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MARKOV-NASH EQUILIBRIA IN MEAN-FIELD GAMES
UNDER MODEL UNCERTAINTY

JOHANNES LANGNER, ARIEL NEUFELD, AND KYUNGHYUN PARK

ABsTrACT. We propose and analyze a framework for mean-field Markov games under model
uncertainty. In this framework, a state-measure flow describing the collective behavior of a
population affects the given reward function as well as the unknown transition kernel of the
representative agent. The agent’s objective is to choose an optimal Markov policy in order to
maximize her worst-case expected reward, where worst-case refers to the most adverse scenario
among all transition kernels considered to be feasible to describe the unknown true law of the
environment. We prove the existence of a mean-field equilibrium under model uncertainty,
where the agent chooses the optimal policy that maximizes the worst-case expected reward,
and the state-measure flow aligns with the agent’s state distribution under the optimal policy
and the worst-case transition kernel. Moreover, we prove that for suitable multi-agent Markov
games under model uncertainty the optimal policy from the mean-field equilibrium forms an
approximate Markov-Nash equilibrium whenever the number of agents is large enough.
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1. INTRODUCTION

Mean-field games introduced by [34,40] analyze decision-making and interactions of strategic
agents within populations. Under the assumption that all agents of a population have the same
transition probabilities and reward function and that their interactions only depend on the em-
pirical distribution of all agents, one can simplify the model by approximating the finite agent
game by a suitable mean-field game. This framework has led to a wide range of applications,
including in finance and economics (e.g., [11,13,14,39,42]), crowd motion dynamics (e.g., [32,36]),
and epidemiology (e.g., [3,19]).

As a prominent discrete-time mean-field games model, consider a mean-field Markov game
denoted by (S, A, u°,p,r): Let (S, A) be state and action spaces and denote by P(S) and P(A)
the set of probability measures on S and A, respectively. Furthermore, let ° € P(S) be an initial
population distribution, p : S x AxP(S) — P(S) be a transition kernel, and r : Sx AxSxP(S) —
R be a one-step reward function. Assume that a representative agent aims to maximize her total
expected reward until the terminal time T' by choosing a Markov policy mo.r = (70, .., T1—1)
(i.e., a sequence of stochastic kernels m; : S — P(A), t = 0,...,7 — 1). Given a population
measure flow pg.7 = (po, - - -, pr—1) with ug = p° (i.e., a sequence of iy € P(S),t=0,...,T—1),
the central objective the agent faces is to solve the following Markov decision problem

T-1
(1.1) sup E¥ lz T(8t7at78t+17ﬂt)] ,
To:T t=0

where for given mo.7, P is the probability measure (that depends on .7, 7.7, and p) under which
the agent’s state and action configurations evolve as follows: for every t =0,...,T — 1

(1.2) so~po(), ar~m([se),  Se41 ~ p(:|se, ar, pr).-

In this setting, a mean-field equilibrium consists of a Markov policy and a measure flow
(g, 5.7 satisfying that 75, is a maximizer of (1.1) given ud., and ug.r is consistent with the

state distribution of the agent acting optimally via 7j.p, i.e., uy = p® and for t =0,...,7 -1
(1.3) s (dsitr) :/ pdsestlse, ar, py)my (dag|se) g (dse).
SxA

In most cases, a mean-field equilibrium attains an approximate Nash equilibrium for an analogous
game with a finite number of agents, known as the so-called Nash certainty equivalence principle
[6,10,12,34]. We refer to [20,21,24,26,43,51,52] for a few articles studying discrete-time mean-field
games similar to the setting (S, A, u°, p,r) described above.

Mean-field games commonly involve a significant assumption that the model environment rep-
resented by the transition kernel p in the above model (S, A, u°, p,r) is perfectly known to all
agents. However, when implemented in practice, the specifics of the model environment are a
priori unclear. While some estimation techniques can approximate a ground truth on, e.g., the
transition kernel closely, in many cases there exists a margin of misspecification. This might result
in an equilibrium that is not consistent with the behavior of large populations in real situations.

As a remedy to model uncertainty, a number of researchers in various fields have adopted the
so-called worst-case (or robust) approach introduced by [16,18,22,25|. Here, worst-case refers to
considering the most adverse scenario among all probabilities deemed as feasible to describe the
unknown law characterizing the environment. The aim of this article is to propose and analyze a
framework for mean-field Markov games under model uncertainty, which can be considered as a
robust analog of (S, A, 1%, p,r) described in (1.1)-(1.3).



To that end, let us describe our mean-field Markov game under model uncertainty, which we
denote by (S, A, u°, Bo.r,r): Fix T € N and let (S, A, u° r) be the same as the ones given in
(S, A, u°, p,r) described above. Furthermore, let Po.7 be a sequence of set-valued maps given for
every t =0,...,7T —1 by

(1.4) Pi: S x AxP(S) D (51, a1, i) = Pulse, ar, 1) S P(S).

Then given (uo.1, 7o.7), denote by Q(uo.1, mo.7) the set of all probability measures P under which
there exists a sequence of transition kernels pg.r = (po,...,pr—1) satisfying that for every ¢t =
0,...,7—1 and every (s, as, ut) € S x A x P(S)

(1.5) Pe(:|se, ae, pir) € Pi(se, ar, pr),

and the agent’s state and action configurations evolve as follows: for every t =0,..., T — 1

(1.6) so~ po(),  ae~m(lse),  sep1 ~ pe(lse, ar, pu).

In other words, instead of fixing a transition kernel p : S x A x P(S) — P(S), we consider a set
valued map PB; : S x A X P(S) — P(S) where given (s¢,ar, ) € S X A x P(S), each element
of the set P:(s¢,ar, pt) is considered as a candidate probability measure on S derived from the
true but unknown transition kernel. This setting is inspired by [48,49] which analyzed Markov
decision problems under model uncertainty (but without a mean-field measure flow).

Now, given pg.7 with pg = p°, the central objective an agent faces under model uncertainty is
to solve the following robust (or worst-case) optimization problem

T—1
1.7 V(po.r) = su inf EF r(S¢, Gty St+1, .
(1.7) (po:1) e R LZ; (8¢, at, Se+1 Ut)‘|

We note that the set-valued maps Po.r given in (1.4) induce distributional uncertainty represented
by the set Q(po.1, 70.7), and (1.7) and (1.1) coincide when Po.7 are singleton-valued.

In this setting, we say
(1.8) (.15 To.1> Do)
is a mean-field equilibrium of (S, A4, u° Po.r,7) (see Definition 2.3) if the Markov policy 7§, is
optimal to the robust optimization problem V'(y.1), the transition kernel p§.;- corresponds to the
worst-case kernel of V'(ug..-) under (uf.p, 76.p), and the state-measure flow ., aligns with the

agent’s state distribution under (7., pi.1), i-e., s = p° and for every t =0,...,T — 2,
(1.9) prig1(dsiyr) :/ i (dseqa|se, ar, pi)my (dagls) g (dsi).
SxA

The main contribution of this paper is twofold:

- In Theorem 3.10, we prove the existence of a mean-field equilibrium (p8.7, 7.7, p6.r) of the
mean-field Markov game (S, A4, u°, Po.r, r) described in (1.4)-(1.9).

- We show in Theorem 3.19 that the optimal Markov policy 7., from the mean-field equilibrium
of (S, A, u°,Bo.r,r) forms an approximate Markov-Nash equilibrium (see Definition 2.6) of
a multi-agent Markov game under model uncertainty in the sense that the policy nj., is
(almost) a maximizer for the worst-case objectives of all agents in the multi-agent Markov
game (see (2.6)) whenever the number of agents is large enough.

As an example, in Section 4, we apply our mean-field Markov game (S, A, u°, Bo.r,7) to crowd
motion dynamics under model uncertainty. In this context, the set valued maps given in (1.4) are
formulated by a Wasserstein-ball around a reference transition kernel (see Definition 4.1), which
aligns with our conditions imposed on the set-valued maps in order to obtain our main results.
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Moreover, we compute a mean-field equilibrium of the crowd motion dynamics by our iterative
scheme (see Algorithm 1).

Related literature. Classic mean-field games (i.e., without uncertainty) are described both in
continuous-time (see, e.g., [3,17,27,33,34,37-39,54]) and in discrete-time (see, e.g., [1,8,20,21,24,
26,43,46,50-52]); we refer to [6,12,28,41] for survey papers including both settings. We also refer
to [4,15,23,29,30,47] for mean-field control problems in a Markov decision process framework
(which corresponds to cooperative models).

In continuous-time settings, several articles have explored mean-field games under distributional
or parametric uncertainty (see., e.g., [5,31,44,45]). Notably, our notion of a mean-field equilibrium
under model uncertainty (described in (1.8)—(1.9); see also Definition 2.3 and Theorem 3.10) aligns
with those found in continuous-time frameworks (see, e.g., [5, Proposition 3|, [31, Theorem 3.2]),
where our robust optimization problem (1.7) corresponds in their papers to a forward backward
system consisting of a Hamilton—Jacobi-Bellman—Isaacs equation, whereas our measure flow (1.9)
corresponds in their papers to a Fokker-Planck equation under the associated worst-case measure
or parameter. Moreover, [45, Theorem 6] establishes an approximate Nash equilibrium under
model uncertainty, which is consistent with ours given in Theorem 3.19. To the best of our
knowledge, however, there are no known results on mean-field games under model uncertainty in
a discrete-time setting or within the framework of Markov decision processes.

While certain proof techniques in our paper bear similarities to [51,52] which consider mean-
field Markov games in a discrete-time setting but without model uncertainty, the consideration
of model uncertainty introduces significant distinctions. Specifically, due to the set-valued maps
PBo.r given in (1.4), we cannot directly apply certain existing arguments (including the dynamic
programming principle and the fixed point approach). Instead, we establish a robust (i.e., max-
min) version of the dynamic programming principle, which constitutes a variant of [49]. We then
propose and study a robust analog of the fixed point approach based on the work of [35]. Moreover,
we establish the dynamic programming principle for the multi-agent Markov game under model
uncertainty and characterize the worst-case measures appearing in both the mean-field and multi-
agent Markov games to establish the existence of an approximate Markov-Nash equilibrium.

2. MODEL DESCRIPTION

2.1. Notation and preliminaries. Throughout this article we work with Borel spaces. If X is
such a space, we denote by Bx its Borel o-field and P(X) the set of all probability measures on
X implicitly assumed to be equipped with the topology induced by the weak convergence, i.e., for
any P € P(X) and any (P"),en C P(X), we have

(21) P*"—Pasn—oo & ILm fw)P™(dw) = / f(w)P(dw) for any f € Cp(X;R),
where C(X;R) is the set of all continuous and bounded functions from X to R.

If X is compact, the weak topology given in (2.1) is equivalent to the topology induced by the
1-Wasserstein distance dyy, (-, -) which we recall to be the following: For any p,v € P(X), denote
by Cpl(u,r) C P(X x X) the subset of all probability measures on X x X with first marginal p
and second marginal v. Then the 1-Wasserstein distance between p and v is defined by

dw, ()= _int [ o yh(dedy),
YECPI(1,v) J x x X

where | - | is the Euclidean norm.
In particular, if we further assume that X is a finite subset in a Euclidean space and denote
by n(X) its cardinality, then P(X) can be identified with a simplex in R*X) i.e., u € P(X) can
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be treated as an n(X)-dimensional vector (wf', ..., wz(x)) € R™X) with nonnegative coordinates
(w}")i=1,....n(x) Which sum up to one.

For each t € N, we use the abbreviation X* := X x --- x X for the t-times Cartesian product
of the set X, where we endow X*® with the corresponding product topology. In analogy, we
use (P(X))! for the corresponding product of P(X). Given a sequence of probability measures
(P,...,P; 1) € (P(X))*tand 0 < s < t, we use the following abbreviation Py := (Ps,...,P;_1).
The same convention applies to a sequence of other quantities.

2.2. Mean-field Markov games under model uncertainty. We specify what we mean by
mean-field Markov games under model uncertainty. Let us consider a representative agent who,
at each time ¢, observes a state s; and takes an action a;, whereas a probability measures p;
describes the overall population distribution at time t.

Definition 2.1 (Mean-field Markov game). Fix a time horizon 7' € N. A mean-field Markov
game under model uncertainty, say (S, 4, u°, Bo.T, r), comprises the following:

(i) (S,Bs) and (A, B4) are Borel spaces for the state and action spaces, respectively.

(ii) p° € P(S) is a given initial distribution for the initial state, which we denote by sq.

(i) For every t = 0,..., T — 1, By : S x A x P(S) 2 (st,at, ut) — Pi(se, ae, pt) S P(S) is
a correspondence (i.e., a set-valued map) at time ¢, inducing distributional uncertainty in
the next-state configuration.

(iv) r: S x Ax S xP(S) — R is a one-step Borel-measurable reward function.

We proceed to describe the set of policies and the set of uncertain probability measures.

Definition 2.2. Let (S, A4, u°,Bo.T, r) be given in Definition 2.1.

(i) Define by II the set of all sequences of Markov policies 7.7 such that for t =0,...,7 — 1,
1S 3 s = m(-]sy) € P(A) is a so-called Markov kernel.

(ii) Given (uo.r, 1) € (P(S)T x II satisfying po = p°, we define by Q(uo.r, mo.7) € P(S x
(Sx A)T) the subset of all probability measures P := 1o ®P (10, 70,p0) D" - OP gy,
such that! for every t =0,...,7 — 1,

WTflng—l)

Pousmepe) S 2 80 0 Pl rypo) (dserr, dag|se) := pe(dsiqr]se, ar, pe)mi(dag]sy)

is a stochastic kernel® on S x A given S, and p; : S x A x P(S) — P(S) is a stochastic
kernel satisfying that for every (s, as, pi) € S x A X P(S),

pe(dser1]se, at, pe) € Pi(se, ar, pue).
Denote by V : (P(S))T > po.z = V(po.r) € R the robust optimization problem defined by

(2.2) V(po.r) == sup J(po.r, mo.1),
mo.7 €11

IFor every t =0,...,T—1, BO®P (10 70.p0) @ ®P (s 7y ,py) denotes an element in P(S X (S x A)tH1) satisfying
that for every B € Bg, (g a)t+1;

10 @ P (g mo,p0) @+ @ Py my o) (B)

= / / / 1i(s0,51,a0, s8¢ 41,a1)EB} Plus,me,pe) (dse41, dat]se) - Pug ro,po) (51, daolso)po(dso).
SJSxA SxA

2Throughout the paper, a stochastic kernel p on Xs given X7, for some Borel spaces X; and Xa, is defined as
a Borel-measurable mapping from X; to P(X2).
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where the worst-case objective J : (P(S))T x I > (uo.1, 7o.7) — J (to.7, To.7) € R is given by
T—1
(2.3) J(o.1, To.1) 1= ]PGQ(}}E’]f",ﬂ'O:T) EF l; (8¢, ag, Sta1, Ht)] .
We now introduce what we refer to as a mean field equilibrium under model uncertainty.

Definition 2.3 (Mean-field equilibrium). We call (8.7, 7.7, pg.7) a mean-field equilibrium of the
mean-field Markov game (S, A, u°, Po.r, ) (see Definition 2.1) if the following conditions hold:
(1) (w§.p.p5.7) are optimal for V(us.1), i.e., wi.p is the optimal Markov policy of V(ug.r) and
Py i the worst-case transition kernel of V' (yf.,) under (ug.p, 75.1), i-e.,

T—1
Viisir) = I mir) = sup EPUSror st [Z r(se, ar, stH,ur)]
To: T €

t=0
T-1
=E* [Z T(St7at78t+1al~tj)1 )
t=0
where for every mo.p € 11,
(2.4) P(NS:T? 7TO:T’pS:T) =g @ P(ug,ﬂ'o,pg) Q- P(M},lﬂrT—l;P;,l) € Q(ua:Ta T0.T),

and P* := P(ug.p, 76,70 06.7) € Qg 7o) (see Definition 2.2).
(ii) pg.p satisfies that pg(-) = p°(-) and for every t =0,...,7 — 2,

i) = [ piClsian ) (danfsoui (ds).
SxA

2.3. Multi-agent Markov games under model uncertainty. We aim to obtain approximate
Markov-Nash equilibria under model uncertainty by using mean-field equilibria under model un-
certainty. To that end, in this section, we introduce the framework for multi-agent Markov games
under model uncertainty and the notion of their Markov-Nash equilibria.

Let N € N be the number of agents and, as before, S and A be the state and action spaces,
respectively. For i = 1,..., N, denote by si € S and al € A the state and action configurations of
the agent ¢ at time t, respectively. Then we set

5V = (s},...,sN) e SN, al = (a},...,al) e AN

to be the state and action configurations of all N agents at time ¢, respectively, and denote by
1
N =Ny . v
(2.5) eV (5,)) == Eﬂ ds: € P(9)

the empirical distribution of 3", where &; € P(S) denotes the Dirac measure at s € S.

Definition 2.4 (Multi-agent Markov game). Set N € N. Foreach¢ =0,...,T—1, let P : Sx AX
P(S) > (s, az, e) = Pe(st, at, pir) € P(S) be the correspondence at time ¢ given in Definition 2.1.
Then an N agent Markov game under model uncertainty, say (S, A, u°, ‘Bé\fT, r | N,o.1), comprises
the following:

(i) (S,Bs) and (A, B4) are Borel spaces for the state and action spaces, respectively.
(ii) sd,...,s) are independent and identically distributed according to u° € P(S). Further-
more, denote by 7% (d3)) := Hi\[:l pe(dsi) € P(SN).
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(iii) For every t =0,...,T — 1, set PN : SV x AN > (st Jaly) — BN EN,aN) C P(SN) to be a
correspondence at time t so that for every (3IV,al) € SV x AN,
foreveryi=1,..., N,
(’Bt (st ) Oy ) = Crﬁl IP)Z d5t+1 i i i i — )
H Pi(dsiyq) € ey, ap, e (51))
where eV (+) is given in (2.5).
(iv) 7: S x Ax S xP(S) — R is a one-step Borel-measurable reward function.

Next, we introduce the set of Markov policies for the multi-agent model given in Definition 2.4
and the set of probability measures that induce model uncertainty in the underlying Markov game.

Definition 2.5. Given N € N, let (S, 4, u°, B&'r, 7 | N,Bo.r) be given in Definition 2.4.

(i) Denote by TIN the N-tuple of sequences of Markov policies Ty == [[ 1~ 7h.p defined for

every t =0,..., 7 —1 by

N
7y SN N 7Y (dal |5Y) = Hﬂz(daﬂsi) € P(AN),
i=1
where for every i = 1,..., N, 7} : S+ P(A) denotes the Markov policy of agent i at time .
(ii) Given Ty € IV, define by QN (u°, 7)) € P(SN x (SN x AN)T) the subset of all prob-
ablhty measures FN = ﬁO’N ®Fé\;év75{)v) Q- ®@é\;¥71,5¥71) such that for t = 0, . ,T — 17

N _ —N _ N _
P(ﬁ{\’,ﬁ{v) 1SN 5 Si\’ — P(ﬂ",ﬁ{\’)(dsﬁrivdaﬂsiv) =D (d3t+1|3ivaaiv)7rt (daﬂst )

is a stochastic kernel on SV x AN given SV, where pI¥ : SN x AN s P(SV) satisfies for
every (5V,al¥) € SN x AN that

N
(A5 [37 @) = H i(dsi 1[5 ,a ) e BY (3, a))
i=1

with corresponding stochastic kernels pi : SN x AN — P(S),i=1,...,N.

Having completed the description of the multi-agent Markov game under model uncertainty, we
can proceed to describe the worst-case objective function of the individual agent: Given N € N,
the worst-case objective function JN : P(S) x IV 3 (u°, 7lp) — JN (1, 7r) € R of agent i,
i €{l,...,N}, is given by

T—-1
=N S
(26) JN(/J/O7ﬁé\:,T) = inf EP E T(Si7ai7si£+l7eN(§iv))
' Peovpemy 15

Finally, we introduce the notion of a Markov-Nash equilibrium for the multi-agent Markov
game under model uncertainty.

Definition 2.6 (Markov-Nash equilibria). Given N € N, we say (ngilr, . ,WS}}V) is a Markov-

Nash equilibrium of the N agent Markov game (S, 4, 1, B, 7 | N,Bo.r) (see Definition 2.4) if

féV‘T = HZV | Ty € IV satisfies that? for every i =1,..., N
N|x __N|,
TN (e mor) = swp TN (e WT L mor)).
mo.7 €11

3 Denote by (ﬁé\f;"_i,ﬂoj) e N for every t =0,...,T — 1,

__Nl%.—i L N i L.
@107 my) o= mi(dadlsy) TNy j mp 7 (dad|s)).
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Moreover, for a given £ > 0, we say (WSZ}, . ﬂréj]Tv ) is an e-Markov-Nash equilibrium of the N
agent Markov game (S, A, 1u°, Bo'r, 7 | N, Bo.r) if ﬁé\y € IV satisfies for every i = 1,..., N that

N |* =N |*,—i
JzN (/j‘ov 71—O:%) +e2> sup JzN (MOV (/]TO:"T7 l’ W(]:T))'
mo. €11

3. MAIN RESULTS

3.1. Dynamic programming. We first present some tailored dynamic programming results that
will be useful for proving the existence of a mean-field equilibrium under model uncertainty.

Assumption 3.1. (S, A, u°,Bo.r,r) given in Definition 2.1 satisfies the following conditions:

(i) S and A are finite subsets of a (possibly different) Euclidean space.

(ii) For every t =0,...,T — 1, B; is non-empty, convex-valued, compact-valued, and contin-
wous.* Furthermore, there exists a constant Cy, > 0 such that for every s, € S, a; € A,
pie, fir € P(S) and for every P € By (sy, ay, jut), there exists P € Py (sy, ay, fi) satisfying
dWl (P’ P) < O‘ﬁtdW1 (Mu ﬂt)

(iii) r is bounded and Lipschitz continuous in P(S), in the sense that there exists some con-
stant C, > 0, L. > 0 such that for every s;,s;11 € S, a; € A, and g, iy € P(9),
|r(sts at; se1, pe)| < Cr and [r(se, ag, 1, pe) = r(se; ars seqs fie)| < Lodw, (pes fie)-

Let us formulate a sequence of auxiliary mappings ‘A/o:T backwards recursively as follows: for

t=T—1,...,0, define V; : § x (P(S))T~t s R by setting for every (s;, pe.7) € S x (P(S))T—*

(3.1) Vi(sespier) = sup / Ti (st a, oz )m(da),
TeP(A)J A

where J; : Sx Ax (P(S))T~t s Ris defined as follows: for every (sp_1, ar_1, ur—1) € SXxAxP(S)
(3.2)  Jr_i(s7—1,ar—1, pr—1) = inf /T(ST—l,aT—hST,MT—l)P(dST),
PePr_1(sT—1,a7-1,467-1) J g

whereas if t < T — 2, we set for every (s¢,as, pis.7) € S x A x (P(S))T—*
(3~3) jt(st, at,,ut:T) = inf / (T(5t7 Qt, 5t+1,ut) + ‘/}26+1(5t+17/14t+1:T)) P(d$t+1),
PP (st at,mt) ) g

with Po.r given in DeAﬁnition 2.1.
Finally, we define V : (P(S))T + R by setting for every ug.r € (P(5))T

-~

(3.4) V(yioer) = /S Do (50, oz aoldso).

Lemma 3.2. Suppose that Assumption 3.1 is satisfied. Let ‘A/():T and jo:T be given in (3.1) and
(3.2)—(3.3), respectively. Then the following statements hold for everyt =0,...,T — 1.

(i) (Minimizer of J,) There exists a measurable selector
Pe: S x Ax (P(S)" ™" 3 (st, a6, peer) = Di(-lse, ae, peer) € Be(se, ar, pir)
satisfying that if t =T — 1, then for every (sr—1,ar—1,ur—1) €S X A x P(S)

(3-5) jT—1(ST—17aT—17HT—1):/T(ST—l,aT—l,STyuT—l)ﬁT—l(dST|ST—1,aT—l,uT—l),
S

4a correspondence between topological spaces is continuous if it is both lower- and upper-hemicontinuous (see,
e.g., [2, Definition 17.2, p. 558]).



whereas if t < T — 2, then for every (sy, ar, pr) € S x A x (P(9))T~1

~

(3.6) Je (8¢, ap, por) = / (T(St, Aty St1, ft) + ‘Z+1(5t+1,ut+1:T)) De(dsit1|se, ag, par).
s

(i) (Maximizer of ‘//\}) There ezists a measurable selector
70 S x (PS)T™ 3 (sey ) = T (|5, pe) € P(A)
satisfying that for every (s¢, usr) € S x (P(S))T—1

~

(3.7) V(s per) = / Ti(st, g, peer )R (daglse, o).
A

Remark 3.3. Berge’s maximum theorem (see, e.g., [2, Theorem 17.31]), as presented in the proof
of Lemma 3.2, ensures the existence of measurable selectors po.r and 7.7, as well as the following
under the assunlption therein: for every ¢t < T — 2, the correspondence ‘ﬁt S x Ax (P(S)Tt>
(8¢, ag, 1) = Pi(st, at, pe7) S P(S) defined by

. (T(St, gy Sp415 ft) + ‘7}+1(8t+17 Mt+1:T))P(dSt+l)
PBe(st, ar, o) = § P € Pelse, ar, ue) /S

= j;(sh at, ,u't:T)
is non-empty, compact-valued, and upper-hemicontinuous (see [2, Theorem 17.31 (2.), (3.)]). Fur-
thermore, since B, is convex-valued (see Assumption 3.1 (ii)), so is ;. These observations will
be used in Section 3.2.

As a consequence of Lemma 3.2, we obtain the following dynamic programming principle result.
Proposition 3.4. Suppose that Assumption 3.1 is satisfied. Let ‘70:T and j;);T be given in (3.1)
and (3.2)(3.3), respectively. Given fig.r € (P(S))T, the following hold for every t =0,...,T — 1:

(i) There exists a stochastic kernel py : S x A x P(S) — P(S) so that if t =T — 1, then for
every (st—1,ar—1) € S X A
(3.8) ij1(ST717aT717/1T71) = / r(sT—1,ar—1,sT, fir—1)pr_1(dsT|sT—1,ar_1, fir—1),
s
whereas if t < T — 2, then for every (s¢,a;) € S x A

(3.9) Je(st, as, fir.T) = / (T(Su at, Se41, fle) + ‘Z+1(5t+17 ﬂt+1:T)) P; (dset1|se, at, fit)-
s

Furthermore, there exists a Markov policy wy : S +— P(A) so that for every s, € S

-~

(3.10) Vt(Snﬂt:T):/jt(Snat,ﬂt:T)Wf(daﬂSt)-
A

(it) Let pi.p and 7l be defined as in (i). Define P*(fio.r) € Q(fio.1, 78.1) by
P*(f0.7) = P(fro:r; 7675 Po.r) 7= 10 @ Plgmpg) © -+ O Plar_ymz s,

Then V (jig:r) given in (2.2) is equal to V (fi.r) given in (3.4), and (wg.1, Po.7) are optimal
fO’f’ V(/]O:T); i.e.,

T—1
V(jior) = J(fior myp) = sup EX(ormorie) lz F($1 s 5141, m]

o7 €L =0

(3.11)

t=0

T—1
_ ]EP*([LO;T) [Z r(st, Aty St41, [Lt)‘| )

with P(fo. 7, WO:T»pS;T) = fig ® P(ﬁomo,pﬁ) K- & P(,JT,l,TrT,l,p:}_l) € Q(fio:1, ™o:1)-
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The proofs of Lemma 3.2 and Proposition 3.4 are presented in Section 5.1.

Next, we revisit the multi-agent Markov game given in Definitions 2.4 and 2.5 to obtain the
corresponding dynamic programming principle result. This will be useful in Section 3.3 for deter-
mining the worst-case transition kernel for any given Markov policy.

Set N € N, and let 77 € TIV and i € {1,..., N}. Define a sequence of mappings Jé\fT’i(-, ST
backwards recursively as follows: Define for every (3%_;,a@y_;) € SV x AN
1) B ) =it e sk e )P

' PEPY_ GY_1.ay_,) JsN
and for t < T — 2, define for every (3V,al¥) € SN x AN
TN (=N =N.=N i i i N (=N
Jii(Se @y Toir) = mf )/SN <T(5§aaia5§+176 (5¢))

P S ,at
(3.13) R

TN (=N =N .=N \=N N |=N N
"‘/AN Jt+1,i(3t+17at-i—l;7TO:T)7Tt+1(dat+1|St+1)>P(d§t+1)a
with P’ given in Definition 2.4.

Lemma 3.5. Suppose that Assumption 3.1 is satisfied. Set N € N, and let 7y € IV and
i € {1,...,N}. Furthermore, let Jé\nyi(y-;ﬁ(])\fT) be given in (3.12) and (3.13). Then for every
t=0,...,T —1, there exists a measurable selector (i.e., minimizer for jtj\i(, STor))

(|5tv )Egpt (Eévvaiv)

satisfying that if t =T — 1, then for every (s¥_,,al¥_|) € SN x AN

~ N N N
p(t,z,wo ) 18T x A (St 7at ) — p(t,ZﬂTO )

N N N =N \ _ i i i N (=N ~ —N|=N =N
JTfl,i(STflaanlﬂTO:T) = /SN r(sgfflaaszlasg“ae (STfl))p(T—l,iﬁé\fT)(dST|ST717aT71)5
whereas if t < T — 2, then for every (3, al¥) € SV x AN

TGN A wy) = / (r(s;,a;,sg+l,eN<séV>)

~ ,N)

—N .=N \=N N |=N —N =N
/ t+1z St+17at+177TO:T)7Tt+1(dat+1|st+1)> (t7i,ﬁ(1}:’T)(dst+1|st ;) Ay

As a consequence of Lemma 3.5, we obtain the following result.

Proposition 3.6. Suppose that Assumption 3.1 is satisfied. For every i € {1,..., N}, initial
distribution p°, and 7oy € IV, let ﬁ(o:T,i,?{;{T) be given in Lemma 3.5. Then

N

=]

—N =~ —o,N o BV N N —N
(L, Tours Porimdy,)) = H° ®P(Fé\’,ﬁ<oyiﬁé\{7‘)) @ OPEN_ 5 an ) €L (W, o)

0.1

is the worst-case measure for JN (u°, 7o) (given in (2.6)), i.e.,
P (e E
N¢ o =N T B0 i =N
Ji (1w, Tor) = E EERCE Z r(st s 10 €™ (57))
t=0

= [ T e a8 e ),

with jONZ given in (3.13).

The proofs of Lemma 3.5 and Proposition 3.6 can be found in Section 5.2.
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3.2. Existence of mean-field equilibrium. Using the results of the dynamic programming
principle derived for the mean-field Markov game in Section 3.1, along with Kakutani’s fixed
point theorem (see, e.g., [2, Corollary 17.55, p. 583]), we will demonstrate the existence of a
mean-field equilibrium under model uncertainty in Theorem 3.10.
Definition 3.7. Set = := (P(S x A))”. For vo,r € Eand t = 0,...,T — 1, denote by 1 g the
marginal of v, € P(S x A) on S, i.e., v g(-) := v (- x A) € P(S). Furthermore, denote by
S 3 sl (¢]se) € P(A)

the disintegrating kernel of v; with respect to vy g, i.e., vi(ds;, da;) = 7y (dag|s)ve,s(dsy).
Definition 3.8. Let = be given in Definition 3.7. Let {1\30;71_1 be given in Remark 3.3. Further-
more, let Jo.r be given in (3.2) and (3.3). Define the following correspondences:

(i) C:Z 3 vy.r = C(vo.r) C E is defined by

Py, = p° and for every t =0,...,T — 2, there exists

Clvo.r) = {%:T €E

Pl S x Ax (P(S)T™" 2 (s, ap, per) > Py (|, ar, per) € P(S)

s.t. for every (St, at) c S x A, pf(-|st,at, Vt:T,S) S ‘L’t(st,at, Vt:T,S)

and Dy41,5(-) = /

SxA
and B : Z 3 vg.r — B(vg.r) C Z is defined by

pf('\Su as, V1,5 )V (dse, dat)},

B(vo.r) = {DO:T ckE

forevery t =0,..., T — 1, 0:(Ds(ver)) = 1},
where Dy (vi.r) := {(st,a¢) € S X A| maxgca Ti(se,dy, ver s) = Ji(s1, a4, Vi) }-
(ii) T': 23 vg.p — T'(vo.r) C E is defined by

F(VO;T) = C(VO;T) M B(Vo;T).
We say vo.r € E is a fized point of T if vo.p € T'(vo.1).
Proposition 3.9. Suppose that Assumption 3.1 is satisfied. Then the following hold:
(i) The correspondence T' given in Definition 3.8 (ii) is non-empty and convez-valued.

(i) The graph of T, i.e. Gr(T) := {(vo.7,&0.17) EE X Z | 0.7 € T(vo.1)}, is closed.
(i11) There exists a fized point v§.p € 2 of T, i.e., Vi € T(V.r).

Using a fixed point 5., € = of I' together with the measurable selectors given in Lemma 3.2,
we obtain the following main theorem.

Theorem 3.10. Let (S, A, u°,Po.r,r) be the mean-field Markov game under model uncertainty
given in Definition 2.1. Suppose that Assumption 3.1 is satisfied. Then there exists a mean-field
equilibrium (pul.p, 6.0, p6.1) of (S, A, n°,Po.1,r) (see Definition 2.3).

The proofs of Proposition 3.9 and Theorem 3.10 can be found in Section 6.

3.3. Existence of approximate Markov-Nash equilibrium. Fix a mean-field equilibrium
(o> 7o D6.) of the mean-field Markov game (S, A, 1°, PBo.7, ) (whose existence is ensured by
Theorem 3.10 under the assumption therein).

In the following, we demonstrate that under certain assumptions, the optimal policy 7., of the
mean-field equilibrium constitutes an approximate Markov-Nash equilibrium of the multi-agent
Markov game given in Definitions 2.4 and 2.5. To that end, we first introduce some key notions
related to worst-case measures describing the multi-agent Markov game for a given policy.
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Definition 3.11 (Worst-case measures). Let (71'6{1?) ~Nen C II be a sequence of arbitrary Markov
policies. For every N € Nand i € {1,..., N}, we introduce the following.
(i) Denote by

P = P(Mo:TaW((J;T)aPO:T) € Q(NO:TW(() T))

where P(ud. 1, Wéf\;),p(*;:T) is given in (2.4). Moreover, if ﬂéT) = 5.1, then we denote by
P* = P*(ufr) = PV € Q(ugr, mi.r)
the worst-case measure for V(MS:T) (see Proposition 3.4 (ii)).
(ii) For every ¢ € {0,...,T — 1}, denote by

N
m NN 55N w NN dal [5Y) o= wM (dals)) [ i (dadls)),
j=1,j#i
,N — _N|(N — — ~ — — —
o z\ SN x AN 5 (3N @ )»—>pt Z\( )(dgﬁl\siv,aiv) = p(m’?g;(zj))(dsﬁl\siv,aiv)

a Markov policy and a stochastic kernel, respectively, where ﬁ(t PN is defined as in

Lemma 3.5 with respect to Wévq‘gl ) Moreover, let P, NI € ON(u° ﬁévz‘gl )) be given by

RM( - P (u°, fév¥1;])7pév¥]j)) *"N@IP( NIV GNIN)) @ -+ ®IP’( NIV) pNICN))

Pr_1,
so that it is the worst-case measure for J (u°, wéV‘T( i )) given in (2.6) (see Proposition 3.6).

The notions introduced in the following, which elaborate on certain laws and stochastic kernels
for the one-step reward function 7 : S x A x § x P(S) — R under the worst-case measures
(described above), will be used in Propositions 3.16 and 3.17.

Definition 3.12 (Laws and kernels under worst-case measures). Let (wé{\p) ~Nen C II be a se-
quence of arbitrary Markov policies. For every N € Nand i € {1,..., N}, we define the following:
Let P*I(V) ¢ Q(ung,wéf\Q), P* e Q(us.r 7)), and RM(N) € QN( © févlT(]zv)) be given in Defini-
tion 3.11. Then for every t =0,...,T — 1,

(i) Denote by

M; M (dsy, da,) € P(S x A), M N (dsy, day) € P(S x A)

the law of (s, a;) under P*I(V) and the law of (si, a?) under P, l(N), respectively, at time ¢.

Moreover, if ﬂ'é{\;) = 7}.p, then for every t =0,...,7T — 1 set

M (dsy, day) == M ™) (ds,, day) € P(S x A)

to be the law of (s, a;) under P*.
(ii) Denote by

KQ@-I(N) S XA (s¢,a) — KﬁI(N)(dsHl,dut\st,at) e P(S x P(9))
the stochastic kernel on S x P(S) given S x A so that KN‘(N)(dstH,duﬂst,at) is the

conditional law of (s{,,,e™ (5})) given (si,al) = (s¢,a;) € S x A under P, M) at time ¢.
(iii) Let Q'™ QN € P(S x A x S x P(S)) be given by

Q'™ (ds, dag, dsys1, dpsg) == p; (dseg|se, as, ) Oz (dpur) M;' N (dsy, day),
QNl(N)(dstvdatudst+17dﬂt) : Ki\fi‘w) (dstt1, dpe|se, ar) M,ﬁl(m(dst,dat)a

5Denote by 6. € P(P(S)) the Dirac measure on P(S) at pu;f € P(S).
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so that
: @:‘(N) is the law of (s, ar, sp41, 1) under P*IV) at time ¢ with 1, = p1f.

o —N|(N
iViI(N) is the law of (s, al, st ,eV(5))) under P, ) at time t.

Moreover, if wé{\? = 7., we let QF € P(S x A xS xP(S)) be given by
Qf = QZ‘l(N)
so that it is the law of (s¢, at, st41, p¢) under P* at time ¢ with p; = pi.

In Remark 7.2 (see Section 7.1), we provide explicit characterizations for the laws and stochastic
kernels described in Definition 3.12.

Remark 3.13. Let (77((){\;)) ~Nen C II be a sequence of arbitrary Markov policies. For every N € N,

by the definition of B, and ﬁé\{lT(Jiv) (given in Definition 2.4 (iii) and Definition 3.11 (ii), respec-

tively), all of the laws Mé\%]i\[) and kernels Ké\flT(iv) (given in Definition 3.12 (i), (ii)) are identical

for each i € {1,..., N}. Consequently, all the laws Qé\j‘T(’J;]) are also identical. Therefore, for every
t=0,...,7 — 1 we simplify their notations as follows: for every i =1,..., N
MiVI(N) — I\\/[[i\fil(f\’)7 Ki\f\(N) — Ki\)/il(f\f)7 QiV\(N) — Qi\”i\(N).

We impose the following conditions on the stochastic kernels Ké\f’TN given in Remark 3.13.

Assumption 3.14. For any (Wé{\rp)NeN C II, the following holds: for every t =0,...,7 — 1 and

(st,a1) € S x Ay as N — o0,

KiVI(N)(dStH, dpglse, ar) = pi(dsii1]se, ag, pue) O (dpe),
where (ué.p, 7.7, Do) 18 the (fixed) mean-field equilibrium.

Remark 3.15. Under the Nash Certainty Equivalence Principle, the decentralized game without
model uncertainty can be reduced to a single-agent decision (see, e.g., [34]). The state evolution
of a representative agent should be consistent with the total population behavior. To extend this
idea to our framework under model uncertainty, we need to ensure the following.

From an agent’s perspective in (S,A,p",‘lﬁé\:’T,r | N,Bo.7), under ‘any’ state and action, her
behavior should converge to the representative agent’s behavior in (S, A, u°, Bo.r, ). Additionally,
the behavior of the rest of the population, modeled via the empirical distribution, should converge
to the population’s behavior in (S, A, u°,Bo.7,7) (i.e., the state-measure flow p.). For a sequence
of arbitrary policies (W((){\QI))N en C II, we observe that as N — oo, the influence of an individual
agent’s state and action on the overall population becomes increasingly negligible. Since every
other agent follows the mean field equilibrium policy 7§, (see Definition 3.11 (ii)), the overall
state distribution in (5, A, MO7‘B€{T’ r | N,Bo.7) should still converge to the state distribution in
the mean-field equilibrium, regardless of the state and action the one individual agent might be in.

If the agent also chooses the mean-field equilibrium policy, i.e., WSZ) = 5., We need to ensure
that the state evolution of a representative agent is consistent with the total population behavior
as N — oo. By the definition of the mean-field equilibrium given in Definition 2.3 (ii), we obtain
such consistency exactly there. Hence, Assumption 3.14 guarantees that as N grows larger, both
the individual and total population behaviors in (S, 4, u°, B, 7 | N,Bo.r) converge to a state
under which the Nash Certainty Equivalence Principle will hold.

Proposition 3.16 allows us to connect the expected one-step rewards of (S, A, u°, Po.r, r) and
(S, A, u®, BYr, 7 | N,Bo.r) by using the laws and kernels given in Definition 3.12 and Remark 3.13.
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Proposition 3.16. Suppose that Assumptions 3.1 and 3.1/ are satisfied. Let (ﬂ(g]p)NeN CII be

a sequence of arbitrary Markov policies. Moreover, for every N € N, let Q*l(N), éV‘TN) CP(S x
A x 8 x P(S)) be given in Definition 3.12 (iii) and Remark 3.13, respectively. Then for every
t=0,...,T —1, the following holds: for every g € Cp(S x A x S x P(5))

N|(N) *| (N)

(3.14) lim ‘EQ [9(st, ar, sp41, )] — E [g(staataStJrl,Mt)]‘ =0.
N—o0

As a consequence, we obtain the following.

Proposition 3.17. Suppose that Assumptions 3.1 and 3.1/ are satisfied. Let (ﬂéfp)NeN C1II be
a sequence of arbitrary Markov policies. For every N € N, let JN (u°, WéVITUI[)) be the worst-case
objective function of the agent 1 under (u°, ﬁ0¥1 ) (see Definition 3.11 (i) and let P*I(N) ¢
Q. T,7r0 T) be given in Definition 3.11 (i). Then it holds that

lim
N —o0

T-1
_ *I(N) .
IN (e, ﬂéV‘T(l)) —EF Z (8¢, ag, stﬂ,ut)] ‘ =0.
t=0

The proofs of Proposition 3.16 and 3.17 are presented in Section 7.1.
Remark 3.18. Since V(ug,,) = EF (o) 3, Bl (8¢, ag, Se41, 7 )] (see Proposition 3.4 (ii)),

. o =N|x*
ngnoo It (w To.r ) = V(ko.r)
follows directly from Proposition 3.17 (with ﬁé\f‘; defined in (3.15)).

Combining Propositions 3.16 and 3.17 with the optimality of 7. in the mean-field equilib-
rium (see Definition 2.3 (i)), we conclude in Theorem 3.19 that the Markov policy nj.; forms an
approximate Markov-Nash equilibrium. The corresponding proof can be found in Section 7.2.

Theorem 3.19. Suppose that Assumptions 3.1 and 3.14 are satisfied. Then for any givene > 0,
there exists N(e) € N such that for each N > N(e), (n§.p,- -+ 7)) i an e-Markov-Nash equi-
librium of (S, A, p°, Bdr,m | N,Bo.r) (see Definition 2.6), i.e., Ty € IV defined for every
t=0,...,T—1by

(3.15) 7 SN 5N e ) (da [5Y) = [T, 7 (dafs])
satisfies that for everyi=1,...,N, JN(u°, WO;) +e>supy e i (10 (ﬂ'(])\qﬂ’ o))

4. NUMERICAL EXAMPLE: CROWD MOTION UNDER MODEL UNCERTAINTY

Based on Proposition 3.4 and Theorem 3.10, we derive an iterative scheme that allows to com-
pute approximately a mean-field equilibrium (u. -, 75.7, pg.1) of (S, A, u°,Bo.r, ). We provide a
pseudo-code in Algorithm 1 to show how it can be implemented.®

The algorithm proceeds as follows: Starting with given pf - € (P(S))?, we apply the dynamic
programming results as described in (3.1)—(3.4) to derive the worst-case kernels pf.» and optimal
Markov policies 7§, for V(ui.r) (see Proposition 3.4). Next, we update pf. by constructing a
new sequence of state measures in the sense of Definition 2.3 (ii). This process is iterated until
we attain a fixed point (., 7.7, Do) in the sense of Proposition 3.9 and Theorem 3.10. Note
that as S and A are finite, in line with Assumption 3.1 (i), we will construct the corresponding
probability measures by interpreting them as elements of a simplex in an Euclidean space.

6All the numerical experiments have been performed with the following hardware configurations: a Macbook
Air with Apple M1 chip, 8 GBytes of memory, and Mac OS 13.0. All the codes are provided in the following link:
https://github.com/JoLa2606/robust_MFE/
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Algorithm 1 An iteretative scheme for mean-field equilibrium (MFE) under model uncertainty

1: Input: (S, A) with n(S),n(A) < oo (satisfying Assumption 3.1 (i)), u® € P(S) (i.e., initial distribution),
(Bo.r,7) (satisfying Assumption 3.1 (ii), (i), and p3 € (P(S))T (a priori arbitrarily chosen);
2: Function MFE(M(’;:T; S, A, ,LL",‘I?OZT,T):
3 Set pf = p°;
4 while p7. - still changes
5: fort=T—-1to0
6: for i = 1 to n(S)
7 for j =1 to n(A)
8 ift=T-1
9 Compute p¥_, (- | ss, a5, uh_1) € Br—_1(ss, a5, wi-_,) so that
Jr—1(si,aj, 1 _1) = D ses (805, 8, wp_ )pp_1(s | sisaj, pp_1);
10: else
11: Compute p; (- | 85, a5, ;) € Pi(ss, aj, uy) so that
To(siay.45p) = Tacs (r(si.ag,5,157) + Ve (1, 15005 (5 | 127, 47):
12: end

13: Compute 7} (- | s;) € P(A) so that Vi (si, i) = Daca Ji(s4, a, pi.p) s (alsq);

14: end

15: end

16: fort=T—-2to0

17: Update pf, so that puf,(si) =3 cs D qcaPi(sils,a,p)mf(als)u;(s) Vi=1,...,n(S);
18: end

19: end

20: Return (ug.p, 5.7, 05 7)

We consider the following model, which can be found in [41, Section 5.7] and is inspired by the
model studied in [20], and extend it by allowing for model uncertainty.

Definition 4.1. Let S :={0,1,...,4} and A := {—1,0, 1} be state and action spaces, respectively.
Furthermore, let T := 2 be the time horizon, and let A > 0 and ¢ > 0 be given. Agents can decide
to move along the one-dimensional (1D) grid world S in both directions or stay where they are;
we model these actions by left = —1, stay = 0, or right = 1.

(i) For every t = 0,1, define B} : S x A x P(S) > (54, as, ) — B (s¢, ag, p1e) € P(S) by

P (50, ar, pie) == {P e P(S) ’ dyw, (B, p° (|31, ar, ) < )\},

where dyw, (+,-) is the 1-Wasserstein distance on S and p°: S x A x P(S) 2 (s¢,a, pe) —
°(|s¢t, ar, pir) € P(S) is a reference stochastic kernel on S given S x A x P(S) so that under
°(:|8¢t, at, fit), St4+1 satisfies

St + ay + Et4+1 if S¢ +ay + Et+1 € S,
St+1 =
S¢ else,

where €, is independently identically distributed according to a uniform distribution with
values in A.
(ii) Define r: S x A x S x P(S) — R by setting for every (s,a,$,u) € S x A xS x P(S),

r(s,a, 8, p) := <1 - %|§ - 2\) - % —log (u(é) + c).

Lemma 4.2. Under the setup given in Definition 4.1, let A > 0 and ¢ > 0 be given. Then, the
set-valued maps By and the one-step reward function r satisfy Assumption 3.1 (i) and (iii).

The proof of the above lemma can be found in Appendix A.
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FIGURE 2. Sensitivity of (7.9, p{.2) Wwith respect to uncertainty level A.

Remark 4.3. The one-step reward r is designed to encourage the agent to move toward the center
while avoiding overly crowded areas. Additionally, it discourages unnecessary movement unless
it is beneficial. The parameter ¢ allows to model the degree of aversion of crowds. According
to the reference kernel p°, the agent can either remain in her current position or move to one
of the adjacent positions. Moreover, the random disturbance ;41 may influence the dynamics,
representing scenarios such as a concert where people prefer to be near the center but also wish to
avoid excessively crowded spots. Agents try to move around in front of the stage based on their
own actions but can also be randomly pushed around by the crowd.

Explicitly, we fix ¢ = 107 and consider different levels of uncertainty A € {O, i, %, %, 1}. Let
pe = wh ... wh”) =(0.2,0.1,0.05,0.25,0.4) be the initial state distribution.

Fig. 1(a) shows that the expected value V(ug.o) decreases as the uncertainty A increases, which
is expected since a higher uncertainty level entails a potentially worse scenario.

Examining the state-flow measure uj at t = 1, in Fig. 1(b) we observe that in the absence of
model uncertainty, the majority of the weight is concentrated at the center position s = 2, with
some weight distributed to the adjacent positions s = 1 and s = 3. The least weight is found at
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the extreme positions s = 0 and s = 4. This distribution can be interpreted that most individuals
move towards the center, while a few choose to remain at the sides to avoid overcrowding. Whereas
if the level of uncertainty increases, the distribution shifts, resulting in more weight being moved
away from the center and an increase in the mass at s = 3. With large uncertainty, the mass is
almost entirely shifted to the boundaries, s = 0 and s = 4. Similar effects are observed in the
state-flow measure pub at ¢t = 2, as shown in Fig. 1(c).

Fig. 2 shows the sensitivity of the optimal pair (7.9, p{.2) in the mean-field equilibrium with
respect to uncertainty level A.

Although it is hard to interpret the sensitivity of the worst-case stochastic kernels p., shown
in Fig. 2 (a)-(d), we can at least observe that our model uncertainty framework described in
Definition 4.1 (i) is working non-trivially.

Without model uncertainty, i.e. A = 0, the strategy 7 at time ¢ = 0 makes the agent move to
the center s = 2 as the center is not crowded yet, as shown in Fig. 2 (e), (f). Indeed, we have seen
in Fig. 1(b) that the weight of u} at s = 2 is dominant. On the other hand, to avoid the crowd at
time ¢t = 1, it becomes beneficial to stay at s = 3 rather than trying to move to the center s = 2
while those already at the center remain there, as shown in Fig. 2 (g), (h).

As the uncertainty level increases, we observe some interesting effects. In Fig. 2 (a)—(d), similar
developments are observed across all presented scenarios for the worst-case kernels p; and p;. With
increasing uncertainty, the probability of getting shifted to overly crowded areas, particularly to
s = 4, increases. In Fig. 2(e), the optimal strategy shifts from attempting to move towards the
center, s = 2, to staying at s = 0, i.e., avoiding movement to the right. Fig. 2(g) shows a similar
effect: although being in the center is highly beneficial, the optimal strategy #7(- | 2) becomes
to resist moving to the crowded areas (s = 3 and s = 4). In Fig. 2(h), to avoid staying in the
overly crowded area s = 3 or moving to s = 4, 7 (- | 3) changes in order to try to move towards
the center.

5. PROOF OF RESULTS IN SECTION 3.1

5.1. Proof of Lemma 3.2 and Proposition 3.4.

Lemma 5.1. Suppose that Assumption 3.1 is satisfied. Let VOT be given in (3.1). Fiz any
te€{0,1,...,T —2} and assume that there exist some constants Ot+1 > 1 and Lt+1 > 0 such that
for every si41 € S and every 1.7, fisyr.7 € (P(S))T 171, it holds that

[Vig1(St15 the41:7)| < Cigas

(5.1) . . . . T-1 .
Vit (St41, te41:1) — Vt+1(8t+17Mt+1:T)‘ <Li Z dw, (s fl)-
u=t+1

Then the following hold:

(i) Ji given in (3.3) is continuous on S x A x (P(S))T~t. Furthermore, there exists a mea-
surable selector by : S x A x (P(S)T=Y 3 (s4, ar, prer) + De(v8¢, at, ) € Pe(s ag, i)
satisfying (3.6).

(i) There exists a constant [A(t > 0 such that for every s; € S, a; € A, and every pg.r, fip.T €
(,P(S))Tit} |j;(st7 Qt, /J/t:T) - j\t(sta Qat, /let:T)‘ S I?t Zf;tl dW1 (Mu7 ﬁu)

(iii) V, is continuous on S X (P(S))T=t. Furthermore, there exists a measurable selector T :
S x P(S)T=t 3 (84, per) = Tt (|51, per) € P(A) satisfying (3.7).
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(iv) There exist some constants ét > 1 and Et > 0 such that for every s; € S and every
/uft:Tvﬂt:T S (,P(S))Tit’

‘ T-1

Vilsts per) = Vs, frer)| < T dws (s ).

u=t

Vi (81, peer)| < Ch,

Proof. We start by proving (i). To that end, set

S:= {(Styaty,ut:Tapt) (81, ae, prer) €S x A x (P(9) 4, py € ‘Bt(st,at,ut)}

and define an auxiliary map F : S 2 (8¢, at, pie.1, pt) — F (8¢, ae, pirr,0¢) € R by

(T(St, Ay St1, ) + Vt+1(8t+1,llt+1:T)> pi(dsiy1).

F (s, a4, e, pt) :=/

S
Then we consider a sequence (s}, ay, uir, Py )nen C S such that (s?',a) — (s}, a}), pl — uk (for
every u =t,...,T — 1), and p}" — p; as n — oo, with some (s}, a}, urr,p5) € S.

By the triangle inequality, for every n € N,

|F(S?7a?7u?:T’p?) - F(S:v a:?#t*:T?p:)|
< |F(8:7a:7,u::T7p?) - F(8:7a:7,u::T7p:)‘ + |F(8?7a?7uzT’p?) - F(Staa:7u;T’p?)‘ =1I" +IIn .

We will show that I" and II" vanish as n — oco.

From Assumption 3.1 (i), (iii), and (5.1), it follows that r(s},a},-, uf) + ‘7,5+1(~,u§+1:T) are
continuous and bounded in S, i.e., for every s;11 € S, |r(s},al, s¢41, pF) + ‘Z+1<5t+1aﬂf+1:T)‘ <
(Cr + ét—i—l)- Furthermore, since p}! — p} as n — 0o, we obtain that lim,, ., I" = 0.

It remains to show the limit of II". By Assumption 3.1 (i), S and A are finite. Hence, there
exists N € N such that for all n > N, (s}, a}") = (s},a}). By Assumption 3.1 (iii) and (5.1), for

every n > N,
" g/ (
X

+ ‘Vt+1(5t+17u?+1:T) = Vit (se41, M§+1:T)Dpn(d3t+1)

r(stsaf e i) = (s, af s, )|

T-1

< Lodw, (7, 17) + Loy Y dw, (1, 183)-
u=t+1
The limit p? — p (for every u = t¢,...,T — 1) ensures that II" vanishes as n — oo. Therefore,

the map F': § — R is continuous.

Since P, is non-empty, compact-valued, and continuous (see Assumption 3.1 (ii)) and the map F
is continuous, an application of Berge’s maximum theorem (see, e.g., [2, Theorem 17.31]) ensures
the continuity of J, and the existence of the measurable selector p; : S x A x (P(S)T~t 3
(8¢, at, o) > Pr(|Se, ap, o) € Pe(se, ar, pe) satisfying (3.6).

Now let us prove (ii). To that end, denote by P .= De(-|s¢, ag, firr) € Pei(se, ar, fiz) where py
denotes the measurable selector given in Lemma 5.1 (i). Furthermore, by Assumption 3.1 (ii), we
can choose P € Py (s¢, ag, py) such that the following hold:

(52) dW1 (P7 ]TD) S Lmtdwl (/”'h/]t)’
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and

j;(staata/it:T) - jt(Sm atvﬂt:T) < / (T(Snan St41, Ht) + ‘Z+1(8t+1, Mt+1:T)) ]P(dst+1)
S

- / (T(Su gy ety fie) + Vit (Besr,s ﬂt+1;T)) P(d3111)
s
=: B(P,P).
Furthermore, since for every” 4 € Cpl(P,P), by Assumption 3.1 (i), (iii), and (5.1), we have

B(P,P) = / (T(St, Aty Stt1, fe) — T(St, Gty Se1, o) + 7 (e, Qs Seq1, fe) — 7(St, t, Se1,5 fit)
SxS

+ Vig1(Se41, e 1:7) — Vig1 (841, fe1:7)

+‘7}+1(§t+17 [ht41:T) — ‘7t+1(§t+17/1t+1:T)) Y(dsty1,d5i41)

< / (L/T|St+1 — Se1| + Ledw, (pe, i)
SxS

T-1

+ Lipilsipr =Sl + Loy Y dwy (Muvﬂu)>7(d8t+17d§t+1)7
u=t+1

where L EQ 41 > 0 can be chosen appropriately thanks to Assumption 3.1 (i).
It thus holds that

T-1
Ky < > dw, (s i)+ int / [st11 = Seqa|y(dsis, d§t+1)>
SxS

B(P,P) < )
u—t ~€Cpl(P,P)
=K; < Z dW1 (Nluv ﬂu) + dW1 (]P7 P)) .
u=t

where K; := (Ly + L. 4 Ly41 + EQH) > 0.
Combined with (5.2), this ensure that
R R R T-1
Ji(st, ap, per) — Je(se, ars fer) < Ki(1+ Lg,) Z dw, (B, fiu)-

u=t
Using the same arguments as those used in the above upper bound, we can obtain the lower
> = ~ = T—1 . .
bound Jt(Ast,at,ut;T) — Ji(s¢, a4, firr) > —K(1 + Log,) > . —; dw, (fu, flu), by using the same
constant K; > 0. This completes the proof.

The proof of part (iii) follows from similar arguments as those used in the proof of (i). We

define a map G : S x (P(S))T~t x P(A) > (s¢, p.1, 7¢) — G (8¢, pie-7, m) € R by
G(st, phe-1, ) 1:/ Te (s ap, pr)m(day).
A

Then we consider a sequence (s, iy, T8 )nen € S x (P(9))T~t x P(A) such that s — s}
wn — pr (for every s = t,...,T — 1), and m — 7}, as n — oo with some (s}, ufp,7}) €
S x P(S) Tt x P(A).

By the triangle inequality, for every n € N,

|G(S?7M?:T77r?) - G(SLM;T?W;)l

TWe refer to Section 2.1 for the definition of Cpl(P, B).
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< |G(S:7M;T7ﬂ—?) - G(S;M;Tﬂ‘—;)‘ + |G(8?7M2L:T77T1’5n) - G(S;M;Tﬂﬂ—?”
= III" +1IV".

We will show that ITI" and IV™ vanish as n — oo.

Since jt(sf, -, .r—y) 1s continuous on A (see Lemma 5.1 (i)) and the action space A is finite
(see Assumption 3.1 (i)), the limit 7]* — 7 ensures that ITI" vanishes as n — oc.

Furthermore, as S is also finite (see Assumption 3.1 (i)), there exists N € N such that for every
n > N we have s} = s}. By Lemma 5.1 (ii), we then have for every n > N,

v < |
A

Combined with the limit p?* — p¥ (for every u = ¢,...,T — 1), this ensures that IV" vanish as
n — oo. Therefore, the map G is continuous.

Since P(A) is compact (noting that A is finite) and G is continuous, an application of Berge’s
maximum theorem ensures the continuity of ‘//\} and the existence of the measurable selector
70 S x (P(S) T 3 (s, puer) v 7 (+|se, er) € P(A) satisfying (3.7).

T-1
Tty an, pliop) — Ju(s7, ae, pip) | 77 (dag) < Ky Y dy, (p 123)-
u=t

Lastly we prove the part (iv). By Assumption 3.1 (i), (iii), and (5.1),

\Vi(se, )| < sup / inf /(lr(Staata3t+17Mt)|+“Zﬂ—l(stﬁ-lvMt-i—l:T)DP(dy)ﬂ'(da)
reP(A) J APER(se,ae,1) J X

<Cp+ Cria.

By letting Cy := C; + Cyy1, we have [Vi(s¢, peer)| < Ct.

To have the other estimates, denote by m := 7y (-|s¢, pe.7) € P(A) where 7y is the measurable
selector given in Lemma 5.1 (iii). Then since 7 is not necessarily a maximizer for V;(s;, fiz.7) but
for Vi(s¢, pe.7), it holds

(5.3) Vit uar) = Vilswsfer) < [ (Tlotsans o) = Ti(sisas ) ) ().
A

Further, by Lemma 5.1 (ii), fAjt(st,at,,ut:T) — jt(st,at,ﬂt:T)W(dat) < K, Zf;tl dw, (fa, fig) s

which leads to the upper bound estimates with letting Et = IAQ.
Using the same arguments as those used in the above estimates, we can have ‘Z(Suﬂt:T) -
‘Z(st,ﬂt;T) > —Zt EST:_tl dw, (fu, i), With the same constant ft > 0. This completes the proof.
O

Proof of Lemma 3.2. We will prove the parts (i) and (i) together. First we claim that when
t = T — 1, there exists a measurable selector pr—1 : S X A x P(S) > (sr_1,ar—_1,pur-1) —
pr—1(:|sr—1,ar—1, ur-1) € Pr_1(sT-1,a7-1, u7—1) satisfying (3.5). Indeed, since Jr_1 has a
simple integrand r(-,-,-,-) (see (3.2)), the same arguments as for the proof of Lemma 5.1 (i)
(applying Berge’s maximum theorem), but with respect to the map F : & — R given by

F(sp_1,ar—1, ppr—1,p7-1) := / r(sT—1,ar—1, 57, pir—1)pr—1(dsT),
s

with § = {(sp—1,ar—1,u7-1) € S X A x P(S), pr—1 € PVr_1(s7—1,ar—1,pr—1)}, ensure the

existence of the selector pr_1.

Analogously, when ¢t = T'—1, there exists a measurable selector 7r_1 : SXP(S) > (sr_1, ur—1) —

~

mr_1(-|sT—1, ur—1) € P(A) satisfying (3.7). Indeed, we first claim that there is K7_; > 0 such
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that for every sy—1 € S, ar—1 € A, pur—1, fir—1 € P(S), it holds that

(5.4) |jT—1(ST—1,aT—1,uT—1) - jT—1(ST—1,aT—1,ﬁT_1)| < I?T—ldW1 (pr—1, fir—1).

By the existence of pr_; satisfying (3.5), the arguments devoted for the proof of Lemma 5.1 (ii)
using pr_; and Assumptions 3.1 (i), (iii) ensure that we have Kp_, > 0 satisfying (5.4).

By (5.4), we can use the same arguments presented for the proof of Lemma 5.1 (iii) using
Berge’s maximum theorem to have the existence of the measurable selector Tp_; satisfying (3.7).

So far we have proven (i) and (ii) for the case ¢ = T'— 1. The other cases (i.e., t <T —2) can
be proven by applying Lemma 5.1 under the condition of the existence of constants Cp_; > 1,
Lr_1 > 0 such that for every sy_y € S and pr_1, ir—1 € P(5), it holds

‘VT71(3T717MT71)| < 6T717
‘7T—1(ST—17 pr—1) — ‘7T—1(5T—1; fr-1)| < ET—1dW1 (Hr—1, fir—1).

By the existence of pr_; and 7pr_; and the estimates given in (5.4), we can use the same
arguments presented for the proof of Lemma 5.1 (iv) to obtain those constants satisfying the
above estimates. O

Proof of Proposition 3.4. By the existence of po.r and To.7 given in Lemma 3.2, it is straightfor-
ward to prove the part (i). Indeed for every t = 0,...,T — 1, we can define sequences of stochastic
kernels by for every (s, as, pi) € S x A X P(S),

De(|8¢, ae, ooy frev1:1) if t<T—2;
pe(c|se, ar, pu) if t=T-1,

i (|s¢, ag, pe) = {

and for every s; € S,
7y (]s¢) »= e (+[se, fur ).

By the optimality of pp.r and 7o.7 (see (3.5)-(3.7)), pg.r and 5. constructed above satisfy (3.8)-
(3.10).

Now let us prove (ii). Let P := jig @P g, x5 po) @ OP(ir_y 7z prr) € Qfi0:r, W) and denote
by for every t=1,...,T — 1, Py := Lo ® P(ﬁo,ﬁg,po) X ® P(ﬁtﬂr:,pt) and Py = fio-

Note that by the definitions of Vo, and Jo. given in (3.1)-(3.3) and the optimality of nj.-
given in (3.10),

E@{T(STA, ar_1, ST, ﬁTfl)}
(5'5) - ]EE):T71 |:/ T(ST_haT_l’ST”aT_l)P(ﬂT1,7T*T—1,PT1)(d5T7daT—1|5T—1)]
SxA
> EFor-1 {/ jT1(3T1aaT17/-LT1)7T;‘1(daT1|5T1)] = Eﬁ[‘?Tfl(STflyﬁTfl)}a
A
and that for every t <T — 2,

EF {T(St; at, Sev1s fie) + Vipr(sera, ﬂt+1;T)]

(5.6) = EFor |:~/S><A (T(Su at, St1, i) + ‘Z+1(5t+17,&t+1:T)) P(gt,ﬂ;,pt)(dstﬂ,dat|st)}

> Eﬁo;t [/ j::(sm aty,at:T)ﬂ':(datlst)} = Eﬁ |:‘7t(5t7/1t:T>:|~
A
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&
[E

> > [VO(SOaMO T)} = V(fio-r)-

By (5.5) and (5.6), we hence have

T—1
E 7‘3t7at75t+1’,ut =

t=

T-2

EP

(8¢, aty Se1, fir) +r(sr—1,ar_1, ST, flrr— 1)]

> EP

MM OM

t

o

1 (81, gy Se11, i) + Vo1 (s71, fir— 1)1

=l

Since P is arbitrary in Q(fio.7, 7o), we have

_[T-1
. P ~
__inf E ZT(Staatast-i—lv/f"t)
]P)GQ(,U‘O:TJTE;:T) t=0

-1
>V (ji.r) = EF (Fom) [Z r(st, at, 5t+17ﬂt)] ;
=0

with P* (/jLO:T) = P(ﬂ():T?WS:T’pS:T) = /]0 ® P(ﬁo,ﬂémé) Q- ® P(ﬁTflfﬂ';"flﬁp;"—l) € Q(ﬂO:T’wS:T>'
Furthermore, since 7. € II, we hence have V(fio.r) > V(fio.7)-

Let mo.r € Il and P := fio ® Py o p) @ @ Pag_y gy i) € Qfio.7, mo.7) and denote by
foreveryt=1,...,7 —1, Py.p := 1o ® Piiomopg) @ @ P, mpr) and P, = /i

From the definitions of \A/O:T and jO:T given in (3.1)-(3.3) and the optimality of pi., given
n (3.8) and (3.9), it follows that

EE [T(ST—h ar—1, ST, ﬁT—1)}
(5.7) = Efor-1 {/ T(s7—1,a7-1, 87, AT -1)P(jir_y 7y ) (ST, daT1|sT1)}
SxA

= REBor— {/ jT—1(ST—1,CLT—1,ﬂT—1)7TT—1(dGT—1|$T—1)] < EE[‘A/T—1(ST—1,/1T—1)}7
A
and that for every t < T — 2,

EE [T(Sm A, Se41, fir) + ‘Z+1(5t+17 ﬂt+1:T)]
(5.8) = EFfo {/s ) (T(St,at, St41, fit) + ‘7t+1(8t+1,ﬁt+1:T)) Py mepr) (dSt41, dat|5t)]
X

— EEBo: {/ i(st,at,ﬂt:T)Wt(daﬂSt)] < EE[‘Z(£t7ﬁt:T)]~
A
By (5.7) and (5.8), we hence have

EE

T—1 T—2
- P - -
ZT 8t7at75t+1aut)] =E= [ T(Staatast-‘rh/’[’t) +T(8T—17aT—17ST7MT—1)]
t=0

<EE l

<. < EE [‘70(80, ﬂo‘T)} ‘7(”0 T)

which ensures that

(5.9) inf EF

< V(jio.7).
PEQ(jio.r w0 1) < V(fio.T)

T—1
g T(Stvat75t+laﬂt)
t=0

<EE l (8¢, Aty St1, fit)

Since mo. is arbitrary in II, we have V (fig.1) < ‘A/(ﬁo:T).
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It remains to show the equality of V(fig.7) to the supremum in (3.11). Since the last inequality
given in (5.9) holds for any m.r € II (with recalling P = P(fio.7, 707, po.7) = fo @ P(ig.mopi) @
“@P(r_ s mrapn_ ) € Q(jio.T, mo.1)), it follows that

E Staata5t+17ﬂt)

t=0

M

T_1
sup EF (0T mo:7.P5.7) [ r Stvat75f+1aﬂt)] < EF (For) = V(fio.1)

mell =0

where the last equality follows from above (i.e., V(fig.7) = ‘7(/10;;,1)).
On the other hand, since 75 € II and P*(fo.r) = P(fo.r, 7515 Po.7) = fio @ Piig nz pr) @
@ Pluir_ymz_ o) € Q0T To.1), the above inequality establishes equality. This completes
the proof. O

5.2. Proof of Lemma 3.5 and Proposition 3.6.
Proof of Lemma 3.5. Fix 7)lp € IV let t <T — 1 and set
si={@Y.a, o) |GYal) e s¥ x AV Y e g Y )}

Define an auxiliary map F : S 3 (zV,aN,pY) — F(EN,al,pY) € R by

F(siv,at 7pt / f( St ) Oy ’5t+1)pt (d3t+1)

where if t =T — 1, then we set

f(sivva'ivvsﬁ-l) _r(5t7at78t+17 N(gi\f)),

whereas if t < T — 2, then we set
N —N =N N /=N TN (=N =N .=N \=N N |=N
[ @ a3t+1) = T(Stvat75t+1> (5 )) +/AN Jt+1,i(3t+17at+1§7To;T>7Tt+1(dat+1|5t+1)-

Since both S and AN are finite, F is continuous in (3, a@}). Agaln by the finiteness of SV and
AN we get that f is continuous. Hence, F' is continuous in p¥. From here, we can follow the
same ideas as presented in the proofs of Lemma 3.2 and Lemma 5.1 to prove the result. g

Proof of Proposition 3.6. We can use the same approach as presented in the proof of Proposi-
tion 3.4 (ii) to show that

Z St,ai,si+1,6N(Siv))‘|

t=0

_ T—1
Pﬁv(u 7770 T7p(0T17r N
=E E r Stvat75t+1a (St )) )
t=0

N =N ;
Jit (0, Tor) = _y _inf
eQN(uOﬁéYT)

where the second equality follows by definition of jONl O

6. PROOF OF RESULTS IN SECTION 3.2

6.1. Preliminary lemmas. Let us provide some simple observations that play an instrumental
role in the proof of Proposition 3.9 and Theorem 3.10.

Let us begin with a measurable extension of mappings into stochastic kernels defined on prob-
ability spaces. The proof can be found in Appendix A.
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Lemma 6.1. Suppose that Assumption 3.1 is satisfied. Let t € {0,...,T — 1} and fpr €
(P(S))T=t. Purthermore, let py: S x A D (s4,az) — pi(+|se, ar) € P(S) be a mapping. Then there
ezists a Borel-measurable mapping (i.e., stochastic kernel) p, : Sx Ax (P(S)T=t > (s¢, as, 1) =
Dy (8¢, ar, pr) € P(S) such that for every (s;,a;) € S x A

ﬁt('|st7 atalat:T) = pt('|5t, at).

The following two lemmas link the correspondences C, B (given in Definition 3.8 (i)) into the
dynamic programming results given in Lemma 3.2 (and Proposition 3.4).

Lemma 6.2. Suppose that Assumption 3.1 is satisfied. Let vg.r € C(vo.1) and denote by png_l the
corresponding kernels enabling Do.r € C(vo.r) (see Definition 3.8 (i)). For everyt=0,...,T —1
define Dy : S x AX P(S) > (s¢,ar, i) = Dy (+|s¢, ag, pe) € P(S) by

K

Py (st ar, s viror,s) ift<T -2

Z/)\t('|5taata,u‘t) th:Tila

where Dy is the stochastic kernel given in Lemma 3.2 (i). Then for every (s;,a;) € S X A,
Py (-se, ar,ve.5) is optimal for Jy(si,ar,ver.s), i-e., ift =T —1,

Tgtﬂ('|st7atnut) = {

/ T(STflaanlaSTaVTfl,S)ﬁg"—l(dSTbel,anl,VTfl,S) = ij1(ST71,aT71,VT71,s),
S

whereas if t <T — 2,
/ (T(Styah St41,V4,8) + Vig1(Se41, Vt+1:T,S)) Py (dses1|5t, e, ve,8) = Ji(st, ap, ver,s).
s

Proof. Tt is straightforward to show the case where t = T — 1 by the optimality of pr_1(= p%_,)
presented in Lemma 3.2 (i). For the case where t < T — 2, since for every (s, a:) € S x A

27?(’|St, ag, V,5) = P?('|St, ag, Vpr,s) € {i}t(Sta at, VT, S)

(see Definition 3.8 (i) and Remark 3.3), pY (:|s, ar, v4.s) is optimal for j;(st, ag, vpr,s). This com-
pletes the proof. O

Lemma 6.3. Suppose that Assumption 3.1 is satisfied. Let vo.7, Dg.7 € = and denote by 7Tg:T the
disintegrating kernels of Do.r (see Definition 3.7). Furthermore, denote for every t =0,...,T —1
by wq(s) the weight of the measure Uy s(-) at each point s € S (i.e., Y g Wi(s) = 1 with w(s) > 0
for s € S). Then the following hold:
(i) vo.r € B(vo.r) (see Definition 3.8 (i)) if and only if for everyt =0,..., T —1 and sy € S
such that wy(s;) > 0, 77(:|s;) € P(A) is optimal for Vilse, vir,s) (see (3.1)).
(ii) Let vo.r € B(vo.r). For everyt=0,...,T — 1, define 7 : S > s, = 75 (-|s1) € P(A) by

5 7 (-|se) if Wi(s¢) > 0;
(6.1) T (lse) =4 .
7Tt("3t, Vt:T,S) €l56,
where Ty is the measurable selector given in Lemma 3.2. Then it holds
(62) Dt(dSt, dat) = ﬁf(daﬂst)ﬁt)s(dst).

Furthermore, T (-|s;) is optimal for \A/t(st, vir,s) for every sy € S.

Proof. We start by proving the statement (i). Suppose vg.r € B(vo.r). Fix any t =0,...,T — 1.
Then since 7 (Dy(ve.7)) = 1,

1:/S/A1{(st,at)eDt(w:ﬂ}”?(dat|St)’7t,s(d5t)
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= Z ﬁ)t(st)wf({at S A|(st,at) S Dt(Vt:T)}’St)~

st€S
This implies that for every s; € S such that w;(s;) > 0, 7} ({a; € A|(s,ar) € Dy(ver)}|se) = 1.
We hence have that for every s; € S such that w:(s;) > 0, it holds

/ j\t(shat7Vt:T,S)7rf(dat‘5t) :/ t/];(staataVt:T,S)]-{at6A|(st,at)€Dg(ut;T)}7Tf(dat|5t)
A A

(6.3) =/, max Te(5t, 04, v67.5) 1, Al(s0,a0)€ Dy (v} 1 (dae] 5¢)
ay

T /
= max Ji(St, a4, Ve, 5)-
a,€A
Furthermore, since

max Ji (s, ay, Ve s) > sup /Jt(staatth:T,S)ﬂ'(dat):V;S(stht:T,S)7
a,€A TEP(A)J A

it follows from 7 (day|s;) € P(A) and (6.3) that 77 (-|s,) is optimal for Vi(s, Y0.1,8)-
Now suppose that for every t = 0,...,T—1 and s; € S such that @w;(s;) > 0, 77(:|s;) is optimal
for Vi(st,vp.r.5). Assume that there exists some ¢ < T — 1 such that (D (ve.r)) < 1.
Set §" := {s; € S|n7({ar € A|(st,ar) € Dy(ver)}|s) < 1 and @y(sy) > 0}, which is non-empty
(due to 7¢(D¢(ve.7)) < 1). Define for every s; € S’ by
A/(St) = {at c A‘(St,at) g Dt(yt:T)}~

Let s; € S’ and denote by w; s, (a¢) the weight of 77 (+|s;) at a; € A. We now define m; € P(A)
by for every Borel set ' € B4,

Wt, s ((It)
(64> 7T/(E) = = 1 a;€FE\A’'(s¢)}-
' G;J*Za;em(st)wt,st(ai) {aeB\ A )}

Then since 77 ({a; € A|J,(s¢, ar, Ver,s) < MaXq e j;(st,ag, vir,s)tse) > 0 (due to s, € §'),

/Aft(st,at,Vt;T,s)Wf(datlst) < Ag}g}gft(st,ai,l/t;T,s)ﬂf(datlst)
(6.5) "
= aggﬁ Jt(Sm CL;; Vt:T,S)~

Furthermore, since 7 (A’(s:)) = w,ﬁ({at c A|jt(st,at, Ver,s) < MaXe e jt(st, ay, l/t;T75)}) =0,

max Jy(s, af, ver,s) = | max Jy(se, af, ver,s)m(day)
a,€A AaEA

:/ j\t(st,at,yt:T,S)'n—é(dat) < ‘/}t(stth:T,S)-
A

Combining this with (6.5) implies that [, ft(st,at,utmg)w?(daﬂst) < ‘A/t(sul/t::r,s), which is a
contradiction to the optimality of ¥ (:|s;) for V;(s¢, vo.r.s).
Thus, 7¢(Ds(ve.r)) =1 for every t =0,...,T — 1, i.e., Do.r € B(vo.r).

Now let us prove (ii). By the construction given in (6.1), it is straightforward to see that (6.2)
holds. Hence it remains to show the optimality of 7 (-|s;) for IA/t(st, vi.r,g) for every s, € S.

Let s; € S be such that w;(s;) > 0. Then Lemma 6.3 (i) ensures that 7 (-|s;) = 77 (-|s¢)
is optimal for ‘Z(St,ut;T7s). For the other case where s; € S with 1w;(s;) = 0, since 7/ (-|s;) =
7(:|s¢, vir.s), the optimality of 7; given in Lemma 3.2 (ii) ensures that 7/ (-|s;) is optimal for
XA/t(st, pe.7.s). This completes the proof. O
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6.2. Proof of Proposition 3.9.

Proof of Proposition 3.9 (i). We first note that by the existence of pg.r given in Lemma 3.2 (i), C
(given in Definition 3.8 (i)) is non-empty.

We claim that I" is non-empty. To that end, let vp.r € = and choose an arbitrary vg.r € C(vo.7).
Now for every t =0,...,T — 1, set

Dg(dSt, day) = i (dag|se, vir,s)0t,s(dst),
where 7; is the measurable selector given in Lemma 3.2 (ii).
Then since ﬁé,s(') = 1y 5(+) and Do € C(vp.1), it is clear that 7)., € C(vo.7). Hence it remains
to show that 7., € B(vo.r). Indeed, since the disintegrating kernel 77 (s¢) equals 7 (-] s¢, ver x)

for every s; € S, w7 (-|s;) is optimal for Vils, v.r,s) for every s, € S. From this, Lemma 6.3 (i)
ensures the claim to hold.

Next we claim that I" is convex-valued. Let vo.r € E, V.0, V{p € T'(vo.r), and X € (0,1). For
every t =0,...,T — 1, define 7, € P(S x A) by

U (dsy, dag) := vy (dsg, day) + (1 — ANy (dse, day).

We claim that g € T'(vp.7). Since it is straightforward to see that Do.r € B(vo.r), we will
show that 7.7 € C(vo.1).
It is clear that g5 = Ay g + (1 = ANy g = p

? (since vy g = vy g = p? see Definition 3.8 (i)).

Denote by p¥.p_, and p.-_, the sequences of kernels enabling v, € C(vo.r) and vl € C(vo.r)
respectively.

Then for every t = 0,...,7 — 2, we define p¥ : S x A x (P(5))T=t — P(S) by for every
(st as, per) € S x Ax (P(S)",

PY |5ty sy peer) := ApY (-|st, ae, ) + (1= Npt (|84, az, peer).-

Note that for every t = 0,...,T — 2, pg/(-\shat,utms), p;’”(~|st,at,ut:T,S) € Pi(se, ar, vpr,s)
for every (st,a:) € S x A and fﬁt is convex-valued (see Remark 3.3). Therefore, for every t =
0,...,T — 2, it holds that py(-|s;,as, vi.7.5) € ‘it(st, ag, ve.7.g) for every (sq,a;) € S x A.

Furthermore, it also holds for every ¢t =0,...,7 — 2 that

Uip1,s(c) = Wi s() + (1= Ny () = / Pt (8¢, ar, ver s )vi(dsy, day).

SxA
We hence have that 0y.r € C(vp.r). This completes the proof. O
Proof of Proposition 3.9 (ii). Let (v§.1, €5r)nen C E X = be a sequence such that for every n € N,
& r € T'(v§p) and that for every t =0,...,7 — 1 as n — oo,
(6.6) v =l &g

with some (V.1 &5.7) € 2 x E.

To prove Gr(I') is closed, it is sufficient to prove that 5. € I'(v§.p).
Step 1. We show that £ € C(vg.7). Since £ g = pu° for every n € N (due to &5 € C(1g.r)), by
(6.6) it holds that &5 ¢ = p°.

For every n € N, let pgTTi1 be a sequence of kernels enabling £l € C(vfr) (see Defini-
tion 3.8 (i)). For notational simplicity, set py.,_, := pole_l.

Then for every n € Nand t =0,...,7 — 2, it holds that

(6.7) Ers() = / P2 ([0 g, vfig, )07 (dse. day),
SxA
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(due to &y € C(1y.r)) and that for every (s¢, a¢) € S x A,

(6.8) Py s, a0 = Pt (lses an, Vi g) € Bi(se, ar, viip s)-

Fix any t € {0,...,T —2}. Let (s¢,a;) € S x A. Since P?,, ,, € ‘:ﬁ?t(shatﬂ/{fﬂs) for every
n € N and for every u = ¢,..., T — 1, v g = v} g as m — oo (see (6.6)), the compact-valueness
and upper-hemicontinuity of the correspondence ‘/J}t (see Remark 3.3) ensure that there exist a
subsequence (P}%, ,, )ken and some Py g, o, € Pi(se, ar, vfip ) such that

(6.9) PPt Py e, ask— oo

t,s¢,a¢
(see [2, Theorem 17.20]). Since both S and A are finite (see Assumption 3.1 (i)), by using the
same arguments presented for (6.9) a finite number of times, we can and do choose a subsequence
(P?%, o, )ren of the one in (6.8) and have (P s, q, ) (s;,a:)esxa (for notational simplicity, we do not

relabel that sequence) for which (6.9) holds with P, ,, , € ‘ﬁt(st, ag, V;T’S) for every (s¢,ar) € Sx A.
From this, we can define a mapping
(610) p: :SxA> (st,at) »—>p2(~|st,at) = Pt,smat € ‘Bt(st,at,y;ns).
Lemma 6.1 enables to extend p; as a stochastic kernel p} : S x A x (P(S)T~¢ > (s¢, as, prer) =
D5 (+st, at, 1) € Pe(8t, at, pir7) such that for every (s¢,ar) € S x A, it holds
(6.11) i ([se, ae, vip s) = pi (¢|se, ax).
By the consecutive constructions given in (6.10) and (6.11), the limit (6.9) together with (6.8)
ensures that for every (sy,a;) € S X A, as k — oo,

(6.12) P (lse, ae, vip ) = By (C1se, aes viir g)-
Now we claim that as k — oo,
(6.13) / P (e, ar, vt o )0y (dse, dag) — Py (“lst, ar, Vi g )i (dsy, day).
SxA SxA

Nk

To that end, for every k € N denote by w;'*(s¢, ar) and wy (s, ar) the weights of vy
at (s¢,ar) € S x Aand by w;'s, ,, (se41) and Wi, 4, (se+1) the weights of pi"* (dsit1]st, at, vk o)
and Py (dsi+1]Se, at, v s) at si41 € S. Then by (6.6) and (6.12) (since S and A are finite; see
Assumption 3.1 (i)), it holds that for every s, s;41 € S and a; € A, as k — oo,

* and v}

(6.14) wi (se,ar) = wy (s, ae), Wik, o, (St41) = Wi g, 4, (St41)-

Let g : S — R be any mapping (which is obviously in Cp(S;R) as S is finite). Then since for
every k € N

/ / 05000 (dse 1|5 ap, V2% )0 (dsy, day)
SxAJS

= Z wy* (st, ar) Z wﬁét,at(sm)g(swﬂ,

(st,at)ESXA St41€S
from (6.14) (together with the finiteness of S and A), it follows that

lim / / 9(st+1)py* (dsey1]se, ar, Vi g )vi " (dsy, day)
sxAJs

k—o0

= Z w:(staat) Z wz,st,at(‘st+1)g(st+1)

(s¢,at)ESXA St+1E€S

= /g(st+1)ﬁ:(dst+1|stvatvl/::T,S)V:(dst’dat)v
sxAJs
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which ensures the claim given in (6.13) to hold.
Using (6.13) together with (6.7) and (6.6), we hence have that

E1s() = / B Clst, ar, v )t (dse, day),
SxA

where we recall that p; satisfies (6.11) for every (s;,a¢) € S x A. Since this holds for any
t=0,...,T — 2, we hence have that &, € C(v3.p).

Step 2. It remains to show that £, € B(v§.). Here we follow the arguments of the proof for [51,
Proposition 3.9.]. For every t =0,...,T —1 and n € N, set D} := D,(v}) and D} := D,(vjr)
so that £(D7) =1 (because &r € B(I/O 7); see Definition 3.8 (i)).

Fixany t =0,...,T — 1. Let (s})nen C S and s; € S be such that s — s; as n — oo. Since
Je(- -, virg): S x A — R converges continuously® to J;(-, -, virs): S xA— R (by Lemma 5.1 (i)
and (6.6)) and the action space A is finite, it holds that

(6.15) nhﬁngo max Jo(s, ag, v vT.8) = max Je(s¢, as, v}, 7.5)

which implies that max,,e Jt(~, a, u{fT’S) converges continuously to maxg, c 4 jt(, ag, V;T’S).

For every M € N, set
(6.16) EtM {(st,at) eSxA mngt(st,at,I/tTS) > Jt(st,at,ut*:T’X)—i—aM}

ay

to be a closed subset where (sM)MeN C (0, 00) is a decreasing sequence so that limps o epr = 0.

Then since (DF)¢ = Jyy_; EM and EM ¢ EM™! for every M € N, the monotone convergence
theorem implies that for every n E N,

1 =Dy N DY) = &(Dy) — &(Dy N DY)
— &((D})° DY) = liink €7 (EM 1 Dp).
M —o0

This ensures that

1 = limsup hm inf

(6.17) e {
{

E(Df N DY) + & (EMmD")}

< hm inf lim sup
M—o0o pnooo

EMDF N DY) +EMEMN D”)}
We claim that for every M € N,
(6.18) limsup & (EM N DP) = lim sup/ 1{(St7at)€EIWmDn}£ZL(dSt,dat) =0.
n— oo n—oo JSxA t t
Fix any M € N. We firstly show that 1¢(s, a)eEMNDPY ¢ S x A — R converges continuously to
0 as n — oo. Let (sP,al),en be a sequence such that (s, al) — (s}, af) € EM as n — co. Then

by (6.15) and (6.16),

lim mathx g,V —maths ag, V.
n—o0 a,€ A (t’ ’tTS) a A (ta atTS)

> Jt(St ) at ) Vt:T7S) +tem

: T n n n
= lim Jiy(sp,ay,viprg) +€m-
n—oo ’

Hence, for sufficiently large n, we have maxg, c o j;(sg, ai, Vigg) > jt(s?, ay', viip g) which implies
that (s}, ay) & D}j*. Hence we have that 1¢(s,,a)eEMnDny converges continuously to 0 as n — co.

8Suppose g and (gn )nen are measurable functions on a metric space E. The sequence (gn )nen is said to converge
to g continuously if limy,— 00 gn(en) = g(e) for any sequence (en)nen with e, — e € E.
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From this and the limit £ — & as n — oo (see (6.6)), an application of [53, Theorem 3.3]
ensures the claim given in (6.18) to hold for every M € N.

Combining this with (6.17), we have

1 <limsup&(Dy N DY) < limsup & (Dy).
n—oo n—o0

Furthermore, since Dy is closed, the Portmanteau theorem (see e.g., [7, Theorem 2.1], [9, Theorem
8.2.3]) implies that limsup,,_, . (D7) < & (Dy). Hence, we have shown that £ (Dy) = 1.

Since this holds for any t = 0,...,T — 1, we hence have that £} € C(v{.1). This completes
the proof. 0

Proof of Proposition 3.9 (ii). Note that = is a compact convex topological space. Furthermore,
T is non-empty, convex-valued and its graph is closed (see Proposition 3.9 (i), (ii)). Therefore, by
Kakutani’s fixed point theorem (see, e.g., [2, Corollary 17.55, p. 583]), I' has a fixed point v,
e, i € T(Wp). O

6.3. Proof of Theorem 3.10.

Proof of Theorem 3.10. By Proposition 3.9 (iii), I has a fixed point v/§.p, i.e., vl € T (v.1)-

Then, since vy € C(vg.7), it holds that v ¢ = p°. Furthermore, Lemma 6.2 ensures that for
every t = 0,...,T — 1, there exists ﬁ;’* : S X AXP(S) > (s4,a,ue) — 7Y (-|se,ae, pe) € P(S)
defined by

ptu*('lstvatvﬂtal/;:rl;j“’s) if t<T—2;

(6.19) ﬁy* ('|St7ataﬂt) = R .
' De(-|s¢, at, fue) if t=T-1,

where po.7 is the sequence of the measurable selectors given in Lemma 3.2 (i) and png_l is the
sequence of the corresponding kernels enabling v§. € C(v.1), 1.e., for t =0,...,T — 2,

p,’f’*(~|st,at,V;Tys) S ‘Bt(st,at,ut*:T’S) for every (s¢,at) € .S x A,

and 17y, g() = / D} Clsen a, v o) (dse. day),
Sx A

(6.20)

(see Definition 3.8), and that for every t =0, ...,T—1, f)t”* (|st, ar, v{ g) is optimal for jt(st, at, Vi s)
for every (s¢,at) € S x A.

Furthermore, since .- € B(v§.r), Lemma 6.3 (ii) ensures that for every ¢t =0,...,T —1, there
exists 7 : S 3 s, = 7 (-|s;) € P(A) defined by

e 7 (|st) if wi(s¢) > 0;
T (ls) =

(6.21) ~ *
7o (-5t Vt:T,s) else,

where w; (s;) is the weight of 1/; g at s; € S and o, is the sequence of measurable selectors given
in Lemma 3.2 (ii), and that for every t =0,...,T — 1, it holds

(6.22) vi(dsy, day) =7 (datlsi)vy s (dsy),

and that 7" (-|s;) is optimal for V; (s, virg) for every s, € S.

The optimality of pY., and 7., ensures that (T.p,74.) is optimal for V(vg.r.s), i-e., the
condition (i) given in Definition 2.3 holds. Furthermore, combining (6.22) with (6.19) and
(6.20) ensures that (v.7, ¢ o7 Pp) satisfies condition (i) given in Definition 2.3 holds. Hence
(VS:TVS,ﬁSTT,ﬁSTT) is a mean-field equilibrium of (S, A, u°, Bo.T, 7). O
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7. PROOF OF RESULTS IN SECTION 3.3

7.1. Proof of Propositions 3.16 and 3.17. Let us provide a simple observation that plays an
instrumental role in the proof of Proposition 3.16. The proof can be found in Appendix A.
Lemma 7.1. Let X be a finite space and'Y be an arbitrary Borel space. Furthermore, let (Ag?[)

(K%V))NeN C P(X) be such that for any mapping f : X — R
(r1) Jimn | [ @A) - [ @R )

and let (Ag,l\‘[))()NeN be a sequence of stochastic kernels on'Y given X such that for every x € X

)N€N7

:O7

Agfj\\]))(( |z) = Ay x(-]x) € P(Y) as N — oo,
where Ay |x : X — P(Y) is another stochastic kernel on'Y given X. For N € N, denote by
AN (dz, dy) = AN (dy|2) AL (dz) € P(X x V),

Y|X
AN (dz, dy) = A (dy|2) AT (dr) € P(X x V),

AN (d, dy) == Ay x (dyla) AL (dz) € P(X x ).
Then, for both i =1, 2, we have that for every g € Cp(X X Y),

lim ] | atwn® iy~ [ o)A )| =
XxY XxY

N —oc0
Before we proceed to start proving Proposition 3.16, let us briefly comment on explicit charac-

terizations of the laws and stochastic kernels given in Definition 3.12.

Remark 7.2. Let (Wéf\p) ~Nen C II be a sequence of arbitrary Markov policies. For every N € N
and i € {1,...,N}, let P*I(N) ¢ Q(MS;T77T(()I\§“)) and P; NI ON (ue fﬂﬁl )) (depending on 77((){\1’1))
be given in Definition 3.11. Then the following hold for every ¢t = 0, . -1
(i) The laws M*l(N) MNKN) € P(S x A) given in Definition 3.12 (1) are characterized by
M (dsy, day) = 7™ (day|s )Ly N (dsy),
M ‘( )(dst, day) := t( (day)se)L, |(N)(ds ),
(N

where L™ LY™ € P(S) denote the law of s, under P*I(™) and the law of s} under

P, NI , respectively.
(i) The stochastic kernel ]KNl(N S XAD (s, a) = KN‘(N)(dstH, dpe|se, ar) € P(S x P(5))
given in Definition 3.12 (11) satisfies that for every (si,al) = (s;,a;) € S x A,°

Ky ™ (dsegr, dpelse, a) == pry ™ (dsera| (57 se), (@) w1 (da) T s
N|(N)
) N((.sN i 5 ))(dﬂt) ]L

where for every (5V,al¥) € SN x AN,
Nl(N)’ ‘(-15),5Y) € P(S) is the i-th marginal of p, l(N)( Isi,al) € P(SN);

(dgiv’_l|5t)

N 1 _N|* .
T * is the N — 1 tuple of 7y (as 7, I given in Definition 3.11 (iii));
9Denote by Ei\r’_i = (s%7 .. s; 1 s§+1, . si\’) € SN—1 the whole agents’ state configurations except for the

agent i’s state si at time t. The same convention applies to Eiv’_i € AN=1, Moreover, as in Footnote 3, we apply
the convention therein to (Eiv’ﬂ,s) € SN and (Eév’fz,a) c AN,
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- den(sny € P(P(S)) is the Dirac measure on P(S) at e (5 NY e P(S);

. Eivil(N)’fi S 35— Eﬁl(m’ii(ﬂst) € P(SN~1) is a stochastic kernel on SN¥~! given S
so that ]Livll(N)’ z( |s¢) is the conditional law of 57 ~* under Fivl(N) given st = s, € S.

Proof of Proposition 3.16. We note that by Remark 3.13, the notation for Lg{'T(YIiV) (given in Re-
mark 7.2) can be simplified as for every i = 1,..., N, Lé%m = ]LNl(N) Then it holds that for
everyt=0,..., T —1

MY (ds,, day) = 7 (day|s) LY (dsy),
where M ‘( ) is given in Remark 3.13.

Let ]LS‘(T ) be given in Remark 7.2 (i). Then we claim that if the following holds for some
te€{0,...,T —2}: for every mapping f: S — R

(7.2) Jim ‘/f(st)JL:'(N)(dst)—/f(st)lLiV'(N)(dst) =0,
then the following also holds: for every mapping f: S — R
(7.3) im ‘/f(StH)Lﬂr({v)(dStJrl)—/f(5t+1)Lﬂ§N)(d3t+1) =

Since S is finite (see Assumption 3.1) and the convergence in (7.2) holds, we apply Lemma 7.1

(by setting ]L:‘(N) ~ Agév), Li\”( ) A(N) and 7T(N) A Al I) for every N € N) to have that for

every mapping h: S x A - R

(7.4) lim ’/ h(st,at)Mfl(N)(dst,dat)—/ h(st,at)Miw(N)(dst,dat)
SxA SxA

N—o00

Furthermore, since S x A is finite (see Assumption 3.1) by the weak convergence given in
Assumption 3.14, we apply Lemma 7.1 (together with (7.4) and setting Miv‘(N) ~ AE(N), MZ‘KN) ~
K(N) KNI(N) A;\))(’ and py (dsii 1], - pe )0 (dpe) ~ Ay x for every N € N) to have (3.14).

In particular, by Definition 3.12 (iii) and Remark 3.13, the marginals of Q; NI and Q*‘(N)
with respect to sy11 equal ]Lt+|§ ) and ]Lt‘H, respectively. Hence, (3.14) ensures that (7.3) holds.

Since ]LéV'(N) = LSI(N) = u° for every N € N, we apply the above claim inductively to have
that (3.14) and (7.2) hold for every t = 0,...,T — 1. This completes the proof. O

Proof of Proposition 3.17. For N € N, let Q*l(N),QN‘(N) be given in Definition 3.12 (iii) and

Remark 3.13, respectively. Since the following hold for every ¢t =0,...,T — 1 that

SNI(N) . NI(N
ER [T(Stlaatlastl-l-lveiv(siv))] :/ T(Staatast-f—l),ut)(@t 8 )(dé‘t,dat,dstﬂ’dﬂt),
SxAXSXP(S)
| (N)
EY 7 [r(se, ag, Seq, 117)] :/ r(sty gy 1, 110)Qp N (s, dag, dse 1, dpuy)
SxAXSXP(S)

with P*I(V) ¢ Q(uS:T,TF(()T) and P NI N (ue, fév;( )) given in Definition 3.11, Proposi-
tion 3.16 (together with r € C},(S x Ax S xP(S)); see Assumption 3.1 (iii)) ensures that for every
t=0,...T—1
. Py 111 N IV * ‘_
]VI'E}nOO‘E [ r(sy,ay, 51415 € (51 ))} E [ (St7at7st+1,,ut)} = 0.

Hence,

lim
N—o0

T-1
2NNy gerlon
I (1, Tor)) —E ZT Sty Aty St41, Hf )
t=0
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T—
. —=N|(N) *| (N)
= ngnoo Z E" [T(S}va}75t+1ae£\](5f Z E [ (St, at, Se41, 1 )]‘
t=0

-« . P 11 .1 N (=N p*I() *
< ngnoo E™ [T(Stvatvst+1aet (5 ))] —E [T(StvatvSHlaM)H =0.

t=0

This completes the proof. O

7.2. Proof of Theorem 3.19.

Proof of Theorem 3.19. Let € > 0. By using the same arguments presented in Remark 3.13, it is

enough to show that there exists N(g) € N such that for each N > N(e),
I (e o) +e > sup T, (T o)),
o7 €11

where Ji¥ denotes the worst-case reward for agent i = 1.
For each N > N, let W((){\Q € II be a sequence of policies satisfying that
_N |,

(75) I ol omti) > s e (@ o)

w| ™

By Proposition 3.4 (ii) (by replacing fio.r as ug.r; see (3.11)) it holds that

T-1
P
=E Z (e, at, St1, 1)

t=0

T—1
sup EP(#S:TyﬂO:T’pS:T) [Z T(Stvatv Sta1, M;‘) = V(MS:T)v

o7 €T =0

where P* = P(ug.r, 7675 Po.r) € Qg1 To.7) (see Definition 3.11 (i)).
Moreover since J{¥ (12, (fé\:{rﬁ’*l, W((J]\:p)) = JN(p° ﬁévlp(q,)) and P(MS:T,WéZﬂ),pS:T) =P*I(N) (see
Definition 3.11), we apply Proposition 3.17 to have

T-1
__N |, N . w2 (N) %
]\;g}noo Jl ( ( 0% éT))) = &T@EP(HO:T’ O:T7PO:T) |J£z_; T(St7at75t+1nut )]
(7. R e *
< sup E"\For:mo:T:Po.r r(st, Aty St4+1, ,Ltt)
mo.7 €11 =0
= V(uo.1)-
Combining (7.5)—(7.6) and Remark 3.18, we can choose N (g) € N such that for every N > N(¢)
_N|x, o /—N|*,—1 (N 2e
sup Y (u°, (o mor)) — e <N, (g T mo) — 5
mo.7 €11
. €
< V(/’[’O:T) - g
o =N|x
< I 7or).
This completes the proof. O

APPENDIX A. SUPPLEMENTARY PROOFS

Proof of Lemma 4.2. Fix arbitrary X > 0 and ¢ > 0. We first claim that 93}, satisfies As-
sumption 3.1 (ii). Let ¢ € {0,...,7 — 1}, and let s; € S, ax € A, and s, iz € P(S) be arbi-
trarily chosen. Since the reference kernel p°® does not depend on the argument p and hence,
P (e, ae, p1t) = P (se,a, jiz). Furthermore, as B (s¢, ar, p) is a 1-Wasserstein ball around
p°(- | 8¢, as, pit), it is clearly non-empty, convex-valued, compact-valued.
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Furthermore, since P (s¢, ar, 1) = P (e, ar, fir), for any P € B (s¢, ar, pe), we choose the
same one P := P € P (s¢, ar, i) to get

0= dWl (IP’ IFPV)) < dWl (N’ /7)

It remains to show that 7 is continuous (i.e., upper- and lower-hemicontinuous). To that end,
consider an arbitrary sequence!®

((Sm Qny P, P”)neN < GI‘(‘B?)

such that (s,,a,) — (s,a) and p, — p as n — oo.

Since S and A are finite, there exists N € N such that for every n > N it holds that
(Sns @ns fin) = (8,a, pin). Hence, P,, € P (s, a, pun) = P (s, a, p) for every n > N. Moreover, since
P (s, a, p) is compact, there exists a subsequence (Pp,, ) ey € (Pn), ey With P, — P € B (s, a, p)
as k — oo. Thus, by [2, Theorem 17.20], B} is upper-hemicontinuous.

Again, consider an arbitrary sequence ((sp, Gn, fin))neny C S X A x P(S) such that (s, an) —
(s,a) and p, — p as n — oo and let P € P (s, a, u). As before, there exists N € N such that for
every n > N it holds that (s, an, tn) = (8, a, ft). Define a sequence (P,,),eny € P(S) by setting

P, — po( | 31,“0,1,“/,&”) if n < N,
" P else.

Then, P, € B} (s5n, an, itn) for all n € N and P,, = P as n — oo. Hence, by [2, Theorem 17.21],
B, is lower-hemicontinuous. Hence )., satisfies Assumption 3.1 (ii), as claimed.

We now claim that r given in Definition 4.1 (ii) satisfies Assumption 3.1 (iii).

Since |§] < 4 and |a| < 1 for every (8,a) € S x A (noting that S = {0,1,...,4} and A =
{-1,0,1}; Definition 4.1), there exists a constant C, := LI + max { — log(c),log(1 + ¢)} > 0
satisfying that for every s,5 € S, a € A, and u € P(S),
la|
4
1
4
Moreover, there exists L, := 1/¢ > 0 satisfying that for every s,8 € S, a € A, and u, i € P(S),

1
mm@MSPﬁm+

+ [log(u(3) + ¢

1
<14 58] +2) + 5+ max { —log(e).log(1 + )} < C;.

|T(57 a, §7 /’L) - ’I“(S, a, §’ ﬂ)| = |10g(/l(§) + C) - 10g(ﬂ(§) + C)

a(8) + ¢

=1l I1+—5——-1)| < = -1

04 u®+0)’ DT

1
= ——|a(8) — p(8)| < Ly|f(s) — pu(s
)~ )] < L) )
< Lrdw, (1, f1).
Hence, r satisfies Assumption 3.1 (iii), as claimed. O

Proof of Lemma 6.1. By the existence of measurable selectors given in Lemma 3.2 (i), we can and
do choose a stochastic kernel p,: S x A x (P(S)T=t > (s¢,as, per) = pi(-|se, ae, per) € P(S).
Then define p, : S x A x (P(S))T7t > (54, as, pe.1) = Dy (|s¢, as, o) € P(S) by

pt("‘st»at) if He:T = ,at:T7

(Al) ﬁt('|3t7at7l~tt:T) = ’
pi(-|8¢, ae, po7) else.

10We denote by Gr(%p;}) the graph of ;.
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It is sufficient to show that P, is Borel-measurable. To that end, recall that Bp(g) and
Bsyw ax(p(s))r—+ denote the Borel o-field of P(S) and S x A x (P(S))"~*, respectively.
Let E € Bp(s). Then since

P (B) = {(st. 0 pir) € 5 x Ax (PS)T™ | BulClsisar, o) € B
= {(St,ataﬂt:T) € X x Ax {fur} ‘ Pe(clst, ar, per) € E}

U {(st,at,,ut;T) €5 x Ax (P(S)T~\ {fir)) ‘ o150, av, pur) € E} — B UE,,

we will show that Ey, Ea € Bgxaxp(s)r-
Note that by (A.1),

E, = {(Staat) €ESxA ‘ pe(-]se,ae) € E} X {fig.},
By = {(se.a0.pur) € S x Ax (P(S)" | p(-lst, au, pur) € B}

\ ({(Staat) €S xA ‘ Py (8¢, ar, ) € E} X {ﬁt:T}) =:FEy1\ Ezp.

Since S and A are finite (see Assumption 3.1 (i)), p; is Borel-measurable. Hence this implies that
Ey € Bsxax(p(s))r—t- For the same reason, it follows that Ez 2 € Bgy ax(p(s))r—¢- Furthermore,
since p; is Borel-measurable, Ey 1 € Bgy ax(p(s))T*- O

Proof of Lemma 7.1. We only prove for ¢ = 2, as the proof for ¢ = 1 follows the same line
of reasoning. For every N € N, denote by w™)(x) the weight representing of the z € X under
Agﬁv), and similarly for @™ (z) under AE(N). Let g € Cy(X x Y). By the triangle inequality,

‘ [ atwn® ) - [ oA, dy>‘ < 1) 4 ),
XxXY XxXY

where I™) and 11V are given by

’// g(z,y) Y|Xdy|a:)A< (dzx) // g(z,y) YlX(dy|x) ) (dz)|,
| [ [ ot AR = [ [ gttt i)

We claim that I'™) and II?Y) vanish as N — cc. Indeed, note that for every N € N

= | 3 w@) [ a3 @) | atenal o)
zeX reX v
< 3 [0 = 5V @)| [ oA drin) < 6 3 [0 - 7 (@),

zeX zeX

where Cy = sup,, ¢ x|9(z,y)| < oo (hence not depending on N € N) as g € Cp(X x V).
In particular, from the convergence given in (7.1), the finiteness of the space X ensures that

dow eX‘U}(N)( ) — oM™ (x )’ —>0asN—>oo Therefore 1Y) vanishes as N — oc.

(N
Y|X
finite, we can conclude that

lim I <y @) ( lim ’/ 2, ) A (dyl) —/ g9(, y) Ay | x (dy|x)
Y

N —o0 n— oo
rzeX

And similarly, since A ( |z) = Ay|x(:|r) as N — oo for every € X and the space X is

)-o

This completes the proof. O




(1]

2]
(3]

(4]
[5]
(6]

[7]
(8]

(9]
[10]

[11]

[12]
[13]

[14]
[15]
[16]
[17]
18]
[19]
120]
[21]
[22]
23]
[24]
[25]
126]
271

[28]
[29]

(30]

[31]
32]

35

REFERENCES

S. Adlakha, R. Johari, and G. Y. Weintraub. Equilibria of dynamic games with many players: Existence,
approximation, and market structure. J. Econom. Theory, 156:269-316, 2015.

C. D. Aliprantis and K. C. Border. Infinite dimensional analysis: A Hitchhiker’s Guide. Springer, 2006.

A. Aurell, R. Carmona, G. Dayanikli, and M. Lauriére. Optimal incentives to mitigate epidemics: a Stackelberg
mean field game approach. SIAM J. Control Optim., 60(2):S294-S322, 2022.

N. Béuerle. Mean field Markov decision processes. Appl. Math. Optim., 88(1):12, 2023.

D. Bauso, H. Tembine, and T. Bagar. Robust mean field games. Dynam. Games Appl., 6(3):277-303, 2016.
A. Bensoussan, J. Frehse, and P. Yam. Mean field games and mean field type control theory, volume 101. New
York: Springer-Verlag, 2013.

P. Billingsley. Convergence of probability measures. John Wiley & Sons, 2013.

A. Biswas. Mean field games with ergodic cost for discrete time Markov processes. arXiv preprint
arXiw:2012.05237, 2015.

V. I. Bogachev. Measure Theory: Volume II. Springer, 2007.

P. Cardaliaguet. Notes on mean field games (from P.-L. Lions’ lectures at College de France). Lecture notes,
April-May 2010, Tor Vergata, Rome, 2011.

R. Carmona. Applications of mean field games in financial engineering and economic theory. arXiv preprint
arXiw:2012.05237, 2020.

R. Carmona and F. Delarue. Probabilistic theory of mean field games with applications I-II. Springer, 2018.
R. Carmona, F. Delarue, and D. Lacker. Mean field games of timing and models for bank runs. Appl. Math.
Optim., 76:217-260, 2017.

R. Carmona, J.-P. Fouque, and L.-H. Sun. Mean field games and systemic risk. Commun. Math. Sci., 13(4):911—
933, 2015.

R. Carmona, M. Lauriére, and Z. Tan. Model-free mean-field reinforcement learning: mean-field MDP and
mean-field Q-learning. Ann. Appl. Probab., 33(6B):5334-5381, 2023.

Z. Chen and L. Epstein. Ambiguity, risk, and asset returns in continuous time. Econometrica, 70(4):1403-1443,
2002.

F. Delarue, D. Lacker, and K. Ramanan. From the master equation to mean field game limit theory. Ann.
Probab., 48(1):211-263, 2020.

J. Dow and S. R. da Costa Werlang. Uncertainty aversion, risk aversion, and the optimal choice of portfolio.
FEconometrica, pages 197-204, 1992.

R. Elie, E. Hubert, and G. Turinici. Contact rate epidemic control of COVID-19: an equilibrium view. Math.
Model. Nat. Phenom., 15:35, 2020.

R. Elie, J. Pérolat, M. Lauriére, M. Geist, and O. Pietquin. On the convergence of model free learning in mean
field games. Proceedings of the AAAI Conference on Artificial Intelligence, 34:7143-7150, 2020.

R. Elliott, X. Li, and Y.-H. Ni. Discrete time mean-field stochastic linear-quadratic optimal control problems.
Automatica, 49(11):3222-3233, 2013.

L. G. Epstein and T. Wang. Intertemporal asset pricing under Knightian uncertainty. Econometrica, pages
283-322, 1994.

N. Gast and B. Gaujal. A mean field approach for optimization in discrete time. Discrete Fvent Dyn. Syst.,
21(1):63-101, 2011.

N. Gast, B. Gaujal, and J.-Y. Le Boudec. Mean field for Markov decision processes: from discrete to continuous
optimization. IEEE. Trans. Autom. Control, 57(9):2266—-2280, 2012.

I. Gilboa and D. Schmeidler. Maxmin expected utility with non-unique prior. J. Math. Econ., 18(2):141-153,
1989.

D. A. Gomes, J. Mohr, and R. R. Souza. Discrete time, finite state space mean field games. J. Math. Pures
Appl., 93(3):308-328, 2010.

D. A. Gomes, J. Mohr, and R. R. Souza. Continuous time, finite state mean field games. Appl. Math. Optim.,
68(1):99-143, 2013.

D. A. Gomes and J. Saude. Mean field games models—a brief survey. Dynam. Games Appl., 4:110-154, 2014.
H. Gu, X. Guo, X. Wei, and R. Xu. Mean-field controls with Q-learning for cooperative MARL: convergence
and complexity analysis. SIAM J. Math. Data Sci., 3(4):1168-1196, 2021.

H. Gu, X. Guo, X. Wei, and R. Xu. Dynamic programming principles for mean-field controls with learning.
Oper. Res., 71(4):1040-1054, 2023.

J. Huang and M. Huang. Mean field LQG games with model uncertainty. In CDC 2013. Florence, Dec. 2013.
K. Huang, X. Chen, X. Di, and Q. Du. Dynamic driving and routing games for autonomous vehicles on
networks: A mean field game approach. Transp. Res. C Emerg. Technol., 128:103189, 2021.



36

133
134
135
136]
137]
138
139]

[40]
[41]

j42]
j43]
ja4]
j45]
J46]
j47]
ja8]
j49]
/501
51]
/52]

[53]
[54]

Ha

JOHANNES LANGNER, ARIEL NEUFELD, AND KYUNGHYUN PARK

M. Huang. Large-population LQG games involving a major player: the Nash certainty equivalence principle.
SIAM J. Control Optim., 48(5):3318-3353, 2010.

M. Huang, R. P. Malhamé, and P. E. Caines. Large population stochastic dynamic games: Closed loop
McKean-Vlasov sysyems and the Nash certainity equivalence principle. Commun. Inf. Syst., 6(3):221-252,
2006.

B. Jovanovic and R. W. Rosenthal. Anonymous sequential games. J. Math. Econ., 17(1):77-87, 1988.

A. Lachapelle and M.-T. Wolfram. On a mean field game approach modeling congestion and aversion in
pedestrian crowds. Transp. Res. B Methodol., 45(10):1572-1589, 2011.

D. Lacker. A general characterization of the mean field limit for stochastic differential games. Probab. Theory
Relat. Fields, 165:581-648, 2016.

D. Lacker and A. Soret. A case study on stochastic games on large graphs in mean field and sparse regimes.
Math. Oper. Res., 47(2):1530-1565, 2022.

D. Lacker and T. Zariphopoulou. Mean field and n-agent games for optimal investment under relative perfor-
mance criteria. Math. Finance, 29(4):1003-1038, 2019.

J.-M. Lasry and P.-L. Lions. Mean field games. Japan. J. Math., 2(1):229-260, 2007.

M. Lauriére, S. Perrin, J. Pérolat, S. Girgin, P. Muller, R. Elie, M. Geist, and O. Pietquin. Learning in mean
field games: A survey. arXiv, 2205.12944.

M. Lauriére and L. Tangpi. Convergence of large population games to mean field games with interaction
through the controls. SIAM J. Math. Anal., 54(3):3535-3574, 2022.

J. Moon and T. Bagar. Discrete-time decentralized control using the risk-sensitive performance criterion in the
large population regime: a mean field approach. In ACC 2015. Chicago, 2015.

J. Moon and T. Bagar. Linear quadratic risk-sensitive and robust mean field games. IEEE. Trans. Autom.
Control, 62(3):1062-1077, 2016.

J. Moon and T. Bagar. Robust mean field games for coupled Markov jump linear systems. Internat. J. Control,
89(7):1367-1381, 2016.

J. Moon and T. Bagar. Discrete-time stochastic Stackelberg dynamic games with a large number of followers.
In CDC 2016. Las Vegas, Dec. 2016.

M. Motte and H. Pham. Mean-field Markov decision processes with common noise and open-loop controls.
Ann. Appl. Probab., 32(2):1421-1458, 2022.

A. Neufeld and J. Sester. Non-concave distributionally robust stochastic control in a discrete time finite horizon
setting. arXiv preprint arXiv:2404.05230, 2024.

A. Neufeld, J. Sester, and M. Siki¢. Markov decision processes under model uncertainty. Math. Finance,
33(3):618-665, 2023.

M. Nourian and G. N. Nair. Linear-quadratic-gaussian mean field games under high rate quantization. In CDC
20183. Florence, Dec. 2013.

N. Saldi, T. Bagar, and M. Raginsky. Markov—Nash equilibria in mean-field games with discounted cost. STAM
J. Control Optim., 56(6):4256-4287, 2018.

N. Saldi, T. Bagar, and M. Raginsky. Approximate Nash equilibria in partially observed stochastic games with
mean-field interactions. Math. Oper. Res., 44(3):1006-1033, 2019.

R. Serfozo. Convergence of Lebesgue integrals with varying measures. Sankhya Ser.A, pages 380-402, 1982.
H. Tembine, Q. Zhu, and T. Bagar. Risk-sensitive mean-field games. IEEE. Trans. Autom. Control, 59(4):835—
850, 2013.

INsITUTE OF ACTUARIAL AND FINANCIAL MaTHEMATICS & HOUSE OF INSURANCE, LEIBNIZ UNIVERSITAT
NNOVER
Email address: johannes.langner@insurance.uni-hannover.de

D1vISION OF MATHEMATICAL SCIENCES, NANYANG TECHNOLOGICAL UNIVERSITY
Email address: ariel.neufeld@ntu.edu.sg

DivisioN oF MATHEMATICAL SCIENCES, NANYANG TECHNOLOGICAL UNIVERSITY
Email address: kyunghyun.park@ntu.edu.sg



	1. Introduction
	2. Model description
	2.1. Notation and preliminaries
	2.2. Mean-field Markov games under model uncertainty
	2.3. Multi-agent Markov games under model uncertainty

	3. Main results
	3.1. Dynamic programming
	3.2. Existence of mean-field equilibrium
	3.3. Existence of approximate Markov-Nash equilibrium

	4. Numerical example: Crowd motion under model uncertainty
	5. Proof of results in Section 3.1
	5.1. Proof of Lemma 3.2 and Proposition 3.4
	5.2. Proof of Lemma 3.5 and Proposition 3.6

	6. Proof of results in Section 3.2
	6.1. Preliminary lemmas
	6.2. Proof of Proposition 3.9
	6.3. Proof of Theorem 3.10

	7. Proof of results in Section 3.3
	7.1. Proof of Propositions 3.16 and 3.17
	7.2. Proof of Theorem 3.19

	Appendix A. Supplementary proofs
	References

