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Abstract. We propose and analyze a framework for mean-field Markov games under model
uncertainty. In this framework, a state-measure flow describing the collective behavior of a
population affects the given reward function as well as the unknown transition kernel of the
representative agent. The agent’s objective is to choose an optimal Markov policy in order to
maximize her worst-case expected reward, where worst-case refers to the most adverse scenario
among all transition kernels considered to be feasible to describe the unknown true law of the
environment. We prove the existence of a mean-field equilibrium under model uncertainty,
where the agent chooses the optimal policy that maximizes the worst-case expected reward,
and the state-measure flow aligns with the agent’s state distribution under the optimal policy
and the worst-case transition kernel. Moreover, we prove that for suitable multi-agent Markov
games under model uncertainty the optimal policy from the mean-field equilibrium forms an
approximate Markov-Nash equilibrium whenever the number of agents is large enough.
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1. Introduction

Mean-field games introduced by [34, 40] analyze decision-making and interactions of strategic
agents within populations. Under the assumption that all agents of a population have the same
transition probabilities and reward function and that their interactions only depend on the em-
pirical distribution of all agents, one can simplify the model by approximating the finite agent
game by a suitable mean-field game. This framework has led to a wide range of applications,
including in finance and economics (e.g., [11,13,14,39,42]), crowd motion dynamics (e.g., [32,36]),
and epidemiology (e.g., [3, 19]).

As a prominent discrete-time mean-field games model, consider a mean-field Markov game
denoted by (S,A, µo, p, r): Let (S,A) be state and action spaces and denote by P(S) and P(A)

the set of probability measures on S and A, respectively. Furthermore, let µo ∈ P(S) be an initial
population distribution, p : S×A×P(S) 7→ P(S) be a transition kernel, and r : S×A×S×P(S) 7→
R be a one-step reward function. Assume that a representative agent aims to maximize her total
expected reward until the terminal time T by choosing a Markov policy π0:T = (π0, . . . , πT−1)

(i.e., a sequence of stochastic kernels πt : S 7→ P(A), t = 0, . . . , T − 1). Given a population
measure flow µ0:T = (µ0, . . . , µT−1) with µ0 = µo (i.e., a sequence of µt ∈ P(S), t = 0, . . . , T − 1),
the central objective the agent faces is to solve the following Markov decision problem

sup
π0:T

EP

[
T−1∑
t=0

r(st, at, st+1, µt)

]
,(1.1)

where for given π0:T , P is the probability measure (that depends on µ0:T , π0:T , and p) under which
the agent’s state and action configurations evolve as follows: for every t = 0, . . . , T − 1

s0 ∼ µ0(·), at ∼ πt(·|st), st+1 ∼ p(·|st, at, µt).(1.2)

In this setting, a mean-field equilibrium consists of a Markov policy and a measure flow
(µ∗

0:T , π
∗
0:T ) satisfying that π∗

0:T is a maximizer of (1.1) given µ∗
0:T , and µ∗

0:T is consistent with the
state distribution of the agent acting optimally via π∗

0:T , i.e., µ∗
0 = µo and for t = 0, . . . , T − 1

µ∗
t+1(dst+1) =

∫
S×A

p(dst+1|st, at, µ∗
t )π

∗
t (dat|st)µ∗

t (dst).(1.3)

In most cases, a mean-field equilibrium attains an approximate Nash equilibrium for an analogous
game with a finite number of agents, known as the so-called Nash certainty equivalence principle
[6,10,12,34]. We refer to [20,21,24,26,43,51,52] for a few articles studying discrete-time mean-field
games similar to the setting (S,A, µo, p, r) described above.

Mean-field games commonly involve a significant assumption that the model environment rep-
resented by the transition kernel p in the above model (S,A, µo, p, r) is perfectly known to all
agents. However, when implemented in practice, the specifics of the model environment are a
priori unclear. While some estimation techniques can approximate a ground truth on, e.g., the
transition kernel closely, in many cases there exists a margin of misspecification. This might result
in an equilibrium that is not consistent with the behavior of large populations in real situations.

As a remedy to model uncertainty, a number of researchers in various fields have adopted the
so-called worst-case (or robust) approach introduced by [16, 18, 22, 25]. Here, worst-case refers to
considering the most adverse scenario among all probabilities deemed as feasible to describe the
unknown law characterizing the environment. The aim of this article is to propose and analyze a
framework for mean-field Markov games under model uncertainty, which can be considered as a
robust analog of (S,A, µo, p, r) described in (1.1)-(1.3).
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To that end, let us describe our mean-field Markov game under model uncertainty, which we
denote by (S,A, µo,P0:T , r): Fix T ∈ N and let (S,A, µo, r) be the same as the ones given in
(S,A, µo, p, r) described above. Furthermore, let P0:T be a sequence of set-valued maps given for
every t = 0, . . . , T − 1 by

Pt : S ×A× P(S) ∋ (st, at, µt) ↠ Pt(st, at, µt) ⊆ P(S).(1.4)

Then given (µ0:T , π0:T ), denote by Q(µ0:T , π0:T ) the set of all probability measures P under which
there exists a sequence of transition kernels p0:T = (p0, . . . , pT−1) satisfying that for every t =

0, . . . , T − 1 and every (st, at, µt) ∈ S ×A× P(S)

pt(·|st, at, µt) ∈ Pt(st, at, µt),(1.5)

and the agent’s state and action configurations evolve as follows: for every t = 0, . . . , T − 1

s0 ∼ µ0(·), at ∼ πt(·|st), st+1 ∼ pt(·|st, at, µt).(1.6)

In other words, instead of fixing a transition kernel p : S × A × P(S) 7→ P(S), we consider a set
valued map Pt : S × A × P(S) ↠ P(S) where given (st, at, µt) ∈ S × A × P(S), each element
of the set Pt(st, at, µt) is considered as a candidate probability measure on S derived from the
true but unknown transition kernel. This setting is inspired by [48, 49] which analyzed Markov
decision problems under model uncertainty (but without a mean-field measure flow).

Now, given µ0:T with µ0 = µo, the central objective an agent faces under model uncertainty is
to solve the following robust (or worst-case) optimization problem

V (µ0:T ) = sup
π0:T

inf
P∈Q(µ0:T ,π0:T )

EP

[
T−1∑
t=0

r(st, at, st+1, µt)

]
.(1.7)

We note that the set-valued maps P0:T given in (1.4) induce distributional uncertainty represented
by the set Q(µ0:T , π0:T ), and (1.7) and (1.1) coincide when P0:T are singleton-valued.

In this setting, we say

(µ∗
0:T , π

∗
0:T , p

∗
0:T )(1.8)

is a mean-field equilibrium of (S,A, µo,P0:T , r) (see Definition 2.3) if the Markov policy π∗
0:T is

optimal to the robust optimization problem V (µ∗
0:T ), the transition kernel p∗0:T corresponds to the

worst-case kernel of V (µ∗
0:T ) under (µ∗

0:T , π
∗
0:T ), and the state-measure flow µ∗

0:T aligns with the
agent’s state distribution under (π∗

0:T , p
∗
0:T ), i.e., µ∗

0 = µo and for every t = 0, . . . , T − 2,

µ∗
t+1(dst+1) =

∫
S×A

p∗t (dst+1|st, at, µ∗
t )π

∗
t (dat|st)µ∗

t (dst).(1.9)

The main contribution of this paper is twofold:
· In Theorem 3.10, we prove the existence of a mean-field equilibrium (µ∗

0:T , π
∗
0:T , p

∗
0:T ) of the

mean-field Markov game (S,A, µo,P0:T , r) described in (1.4)-(1.9).
· We show in Theorem 3.19 that the optimal Markov policy π∗

0:T from the mean-field equilibrium
of (S,A, µo,P0:T , r) forms an approximate Markov-Nash equilibrium (see Definition 2.6) of
a multi-agent Markov game under model uncertainty in the sense that the policy π∗

0:T is
(almost) a maximizer for the worst-case objectives of all agents in the multi-agent Markov
game (see (2.6)) whenever the number of agents is large enough.

As an example, in Section 4, we apply our mean-field Markov game (S,A, µo,P0:T , r) to crowd
motion dynamics under model uncertainty. In this context, the set valued maps given in (1.4) are
formulated by a Wasserstein-ball around a reference transition kernel (see Definition 4.1), which
aligns with our conditions imposed on the set-valued maps in order to obtain our main results.
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Moreover, we compute a mean-field equilibrium of the crowd motion dynamics by our iterative
scheme (see Algorithm 1).

Related literature. Classic mean-field games (i.e., without uncertainty) are described both in
continuous-time (see, e.g., [3,17,27,33,34,37–39,54]) and in discrete-time (see, e.g., [1,8,20,21,24,
26,43,46,50–52]); we refer to [6,12,28,41] for survey papers including both settings. We also refer
to [4, 15, 23, 29, 30, 47] for mean-field control problems in a Markov decision process framework
(which corresponds to cooperative models).

In continuous-time settings, several articles have explored mean-field games under distributional
or parametric uncertainty (see., e.g., [5,31,44,45]). Notably, our notion of a mean-field equilibrium
under model uncertainty (described in (1.8)–(1.9); see also Definition 2.3 and Theorem 3.10) aligns
with those found in continuous-time frameworks (see, e.g., [5, Proposition 3], [31, Theorem 3.2]),
where our robust optimization problem (1.7) corresponds in their papers to a forward backward
system consisting of a Hamilton–Jacobi–Bellman–Isaacs equation, whereas our measure flow (1.9)
corresponds in their papers to a Fokker-Planck equation under the associated worst-case measure
or parameter. Moreover, [45, Theorem 6] establishes an approximate Nash equilibrium under
model uncertainty, which is consistent with ours given in Theorem 3.19. To the best of our
knowledge, however, there are no known results on mean-field games under model uncertainty in
a discrete-time setting or within the framework of Markov decision processes.

While certain proof techniques in our paper bear similarities to [51, 52] which consider mean-
field Markov games in a discrete-time setting but without model uncertainty, the consideration
of model uncertainty introduces significant distinctions. Specifically, due to the set-valued maps
P0:T given in (1.4), we cannot directly apply certain existing arguments (including the dynamic
programming principle and the fixed point approach). Instead, we establish a robust (i.e., max-
min) version of the dynamic programming principle, which constitutes a variant of [49]. We then
propose and study a robust analog of the fixed point approach based on the work of [35]. Moreover,
we establish the dynamic programming principle for the multi-agent Markov game under model
uncertainty and characterize the worst-case measures appearing in both the mean-field and multi-
agent Markov games to establish the existence of an approximate Markov-Nash equilibrium.

2. Model description

2.1. Notation and preliminaries. Throughout this article we work with Borel spaces. If X is
such a space, we denote by BX its Borel σ-field and P(X) the set of all probability measures on
X implicitly assumed to be equipped with the topology induced by the weak convergence, i.e., for
any P ∈ P(X) and any (Pn)n∈N ⊆ P(X), we have

Pn ⇀ P as n → ∞ ⇔ lim
n→∞

∫
X

f(ω)Pn(dω) =

∫
X

f(ω)P(dω) for any f ∈ Cb(X;R),(2.1)

where Cb(X;R) is the set of all continuous and bounded functions from X to R.
If X is compact, the weak topology given in (2.1) is equivalent to the topology induced by the

1-Wasserstein distance dW1(·, ·) which we recall to be the following: For any µ, ν ∈ P(X), denote
by Cpl(µ, ν) ⊆ P(X ×X) the subset of all probability measures on X ×X with first marginal µ
and second marginal ν. Then the 1-Wasserstein distance between µ and ν is defined by

dW1(µ, ν) := inf
γ∈Cpl(µ,ν)

∫
X×X

|x− y|γ(dx, dy),

where | · | is the Euclidean norm.
In particular, if we further assume that X is a finite subset in a Euclidean space and denote

by n(X) its cardinality, then P(X) can be identified with a simplex in Rn(X), i.e., µ ∈ P(X) can
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be treated as an n(X)-dimensional vector (wµ
1 , . . . , w

µ
n(X)) ∈ Rn(X) with nonnegative coordinates

(wµ
i )i=1,...,n(X) which sum up to one.
For each t ∈ N, we use the abbreviation Xt := X × · · · ×X for the t-times Cartesian product

of the set X, where we endow Xt with the corresponding product topology. In analogy, we
use (P(X))t for the corresponding product of P(X). Given a sequence of probability measures
(Ps, . . . ,Pt−1) ∈ (P(X))s−t and 0 ≤ s < t, we use the following abbreviation Ps:t := (Ps, . . . ,Pt−1).

The same convention applies to a sequence of other quantities.

2.2. Mean-field Markov games under model uncertainty. We specify what we mean by
mean-field Markov games under model uncertainty. Let us consider a representative agent who,
at each time t, observes a state st and takes an action at, whereas a probability measures µt

describes the overall population distribution at time t.

Definition 2.1 (Mean-field Markov game). Fix a time horizon T ∈ N. A mean-field Markov
game under model uncertainty, say (S,A, µo,P0:T , r), comprises the following:

(i) (S,BS) and (A,BA) are Borel spaces for the state and action spaces, respectively.
(ii) µo ∈ P(S) is a given initial distribution for the initial state, which we denote by s0.
(iii) For every t = 0, . . . , T − 1, Pt : S × A × P(S) ∋ (st, at, µt) ↠ Pt(st, at, µt) ⊆ P(S) is

a correspondence (i.e., a set-valued map) at time t, inducing distributional uncertainty in
the next-state configuration.

(iv) r : S ×A× S × P(S) 7→ R is a one-step Borel-measurable reward function.

We proceed to describe the set of policies and the set of uncertain probability measures.

Definition 2.2. Let (S,A, µo,P0:T , r) be given in Definition 2.1.

(i) Define by Π the set of all sequences of Markov policies π0:T such that for t = 0, . . . , T − 1,
πt : S ∋ st 7→ πt(·|st) ∈ P(A) is a so-called Markov kernel.

(ii) Given (µ0:T , π0:T ) ∈ (P(S))T × Π satisfying µ0 = µo, we define by Q(µ0:T , π0:T ) ⊆ P(S ×
(S×A)T ) the subset of all probability measures P := µ0⊗P(µ0,π0,p0)⊗· · ·⊗P(µT−1,πT−1,pT−1)

such that1 for every t = 0, . . . , T − 1,

P(µt,πt,pt) : S ∋ st 7→ P(µt,πt,pt)(dst+1, dat|st) := pt(dst+1|st, at, µt)πt(dat|st)

is a stochastic kernel2 on S × A given S, and pt : S × A × P(S) 7→ P(S) is a stochastic
kernel satisfying that for every (st, at, µt) ∈ S ×A× P(S),

pt(dst+1|st, at, µt) ∈ Pt(st, at, µt).

Denote by V : (P(S))T ∋ µ0:T 7→ V (µ0:T ) ∈ R the robust optimization problem defined by

V (µ0:T ) := sup
π0:T∈Π

J(µ0:T , π0:T ),(2.2)

1For every t = 0, . . . , T−1, µ0⊗P(µ0,π0,p0)⊗· · ·⊗P(µt,πt,pt) denotes an element in P(S×(S×A)t+1) satisfying
that for every B ∈ BS×(S×A)t+1 ,

µ0 ⊗ P(µ0,π0,p0) ⊗ · · · ⊗ P(µt,πt,pt)(B)

:=

∫
S

∫
S×A

· · ·
∫
S×A

1{(s0,s1,a0,...,st+1,at)∈B} P(µt,πt,pt)(dst+1, dat|st) · · ·P(µ0,π0,p0)(ds1, da0|s0)µ0(ds0).

2Throughout the paper, a stochastic kernel p on X2 given X1, for some Borel spaces X1 and X2, is defined as
a Borel-measurable mapping from X1 to P(X2).
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where the worst-case objective J : (P(S))T ×Π ∋ (µ0:T , π0:T ) 7→ J(µ0:T , π0:T ) ∈ R is given by

J(µ0:T , π0:T ) := inf
P∈Q(µ0:T ,π0:T )

EP

[
T−1∑
t=0

r(st, at, st+1, µt)

]
.(2.3)

We now introduce what we refer to as a mean field equilibrium under model uncertainty.

Definition 2.3 (Mean-field equilibrium). We call (µ∗
0:T , π

∗
0:T , p

∗
0:T ) a mean-field equilibrium of the

mean-field Markov game (S,A, µo,P0:T , r) (see Definition 2.1) if the following conditions hold:

(i) (π∗
0:T , p

∗
0:T ) are optimal for V (µ∗

0:T ), i.e., π∗
0:T is the optimal Markov policy of V (µ∗

0:T ) and
p∗0:T is the worst-case transition kernel of V (µ∗

0:T ) under (µ∗
0:T , π

∗
0:T ), i.e.,

V (µ∗
0:T ) = J(µ∗

0:T , π
∗
0:T ) = sup

π0:T∈Π
EP(µ∗

0:T ,π0:T ,p∗
0:T )

[
T−1∑
t=0

r(st, at, st+1, µ
∗
t )

]

= EP∗

[
T−1∑
t=0

r(st, at, st+1, µ
∗
t )

]
,

where for every π0:T ∈ Π,

P(µ∗
0:T , π0:T , p

∗
0:T ) := µ∗

0 ⊗ P(µ∗
0 ,π0,p∗

0)
⊗ · · · ⊗ P(µ∗

T−1,πT−1,p∗
T−1)

∈ Q(µ∗
0:T , π0:T ),(2.4)

and P∗ := P(µ∗
0:T , π

∗
0:T , p

∗
0:T ) ∈ Q(µ∗

0:T , π
∗
0:T ) (see Definition 2.2).

(ii) µ∗
0:T satisfies that µ∗

0(·) = µo(·) and for every t = 0, . . . , T − 2,

µ∗
t+1(·) =

∫
S×A

p∗t (·|st, at, µ∗
t )π

∗
t (dat|st)µ∗

t (dst).

2.3. Multi-agent Markov games under model uncertainty. We aim to obtain approximate
Markov-Nash equilibria under model uncertainty by using mean-field equilibria under model un-
certainty. To that end, in this section, we introduce the framework for multi-agent Markov games
under model uncertainty and the notion of their Markov-Nash equilibria.

Let N ∈ N be the number of agents and, as before, S and A be the state and action spaces,
respectively. For i = 1, . . . , N , denote by sit ∈ S and ait ∈ A the state and action configurations of
the agent i at time t, respectively. Then we set

sNt := (s1t , . . . , s
N
t ) ∈ SN , aNt := (a1t , . . . , a

N
t ) ∈ AN

to be the state and action configurations of all N agents at time t, respectively, and denote by

eN (sNt ) :=
1

N

N∑
i=1

δsit ∈ P(S)(2.5)

the empirical distribution of sNt , where δs ∈ P(S) denotes the Dirac measure at s ∈ S.

Definition 2.4 (Multi-agent Markov game). Set N ∈ N. For each t = 0, . . . , T−1, let Pt : S×A×
P(S) ∋ (st, at, µt) ↠ Pt(st, at, µt) ⊆ P(S) be the correspondence at time t given in Definition 2.1.
Then an N agent Markov game under model uncertainty, say (S,A, µo,PN

0:T , r | N,P0:T ), comprises
the following:

(i) (S,BS) and (A,BA) are Borel spaces for the state and action spaces, respectively.
(ii) s10, . . . , s

N
0 are independent and identically distributed according to µo ∈ P(S). Further-

more, denote by µo,N (dsN0 ) :=
∏N

i=1 µ
o(dsi0) ∈ P(SN ).
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(iii) For every t = 0, . . . , T − 1, set PN
t : SN ×AN ∋ (sNt , aNt ) ↠ PN

t (sNt , aNt ) ⊆ P(SN ) to be a
correspondence at time t so that for every (sNt , aNt ) ∈ SN ×AN ,

PN
t (sNt , aNt ) :=

{
PN

t (dsNt+1) :=

N∏
i=1

Pi
t(ds

i
t+1)

∣∣∣∣∣ for every i = 1, . . . , N ,

Pi
t(ds

i
t+1) ∈ Pt(s

i
t, a

i
t, e

N (sNt ))

}
,

where eN (·) is given in (2.5).
(iv) r : S ×A× S × P(S) 7→ R is a one-step Borel-measurable reward function.

Next, we introduce the set of Markov policies for the multi-agent model given in Definition 2.4
and the set of probability measures that induce model uncertainty in the underlying Markov game.

Definition 2.5. Given N ∈ N, let (S,A, µo,PN
0:T , r | N,P0:T ) be given in Definition 2.4.

(i) Denote by ΠN the N -tuple of sequences of Markov policies πN
0:T :=

∏N
i=1 π

i
0:T defined for

every t = 0, . . . , T − 1 by

πN
t : SN ∋ sNt 7→ πN

t (daNt |sNt ) :=
N∏
i=1

πi
t(da

i
t|sit) ∈ P(AN ),

where for every i = 1, . . . , N , πi
t : S 7→ P(A) denotes the Markov policy of agent i at time t.

(ii) Given πN
0:T ∈ ΠN , define by QN (µo, πN

0:T ) ⊆ P(SN × (SN × AN )T ) the subset of all prob-
ability measures PN

:= µo,N ⊗ PN

(πN
0 ,pN

0 ) ⊗ · · · ⊗ PN

(πN
T−1,p

N
T−1)

such that for t = 0, . . . , T − 1,

PN

(πN
t ,pN

t ) : S
N ∋ sNt 7→ PN

(πN
t ,pN

t )(ds
N
t+1, da

N
t |sNt ) := pNt (dsNt+1|sNt , aNt )πN

t (daNt |sNt )

is a stochastic kernel on SN × AN given SN , where pNt : SN × AN 7→ P(SN ) satisfies for
every (sNt , aNt ) ∈ SN ×AN that

pNt (dsNt+1|sNt , aNt ) :=

N∏
i=1

pit(ds
i
t+1|sNt , aNt ) ∈ PN

t (sNt , aNt )

with corresponding stochastic kernels pit : S
N ×AN 7→ P(S), i = 1, . . . , N .

Having completed the description of the multi-agent Markov game under model uncertainty, we
can proceed to describe the worst-case objective function of the individual agent: Given N ∈ N,
the worst-case objective function JN

i : P(S) × ΠN ∋ (µo, πN
0:T ) 7→ JN

i (µo, πN
0:T ) ∈ R of agent i,

i ∈ {1, . . . , N}, is given by

JN
i (µo, πN

0:T ) := inf
PN∈QN (µo,πN

0:T )

EPN

[
T−1∑
t=0

r
(
sit, a

i
t, s

i
t+1, e

N (sNt )
)]

.(2.6)

Finally, we introduce the notion of a Markov-Nash equilibrium for the multi-agent Markov
game under model uncertainty.

Definition 2.6 (Markov-Nash equilibria). Given N ∈ N, we say (π∗,1
0:T , . . . , π

∗,N
0:T ) is a Markov-

Nash equilibrium of the N agent Markov game (S,A, µo,PN
0:T , r | N,P0:T ) (see Definition 2.4) if

π
N |∗
0:T :=

∏N
i=1 π

∗,i
0:T ∈ ΠN satisfies that3 for every i = 1, . . . , N

JN
i (µo, π

N |∗
0:T ) = sup

π0:T∈Π
JN
i (µo, (π

N |∗,−i
0:T , π0:T )).

3 Denote by (π
N|∗,−i
0:T , π0:T ) ∈ ΠN for every t = 0, . . . , T − 1,

(π
N|∗,−i
t , πt) := πt(dait|sit)

∏N
j=1,j ̸=i π

∗,j
t (dajt |s

j
t ).
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Moreover, for a given ε > 0, we say (π∗,1
0:T , . . . , π

∗,N
0:T ) is an ε-Markov-Nash equilibrium of the N

agent Markov game (S,A, µo, PN
0:T , r | N,P0:T ) if πN |∗

0:T ∈ ΠN satisfies for every i = 1, . . . , N that

JN
i (µo, π

N |∗
0:T ) + ε ≥ sup

π0:T∈Π
JN
i (µo, (π

N |∗,−i
0:T , π0:T )).

3. Main results

3.1. Dynamic programming. We first present some tailored dynamic programming results that
will be useful for proving the existence of a mean-field equilibrium under model uncertainty.

Assumption 3.1. (S,A, µo,P0:T , r) given in Definition 2.1 satisfies the following conditions:
(i) S and A are finite subsets of a (possibly different) Euclidean space.
(ii) For every t = 0, . . . , T − 1, Pt is non-empty, convex-valued, compact-valued, and contin-

uous.4 Furthermore, there exists a constant CPt
> 0 such that for every st ∈ S, at ∈ A,

µt, µ̃t ∈ P(S) and for every P ∈ Pt(st, at, µt), there exists P̃ ∈ Pt(st, at, µ̃t) satisfying
dW1

(P, P̃) ≤ CPt
dW1

(µt, µ̃t).
(iii) r is bounded and Lipschitz continuous in P(S), in the sense that there exists some con-

stant Cr > 0, Lr > 0 such that for every st, st+1 ∈ S, at ∈ A, and µt, µ̃t ∈ P(S),
|r(st, at, st+1, µt)| ≤ Cr and |r(st, at, st+1, µt)− r(st, at, st+1, µ̃t)| ≤ LrdW1

(µt, µ̃t).

Let us formulate a sequence of auxiliary mappings V̂0:T backwards recursively as follows: for
t = T − 1, . . . , 0, define V̂t : S × (P(S))T−t 7→ R by setting for every (st, µt:T ) ∈ S × (P(S))T−t

V̂t(st, µt:T ) := sup
π∈P(A)

∫
A

Ĵt(st, at, µt:T )π(dat),(3.1)

where Ĵt : S×A×(P(S))T−t 7→ R is defined as follows: for every (sT−1, aT−1, µT−1) ∈ S×A×P(S)

ĴT−1(sT−1, aT−1, µT−1) := inf
P∈PT−1(sT−1,aT−1,µT−1)

∫
S

r(sT−1, aT−1, sT , µT−1)P(dsT ),(3.2)

whereas if t ≤ T − 2, we set for every (st, at, µt:T ) ∈ S ×A× (P(S))T−t

Ĵt(st, at, µt:T ) := inf
P∈Pt(st,at,µt)

∫
S

(
r(st, at, st+1, µt) + V̂t+1(st+1, µt+1:T )

)
P(dst+1),(3.3)

with P0:T given in Definition 2.1.
Finally, we define V̂ : (P(S))T 7→ R by setting for every µ0:T ∈ (P(S))T

V̂ (µ0:T ) :=

∫
S

V̂0(s0, µ0:T )µ0(ds0).(3.4)

Lemma 3.2. Suppose that Assumption 3.1 is satisfied. Let V̂0:T and Ĵ0:T be given in (3.1) and
(3.2)–(3.3), respectively. Then the following statements hold for every t = 0, . . . , T − 1.

(i) (Minimizer of Ĵt) There exists a measurable selector

p̂t : S ×A× (P(S))T−t ∋ (st, at, µt:T ) 7→ p̂t(·|st, at, µt:T ) ∈ Pt(st, at, µt)

satisfying that if t = T − 1, then for every (sT−1, aT−1, µT−1) ∈ S ×A× P(S)

ĴT−1(sT−1, aT−1, µT−1) =

∫
S

r(sT−1, aT−1, sT , µT−1)p̂T−1(dsT |sT−1, aT−1, µT−1),(3.5)

4A correspondence between topological spaces is continuous if it is both lower- and upper-hemicontinuous (see,
e.g., [2, Definition 17.2, p. 558]).
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whereas if t ≤ T − 2, then for every (st, at, µt:T ) ∈ S ×A× (P(S))T−t

Ĵt(st, at, µt:T ) =

∫
S

(
r(st, at, st+1, µt) + V̂t+1(st+1, µt+1:T )

)
p̂t(dst+1|st, at, µt:T ).(3.6)

(ii) (Maximizer of V̂t) There exists a measurable selector

π̂t : S × (P(S))T−t ∋ (st, µt:T ) 7→ π̂t(·|st, µt:T ) ∈ P(A)

satisfying that for every (st, µt:T ) ∈ S × (P(S))T−t

V̂t(st, µt:T ) =

∫
A

Ĵt(st, at, µt:T )π̂t(dat|st, µt:T ).(3.7)

Remark 3.3. Berge’s maximum theorem (see, e.g., [2, Theorem 17.31]), as presented in the proof
of Lemma 3.2, ensures the existence of measurable selectors p̂0:T and π̂0:T , as well as the following
under the assumption therein: for every t ≤ T − 2, the correspondence P̂t : S ×A× (P(S))T−t ∋
(st, at, µt:T ) ↠ P̂t(st, at, µt:T ) ⊆ P(S) defined by

P̂t(st, at, µt:T ) :=

P ∈ Pt(st, at, µt)

∣∣∣∣∣∣∣
∫
S

(
r(st, at, st+1, µt) + V̂t+1(st+1, µt+1:T )

)
P(dst+1)

= Ĵt(st, at, µt:T )


is non-empty, compact-valued, and upper-hemicontinuous (see [2, Theorem 17.31 (2.), (3.)]). Fur-
thermore, since Pt is convex-valued (see Assumption 3.1 (ii)), so is P̂t. These observations will
be used in Section 3.2.

As a consequence of Lemma 3.2, we obtain the following dynamic programming principle result.

Proposition 3.4. Suppose that Assumption 3.1 is satisfied. Let V̂0:T and Ĵ0:T be given in (3.1)
and (3.2)–(3.3), respectively. Given µ̃0:T ∈ (P(S))T , the following hold for every t = 0, . . . , T − 1:

(i) There exists a stochastic kernel p∗t : S × A× P(S) 7→ P(S) so that if t = T − 1, then for
every (sT−1, aT−1) ∈ S ×A

ĴT−1(sT−1, aT−1, µ̃T−1) =

∫
S

r(sT−1, aT−1, sT , µ̃T−1)p
∗
T−1(dsT |sT−1, aT−1, µ̃T−1),(3.8)

whereas if t ≤ T − 2, then for every (st, at) ∈ S ×A

Ĵt(st, at, µ̃t:T ) =

∫
S

(
r(st, at, st+1, µ̃t) + V̂t+1(st+1, µ̃t+1:T )

)
p∗t (dst+1|st, at, µ̃t).(3.9)

Furthermore, there exists a Markov policy π∗
t : S 7→ P(A) so that for every st ∈ S

V̂t(st, µ̃t:T ) =

∫
A

Ĵt(st, at, µ̃t:T )π
∗
t (dat|st).(3.10)

(ii) Let p∗0:T and π∗
0:T be defined as in (i). Define P∗(µ̃0:T ) ∈ Q(µ̃0:T , π

∗
0:T ) by

P∗(µ̃0:T ) := P(µ̃0:T , π
∗
0:T , p

∗
0:T ) := µ̃0 ⊗ P(µ̃0,π∗

0 ,p
∗
0)

⊗ · · · ⊗ P(µ̃T−1,π∗
T−1,p

∗
T−1)

.

Then V (µ̃0:T ) given in (2.2) is equal to V̂ (µ̃0:T ) given in (3.4), and (π∗
0:T , p

∗
0:T ) are optimal

for V (µ̃0:T ), i.e.,

V (µ̃0:T ) = J(µ̃0:T , π
∗
0:T ) = sup

π0:T∈Π
EP(µ̃0:T ,π0:T ,p∗

0:T )

[
T−1∑
t=0

r(st, at, st+1, µ̃t)

]

= EP∗(µ̃0:T )

[
T−1∑
t=0

r(st, at, st+1, µ̃t)

]
,

(3.11)

with P(µ̃0:T , π0:T , p
∗
0:T ) := µ̃0 ⊗ P(µ̃0,π0,p∗

0)
⊗ · · · ⊗ P(µ̃T−1,πT−1,p∗

T−1)
∈ Q(µ̃0:T , π0:T ).
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The proofs of Lemma 3.2 and Proposition 3.4 are presented in Section 5.1.
Next, we revisit the multi-agent Markov game given in Definitions 2.4 and 2.5 to obtain the

corresponding dynamic programming principle result. This will be useful in Section 3.3 for deter-
mining the worst-case transition kernel for any given Markov policy.

Set N ∈ N, and let πN
0:T ∈ ΠN and i ∈ {1, . . . , N}. Define a sequence of mappings ĴN

0:T,i(·, ·;πN
0:T )

backwards recursively as follows: Define for every (sNT−1, a
N
T−1) ∈ SN ×AN

ĴN
T−1,i(s

N
T−1, a

N
T−1;π

N
0:T ) := inf

P∈PN
T−1(s

N
T−1,a

N
T−1)

∫
SN

r
(
siT−1, a

i
T−1, s

i
T , e

N (sNT−1)
)
P(dsNT ),(3.12)

and for t ≤ T − 2, define for every (sNt , aNt ) ∈ SN ×AN

ĴN
t,i(s

N
t , aNt ;πN

0:T ) := inf
P∈PN

t (sNt ,aN
t )

∫
SN

(
r
(
sit, a

i
t, s

i
t+1, e

N (sNt )
)

+

∫
AN

ĴN
t+1,i(s

N
t+1, a

N
t+1;π

N
0:T )π

N
t+1(da

N
t+1|sNt+1)

)
P(dsNt+1),

(3.13)

with PN
0:T given in Definition 2.4.

Lemma 3.5. Suppose that Assumption 3.1 is satisfied. Set N ∈ N, and let πN
0:T ∈ ΠN and

i ∈ {1, . . . , N}. Furthermore, let ĴN
0:T,i(·, ·;πN

0:T ) be given in (3.12) and (3.13). Then for every
t = 0, . . . , T − 1, there exists a measurable selector (i.e., minimizer for ĴN

t,i(·, ·;πN
0:T ))

p̂(t,i,πN
0:T ) : S

N ×AN ∋ (sNt , aNt ) 7→ p̂(t,i,πN
0:T )(·|sNt , aNt ) ∈ PN

t (sNt , aNt )

satisfying that if t = T − 1, then for every (sNT−1, a
N
T−1) ∈ SN ×AN

ĴN
T−1,i(s

N
T−1, a

N
T−1;π

N
0:T ) =

∫
SN

r
(
siT−1, a

i
T−1, s

i
T , e

N (sNT−1)
)
p̂(T−1,i,πN

0:T )(ds
N
T |sNT−1, a

N
T−1),

whereas if t ≤ T − 2, then for every (sNt , aNt ) ∈ SN ×AN

ĴN
t,i(s

N
t , aNt ;πN

0:T ) =

∫
SN

(
r
(
sit, a

i
t, s

i
t+1, e

N (sNt )
)

+

∫
AN

ĴN
t+1,i(s

N
t+1, a

N
t+1;π

N
0:T )π

N
t+1(da

N
t+1|sNt+1)

)
p̂(t,i,πN

0:T )(ds
N
t+1|sNt , aNt ).

As a consequence of Lemma 3.5, we obtain the following result.

Proposition 3.6. Suppose that Assumption 3.1 is satisfied. For every i ∈ {1, . . . , N}, initial
distribution µo, and πN

0:T ∈ ΠN , let p̂(0:T,i,πN
0:T ) be given in Lemma 3.5. Then

PN
(µo, πN

0:T , p̂(0:T,i,πN
0:T )) := µo,N ⊗ PN

(πN
0 ,p̂

(0,i,πN
0:T

)
) ⊗ · · · ⊗ PN

(πN
T−1,p̂(T−1,i,πN

0:T
)
) ∈ QN (µo, πN

0:T )

is the worst-case measure for JN
i (µo, πN

0:T ) (given in (2.6)), i.e.,

JN
i (µo, πN

0:T ) = EPN
(µo,πN

0:T ,p̂
(0:T,i,πN

0:T
)
)

[
T−1∑
t=0

r
(
sit, a

i
t, s

i
t+1, e

N (sNt )
)]

=

∫
SN

∫
AN

ĴN
0,i(s

N
0 , aN0 )πN

0 (daN0 |sN0 )µo,N (dsN0 ),

with ĴN
0,i given in (3.13).

The proofs of Lemma 3.5 and Proposition 3.6 can be found in Section 5.2.
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3.2. Existence of mean-field equilibrium. Using the results of the dynamic programming
principle derived for the mean-field Markov game in Section 3.1, along with Kakutani’s fixed
point theorem (see, e.g., [2, Corollary 17.55, p. 583]), we will demonstrate the existence of a
mean-field equilibrium under model uncertainty in Theorem 3.10.

Definition 3.7. Set Ξ := (P(S × A))T . For ν0:T ∈ Ξ and t = 0, . . . , T − 1, denote by νt,S the
marginal of νt ∈ P(S ×A) on S, i.e., νt,S(·) := νt(· ×A) ∈ P(S). Furthermore, denote by

πν
t : S ∋ st 7→ πν

t (·|st) ∈ P(A)

the disintegrating kernel of νt with respect to νt,S , i.e., νt(dst, dat) = πν
t (dat|st)νt,S(dst).

Definition 3.8. Let Ξ be given in Definition 3.7. Let P̂0:T−1 be given in Remark 3.3. Further-
more, let Ĵ0:T be given in (3.2) and (3.3). Define the following correspondences:

(i) C : Ξ ∋ ν0:T ↠ C(ν0:T ) ⊆ Ξ is defined by

C(ν0:T ) :=
{
ν̃0:T ∈ Ξ

∣∣∣ ν̃0,S = µo and for every t = 0, . . . , T − 2, there exists

pν̃t : S ×A× (P(S))T−t ∋ (st, at, µt:T ) 7→ pν̃t (·|st, at, µt:T ) ∈ P(S)

s.t. for every (st, at) ∈ S ×A, pν̃t (·|st, at, νt:T,S) ∈ P̂t(st, at, νt:T,S)

and ν̃t+1,S(·) =
∫
S×A

pν̃t (·|st, at, νt:T,S)νt(dst, dat)

}
,

and B : Ξ ∋ ν0:T ↠ B(ν0:T ) ⊆ Ξ is defined by

B(ν0:T ) :=
{
ν̃0:T ∈ Ξ

∣∣∣ for every t = 0, . . . , T − 1, ν̃t(Dt(νt:T )) = 1

}
,

where Dt(νt:T ) :=
{
(st, at) ∈ S ×A | maxa′

t∈A Ĵt(st, a
′
t, νt:T,S) = Ĵt(st, at, νt:T,S)

}
.

(ii) Γ : Ξ ∋ ν0:T ↠ Γ(ν0:T ) ⊆ Ξ is defined by

Γ(ν0:T ) := C(ν0:T ) ∩ B(ν0:T ).

We say ν0:T ∈ Ξ is a fixed point of Γ if ν0:T ∈ Γ(ν0:T ).

Proposition 3.9. Suppose that Assumption 3.1 is satisfied. Then the following hold:
(i) The correspondence Γ given in Definition 3.8 (ii) is non-empty and convex-valued.
(ii) The graph of Γ, i.e. Gr(Γ) := {(ν0:T , ξ0:T ) ∈ Ξ× Ξ | ξ0:T ∈ Γ(ν0:T )}, is closed.
(iii) There exists a fixed point ν∗0:T ∈ Ξ of Γ, i.e., ν∗0:T ∈ Γ(ν∗0:T ).

Using a fixed point ν∗0:T ∈ Ξ of Γ together with the measurable selectors given in Lemma 3.2,
we obtain the following main theorem.

Theorem 3.10. Let (S,A, µo,P0:T , r) be the mean-field Markov game under model uncertainty
given in Definition 2.1. Suppose that Assumption 3.1 is satisfied. Then there exists a mean-field
equilibrium (µ∗

0:T , π
∗
0:T , p

∗
0:T ) of (S,A, µo,P0:T , r) (see Definition 2.3).

The proofs of Proposition 3.9 and Theorem 3.10 can be found in Section 6.

3.3. Existence of approximate Markov-Nash equilibrium. Fix a mean-field equilibrium
(µ∗

0:T , π
∗
0:T , p

∗
0:T ) of the mean-field Markov game (S,A, µo,P0:T , r) (whose existence is ensured by

Theorem 3.10 under the assumption therein).
In the following, we demonstrate that under certain assumptions, the optimal policy π∗

0:T of the
mean-field equilibrium constitutes an approximate Markov-Nash equilibrium of the multi-agent
Markov game given in Definitions 2.4 and 2.5. To that end, we first introduce some key notions
related to worst-case measures describing the multi-agent Markov game for a given policy.
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Definition 3.11 (Worst-case measures). Let (π
(N)
0:T )N∈N ⊆ Π be a sequence of arbitrary Markov

policies. For every N ∈ N and i ∈ {1, . . . , N}, we introduce the following.
(i) Denote by

P∗|(N) := P(µ∗
0:T , π

(N)
0:T , p∗0:T ) ∈ Q(µ∗

0:T , π
(N)
0:T ),

where P(µ∗
0:T , π

(N)
0:T , p∗0:T ) is given in (2.4). Moreover, if π(N)

0:T = π∗
0:T , then we denote by

P∗ := P∗(µ∗
0:T ) = P∗|(N) ∈ Q(µ∗

0:T , π
∗
0:T )

the worst-case measure for V (µ∗
0:T ) (see Proposition 3.4 (ii)).

(ii) For every t ∈ {0, . . . , T − 1}, denote by

π
N |(N)
t,i : SN ∋ sNt 7→ π

N |(N)
t,i (daNt |sNt ) := π

(N)
t (dait|sit)

N∏
j=1,j ̸=i

π∗
t (da

j
t |s

j
t ),

p
N |(N)
t,i : SN ×AN ∋ (sNt , aNt ) 7→ p

N |(N)
t,i (dsNt+1|sNt , aNt ) := p̂

(t,i,π
N|(N)
0:T,i )

(dsNt+1|sNt , aNt )

a Markov policy and a stochastic kernel, respectively, where p̂
(t,i,π

N|(N)
0:T,i )

is defined as in

Lemma 3.5 with respect to π
N |(N)
0:T,i . Moreover, let PN |(N)

i ∈ QN (µo, π
N |(N)
0:T,i ) be given by

PN |(N)

i := PN
(µo, π

N |(N)
0:T,i , p

N |(N)
0:T,i ) := µo,N ⊗ PN

(π
N|(N)
0,i ,p

N|(N)
0,i ) ⊗ · · · ⊗ PN

(π
N|(N)
T−1,i ,p

N|(N)
T−1,i )

so that it is the worst-case measure for JN
i (µo, π

N |(N)
0:T,i ) given in (2.6) (see Proposition 3.6).

The notions introduced in the following, which elaborate on certain laws and stochastic kernels
for the one-step reward function r : S × A × S × P(S) 7→ R under the worst-case measures
(described above), will be used in Propositions 3.16 and 3.17.

Definition 3.12 (Laws and kernels under worst-case measures). Let (π
(N)
0:T )N∈N ⊆ Π be a se-

quence of arbitrary Markov policies. For every N ∈ N and i ∈ {1, . . . , N}, we define the following:
Let P∗|(N) ∈ Q(µ∗

0:T , π
(N)
0:T ), P∗ ∈ Q(µ∗

0:T , π
∗
0:T ), and PN |(N)

i ∈ QN (µo, π
N |(N)
0:T,i ) be given in Defini-

tion 3.11. Then for every t = 0, . . . , T − 1,
(i) Denote by

M∗|(N)
t (dst, dat) ∈ P(S ×A), MN |(N)

t,i (dst, dat) ∈ P(S ×A)

the law of (st, at) under P∗|(N) and the law of (sit, ait) under PN |(N)

i , respectively, at time t.
Moreover, if π(N)

0:T = π∗
0:T , then for every t = 0, . . . , T − 1 set

M∗
t (dst, dat) := M∗|(N)

t (dst, dat) ∈ P(S ×A)

to be the law of (st, at) under P∗.
(ii) Denote by

KN |(N)
t,i : S ×A ∋ (st, at) 7→ KN |(N)

t,i (dst+1, dµt|st, at) ∈ P(S × P(S))

the stochastic kernel on S × P(S) given S × A so that KN |(N)
t,i (dst+1, dµt|st, at) is the

conditional law of (sit+1, e
N (sNt )) given (sit, a

i
t) = (st, at) ∈ S ×A under PN |(N)

i at time t.
(iii) Let Q∗|(N)

t ,QN |(N)
t ∈ P(S ×A× S × P(S)) be given by5

Q∗|(N)
t (dst, dat, dst+1, dµt) := p∗t (dst+1|st, at, µt) δµ∗

t
(dµt) M∗|(N)

t (dst, dat),

QN |(N)
t,i (dst, dat, dst+1, dµt) := KN |(N)

t,i (dst+1, dµt|st, at) MN |(N)
t,i (dst, dat),

5Denote by δµ∗
t
∈ P(P(S)) the Dirac measure on P(S) at µ∗

t ∈ P(S).
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so that
· Q∗|(N)

t is the law of (st, at, st+1, µt) under P∗|(N) at time t with µt = µ∗
t .

· QN |(N)
t,i is the law of (sit, ait, sit+1, e

N (sNt )) under PN |(N)

i at time t.
Moreover, if π(N)

0:T = π∗
0:T , we let Q∗

t ∈ P(S ×A× S × P(S)) be given by

Q∗
t := Q∗|(N)

t

so that it is the law of (st, at, st+1, µt) under P∗ at time t with µt = µ∗
t .

In Remark 7.2 (see Section 7.1), we provide explicit characterizations for the laws and stochastic
kernels described in Definition 3.12.

Remark 3.13. Let (π(N)
0:T )N∈N ⊆ Π be a sequence of arbitrary Markov policies. For every N ∈ N,

by the definition of PN
0:T and π

N |(N)
0:T,i (given in Definition 2.4 (iii) and Definition 3.11 (ii), respec-

tively), all of the laws MN |(N)
0:T,i and kernels KN |(N)

0:T,i (given in Definition 3.12 (i), (ii)) are identical

for each i ∈ {1, . . . , N}. Consequently, all the laws QN |(N)
0:T,i are also identical. Therefore, for every

t = 0, . . . , T − 1 we simplify their notations as follows: for every i = 1, . . . , N

MN |(N)
t := MN |(N)

t,i , KN |(N)
t := KN |(N)

t,i , QN |(N)
t := QN |(N)

t,i .

We impose the following conditions on the stochastic kernels KN,N
0:T given in Remark 3.13.

Assumption 3.14. For any (π
(N)
0:T )N∈N ⊆ Π, the following holds: for every t = 0, . . . , T − 1 and

(st, at) ∈ S ×A, as N → ∞,

KN |(N)
t (dst+1, dµt|st, at) ⇀ p∗t (dst+1|st, at, µt) δµ∗

t
(dµt),

where (µ∗
0:T , π

∗
0:T , p

∗
0:T ) is the (fixed) mean-field equilibrium.

Remark 3.15. Under the Nash Certainty Equivalence Principle, the decentralized game without
model uncertainty can be reduced to a single-agent decision (see, e.g., [34]). The state evolution
of a representative agent should be consistent with the total population behavior. To extend this
idea to our framework under model uncertainty, we need to ensure the following.

From an agent’s perspective in (S,A, µo,PN
0:T , r | N,P0:T ), under ‘any’ state and action, her

behavior should converge to the representative agent’s behavior in (S,A, µo,P0:T , r). Additionally,
the behavior of the rest of the population, modeled via the empirical distribution, should converge
to the population’s behavior in (S,A, µo,P0:T , r) (i.e., the state-measure flow µ∗

0:T ). For a sequence
of arbitrary policies (π

(N)
0:T )N∈N ⊆ Π, we observe that as N → ∞, the influence of an individual

agent’s state and action on the overall population becomes increasingly negligible. Since every
other agent follows the mean field equilibrium policy π∗

0:T (see Definition 3.11 (ii)), the overall
state distribution in (S,A, µo,PN

0:T , r | N,P0:T ) should still converge to the state distribution in
the mean-field equilibrium, regardless of the state and action the one individual agent might be in.

If the agent also chooses the mean-field equilibrium policy, i.e., π(N)
0:T := π∗

0:T , we need to ensure
that the state evolution of a representative agent is consistent with the total population behavior
as N → ∞. By the definition of the mean-field equilibrium given in Definition 2.3 (ii), we obtain
such consistency exactly there. Hence, Assumption 3.14 guarantees that as N grows larger, both
the individual and total population behaviors in (S,A, µo,PN

0:T , r | N,P0:T ) converge to a state
under which the Nash Certainty Equivalence Principle will hold.

Proposition 3.16 allows us to connect the expected one-step rewards of (S,A, µo,P0:T , r) and
(S,A, µo,PN

0:T , r | N,P0:T ) by using the laws and kernels given in Definition 3.12 and Remark 3.13.
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Proposition 3.16. Suppose that Assumptions 3.1 and 3.14 are satisfied. Let (π(N)
0:T )N∈N ⊆ Π be

a sequence of arbitrary Markov policies. Moreover, for every N ∈ N, let Q∗|(N)
0:T ,QN |(N)

0:T ⊆ P(S ×
A × S × P(S)) be given in Definition 3.12 (iii) and Remark 3.13, respectively. Then for every
t = 0, . . . , T − 1, the following holds: for every g ∈ Cb(S ×A× S × P(S))

lim
N→∞

∣∣∣EQN|(N)
t

[
g(st, at, st+1, µt)

]
− EQ∗|(N)

t
[
g(st, at, st+1, µt)

]∣∣∣ = 0.(3.14)

As a consequence, we obtain the following.

Proposition 3.17. Suppose that Assumptions 3.1 and 3.14 are satisfied. Let (π(N)
0:T )N∈N ⊆ Π be

a sequence of arbitrary Markov policies. For every N ∈ N, let JN
1 (µo, π

N |(N)
0:T,1 ) be the worst-case

objective function of the agent 1 under (µo, π
N |(N)
0:T,1 ) (see Definition 3.11 (ii)) and let P∗|(N) ∈

Q(µ∗
0:T , π

(N)
0:T ) be given in Definition 3.11 (i). Then it holds that

lim
N→∞

∣∣∣∣∣JN
1 (µo, π

N |(N)
0:T,1 )− EP∗|(N)

[
T−1∑
t=0

r(st, at, st+1, µ
∗
t )

]∣∣∣∣∣ = 0.

The proofs of Proposition 3.16 and 3.17 are presented in Section 7.1.

Remark 3.18. Since V (µ∗
0:T ) = EP∗(µ∗

0:T )[
∑T−1

t=0 r(st, at, st+1, µ
∗
t )] (see Proposition 3.4 (ii)),

lim
N→∞

JN
1 (µo, π

N |∗
0:T ) = V (µ∗

0:T )

follows directly from Proposition 3.17 (with π
N |∗
0:T defined in (3.15)).

Combining Propositions 3.16 and 3.17 with the optimality of π∗
0:T in the mean-field equilib-

rium (see Definition 2.3 (i)), we conclude in Theorem 3.19 that the Markov policy π∗
0:T forms an

approximate Markov-Nash equilibrium. The corresponding proof can be found in Section 7.2.

Theorem 3.19. Suppose that Assumptions 3.1 and 3.14 are satisfied. Then for any given ε > 0,
there exists N(ε) ∈ N such that for each N ≥ N(ε), (π∗

0:T , · · · , π∗
0:T ) is an ε-Markov-Nash equi-

librium of (S,A, µo,PN
0:T , r | N,P0:T ) (see Definition 2.6), i.e., π

N |∗
0:T ∈ ΠN defined for every

t = 0, . . . , T − 1 by

π
N |∗
t : SN ∋ sNt 7→ π

N |∗
t (daNt |sNt ) :=

∏N
j=1 π

∗
t (da

j
t |s

j
t )(3.15)

satisfies that for every i = 1, . . . , N , JN
i (µo, π

N |∗
0:T ) + ε ≥ supπ0:T∈Π JN

i (µo, (π
N |∗,−i
0:T , π0:T )).

4. Numerical example: Crowd motion under model uncertainty

Based on Proposition 3.4 and Theorem 3.10, we derive an iterative scheme that allows to com-
pute approximately a mean-field equilibrium (µ∗

0:T , π
∗
0:T , p

∗
0:T ) of (S,A, µo,P0:T , r). We provide a

pseudo-code in Algorithm 1 to show how it can be implemented.6

The algorithm proceeds as follows: Starting with given µ∗
0:T ∈ (P(S))T , we apply the dynamic

programming results as described in (3.1)–(3.4) to derive the worst-case kernels p∗0:T and optimal
Markov policies π∗

0:T for V (µ∗
0:T ) (see Proposition 3.4). Next, we update µ∗

0:T by constructing a
new sequence of state measures in the sense of Definition 2.3 (ii). This process is iterated until
we attain a fixed point (µ∗

0:T , π
∗
0:T , p

∗
0:T ) in the sense of Proposition 3.9 and Theorem 3.10. Note

that as S and A are finite, in line with Assumption 3.1 (i), we will construct the corresponding
probability measures by interpreting them as elements of a simplex in an Euclidean space.

6All the numerical experiments have been performed with the following hardware configurations: a Macbook
Air with Apple M1 chip, 8 GBytes of memory, and Mac OS 13.0. All the codes are provided in the following link:
https://github.com/JoLa2606/robust_MFE/

https://github.com/JoLa2606/robust_MFE/
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Algorithm 1 An iteretative scheme for mean-field equilibrium (MFE) under model uncertainty
1: Input: (S,A) with n(S), n(A) < ∞ (satisfying Assumption 3.1 (i)), µo ∈ P(S) (i.e., initial distribution),

(P0:T , r) (satisfying Assumption 3.1 (ii), (iii)), and µ∗
0:T ∈ (P(S))T (a priori arbitrarily chosen);

2: Function MFE
(
µ∗
0:T ; S,A, µo,P0:T , r

)
:

3: Set µ∗
0 := µo;

4: while µ∗
1:T still changes

5: for t = T − 1 to 0

6: for i = 1 to n(S)

7: for j = 1 to n(A)

8: if t = T − 1

9: Compute p∗T−1(· | si, aj , µ
∗
T−1) ∈ PT−1(si, aj , µ

∗
T−1) so that

ĴT−1(si, aj , µ
∗
T−1) =

∑
s∈S r(si, aj , s, µ

∗
T−1)p

∗
T−1(s | si, aj , µ∗

T−1);
10: else
11: Compute p∗t (· | si, aj , µ∗

t ) ∈ Pt(si, aj , µ
∗
t ) so that

Ĵt(si, aj , µ
∗
t:T ) =

∑
s∈S

(
r(si, aj , s, µ

∗
t ) + V̂t+1(st+1, µ∗

t+1:T )
)
p∗t (s | si, aj , µ∗

t );
12: end
13: Compute π∗

t (· | si) ∈ P(A) so that V̂t(si, µ
∗
t:T ) =

∑
a∈A Ĵt(si, a, µ

∗
t:T )π∗

t (a|si);
14: end
15: end
16: for t = T − 2 to 0

17: Update µ∗
t+1 so that µ∗

t+1(si) :=
∑

s∈S

∑
a∈A p∗t (si|s, a, µ∗

t )π
∗
t (a|s)µ∗

t (s) ∀i = 1, . . . , n(S);
18: end
19: end
20: Return (µ∗

0:T , π∗
0:T , p∗0:T )

We consider the following model, which can be found in [41, Section 5.7] and is inspired by the
model studied in [20], and extend it by allowing for model uncertainty.

Definition 4.1. Let S := {0, 1, . . . , 4} and A := {−1, 0, 1} be state and action spaces, respectively.
Furthermore, let T := 2 be the time horizon, and let λ ≥ 0 and c > 0 be given. Agents can decide
to move along the one-dimensional (1D) grid world S in both directions or stay where they are;
we model these actions by left = −1, stay = 0, or right = 1.

(i) For every t = 0, 1, define Pλ
t : S ×A× P(S) ∋ (st, at, µt) ↠ Pλ

t (st, at, µt) ⊆ P(S) by

Pλ
t (st, at, µt) :=

{
P ∈ P(S)

∣∣∣ dW1

(
P, po(·|st, at, µt)

)
≤ λ

}
,

where dW1
(·, ·) is the 1-Wasserstein distance on S and po : S × A × P(S) ∋ (st, at, µt) 7→

po(·|st, at, µt) ∈ P(S) is a reference stochastic kernel on S given S×A×P(S) so that under
po(·|st, at, µt), st+1 satisfies

st+1 =

{
st + at + εt+1 if st + at + εt+1 ∈ S,

st else,

where εt+1 is independently identically distributed according to a uniform distribution with
values in A.

(ii) Define r : S ×A× S × P(S) 7→ R by setting for every (s, a, ŝ, µ) ∈ S ×A× S × P(S),

r(s, a, ŝ, µ) :=
(
1− 1

2
|ŝ− 2|

)
− |a|

4
− log

(
µ(ŝ) + c

)
.

Lemma 4.2. Under the setup given in Definition 4.1, let λ ≥ 0 and c > 0 be given. Then, the
set-valued maps Pλ

0:T and the one-step reward function r satisfy Assumption 3.1 (ii) and (iii).

The proof of the above lemma can be found in Appendix A.
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∗
0:2) with respect to uncertainty level λ.

Remark 4.3. The one-step reward r is designed to encourage the agent to move toward the center
while avoiding overly crowded areas. Additionally, it discourages unnecessary movement unless
it is beneficial. The parameter c allows to model the degree of aversion of crowds. According
to the reference kernel po, the agent can either remain in her current position or move to one
of the adjacent positions. Moreover, the random disturbance εt+1 may influence the dynamics,
representing scenarios such as a concert where people prefer to be near the center but also wish to
avoid excessively crowded spots. Agents try to move around in front of the stage based on their
own actions but can also be randomly pushed around by the crowd.

Explicitly, we fix c = 10−7 and consider different levels of uncertainty λ ∈
{
0, 1

4 ,
1
3 ,

1
2 , 1

}
. Let

µo = (wµo

0 , . . . , wµo

4 ) = (0.2, 0.1, 0.05, 0.25, 0.4) be the initial state distribution.
Fig. 1(a) shows that the expected value V (µ∗

0:2) decreases as the uncertainty λ increases, which
is expected since a higher uncertainty level entails a potentially worse scenario.

Examining the state-flow measure µ∗
1 at t = 1, in Fig. 1(b) we observe that in the absence of

model uncertainty, the majority of the weight is concentrated at the center position s = 2, with
some weight distributed to the adjacent positions s = 1 and s = 3. The least weight is found at
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the extreme positions s = 0 and s = 4. This distribution can be interpreted that most individuals
move towards the center, while a few choose to remain at the sides to avoid overcrowding. Whereas
if the level of uncertainty increases, the distribution shifts, resulting in more weight being moved
away from the center and an increase in the mass at s = 3. With large uncertainty, the mass is
almost entirely shifted to the boundaries, s = 0 and s = 4. Similar effects are observed in the
state-flow measure µ∗

2 at t = 2, as shown in Fig. 1(c).
Fig. 2 shows the sensitivity of the optimal pair (π∗

0:2, p
∗
0:2) in the mean-field equilibrium with

respect to uncertainty level λ.
Although it is hard to interpret the sensitivity of the worst-case stochastic kernels p∗0:2 shown

in Fig. 2 (a)–(d), we can at least observe that our model uncertainty framework described in
Definition 4.1 (i) is working non-trivially.

Without model uncertainty, i.e. λ = 0, the strategy π∗
0 at time t = 0 makes the agent move to

the center s = 2 as the center is not crowded yet, as shown in Fig. 2 (e), (f). Indeed, we have seen
in Fig. 1(b) that the weight of µ∗

1 at s = 2 is dominant. On the other hand, to avoid the crowd at
time t = 1, it becomes beneficial to stay at s = 3 rather than trying to move to the center s = 2

while those already at the center remain there, as shown in Fig. 2 (g), (h).
As the uncertainty level increases, we observe some interesting effects. In Fig. 2 (a)–(d), similar

developments are observed across all presented scenarios for the worst-case kernels p∗0 and p∗1. With
increasing uncertainty, the probability of getting shifted to overly crowded areas, particularly to
s = 4, increases. In Fig. 2(e), the optimal strategy shifts from attempting to move towards the
center, s = 2, to staying at s = 0, i.e., avoiding movement to the right. Fig. 2(g) shows a similar
effect: although being in the center is highly beneficial, the optimal strategy π∗

1(· | 2) becomes
to resist moving to the crowded areas (s = 3 and s = 4). In Fig. 2(h), to avoid staying in the
overly crowded area s = 3 or moving to s = 4, π∗

1(· | 3) changes in order to try to move towards
the center.

5. Proof of results in Section 3.1

5.1. Proof of Lemma 3.2 and Proposition 3.4.

Lemma 5.1. Suppose that Assumption 3.1 is satisfied. Let V̂0:T be given in (3.1). Fix any
t ∈ {0, 1, . . . , T − 2} and assume that there exist some constants Ĉt+1 ≥ 1 and L̂t+1 > 0 such that
for every st+1 ∈ S and every µt+1:T , µ̃t+1:T ∈ (P(S))T−t−1, it holds that

|V̂t+1(st+1, µt+1:T )| ≤ Ĉt+1,∣∣∣V̂t+1(st+1, µt+1:T )− V̂t+1(st+1, µ̃t+1:T )
∣∣∣ ≤ L̂t+1

T−1∑
u=t+1

dW1(µu, µ̃u).
(5.1)

Then the following hold:

(i) Ĵt given in (3.3) is continuous on S × A × (P(S))T−t. Furthermore, there exists a mea-
surable selector p̂t : S × A × (P(S))T−t ∋ (st, at, µt:T ) 7→ p̂t(·|st, at, µt:T ) ∈ Pt(s,at, µt)

satisfying (3.6).
(ii) There exists a constant K̂t > 0 such that for every st ∈ S, at ∈ A, and every µt:T , µ̃t:T ∈

(P(S))T−t, |Ĵt(st, at, µt:T )− Ĵt(st, at, µ̃t:T )| ≤ K̂t

∑T−1
u=t dW1

(µu, µ̃u).

(iii) V̂t is continuous on S × (P(S))T−t. Furthermore, there exists a measurable selector π̂t :

S × P(S)T−t ∋ (st, µt:T ) 7→ π̂t(·|st, µt:T ) ∈ P(A) satisfying (3.7).
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(iv) There exist some constants Ĉt ≥ 1 and L̂t > 0 such that for every st ∈ S and every
µt:T , µ̃t:T ∈ (P(S))T−t,

|V̂t(st, µt:T )| ≤ Ĉt,
∣∣∣V̂t(st, µt:T )− V̂t(st, µ̃t:T )

∣∣∣ ≤ L̂t

T−1∑
u=t

dW1
(µu, µ̃u).

Proof. We start by proving (i). To that end, set

S :=
{
(st, at, µt:T , pt)

∣∣∣(st, at, µt:T ) ∈ S ×A× (P(S))T−t, pt ∈ Pt(st, at, µt)
}

and define an auxiliary map F : S ∋ (st, at, µt:T , pt) 7→ F (st, at, µt:T , pt) ∈ R by

F (st, at, µt:T , pt) :=

∫
S

(
r(st, at, st+1, µt) + V̂t+1(st+1, µt+1:T )

)
pt(dst+1).

Then we consider a sequence (snt , a
n
t , µ

n
t:T , p

n
t )n∈N ⊆ S such that (snt , ant ) → (s⋆t , a

⋆
t ), µ

n
u ⇀ µ⋆

u (for
every u = t, . . . , T − 1), and pnt ⇀ p⋆t as n → ∞, with some (s⋆t , a

⋆
t , µ

⋆
t:T , p

⋆
t ) ∈ S.

By the triangle inequality, for every n ∈ N,

|F (snt , a
n
t , µ

n
t:T , p

n
t )− F (s⋆t , a

⋆
t , µ

⋆
t:T , p

⋆
t )|

≤ |F (s⋆t , a
⋆
t , µ

⋆
t:T , p

n
t )− F (s⋆t , a

⋆
t , µ

⋆
t:T , p

⋆
t )|+ |F (snt , a

n
t , µ

n
t:T , p

n
t )− F (s⋆t , a

⋆
t , µ

⋆
t:T , p

n
t )| =: In +IIn .

We will show that In and IIn vanish as n → ∞.
From Assumption 3.1 (i), (iii), and (5.1), it follows that r(s⋆t , a

⋆
t , ·, µ⋆

t ) + V̂t+1(·, µ⋆
t+1:T ) are

continuous and bounded in S, i.e., for every st+1 ∈ S, |r(s⋆t , a⋆t , st+1, µ
⋆
t ) + V̂t+1(st+1, µ

⋆
t+1:T )| ≤

(Cr + Ĉt+1). Furthermore, since pnt ⇀ p⋆t as n → ∞, we obtain that limn→∞ In = 0.
It remains to show the limit of IIn. By Assumption 3.1 (i), S and A are finite. Hence, there

exists N ∈ N such that for all n ≥ N , (snt , ant ) = (s⋆t , a
⋆
t ). By Assumption 3.1 (iii) and (5.1), for

every n ≥ N ,

IIn ≤
∫
X

(∣∣∣r(s⋆t , a⋆t , st+1, µ
n
t )− r(s⋆t , a

⋆
t , st+1, µ

⋆
t )
∣∣∣

+
∣∣∣V̂t+1(st+1, µ

n
t+1:T )− V̂t+1(st+1, µ

⋆
t+1:T )

∣∣∣)pn(dst+1)

≤ LrdW1
(µn

t , µ
⋆
t ) + L̂t+1

T−1∑
u=t+1

dW1
(µn

u, µ
⋆
u).

The limit µn
u ⇀ µ⋆

u (for every u = t, . . . , T − 1) ensures that IIn vanishes as n → ∞. Therefore,
the map F : S → R is continuous.

Since Pt is non-empty, compact-valued, and continuous (see Assumption 3.1 (ii)) and the map F

is continuous, an application of Berge’s maximum theorem (see, e.g., [2, Theorem 17.31]) ensures
the continuity of Ĵt and the existence of the measurable selector p̂t : S × A × (P(S))T−t ∋
(st, at, µt:T ) 7→ p̂t(·|st, at, µt:T ) ∈ Pt(st, at, µt) satisfying (3.6).

Now let us prove (ii). To that end, denote by P̃ := p̂t(·|st, at, µ̃t:T ) ∈ Pt(st, at, µ̃t) where p̂t
denotes the measurable selector given in Lemma 5.1 (i). Furthermore, by Assumption 3.1 (ii), we
can choose P ∈ Pt(st, at, µt) such that the following hold:

dW1
(P, P̃) ≤ LPt

dW1
(µt, µ̃t),(5.2)
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and

Ĵt(st, at, µt:T )− Ĵt(st, at, µ̃t:T ) ≤
∫
S

(
r(st, at, st+1, µt) + V̂t+1(st+1, µt+1:T )

)
P(dst+1)

−
∫
S

(
r(st, at, s̃t+1, µ̃t) + V̂t+1(s̃t+1, µ̃t+1:T )

)
P̃(ds̃t+1)

=: B(P, P̃).

Furthermore, since for every7 γ ∈ Cpl(P, P̃), by Assumption 3.1 (i), (iii), and (5.1), we have

B(P, P̃) =
∫
S×S

(
r(st, at, st+1, µt)− r(st, at, s̃t+1, µt) + r(st, at, s̃t+1, µt)− r(st, at, s̃t+1, µ̃t)

+ V̂t+1(st+1, µt+1:T )− V̂t+1(s̃t+1, µt+1:T )

+V̂t+1(s̃t+1, µt+1:T )− V̂t+1(s̃t+1, µ̃t+1:T )
)
γ(dst+1, ds̃t+1)

≤
∫
S×S

(
L′
r|st+1 − s̃t+1|+ LrdW1(µt, µ̃t)

+ L̂′
t+1|st+1 − s̃t+1|+ L̂t+1

T−1∑
u=t+1

dW1(µu, µ̃u)
)
γ(dst+1, ds̃t+1),

where L′
r, L̂

′
t+1 > 0 can be chosen appropriately thanks to Assumption 3.1 (i).

It thus holds that

B(P, P̃) ≤ K̂t

( T−1∑
u=t

dW1
(µu, µ̃u) + inf

γ∈Cpl(P,P̃)

∫
S×S

|st+1 − s̃t+1|γ(dst+1, ds̃t+1)

)

= K̂t

( T−1∑
u=t

dW1
(µu, µ̃u) + dW1

(P, P̃)
)
.

where K̂t := (Lr + L′
r + L̂t+1 + L̂′

t+1) > 0.
Combined with (5.2), this ensure that

Ĵt(st, at, µt:T )− Ĵt(st, at, µ̃t:T ) ≤ K̂t(1 + LPt
)

T−1∑
u=t

dW1
(µu, µ̃u).

Using the same arguments as those used in the above upper bound, we can obtain the lower
bound Ĵt(st, at, µt:T ) − Ĵt(st, at, µ̃t:T ) ≥ −K̂t(1 + LPt)

∑T−1
u=t dW1(µu, µ̃u), by using the same

constant K̂t > 0. This completes the proof.

The proof of part (iii) follows from similar arguments as those used in the proof of (i). We
define a map G : S × (P(S))T−t × P(A) ∋ (st, µt:T , πt) → G(st, µt:T , πt) ∈ R by

G(st, µt:T , πt) :=

∫
A

Ĵt(st, at, µt:T )π(dat).

Then we consider a sequence (snt , µ
n
t:T , π

n
t )n∈N ⊆ S × (P(S))T−t × P(A) such that snt → s⋆t

µn
u ⇀ µ⋆

u (for every s = t, . . . , T − 1), and πn
t ⇀ π⋆

t , as n → ∞ with some (s⋆t , µ
⋆
t:T , π

⋆
t ) ∈

S × P(S)(T−t) × P(A).
By the triangle inequality, for every n ∈ N,

|G(snt , µ
n
t:T , π

n
t )−G(s⋆t , µ

⋆
t:T , π

⋆
t )|

7We refer to Section 2.1 for the definition of Cpl(P, P̃).
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≤ |G(s⋆t , µ
⋆
t:T , π

n
t )−G(s⋆t , µ

⋆
t:T , π

⋆
t )|+ |G(snt , µ

n
t:T , π

n
t )−G(s⋆t , µ

⋆
t:T , π

n
t )|

=: IIIn +IVn .

We will show that IIIn and IVn vanish as n → ∞.
Since Ĵt(s

⋆
t , ·, µ⋆

0:T−t) is continuous on A (see Lemma 5.1 (i)) and the action space A is finite
(see Assumption 3.1 (i)), the limit πn

t ⇀ π⋆
t ensures that IIIn vanishes as n → ∞.

Furthermore, as S is also finite (see Assumption 3.1 (i)), there exists N ∈ N such that for every
n ≥ N we have snt = s⋆t . By Lemma 5.1 (ii), we then have for every n ≥ N ,

IVn ≤
∫
A

∣∣∣Ĵt(s⋆t , at, µn
t:T )− Ĵt(s

⋆
t , at, µ

⋆
t:T )

∣∣∣πn
t (dat) ≤ K̂t

T−1∑
u=t

dW1
(µn

u, µ
⋆
u).

Combined with the limit µn
i ⇀ µ⋆

u (for every u = t, . . . , T − 1), this ensures that IVn vanish as
n → ∞. Therefore, the map G is continuous.

Since P(A) is compact (noting that A is finite) and G is continuous, an application of Berge’s
maximum theorem ensures the continuity of V̂t and the existence of the measurable selector
π̂t : S × (P(S))T−t ∋ (st, µt:T ) 7→ π̂t(·|st, µt:T ) ∈ P(A) satisfying (3.7).

Lastly we prove the part (iv). By Assumption 3.1 (i), (iii), and (5.1),

|V̂t(st, µt:T )| ≤ sup
π∈P(A)

∫
A

inf
P∈Pt(st,at,µt)

∫
X

(
|r(st, at, st+1, µt)|+ |V̂t+1(st+1, µt+1:T )|

)
P(dy)π(da)

≤ Cr + Ĉt+1.

By letting Ĉt := Cr + Ĉt+1, we have |V̂t(st, µt:T )| ≤ Ĉt.

To have the other estimates, denote by π := π̂t(·|st, µt:T ) ∈ P(A) where π̂t is the measurable
selector given in Lemma 5.1 (iii). Then since π is not necessarily a maximizer for V̂t(st, µ̃t:T ) but
for V̂t(st, µt:T ), it holds

V̂t(st, µt:T )− V̂t(st, µ̃t:T ) ≤
∫
A

(
Ĵt(st, at, µt:T )− Ĵt(st, at, µ̃t:T )

)
π(dat).(5.3)

Further, by Lemma 5.1 (ii),
∫
A
Ĵt(st, at, µt:T ) − Ĵt(st, at, µ̃t:T )π(dat) ≤ K̂t

∑T−1
u=t dW1

(µu, µ̃u),
which leads to the upper bound estimates with letting L̂t := K̂t.

Using the same arguments as those used in the above estimates, we can have V̂t(st, µt:T ) −
V̂t(st, µ̃t:T ) ≥ −L̂t

∑T−1
s=t dW1(µu, µ̃u), with the same constant L̂t > 0. This completes the proof.

□

Proof of Lemma 3.2. We will prove the parts (i) and (ii) together. First we claim that when
t = T − 1, there exists a measurable selector p̂T−1 : S × A × P(S) ∋ (sT−1, aT−1, µT−1) 7→
p̂T−1(·|sT−1, aT−1, µT−1) ∈ PT−1(sT−1, aT−1, µT−1) satisfying (3.5). Indeed, since ĴT−1 has a
simple integrand r(·, ·, ·, ·) (see (3.2)), the same arguments as for the proof of Lemma 5.1 (i)
(applying Berge’s maximum theorem), but with respect to the map F : S → R given by

F (sT−1, aT−1, µT−1, pT−1) :=

∫
S

r(sT−1, aT−1, sT , µT−1)pT−1(dsT ),

with S = {(sT−1, aT−1, µT−1) ∈ S × A × P(S), pT−1 ∈ PT−1(sT−1, aT−1, µT−1)}, ensure the
existence of the selector p̂T−1.

Analogously, when t = T−1, there exists a measurable selector π̂T−1 : S×P(S) ∋ (sT−1, µT−1) 7→
π̂T−1(·|sT−1, µT−1) ∈ P(A) satisfying (3.7). Indeed, we first claim that there is K̂T−1 > 0 such
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that for every sT−1 ∈ S, aT−1 ∈ A, µT−1, µ̃T−1 ∈ P(S), it holds that

|ĴT−1(sT−1, aT−1, µT−1)− ĴT−1(sT−1, aT−1, µ̃T−1)| ≤ K̂T−1dW1
(µT−1, µ̃T−1).(5.4)

By the existence of p̂T−1 satisfying (3.5), the arguments devoted for the proof of Lemma 5.1 (ii)
using p̂T−1 and Assumptions 3.1 (i), (iii) ensure that we have K̂T−1 > 0 satisfying (5.4).

By (5.4), we can use the same arguments presented for the proof of Lemma 5.1 (iii) using
Berge’s maximum theorem to have the existence of the measurable selector π̂T−1 satisfying (3.7).

So far we have proven (i) and (ii) for the case t = T − 1. The other cases (i.e., t ≤ T − 2) can
be proven by applying Lemma 5.1 under the condition of the existence of constants ĈT−1 ≥ 1,
L̂T−1 > 0 such that for every sT−1 ∈ S and µT−1, µ̃T−1 ∈ P(S), it holds

|V̂T−1(sT−1, µT−1)| ≤ ĈT−1,∣∣∣V̂T−1(sT−1, µT−1)− V̂T−1(sT−1, µ̃T−1)
∣∣∣ ≤ L̂T−1dW1

(µT−1, µ̃T−1).

By the existence of p̂T−1 and π̂T−1 and the estimates given in (5.4), we can use the same
arguments presented for the proof of Lemma 5.1 (iv) to obtain those constants satisfying the
above estimates. □

Proof of Proposition 3.4. By the existence of p̂0:T and π̂0:T given in Lemma 3.2, it is straightfor-
ward to prove the part (i). Indeed for every t = 0, . . . , T −1, we can define sequences of stochastic
kernels by for every (st, at, µt) ∈ S ×A× P(S),

p∗t (·|st, at, µt) :=

{
p̂t(·|st, at, µt, µ̃t+1:T ) if t ≤ T − 2;

p̂t(·|st, at, µt) if t = T − 1,

and for every st ∈ S,
π∗
t (·|st) := π̂t(·|st, µ̃t:T ).

By the optimality of p̂0:T and π̂0:T (see (3.5)-(3.7)), p∗0:T and π∗
0:T constructed above satisfy (3.8)-

(3.10).

Now let us prove (ii). Let P := µ̃0⊗P(µ̃0,π∗
0 ,p0)⊗· · ·⊗P(µ̃T−1,π∗

T−1,pT−1) ∈ Q(µ̃0:T , π
∗
0:T ) and denote

by for every t = 1, . . . , T − 1, P0:t := µ̃0 ⊗ P(µ̃0,π∗
0 ,p0) ⊗ · · · ⊗ P(µ̃t,π∗

t ,pt) and P0 = µ̃0.
Note that by the definitions of V̂0:T and Ĵ0:T given in (3.1)-(3.3) and the optimality of π∗

0:T

given in (3.10),

EP
[
r(sT−1, aT−1, sT , µ̃T−1)

]
= EP0:T−1

[∫
S×A

r(sT−1, aT−1, sT , µ̃T−1)P(µ̃T−1,π∗
T−1,pT−1)(dsT , daT−1|sT−1)

]
≥ EP0:T−1

[∫
A

ĴT−1(sT−1, aT−1, µ̃T−1)π
∗
T−1(daT−1|sT−1)

]
= EP

[
V̂T−1(sT−1, µ̃T−1)

]
,

(5.5)

and that for every t ≤ T − 2,

EP
[
r(st, at, st+1, µ̃t) + V̂t+1(st+1, µ̃t+1:T )

]
= EP0:t

[∫
S×A

(
r(st, at, st+1, µ̃t) + V̂t+1(st+1, µ̃t+1:T )

)
P(µ̃t,π∗

t ,pt)(dst+1, dat|st)
]

≥ EP0:t

[∫
A

Ĵt(st, at, µ̃t:T )π
∗
t (dat|st)

]
= EP

[
V̂t(st, µ̃t:T )

]
.

(5.6)
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By (5.5) and (5.6), we hence have

EP

[
T−1∑
t=0

r(st, at, st+1, µ̃t)

]
= EP

[
T−2∑
t=0

r(st, at, st+1, µ̃t) + r(sT−1, aT−1, sT , µ̃T−1)

]

≥ EP

[
T−2∑
t=0

r(st, at, st+1, µ̃t) + V̂T−1(sT−1, µ̃T−1)

]
≥ · · · ≥ EP

[
V̂0(s0, µ̃0:T )

]
= V̂ (µ̃0:T ).

Since P is arbitrary in Q(µ̃0:T , π
∗
0:T ), we have

inf
P∈Q(µ̃0:T ,π∗

0:T )
EP

[
T−1∑
t=0

r(st, at, st+1, µ̃t)

]
≥ V̂ (µ̃0:T ) = EP∗(µ̃0:T )

[
T−1∑
t=0

r(st, at, st+1, µ̃t)

]
,

with P∗(µ̃0:T ) := P(µ̃0:T , π
∗
0:T , p

∗
0:T ) = µ̃0 ⊗ P(µ̃0,π∗

0 ,p
∗
0)

⊗ · · · ⊗ P(µ̃T−1,π∗
T−1,p

∗
T−1)

∈ Q(µ̃0:T , π
∗
0:T ).

Furthermore, since π∗
0:T ∈ Π, we hence have V (µ̃0:T ) ≥ V̂ (µ̃0:T ).

Let π0:T ∈ Π and P := µ̃0 ⊗ P(µ̃0,π0,p∗
0)
⊗ · · · ⊗ P(µ̃T−1,πT−1,p∗

T−1)
∈ Q(µ̃0:T , π0:T ) and denote by

for every t = 1, . . . , T − 1, P0:T := µ̃0 ⊗ P(µ̃0,π0,p∗
0)

⊗ · · · ⊗ P(µ̃t,πt,p∗
t )

and P0 = µ̃0.
From the definitions of V̂0:T and Ĵ0:T given in (3.1)-(3.3) and the optimality of p∗0:T given

in (3.8) and (3.9), it follows that

EP
[
r(sT−1, aT−1, sT , µ̃T−1)

]
= EP0:T−1

[∫
S×A

r(sT−1, aT−1, sT , µ̃T−1)P(µ̃T−1,πT−1,p∗
T−1)

(dsT , daT−1|sT−1)

]
= EP0:T−1

[∫
A

ĴT−1(sT−1, aT−1, µ̃T−1)πT−1(daT−1|xT−1)

]
≤ EP

[
V̂T−1(sT−1, µ̃T−1)

]
,

(5.7)

and that for every t ≤ T − 2,

EP
[
r(st, at, st+1, µ̃t) + V̂t+1(st+1, µ̃t+1:T )

]
= EP0:t

[∫
S×A

(
r(st, at, st+1, µ̃t) + V̂t+1(st+1, µ̃t+1:T )

)
P(µ̃t,πt,p∗

t )
(dst+1, dat|st)

]
= EP0:t

[∫
A

Ĵt(st, at, µ̃t:T )πt(dat|st)
]
≤ EP

[
V̂t(st, µ̃t:T )

]
.

(5.8)

By (5.7) and (5.8), we hence have

EP

[
T−1∑
t=0

r(st, at, st+1, µ̃t)

]
= EP

[
T−2∑
t=0

r(st, at, st+1, µ̃t) + r(sT−1, aT−1, sT , µ̃T−1)

]

≤ EP

[
T−2∑
t=0

r(st, at, st+1, µ̃t) + V̂T−1(sT−1, µ̃T−1)

]
≤ · · · ≤ EP

[
V̂0(s0, µ̃0:T )

]
= V̂ (µ̃0:T ),

which ensures that

inf
P∈Q(µ̃0:T ,π0:T )

EP

[
T−1∑
t=0

r(st, at, st+1, µ̃t)

]
≤ EP

[
T−1∑
t=0

r(st, at, st+1, µ̃t)

]
≤ V̂ (µ̃0:T ).(5.9)

Since π0:T is arbitrary in Π, we have V (µ̃0:T ) ≤ V̂ (µ̃0:T ).
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It remains to show the equality of V (µ̃0:T ) to the supremum in (3.11). Since the last inequality
given in (5.9) holds for any π0:T ∈ Π (with recalling P = P(µ̃0:T , π0:T , p

∗
0:T ) = µ̃0 ⊗ P(µ̃0,π0,p∗

0)
⊗

· · · ⊗ P(µ̃T−1,πT−1,p∗
T−1)

∈ Q(µ̃0:T , π0:T )), it follows that

sup
π∈Π

EP(µ̃0:T ,π0:T ,p∗
0:T )

[
T−1∑
t=0

r(st, at, st+1, µ̃t)

]
≤ EP∗(µ̃0:T )

[
T−1∑
t=0

r(st, at, st+1, µ̃t)

]
= V (µ̃0:T )

where the last equality follows from above (i.e., V (µ̃0:T ) = V̂ (µ̃0:T )).
On the other hand, since π∗

0:T ∈ Π and P∗(µ̃0:T ) = P(µ̃0:T , π
∗
0:T , p

∗
0:T ) = µ̃0 ⊗ P(µ̃0,π∗

0 ,p
∗
0)

⊗
· · · ⊗ P(µ̃T−1,π∗

T−1,p
∗
T−1)

∈ Q(µ̃0:T , π
∗
0:T ), the above inequality establishes equality. This completes

the proof. □

5.2. Proof of Lemma 3.5 and Proposition 3.6.

Proof of Lemma 3.5. Fix πN
0:T ∈ ΠN , let t ≤ T − 1 and set

S :=
{
(sNt , aNt , pNt )

∣∣∣ (sNt , aNt ) ∈ SN ×AN , pNt ∈ PN
t (sNt , aNt )

}
.

Define an auxiliary map F : S ∋ (sNt , aNt , pNt ) 7→ F (sNt , aNt , pNt ) ∈ R by

F (sNt , aNt , pNt ) :=

∫
SN

f(sNt , aNt , sNt+1)p
N
t (dsNt+1),

where if t = T − 1, then we set

f(sNt , aNt , sNt+1) := r
(
sit, a

i
t, s

i
t+1, e

N (sNt )
)
,

whereas if t ≤ T − 2, then we set

f(sNt , aNt , sNt+1) := r
(
sit, a

i
t, s

i
t+1, e

N (sNt )
)
+

∫
AN

ĴN
t+1,i(s

N
t+1, a

N
t+1;π

N
0:T )π

N
t+1(da

N
t+1|sNt+1).

Since both SN and AN are finite, F is continuous in (sNt , aNt ). Again, by the finiteness of SN and
AN , we get that f is continuous. Hence, F is continuous in pNt . From here, we can follow the
same ideas as presented in the proofs of Lemma 3.2 and Lemma 5.1 to prove the result. □

Proof of Proposition 3.6. We can use the same approach as presented in the proof of Proposi-
tion 3.4 (ii) to show that

JN
i (µo, πN

0:T ) = inf
PN∈QN (µo,πN

0:T )

EPN

[
T−1∑
t=0

r
(
sit, a

i
t, s

i
t+1, e

N (sNt )
)]

= EPN
i (µo,πN

0:T ,p̂
(0:T,i,πN

0:T
)
)

[
T−1∑
t=0

r
(
sit, a

i
t, s

i
t+1, e

N (sNt )
)]

,

where the second equality follows by definition of ĴN
0,i. □

6. Proof of results in Section 3.2

6.1. Preliminary lemmas. Let us provide some simple observations that play an instrumental
role in the proof of Proposition 3.9 and Theorem 3.10.

Let us begin with a measurable extension of mappings into stochastic kernels defined on prob-
ability spaces. The proof can be found in Appendix A.
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Lemma 6.1. Suppose that Assumption 3.1 is satisfied. Let t ∈ {0, . . . , T − 1} and µ̃t:T ∈
(P(S))T−t. Furthermore, let pt : S × A ∋ (st, at) 7→ pt(·|st, at) ∈ P(S) be a mapping. Then there
exists a Borel-measurable mapping (i.e., stochastic kernel) pt : S×A×(P(S))T−t ∋ (st, at, µt:T ) 7→
pt(·|st, at, µt:T ) ∈ P(S) such that for every (st, at) ∈ S ×A

pt(·|st, at, µ̂t:T ) = pt(·|st, at).

The following two lemmas link the correspondences C, B (given in Definition 3.8 (i)) into the
dynamic programming results given in Lemma 3.2 (and Proposition 3.4).

Lemma 6.2. Suppose that Assumption 3.1 is satisfied. Let ν̃0:T ∈ C(ν0:T ) and denote by pν̃0:T−1 the
corresponding kernels enabling ν̃0:T ∈ C(ν0:T ) (see Definition 3.8 (i)). For every t = 0, . . . , T − 1,
define pν̃t : S ×A× P(S) ∋ (st, at, µt) 7→ pν̃t (·|st, at, µt) ∈ P(S) by

pν̃t (·|st, at, µt) :=

{
pν̃t (·|st, at, µt, νt+1:T,S) if t ≤ T − 2;

p̂t(·|st, at, µt) if t = T − 1,

where p̂t is the stochastic kernel given in Lemma 3.2 (i). Then for every (st, at) ∈ S × A,
pν̃t (·|st, at, νt,S) is optimal for Ĵt(st, at, νt:T,S), i.e., if t = T − 1,∫

S

r(sT−1, aT−1, sT , νT−1,S)p
ν̃
T−1(dsT |sT−1, aT−1, νT−1,S) = ĴT−1(sT−1, aT−1, νT−1,S),

whereas if t ≤ T − 2,∫
S

(
r(st, at, st+1, νt,S) + V̂t+1(st+1, νt+1:T,S)

)
pν̃t (dst+1|st, at, νt,S) = Ĵt(st, at, νt:T,S).

Proof. It is straightforward to show the case where t = T − 1 by the optimality of p̂T−1(= pν̃T−1)

presented in Lemma 3.2 (i). For the case where t ≤ T − 2, since for every (st, at) ∈ S ×A

pν̃t (·|st, at, νt,S) = pν̂t (·|st, at, νt:T,S) ∈ P̃t(st, at, νt:T,S)

(see Definition 3.8 (i) and Remark 3.3), pν̃t (·|st, at, νt,S) is optimal for Ĵt(st, at, νt:T,S). This com-
pletes the proof. □

Lemma 6.3. Suppose that Assumption 3.1 is satisfied. Let ν0:T , ν̃0:T ∈ Ξ and denote by πν̃
0:T the

disintegrating kernels of ν̃0:T (see Definition 3.7). Furthermore, denote for every t = 0, . . . , T − 1

by w̃t(s) the weight of the measure ν̃t,S(·) at each point s ∈ S (i.e.,
∑

s∈S w̃t(s) = 1 with w̃t(s) ≥ 0

for s ∈ S). Then the following hold:
(i) ν̃0:T ∈ B(ν0:T ) (see Definition 3.8 (i)) if and only if for every t = 0, . . . , T − 1 and st ∈ S

such that w̃t(st) > 0, πν̃
t (·|st) ∈ P(A) is optimal for V̂t(st, νt:T,S) (see (3.1)).

(ii) Let ν̃0:T ∈ B(ν0:T ). For every t = 0, . . . , T − 1, define πν̃
t : S ∋ st 7→ πν̃

t (·|st) ∈ P(A) by

πν̃
t (·|st) :=

{
πν̂
t (·|st) if w̃t(st) > 0;

π̂t(·|st, νt:T,S) else,
(6.1)

where π̂t is the measurable selector given in Lemma 3.2. Then it holds

ν̃t(dst, dat) = πν̃
t (dat|st)ν̃t,S(dst).(6.2)

Furthermore, πν̃
t (·|st) is optimal for V̂t(st, νt:T,S) for every st ∈ S.

Proof. We start by proving the statement (i). Suppose ν̃0:T ∈ B(ν0:T ). Fix any t = 0, . . . , T − 1.
Then since ν̃t(Dt(νt:T )) = 1,

1 =

∫
S

∫
A

1{(st,at)∈Dt(νt:T )}π
ν̂
t (dat|st)ν̃t,S(dst)
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=
∑
st∈S

w̃t(st)π
ν̃
t

(
{at ∈ A|(st, at) ∈ Dt(νt:T )}

∣∣st).
This implies that for every st ∈ S such that w̃t(st) > 0, πν̃

t

(
{at ∈ A|(st, at) ∈ Dt(νt:T )}

∣∣st) = 1.
We hence have that for every st ∈ S such that w̃t(st) > 0, it holds∫

A

Ĵt(st, at, νt:T,S)π
ν̃
t (dat|st) =

∫
A

Ĵt(st, at, νt:T,S)1{at∈A|(st,at)∈Dt(νt:T )}π
ν̃
t (dat|st)

=

∫
A

max
a′
t∈A

Ĵt(st, a
′
t, νt:T,S)1{at∈A|(st,at)∈Dt(νt:T )}π

ν̃
t (dat|st)

= max
a′
t∈A

Ĵt(st, a
′
t, νt:T,S).

(6.3)

Furthermore, since

max
a′
t∈A

Ĵt(st, a
′
t, νt:T,S) ≥ sup

π∈P(A)

∫
A

Ĵt(st, at, νt:T,S)π(dat) = V̂t(st, νt:T,S),

it follows from πν̃
t (dat|st) ∈ P(A) and (6.3) that πν̃

t (·|st) is optimal for V̂t(st, ν0:T,S).

Now suppose that for every t = 0, . . . , T −1 and st ∈ S such that w̃t(st) > 0, πν̃
t (·|st) is optimal

for V̂t(st, ν0:T,S). Assume that there exists some t ≤ T − 1 such that ν̃t(Dt(νt:T )) < 1.
Set S′ :=

{
st ∈ S

∣∣πν̃
t ({at ∈ A|(st, at) ∈ Dt(νt:T )}|st) < 1 and w̃t(st) > 0

}
, which is non-empty

(due to ν̃t(Dt(νt:T )) < 1). Define for every st ∈ S′ by

A′(st) := {at ∈ A|(st, at) ̸∈ Dt(νt:T )}.

Let st ∈ S′ and denote by wt,st(at) the weight of πν̃
t (·|st) at at ∈ A. We now define π′

t ∈ P(A)

by for every Borel set E ∈ BA,

π′
t(E) =

∑
at∈A

wt,st(at)

1−
∑

a′
t∈A′(st)

wt,st(a
′
t)
1{at∈E\A′(st)}.(6.4)

Then since πν̃
t ({at ∈ A|Ĵt(st, at, νt:T,S) < maxa′

t∈A Ĵt(st, a
′
t, νt:T,S)}|st) > 0 (due to st ∈ S′),∫

A

Ĵt(st, at, νt:T,S)π
ν̃
t (dat|st) <

∫
A

max
a′
t∈A

Ĵt(st, a
′
t, νt:T,S)π

ν̃
t (dat|st)

= max
a′
t∈A

Ĵt(st, a
′
t, νt:T,S).

(6.5)

Furthermore, since π′
t(A

′(st)) = π′
t

(
{at ∈ A

∣∣Ĵt(st, at, νt:T,S) < maxa′
t∈A Ĵt(st, a

′
t, νt:T,S)}

)
= 0,

max
a′
t∈A

Ĵt(st, a
′
t, νt:T,S) =

∫
A

max
a′
t∈A

Ĵt(st, a
′
t, νt:T,S)π

′
t(dat)

=

∫
A

Ĵt(st, at, νt:T,S)π
′
t(dat) ≤ V̂t(st, νt:T,S).

Combining this with (6.5) implies that
∫
A
Ĵt(st, at, νt:T,S)π

ν̃
t (dat|st) < V̂t(st, νt:T,S), which is a

contradiction to the optimality of πν̃
t (·|st) for V̂t(st, ν0:T,S).

Thus, ν̃t(Dt(νt:T )) = 1 for every t = 0, . . . , T − 1, i.e., ν̃0:T ∈ B(ν0:T ).

Now let us prove (ii). By the construction given in (6.1), it is straightforward to see that (6.2)
holds. Hence it remains to show the optimality of πν̃

t (·|st) for V̂t(st, νt:T,S) for every st ∈ S.
Let st ∈ S be such that w̃t(st) > 0. Then Lemma 6.3 (i) ensures that πν̃

t (·|st) = πν̃
t (·|st)

is optimal for V̂t(st, µt:T,S). For the other case where st ∈ S with w̃t(st) = 0, since πν̃
t (·|st) =

π̂t(·|st, νt:T,S), the optimality of π̂t given in Lemma 3.2 (ii) ensures that πν̃
t (·|st) is optimal for

V̂t(st, µt:T,S). This completes the proof. □
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6.2. Proof of Proposition 3.9.

Proof of Proposition 3.9 (i). We first note that by the existence of p̂0:T given in Lemma 3.2 (i), C
(given in Definition 3.8 (i)) is non-empty.

We claim that Γ is non-empty. To that end, let ν0:T ∈ Ξ and choose an arbitrary ν̃0:T ∈ C(ν0:T ).
Now for every t = 0, . . . , T − 1, set

ν̃′t(dst, dat) := π̂t(dat|st, νt:T,S)ν̃t,S(dst),

where π̂t is the measurable selector given in Lemma 3.2 (ii).
Then since ν̃′t,S(·) = ν̃t,S(·) and ν̃0:T ∈ C(ν0:T ), it is clear that ν̃′0:T ∈ C(ν0:T ). Hence it remains

to show that ν̃′0:T ∈ B(ν0:T ). Indeed, since the disintegrating kernel πν̃′

t (·|st) equals π̂t(·|st, νt:T,X)

for every st ∈ S, πν̃′

t (·|st) is optimal for V̂t(st, νt:T,S) for every st ∈ S. From this, Lemma 6.3 (i)
ensures the claim to hold.

Next we claim that Γ is convex-valued. Let ν0:T ∈ Ξ, ν′0:T , ν
′′
0:T ∈ Γ(ν0:T ), and λ ∈ (0, 1). For

every t = 0, . . . , T − 1, define ν̃t ∈ P(S ×A) by

ν̃t(dst, dat) := λν′t(dst, dat) + (1− λ)ν′′t (dst, dat).

We claim that ν̃0:T ∈ Γ(ν0:T ). Since it is straightforward to see that ν̃0:T ∈ B(ν0:T ), we will
show that ν̃0:T ∈ C(ν0:T ).

It is clear that ν̃0,S = λν′0,S + (1− λ)ν′′0,S = µo (since ν′0,S = ν′′0,S = µo; see Definition 3.8 (i)).
Denote by pν

′

0:T−1 and pν
′′

0:T−1 the sequences of kernels enabling ν′0:T ∈ C(ν0:T ) and ν′′0:T ∈ C(ν0:T )
respectively.

Then for every t = 0, . . . , T − 2, we define pν̃t : S × A × (P(S))T−t → P(S) by for every
(st, at, µt:T ) ∈ S ×A× (P(S))T−t,

pν̃t (·|st, at, µt:T ) := λpν
′

t (·|st, at, µt:T ) + (1− λ)pν
′′

t (·|st, at, µt:T ).

Note that for every t = 0, . . . , T − 2, pν
′

t (·|st, at, νt:T,S), pν
′′

t (·|st, at, νt:T,S) ∈ P̂t(st, at, νt:T,S)

for every (st, at) ∈ S × A and P̂t is convex-valued (see Remark 3.3). Therefore, for every t =

0, . . . , T − 2, it holds that pν̃t (·|st, at, νt:T,S) ∈ P̃t(st, at, νt:T,S) for every (st, at) ∈ S ×A.
Furthermore, it also holds for every t = 0, . . . , T − 2 that

ν̃t+1,S(·) = λν′t+1,S(·) + (1− λ)ν′′t+1,S(·) =
∫
S×A

pν̃t (·|st, at, νt:T,S)νt(dst, dat).

We hence have that ν̃0:T ∈ C(ν0:T ). This completes the proof. □

Proof of Proposition 3.9 (ii). Let (νn0:T , ξ
n
0:T )n∈N ⊆ Ξ×Ξ be a sequence such that for every n ∈ N,

ξn0:T ∈ Γ(νn0:T ) and that for every t = 0, . . . , T − 1 as n → ∞,

νnt ⇀ ν⋆t , ξnt ⇀ ξ⋆t ,(6.6)

with some (ν⋆0:T , ξ
⋆
0:T ) ∈ Ξ× Ξ.

To prove Gr(Γ) is closed, it is sufficient to prove that ξ⋆0:T ∈ Γ(ν⋆0:T ).

Step 1. We show that ξ⋆0:T ∈ C(ν⋆0:T ). Since ξn0,S = µo for every n ∈ N (due to ξn0:T ∈ C(νn0:T )), by
(6.6) it holds that ξ⋆0,S = µo.

For every n ∈ N, let pξ
n

0:T−1 be a sequence of kernels enabling ξn0:T ∈ C(νn0:T ) (see Defini-
tion 3.8 (i)). For notational simplicity, set pn0:T−1 := pξ

n

0:T−1.
Then for every n ∈ N and t = 0, . . . , T − 2, it holds that

ξnt+1,S(·) =
∫
S×A

pnt (·|st, at, νnt:T,S)ν
n
t (dst, dat),(6.7)
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(due to ξn0:T ∈ C(νn0:T )) and that for every (st, at) ∈ S ×A,

Pn
t,st,at

:= pnt (·|st, at, νnt:T,S) ∈ P̂t(st, at, ν
n
t:T,S).(6.8)

Fix any t ∈ {0, . . . , T − 2}. Let (st, at) ∈ S × A. Since Pn
t,st,at

∈ P̂t(st, at, ν
n
t:T,S) for every

n ∈ N and for every u = t, . . . , T − 1, νnu,S ⇀ ν⋆u,S as n → ∞ (see (6.6)), the compact-valueness
and upper-hemicontinuity of the correspondence P̂t (see Remark 3.3) ensure that there exist a
subsequence (Pnk

t,st,at
)k∈N and some Pt,st,at

∈ P̂t(st, at, ν
⋆
t:T,S) such that

Pnk
t,st,at

⇀ Pt,st,at
as k → ∞(6.9)

(see [2, Theorem 17.20]). Since both S and A are finite (see Assumption 3.1 (i)), by using the
same arguments presented for (6.9) a finite number of times, we can and do choose a subsequence
(Pnk

t,st,at
)k∈N of the one in (6.8) and have (Pt,st,at

)(st,at)∈S×A (for notational simplicity, we do not
relabel that sequence) for which (6.9) holds with Pt,x,a ∈ P̂t(st, at, ν

⋆
t:T,S) for every (st, at) ∈ S×A.

From this, we can define a mapping

p⋆t : S ×A ∋ (st, at) 7→ p⋆t (·|st, at) := Pt,st,at ∈ P̂t(st, at, ν
⋆
t:T,S).(6.10)

Lemma 6.1 enables to extend p⋆t as a stochastic kernel p⋆t : S × A × (P(S))T−t ∋ (st, at, µt:T ) 7→
p⋆t (·|st, at, µt:T ) ∈ P̂t(st, at, µt:T ) such that for every (st, at) ∈ S ×A, it holds

p⋆t (·|st, at, ν⋆t:T,S) = p⋆t (·|st, at).(6.11)

By the consecutive constructions given in (6.10) and (6.11), the limit (6.9) together with (6.8)
ensures that for every (st, at) ∈ S ×A, as k → ∞,

pnk
t (·|st, at, νnk

t:T,S) ⇀ p⋆t (·|st, at, ν⋆t:T,S).(6.12)

Now we claim that as k → ∞,∫
S×A

pnk
t (·|st, at, νnk

t:T,S)ν
nk
t (dst, dat) ⇀

∫
S×A

p⋆t (·|st, at, ν⋆t:T,S)ν
⋆
t (dst, dat).(6.13)

To that end, for every k ∈ N denote by wnk
t (st, at) and w⋆

t (st, at) the weights of νnk
t and ν⋆t

at (st, at) ∈ S × A and by wnk
t,st,at

(st+1) and w⋆
t,st,at

(st+1) the weights of pnk
t (dst+1|st, at, νnk

t:T,S)

and p⋆t (dst+1|st, at, νt:T,S) at st+1 ∈ S. Then by (6.6) and (6.12) (since S and A are finite; see
Assumption 3.1 (i)), it holds that for every st, st+1 ∈ S and at ∈ A, as k → ∞,

wnk
t (st, at) → w⋆

t (st, at), wnk
t,st,at

(st+1) → w⋆
t,st,at

(st+1).(6.14)

Let g : S → R be any mapping (which is obviously in Cb(S;R) as S is finite). Then since for
every k ∈ N ∫

S×A

∫
S

g(st+1)p
nk
t (dst+1|st, at, νnk

t:T,S)ν
nk
t (dst, dat)

=
∑

(st,at)∈S×A

wnk
t (st, at)

∑
st+1∈S

wnk
t,st,at

(st+1)g(st+1),

from (6.14) (together with the finiteness of S and A), it follows that

lim
k→∞

∫
S×A

∫
S

g(st+1)p
nk
t (dst+1|st, at, νnk

t:T,S)ν
nk
t (dst, dat)

=
∑

(st,at)∈S×A

w⋆
t (st, at)

∑
st+1∈S

w⋆
t,st,at

(st+1)g(st+1)

=

∫
S×A

∫
S

g(st+1)p
⋆
t (dst+1|st, at, ν⋆t:T,S)ν

⋆
t (dst, dat),
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which ensures the claim given in (6.13) to hold.
Using (6.13) together with (6.7) and (6.6), we hence have that

ξ⋆t+1,S(·) =
∫
S×A

p⋆t (·|st, at, ν⋆t:T,S)ν
⋆
t (dst, dat),

where we recall that p⋆t satisfies (6.11) for every (st, at) ∈ S × A. Since this holds for any
t = 0, . . . , T − 2, we hence have that ξ⋆0:T ∈ C(ν⋆0:T ).

Step 2. It remains to show that ξ⋆0:T ∈ B(ν⋆0:T ). Here we follow the arguments of the proof for [51,
Proposition 3.9.]. For every t = 0, . . . , T − 1 and n ∈ N, set D⋆

t := Dt(ν
⋆
t:T ) and Dn

t := Dt(ν
n
t:T )

so that ξnt (D
n
t ) = 1 (because ξn0:T ∈ B(νn0:T ); see Definition 3.8 (i)).

Fix any t = 0, . . . , T − 1. Let (snt )n∈N ⊆ S and st ∈ S be such that snt → st as n → ∞. Since
Ĵt(·, ·, νnt:T,S) : S×A → R converges continuously8 to Ĵt(·, ·, ν⋆t:T,S) : S×A → R (by Lemma 5.1 (i)
and (6.6)) and the action space A is finite, it holds that

lim
n→∞

max
at∈A

Ĵt(s
n
t , at, ν

n
t:T,S) = max

at∈A
Ĵt(st, at, ν

⋆
t:T,S),(6.15)

which implies that maxat∈A Ĵt(·, at, νnt:T,S) converges continuously to maxat∈A Ĵt(·, at, ν⋆t:T,S).
For every M ∈ N, set

EM
t :=

{
(st, at) ∈ S ×A

∣∣∣max
a′
t∈A

Ĵt(st, a
′
t, ν

⋆
t:T,S) ≥ Ĵt(st, at, ν

⋆
t:T,X) + εM

}
(6.16)

to be a closed subset where (εM )M∈N ⊆ (0,∞) is a decreasing sequence so that limM→∞ εM = 0.
Then since (D⋆

t )
c =

⋃∞
M=1 E

M
t and EM

t ⊂ EM+1
t for every M ∈ N, the monotone convergence

theorem implies that for every n ∈ N,
1− ξnt (D

⋆
t ∩Dn

t ) = ξnt (D
n
t )− ξnt (D

⋆
t ∩Dn

t )

= ξnt ((D
⋆
t )

c ∩Dn
t ) = lim inf

M→∞
ξnt (E

M
t ∩Dn

t ).

This ensures that

1 = lim sup
n→∞

lim inf
M→∞

{
ξnt (D

⋆
t ∩Dn

t ) + ξnt (E
M
t ∩Dn

t )

}
≤ lim inf

M→∞
lim sup
n→∞

{
ξnt (D

⋆
t ∩Dn

t ) + ξnt (E
M
t ∩Dn

t )

}
.

(6.17)

We claim that for every M ∈ N,

lim sup
n→∞

ξnt (E
M
t ∩Dn

t ) = lim sup
n→∞

∫
S×A

1{(st,at)∈EM
t ∩Dn

t }ξ
n
t (dst, dat) = 0.(6.18)

Fix any M ∈ N. We firstly show that 1{(st,at)∈EM
t ∩Dn

t } : S ×A 7→ R converges continuously to
0 as n → ∞. Let (snt , a

n
t )n∈N be a sequence such that (snt , a

n
t ) → (s⋆t , a

⋆
t ) ∈ EM

t as n → ∞. Then
by (6.15) and (6.16),

lim
n→∞

max
at∈A

Ĵt(x
n
t , at, ν

n
t:T,S) = max

at∈A
Ĵt(s

⋆
t , at, ν

⋆
t:T,S)

≥ Ĵt(s
⋆
t , a

⋆
t , ν

⋆
t:T,S) + εM

= lim
n→∞

Ĵt(s
n
t , a

n
t , ν

n
t:T,S) + εM .

Hence, for sufficiently large n, we have maxat∈A Ĵt(s
n
t , at, ν

n
t:T,S) > Ĵt(s

n
t , a

n
t , ν

n
t:T,S) which implies

that (snt , a
n
t ) ̸∈ Dn

t . Hence we have that 1{(st,at)∈EM
t ∩Dn

t } converges continuously to 0 as n → ∞.

8Suppose g and (gn)n∈N are measurable functions on a metric space E. The sequence (gn)n∈N is said to converge
to g continuously if limn→∞ gn(en) = g(e) for any sequence (en)n∈N with en → e ∈ E.
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From this and the limit ξnt ⇀ ξ⋆t as n → ∞ (see (6.6)), an application of [53, Theorem 3.3]
ensures the claim given in (6.18) to hold for every M ∈ N.

Combining this with (6.17), we have

1 ≤ lim sup
n→∞

ξnt (D
⋆
t ∩Dn

t ) ≤ lim sup
n→∞

ξnt (D
⋆
t ).

Furthermore, since D⋆
t is closed, the Portmanteau theorem (see e.g., [7, Theorem 2.1], [9, Theorem

8.2.3]) implies that lim supn→∞ ξnt (D
⋆
t ) ≤ ξ⋆t (D

⋆
t ). Hence, we have shown that ξ⋆t (D

⋆
t ) = 1.

Since this holds for any t = 0, . . . , T − 1, we hence have that ξ⋆0:T ∈ C(ν⋆0:T ). This completes
the proof. □

Proof of Proposition 3.9 (iii). Note that Ξ is a compact convex topological space. Furthermore,
Γ is non-empty, convex-valued and its graph is closed (see Proposition 3.9 (i), (ii)). Therefore, by
Kakutani’s fixed point theorem (see, e.g., [2, Corollary 17.55, p. 583]), Γ has a fixed point ν∗0:T ,
i.e., ν∗0:T ∈ Γ(ν∗0:T ). □

6.3. Proof of Theorem 3.10.

Proof of Theorem 3.10. By Proposition 3.9 (iii), Γ has a fixed point ν∗0:T , i.e., ν∗0:T ∈ Γ(ν∗0:T ).
Then, since ν∗0:T ∈ C(ν∗0:T ), it holds that ν∗0,S = µo. Furthermore, Lemma 6.2 ensures that for

every t = 0, . . . , T − 1, there exists pν
∗

t : S × A × P(S) ∋ (st, at, µt) 7→ pν
∗

t (·|st, at, µt) ∈ P(S)

defined by

pν
∗

t (·|st, at, µt) :=

{
pν

∗

t (·|st, at, µt, ν
∗
t+1:T,S) if t ≤ T − 2;

p̂t(·|st, at, µt) if t = T − 1,
(6.19)

where p̂0:T is the sequence of the measurable selectors given in Lemma 3.2 (i) and pν
∗

0:T−1 is the
sequence of the corresponding kernels enabling ν∗0:T ∈ C(ν∗0:T ), i.e., for t = 0, . . . , T − 2,

pν
∗

t (·|st, at, ν∗t:T,S) ∈ P̂t(st, at, ν
∗
t:T,S) for every (st, at) ∈ S ×A,

and ν∗t+1,S(·) =
∫
S×A

p∗t (·|st, at, ν∗t:T,S)ν
∗
t (dst, dat),

(6.20)

(see Definition 3.8), and that for every t = 0, . . . , T−1, pν
∗

t (·|st, at, ν∗t,S) is optimal for Ĵt(st, at, ν∗t:T,S)

for every (st, at) ∈ S ×A.
Furthermore, since ν∗0:T ∈ B(ν∗0:T ), Lemma 6.3 (ii) ensures that for every t = 0, . . . , T −1, there

exists πν∗

t : S ∋ st 7→ πν∗

t (·|st) ∈ P(A) defined by

πν∗

t (·|st) :=

{
πν∗

t (·|st) if w∗
t (st) > 0;

π̂t(·|st, ν∗t:T,S) else,
(6.21)

where w∗
t (st) is the weight of ν∗t,S at st ∈ S and π̂0:T is the sequence of measurable selectors given

in Lemma 3.2 (ii), and that for every t = 0, . . . , T − 1, it holds

ν∗t (dst, dat) = πν∗

t (dat|st)ν∗t,S(dst),(6.22)

and that πν∗

t (·|st) is optimal for V̂t(st, ν
∗
t:T,S) for every st ∈ S.

The optimality of pν
∗

0:T and πν∗

0:T ensures that (πν∗

0:T , p
ν∗

0:T ) is optimal for V (ν∗0:T,S), i.e., the
condition (i) given in Definition 2.3 holds. Furthermore, combining (6.22) with (6.19) and
(6.20) ensures that (ν∗0:T,S , π

ν∗

0:T , p
ν∗

0:T ) satisfies condition (ii) given in Definition 2.3 holds. Hence
(ν∗0:T,S , π

ν∗

0:T , p
ν∗

0:T ) is a mean-field equilibrium of (S,A, µo,P0:T , r). □
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7. Proof of results in Section 3.3

7.1. Proof of Propositions 3.16 and 3.17. Let us provide a simple observation that plays an
instrumental role in the proof of Proposition 3.16. The proof can be found in Appendix A.

Lemma 7.1. Let X be a finite space and Y be an arbitrary Borel space. Furthermore, let (Λ(N)
X )N∈N,

(Λ̃
(N)
X )N∈N ⊆ P(X) be such that for any mapping f : X → R

lim
N→∞

∣∣∣∣ ∫
X

f(x)Λ
(N)
X (dx)−

∫
X

f(x)Λ̃
(N)
X (dx)

∣∣∣∣ = 0,(7.1)

and let (Λ(N)
Y |X)N∈N be a sequence of stochastic kernels on Y given X such that for every x ∈ X

Λ
(N)
Y |X(·|x) ⇀ ΛY |X(·|x) ∈ P(Y ) as N → ∞,

where ΛY |X : X 7→ P(Y ) is another stochastic kernel on Y given X. For N ∈ N, denote by

Λ(N)(dx, dy) := Λ
(N)
Y |X(dy|x)Λ(N)

X (dx) ∈ P(X × Y ),

Λ̃
(N)
1 (dx, dy) := Λ

(N)
Y |X(dy|x)Λ̃(N)

X (dx) ∈ P(X × Y ),

Λ̃
(N)
2 (dx, dy) := ΛY |X(dy|x)Λ̃(N)

X (dx) ∈ P(X × Y ).

Then, for both i = 1, 2, we have that for every g ∈ Cb(X × Y ),

lim
N→∞

∣∣∣∣∫
X×Y

g(x, y)Λ(N)(dx, dy)−
∫
X×Y

g(x, y)Λ̃
(N)
i (dx, dy)

∣∣∣∣ = 0.

Before we proceed to start proving Proposition 3.16, let us briefly comment on explicit charac-
terizations of the laws and stochastic kernels given in Definition 3.12.

Remark 7.2. Let (π
(N)
0:T )N∈N ⊆ Π be a sequence of arbitrary Markov policies. For every N ∈ N

and i ∈ {1, . . . , N}, let P∗|(N) ∈ Q(µ∗
0:T , π

(N)
0:T ) and PN |(N)

i ∈ QN (µo, π
N |(N)
0:T,i ) (depending on π

(N)
0:T )

be given in Definition 3.11. Then the following hold for every t = 0, . . . , T − 1:
(i) The laws M∗|(N)

t , MN |(N)
t,i ∈ P(S ×A) given in Definition 3.12 (i) are characterized by

M∗|(N)
t (dst, dat) := π

(N)
t (dat|st)L∗|(N)

t (dst),

MN |(N)
t,i (dst, dat) := π

(N)
t (dat|st)LN |(N)

t,i (dst),

where L∗|(N)
t ,LN |(N)

t,i ∈ P(S) denote the law of st under P∗|(N) and the law of sit under

PN |(N)

i , respectively.
(ii) The stochastic kernel KN |(N)

t,i : S ×A ∋ (st, at) 7→ KN |(N)
t,i (dst+1, dµt|st, at) ∈ P(S ×P(S))

given in Definition 3.12 (ii) satisfies that for every (sit, a
i
t) = (st, at) ∈ S ×A,9

KN |(N)
t,i (dst+1, dµt|st, at) := p

N |(N),i
t,i

(
dst+1|(sN,−i

t , st), (a
N,−i
t , at)

)
π
N−1|∗
t (daN,−i

t |sN,−i
t )

δeN ((sN,−i
t ,st))

(dµt) L
N |(N),−i

t,i (dsN,−i
t |st)

where for every (sNt , aNt ) ∈ SN ×AN ,
· p

N |(N),i
t,i

(
· |sNt , sNt

)
∈ P(S) is the i-th marginal of pN |(N)

t,i

(
· |sNt , aNt

)
∈ P(SN );

· π
N−1|∗
t is the N − 1 tuple of π∗

t (as π
N |∗
t given in Definition 3.11 (iii));

9Denote by sN,−i
t := (s1t , . . . , s

i−1
t , si+1

t , . . . , sNt ) ∈ SN−1 the whole agents’ state configurations except for the
agent i’s state sit at time t. The same convention applies to aN,−i

t ∈ AN−1. Moreover, as in Footnote 3, we apply
the convention therein to (sN,−i

t , s) ∈ SN and (aN,−i
t , a) ∈ AN .
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· δeN (sNt ) ∈ P(P(S)) is the Dirac measure on P(S) at eN (sNt ) ∈ P(S);

· LN |(N),−i

t,i : S ∋ st 7→ LN |(N),−i

t,i (·|st) ∈ P(SN−1) is a stochastic kernel on SN−1 given S

so that LN |(N),−i

t,i (·|st) is the conditional law of sN,−i
t under PN |(N)

i given sit = st ∈ S.

Proof of Proposition 3.16. We note that by Remark 3.13, the notation for LN |(N)
0:T,i (given in Re-

mark 7.2) can be simplified as for every i = 1, . . . , N , LN |(N)
0:T := LN |(N)

0:T,i . Then it holds that for
every t = 0, . . . , T − 1

MN |(N)
t (dst, dat) = π

(N)
t (dat|st)LN |(N)

t (dst),

where MN |(N)
0:T is given in Remark 3.13.

Let L∗|(N)
0:T be given in Remark 7.2 (i). Then we claim that if the following holds for some

t ∈ {0, . . . , T − 2}: for every mapping f : S → R

lim
N→∞

∣∣∣∣ ∫
S

f(st)L∗|(N)
t (dst)−

∫
S

f(st)LN |(N)
t (dst)

∣∣∣∣ = 0,(7.2)

then the following also holds: for every mapping f : S → R

lim
N→∞

∣∣∣∣ ∫
S

f(st+1)L∗|(N)
t+1 (dst+1)−

∫
S

f(st+1)LN |(N)
t+1 (dst+1)

∣∣∣∣ = 0.(7.3)

Since S is finite (see Assumption 3.1) and the convergence in (7.2) holds, we apply Lemma 7.1
(by setting L∗|(N)

t ↷ Λ
(N)
X , LN |(N)

t ↷ Λ̃
(N)
X , and π

(N)
t ↷ Λ

(N)
Y |X for every N ∈ N) to have that for

every mapping h : S ×A → R

lim
N→∞

∣∣∣∣ ∫
S×A

h(st, at)M∗|(N)
t (dst, dat)−

∫
S×A

h(st, at)MN |(N)
t (dst, dat)

∣∣∣∣ = 0.(7.4)

Furthermore, since S × A is finite (see Assumption 3.1) by the weak convergence given in
Assumption 3.14, we apply Lemma 7.1 (together with (7.4) and setting MN |(N)

t ↷ Λ
(N)
X , M∗|(N)

t ↷
Λ̃
(N)
X , KN |(N)

t ↷ Λ
(N)
Y |X , and p∗t (dst+1|·, ·, µt)δµ∗

t
(dµt) ↷ ΛY |X for every N ∈ N) to have (3.14).

In particular, by Definition 3.12 (iii) and Remark 3.13, the marginals of QN |(N)
t and Q∗|(N)

t

with respect to st+1 equal LN |(N)
t+1 and L∗|N

t+1 , respectively. Hence, (3.14) ensures that (7.3) holds.
Since LN |(N)

0 = L∗|(N)
0 = µo for every N ∈ N, we apply the above claim inductively to have

that (3.14) and (7.2) hold for every t = 0, . . . , T − 1. This completes the proof. □

Proof of Proposition 3.17. For N ∈ N, let Q∗|(N)
0:T ,QN |(N)

0:T be given in Definition 3.12 (iii) and
Remark 3.13, respectively. Since the following hold for every t = 0, . . . , T − 1 that

EPN|(N)
1

[
r(s1t , a

1
t , s

1
t+1, e

N
t (sNt ))

]
=

∫
S×A×S×P(S)

r(st, at, st+1, µt)QN |(N)
t (dst, dat, dst+1, dµt),

EP∗|(N)[
r(st, at, st+1, µ

∗
t )
]
=

∫
S×A×S×P(S)

r(st, at, st+1, µt)Q∗|(N)
t (dst, dat, dst+1, dµt)

with P∗|(N) ∈ Q(µ∗
0:T , π

(N)
0:T ) and PN |(N)

1 ∈ QN (µo, π
N |(N)
0:T ) given in Definition 3.11, Proposi-

tion 3.16 (together with r ∈ Cb(S×A×S×P(S)); see Assumption 3.1 (iii)) ensures that for every
t = 0, . . . , T − 1

lim
N→∞

∣∣∣EPN|(N)
1

[
r(s1t , a

1
t , s

1
t+1, e

N
t (sNt ))

]
− EP∗|(N)[

r(st, at, st+1, µ
∗
t )
]∣∣∣ = 0.

Hence,

lim
N→∞

∣∣∣∣∣JN
1 (µo, π

N |(N)
0:T,1 )− EP∗|(N)

[
T−1∑
t=0

r(st, at, st+1, µ
∗
t )

]∣∣∣∣∣
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= lim
N→∞

∣∣∣∣ T−1∑
t=0

EPN|(N)
1

[
r(s1t , a

1
t , s

1
t+1, e

N
t (sNt ))

]
−

T−1∑
t=0

EP∗|(N)[
r(st, at, st+1, µ

∗
t )
]∣∣∣∣

≤
T−1∑
t=0

lim
N→∞

∣∣∣EPN|(N)
1

[
r(s1t , a

1
t , s

1
t+1, e

N
t (sNt ))

]
− EP∗|(N)[

r(st, at, st+1, µ
∗
t )
]∣∣∣ = 0.

This completes the proof. □

7.2. Proof of Theorem 3.19.

Proof of Theorem 3.19. Let ε > 0. By using the same arguments presented in Remark 3.13, it is
enough to show that there exists N(ε) ∈ N such that for each N ≥ N(ε),

JN
1 (µo, π

N |∗
0:T ) + ε ≥ sup

π0:T∈Π
JN
1 (µo, (π

N |∗,−1
0:T , π0:T )),

where JN
1 denotes the worst-case reward for agent i = 1.

For each N ≥ N, let π
(N)
0:T ∈ Π be a sequence of policies satisfying that

JN
1 (µo, (π

N |∗,−1
0:T , π

(N)
0:T )) > sup

π0:T∈Π
JN
1 (µo, (π

N |∗,−1
0:T , π0:T ))−

ε

3
.(7.5)

By Proposition 3.4 (ii) (by replacing µ̃0:T as µ∗
0:T ; see (3.11)) it holds that

sup
π0:T∈Π

EP(µ∗
0:T ,π0:T ,p∗

0:T )

[
T−1∑
t=0

r(st, at, st+1, µ
∗
t )

]
= EP∗

[
T−1∑
t=0

r(st, at, st+1, µ
∗
t )

]
= V (µ∗

0:T ),

where P∗ = P(µ∗
0:T , π

∗
0:T , p

∗
0:T ) ∈ Q(µ∗

0:T , π
∗
0:T ) (see Definition 3.11 (i)).

Moreover since JN
1 (µo, (π

N |∗,−1
0:T , π

(N)
0:T )) = JN

1 (µo, π
N |(N)
0:T,1 ) and P(µ∗

0:T , π
(N)
0:T , p∗0:T ) = P∗|(N) (see

Definition 3.11), we apply Proposition 3.17 to have

lim
N→∞

JN
1 (µo, (π

N |∗,−1
0:T , π

(N)
0:T )) = lim

N→∞
EP(µ∗

0:T ,π
(N)
0:T ,p∗

0:T )

[
T−1∑
t=0

r(st, at, st+1, µ
∗
t )

]

≤ sup
π0:T∈Π

EP(µ∗
0:T ,π0:T ,p∗

0:T )

[
T−1∑
t=0

r(st, at, st+1, µ
∗
t )

]
= V (µ∗

0:T ).

(7.6)

Combining (7.5)–(7.6) and Remark 3.18, we can choose N(ε) ∈ N such that for every N ≥ N(ε)

sup
π0:T∈Π

JN
1 (µo, (π

N |∗,−1
0:T , π0:T ))− ε < JN

1 (µo, (π
N |∗,−1
0:T , π

(N)
0:T ))− 2ε

3

≤ V (µ∗
0:T )−

ε

3

≤ JN
1 (µo, π

N |∗
0:T ).

This completes the proof. □

Appendix A. Supplementary proofs

Proof of Lemma 4.2. Fix arbitrary λ ≥ 0 and c > 0. We first claim that Pλ
0:T satisfies As-

sumption 3.1 (ii). Let t ∈ {0, . . . , T − 1}, and let st ∈ S, at ∈ A, and µt, µ̃t ∈ P(S) be arbi-
trarily chosen. Since the reference kernel po does not depend on the argument µ and hence,
Pλ

t (st, at, µt) = Pλ
t (st, at, µ̃t). Furthermore, as Pλ

t (st, at, µt) is a 1-Wasserstein ball around
po(· | st, at, µt), it is clearly non-empty, convex-valued, compact-valued.
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Furthermore, since Pλ
t (st, at, µt) = Pλ

t (st, at, µ̃t), for any P ∈ Pλ
t (st, at, µt), we choose the

same one P̃ := P ∈ Pλ
t (st, at, µ̃t) to get

0 = dW1
(P, P̃) ≤ dW1

(µ, µ̃).

It remains to show that Pλ
t is continuous (i.e., upper- and lower-hemicontinuous). To that end,

consider an arbitrary sequence10 (
(sn, an, µn),Pn

)
n∈N ⊆ Gr(Pλ

t )

such that (sn, an) → (s, a) and µn ⇀ µ as n → ∞.
Since S and A are finite, there exists N ∈ N such that for every n ≥ N it holds that

(sn, an, µn) = (s, a, µn). Hence, Pn ∈ Pλ
t (s, a, µn) = Pλ

t (s, a, µ) for every n ≥ N . Moreover, since
Pλ

t (s, a, µ) is compact, there exists a subsequence (Pnk
)k∈N ⊆ (Pn)n∈N with Pnk

⇀ P ∈ Pλ
t (s, a, µ)

as k → ∞. Thus, by [2, Theorem 17.20], Pλ
t is upper-hemicontinuous.

Again, consider an arbitrary sequence ((sn, an, µn))n∈N ⊂ S × A× P(S) such that (sn, an) →
(s, a) and µn ⇀ µ as n → ∞ and let P ∈ Pλ

t (s, a, µ). As before, there exists N ∈ N such that for
every n ≥ N it holds that (sn, an, µn) = (s, a, µn). Define a sequence (Pn)n∈N ⊆ P(S) by setting

Pn :=

{
po(· | sn, an, µn) if n < N,

P else.

Then, Pn ∈ Pλ
t (sn, an, µn) for all n ∈ N and Pn ⇀ P as n → ∞. Hence, by [2, Theorem 17.21],

Pλ
t is lower-hemicontinuous. Hence Pλ

0:T satisfies Assumption 3.1 (ii), as claimed.

We now claim that r given in Definition 4.1 (ii) satisfies Assumption 3.1 (iii).
Since |ŝ| < 4 and |a| < 1 for every (ŝ, a) ∈ S × A (noting that S = {0, 1, . . . , 4} and A =

{−1, 0, 1}; Definition 4.1), there exists a constant Cr := 17
4 + max

{
− log(c), log(1 + c)

}
> 0

satisfying that for every s, ŝ ∈ S, a ∈ A, and µ ∈ P(S),

|r(s, a, ŝ, µ)| ≤
∣∣∣∣1− 1

2
|ŝ− 2|

∣∣∣∣+ |a|
4

+ |log(µ(ŝ) + c)|

≤ 1 +
1

2
(|ŝ|+ 2) +

1

4
+max

{
− log(c), log(1 + c)

}
≤ Cr.

Moreover, there exists Lr := 1/c > 0 satisfying that for every s, ŝ ∈ S, a ∈ A, and µ, µ̂ ∈ P(S),

|r(s, a, ŝ, µ)− r(s, a, ŝ, µ̂)| = |log(µ̂(ŝ) + c)− log(µ(ŝ) + c)|

=

∣∣∣∣log(1 + µ̂(ŝ) + c

µ(ŝ) + c
− 1

)∣∣∣∣ ≤ ∣∣∣∣ µ̂(ŝ) + c

µ(ŝ) + c
− 1

∣∣∣∣
=

1

µ(ŝ) + c
|µ̂(ŝ)− µ(ŝ)| ≤ Lr|µ̂(ŝ)− µ(ŝ)|

≤ LrdW1
(µ, µ̂).

Hence, r satisfies Assumption 3.1 (iii), as claimed. □

Proof of Lemma 6.1. By the existence of measurable selectors given in Lemma 3.2 (i), we can and
do choose a stochastic kernel p′t : S × A × (P(S))T−t ∋ (st, at, µt:T ) 7→ p′t(·|st, at, µt:T ) ∈ P(S).
Then define pt : S ×A× (P(S))T−t ∋ (st, at, µt:T ) 7→ pt(·|st, at, µt:T ) ∈ P(S) by

pt(·|st, at, µt:T ) =

{
pt(·|st, at) if µt:T = µ̃t:T ,

p′t(·|st, at, µt:T ) else.
(A.1)

10We denote by Gr(Pλ
t ) the graph of Pλ

t .
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It is sufficient to show that pt is Borel-measurable. To that end, recall that BP(S) and
BS×A×(P(S))T−t denote the Borel σ-field of P(S) and S ×A× (P(S))T−t, respectively.

Let E ∈ BP(S). Then since

p−1
t (E) =

{
(st, at, µt:T ) ∈ S ×A× (P(S))T−t

∣∣∣ pt(·|st, at, µt:T ) ∈ E
}

=
{
(st, at, µt:T ) ∈ X ×A× {µ̃t:T }

∣∣∣ pt(·|st, at, µt:T ) ∈ E
}

∪
{
(st, at, µt:T ) ∈ S ×A× (P(S))T−t \ {µ̃t:T })

∣∣∣ pt(·|st, at, µt:T ) ∈ E
}
=: E1 ∪ E2,

we will show that E1, E2 ∈ BS×A×(P(S))T−t .
Note that by (A.1),

E1 =
{
(st, at) ∈ S ×A

∣∣∣ pt(·|st, at) ∈ E
}
× {µ̃t:T },

E2 =
{
(st, at, µt:T ) ∈ S ×A× (P(S))T−t

∣∣∣ p′t(·|st, at, µt:T ) ∈ E
}

\
({

(st, at) ∈ S ×A
∣∣∣ p′t(·|st, at, µ̃t:T ) ∈ E

}
× {µ̃t:T }

)
=: E2,1 \ E2,2.

Since S and A are finite (see Assumption 3.1 (i)), pt is Borel-measurable. Hence this implies that
E1 ∈ BS×A×(P(S))T−t . For the same reason, it follows that E2,2 ∈ BS×A×(P(S))T−t . Furthermore,
since p′t is Borel-measurable, E2,1 ∈ BS×A×(P(S))T−t . □

Proof of Lemma 7.1. We only prove for i = 2, as the proof for i = 1 follows the same line
of reasoning. For every N ∈ N, denote by w(N)(x) the weight representing of the x ∈ X under
Λ
(N)
X , and similarly for w̃(N)(x) under Λ̃

(N)
X . Let g ∈ Cb(X × Y ). By the triangle inequality,∣∣∣∣∫

X×Y

g(x, y)Λ(N)(dx, dy)−
∫
X×Y

g(x, y)Λ̃
(N)
2 (dx, dy)

∣∣∣∣ ≤ I(N) +II(N),

where I(N) and II(N) are given by

I(N) :=

∣∣∣∣∫
X

∫
Y

g(x, y)Λ
(N)
Y |X(dy|x)Λ(N)

X (dx)−
∫
X

∫
Y

g(x, y)Λ
(N)
Y |X(dy|x)Λ̃(N)

X (dx)

∣∣∣∣ ,
II(N) :=

∣∣∣∣∫
X

∫
Y

g(x, y)Λ
(N)
Y |X(dy|x)Λ̃(N)

X (dx)−
∫
X

∫
Y

g(x, y)ΛY |X(dy|x)Λ̃N
X(dx)

∣∣∣∣ .
We claim that I(N) and II(N) vanish as N → ∞. Indeed, note that for every N ∈ N

I(N) =

∣∣∣∣ ∑
x∈X

w(N)(x)

∫
Y

g(x, y)Λ
(N)
Y |X(dy|x)−

∑
x∈X

w̃(N)(x)

∫
Y

g(x, y)Λ
(N)
Y |X(dy|x)

∣∣∣∣
≤

∑
x∈X

∣∣∣w(N)(x)− w̃(N)(x)
∣∣∣ ∫

Y

|g(x, y)|Λ(N)
Y |X(dy|x) < Cg ·

∑
x∈X

∣∣∣w(N)(x)− w̃(N)(x)
∣∣∣ ,

where Cg = supx,y∈X |g(x, y)| < ∞ (hence not depending on N ∈ N) as g ∈ Cb(X × Y ).
In particular, from the convergence given in (7.1), the finiteness of the space X ensures that∑
x∈X

∣∣w(N)(x)− w̃(N)(x)
∣∣ → 0 as N → ∞. Therefore I(N) vanishes as N → ∞.

And similarly, since Λ
(N)
Y |X(·|x) ⇀ ΛY |X(·|x) as N → ∞ for every x ∈ X and the space X is

finite, we can conclude that

lim
N→∞

II(N) ≤
∑
x∈X

w̃(N)(x)

(
lim
n→∞

∣∣∣∣ ∫
Y

g(x, y)Λ
(N)
Y |X(dy|x)−

∫
Y

g(x, y)ΛY |X(dy|x)
∣∣∣∣) = 0.

This completes the proof. □
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