx ` bJ

k x ` ck P p´8,8q, k “

1, ..., 9000, where Ak P Sd`, bk P Rd, and ck P R are randomly initialized. In addition, we evaluate
its generalization performance every 250-th on a test set consisting of 1000 convex functions Rd Q x ÞÑ

gkpxq
def.
“ ln

`
řd

i“1 exppbk,ixiq ` ck
˘

P p´8,8q, k “ 9001, ..., 10000, where bk
def.
“ pbk,1, ..., bk,dqJ P Rd

(with either bk,i ě 0 for all i “ 1, ..., d, or bk,i ď 0 for all i “ 1, ..., d) and ck P R are also randomly
initialized. The results are reported in Figure A.1.


	Introduction
	Main Contributions
	Secondary Contributions
	Related Work
	Organization of Paper

	Preliminaries
	Notation
	The topology on Continuously Fréchet-Differentiable Operators
	Convex Analysis in Banach Spaces


	Our Generative Equilibrium Operator

	Main Guarantee
	Why Approximate the -Solution Operator Instead of the True Solution Operator?

	Numerical Experiments
	Learning the solution of a parametric family of non-linear PDEs
	Stochastic optimal control
	Quadratic hedging with liquidity constraint

	Conclusion
	Proof of The Main Theorem
	Step 0 - Idealized Forward-Backwards Splitting Scheme
	Step 1 - Approximately Implementing the Gradient Operator
	Step 2 - Approximate Implementation of Proximal Forward-Backwards Splitting
	Step 4 - Convergence Under Additional Regularity of f and g

	Appendix A. Supplementary Material
	Examples of Proximal Operators
	A Finite-Dimensional Application: Learning a minimization operator


