
RobustQ-learningAlgorithm forMarkovDecisionProcesses

underWassersteinUncertainty ⋆

Ariel Neufeld a, Julian Sester b

aNTU Singapore, Division of Mathematical Sciences, 21 Nanyang Link, Singapore 637371.

bNational University of Singapore, Department of Mathematics, 21 Lower Kent Ridge Road, 119077

Abstract

We present a novel Q-learning algorithm tailored to solve distributionally robust Markov decision problems where the corre-
sponding ambiguity set of transition probabilities for the underlying Markov decision process is a Wasserstein ball around a
(possibly estimated) reference measure. We prove convergence of the presented algorithm and provide several examples also
using real data to illustrate both the tractability of our algorithm as well as the benefits of considering distributional robustness
when solving stochastic optimal control problems, in particular when the estimated distributions turn out to be misspecified
in practice.
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1 Introduction

The among practitioners popular and widely applied Q-
learning algorithm provides a tractable reinforcement
learningmethodology to solveMarkov decision problems
(MDP). TheQ-learning algorithm learns an optimal pol-
icy online via observing at each time the current state
of the underlying process as well as the reward depend-
ing on the current (and possibly next) state when acting
according to a (not necessarily) optimal policy and by
assuming to act optimally after the next state. The ob-
served rewards determine a function Q depending on a
state-action pair that describes the quality of the chosen
action when being in the observed state. After a suffi-
cient amount of observations the function Q then allows
in each state to decide which actions possess the most
quality. In this way theQ-learning algorithm determines
an optimal policy.

The Q-learning algorithm was initially proposed in
Watkins’ PhD thesis ([57]). [27] and [58] then provided
a rigorous mathematical proof of the convergence of
the Q-learning algorithm to the optimal Q-value func-
tion using results from stochastic approximation theory
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(see e.g. [16] and [41]). The design of the Q-learning
algorithm as well as the proof of its convergence to the
optimalQ-value both rely on the dynamic programming
principle of the corresponding Markov decision problem,
which allows to find an optimal policy for the involved
infinite horizon stochastic optimal control problem by
solving a one time-step optimization problem. We refer
to [1], [2], [3], [11], [12], [24], [25], [28], [29], [35], [38], and
[55] for various successful applications of the Q-learning
algorithm.

Recently, there has been a huge focus in the literature
starting from the viewpoint that one might have an esti-
mate of the correct transition probability of the under-
lying Markov decision process, for example through the
empirical measure derived from past observed data, but
one faces the risk of misspecifying the correct distribu-
tion and hence would like to consider a distributionally
robust Markov decision process (compare [5], [6], [13],
[17], [23], [30], [31], [32], [37], [39], [47], [48], [52], [56],
[59], [61], [62], [64], and [66]), also calledMarkov decision
process under model uncertainty, where one maximizes
over the worst-case scenario among all probability mea-
sures of an ambiguity set of transition probabilities. We
also refer to, e.g, the following related distributionally
robust stochastic control problems [13], [14], [22], [52],
[53], [60], and [63] beyond the MDP setting. Indeed, as
discussed in [31], there is a common risk in practice that
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one cannot fully capture the probabilities of the real-
world environment due to its complexity and hence the
corresponding reinforcement learning algorithm will be
trained based on misspecified probabilities. In addition,
there is the risk that the environment shifts between the
training period and the testing period. This situation
can often be observed in practice as the future evolution
of random processes rarely behaves exactly according to,
for example, the observed historical evolution. One may
think as a prime example of financial markets, where sev-
eral financial crises revealed repeatedly that used models
were strongly misspecified. We refer to [31] for further
examples, e.g. in robotics, and a further general discus-
sion on the need of considering distributionally robust
Markov decision processes and corresponding reinforce-
ment learning based algorithms.

While there has been a lot of contributions in the liter-
ature on distributionally robust Markov decision prob-
lems, only very recently, to the best of our knowledge,
there has been a first Q-learning algorithm developed
in [31] to solve distributionally robust Markov decision
problems. More precisely, in [31] the authors recently
introduced a Q-learning algorithm tailored for distribu-
tionally robust Markov decision problems where the cor-
responding ambiguity set of transition probabilities con-
sists of all probability measures which are ε-close to a
reference measure with respect to the Kullback-Leibler
(KL) divergence, and prove its convergence to the opti-
mal robust Q-value function.

The goal of this paper is to provide a Q-learning algo-
rithm which can solve distributionally robust Markov
decision problems where the corresponding ambiguity
set of transition probabilities for the underlying Markov
decision process is a Wasserstein ball around a (possi-
bly estimated) reference measure. We obtain theoretical
guarantees of convergence of our Q-learning algorithm
to the corresponding optimal robust Q-value function
(see also (12)). The design of our Q-learning algorithm
combines the dynamic programming principle of the cor-
responding Markov decision process under model uncer-
tainty (see, e.g., [37]) and a convex duality result for
worst-case expectations with respect to a Wasserstein
ball (see [4], [9], [19], [34], and [65]).

From an application point of view, considering the
Wasserstein distance has the crucial advantage that
a corresponding Wasserstein-ball consists of probabil-
ity measures which do not necessarily share the same
support as the reference measure, compared to the KL-
divergence, where by definition probability measures
within a certain fixed distance to the reference measure
all need to have a corresponding support included in
the support of the reference measure. We highlight that
from a structural point of view, our Q-learning algo-
rithm is different than the one in [31], which roughly
speaking comes from the fact that the dual optimization
problem with respect to the Wasserstein distance has

a different structure than the corresponding one with
respect to the KL-divergence.

We demonstrate in several examples also using real data
that our robust Q-learning algorithm determines robust
policies that outperform non-robust policies, determined
by the classical Q-learning algorithm, given that the
probabilities for the underlying Markov decision process
turn out to be misspecified.

The remainder of the paper is as follows. In Section 2
we introduce the underlying setting of the correspond-
ing Markov decision process under model uncertainty.
In Section 3 we present our new Q-learning algorithm
and provide our main result: the convergence of this al-
gorithm to the optimal robustQ-value function. Numer-
ical examples demonstrating the applicability as well as
the benefits of our Q-learning algorithm compared to
the classical Q-learning algorithm are provided in Sec-
tion 4. All proofs and auxiliary results are provided in
Appendix A.1 and A.2, respectively

2 Setting and Preliminaries

In this section we provide the setting and define nec-
essary quantities to define our Q-learning algorithm for
distributionally robust stochastic optimization problems
under Wasserstein uncertainty.

2.1 Setting

Optimal control problems are defined on a state space
containing all the states an underlying stochastic pro-
cess can attain. We model this state space as a finite
subset X ⊂ Rd where d ∈ N refers to the dimension of
the state space. We consider the robust control prob-
lem over an infinite time horizon, hence the space of
all attainable states in this horizon is given by the in-
finite Cartesian product Ω := XN0 = X × X × · · · ,
with the corresponding σ-algebra F := 2X ⊗ 2X ⊗ · · · .
On Ω we consider a stochastic process that describes
the states that are attained over time. To this end,
we let (Xt)t∈N0

be the canonical process on Ω, that

is defined by Xt (x0, x1, . . . , xt, . . . ) := xt for each
(x0, x1, . . . , xt, . . . ) ∈ Ω, t ∈ N0.

Given a realization Xt of the underlying stochastic pro-
cess at some time t ∈ N0, the outcome of the next state
Xt+1 can be influenced through actions that are exe-
cuted in dependence of the current stateXt. At any time
the set of possible actions is given by a finite setA ⊆ Rm,
where m ∈ N is the dimension of the action space (also
referred to as control space). The set of admissible poli-
ciesA over the entire time horizon contains all sequences
of actions that depend at any time only on the current

2



observation of the state process (Xt)t∈N0 formalized by

A : =

{
a = (at)t∈N0

∣∣∣∣ (at)t∈N0
: Ω→ A;

at is σ(Xt)-measurable for all t ∈ N0

}
=

{
(at(Xt))t∈N0

∣∣∣∣ at : X → A Borel measurable

for all t ∈ N0

}
.

The current state and the chosen action influence the
outcome of the next state by influencing the probabil-
ity distribution with which the subsequent state is real-
ized. As we take into account model uncertainty we as-
sume that the correct probability kernel is unknown and
hence, for each given state x and action a, we consider
an ambiguity set of probability distributions represent-
ing the set of possible probability laws for the next state.
We denote by M1(Ω) and M1(X ) the set of probabil-
ity measures on (Ω,F) and (X , 2X ) respectively, and we
assume that an ambiguity set of probability measures is
modelled by a set-valued map

X ×A ∋ (x, a)→→ P(x, a) ⊆M1(X ). (1)

Hence, if at time t ∈ N0 the process Xt attains the value
x ∈ X , and the agent decides to execute action a ∈ A,
then P(x, a) describes the set of possible probability dis-
tributions with which the next state Xt+1 is realized.
If P(x, a) is single-valued, then the state-action pair
(x, a) determines unambiguously the transition proba-
bility, and the setting coincides with the usual setting
used for classical (i.e., non-robust) Markov decision pro-
cesses, compare e.g. [7].

The ambiguity set of admissible probability distribu-
tions on Ω depends therefore on the initial state x ∈ X
and the chosen policy a ∈ A. We define for every initial
state x ∈ X and every policy a ∈ A the set of admissible
underlying probability distributions of (Xt)t∈N0

by

Px,a :=

{
δx ⊗ P0 ⊗ P1 ⊗ · · ·

∣∣∣∣ for all t ∈ N0 :

Pt : X →M1(X ) Borel-measurable,

and Pt(xt) ∈ P(xt, at(xt)) for all xt ∈ X
}
,

where the notation P = δx ⊗ P0 ⊗ P1 ⊗ · · · ∈ Px,a

abbreviates

P(B) :=
∑
x0∈X

·
∑
xt∈X

· · · 1lB ((xt)t∈N0
) · · ·Pt−1(xt−1; {xt})

· · ·P0(x0; {x1})δx({x0}), B ∈ F .

Remark 1 In the literature of robust Markov decision
processes one refers to Px,a as being (s, a)-rectangular,
see, e.g., [26], [45], [59]. This is a common assumption
which turns out to be crucial to obtain a dynamic pro-
gramming principle (see, e.g., [37, Theorem 2.7] and
[43]) and therefore to enable efficient and tractable com-
putations. Indeed, if one weakens this assumption the
problem becomes computationally more expensive (see,
e.g, [8, Section 2]), or can be provably intractable (com-
pare [30]) and therefore cannot be solved by dynamic pro-
gramming methods. Several approaches to solve robust
MDPs w.r.t. non-rectangular ambiguity sets using meth-
ods other than dynamic programming however have re-
cently been proposed, and are described in [21], [30], and
[50].

To determine optimal policies we reward actions in de-
pendence of the current state-action pair and the subse-
quent realized state. To this end, let r : X ×A×X → R
be some reward function, and let α ∈ R be a discount
factor fulfilling

0 < α < 1. (2)

Then, our robust optimization problem consists, for
every initial value x ∈ X , in maximizing the expected
value of

∑∞
t=0 α

tr(Xt, at, Xt+1) under the worst case
measure from Px,a over all possible policies a ∈ A.
More precisely, we aim for every x ∈ X to maximize

infP∈Px,a

(
EP

[∑∞
t=0 α

tr(Xt, at, Xt+1)

])
among all

policies a ∈ A. The value function given by

X ∋ x 7→ V (x) : = sup
a∈A

inf
P∈Px,a

EP

[ ∞∑
t=0

αtr(Xt, at, Xt+1)

]
(3)

then describes the expectation of
∑∞

t=0 α
tr(Xt, at, Xt+1)

under the worst case measure from Px,a and under the
optimal policy from a ∈ A in dependence of the initial
value.

2.2 Specification of the Ambiguity Sets

To specify the ambiguity set P(x, a) for each (x, a) ∈
X ×A, we first consider for each (x, a) ∈ X ×A a refer-
ence probability measure. In applications, this reference
measure may be derived from observed data. Consider-
ing an ambiguity set related to this reference measure
then allows to respect deviations from the historic be-
havior in the future and leads therefore to a more robust
optimal control problem that allows to take into account
adverse scenarios, compare also [37]. To that end, let

X ×A ∋ (x, a) 7→ P̂(x, a) ∈M1(X ). (4)

be a probability kernel, where P̂(x, a) acts as reference
probability measure for each (x, a) ∈ X × A. Then, for
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every (x0,a) ∈ X ×A we denote by

P̂x0,a := δx0
⊗P̂(·, a0(·))⊗P̂(·, a1(·))⊗· · · ∈ M1(Ω) (5)

the corresponding probability measure on Ω that deter-
mines the distribution of (Xt)t∈N0

in dependence of ini-
tial value x0 ∈ X and the policy a ∈ A, i.e., we have for
any B ∈ F that

P̂x0,a(B) :=
∑
x0∈X

· · ·
∑
xt∈X

· · · 1lB ((xt)t∈N0
) · · ·

· P̂(xt−1, at−1(xt−1); {xt})
· · · P̂(x0, a0(x0); {x1})δx({x0}).

We provide two specifications of ambiguity sets of prob-
ability measures P(x, a), (x, a) ∈ X × A, as defined in
(1). Both ambiguity sets rely on the assumption that for
each given (x, a) ∈ X × A the uncertainty with respect
to the underlying probability distribution is modelled
through a Wasserstein-ball around the reference proba-

bility measure P̂(x, a) on X .

To that end, for any q ∈ N, and any P1,P2 ∈ M1(X ),
consider the q-Wasserstein-distance

Wq(P1,P2) : =

(
inf

π∈Π(P1,P2)

∫
X×X

∥x− y∥qdπ(x, y)
)1/q

,

where ∥ ·∥ denotes the Euclidean norm on Rd and where
Π(P1,P2) ⊂ M1(X × X ) denotes the set of joint dis-
tributions of P1 and P2. Since we consider probability
measures on a finite space we have a representation of
the form

Pi =
∑
x∈X

ai,xδx, with
∑
x∈X

ai,x = 1, ai,x ≥ 0

for all x ∈ X for i = 1, 2, where δx denotes the Dirac-
measure at point x ∈ X . Hence, the q-Wasserstein-
distance can also be written as

Wq(P1,P2) : =

(
min

πx,y∈Π̃(P1,P2)

∑
x,y∈X

∥x− y∥q · πx,y

)1/q

,

where

Π̃(P1,P2) :=

{
(πx,y)x,y∈X ⊆ [0, 1]

∣∣∣∣ ∑
x′∈X

πx′,y = a2,y,

∑
y′∈X

πx,y′ = a1,x for all x, y ∈ X
}
.

Relying on the above introduced Wasserstein-distance
we define two ambiguity sets of probability measures.

Setting 1.) The ambiguity set P(q,ε)
1

We consider for any fixed ε > 0 and q ∈ N the ambiguity
set

X ×A ∋ (x, a)→→ P(q,ε)
1 (x, a) :=

{
P ∈M1(X ) s.t.

Wq(P, P̂(x, a)) ≤ ε

}
(6)

being the q-Wasserstein ball with radius ε around the ref-

erence measure P̂(x, a), defined in (4). For each (x, a) ∈
X × A the ambiguity set P(q,ε)

1 (x, a) contains all prob-

ability measures that are close to P̂(x, a) with respect

to the q-Wasserstein distance. In particular, P(q,ε)
1 (x, a)

contains also measures that are not necessarily domi-

nated by the reference measure P̂(x, a).

Setting 2.) The ambiguity set P(q,ε)
2

We next define an ambiguity set that can particularly be
applied when autocorrelated time-series are considered.
In this case we assume that the past h ∈ N ∩ [2,∞)
values of a time series (Yt)t=−h+1,−h+2,... may have an
influence on the subsequent value of the state process.
Then, at time t ∈ N0 the state vector is given by

Xt = (Yt−h+1, . . . , Yt) ∈ X := Yh ⊂ RD·h, (7)

with Y ⊂ RD finite, where D ∈ N describes the dimen-
sion of each value Yt ∈ Y ⊂ RD.

An example is given by financial time series of financial
assets, where not only the current state, but also past
realizations may influence the subsequent evolution of
the assets and can therefore be modelled to be a part of
the state vector, compare also the presentation in [37,
Section 4.3.].

Note that at each time t ∈ N0 the part (Yt−h+2, . . . , Yt) ∈
RD·(h−1) of the state vector Xt+1 that relates to past
information can be derived once the current state
Xt = (Yt−h+1, Yt−h+2, . . . , Yt) is known. Only the real-
ization of Yt+1 is subject to uncertainty. Conditionally
onXt the distribution ofXt+1 should therefore be of the

form δ(Yt−h+2,...,Yt) ⊗ P̃ ∈ M1(X ) for some probability

measure P̃ ∈M1(Y).

We write, given some x = (x1, . . . , xh) ∈ X ,

π(x) := (x2, . . . , xh) ∈ Yh−1 (8)

such that x = (x1, π(x)) ∈ X and such that π(Xt) =
(Yt−h+2, . . . , Yt). The vector π(x) denotes the projection

4



of x onto the last h − 1 components and represents the
part of the state x ∈ X that is carried over to the sub-
sequent state and is therefore not subject to any uncer-
tainty. To reflect the fact that the first h−1 components
can be deterministicly derived once the previous state
is known, we impose now the assumption that the refer-
ence kernel is of the form

X ×A ∋ (x, a) 7→ P̂(x, a) = δπ(x) ⊗
̂̃
P(x, a) ∈M1(X ),

(9)

where
̂̃
P is a probability kernel defined by X × A ∋

(x, a) 7→ ̂̃
P(x, a) ∈ M1(Y). This allows us to define for

any fixed ε > 0 and q ∈ N the ambiguity set 1

X ×A ∋ (x, a)→→ P(q,ε)
2 (x, a) :=

{
P ∈M1(X ) s.t.

P = δπ(x) ⊗ P̃ for P̃ ∈M1(Y) with Wq(P̃,
̂̃
P(x, a)) ≤ ε

}
,

(10)
i.e., for each (x, a) ∈ X ×A we consider all measures of

the form δπ(x)⊗ P̃ for P̃ being close in the q-Wasserstein

distance to
̂̃
P(x, a).

From now on, the ambiguity set of probability mea-
sures P(x, a), (x, a) ∈ X × A, either corresponds to

P(q,ε)
1 (x, a), (x, a) ∈ X × A, defined by (6), or to

P(q,ε)
2 (x, a), (x, a) ∈ X ×A, defined by (10).

Remark 2 In various applications such as for exam-
ple portfolio optimization in finance ([37, Section 4]), an
agent would like to choose at each time t an action at not
only based on the current observation of the state pro-
cess but also based on some historical observations. To
be able to cover such a scenario also in the context of
Markov Decision Problems, it is a well-known procedure
to extend the state space to be able to also include histori-
cal observations into the current state. The ambiguity set

P(q,ε)
2 can therefore be seen as the natural extension of

P(q,ε)
1 tailored exactly for that scenario described above.

We highlight that in that case, given an agent observes
Xt = (Yt−h+1, . . . , Yt) at time t, the only uncertainty
on Xt+1 = (Yt−h+2, . . . , Yt, Yt+1) lies in the last compo-
nent Yt+1, and not in the whole vectorXt+1, as the other
components are observed through Xt. This explains the

structure of the corresponding measures in P(q,ε)
2 involv-

ing Dirac measures.

Remark 3 Using the Wasserstein distance for captur-
ing distributional uncertainty differs significantly from
employing the Kullback-Leibler distance, which was used,

1 By abuse of notation Wq here denotes the q-Wasserstein
distance on M1(Y).

e.g., in [31]. By using an ambiguity set defined via the
Wasserstein distance, one can consider all probability
distributions that are in proximity to a reference mea-
sure, even if they are not necessarily absolutely continu-
ous with respect to it. This becomes important when the
reference measure is estimated from historical data and
contains point masses at the observed values, but one does
not want to restrict future values to those observed in the
past. In contrast, if one is confident about the support of
the underlying transition kernel, it can be advantageous
to use an ambiguity set defined using a distance such as
the Kullback-Leibler distance which only considers prob-
ability measures with the same support (or smaller) as
the reference measure.

2.3 Definition of Operators

We consider the following single time step optimization
problem

T V (x) := sup
a∈A

inf
P∈P(x,a)

EP

[
r(x, a,X1)+αV (X1)

]
, x ∈ X ,

(11)
whereX ∋ x 7→ V (x) is the value function defined in (3),
and we define the optimal robust Q-value function by

X ×A ∋ (x, a) 7→ Q∗(x, a) :=

inf
P∈P(x,a)

EP

[
r(x, a,X1) + αV (X1)

]
.

(12)

Note that if (2) holds and P(x, a) is either P(q,ε)
1 (x, a)

or P(q,ε)
2 (x, a) for all (x, a) ∈ X × A, then the values of

Q∗ are finite, since for all (x, a) ∈ X ×A we have

|Q∗(x, a)| ≤ inf
P∈P(x,a)

EP

[
|r(x, a,X1)|+ α|V (X1)|

]
≤ sup

y∈X
|r(x, a, y)|+ α sup

y∈X
|V (y)| <∞,

(13)
where the finiteness of V follows from [37, Theorem 2.7].
Then we obtain as a consequence of the main result
from [37, Theorem 3.1] the following proposition show-
ing that the infinite time horizon distributionally robust
optimization problem defined in (3) can be solved by
the consideration of a suitable one time-step fixed point
equation, which is the key result that allows to derive
Q-learning type of algorithms.

Proposition 4 Assume that (2) holds and that the

ambiguity set P(x, a) is either given by P(q,ε)
1 (x, a) or

P(q,ε)
2 (x, a) for all (x, a) ∈ X × A. Then for all x ∈ X

we have supa∈A Q∗(x, a) = T V (x) = V (x), where
X ∋ x 7→ V (x) corresponds to the value function of the
robust stochastic optimal control problem defined in (3).

5



3 The Robust Q-learning Algorithm

In this section we present a novel robust Q-learning al-
gorithm for the corresponding distributionally robust
stochastic optimization problem (3) and prove its con-
vergence.

A robust Q-learning algorithm intends to approximate
Q∗(x, a) = infP∈P(x,a) EP

[
r(x, a,X1) + αV (X1)

]
which

involves the minimization over an infinite amount of
probability measures. Due to the particular choice of
ambiguity sets (6) and (10) w.r.t. the Wasserstein-
distance, we can transform this minimization problem
into a tractable problem using a duality from, e.g., [4].

To this end, for a function f : X → R we define, as in
[4, Section 2] or [54, Section 5] its λc - transform.

Definition 5 (λc-transform) Let f : X → R, let
λ ≥ 0, and let c : X × X → R. Then the λc-
transform of f is defined by X ∋ x 7→ (f)λc(x) :=
supy∈X {f(y)− λ · c(x, y)} .

Indeed, the λc-transform now allows to rephrase the op-
timization problem involved in the definition of Q∗ in
more tractable terms involving only an expectation with
respect to the reference kernel, compare also Proposi-
tion 16. We use this representation to define our ro-
bust Q-learning algorithm which is summarized in Algo-
rithm 1.

The update rule from (16) in Algorithm 1 means that
for all (x, a) ∈ X × A, t ∈ N0, we have Qt+1(x, a) =

Qt(x, a) + γ̃visits(x,a)

(
− (−ft,(x,a))λtc(Xt+1) − εqλt −

Qt(x, a)

)
if (x, a) = (Xt, at(Xt)) and Qt+1(x, a) =

Qt(x, a) else, i.e., the update of Qt+1 only takes that
state-action pair into account which was realized by
the process (Xt)t∈N. Further, note that Algorithm 1
assumes for each time t ∈ N0 the existence of some
λt ∈ [0,∞) such that (15) holds. The following result
ensures that this requirement is indeed fulfilled.

Lemma 6 Let (x, a) ∈ X × A, t ∈ N0, let P̂ ∈ M1(X )
and recall X ∋ y 7→ ft,(x,a)(y) defined in (14). Fur-
ther let X × X ∋ (x, y) 7→ c(x, y) ∈ [0,∞] satisfy
miny∈X c(x, y) = 0 for all x ∈ X . Then, there exists some

λ∗ ∈ [0,∞) such thatE
P̂

[
−(−ft,(x,a))λ

∗c(X1)− εqλ∗] =
supλ≥0

(
E
P̂

[
−(−ft,(x,a))λc(X1)− εqλ

])
.

The following main result now shows that the function
(Qt)t∈N0

obtained as the output of Algorithm 1 con-
verges indeed against the optimal robust Q-value func-
tion Q∗ defined in (12).

Algorithm 1 Robust Q-learning

Input State space X ⊂ Rd; Control space A ⊂ Rm;

Reward function r; Discount factor α ∈ (0, 1); Kernel P̂;
Starting point x0; Policy a ∈ A; Cost function c of the
λc-transform; Ambiguity parameter ε > 0; Parameter
q ∈ N related to the Wasserstein-distance; Sequence of
learning rates (γ̃t)t∈N0 ⊆ [0, 1];

1: Initialize Q0(x, a) for all (x, a) ∈ X × A to an arbi-
trary real value;

2: Initialize visits(x, a)← 0 for all (x, a) ∈ X ×A;
3: for t = 0, 1, · · · do
4: Set for all (x, a) ∈ X ×A:
5:

visits(x, a)←
{
visits(x, a) + 1 if (x, a) = (Xt, at(Xt)),

visits(x, a) else;

6: Define the map:

γt : X ×A×X → R,

(x, a, x′) 7→ γt(x, a, x
′) := γ̃visits(x,a)I{(x′,at(x′))=(x,a)};

7: For every (x, a) ∈ X ×A we set:

ft,(x,a) : X → R,

y 7→ r(x, a, y) + αmax
b∈A

Qt(y, b);
(14)

8: Choose λt ∈ [0,∞) which satisfies:

E
P̂(Xt,at(Xt))

[
−(−ft(Xt, at(Xt)))

λtc(Xt+1)− εqλt

]
= sup

λ≥0
E
P̂(Xt,at(Xt))

[
−(−ft(Xt, at(Xt)))

λc(Xt+1)− εqλ
]
;

(15)
9: For all (x, a) ∈ X × A we define the following

update rule:

Qt+1(x, a) : = Qt(x, a)

+ γt(x, a,Xt) ·
(
− (−ft,(x,a))λtc(Xt+1)

− εqλt −Qt(x, a)

)
;

(16)
10: end for

Output A sequence (Qt(x, a))t∈N0, x∈X , a∈A

Theorem 7 Assume that (2) holds, and let (x0,a) ∈
X ×A such that

∞∑
t=1

γt(x, a,Xt) =∞,

∞∑
t=1

γ2
t (x, a,Xt) <∞

for all (x, a) ∈ X ×A P̂x0,a − almost surely.

(17)

(i) Let the ambiguity set be given by P(x, a) = P(q,ε)
1 (x, a)
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for all (x, a) ∈ X × A for some ε > 0 and q ∈ N, and
consider 2 c1 : X × X ∋ (x, y) 7→ ∥x− y∥q. Then, we
have for all (x, a) ∈ X ×A that

lim
t→∞

Qt(x, a) = Q∗(x, a) P̂x0,a − almost surely. 3

(ii) Let X = Th for some h ∈ N ∩ [2,∞) and T ⊂ RD

finite for someD ∈ N, let the ambiguity set be given by

P(x, a) = P(q,ε)
2 (x, a) for all (x, a) ∈ X × A for some

ε > 0 and q ∈ N, and consider 4 c2 : X ×X ∋ (x, y) 7→
∞·1l{(x1,...,xh−1 )̸=(y1,...,yh−1)}(x, y)+∥xh−yh∥q, where
(x, y) = ((x1, . . . , xh), (y1, . . . , yh)). Then, we have for
all (x, a) ∈ X ×A that

lim
t→∞

Qt(x, a) = Q∗(x, a) P̂x0,a − almost surely.

Remark 8 Note that condition (17) can be ensured by
considering a sequence of learning rates (γ̃t)t∈N0 ⊆ [0, 1]
satisfying

∞∑
t=0

γ̃t =∞,

∞∑
t=0

γ̃2
t <∞, (18)

and (Xt)t∈N0 is a (positive) recurrent irreducible Markov

decision process under P̂x0,a.

Remark 9 Note that in the non-robust case it has been
empirically shown that an efficient choice for a ∈ A when
applying Q-learning is given by the so called ε̃-greedy
policy, see e.g. [15, Chapter 9], [33], or [51]. The ε̃-
greedy policy a := (a1, a2, . . . ) ∈ A is, for ε̃ > 0, t ∈ N0,
defined by

X ∋ x 7→ at(x) :=

{
argmaxb∈B Qt(x, b) prob. 1− ε̃,

a ∼ U(A) prob. ε̃,

where a ∼ U(A) means that a random action a is cho-
sen uniformly at random from the finite set A. A popular
modification of the ε̃-greedy policy is to start with a rel-
atively large ε̃ and to decrease the value of ε̃ over time,
see, e.g., [33].

Remark 10 Note that from the optimal Q-value func-
tion one can inferX ∋ x 7→ aloc

∗(x) := argmaxa∈A Q∗(x, a)
and a∗ := (aloc

∗(X0), aloc
∗(X1), . . . ) ∈ A which solves

the robust stochastic optimal control problem (3), com-
pare Proposition 4 and [37, Theorem 2.7]. Analogously,

2 The function c1 is used to determine the λc-transform in
the algorithm, see (15) and (16).
3 For the definition of the probability measure P̂x0,a we refer
to (5).
4 The function c2 is used to determine the λc-transform in
the algorithm, see (15) and (16).

by considering X ∋ x 7→ argmaxa∈A Qt(x, a) for a suf-
ficiently large t ∈ N, we can derive an approximation of
the optimal action.

The following result based on [36] shows that when-
ever an agent possesses a good enough guess about the
true (but to her unknown) probability kernel Ptrue(x, a)
so that it is contained in the ambiguity set, one can
bound the difference of the values of the robust and
non-robust Markov decision problems. This is impor-

tant since limt→∞ Qt(x, a) = Q∗(x, a) P̂x0,a − a.s. and
supa∈A Q∗(x, a) = V (x), hence the following result also
provides an upper bound on the sub-optimality of the
performance of our robust Q-learning algorithm. We see
that it can be controlled to be arbitrarily small when
ε → 0, as long as the agent possesses a good enough
guess for Ptrue(x, a) as discussed above. Note that com-
pared to [36], no regularity assumptions on the map
(x, a) 7→ Ptrue(x, a) nor on the reward function are nec-
essary due to the finiteness of both the state and action
space.

Proposition 11 Let ε > 0, q ∈ N, and let

X ∋ x 7→ V true(x) := sup
a∈A

(
EPtrue

x,a

[ ∞∑
t=0

αtr(Xt, at, Xt+1)

])
,

(19)
with

Ptrue
x,a := δx ⊗Ptrue ⊗Ptrue ⊗Ptrue ⊗Ptrue · · · ∈ M1(Ω),

where X × A ∋ (x, a) 7→ Ptrue(x, a) ∈ P(q,ε)
i (x, a), i ∈

{1, 2}, for all x ∈ X , a ∈ A. Moreover, assume that the
discount factor satisfies (2.2) as well as αLP < 1, where

LP := sup
(x,a),(x′,a′)∈X×A:

(x,a)̸=(x′,a′)

Wq (P
true(x, a),Ptrue(x′, a′))

∥x− x′∥+ ∥a− a′∥
.

(20)

Then for any x ∈ X we have

0 ≤ V true(x)−V (x) ≤ 2Lrε (1 + α)

∞∑
i=0

αi
i∑

j=0

(LP )
j <∞,

(21)
where

Lr := sup
(x0,a,x1)∈X×A×X ,
(x′

0,a
′,x′

1)∈X×A×X :

(x0,a,x1 )̸=(x′
0,a

′,x′
1)

|r(x0, a, x1)− r(x′
0, a

′, x′
1)|

∥x0 − x′
0∥+ ∥a− a′∥+ ∥x1 − x′

1∥
.

(22)

4 Numerical Examples

In this section we provide three numerical examples that
illustrate how the robust Q-learning Algorithm 1 can
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be applied to specific problems. The examples highlight
that a distributionally robust approach can outperform
non-robust approaches whenever the assumed underly-
ing distribution of the non-robust Markov Q-learning
approach turns out to be misspecified during the testing
period.

The selection of examples in this section is intended to
give a small impression on the broad range of different
applications of Q-learning algorithms for stochastic op-
timization problems. We refer to [7], [15], and [24] for an
overview on several applications in finance and to [49]
for a range of applications outside the world of finance.

4.1 On the Implementation

To apply the numerical method from Algorithm 1,
we use for all of the following examples a discount
factor of α = 0.45, an ε̃-greedy policy with ε̃ = 0.1
(compare Remark 9), q = 1, and as a sequence of
learning rates we use γ̃t = 1

1+t for t ∈ N0. Moreover,
we train all implementations with 50 000 iterations.
The parameter λt from (15) is determined by maxi-
mizing the right-hand-side of (15) with a numerical
solver relying on the Broyden—Fletcher—Goldfarb—
Shanno (BFGS) algorithm ([10], [18], [20], [44]). Fur-
ther details of the implementation can be found un-
der https://github.com/juliansester/Wasserstein-Q-
learning.

4.2 Examples

Example 12 (Coin Toss) We consider an agent play-
ing the following game: At each time t ∈ N0 the agent
observes the result of 10 coins that either show heads (en-
coded by 1) or tails (encoded by 0). The state Xt at time
t ∈ N0 is then given by the sum of the heads observed in
the 10 coins, i.e., we have X := {0, . . . , 10}. At each time
t the agent can bet whether the sum of the heads of the next
throw strictly exceeds the previous sum (i.e.Xt+1 > Xt),
or whether it is strictly smaller (i.e. Xt+1 < Xt).

If the agent is correct, she gets 1 $, if the agent is wrong
she has to pay 1 $. The agent also has the possibility not
to play. We model this by considering the reward func-
tion: X ×A×X ∋ (x, a, x′) 7→ r(x, a, x′) := a1l{x<x′} −
a1l{x>x′}−|a|1l{x=x′}, where the possible actions are given
by A := {−1, 0, 1}, where for example a = 1 corre-
sponds to betting Xt+1 > Xt. We then rely on Setting
1.) from Section 2.2 and consider as a reference mea-
sure a binomial distribution with n = 10, p = 0.5, i.e.,

X × A ∋ (x, a) 7→ P̂(x, a) := Bin(10, 0.5). We then de-
fine, according to Setting 1.) from Section 2.2, an ambi-
guity set, in dependence of ε > 0, by

P(x, a) :=
{
P ∈M1(X ) s.t. W1

(
P,Bin(10, 0.5)

)
≤ ε

}
(23)

for every (x, a) ∈ X × A. Let p ∈ [0, 1]. Then, we de-
note the cumulative distribution function of a B(10, p)-
distributed random variable by F10,p. Then we compute
for the 1-Wasserstein distance that

W1

(
Bin(10, 0.5), Bin(10, p)

)
=

∫
R

|F10,0.5(x)− F10,p(x)| dx

=

∫ ∞

0

F10,min{p,0.5}(x)− F10,max{0.5,p}(x)dx

=

∫ ∞

0

(
1− F10,max{0.5,p}(x)

)
dx

−
∫ ∞

0

(
1− F10,min{0.5,p}(x)

)
dx

= 10 ·max{0.5, p} − 10 ·min{0.5, p} = 10 · |0.5− p|,
(24)

where the first equality of (24) follows e.g. from [42,
Equation (3.5)] and the second equality of (24) follows
since F10,min{0.5,p}(x) ≥ F10,max{0.5,p}(x) for all x ∈ R.
This means that all binomial distributionsBin(10, p)with
p ∈

[
0.5− ε

10 , 0.5 +
ε
10

]
are contained in the ambiguity

set 5 . The calculation from (24) gives a good indication
how choosing a different value of εmay influence themea-
sures contained in the ambiguity set. We then train ac-

tions arobust,ε = (arobust,εt )t∈N0 ∈ A according to the ro-
bustQ-learning approach proposed in Algorithm 1 for dif-
ferent values of ε, compare also Remark 10. Additionally
we train an action anon-robust = (anon-robustt )t∈N0

∈ A ac-
cording to the classical non-robust Q-learning approach,
see, e.g., [57], where we assume that the underlying pro-
cess (Xt)t∈N0

develops according to the referencemeasure

P̂. We obtain after applying Algorithm 1 the strategies
depicted in Table 1. In particular, we see that in compari-

Xt 0 1 2 3 4 5 6 7 8 9 10

anon-robust
t (Xt) 1 1 1 1 1 0 -1 -1 -1 -1 -1

arobust,ε=0.5
t (Xt) 1 1 1 0 0 0 0 0 -1 -1 -1

arobust,ε=1
t (Xt) 1 1 0 0 0 0 0 0 0 -1 -1

arobust,ε=2
t (Xt) 0 0 0 0 0 0 0 0 0 0 0

Table 1
The trained actions arobust,ε=0.5

t (Xt), arobust,ε=1
t (Xt),

arobust,ε=2
t (Xt), and anon-robust

t (Xt) in dependence of the re-
alized state Xt at time t ∈ N0.

son with the non-robust action anon-robust, the robust ac-
tions arobust,ε behave more carefully where a larger value
of ε corresponds to a more careful behavior, which can
be clearly seen for ε = 2, in which case the agent decides
not to play for every realization of the state.

Then, we test the profit of the resultant actions arobust,ε

5 We highlight that of course the ambiguity set not only
contains binomial distributions.
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and anon-robust by playing 100 000 rounds of the game
according to these actions. For simulating the 100 000
rounds we assume an underlying binomial distribution
Ptrue = Bin(10, ptrue) with a fix probability ptrue for heads
which we vary from 0.1 to 0.9. We depict the cumulated
profits of the considered actions in Table 2. We observe

ptrue 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Non-Robust -31386 -18438 -1567 22892 35082 22956 -656 -18374 -31091

Robust, ε = 0.5 -24728 4554 16491 13323 9920 13170 16825 4451 -24427

Robust, ε = 1 -8174 15201 11091 4387 2050 4373 11139 15276 -7611

Robust, ε = 2 0 0 0 0 0 0 0 0 0

Table 2
Overall Profit of the game described in Example 12 in depen-
dence of different trained strategies and of the probability
distribution Ptrue = Bin(10, ptrue) of the underlying process.
The best performing strategy in each case is indicated with
bold characters.

that if the probability for heads ptrue is similar as proba-
bility for heads in the reference measure (p = 0.5), then

the non-robust approach (w.r.t. P̂(x, a) := Bin(10, 0.5))
outperforms the robust approaches. If however the model
with which the non-robust action was trained was clearly
misspecified then arobust,ε outperforms anon-robust. More
precisely, the larger the degree of misspecification the
more favorable it becomes to choose a larger ε. This can
be well explained by the choice of the ambiguity set that
covers, according to (24), the more measures under which
we test, the larger we choose ε.

This simple example showcases that if in practice one is
uncertain about the correct law according to which the
state process evolves and one faces the risk of misspecify-
ing the probabilities, then it can be advantageous to rely
on a distributionally robust approach, whereas the choice
of the radius of the Wasserstein-ball is extremely impor-
tant as it corresponds to the degree of misspecification
one wants to be robust against.

Example 13 (Comparison with KL-Uncertainty)
We reconsider an example of a supply-chain model pro-
vided in [31, Section 4]. In this example we have for some
n ∈ N the state space X = {0, 1, . . . , n} representing
the possible goods in the inventory and the action space
A = X representing the possible goods we can order. The
reward function is defined as the negative of the costs
that are composed of holding costs and fixed ordering
costs depending on parameters h, p, k ∈ R and on the
demand which is, for the reference measure, uniformly
distributed on X , see [31, Section 4] for more details.

In the setting described in [31, Section 4], the opti-
mal non-robust strategy (w.r.t. the reference measure)
given current number of goods x is anon-robustt (x) =
(8 − x) · 1l{x≤2} while we compute for a Wasserstein-
uncertainty parameter ε = 1 an optimal robust strategy
aWasserstein
t (x) = (8 − x) · 1l{x≤1} + 51l{x∈{2,3}}. The

robust strategy computed in [31, Section 4] that takes
uncertainty w.r.t. Kullback–Leibler distance in account
is given by aKL

t (x) = (7− x) · 1l{x≤4}.

0 2 4 6 8
m

5.4

5.6

5.8

6.0

6.2

6.4

Co
st

KL Policy
Non-Robust Policy
Wasserstein Policy

Fig. 1. Total Costs for b = 1 after 100000 iterations in the
setting of Example 13, compare also [31, Figure 1].

As in [31, Figure 1], we evaluate the strategies on a dis-
tribution which does not coincide with the reference mea-
sure. To this end, we follow the example from [31, Sec-
tion 4] and consider a perturbed uniform distribution de-
pending on parameters m and b. With parameter b = 1
we compute after evaluation on 100 000 iterations the
costs depicted in Figure 1, in dependence of the parameter
m. The figure shows that for this particular example the
Wasserstein approach leads for all values that are con-
sidered, except for m ∈ {5, 6}, to smaller costs than the
approach provided in [31, Section 4]. Moreover, since the
true distribution does not coincide with the reference dis-
tribution, the robust strategies can outperform the non-
robust ones (defined w.r.t. the reference distribution).

Example 14 (Stock Movement Prediction) We
study the problem of predicting the movement of stock
prices. We aim to predict whether in the next time step
the return of an underlying stock is strongly negative (en-
coded by −2), slightly negative (encoded by −1), slightly
positive (encoded by 1), or strongly positive (encoded by
2). Hence the space of the numerically encoded returns
is given by T := {−2,−1, 1, 2}. We want to rely our
prediction for the movement of the next return on the
last h = 5 values. Hence, we consider, in line with the
setting outlined in (7) X := Th = {−2,−1, 1, 2}5. The
space of actions is modelled by A := {−2,−1, 1, 2} = T
as the actions correspond to the future returns that are
predicted. To construct a reference measure, we consider
the historic evolution of the (numerically encoded) re-
turns of the underlying stock. This time series is denoted
by (Rj)j=1,...,N ⊂ TN for some N ∈ N, see also Figure 2
for an illustration.

R1 R2 · · · RN · · · Today · · ·

Observed Returns Future Returns

Fig. 2. Illustration of the time relation between the time
series of observed returns (Rj)j=1,...,N and the future returns
which we want to predict.
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We then define for some small 6 γ > 0 the set-valued map

X ×A ∋ (x, a) 7→ ̂̃
P(x, a) :=

∑
i∈T pi(x) · δ{i} ∈M1(T )

where for x ∈ X , i ∈ T we define

pi(x) :=
p̃i(x) +

γ
4

γ +
∑

j∈T p̃j(x)
∈ [0, 1], (25)

as well as 7

p̃i(x) :=

N−h+1∑
j=1

1l{(π(x),i)=(Rj ,...,Rj+h−1)}. (26)

This means the construction of
̂̃
P(x, a) relies, according

to (26), on the relative frequency of the sequence (π(x), i)
in the time series of past realized returns (Rj)j=1,...,N .
Equation (25) is then applied to convert the frequencies to
probabilities. Then, as a reference measure we consider,
as in (9), the set-valued map

X ×A ∋ (x, a) 7→ P̂(x, a) = δπ(x) ⊗
̂̃
P(x, a) ∈M1(X ).

(27)
Moreover, as a reward function we consider 8 X × A ×
X ∋ (x, a, x′) 7→ r(x, a, x′) := 1l{x′

h
=a}, i.e., we reward

only correct predictions. We apply the setting described
above to real data. To this end, we consider as series of
realized returns (Rj)j=1,...,N the daily returns of the stock
of Apple in the time horizon from 1 January 2010 until 28
September 2018 and hence we take into accountN = 2200
daily returns. To encode the observed market returns to
values in T , we distinguish between small returns and
large returns by saying that a daily return is strongly
positive if it is larger than 0.01. Analogously a daily return
is strongly negative if smaller than −0.01. This leads to
the distribution of returns as depicted in Table 3.

Type of Encoded Return (Numerical Value) Total Amount

Strongly Negative Returns (-2) 404

Slightly Negative Returns (-1) 637

Slightly Positive Returns (1) 627

Strongly Positive Returns (2) 532

Table 3
The distribution of the numerically encoded daily returns
of Apple between January 2010 and September 2018. The
threshold to distinguish slightly positive (negative) returns
from strongly positive returns is 0.01 (−0.01).

We then train a non-robust action anon-robust =
(anon-robustt )t∈N0 ∈ A according to the classical non-
robust Q-learning algorithm ([58]) as well as robust

6 Note that γ is only introduced to avoid a division by 0.
7 Note that π is defined in (8).
8 Here x′ := (x′

1, . . . , x
′
h) ∈ X , and hence, x′

h denotes the
last component of x′.

actions arobust = (arobustt )t∈N0 ∈ A according to Algo-
rithm 1 that takes into account an ambiguity set defined
in (10) with ε = 0.1. Moreover, for comparison, we con-
sider a trivial action atrivial = (atrivialt )t∈N0

∈ A which
always, independent of the state-action pair, predicts
−1 since, according to Table 3, −1 is the most frequent
appearing value in the time series (Rj)j=1,...,N .

We then evaluate the trained actions, in a small back-
testing study, on realized daily returns of Apple that oc-
curred after the end of the training period. To this end, we
consider an evaluation period from 1 October 2018 until
26 February 2019 consisting of 100 daily returns that are
distributed according to Table 4. We observe that in the

Type of Encoded Return (Numerical Value) Total Amount

Strongly Negative Returns (-2) 29

Slightly Negative Returns (-1) 21

Slightly Positive Returns (1) 22

Strongly Positive Returns (2) 28

Table 4
The distribution of the numerically encoded daily returns of
Apple between 1 October 2018 and 26 February 2019.

evaluation period, in contrast to the training period, the
large negative returns impose the largest class of appear-
ing returns. Overall the distribution is significantly dif-
ferent from the distribution of the classes on the training
data. We illustrate in Table 5 the results of predictions
of the actions atrivial,anon-robust,arobust evaluated in the
evaluation period, and we observe that indeed the robust
action arobust outperforms the other two actions clearly in
this period where the distribution of returns significantly
differs from the distributions of the returns on which the
actions were trained. This showcases again that if there

Action Share of Correct Predictions

anon-robust 23.40%

arobust 28.72%

atrivial 21.27%

Table 5
The proportion of correct stock movement predictions in the
evaluation period between 1 October 2018 and 10 January
2019

is the risk that the underlying distribution on which the
actions were trained turns out to be misspecified, then it
can be advantageous to use a robust approach.
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A Auxiliary Results and Proofs

In Section A.1 we provide several useful results which
then allow in Section A.2 to prove the main result from
Section 3.

A.1 Auxiliary Results

To establish convergence of our Q-learning algorithm
that was presented in Section 3 we will make use of the
following auxiliary result from stochastic approximation
theory which was developed to prove the convergence
of the classical Q-learning algorithm. We refer to [27,
Section 3] for a discussion of the advantage of the fol-
lowing result compared to classical results from stochas-
tic approximation such as, e.g., [16]. Note that for any
f : X ×A→ R, we write

∥f∥∞ := sup
x∈X

sup
a∈A
|f(x, a)|. (A.1)

Lemma 15 ([27], Theorem 1) Let P0 ∈ M1(Ω) be
a probability measure on (Ω,F), and consider a family
of stochastic processes (γt(x, a), Ft(x, a),∆t(x, a))t∈N0

,
(x, a) ∈ X ×A, satisfying for all t ∈ N0

∆t+1(x, a) = (1− γt(x, a))∆t(x, a) + γt(x, a)Ft(x, a)

P0-almost surely for all (x, a) ∈ X × A. Let (Gt)t∈N0
⊆

F be a sequence of increasing σ-algebras such that for all
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(x, a) ∈ X×A the random variables∆0(x, a) and γ0(x, a)
are G0-measurable and such that ∆t(x, a), γt(x, a), and
Ft−1(x, a) are Gt-measurable for all t ∈ N. Further as-
sume that the following conditions hold.

(i) 0 ≤ γt(x, a) ≤ 1,
∑∞

t=0 γt(x, a) =∞,
∑∞

t=0 γ
2
t (x, a) <

∞ P0-almost surely for all (x, a) ∈ X ×A, t ∈ N0.
(ii) There exists δ ∈ (0, 1) such that ∥EP0

[Ft(·, ·) | Gt] ∥∞ ≤
δ∥∆t∥∞ P0-almost surely for all t ∈ N0.

(iii) There existsC > 0 such that ∥VarP0 (Ft(·, ·) | Gt)∥∞ ≤
C(1 + ∥∆t∥∞)2 P0-almost surely for all t ∈ N0.

Then, limt→∞ ∆t(x, a) = 0 P0-almost surely for all
(x, a) ∈ X ×A.

Next, as the following proposition shows, the λc-
transform allows to compute worst case expectations
with respect to probability measures contained in the
Wasserstein-ball by computing its dual which solely
depends on the center of the Wasserstein-ball.

Proposition 16 ([4], Theorem 2.4) Let f : X → R,

let ε > 0 and q ∈ N, let P(q,ε)
1 ,P(q,ε)

2 be the ambiguity
sets of probability measures defined in (6) and (10), and
let c1, c2 : X × X → [0,∞] be defined as in Theorem 7.

(i) Then, we have for every (x, a) ∈ X ×A that

inf
P∈P(q,ε)

1 (x,a)

EP[f ] = sup
λ≥0

(
E
P̂(x,a)

[−(−f)λc1 ]− εqλ
)
.

(ii) In addition, let X = Th for some h ∈ N ∩ [2,∞),
and T ⊂ RD finite for some D ∈ N. Moreover, as-
sume that there exists some probability kernel X ×A ∋
(x, a) 7→ ̂̃

P(x, a) ∈M1(T ) such for all (x, a) ∈ X ×A

we have P̂(x, a) = δπ(x) ⊗
̂̃
P(x, a). Then, we have

for every (x, a) ∈ X × A that inf
P∈P(q,ε)

2 (x,a)
EP[f ] =

supλ≥0

(
E
δπ(x)⊗̂̃P(x,a)

[−(−f)λc2 ]− εqλ

)
.

Proof of Proposition 16
In case (i), the assertion follows by an application of the
duality result from [4, Theorem 2.4] (with the specifi-
cations dc1(·, ·) := Wq(·, ·)q, φ(·) := ∞1l(ε,∞](·) in the
notation of [4, Theorem 2.4], see also [4, Example 2.5]).
More precisely, by [4, Theorem 2.4], [4, Example 2.5] and

by the definition of P(q,ε)
1 we have for all (x, a) ∈ X ×A

that

inf
P∈P(q,ε)

1 (x,a)

EP[f ] = − sup{
P∈M1(X )

∣∣ Wq

(
P,P̂(x,a)

)
≤ε
}EP[−f ]

= −
(
inf
λ≥0

{
E
P̂(x,a)

[(−f)λc1 ] + εqλ
})

= sup
λ≥0

{
E
P̂(x,a)

[−(−f)λc1 ]− εqλ
}
.

To show (ii), we observe that in the notation of [4], we
have for P,P′ ∈M1(X ) that

dc2(P,P
′) := inf

Q∈Π(P,P′)

∫
X×X

c2(x, y)dQ(x, y)

= inf
Q∈Π(P,P′)

∫
X×X

(
∞ · 1l{(x1,...,xh−1 )̸=(y1,...,yh−1)}

+ ∥xh − yh∥q
)
dQ
(
(x1, . . . , xh), (y1, . . . , yh)

)
.

Hence, we have dc2(P, δπ(x) ⊗
̂̃
P(x, a)) ≤ εq if and

only if P = δπ(x) ⊗
̂̃
P for some

̂̃
P ∈ M1(T ) with

Wq(P̃, P̃(x, a)) ≤ ε. Moreover, we see that c2 is indeed
a cost function in the sense of [4]. This implies by [4,

Theorem 2.4] and by the definition of P(q,ε)
2 that for all

(x, a) ∈ X ×A we have

inf
P∈P(q,ε)

2 (x,a)

EP[f ]

= − sup{
P∈M1(X )

∣∣∣ dc2

(
P,δπ(x)⊗̂̃P(x,a)

)
≤εq
}EP[−f ]

= −
(
inf
λ≥0

{
E
δπ(x)⊗̂̃P(x,a)

[(−f)λc2 ] + εqλ

})
= sup

λ≥0

{
E
δπ(x)⊗̂̃P(x,a)

[−(−f)λc2 ]− εqλ

}
. 2

Next, consider the operator H which is defined for any
q : X ×A→ R by

X ×A ∋ (x, a) 7→(Hq)(x, a) :=

inf
P∈P(x,a)

EP

[
r(x, a,X1) + αmax

b∈A
q(X1, b)

]
.

(A.2)
We derive for H the following form of the Bellman-
equation.

Lemma 17 Assume that (2) holds and let the ambigu-

ity set P be either P(q,ε)
1 or P(q,ε)

2 , defined in (6) and
(10). Then the following equation holds true for the op-
timal Q-value function defined in (12): HQ∗(x, a) =
Q∗(x, a) for all (x, a) ∈ X ×A.

Proof of Lemma 17 This follows directly by definition
of Q∗ and by Proposition 4. Indeed, let (x, a) ∈ X × A.
Then, we have

(HQ∗)(x, a) = inf
P∈P(x,a)

EP

[
r(x, a,X1) + α sup

b∈A
Q∗(X1, b)

]
= inf

P∈P(x,a)
EP

[
r(x, a,X1) + αV (X1)

]
= Q∗(x, a). 2

Moreover, we observe that the operator H is a con-
traction with respect to the supremum norm defined in
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(A.1).

Lemma 18 For any maps qi : X ×A→ R, i = 1, 2, we
have ∥Hq1 −Hq2∥∞ ≤ α ∥q1 − q2∥∞ .

Proof of Lemma 18 Consider any maps qi : X ×A→
R, i = 1, 2. Then, we have for all (x, a) ∈ X ×A that

|(Hq1)(x, a)− (Hq2)(x, a)|

=

∣∣∣∣ inf
P∈P(x,a)

EP

[
r(x, a,X1) + α sup

b∈A
q1(X1, b)

]
− inf

P∈P(x,a)
EP

[
r(x, a,X1) + α sup

b∈A
q2(X1, b)

]∣∣∣∣
≤ sup

P∈P(x,a)

∣∣∣∣EP

[
r(x, a,X1) + α sup

b∈A
q2(X1, b)

− r(x, a,X1)− α sup
b∈A

q1(X1, b)

]∣∣∣∣
≤ α sup

P∈P(x,a)

EP

[
sup
b∈A

∣∣q2(X1, b)− q1(X1, b)
∣∣]

≤ α sup
(y,b)∈X×A

|q2(y, b)− q1(y, b)| = α∥q1 − q2∥∞,

which implies the assertion by taking the supremumwith
respect to the arguments of Hq1(·, ·)−Hq2(·, ·). 2

A.2 Proofs

In this section we provide the proofs of the results from
Section 2 and Section 3.

Proof of Proposition 4
The first equality supa∈A Q∗(x, a) = T V (x) follows by
definition of T V . For the second equality T V (x) = V (x)
we want to check that [37, Assumption 2.2] and [37, As-
sumption 2.4] hold true to be able to apply [37, The-
orem 3.1]. [37, Assumption 2.2] is fulfilled (for p = 0
and CP = 1 in the notation of [37, Assumption 2.2]) ac-

cording to [37, Proposition 3.1] in the case P = P(q,ε)
1 ,

and according to [37, Proposition 3.3] in the case P =

P(q,ε)
2 . To verify [37, Assumption 2.4] (i), note that X ×

A × X ∋ (x0, a, x1) 7→ r(x0, a, x1) is continuous since
X and A are finite (endowed with the discrete topol-
ogy). To show [37, Assumption 2.4] (ii) note that for
all x0, x

′
0, x1 ∈ X and a, a′ ∈ A we have |r(x0, a, x1) −

r(x′
0, a

′, x1)| ≤ L · (∥x0 − x′
0∥+ ∥a− a′∥) . with L :=(

max y0,y′
0
∈X , b,b′∈A

(y0,b)̸=(y′
0
,b′)

|r(y0,b,x1)−r(y′
0,b

′,x1)|
∥y0−y′

0∥+∥b−b′∥

)
. Similarly, to

show [37, Assumption 2.4] (iii), we observe that for all
x0, x1 ∈ X and all a ∈ A we have

|r(x0, a, x1)| ≤ max
y0,y1∈X , b∈A

|r(y0, b, y1)|,

i.e., in the notation of [37, Assumption 2.4] we have
Cr := max {1, maxy0,y1∈X , b∈A |r(y0, b, y1)|}. To verify

[37, Assumption 2.4] (iv) we see that, since p = 0, we
can choose CP := 1 in the notation of [37, Assumption
2.2] (ii) and hence with (2) we get 0 < α < 1 = 1

CP

as required. Hence, the result follows from [37, Theorem
3.1]. 2

Proof of Lemma 6 For any λ ≥ 0 we have by definition
of the λc-transform

E
P̂(x,a)

[
−(−ft,(x,a))λc(X1)− εqλ

]
=E

P̂(x,a)

[
−max

y∈X

{
−ft,(x,a)(y)− λc(X1, y)

}
− εqλ

]
.

Therefore, since X is finite, the map [0,∞) ∋ λ 7→
G(λ) := E

P̂(x,a)

[
−(−ft,(x,a))λc(X1)− εqλ

]
is continu-

ous. Hence, the assertion of Lemma 6 follows once we
have shown that limλ→∞ G(λ) = −∞. To that end, note
that as, by assumption, miny∈X c(x, y) = 0 for all x ∈ X ,
we have that

lim sup
λ→∞

G(λ)

= lim sup
λ→∞

E
P̂(x,a)

[
−max

y∈X

{
− ft,(x,a)(y)

− λc(X1, y)
}
− εqλ

]
≤ lim sup

λ→∞
E
P̂(x,a)

[
max
z∈X

ft,(x,a)(z)

−max
y∈X
{−λc(X1, y)} − εqλ

]
= lim sup

λ→∞

(
max
z∈X

ft,(x,a)(z)

+ λE
P̂(x,a)

[
min
y∈X

c(X1, y)

]
− εqλ

)

= max
z∈X

ft,(x,a)(z) + lim sup
λ→∞

(−εqλ) = −∞. 2

Proof of Theorem 7 Let (x0,a) ∈ X ×A.

Assume that either P = P(q,ε)
1 and c = c1, or P =

P(q,ε)
2 and c = c2. Then, we show for all (x, a) ∈ X × A

limt→∞ Qt(x, a) = Q∗(x, a) P̂x0,a − almost surely,
which shows simultaneously both (i) and (ii). To that
end, let (x, a) ∈ X ×A be fixed. Then we rearrange the
terms in (16) and write

Qt+1(x, a) =(1− γt(x, a,Xt))Qt(x, a)

+ γt(x, a,Xt)

(
− (−ft,(x,a))λtc(Xt+1)− εqλt

)
,

(A.3)
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where λt is as defined in (15), see also Lemma 6 for its
existence. Note that by construction Qt(x, a) ∈ R for
all (x, a) ∈ X × A. We define for every t ∈ N0 the map
X × A ∋ (x, a) 7→ ∆t(x, a) := Qt(x, a) − Q∗(x, a) ∈ R.
Note that indeed, as for all (x, a) ∈ X × A we have
Qt(x, a) as well as Q

∗(x, a) is finite (compare (13)), we
directly conclude the finiteness of ∆t(x, a) for all (x, a) ∈
X × A. Moreover, we obtain by (A.3) and by using the
relation γt(x, a,Xt) = γ̃t1l{(Xt,at(Xt))=(x,a)} that

∆t+1(x, a) = (1− γt(x, a,Xt))∆t(x, a)

+ γt(x, a,Xt)

(
− (−ft,(x,a))λtc(Xt+1)

− εqλt −Q∗(x, a)

)
= (1− γt(x, a,Xt))∆t(x, a)

+ γt(x, a,Xt)1l{(Xt,at(Xt))=(x,a)}

·
(
− (−ft,(Xt,at(Xt)))

λtc(Xt+1)

− εqλt −Q∗(Xt, at(Xt))

)
.

(A.4)
Next, we define for every t ∈ N0 the random variable

Ft(x, a) := 1l{(Xt,at(Xt)=(x,a)}

(
−(−ft,(Xt,at(Xt)))

λtc(Xt+1)−

εqλt − Q∗(Xt, at(Xt))

)
, which by (13) is finite for all

(x, a) ∈ X ×A. We consider the filtration (Gt)t∈N0 with
Gt := σ ({X1, . . . , Xt}) , t ∈ N, and G0 = {∅,Ω} be-
ing the trivial sigma-algebra. Note that, in particular,
∆t(x, a), γt(x, a) and Ft−1(x, a) are Gt-measurable for
all t ∈ N. Moreover, we have by (5) and by Proposi-

tion 16 that P̂x0,a − almost surely

∣∣∣∣EP̂x0,a
[Ft(x, a) | Gt]

∣∣∣∣
=

∣∣∣∣1l{(Xt,at(Xt)=(x,a)}

· E
P̂(Xt,at(Xt))

[
− (−ft,(Xt,at(Xt)))

λtc(Xt+1)

− εqλt −Q∗(Xt, at(Xt))
]∣∣∣∣

= 1l{(Xt,at(Xt)=(x,a)}

·
∣∣∣∣ sup
λ≥0

(
E
P̂(Xt,at(Xt))

[
− (−ft,(Xt,at(Xt)))

λc(Xt+1)

− εqλ
])
−Q∗(Xt, at(Xt))

∣∣∣∣
= 1l{(Xt,at(Xt)=(x,a)}

·
∣∣∣∣ inf
P∈P(Xt,at(Xt))

EP

[
(ft,(Xt,at(Xt)))(Xt+1)

]
−Q∗(Xt, at(Xt))

∣∣∣∣.
Thus, (14), (A.2), and Lemma 17 show that P̂x0,a −
almost surely∣∣∣∣EP̂x0,a

[Ft(x, a) | Gt]
∣∣∣∣

= 1l{(Xt,at(Xt)=(x,a)}

·
∣∣∣∣ inf
P∈P(Xt,at(Xt))

EP

[
(ft,(Xt,at(Xt)))(Xt+1)

]
−Q∗(Xt, at(Xt))

∣∣∣∣

= 1l{(Xt,at(Xt)=(x,a)} ·
∣∣∣∣(HQt)(Xt, at(Xt))

−Q∗(Xt, at(Xt))

∣∣∣∣
(A.5)

= 1l{(Xt,at(Xt)=(x,a)} ·
∣∣∣∣(HQt)(Xt, at(Xt))

− (HQ∗)(Xt, at(Xt))

∣∣∣∣.
Hence it followswith Lemma 18 that P̂x0,a−almost surely∥∥∥E

P̂x0,a
[Ft(·, ·) | Gt]

∥∥∥
∞
≤ ∥(HQt)− (HQ∗)∥∞
≤ α ∥Qt −Q∗∥∞ = α∥∆t∥∞,

where the norm ∥ ·∥ is defined in (A.1). Next, recall that
Cr := max {1, maxy0,y1∈X , b∈A |r(y0, b, y1)|}. Note that
by (14), by the λc-transform from Definition 5, and since
infx,y∈X c(x, y) = 0, we have for all t ∈ N0 that

(
−ft,(Xt,at(Xt))

)λtc
(Xt+1) + α min

y′∈X
max
b′∈A

Q∗(y′, b′)

=

(
−r(Xt, at(Xt), ·)− αmax

b∈A
Qt(·, b)

)λtc

(Xt+1)

+ α min
y′∈X

max
b′∈A

Q∗(y′, b′)
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≤
(
Cr − αmax

b∈A
Qt(·, b)

)λtc

(Xt+1)

+ α min
y′∈X

max
b′∈A

Q∗(y′, b′)

≤ max
z∈X

(
Cr − αmax

b∈A
Qt(·, b)

)λtc

(z)

+ α min
y′∈X

max
b′∈A

Q∗(y′, b′)

The latter expression coincides with

max
z,y∈X

(
Cr+α min

y′∈X
max
b′∈A

Q∗(y′, b′)

− αmax
b∈A

Qt(y, b)− λtc(z, y)

)
,

which implies(
−ft,(Xt,at(Xt))

)λtc
(Xt+1) + α min

y′∈X
max
b′∈A

Q∗(y′, b′)

≤ max
z,y∈X

(
Cr + αmax

b′∈A
Q∗(y, b′)

− αmax
b∈A

Qt(y, b)− λtc(z, y)

)
≤ max

z,y∈X

(
Cr + αmax

b∈A
{Q∗(y, b)−Qt(y, b)} − λtc(z, y)

)
≤ max

z,y∈X
(Cr + α∥∆t∥∞ − λtc(z, y))

= Cr + α∥∆t∥∞ =: M ∈ R,
(A.6)

and similarly, since c(z, z) = 0 for all z ∈ X ,

(
−ft,(Xt,at(Xt))

)λtc
(Xt+1) + α min

y′∈X
max
b′∈A

Q∗(y′, b′)

≥ min
z∈X

max
y∈X

(
− Cr + α min

y′∈X
max
b′∈A

Q∗(y′, b′)

− αmax
b∈A

Qt(y, b)− λtc(z, y)

)
≥ min

z∈X
max
y∈X

(
− Cr + α min

y′∈X
min
b∈A

(Q∗(y′, b)−Qt(y, b))

− λtc(z, y)

)
≥ min

z∈X
max
y∈X

(
− Cr − α max

y′∈X ,b∈A
|Qt(y, b)−Q∗(y′, b)|

− λtc(z, y)

)
≥ min

z∈X

(
−Cr − α max

y′∈X ,b∈A
|Qt(z, b)−Q∗(y′, b)|

)
≥ −Cr − α max

z,y′∈X ,b∈A

(
|Qt(z, b)−Q∗(z, b)|

+ |Q∗(z, b)−Q∗(y′, b)|
)

≥ −Cr − α∥∆t∥∞
− α max

z,y′∈X ,b∈A
|Q∗(z, b)−Q∗(y′, b)| =: m ∈ R.

(A.7)
We defineC := (4α2+(2Cr+αmaxz,y′∈X ,b∈A |Q∗(z, b)−
Q∗(y′, b)|)2) <∞. Then, by using Popoviciu’s inequality
on variances 9 applied to the boundsm,M computed in
(A.6) and (A.7), and by using the inequality (a+ b)2 ≤
2
(
a2 + b2

)
which holds for all a, b ∈ R, we see for every

(x, a) ∈ X ×A that P̂x0,a − almost surely

Var
P̂x0,a

(Ft(x, a) | Gt)

= 1l{(Xt,at(Xt)=(x,a)}

·Var
P̂(Xt,at(Xt))

(
(−ft,(Xt,at(Xt)))

λtc(Xt+1)
)

= 1l{(Xt,at(Xt)=(x,a)}

·Var
P̂(Xt,at(Xt))

(
(−ft,(Xt,at(Xt)))

λtc(Xt+1)

+ α min
y′∈X

max
b′∈A

Q∗(y′, b′)

)
≤ 1

4
(M −m)2

=
1

4

(
2α∥∆t∥∞ + 2Cr

+ α max
z,y′∈X ,b∈A

|Q∗(z, b)−Q∗(y′, b)|
)2

≤ 1

2

(
4α2∥∆t∥2∞

+
(
2Cr + α max

z,y′∈X ,b∈A
|Q∗(z, b)−Q∗(y′, b)|

)2)
≤

(
4α2 +

(
2Cr + α max

z,y′∈X ,b∈A
|Q∗(z, b)−Q∗(y′, b)|

)2
)

·
(
1 + ∥∆t∥2∞

)
≤ C · (1 + ∥∆t∥∞)

2
.

This means the assumptions of Lemma 15 are fulfilled,

and we obtain that ∆t(x, a) → 0 for t → ∞ P̂x0,a-
almost surely, which implies, by definition of ∆t, that

Qt(x, a)→ Q∗(x, a) for t→∞ P̂x0,a-almost surely. 2

Proof of Proposition 11 The conditions of [36, As-
sumption 2.1-2.4] are satisfied w.r.t.LP and Lr defined
in (20) and (22) since here both the state and action
space are finite. Hence the result follows from [36, The-
orem 3.1]. 2

9 Popoviciu’s inequality (see [40] or [46]) states that for all
random variables Z on a probability space (Ω,F ,P) satis-
fying m ≤ Z ≤ M for some −∞ < m ≤ M < ∞ we have
VarP(Z) ≤ 1

4
(M −m)2.
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