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Pathwise superhedging on prediction sets
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Abstract

In this paper we provide a pricing-hedging duality for the model-independent su-
perhedging price with respect to a prediction set Ξ ⊆ C[0, T ], where the superhedging
property needs to hold pathwise, but only for paths lying in Ξ. For any Borel mea-
surable claim ξ which is bounded from below, the superhedging price coincides with
the supremum over all pricing functionals EQ[ξ] with respect to martingale measures Q
concentrated on the prediction set Ξ. This allows to include beliefs in future paths of
the price process expressed by the set Ξ, while eliminating all those which are seen as
impossible. Moreover, we provide several examples to justify our setup.
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1 Introduction

In this paper we study the problem of pathwise superhedging on a prediction set Ξ ⊆ C[0, T ]
of continuous price paths, i.e. finding a predictable trading strategy which super-replicates
a given contingent claim ξ : C[0, T ] → R simultaneously for all possible future price paths
in Ξ.

Unlike the famous Black-Scholes model, most financial models cannot exactly replicate
every contingent claim. This phenomenon, called incompleteness of the market is equivalent
to the failure of uniqueness of equivalent local martingale measures. Since there is not
an unique price which financial agents are willing to accept, the concept of superhedging
starting with [18] has been well established in the financial literature. Here one wants to
find the smallest initial capital for which a trading strategy exists which superhedges the
claim ξ.

To be more precise, in classical finance, one assigns probabilities to all events by fixing
a probability measure P. Then, the superhedging property is required to hold P-a.s.

Recently, motivated by the early works of [19, 11], one started to consider a set of
probability measures P, rather than an unique one, where each element represents the
candidates for the possible right law. In the so-called quasi-sure setting, one then requires
the superhedging property to hold true P-quasi surely, which means P-a.s. for all P ∈ P.
This problem under volatility uncertainty was motivated by the early works of [2, 21] and
later has also been solved in [8, 31, 24, 30].

In the model-independent (or pathwise) approach, one wants to go away from the classical
assumption of assigning probabilities to events related to the financial market by fixing one
probability measure, or a set of probability measures allowing for model ambiguity. In this
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setting, superhedging is required to hold true for every possible future path in C[0, T ] of
the price process. Such an approach has started with the seminal work [14] and has been
recently lead to attention in various other works; we refer to [1, 3, 6, 10], to name but a few.

However, it turns out that the concept of superhedging is too robust leading to too
high prices. In fact, for stochastic volatility or rough volatility models, it turns out that the
classical superhedging price coincides with the model-independent one and is so high that for
Markovian payoffs of the form Γ(ST ), like e.g. the European Call and Put option, the optimal
superhedging strategy can be chosen to be of buy-and-hold type, see [9, 23]. To reduce the
model-independent superhedging price, inspired by the work of [22], [15] introduced the
concept of prediction sets, where agents may allow to exclude paths which they consider to
be impossible to model future price paths. Hence they require the superhedging property
only to hold true on every path in Ξ ⊆ C[0, T ] of their prediction set.

Whereas the pricing-hedging duality is well-understood for the pathwise superhedging
with respect to all paths in C[0, T ], it turns out that the problem becomes considerably more
difficult when requiring the superhedging property only to hold true on the prediction set
Ξ ⊆ C[0, T ]. To illustrate the difficulty, consider the examples where the agent may believe
in the Black-Scholes model, or is uncertain about the volatility like in the G-expectation
(see [28]) and hence models his/her beliefs by requiring

ΞBS :=
{
ω ∈ C0[0, T ] : d〈ω〉t = σ2ω(t)2 dt

}
, or ΞG :=

{
ω ∈ C0[0, T ] :

d〈ω〉t
dt ∈ [σ2, σ2]

}
.

Observe that these sets are neither closed, nor σ-compact. In [15], they get an asymptotic
pricing-hedging duality result. More precisely, the asymptotic price being defined as the limit
(when ε → 0) of superhedging prices on ε-varied prediction sets Ξε turns out to coincide
with the limit of the supremum of the pricing functionals with respect to the martingale
measures having support on the ε-varied prediction sets Ξε. However, typically, Ξ is not
closed and hence Ξε might be far away from the original set Ξ. Indeed, one can show that
in the canonical example of the paths ΞBS of the Black-Scholes model, Ξε = C[0, T ] for any
ε > 0.

In [3], they obtain a superhedging duality with respect to a prediction set Ξ ⊆ C[0, T ],
where the superhedging price coincides with the supremum over all pricing functionals with
respect to martingale measures concentrated on the prediction set Ξ. As trading strategies,
they use simple strategies and define the gain process to be the limit inferior of the discrete
integral with respect to the simple strategies; we refer to [29, 5, 29, 33, 34] which also
applied this setup in the context of superhedging. However, they need to impose the crucial
assumption that the prediction set Ξ is σ-compact in a topology which is at least as fine as
the usual sup-norm; a property which is in general not satisfied in the examples of paths
motivated by financial applications, like e.g. ΞBS or ΞG.

In this paper, we extend the work of [15, 3]. We do not require any strong topological
properties on Ξ such that our pricing-hedging duality also covers e.g., ΞBS or ΞG as exam-
ples. For our first results, which are stated in Theorem 2.3, Theorem 2.5, and Theorem 2.14,
we stick to the formulation of [3] for the superhedging price. In Theorem 2.3 and Theo-
rem 2.14, we allow to trade next to the stock S also in the iterated integral S :=

∫
S dS,

which seems to be a bit artificial in the context of superhedging at first glance. However,
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we point out that the dS-integral should not be seen as an artificial traded asset but rather
as allowing a larger set of admissible trading strategies. Indeed when enlarging the set of
admissible strategies adequately, one directly obtains a superhedging duality result in the
formulation of [3] where one is only allowed to trade in the stock S; see Theorem 2.5.

Note that the superhedging duality results in Theorem 2.3, Theorem 2.5, and Theo-
rem 2.14 hold for claims ξ which are semicontinuous. We then continue the idea of enlarging
the set of admissible strategies by following an idea of [34]. The enlargement of the admissi-
ble strategies has the consequence that our pricing functional becomes enough regular such
that, with an application of Choquet’s capacitability theorem in the functional form, we
derive our desired superhedging duality result also for Borel measurable claims; we refer to
Theorem 2.9 for our main result.

Summing up, our contribution is twofold. First, we derive a pathwise superhedging
duality where the superhedging property only needs to hold for paths lying in a given
prediction set Ξ which does not require any strong topological properties. In particular,
compared to previous results in the literature, we are now able to establish a duality result
for prediction sets which enforces conditions to hold both on the price path and its quadratic
variation; see Remark 2.6 for a more detailed explanation also in relation to Assumption 2.2.
Second, we obtain a pathwise superhedging duality for measurable claims. This extension
from semicontinuous claims to Borel measurable ones is to the best of our knowledge the
first one in the context of pathwise superhedging duality and allows to consider financial
derivatives such as, e.g., digital options or financial derivatives where the regularity is not
known, for example American options evaluated at optimal exercise times (see also [27]).

To remove strong topological requirements on the prediction set Ξ, we lift the super-
hedging problem to the product space Ω := Ω × Ω, where the first coordinate represents
the original price process and the second one represents its quadratic variation; we refer
to [13, 32, 20] where similar enlarged spaces Ω were considered. On the enlarged space Ω,
we then prove the desired superhedging duality and can then conclude the desired result
on the original space. This works, roughly speaking, by observing that for any probability
measure Q on the enlarged space for which the first coordinate is a local martingale with
the second one as its quadratic variation, the Q-completed natural filtration coincides with
the Q-completed one generated only by the first coordinate. This then leads to a one-to-one
correspondence to the original space. For a further discussion explaining the advantage of
lifting the original problem to an enlarged one, we refer to Remark 2.6. We point out that
our trading strategies are defined with respect to the (right-continuous) natural filtration,
without any completion with respect to a probability measure, such that we retain the
framework of pathwise superhedging without any probabilistic beliefs.

The remainder of this paper is organized as follows. In Section 2, we introduce the setup
and state our main results of this paper. Then in Section 3, we provide several examples to
motivate our theorems. In Section 4, we provide the proof of our main results. Finally, in
Section 5, we attach some technical results required in the proof of our theorems.
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2 Setup and main results

2.1 Setup

Fix a finite time horizon T ∈ (0,∞), and let C[0, T ] be the space of all continuous paths
ω : [0, T ] → R, which as usual is endowed with the sup-norm ‖ω‖∞ := sup0≤t≤T |ω(t)|.
Denote by S = (St)0≤t≤T the canonical process St(ω) = ω(t), and define for each m ≥ 1
the sequence σm0 := 0,

σmk+1 := inf
{
t ≥ σmk : |St − Sσm

k
| ≥ 2−m

}
, k ≥ 0.

Since S has continuous paths, limk→∞ σmk (ω) = ∞ holds for all ω ∈ C[0, T ]. Moreover, let
S : [0, T ]× C[0, T ] → R be the process defined by

St := lim inf
m→∞

Smt where Smt :=

∞∑

k=0

Sσm
k

(
Sσm

k+1∧t
− Sσm

k
∧t

)
.

Define a pathwise quadratic variation 〈·〉 : C[0, T ] → C[0, T ] by

〈ω〉 :=

{
S2(ω)− S2

0(ω)− 2S(ω) if ω ∈ Ω

0 else,

where Ω is the Borel set of all ω ∈ C[0, T ] such that Sm(ω) → S(ω) in the sup-norm and
S2(ω)−S2

0(ω)−2S(ω) is nondecreasing. The space Ω is endowed with the relative topology
and equipped with the corresponding relative Borel σ-field F . Moreover, we denote by
P(Ω) the set of Borel probability measures on (Ω,F). Furthermore, for any ω ∈ Ω and
t ∈ [0, T ] we denote by ωt(s) := ω(t∧s), s ∈ [0, T ], the stopped path of ω at time t. Finally,
denote by F = (Ft)0≤t≤T the raw filtration generated by the canonical process S on Ω, i.e.
Ft = σ(Ss, s ≤ t), and by F+ its right-continuous version, Ft+ = ∩s>tFs∧T , for each t.

Remark 2.1. The construction of the pathwise quadratic variation 〈·〉 is similar to [25]
and goes back to [16, 26]. For every Q ∈ P(Ω) under which the canonical process is a
semimartingale in the raw filtration, it is a consequence of the Burkholder-Davis-Gundy
inequalities that

sup
0≤t≤T

∣∣∣∣S
m
t −

(Q)∫ t

0
Ss dSs

∣∣∣∣ → 0 Q-a.s..

Hence, 〈S〉 = S2−S2
0−2 (Q)

∫
S dS = 〈S〉(Q) holds Q-a.s. as an application of the integration-

by-parts formula for the Itô integral. In particular, Q(Ω) = 1. Here (Q)
∫

and 〈·〉(Q) are the
usual stochastic integral and quadratic variation, respectively, defined under the semimartin-
gale meausre Q. Notice that St coincides with Föllmer’s pathwise stochastic integral [12] of∫ t
0 S dS on Ω.

Let H be the set of all simple processesH : [0, T ]×Ω → R of the formH =
∑L

l=1 hl1(τl ,τl+1]

where L ∈ N, 0 ≤ τ1 ≤ · · · ≤ τL+1 ≤ T are stopping times w.r.t. the filtration F+, and
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hl : Ω → R are bounded Fτl+-measurable functions. For any H ∈ H the pathwise stochastic
integral

(H · S)t(ω) :=
L∑

l=1

hl(ω)(Sτl+1(ω)∧t(ω)− Sτl(ω)∧t(ω))

is well-defined for all t ∈ [0, T ] and all ω ∈ Ω. Similarly the integral (H · S)t is well-defined.

2.2 Superhedging duality for prediction sets closed under stopping

Our goal is to identify the pathwise superhedging price when the superhedging property
only needs to hold for a given prediction set Ξ ⊆ Ω of price paths. We will mostly work
with a prediction set which satisfies the following assumptions.

Assumption 2.2. Ξ ⊆ Ω is a nonempty set of paths of the form

Ξ =
{
ω ∈ Ω: (ω, 〈w〉) ∈ Ξ

}

for a nonempty set Ξ ⊆ C[0, T ]× C[0, T ] satisfying

(A1) Ξ is the countable union of compact sets,
(A2) (ω, ν) ∈ Ξ implies that ν(0) = 0 and ν is nondecreasing,
(A3) for any t ∈ [0, T ] we have that (ω, ν) ∈ Ξ implies that (ωt, νt) ∈ Ξ.

We discuss these assumptions below, see Remark 2.6. To identify the pathwise super-
hedging price with respect to a given prediction set Ξ ⊆ Ω, we denote by M(Ξ) the set of
local martingale measures for S concentrated on Ξ, i.e.

M(Ξ) :=
{
Q ∈ P(Ω): S is a Q-F-local martingale and Q(Ξ) = 1

}
.

Notice that Ξ ⊆ Ω satisfying Assumption 2.2 ensures that M(Ξ) is nonempty, as condition
(A3) enforces Ξ to contain constant paths. Our first main result is the following.

Theorem 2.3. Let Ξ ⊆ Ω be a prediction set satisfying Assumption 2.2. Then

Φ(ξ) : = inf



λ ∈ R :

there are sequences (Hn) and (Gn) in H such that
λ+ (Hn · S)t + (Gn · S)t ≥ 0 on Ξ for all n, t
λ+ lim infn→∞

(
(Hn · S)T + (Gn · S)T

)
≥ ξ on Ξ





= sup
Q∈M(Ξ)

EQ[ξ]

for every function ξ : C[0, T ] → [0,∞] of the form ξ(ω) = lim infn→∞ ξn(ω, 〈ω〉) where
ξn : C[0, T ] × C[0, T ] → [0,∞) are bounded and upper-semicontinuous (in particular, every
upper/lower-semicontinuous function ξ).

Remark 2.4. Using gain processes of the form lim infnH
n · S for a sequence of simple

integrands (Hn) can be seen as the pathwise analogue of the classical gain process in math-
ematical finance being a stochastic integral with respect to dS (under a given measure P).
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Indeed, the construction of the classical stochastic integral is accomplished by a L2(P)-
limit procedure with respect to simple integrands. We refer to [29] for further discussions
regarding pathwise stochastic integrals applied to model-independent finance.

Nevertheless, an evident question in the present context is whether the lim inf in the
definition of Φ is actually needed. While the results of [10, 15] suggest that for uniformly
continuous ξ this might not be the case (at least without or with very “regular” prediction
sets), we provide at the end of Section 3 an example showing the necessity of the lim inf in
the present setting; we refer to Example 3.6 for further details.

In Theorem 2.3, we do not only allow such gain processes with respect to dS, but also
with respect to dS. At first glance, this might look artificial from a financial point of view.
However, the dS-integral in the definition of Φ should not be seen as an artificial traded asset
but rather as allowing a larger set of admissible trading strategies. Indeed, by Föllmer [12],
S = (S · S) can be defined pathwise on Ω which implies that (G · S) = (GS · S) can also
be defined pathwise on Ω for G ∈ H. Thus, instead of allowing to trade in S and S with
simple strategies, one could also allow to trade only in S, but with those integrands for
which the integral can be defined pathwise and coincides with the classical integral under
every martingale measure on Ω (or, at least, integrands of the form H + GS for H and G
simple). In particular, denoting by Hgen := {H + GS : H,G ∈ H} the set of generalized
simple processes, this implies that Theorem 2.3 can be restated as follows:

Theorem 2.5. Let Ξ ⊆ Ω be a prediction set satisfying Assumption 2.2. Then

Φgen(ξ) := inf



λ ∈ R :

there is a sequence (Hn) in Hgen such that
λ+ (Hn · S)t ≥ 0 on Ξ for all n, t
λ+ lim infn→∞(Hn · S)T ≥ ξ on Ξ



 = sup

Q∈M(Ξ)
EQ[ξ]

for every function ξ : C[0, T ] → [0,∞] of the form ξ(ω) = lim infn→∞ ξn(ω, 〈ω〉) where
ξn : C[0, T ]× C[0, T ] → [0,∞) are bounded and upper-semicontinuous.

One can take this idea even one step further: Notice that (G · S) = (GS · S) is the
(uniform) limit of the sequence (GSm ·S), where Sm :=

∑∞
k=0 Sσmk 1(σm

k
,σm

k+1]
with (σmk ) being

the stopping times from Subsection 2.1. In other words, (G · S) is the limit of a sequence
of dS-integrals with respect to this intermediate class of integrands. Therefore, taking this
class of integrands as admissible trading strategies, we found yet another reformulation of
Theorem 2.3 (which we do not state explicitly). In Theorem 2.9 below we work out the idea
of enlarging the trading strategies once more, but with the goal to obtain duality for Borel
measurable claims.

Remark 2.6. There are not many different strategies to prove model-free superhedging
duality in mathematical finance. One of the first techniques developed in [10], where no
prediction sets were involved, is to approximate the duality problem by a discretization in
time and space to reduce the original duality problem to ones in finite-dimensions, where
one can apply classical duality theorems to derive the result. However, it seems that when
restricting the superhedging property to hold true only on a given prediction set, that this
technique comes at the price of enforcing a lot of regularity on the prediction set to obtain
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duality; see [15]. Another established strategy developed in [1] and its many successors
is what we refer to the topological approach, where to overcome technicalities implied by
the absence of a reference probability measure requires continuous functions to be rich
enough to determine the behavior of the functional, as well as some compactness of the
problem. More concretely, this method requires the prediction set Ξ to be σ-compact, i.e.
the countable union of compacts. Under the requirement of σ-compactness of the prediction
set, [3] provides a pathwise superhedging duality in the present continuous-time setting.
However, for prediction sets involving the quadratic variation (see Section 3), σ-compactness
generally fails or cannot be verified, since the map C[0, T ] ∋ ω 7→ 〈ω〉 ∈ C[0, T ] is highly not
continuous. The immediate idea of changing the topology and making ω 7→ 〈ω〉 continuous
does not work either as compact sets in this topology are very “small” and one looses
separability of C[0, T ].

To overcome this problem, we shall work in the enlarged space Ω := C[0, T ] × C[0, T ]
where the first component will play the role of the price process S and the second component
will play the role of its quadratic variation. On this enlarged space, assumption (A1) (which
requires the lifted prediction set Ξ to be the countable union of compacts) implies that the
afore mentioned topological proof works on the enlarged space. The dual objects Q are
now martingale measures for the first and second component, and assumption (A2) ensures
that every martingale measure for the first component on the enlarged space will have the
second component as its quadratic variation. This is crucial to go back and forth between
the original space and the enlarged space.

Only condition (A3) seems artificial at first and in fact has nothing to do with the above
discussion. However, it clears the way for the (nicer) formulation of the superhedging price
Φ, compared to the superhedging price ΦZ in Theorem 2.14 where (A3) is not assumed.
Moreover, it naturally provides a relation to American options, see Remark 2.8. In addition,
due to condition (A3), the admissibility condition imposed in the definition of Φ could be
replaced by λ+ (Hn · S)T + (Gn · S)T ≥ 0, see Lemma 5.2 for the precise statement.

Remark 2.7. The nonnegativity assumption in Theorem 2.3 imposed on ξ could be re-
laxed by instead requiring ξ : C[0, T ] → [−∞,∞] to be bounded from below on Ξ, if the
admissibility condition λ + (Hn · S)t + (Gn · S)t ≥ 0 in the definition of Φ is replaced by
λ+ (Hn · S)t + (Gn · S)t ≥ infω∈Ξ ξ(ω).

Remark 2.8. Condition (A3) in Assumption 2.2 implies for every Borel measurable function
ξ : C[0, T ] → (−∞,∞] which is bounded from below the following identity

sup
Q∈M(Ξ)

EQ[ξ] = sup
τ is F-stopping time

sup
Q∈M(Ξ)

EQ[ξ(S
τ )].

Indeed, by choosing τ̂ = T , it follows that the left-hand side is smaller than or equal to the
right hand side. As for the reverse inequality, observe that for any F-stopping time τ and
Q ∈ M(Ξ) one has that Qτ := Q ◦ (Sτ )−1 defines a local martingale measure for S which
by condition (A3) also satisfies Qτ (Ξ) = 1. Hence Qτ ∈ M(Ξ), which in turns implies the
reverse inequality.

Moreover, for every given Ξ satisfying conditions (A1)-(A2), the set

Ξstop :=
{
ωt : ω ∈ Ξ and t ∈ [0, T ]

}
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satisfies (A1)-(A3). Indeed, since for all t ∈ [0, T ] we have by construction of the pathwise
quadratic variation that 〈ω〉t = 〈ωt〉, we see that

Ξ
stop

:=
{
(ωt, νt) : (ω, ν) ∈ Ξ and t ∈ [0, T ]

}

satisfies Ξstop = {ω ∈ Ω : (ω, 〈ω〉) ∈ Ξ
stop

}. By construction, Ξ
stop

satisfies (A2)-(A3). To
see (A1), let Ξn be compact sets such that Ξ =

⋃
n Ξn. Then, as the map stop: C[0, T ] ×

[0, T ] → C[0, T ], (ω, t) 7→ ωt is continuous, one has Ξ
stop

=
⋃
n stop(Ξn × [0, T ]) and

stop(Ξn × [0, T ]) are compact sets, as the continuous image of compact sets.

We continue the previous idea of enlargement of the set of trading strategies in the
definition of the superhedging price. More precisely, following an idea of Vovk [34], we
define for every Ξ ⊆ Ω and λ ≥ 0 the set

GΞ
λ := lim inf -closure of

{
λ+ (H · S)T : H ∈ H and λ+ (H · S)t ≥ 0 on Ξ for all t

}
,

i.e. GΞ
λ is the smallest set of functions X : C[0, T ] → [−∞,∞] which contains λ+(H ·S)T for

H ∈ H with λ+ (H · S)t ≥ 0 on Ξ for all t, such that lim infnXn ∈ GΞ
λ whenever Xn ∈ GΞ

λ

for every n. We refer to [34] for more details regarding the liminf closure. Then we obtain
the following result.

Theorem 2.9. Let Ξ ⊆ Ω be a prediction set satisfying Assumption 2.2. Then it holds that

Φcl(ξ) : = inf
{
λ ∈ R : there is Y ∈ GΞ

λ such that Y ≥ ξ on Ξ
}

= sup
Q∈M(Ξ)

EQ[ξ]

for every Borel function ξ : C[0, T ] → [0,∞].

As in Remark 2.7, the non-negativity of ξ can be relaxed.

Remark 2.10. To the best our knowledge, this is the first pathwise superhedging duality
result in a continuous-time setting for measurable claims. Hence the result is not only of
interest for a “small” prediction set, but also for “large” ones, e.g., the set Ξ of all paths which
possess a quadratic variation and are Hölder continuous. During the reviewing process of
this work, a similar duality theorem in the context of martingale optimal transport on the
space of càdlàg paths has been obtained in [7]. Under a suitable constructed topology on the
space of càdlàg paths, the duality result in [7] has also been established by enlarging the set
of admissible strategies using the lim inf- closure in the spirit of [34] and then extending the
duality result from semicontinuous claims to Borel measurable ones following the approach
in [17] to apply Choquet’s capacitability theorem.

Remark 2.11. As a direct consequence it follows that a Borel set A ⊆ C[0, T ] satisfies
Q(A) = 0 for all Q ∈ M(Ξ) if and only if for every ε > 0 there exists Y ε ∈ GΞ

ε such that
1A ≤ Y ε.
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Remark 2.12. For any prediction set Ξ, trading strategy H ∈ H, and martingale measure
Q, it holds that EQ[λ + (H · S)T ] = λ for all λ ∈ R. Fatou’s lemma implies that for
every sequence Hn ∈ H such that λ + (Hn · S)t ≥ 0 on Ξ for every n and t, one has
EQ[λ + lim infn(H

n · S)T ] ≤ λ. This immediately implies weak duality, i.e. that Φ(ξ) ≥
supQ∈M(Ξ) EQ[ξ] for every Borel ξ : C[0, T ] → [0,∞].

As for the liminf-closure, fix some λ ∈ R and notice that the set A := {X ≥ 0 : EQ[X] ≤
λ for all Q ∈ M(Ξ)} contains λ + (H · S)T for H ∈ H such that λ + (H · S)t ≥ 0 on Ξ
for every t. As A is closed under liminf (by Fatou’s lemma), one has GΞ

λ ⊆ A. This again
implies weak duality, i.e. Φcl(ξ) ≥ supQ∈M(Ξ) EQ[ξ] for every Borel ξ : C[0, T ] → [0,∞].

2.3 Superhedging duality for prediction sets not closed under stopping

In this subsection we seek to characterize the pathwise superhedging price with respect to
a given prediction set Ξ ⊆ Ω which is not necessarily closed under stopping. To that end
we impose the following conditions on the prediction set.

Assumption 2.13. Ξ ⊆ Ω is a nonempty set of paths of the form

Ξ =
{
ω ∈ Ω: Z(ω, 〈ω〉) <∞

}

for some function Z : C[0, T ]× C[0, T ] → [1,∞] which satisfies that

(B1) Z has compact sublevel sets,
(B2) for all (ω, ν) we have that Z(ω, ν) <∞ implies that ν(0) = 0 and ν is nondecreasing,
(B3) Z(ω, ν) ≥ ‖ω‖∞ + ‖ν‖∞ for all (ω, ν).

We denote for any given set of paths Ξ ⊆ Ω and any Borel function Z : Ω → [1,∞] the
set MZ(Ξ) of Borel probability measures defined by

MZ(Ξ) :=
{
Q ∈ P(Ω): S is a Q-F-local martingale, Q(Ξ) = 1, and EQ[Z] <∞

}
.

Theorem 2.14. Let Ξ ⊆ Ω be a prediction set satisfying Assumption 2.13, let Z : Ω → [1,∞]
be the function defined by Z(ω) := Z(ω, 〈ω〉), ω ∈ Ω, and assume that MZ(Ξ) is nonempty.
Then

ΦZ(ξ) : = inf



λ ∈ R :

there is c ≥ 0 and sequences (Hn), (Gn) in H such that
λ+ (Hn · S)T + (Gn · S)T ≥ −cZ on Ξ for all n,
λ+ lim infn→∞

(
(Hn · S)T + (Gn · S)T

)
≥ ξ on Ξ





= sup
Q∈MZ(Ξ)

EQ[ξ]

for every function ξ : C[0, T ] → (−∞,∞] bounded from below which is of the form ξ(ω) =
lim infn→∞ ξn(ω, 〈ω〉) where ξn : C[0, T ]×C[0, T ] → R are bounded and upper-semicontinuous.
Moreover, if ΦZ(ξ) <∞, then the infimum is attained.

Remark 2.15. The necessity in introducing the growth function Z (induced by Z) is a
purely technical feature and lies in the admissibility condition required to ensure that gain
processes are supermartingales.
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Observe that Assumption 2.13 implies the conditions (A1)-(A2) of Assumption 2.2.
Indeed, Assumption 2.13 ensures that Ξ = {ω ∈ Ω: (ω, 〈ω〉) ∈ Ξ} for

Ξ :=
{
(ω, ν) ∈ C[0, T ]× C[0, T ] : Z(ω, ν) <∞

}
.

Conversely, given a prediction set Ξ ⊆ Ω of the form Ξ = {ω ∈ Ω: (ω, 〈ω〉) ∈ Ξ} for
some Ξ ⊆ C[0, T ]×C[0, T ], one may ask for sufficient conditions such that Assumption 2.13
is satisfied. To that end, notice first that if Ξ is compact one can set Z(ω, ν) := c+∞1Ξc(ω)
for a suitable constant c to ensure that Assumption 2.13 is satisfied. Having this in mind,
the strategy to find the corresponding Z when Ξ is not necessarily compact is to search for
a function Z such that for Z(ω) := Z(ω, 〈ω〉), ω ∈ Ω, one has that M(Ξ) = MZ(Ξ). While
this might not always possible, it turns out that conditions (A1)-(A2) of Assumption 2.2
are not far from being a sufficient condition to guarantee that Assumption 2.13 is satisfied,
provided that one restricts Ξ to contain only Hölder paths. For the precise statement, we
refer to the following proposition whose proof is presented at the end of Subsection 4.4.

In the following consider the space of all Hölder continuous functions,

CHölder[0, T ] =
⋃

n∈N

{
ω ∈ C[0, T ] : ‖ω‖ 1

n
≤ n

}
,

where, for α ∈ (0, 1], the α-Hölder norm is given by ‖ω‖α := |ω(0)| + sups 6=t
|ω(t)−ω(s)|

|t−s|α .

Proposition 2.16. Let ∅ 6= Ξ ⊆ Ω be of the form Ξ = {ω ∈ Ω: (ω, 〈ω〉) ∈ Ξ} for some
Ξ ⊆ C[0, T ]× C[0, T ] such that the conditions (A1)-(A2) of Assumption 2.2 hold and

• Ξ ⊆ CHölder[0, T ]× CHölder[0, T ],
• M(Ξ) is nonempty and there exists a constant c > 0 such that for all Q ∈ M(Ξ) and
s, t ∈ [0, T ] it holds

EQ[|S0|
4] ≤ c and EQ

[
|St − Ss|

4
]
+ EQ

[
|〈S〉t − 〈S〉s|

4
]
≤ c|t− s|2. (2.1)

Then there exists a function Z : C[0, T ] × C[0, T ] → [1,∞] such that Assumption 2.13 is
satisfied and M(Ξ) = MZ(Ξ) for Z : Ω → [1,∞] defined by Z(ω) := Z(ω, 〈ω〉), ω ∈ Ω.

3 Examples

Example 3.1 (Random G-expectation). Fix two bounded Borel functions σ, σ : [0, T ] ×
C[0, T ]× C[0, T ] → [0,∞) such that σ ≤ σ and for every t ∈ [0, T ] the mappings (ω, ν) 7→
σt(ω, ν) and (ω, ν) 7→ σt(ω, ν) are continuous. Consider the set

Ξ :=



(ω, ν) ∈ CHölder[0, T ]× CHölder[0, T ] :

ω(0) = ν(0) = 0 and
ν is nondecreasing with dν ≪ dt and
dν/dt(s) ∈ [σs(ω, ν)

2, σs(ω, ν)
2] for all s



 .

Then Ξ satisfies (A1) and (A2). Indeed, (A2) follows by its definition. As for (A1), let
Ξn := Ξ∩ (Cn×C

Hölder[0, T ]) where Cn := {ω ∈ C[0, T ] : ‖ω‖1/n ≤ n}. We claim that Ξn is
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compact. To that end, observe first that every (ω, ν) ∈ Ξn satisfies that ω ∈ C1/n[0, T ] and
ν is Lipschitz-continuous with Lipschitz-constant ‖σ‖∞. Therefore, relative compactness
of Ξn follows by the Arzelà-Ascoli theorem. As for closedness let (ωk, νk)k∈N ⊆ Ξn be a
sequence which converges to some point (ω, ν) ∈ Ω. We need to verify that (ω, ν) ∈ Ξn.
Clearly, ω(0) = 0 and ω ∈ C1/n[0, T ], hence it remains to check that ν satisfies the desired
properties so that (ω, ν) ∈ Ξn. Indeed, ν(0) = 0, it is nondecreasing, and ν ∈ CHölder[0, T ]
as it is Lipschitz-continuous with constant ‖σ‖∞. In particular, ν is absolutely continuous.
To check that dν/dt(s) ∈ [σs(ω, ν)

2, σs(ω, ν)
2] for all s, observe that as fk := dνk/dt is

bounded from below and above uniformly in k, we know from the Banach-Alaoglu theorem
that there is a subsequence which converges to some f in σ(L∞(dt), L1(dt)). The continuity
of (ω, ν) 7→ σt(ω, ν) and (ω, ν) 7→ σt(ω, ν) imply that σt(ω, ν) ≤ ft ≤ σt(ω, ν) dt-almost
surely. Moreover, as (νk)k∈N converges to ν and their derivatives (fk)k∈N converge to some
f in σ(L∞(dt), L1(dt)), dominated convergence ensures that dν/dt = f . Therefore, we
obtained that (ω, ν) ∈ Ξn, which shows that Ξn is closed.

Denote Ξ = {ω ∈ Ω : (ω, 〈ω〉) ∈ Ξ}. Using the Burkholder-Davis-Gundy inequality, one
obtains for every Q ∈ M(Ξ) and s, t ∈ [0, T ] that

EQ[|St − Ss|
4] ≤ CBDGEQ

[( ∫ t

s
1 d〈S〉

)2]
≤ CBDG‖σ‖

4
∞|t− s|2 (3.1)

for some constant CBDG ≥ 0. Further EQ[|〈S〉t−〈S〉s|
4] ≤ EQ[(

∫ t
s 1 d〈S〉)

4] ≤ ‖σ‖8∞|t−s|4 ≤
c‖σ‖8∞|t− s|2 for some constant c ≥ 0 (as s, t ∈ [0, T ] with T finite). Therefore Proposition
2.16 implies the existence of Z such that Ξ together with Z(ω) := Z(ω, 〈ω〉) for ω ∈ Ω
satisfy Assumption 2.13.

Remark 3.2. Observe that in the special case where the functions σ and σ are constant
we recover the classical G-expectation introduced by Peng [28] when σ < σ, or the classical
Bachelier model when σ = σ.

Example 3.3 (Black-Scholes under model uncertainty). Fix two bounded Borel functions
σ, σ : [0, T ]×C[0, T ]×C[0, T ] → [0,∞) such that σ ≤ σ and for every t ∈ [0, T ] the mappings
(ω, ν) 7→ σt(ω, ν) and (ω, ν) 7→ σt(ω, ν) are continuous. Consider the set

Ξ :=

{
(ω, ν) ∈ CHölder[0, T ]× CHölder[0, T ] :

ω(0) = 1 and ν(·) =
∫ ·
0 σ

2
tω(t)

2 dt where
σ2s ∈ [σs(ω, ν)

2, σs(ω, ν)
2] for all s

}
.

Similar arguments as in Example 3.1 show that the assumptions of Propositions 2.16 are
satisfied and therefore ensure the existence of Z such that Ξ together with Z(ω) := Z(ω, 〈ω〉)
for ω ∈ Ω satisfy Assumption 2.13.

Remark 3.4. In case that σ = σ is constant, we obtain the classical Black-Scholes model.

Example 3.5. Let c > 0 be a constant, and let

Ξ :=

{
(ω, ν) ∈ CHölder[0, T ]×CHölder[0, T ] :

ω(0) = 1 and ω ≥ 0,
ν(0) = 0 and ν is nondecreasing,
sups∈[t,T ] ω(s)−infs∈[t,T ] ω(s)

T−t ≤ cν(t)t ∀t ∈ (0, T )

}
.
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The motivation of this example is the following. The financial agent believes that at each
time, the average future price fluctuation can be controlled by its average volatility observed
from the past.

To check Assumption 2.2, notice first that assumptions (A2)-(A3) follow by definition.
To verify (A1), for every n define C1/n[0, T ] := {ω ∈ C[0, T ] : ‖ω‖1/n ≤ n} and let

Ξn :=

{
(ω, ν) ∈ C1/n[0, T ]×C1/n[0, T ] :

ω(0) = 1 and ω ≥ 0,
ν(0) = 0 and ν is nondecreasing,
sups∈[t,T ] ω(s)−infs∈[t,T ] ω(s)

T−t ≤ cν(t)t ∀t ∈
(
1
n ,

n−1
n

)

}
.

As C1/n[0, T ] is compact and all constraints are continuous, we see that Ξn is a compact
set. Since also Ξ =

⋃
n Ξn, assumption (A1) and therefore Assumption 2.2 holds true.

Finally we provide an example in the spirit of [3] showing that if one defines Φ(ξ) in
Theorem 2.3 without the lim inf, then there is a duality gap.

Example 3.6. Consider the prediction set

Ξ :=
{
ω ∈ CHölder[0, T ] : 〈ω〉 ∈ CHölder[0, T ], ω(0) = 0, and ω(t) ∈ [0, 1] for all t ∈ [0, T ]

}

and the claim ξ : Ω → [0,+∞] defined by ξ(ω) := +∞1{0}c(ω), meaning that

ξ(ω) :=

{
0 if ω = 0,

+∞ else.

One can check that Ξ satisfies Assumption 2.2 and that ξ is lower semicontinuous, in par-
ticular satisfies the assumption of Theorem 2.3. Now, observe that the only martingale
measure supported on Ξ gives full mass to the constant path 0, hence

sup
Q∈M(Ξ)

EQ[ξ] = ξ(0) = 0.

On the other hand, let λ ∈ [0,+∞] be such that

λ+ (H · S)T + (G · S)T ≥ ξ on Ξ

for some H,G ∈ H (or, more generally, for some H and G of pathwise finite variation). Then
for any ω ∈ Ξ \ {0} (e.g. ω(t) = t/T ) one has (H · S)T (ω) ≤ ‖t 7→ Ht(ω)‖1−var‖ω‖∞ < +∞
and similarly (G ·S)T (ω) < +∞, where here ‖·‖1−var denotes the first variation norm. This
requires λ to be +∞ and in turn implies that the smallest superhedging price defined with
simple (or finite variation) strategies equals +∞, leading to a duality gap.

4 Proof of the main results

4.1 An enlarged space

All proofs are based on a lifting argument, where instead of Ω we consider the space Ω :=
C[0, T ]×C[0, T ]; one should think of the first component as the path, and the second as the
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it’s quadratic variation. We start by defining all objects for the product space (a basic rule
here is that every object with an overline is defined on the product space) and by stating
some relationships between the original and the enlarged space.

The space Ω is endowed with the sup-norm ‖ω‖∞ := ‖ω‖∞ + ‖ν‖∞ for ω = (ω, ν) ∈ Ω,
and equipped with its Borel σ-field F . Denote by P(Ω) the set of all probability measures
on (Ω,F). The following Borel mapping will play a crucial role

ψ : Ω → Ω, ω 7→ (ω, 〈ω〉),

and the following set

∆ := ψ(Ω) =
{
(ω, ν) ∈ Ω : ω ∈ Ω and 〈ω〉 = ν

}
.

Moreover, we write ∆
c

for the complement of the set ∆. On Ω we consider the canonical
process (S, V ) given by St(ω) = ω(t) and V t(ω) = ν(t) for ω = (ω, ν) ∈ Ω. Also denote

S := (S
2
−S

2
0 − V )/2. Denote by F = (F t)0≤t≤T the raw filtration generated by (S, V ) (or,

equivalently, by S and S), by F+ its right-continuous version, and define the corresponding

∆-augmentations F
∆
:= F ∨ σ(N ⊆ Ω : N ⊆ ∆

c
) and F

∆
+ := F+ ∨ σ(N ⊆ Ω : N ⊆ ∆

c
).

Further denote by H the set of all F
∆
+-simple processes H : [0, T ] × Ω → R of the form

Ht(ω) =
∑L

l=1 hl(ω)1(τ l(ω),τ l+1(ω)](t) for (t, ω) ∈ [0, T ] × Ω, where L ∈ N, 0 ≤ τ1 ≤ · · · ≤

τL+1 ≤ T are stopping times w.r.t. the filtration F
∆
+ , and hl : Ω → R are bounded F

∆
τ l+

-

measurable functions. For a simple process H ∈ H the pathwise stochastic integrals (H ·S)
and (H · S) are clearly well-defined as before.

Finally, for any Ξ ⊆ Ω and Z : Ω → [1,∞], let

M(Ξ) :=
{
Q ∈ P(Ω): S and S are Q-F-local martingales and Q(Ξ) = 1

}
,

MZ(Ξ) :=
{
Q ∈ P(Ω): S and S are Q-F-local martingales, Q(Ξ) = 1, and E

Q
[Z] <∞

}
.

Remark 4.1. An easy computation (similar as for the completion of a σ-field) shows that

F
∆
t = {(A ∩∆) ∪N : A ∈ F t, N ⊆ ∆

c
}, and F

∆
t+ = {(A ∩∆) ∪N : A ∈ F t+, N ⊆ ∆

c
}.

Remark 4.2. Notice that if Ξ satisfies condition (A2) of Assumption 2.2, then standard

results on the quadratic variation ensure that for every Q ∈ M(Ξ) we have that 〈S〉Q = V
Q-a.s. and Q(S ∈ Ω) = 1 by Remark 2.1, which shows Q(∆) = 1. Hence, Q(N) = 0 for all

N ⊆ ∆
c
, and hence F

∆
⊆ F

Q
and F

∆
+ ⊆ F

Q

+, where e.g. F
Q

denotes the Q-completion of F.

Lemma 4.3. For every t ∈ [0, T ] one has

(a) F
∆
t+ =

⋂
s>tF

∆
s∧T ,

(b) {ω ∈ Ω : ω ∈ A} ∈ F
∆
t for all A ∈ Ft,

(c) {ω ∈ Ω : ω ∈ A} ∈ F
∆
t+ for all A ∈ Ft+,
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(d) ψ−1(A) ∈ Ft for all A ∈ F
∆
t ,

(e) ψ−1(A) ∈ Ft+ for all A ∈ F
∆
t+.

Proof. (a) By definition, we have F
∆
t+ ⊆

⋂
s>tF

∆
s∧T . For the reverse inclusion, fix t ∈ [0, T ]

and B ∈
⋂
s>tF

∆
s∧T . Then, for every s > t, there exist As ∈ Fs and N s ⊆ ∆

c
such that

B = (B ∩∆) ∪ (B ∩∆
c
) = (As ∩∆) ∪N s

and both unions are disjoint. This implies for each s > t that As ∩∆ = B ∩∆, as well as
N s = B ∩∆

c
. Define

A :=
⋂

s>t, s∈Q

⋃

t<r<s, r∈Q

Ar ∈ F t+

Then by construction B = (A ∩ ∆) ∪ (B ∩ ∆
c
) where the union is disjoint, proving the

reverse inclusion.
(b) Fix t ∈ [0, T ] and A ∈ Ft, so that

A =
{
ω ∈ Ω : (ω(s))s∈S ∈ B

}

for a countable set S ⊆ [0, t] and a Borel set B ⊆ RS . Let N := {ω ∈ ∆
c
: ω ∈ A} ∈ F

∆
t .

Since ω 7→ ω(s) is F t-measurable for all s ≤ t, one has

{
ω ∈ Ω : ω ∈ A

}
=

{
ω ∈ ∆ : ω ∈ A

}
∪N =

{
ω ∈ ∆ : (ω(s))s∈S ∈ B

}
∪N ∈ F

∆
t .

(c) If A ∈ Ft+ then A ∈ Fs∧T for every s > t, so that by (a)

{ω ∈ Ω : ω ∈ A} ∈
⋂

s>t

F
∆
s∧T = F

∆
t+.

(d) Fix t ∈ [0, T ] and A ∈ F
∆
t . Then

A =
{
ω ∈ ∆ : (ω(r), ν(s))(r,s)∈S ∈ B

}
∪N

for a countable set S ⊆ [0, t]× [0, t], a Borel set B ⊆ RS , and N ⊆ ∆
c
. Since ψ(ω) ∈ ∆ for

every ω ∈ Ω, it follows that

ψ−1(A) =
{
ω ∈ Ω : (ω(r), 〈ω〉(s))(r,s)∈S ∈ B

}
∈ Ft,

since ω 7→ (ω(r), 〈ω〉(s)) is Ft-measurable for every r, s ≤ t.
(e) The argumentation is similar to (c).

Remark 4.4. The following simple results which we will use frequently are direct conse-
quences of Lemma 4.3. Let h : Ω → R be Ft+-measurable and τ a F+-stopping time. Then

h(ω) := h(ω)1∆(ω), ω := (ω, ν) ∈ Ω, is F
∆
t+-measurable and τ(ω) := τ(ω) 1∆(ω)+T 1∆c(ω),

ω := (ω, ν) ∈ Ω, is a F
∆
+-stopping time. Conversely, let τ be a F

∆
+-stopping time. Then τ ◦ψ

is a F+-stopping time.
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The next lemmas are the key tools to go back and forth between the original space Ω
and the enlarged space Ω.

Lemma 4.5. For every H,G ∈ H there are H,G ∈ H such that

(H · S) + (G · S) = (H · S) ◦ S + (G · S) ◦ S on ∆.

Conversely, for every H,G ∈ H there are H,G ∈ H such that

(H · S) + (G · S) = (H · S) ◦ ψ + (G · S) ◦ ψ on Ω.

Proof. Let H =
∑L

l=1 hl 1(τl,τl+1] and G be elements of H. Define H :=
∑L

l=1 hl 1(τ l,τ l+1],
where

hl(ω) := hl(ω) 1∆(ω) and τ l(ω) := τl(ω) 1∆(ω) + T 1∆c(ω)

for all l and ω ∈ Ω. Define G analogously. By Lemma 4.3 one has H,G ∈ H. Then, since
S = S ◦ S on ∆,

(H · S) + (G · S) = (H · S) ◦ S + (G · S) ◦ S on ∆.

To prove the opposite inequality, let H =
∑L

l=1 hl 1(τ l,τ l+1] and G be elements of H.

Define H :=
∑L

l=1(hl ◦ψ) 1(τ l◦ψ,τ l+1◦ψ] and G analogously which are both elements of H by
Lemma 4.3. Since

S = S ◦ ψ, ψ(Ω) = ∆, and S ◦ ψ = idΩ

it holds

(H · S) + (G · S) = ((H ◦ ψ) · S + ((G ◦ ψ) · S)

= ((H ◦ ψ) · (S ◦ ψ)) + ((G ◦ ψ) · (S ◦ ψ)) = (H · S) ◦ ψ + (G · S) ◦ ψ on Ω

which proves the claim.

Lemma 4.6. Let Ξ ⊆ Ω be of the form Ξ = {ω ∈ Ω: (ω, 〈ω〉) ∈ Ξ} for some Ξ ⊆ C[0, T ]×
C[0, T ] satisfying condition (A2) of Assumption 2.2. Then

M(Ξ) =
{
Q ◦ S

−1
: Q ∈ M(Ξ)

}
and M(Ξ) =

{
Q ◦ ψ−1 : Q ∈ M(Ξ)

}
.

Moreover, let additionally Z : Ω → [1,∞] be a function and Z := Z ◦ ψ. Then

MZ(Ξ) =
{
Q ◦ S

−1
: Q ∈ MZ(Ξ)

}
and MZ(Ξ) =

{
Q ◦ ψ−1 : Q ∈ MZ(Ξ)

}
.

same holds true for M(Ξ) and M(Ξ) replaced by MZ(Ξ) and MZ(Ξ), respectively.

Proof. Let first Q ∈ M(Ξ) and define Q := Q ◦ ψ−1. As Ξ = ψ−1(Ξ), we have that
Q(Ξ) = Q(Ξ) = 1. Moreover, to see that S is a Q-F-local martingale, define for each m ∈ N

τm := inf{t ≥ 0: |St| ≥ m}. (4.1)
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Since S has continuous paths, (τm)m∈N is a Q-F-localizing sequence for S, i.e. a sequence of
F-stopping times with limm→∞ τm = ∞ Q-a.s. such that Sτm is a Q-F-martingale for each
m ∈ N. Define for each m

τm := inf{t ≥ 0: |St| ≥ m}. (4.2)

Then we get that (τm)m∈N is a Q-F-localizing for S, since for every m ∈ N, 0 ≤ s ≤ t ≤ T
and A ∈ Fs

EQ[(S
τm
t − S

τm
s )1A] = EQ[(S

τm
t − Sτms )1ψ−1(A)] = 0

by Lemma 4.3 and the martingale property of Sτm under Q. Similarly, since ψ(S) =
(S, 〈S〉Q) Q-almost surely, it follows by the same argument that S is a Q-F-local martingale.
Therefore, we get that indeed Q ∈ M(Ξ). Furthermore, if in fact Q ∈ MZ(Ξ), then

E
Q
[Z] = EQ[Z ◦ ψ] = EQ[Z] <∞

ensures that also Q ∈ MZ(Ξ).
For the other direction, let Q ∈ M(Ξ). Recall that due to condition (A2) we have Q-

a.s. that V is nondecreasing with V 0 = 0. Therefore since both S and 2S = S
2
−S

2
0−V are

Q-F-local martingales, one concludes that V = 〈S〉Q Q-a.s., and thus ψ(S) = (S, 〈S〉Q) Q-

a.s.. In particular Q(S ∈ Ω) = 1, so that Q := Q◦S
−1

defines a Borel probability measure on

Ω. Moreover, we know from Remark 4.2 that Q(∆) = 1 and as S
−1

(Ξ)∩∆ = Ξ∩∆, one has
Q(Ξ) = Q(Ξ) = 1. Finally, using (4.1) and (4.2), we deduce for all m ∈ N, 0 ≤ s ≤ t ≤ T ,

and A ∈ Fs from Lemma 4.3 and F
∆
s ⊆ F

Q

s that

EQ[(S
τm
t − Sτms )1A] = E

Q
[(S

τm
t − S

τm
s )1{ω∈Ω :ω∈A}] = 0,

which shows that S is a Q-F-local martingale. Thus Q ∈ M(Ξ). Furthermore, if in fact
Q ∈ MZ(Ξ), then since ψ ◦ S = idΩ on ∆ and since Q(∆) = 1 due to condition (A2), we
have that

EQ[Z] = EQ[Z ◦ ψ] = EQ[Z ◦ ψ ◦ S] = EQ[Z] <∞

which implies that then Q ∈ MZ(Ξ).

4.2 Proof of Theorem 2.3

In this subsection we provide the proof of Theorem 2.3. To that end, we fix a prediction set
Ξ ⊆ Ω which satisfies Assumption 2.2.

We start by providing two transition lemmas between the original space Ω and the
enlarged space Ω which are in fact direct consequences of the crucial Lemmas 4.5 and
4.6. Denote by Cb(Ω) and Ub(Ω) the spaces of bounded continuous and bounded upper
semicontinuous functions ξ : Ω → R, respectively. We start with the primal problem and
define for every function ξ : Ω → (−∞,∞] the functional

Φ(ξ) := inf



λ ∈ R :

there are sequences (H
n
), (G

n
) ∈ H such that

λ+ (H
n
· S)t + (G

n
· S)t ≥ 0 on ∆ ∩ Ξ for all n, t,

λ+ lim infn((H
n
· S)T + (G

n
· S)T ) ≥ ξ on ∆ ∩ Ξ



 (4.3)

We have the following result.
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Lemma 4.7. Let Φ be the functional defined in Theorem 2.3 and Φ be the functional defined
in (4.3). Then for every ξ : C[0, T ] → (−∞,∞] we have that Φ(ξ) = Φ(ξ ◦ S).

Proof. To see the first inequality Φ(ξ) ≥ Φ(ξ ◦ S), let λ > Φ(ξ). By definition, there exist
sequences (Hn), (Gn) in H such that

λ+ (Hn · S)t + (Gn · S)t ≥ 0 on Ξ for all n, t,

and λ+ lim inf
n→∞

(
(Hn · S)T + (Gn · S)T

)
≥ ξ on Ξ.

By Lemma 4.5 we know that for each n ∈ N there are H
n
, G

n
∈ H such that

(H
n
· S) + (G

n
· S) = (Hn · S) ◦ S + (Gn · S) ◦ S on ∆.

Therefore, as S(∆ ∩ Ξ) = Ξ, one has

λ+ (H
n
· S)t + (G

n
· S)t ≥ 0 on ∆ ∩ Ξ for all n, t

and λ+ lim inf
n→∞

(
(H

n
· S)T + (G

n
· S)T

)
≥ ξ ◦ S on ∆ ∩ Ξ.

As λ > Φ(ξ) was arbitrary, the inequality Φ(ξ) ≥ Φ(ξ ◦ S) follows.
To prove the opposite inequality, let λ > Φ(ξ ◦ S). Then, by definition, there exist

sequences (H
n
), (G

n
) in H such that

λ+ (H
n
· S)t + (G

n
· S)t ≥ 0 on ∆ ∩ Ξ for all n, t

and λ+ lim inf
n→∞

(
(H

n
· S)T + (G

n
· S)T

)
≥ ξ ◦ S on ∆ ∩ Ξ.

By Lemma 4.5 we know that for each n ∈ N there are Hn, Gn ∈ H such that

(Hn · S) + (Gn · S) = (H
n
· S) ◦ ψ + (G

n
· S) ◦ ψ on Ω.

Therefore, as ψ(Ξ) = ∆ ∩ Ξ, it follows that

λ+ (Hn · S)t + (Gn · S)t ≥ 0 on Ξ for all n, t

and λ+ lim inf
n→∞

(
(Hn · S)T + (Gn · S)T

)
≥ ξ ◦ S ◦ ψ = ξ on Ξ.

As λ > Φ(ξ ◦ S) was arbitrary, the inequality Φ(ξ ◦ S) ≥ Φ(ξ) follows.

For the dual problem, we have the following transition lemma

Lemma 4.8. Let Ξ ⊆ Ω be of the form Ξ = {ω ∈ Ω: (ω, 〈ω〉) ∈ Ξ} for some Ξ ⊆
C[0, T ]×C[0, T ] satisfying condition (A2) of Assumption 2.2. Then for every Borel function
ξ : C[0, T ] → (−∞,∞] which is bounded from below we have that

sup
Q∈M(Ξ)

EQ[ξ] = sup
Q∈M(Ξ)

EQ[ξ ◦ S].
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Proof. To see the first inequality supQ∈M(Ξ) EQ[ξ] ≤ supQ∈M(Ξ) EQ[ξ ◦ S], let Q ∈ M(Ξ).

Then, by Lemma 4.6 we know that Q := Q ◦ ψ−1 ∈ M(Ξ). Therefore, we see that

EQ[ξ] = EQ[ξ ◦ S ◦ ψ] = E
Q
[ξ ◦ S] ≤ sup

Q∈M(Ξ)

E
Q
[ξ ◦ S].

As Q ∈ M(Ξ) was arbitrary, we obtain indeed the first inequality.
For the reverse inequality supQ∈M(Ξ) EQ[ξ] ≥ supQ∈M(Ξ) EQ[ξ ◦S], let Q ∈ M(Ξ). Then

by Lemma 4.6 we know that Q := Q ◦ S
−1

∈ M(Ξ). Therefore, we get that

E
Q
[ξ ◦ S] = EQ[ξ] ≤ sup

Q∈M(Ξ)
EQ[ξ].

Since Q ∈ M(Ξ) was arbitrary, we also obtain the reverse inequality.

Having the transition lemmas in mind, it remains to prove our result in Theorem 2.3 on
the enlarged space.

Proposition 4.9. Let Ξ ⊆ Ω be a prediction set satisfying Assumption 2.2 and let Φ be the
functional defined in (4.3). Then

Φ(ξ) = sup
Q∈M(Ξ)

EQ[ξ]

for every ξ : Ω → [0,∞] which can be written as ξ = lim infn ξn where ξn : Ω → [0,∞) are
bounded upper-semicontinuous functions.

Proof. The proof is divided into three main steps. First, also note that by Lemma 5.1
there is an increasing sequence of nonempty compact sets Ξn ⊆ C[0, T ] × C[0, T ], n ∈ N,
such that Ξ =

⋃
n Ξn and for all n we have that ω ∈ Ξn implies that ωt ∈ Ξn for every t.

As a consequence, as Ξn is nonempty and contains at least one constant path, M(Ξn) is
nonempty, too, as it contains at least one constant martingale measure.

Step (a): Fix n ∈ N. For any Borel function ξ : Ω → (−∞,∞] which is bounded from
below, define

Φn(ξ) := inf

{
λ ∈ R :

there are H,G ∈ H such that

λ+ (H · S)T + (G · S)T ≥ ξ on ∆ ∩ Ξn

}
.

Then, we claim that for all Q ∈ M(Ξn)

Φn(ξ) ≥ E
Q
[ξ] (4.4)

as well as for all Q ∈ M(Ξ) that
Φ(ξ) ≥ E

Q
[ξ]. (4.5)

In particular, the functional Φn is real-valued on Ub.
Indeed, let Q ∈ M(Ξn) and let λ > Φn(ξ) so that there exist H,G ∈ H such that

λ+(H ·S)T +(G ·S)T ≥ ξ on ∆∩Ξn. Notice that as Ξn is compact, every local martingale
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with respect to Q ∈ M(Ξn) is in fact a true martingale. Therefore, as by Remark 4.2 both S

and S are Q-F
∆
+-martingales and H, G are simple integrands, it follows that EQ[(H ·S)T ] =

EQ[(G · S)T ] = 0. Hence λ ≥ EQ[ξ] which shows (4.4). To see (4.5), let Q ∈ M(Ξ) and

λ > Φ(ξ) so that there exist sequences (H
k
), (G

k
) ∈ H such that λ + (H

k
· S)t + (G

k
·

S)t ≥ 0 on ∆ ∩ Ξ for all k, t, and λ + lim infk((H
k
· S)T + (G

k
· S)T ≥ ξ on ∆ ∩ Ξ. The

admissibility condition ensures that for each k, the process M
k
:= (H

k
· S) + (G

k
· S) is a

Q-F
∆
+-supermartingale starting in zero. Therefore, applying Fatou’s lemma yields

λ ≥ λ+ lim inf
k→∞

EQ

[
M

k
T

]
≥ EQ

[
λ+ lim inf

k→∞
M

k
T

]
≥ EQ[ξ],

which in turn implies (4.5).
Step (b): Each Φn is continuous from above on Cb(Ω), that is, for every sequence (ξk)

in Cb(Ω) which decreases pointwise to 0, one has Φn(ξk) ↓ Φn(0). This follows from Dini’s
lemma as Ξn is compact. The non-linear Daniell-Stone theorem [4, Theorem 2.2] therefore
implies

Φn(ξ) = sup
Q∈M(Ξn)

E
Q
[ξ] for all ξ ∈ Ub(Ω), (4.6)

provided that we can show that for every finite Borel measure Q on Ω one has

Φ
∗
n(Q) := sup

γ∈Cb(Ω)

(E
Q
[γ]− Φn(γ)) = sup

γ∈Ub(Ω)

(E
Q
[γ]− Φn(γ)) =

{
0, if Q ∈ M(Ξn),

∞, else.

(4.7)

To that end, let first Q ∈ M(Ξn). Then by (4.4) we have for every γ ∈ Ub(Ω) that
EQ[γ]− Φn(γ) ≤ 0. In particular,

Φ
∗
n(Q) ≤ sup

γ∈Ub(Ω)

(EQ[γ]− Φn(γ)) ≤ 0. (4.8)

In addition, for every m ∈ R it holds that Φn(m) ≤ m by definition. Therefore, we conclude
that

Φ
∗
n(Q) ≥ E

Q
[0]− Φn(0) ≥ 0. (4.9)

This together with (4.8) show that indeed for every Q ∈ M(Ξn) we have that

Φ
∗
n(Q) = sup

γ∈Ub(Ω)

(EQ[γ]− Φn(γ)) = 0, (4.10)

which is the first equality to show in (4.7). Therefore, it remains to show that Φ∗
n(Q) = +∞

whenever Q /∈ M(Ξn). To that end, let Q be a finite Borel measure which is not in M(Ξn).
Notice that Φn(m) ≤ m for every m ∈ R implies that Φ

∗
n(Q) ≥ supm(mQ(Ω) −m) = ∞

whenever Q(Ω) 6= 1. Further, since Ξn is compact, there are continuous functions γk : Ω →
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[0, k], k ∈ N, which increase pointwise to +∞1Ξc

n
. Note that in particular γk = 0 on Ξn and

hence Φn(γk) ≤ 0 for all k by definition, and therefore

Φ
∗
n(Q) ≥ sup

k
(EQ[γk]− Φn(γk)) ≥ +∞Q(Ξ

c
n). (4.11)

In particular, we see that Φ
∗
n(Q) = ∞ whenever Q(Ξ

c
n) 6= 0. Hence by the arguments already

provided above, we may assume w.l.o.g. that Q ∈ P(Ω) and Q(Ξn) = 1. Since Q ∈ P(Ω)
but Q /∈ M(Ξn), we have by definition that either S or S is not a Q-F-local martingale. In
either case, by Lemma 5.5 there is a function γ ∈ Cb(Ω) and H ∈ H such that E

Q
[γ] > 0

and γ ≤ (H · S)T or γ ≤ (H · S)T . This implies that Φn(mγ) ≤ 0 for all m > 0. Therefore,
as

Φ
∗
n(Q) ≥ sup

m>0

(
EQ[mγ]− Φn(mγ)

)
≥ sup

m>0
EQ[mγ],

we conclude that Φ
∗
n(Q) = ∞, if Q /∈ M(Ξn). This together with (4.10) give (4.7) and in

turn (4.6).
Step (c): Let ξ : Ω → [0,∞] be such that there exists a sequence of bounded upper-

semicontinuous functions ξn : Ω → [0,∞) such that ξ = lim infn ξn. For each n, define

ξ
′
n := infm≥n ξm. Then ξ

′
n is bounded upper-semicontinuous and ξ = supn ξ

′
n. We show

that
Φ(ξ) = sup

n
Φn(ξ

′
n) = sup

Q∈M(Ξ)

EQ[ξ]. (4.12)

Indeed, by (4.4), (4.5), and (4.6) it holds

Φ(ξ) ≥ sup
Q∈M(Ξ)

EQ[ξ] ≥ sup
n

sup
Q∈M(Ξn)

EQ[ξ
′
n] = sup

n
Φn(ξ

′
n). (4.13)

On the other hand, let λ > supnΦn(ξ
′
n) and ε > 0 arbitrary. Then for every n there exist

H
n
, G

n
in H with

λ+ (H
n
· S)T + (G

n
· S)T ≥ ξ

′
n on ∆ ∩ Ξn.

Since ξ
′
n ≥ 0, by Lemma 5.2, there are H

n,′
, G

n,′
∈ H such that both

λ+ ε+ (H
n,′

· S)T + (G
n,′

· S)T ≥ ξ
′
n on ∆ ∩ Ξn,

λ+ ε+ (H
n,′

· S)t + (G
n,′

· S)t ≥ 0 on ∆ ∩ Ξ for every t.

Taking the lim inf over n, this implies that Φ(ξ) ≤ λ+ ε, and therefore Φ(ξ) ≤ supnΦn(ξ
′
n).

In particular, all inequalities in (4.13) are equalities and the proof is complete.

Now we are able to provide the proof of Theorem 2.3.

Proof of Theorem 2.3. Fix ξ : C[0, T ] → [0,∞] which can be written as ξ = ξ ◦ ψ :=
lim infn ξn ◦ ψ where ξn : Ω → [0,∞), n ∈ N, are bounded and upper-semicontinuous.
By the primal transition result in Lemma 4.7 we know that

Φ(ξ) = Φ(ξ ◦ S).
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Hence, using that ψ ◦ S = idΩ on ∆ and that by definition Φ(ξ1) = Φ(ξ2) for any ξ1, ξ2 :
Ω → (−∞,∞] such that ξ1 = ξ2 on ∆ yields

Φ(ξ ◦ S) = Φ(ξ ◦ ψ ◦ S) = Φ(ξ).

Now, the duality result on the enlarged space provided in Proposition 4.9 ensures that

Φ(ξ) = sup
Q∈M(Ξ)

EQ[ξ].

Since Q(∆) = 1 for all Q ∈ M(Ξ) we have

sup
Q∈M(Ξ)

EQ[ξ] = sup
Q∈M(Ξ)

EQ[ξ ◦ ψ ◦ S] = sup
Q∈M(Ξ)

EQ[ξ ◦ S].

Then the dual transition result in Lemma 4.8 ensures that

sup
Q∈M(Ξ)

E
Q
[ξ ◦ S] = sup

Q∈M(Ξ)
EQ[ξ],

which shows the desired result.

4.3 Proof of Theorem 2.9

In this subsection we provide the proof of Theorem 2.9. To that end, let Ξ ⊆ Ω be a
prediction set which satisfies Assumption 2.2 and recall for every λ > 0 the set

GΞ
λ := lim inf -closure of {λ+ (H · S)T : H ∈ H and λ+ (H · S)t ≥ 0 on Ξ for all t}.

Moreover, let Ξn, n ∈ N, be the sets introduced in Lemma 5.1 and denote for each n the
set Ξn := {ω ∈ Ω: (ω, 〈ω〉) ∈ Ξn}.

Lemma 4.10. Let Ξ ⊆ Ω and let H,G ∈ H such that λ+ (H · S)t + (G · S)t ≥ 0 on Ξ for
all t. Then for every ε > 0 there exist Y ∈ GΞ

λ+ε such that Y ≥ λ+(H ·S)T +(G ·S)T on Ξ.

Proof. For every m define Sm :=
∑∞

k=0 Sσmk 1(σm
k
,σm

k+1]
with (σmk ) begin the stopping times

from Subsection 2.1. By definition of Ω, it holds St(ω) = limm(S
m · S)t(ω) uniformly in t

for every ω ∈ Ω. As G is simple, also (GSm · S)t(ω) → (G · S)t(ω) uniformly in t. For the
stopping times τm := inf{t ≥ 0 : λ+ε+((H+GSm) ·S)t ≤ 0} and Km := (H+GSm)1[0,τm]

it holds Y m
t := λ+ ε+ (Km ·S)t ≥ 0 for all t. Define YT := lim infm Y

m
T . Then, by uniform

convergence of (GSm · S) to (G · S) and as λ + (H · S)t + (G · S)t ≥ 0 on Ξ we have that
limm τ

m = ∞ on Ξ. This ensures that λ + (H · S)T + (G · S)T ≤ YT on Ξ. Therefore, it
remains to show that YT ∈ GΞ

λ+ε.

To that end, for every m and l define Sm,l :=
∑l

k=0 Sσmk 1(σm
k
,σm

k+1]
and τm,l := inf{t ≥

0 : λ + ε + ((H + GSm,l) · S)t ≤ 0}. Since Km,l := (H + GSm,l)1[0,τm,l] ∈ H and Y m,l
t :=

λ+ ε+ (Km,l · S)t ≥ 0 for all t, it follows that Y m,l
T ∈ GΞ

λ+ε for all m, l. Further, as we are
working on the continuous paths, for every ω ∈ C[0, T ] andm there is l0 = l0(m,ω) such that

Sm,l(ω) = Sm(ω) for l ≥ l0; hence Y m
T = liml Y

m,l
T . This implies YT = lim infm(lim inf l Y

m,l
T )

which, by liminf-closedness of GΞ
λ+ε, implies that YT ∈ GΞ

λ+ε and completes the proof.
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Proof of Theorem 2.9. Let n ∈ N. By Lemma 5.2 and the identity (4.6) in Step (b) of the
proof of Proposition 4.9, we obtain for every upper-semicontinuous bounded ξ : Ω → [0,∞)
that

inf



λ ∈ R :

there are H,G ∈ H such that

λ+ (H · S)t + (G · S)t ≥ 0 on ∆ ∩ Ξ,

λ+ (H · S)T + (G · S)T ≥ ξ on ∆ ∩ Ξn



 = Φn(ξ) = sup

Q∈M(Ξn)

EQ[ξ].

This, together with the same arguments used for the proofs of the transition results in
Lemma 4.7 and Lemma 4.8 (see also Lemma 4.5 and Lemma 4.6) ensure that for every
bounded and upper semicontinuous function ξ : C[0, T ] → [0,∞) we have

Φn(ξ) := inf



λ ∈ R :

there are H,G ∈ H such that
λ+ (H · S)t + (G · S)t ≥ 0 on Ξ,
λ+ (H · S)T + (G · S)T ≥ ξ on Ξn



 = sup

Q∈M(Ξn)
EQ[ξ]. (4.14)

Moreover, by Lemma 4.10 one has for every ξ : C[0, T ] → [0,∞] (regardless of measurability)
that

Φcl
n (ξ) := inf

{
λ ∈ R : ξ ≤ Y on Ξn for some Y ∈ GΞ

λ

}
≤ Φn(ξ). (4.15)

Furthermore, by Remark 2.12 one has for every Borel ξ : C[0, T ] → [0,∞] and Q ∈ M(Ξn)
that

EQ[ξ] ≤ Φcl
n (ξ). (4.16)

Therefore, we conclude from (4.14)–(4.16) that for every n ∈ N we have

Φcl
n (ξ) = sup

Q∈M(Ξn)
EQ[ξ] for every non-negative ξ ∈ Ub(C[0, T ]). (4.17)

Our next goal is to extend the duality result obtained in (4.17) also for bounded non-
negative ξ which are Borel. The idea is to apply Choquet’s capacitability theorem (in the
functional form). To that end, fix n ∈ N and introduce for every ξ : C[0, T ] → R the
following two functionals

Υ1(ξ) := Φcl
n (ξ

+), Υ2(ξ) := sup
Q∈M(Ξn)

EQ[ξ
+], (4.18)

where ξ+ := max{ξ, 0} denotes the positive part. Notice that for every non-negative ξ ∈
Ub(C[0, T ]) we have by (4.17) that

Υ1(ξ) = Υ2(ξ) (4.19)

and our goal is to show that the above identity can be extended to all ξ : C[0, T ] → [0,∞)
which are bounded and Borel measurable. To see this observe first that as for every
ξ ∈ Ub(C[0, T ]) one has ξ ◦ S ∈ Ub(Ω), it follows from step (b) in the proof of Propo-
sition 4.9 and [4, Theorem 2.2] that ξ 7→ Υ1(ξ) and ξ 7→ Υ2(ξ) are continuous from
above on Ub(C[0, T ]). Second, let ξm : C[0, T ] → R, m ∈ N, be a sequence of bounded
Borel functions which increase pointwise to ξ. Then it follows from interchanging two
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suprema that supQ∈M(Ξn) EQ[ξ
+] = supm supQ∈M(Ξn) EQ[ξ

+
m]. This implies that the func-

tional Υ2 is continuous from below on the set of bounded Borel measurable functions
ξ : C[0, T ] → R. Moreover, using the liminf-closedness of GΞ

λ , one directly verifies that
also Φcl

n (ξ
+) = supmΦcl

n (ξ
+
m). Indeed, while Φcl

n (ξ
+) ≥ supmΦcl

n (ξ
+
m) follows by monotonic-

ity of the functional, we see for the reverse inequality that for every λ > supmΦcl
n (ξ

+
m) that

there exists a sequence Y m ∈ GΞ
λ , m ∈ N, such that for each m we have Y m ≥ ξ+m on

Ξn. This implies that lim infm→∞ Y m ≥ ξ+ on Ξn. The liminf-closedness of GΞ
λ ensures

that Y := lim infm Y
m ∈ GΞ

λ and hence Φcl
n (ξ

+) < λ, which in turn guarantees the reverse
inequality. This shows that also Υ2 is continuous from below on the set of bounded Borel
measurable functions ξ : C[0, T ] → R.

To sum up, we have shown that both Υ1 and Υ2 are continuous from above on Ub(C[0, T ])
and continuous from below on the set of bounded Borel measurable functions ξ : C[0, T ] → R.
In other words, both Υ1 and Υ2 are functional capacities in the sense of Choquet over the
set of Borel functions, hence by Choquet’s capacitability theorem (in the functional form
as e.g. in [4, Proposition 2.1]), we obtain for every ξ : C[0, T ] → R which is bounded and
Borel that

Υi(ξ) = sup
{
Υi(X) : Ub(C[0, T ]) ∋ X ≤ ξ

}
, i = 1, 2. (4.20)

This and (4.19) together with (4.18) imply that for every ξ : C[0, T ] → [0,∞) which is
bounded and Borel measurable we have as desired that

Φcl
n (ξ) = Υ1(ξ) = sup

{
Υ1(X) : Ub(C[0, T ]) ∋ X ≤ ξ

}

= sup
{
Υ2(X) : Ub(C[0, T ]) ∋ X ≤ ξ

}
= Υ2(ξ) = sup

Q∈M(Ξn)
EQ[ξ].

(4.21)

In a final step, let ξ : C[0, T ] → [0,+∞] be Borel. Then by Remark 2.12 we have that

sup
Q∈M(Ξ)

EQ[ξ] ≤ Φcl(ξ). (4.22)

On the other hand, the same arguments used to show that Υ1 is continuous from below on
the set of Borel functions show that the liminf-closedness of GΞ

λ implies that

Φcl(ξ) ≤ sup
n

Φcl
n (ξ ∧ n). (4.23)

Therefore, we conclude from (4.21) together with (4.22) and (4.23) that

sup
Q∈M(Ξ)

EQ[ξ] ≤ Φcl(ξ) ≤ sup
n

Φcl
n (ξ ∧ n) = sup

n
sup

Q∈M(Ξn)
EQ[ξ ∧ n] ≤ sup

Q∈M(Ξ)
EQ[ξ]

so that all inequalities are in fact equalities and the result now follows.

4.4 Proof of Theorem 2.14

In this subsection we provide the proof of Theorem 2.14, which follows the idea of the proof of
[3, Theorem 2.3]. To that end, we fix a prediction set Ξ ⊆ Ω which satisfies Assumption 2.13
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and let Z : Ω → [1,∞] be the corresponding function. Define as in Remark 2.15 the set
Ξ ⊆ C[0, T ]× C[0, T ] by

Ξ :=
{
(ω, ν) ∈ C[0, T ]× C[0, T ] : Z(ω, ν) <∞

}
.

Moreover, define Z : Ω → [1,∞] by Z = Z ◦ ψ and assume that MZ(Ξ) is nonempty.

Proof of Theorem 2.14. The proof is divided in the following steps.
Step (a): Fix n ∈ N. For any ξ : Ω → (−∞,∞] we define

Φ
Z
n (ξ) := inf



λ ∈ R :

there is c > 0 and H,G ∈ H such that

λ+ (H · S)T + (G · S)T ≥ −c on ∆ ∩ Ξ

λ+ (H · S)T + (G · S)T ≥ ξ − Z/n on ∆ ∩ Ξ



 .

Then, for any Q ∈ MZ(Ξ) and any Borel function ξ : Ω → (−∞,∞] which is bounded from
below the following hold

Φ
Z
n (ξ) ≥ EQ[ξ]− EQ[Z/n], (4.24)

Φ
Z
(ξ) ≥ EQ[ξ]. (4.25)

In particular, as MZ(Ξ) is nonempty by Lemma 4.6, the functional Φ
Z
n is real-valued on Ub.

Indeed, let λ > Φ
Z
n (ξ) so that there exist H,G ∈ H and c > 0 such that the inequalities

λ+(H ·S)T +(G ·S)T ≥ −c and λ+(H ·S)T +(G ·S)T ≥ ξ−Z/n hold on ∆∩Ξ. Notice that
for each Q ∈ MZ(Ξ), both S and S are true Q-F-martingales. Indeed, for any Q ∈ MZ(Ξ)
Assumption 2.13 ensures that

E
Q

[
sup0≤t≤T |St|

]
+ E

Q

[
sup0≤t≤T |V t|

]
≤ E

Q
[Z] <∞.

Since V = 〈S〉Q Q-a.s. the Burkholder-Davis-Gundy inequality ensures that S is a square

integrable Q-F-martingale and hence as S = (S
2
− S

2
0 − V )/2 we also obtain that S is a

true Q-F-martingale. Therefore, as by Remark 4.2 both S and S are Q-F
∆
+-martingales

and H, G are simple integrands, we see that EQ

[
(H · S)T

]
= EQ

[
(G · S)T

]
= 0. Hence

λ ≥ EQ[ξ]−EQ[Z/n], which shows (4.24). To prove (4.25), we can use the same arguments
together with Fatou’s lemma.

Step (b): Each Φ
Z
n is continuous from above on Cb(Ω), that is, for every sequence (ξk)

in Cb(Ω) which decreases pointwise to 0, one has Φ
Z
n (ξk) ↓ Φ

Z
n (0).

Indeed, to that end, fix such a sequence (ξk) and an arbitrary ε > 0. Then there exist
H,G ∈ H with λ+ (H · S)T + (G · S)T ≥ −c on ∆ ∩ Ξ for some c ≥ 0 such that

ε+Φ
Z
n (0) + (H · S)T + (G · S)T + Z/n ≥ 0 on ∆ ∩ Ξ.

Now define b := supω∈Ω ξ1(ω)− ε− Φ
Z
n (0) + c, so that

b+ ε+Φ
Z
n (0) + (H · S)T + (G · S)T ≥ ξ1 on ∆ ∩ Ξ.
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As {Z ≤ bn} ⊆ Ω is compact by assumption, Dini’s lemma yields ξk1{Z≤bn} ≤ ε for all k

large enough. Hence for k big enough we have on ∆ ∩ Ξ

ξk ≤ ξk1{Z≤bn} + ξ11{Z>bn}

≤ ε+
(
ε+Φ

Z
n (0) + (H · S)T + (G · S)T + Z/n

)
1{Z>bn}

≤ 2ε+Φ
Z
n (0) + (H · S)T + (G · S)T + Z/n.

Therefore, Φ
Z
n (ξk) ≤ Φ

Z
n (0) + 2ε for k large enough which shows that Φ

Z
n (ξk) ↓ Φ

Z
n (0).

Step (c): We proceed to show that for each n and every finite Borel measure Q on Ω
one has

Φ
Z,∗
n (Q) := sup

γ∈Cb(Ω)

(EQ[γ]− Φ
Z
n (γ)) = sup

γ∈Ub(Ω)

(EQ[γ]− Φ
Z
n (γ))

=

{
EQ[Z]/n, if Q ∈ MZ(Ξ),

∞, else.

(4.26)

Indeed, if Q ∈ MZ(Ξ), then by (4.24) we have for every γ ∈ Ub(Ω) that E
Q
[γ]−Φ

Z
n (γ) ≤

EQ[Z/n]. In particular, for every Q ∈ MZ(Ξ)

Φ
Z,∗
n (Q) ≤ sup

γ∈Ub(Ω)

(E
Q
[γ]− Φ

Z
n (γ)) ≤ E

Q
[Z/n]. (4.27)

On the other hand, since Z ≥ 1 is lower semicontinuous (as it has compact sublevel sets)
there exists a sequence of non-negative functions Zk ∈ Cb(Ω) which increase pointwise to

Z. By definition Φ
Z
n (Zk/n) ≤ 0 for all k, hence for every Q ∈ P(Ω)

Φ
Z,∗
n (Q) ≥ sup

k

(
EQ[Zk/n]−Φ

Z
n (Zk/n)

)
≥ EQ[Z/n]. (4.28)

Therefore, we conclude from (4.27) and (4.28) that indeed for every Q ∈ MZ(Ξ) we have

Φ
Z,∗
n (Q) = sup

γ∈Ub(Ω)

(EQ[γ]− Φ
Z
n (γ)) = EQ[Z/n]. (4.29)

which is the first equality to be shown in (4.26). Therefore, it remains to show that for any

Borel measure Q on Ω such that Q /∈ MZ(Ξ), we have that Φ
Z,∗
n (Q) = ∞.

To that end, let Q be a finite Borel measure on Ω such that Q /∈ MZ(Ξ). Note that for

every m ∈ R we have Φ
Z
n (m) ≤ m by definition, so that Φ

Z,∗
n (Q) ≥ supm(mQ(Ω)−m) = ∞

whenever Q /∈ P(Ω). Moreover, as {Z = ∞} = Ξ
c
, it follows from (4.28) that Φ

Z,∗
n (Q) = ∞

whenever Q(Ξ
c
) > 0. Therefore, we may assume w.l.o.g. that Q ∈ P(Ω), Q(Ξ) = 1, and due

to (4.28) also that Z is integrable w.r.t. Q. Therefore, by definition of Q /∈ MZ(Ξ) we see
that S or S is not a Q-F-local martingale. In either case, by Lemma 5.5 there is a function
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γ ∈ Cb(Ω) and H ∈ H such that EQ[γ] > 0 and γ ≤ (H · S)T or γ ≤ (H · S)T . This implies

that Φ
Z
n (mγ) ≤ 0 for all m > 0. Therefore, as

Φ
Z,∗
n (Q) ≥ sup

m>0

(
EQ[mγ]− Φ

Z
n (mγ)

)
≥ sup

m>0
EQ[mγ],

we conclude that Φ
Z,∗
n (Q) = ∞, if Q /∈ MZ(Ξ). This and (4.29) hence indeed implies (4.26).

As a consequence, we obtain from the non-linear Daniell-Stone theorem in [4, Theorem 2.2]
that

Φ
Z
n (ξ) = sup

Q∈M
Z
(Ω)

(
E
Q
[ξ]− EQ[Z]/n

)
for all ξ ∈ Ub(Ω). (4.30)

Step (d): Let ξ : Ω → (−∞,∞] be bounded from below such that there is a sequence
of bounded upper-semicontinuous functions ξn : Ω → R with ξ = lim infn ξn. For each n,

define ξ
′
n := infm≥n ξn. Then ξ

′
n is bounded upper-semicontinuous and ξ = supn ξ

′
n. We

show that

Φ
Z
(ξ) = sup

n
Φ
Z
n (ξ

′
n) = sup

Q∈M
Z
(Ξ)

EQ[ξ]. (4.31)

Indeed, by (4.25) and (4.30) it holds

Φ
Z
(ξ) ≥ sup

Q∈M
Z
(Ξ)

EQ[ξ] = sup
Q∈M

Z
(Ξ)

(
sup
n

(
EQ[ξ

′
n]− EQ[Z]/n

))

= sup
n

sup
Q∈M

Z
(Ξ)

(
E
Q
[ξ

′
n]− EQ[Z]/n

)
= sup

n
Φ
Z
n (ξ

′
n). (4.32)

On the other hand, if m := supnΦ
Z
n (ξ

′
n), then for every n there exists H

n
and G

n
in H with

m+ 1
n + (H

n
· S)T + (G

n
· S)T ≥ ξ

′
n − Z/n on ∆ ∩ Ξ.

Hence, λ+ (H
n
· S)T + (G

n
· S)T ≥ −cZ on ∆ ∩ Ξ for c := ‖ξ ∧ 0‖∞ +m+ 2 + |λ| and

m+ lim inf
n→∞

(
(H

n
· S)T + (G

n
· S)T

)
≥ lim inf

n→∞

(
ξ
′
n − Z/n − 1

n

)
= ξ on ∆ ∩ Ξ,

where we use that ∆∩Ξ ⊆ {Z <∞}. Therefore Φ
Z
(ξ) ≤ m, hence together with (4.32) we

obtain that indeed (4.31) holds true, and the infimum in the definition of Φ
Z
(ξ) is attained

whenever Φ
Z
(ξ) <∞.

Step (e): Let ξ : C[0, T ] → (−∞,∞] be bounded from below which can be written as
ξ = ξ◦ψ := lim infn ξn◦ψ where ξn : Ω → R, n ∈ N, are bounded and upper-semicontinuous.
Notice that the fact that Z = Z ◦ψ on Ω and Z ◦S = Z ◦ψ ◦S = Z on ∆ together with the
same arguments used for the proofs of the transition results in Lemma 4.7 and Lemma 4.8
(see also Lemma 4.5 and Lemma 4.6) ensure that the same primal transition result obtained

in Lemma 4.7 also holds true with respect to ΦZ and Φ
Z

and that the same dual transition
result obtained in Lemma 4.8 also hold true with respect to MZ(Ξ) and MZ(Ξ). Therefore,
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the duality result on the enlarged space obtained in (4.31) together with the same arguments
as in the proof of Theorem 2.3 imply that

ΦZ(ξ) = Φ
Z
(ξ ◦ S) = Φ

Z
(ξ) = sup

Q∈M
Z
(Ξ)

E
Q
[ξ] = sup

Q∈M
Z
(Ξ)

E
Q
[ξ ◦ S] = sup

Q∈MZ(Ξ)
EQ[ξ].

Moreover, we know from Step (d) that the infimum in the definition of Φ
Z
(ξ ◦S) is attained

whenever Φ
Z
(ξ ◦ S) < ∞. Therefore, we see from Lemma 4.5 together with the fact that

ψ(Ξ) = ∆∩Ξ and S(∆∩Ξ) = Ξ that also the infimum in the definition of ΦZ(ξ) is attained
whenever ΦZ(ξ) <∞. The proof is thus complete.

We finish this section with the proof of Proposition 2.16.

Proof of Proposition 2.16. Due to (2.1), a version of Kolmogorov’s continuity criterion (see
e.g. [3, Theorem A.1]) ensures that for any α ∈ (0, 1/4) there is a constant C such that
supQ∈M(Ξ) EQ[‖S‖

4
α + ‖〈S〉‖4α] ≤ C, where we denote ‖ω‖α := sups 6=t |ω(t)− ω(s)|/|t− s|α.

Using the elementary inequality (a + b)4 ≤ 8a4 + 8b4 implies that supQ∈M(Ξ) EQ[‖S‖
4
α +

‖〈S〉‖4α] ≤ C ′ for all n ≥ 1/α and some new constant C ′. Therefore, by Markov’s inequality,
there is a sequence (an)n∈N which increases to ∞ such that supQ∈M(Ξ)Q(‖S‖α + ‖〈S〉‖α >

an) ≤ 1/n3. Then the function

C[0, T ]× C[0, T ] ∋ (ω, ν) 7→ Y (ω, ν) := inf
{
n ≥ 1/α : ‖ω‖α + ‖ν‖α ≤ an+1

}
∈ N ∪ {+∞}

has compact level sets by the Arzelà-Ascoli theorem (see also [3, Lemma 3.1]) and satisfies
{Y < ∞} ⊂ CHölder[0, T ] × CHölder[0, T ]. Let Y (ω) := Y (ω, 〈ω〉) for ω ∈ Ω. Then, as
{Y = n} ⊆ {‖S‖α+ ‖〈S〉‖α > an} and the latter set has probability less than n−3 under all
Q ∈ M(Ξ), one gets

sup
Q∈M(Ξ)

EQ[Y ] <∞. (4.33)

Further, as ‖ω‖∞ ≤ |ω(0)|+Tα‖ω‖α, the assumptions yield supQ∈M(Ξ) EQ[‖S‖∞+‖〈S〉‖∞] <

∞. Therefore, possibly replacing Y by Y (ω, ν) + ‖ω‖∞ + ‖ν‖∞, one may assume that
Y (ω, ν) ≥ ‖ω‖∞ + ‖ν‖∞.

In a final step define Z := Y +∞1Ξc so that the assumption that Ξ ⊆ CHölder[0, T ] ×
CHölder[0, T ] guarantees that Ξ = {Z < ∞}. Therefore, we can conclude that Assump-
tion 2.13 is satisfied with respect to the constructed function Z. Moreover, (4.33) assures
that M(Ξ) = MZ(Ξ) for Z : Ω → [1,∞] defined by Z(ω) := Z(ω, 〈ω〉), ω ∈ Ω.

5 Technical Results

In this section, if not explicitly stated otherwise, we use the setting of Subsection 2.1.
The following results are similar to ones in [3], whose proofs we provide for the sake of

completeness.
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Lemma 5.1. Let Ξ ⊆ Ω be a prediction set which satisfies Assumption 2.2. Then there
is an increasing sequence of nonempty compact sets Ξn ⊆ C[0, T ] × C[0, T ], n ∈ N, (i.e.
∀n : Ξn ⊆ Ξn+1) such that Ξ =

⋃
n Ξn and for all n we have that ω ∈ Ξn implies that

ωt ∈ Ξn for every t.

Proof. Due to Assumption 2.2 we know that Ξ =
⋃
n Ξ

′
n for compacts Ξ

′
n which w.l.o.g. can

be chosen to be increasing and nonempty. As Ξn := {ωt : ω ∈ Ξ
′
n and t ∈ [0, T ]} ⊆ Ξ is also

compact, the claim follows.

Lemma 5.2. Let Ξ ⊆ Ω be a prediction set which satisfies Assumption 2.2 and let (Ξn)n∈N
be the sets introduced in Lemma 5.1. Moreover, let n ∈ N, H,G ∈ H, and λ ≥ 0 such that

λ+(H ·S)T +(G ·S)T ≥ 0 on ∆∩Ξn. Then for every ε > 0 there are H
′

, G
′
∈ H such that

(H
′
· S)T + (G

′
· S)T = (H · S)T + (G · S)T on ∆ ∩ Ξn,

λ+ ε+ (H
′
· S)t + (G

′
· S)t ≥ 0 on ∆ ∩ Ξ for all t.

Proof. Fix ω ∈ ∆ ∩ Ξn and let t be arbitrary. Since ωt ∈ Ξn ∩∆, one obtains

λ+ (H · S)t(ω) + (G · S)t(ω) = λ+ (H · S)T (ω
t) + (G · S)T (ω

t) ≥ 0,

see [3, Lemma 4.6] for more details. Now define the stopping time σ := inf{t ≥ 0 :

λ+ε+(H ·S)t+(G·S)t ≤ 0} and then set H
′
:= H1[0,σ] ∈ H and similarly G

′
:= G1[0,σ] ∈ H

to obtain the result.

Lemma 5.3. Let [a, b] ⊆ R. For every Q ∈ P(Ω) and every F t-measurable function
h : Ω → [a, b] there are continuous F t-measurable functions hk : Ω → [a, b] which converge
Q-almost surely to h.

Proof. First notice that both Ω and Ω
t
:= {ω|[0,t] : ω ∈ Ω}, each endowed with the sup-

norm, are Polish spaces. Now as F t = {π−1(B) : B ⊆ Ω
t
is Borel} where π : Ω → Ω

t
is

defined by π(ω) = ω|[0,t], one has h = h
t
◦ π for some Borel function h

t
: Ω

t
→ R. Since Ω

t

is Polish and Q
t
:= Q ◦ π−1 a probability measure thereon, there are continuous functions

htk : Ω
t
→ R such that h

t
k → h

t
Q
t
-almost surely. Therefore, we can define hk : Ω → R by

hk := h
t
k ◦ π.

Lemma 5.4. Let here Ω be any metric space and X : Ω → C[0, T ] continuous. Fix 0 ≤ s <
t ≤ T , m > 0, and define

τ := inf{r ≥ s : Xr > m or Xr ≤ −m} ∧ T.

Then the function ω 7→ Xτ(ω)∧t(ω) is lower semicontinuous.

Proof. Define τ+ := inf{r ≥ s : Xr > m} ∧ T and τ− := inf{r ≥ s : Xr ≤ −m} ∧ T , and
note that τ = τ+ ∧ τ−. Moreover, fix ω and a sequence (ωn) such that ωn → ω.

First, we claim that

lim sup
n

τ+(ωn) ≤ τ+(ω) and lim inf
n

τ−(ωn) ≥ τ−(ω). (5.1)
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Indeed, for the first inequality, assume without loss of generality that r := τ+(ω) < T .
Fix any ε > 0. Then, by definition, there is δ ∈ (0, ε) such that Xr+δ(ω) > m. Since
ω 7→ X(ω) is continuous, Xr+δ(ωn) > m for eventually all n, showing that τ+(ωn) ≤ r + ε
for eventually all n. As ε > 0 was arbitrary, the first inequality of the claim follows.

To see the second inequality of the claim, we may assume without loss of generality that
r := τ−(ω) > s. Then necessarily Xu(ω) > −m for u ∈ [s, r). Fix ε > 0. By continuity of
t 7→ Xt(ω), there exists δ > 0 such that Xu(ω) ≥ −m+ δ for u ∈ [s, r − ε]. Further, due to
continuity of ω 7→ X(ω), it follows that Xu(ωn) ≥ −m+ δ/2 for u ∈ [s, r− ε] for eventually
all n. Therefore τ−(ωn) ≥ r− ε for eventually all n and as ε was arbitrary, the second part
of the claim follows.

Next, to prove the lower semicontinuity of Xτ
t , we distinguish between several cases:

(a) If Xτ
t (ω) > m, then by the continuity of the paths of X.(ω), τ(ω) = τ+(ω) = s and

Xs(ω) > m. By continuity of Xs(·) on Ω, Xs(ωn) > m and τ+(ωn) = s for eventually all n,
hence limnX

τ
t (ωn) = limnXs(ωn) = Xs(ω) = Xτ

t (ω).
(b) If Xτ

t (ω) = m, then either τ+(ω) < t or τ+(ω) ≥ t. In the first case it follows that
τ+(ω) < τ−(ω) so that by (5.1) τ+(ωn) < τ−(ωn) and τ+(ωn) < t for eventually all n and
therefore

lim inf
n→∞

Xτ
t (ωn) = lim inf

n→∞
Xτ+(ωn)(ω) = m = Xτ

t (ω).

On the other hand, if τ+(ω) ≥ t, then Xt(ω) = m and Xr(ω) > −m for r ∈ [s, t]. This
implies that τ−(ωn) ≥ t for eventually all n and therefore

lim inf
n

Xτ
t (ωn) = lim inf

n
Xt∧τ+(ωn)(ωn) = m = Xτ

t (ω).

(c) If Xτ
t (ω) ∈ (−m,m), then either τ(ω) > t or τ(ω) = T (in which case necessarily

t = T ). In the latter case it follows that Xr(ω) > −m for r ∈ [s, T ], hence τ−(ωn) = T for
eventually all n and thus

lim inf
n

Xτ
t (ωn) = lim inf

n
Xt∧τ+(ωn)(ωn) ≥ Xt(ω) = Xτ

t (ω).

If τ(ω) > t, then again τ−(ωn) > t for eventually all n so that the same argument shows
that lim infnX

τ
t (ωn) ≥ Xτ

t (ω).
(d) If Xτ

t (ω) = −m, then Xs(ω) ≥ −m. Assume that lim infnX
τ
t (ωn) < −m. Then

there is a subsequence still denoted by (ωn) such that τ(ωn) = τ−(ωn) = s for eventually
all n. However, this contradicts lim infnX

τ
t (ωn) = limnXs(ωn) = Xs(ω) ≥ −m.

(e) If Xτ
t (ω) < −m, then τ−(ω) = s and Xs(ω) < −m. This implies Xs(ωn) < −m and

therefore τ−(ωn) = s for eventually all n, so that limnX
τ
t (ωn) = limnXs(ωn) = Xs(ω) =

Xτ
t (ω).

Proposition 5.5. Let X be either S or S and fix a Q ∈ P(Ω). If X is not a Q-F-local
martingale, then there exists γ ∈ Cb(Ω) and H ∈ H such that γ ≤ (H ·X)T and E

Q
[γ] > 0.

Proof. Consider the set

Γ := {γ ∈ Cb(Ω) : γ ≤ (H ·X)T for some H ∈ H}.
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We prove that if EQ[γ] ≤ 0 for all γ ∈ Γ, then X is a Q-F-local martingale with localizing
sequence

τm := inf{t ≥ 0 : |X t| ≥ m} ∧ T,

i.e. for every m ∈ N, the stopped process

X
τm
t := Xt∧τm

is a Q-F-martingale. Fix m ∈ N and write τ := τm. First let us show that X
τ

is an
F-submartingale. To that end, let 0 ≤ s < t ≤ T , and define

σ := inf{r ≥ s : |Xr| ≥ m} ∧ T,

σε := inf{r ≥ s : Xr > m− ε or Xr ≤ −m+ ε} ∧ T

for 0 < ε ≤ 1. Since both τ and σ are hitting times of a closed set and X is continuous,
they are F-stopping times, whereas σε is a F+-stopping time.

Now, fix an arbitrary Fs-measurable function h : Ω → [0, 1]. Notice that σ = τ on

{τ ≥ s}, so that 1{τ≥s}(X
σ
t −Xs) = X

τ
t −X

τ
s . Moreover, σε increases to σ as ε tends to

0, and therefore X
σε

t → X
σ
t by continuity of X. Since additionally |X

σε

t −Xs| ≤ 2m, this
shows that

EQ[h(X
τ
t −X

τ
s )] = EQ[h 1{τ≥s} (X

σ
t −Xs)] = lim

ε→0
EQ[h 1{τ≥s} (X

σε
t −Xs)].

Recall that g := h1{τ≥s} : Ω → [0, 1] is Fs-measurable. By Lemma 5.3, there exists a

sequence of continuous Fs-measurable functions gk : Ω → [0, 1] which converge Q-almost
surely to g. By Lemma 5.4 the function ω 7→ Xt∧σε(ω)(ω) is lower semicontinuous for every
ε. In particular, for every fixed k it holds that

ω 7→ (H ·X)T (ω) is lower semicontinuous, where H := gk1(s,σε∧t] ∈ H.

Since additionally |X
σε
t − Xs| ≤ 2m and Ω is a Polish space, there exists a sequence of

continuous functions γn : Ω → [−2m, 2m] such that γn ≤ (H ·X)T and γn increases pointwise
to (H ·X)T . Therefore γn ∈ Γ, hence by assumption

E
Q
[gk(X

σε
t −Xs)] = E

Q
[(H ·X)T ] = sup

n
E
Q
[γn] ≤ 0.

We conclude that

EQ[h(X
τ
t −X

τ
s)] = lim

ε→0
EQ[h 1{τ≥s} (X

σε

t −Xs)] = lim
ε→0

lim
k→∞

EQ[gk (X
σε
t −Xs)] ≤ 0,

which implies Q-almost surely EQ[X
τ
t |Fs] ≤ X

τ
s , hence X

τ
is a Q-F-supermartingale.

By similar arguments one can also show that X
τ

is a Q-F-submartingale and thus a
Q-F-martingale.
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