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Abstract
In this paper we provide a quantum Monte Carlo algorithm to solve high-dimensional Black-Scholes PDEs

with correlation for high-dimensional option pricing. The payoff function of the option is of general form and is
only required to be continuous and piece-wise affine (CPWA), which covers most of the relevant payoff functions
used in finance. We provide a rigorous error analysis and complexity analysis of our algorithm. In particular,
we prove that the computational complexity of our algorithm is bounded polynomially in the space dimension d
of the PDE and the reciprocal of the prescribed accuracy ε. Moreover, we show that for payoff functions which
are bounded, our algorithm indeed has a speed-up compared to classical Monte Carlo methods. Furthermore,
we provide numerical simulations in one and two dimensions using our developed package within the Qiskit
framework tailored to price CPWA options with respect to the Black-Scholes model, as well as discuss the
potential extension of the numerical simulations to arbitrary space dimension.
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1 Introduction
An option in finance is a contract between a seller and a buyer, which provides a future payoff to the buyer of the
option at the maturity date in dependence of the underlying financial securities involved in the contract, such as,
for example, stocks or indexes. Since the underlying securities evolve randomly over time and hence their future
values at maturity cannot be known at any previous time neither by the buyer nor the seller, the exact payoff the
buyer of the option receives at maturity cannot be known either. Hence a key problem in financial theory is to
evaluate the value of such options, i.e. to define and determine a fair price between buyer and seller of the option
under consideration.

In 1973, Black, Scholes, and Merton introduced in [10] and [49] the so-called Black-Scholes-Merton model, also
known simply as the Black-Scholes model, which is a pricing model allowing to evaluate the value of options which
only depend on the underlying single security. They have shown in [10] and [49] that under the Black-Scholes
model, the fair price of an option can be characterized as a solution of a particular partial differential equation
(PDE). More precisely, at each time t ≤ T the value of an option with corresponding payoff function h : R+ → R,
which provides a payoff h(ST ) to the buyer in dependence of the value of the underlying single security ST at
maturity time T , coincides with the solution u(t, x) of the so-called Black-Scholes PDE with terminal condition h,
given that the value St of the underlying security at time t satisfies St = x.

Later, the Black-Scholes model has been extended to price options involving multiple securities and to incor-
porate their correlations into consideration. Analogously to the original model, the price of an option can be
characterized by a PDE, whose space dimension d corresponds to the amount of securities involved in the financial
contract. For example, an option depending on the index of the S&P 500 could be priced in the (multidimensional)
Black-Scholes model by the solution of a 500-dimensional PDE.

Unfortunately, in the multidimensional setting of the Black-Scholes model, there are no explicit expressions
for the solution of the corresponding PDE, and hence numerical methods are necessary to approximately solve
these high-dimensional PDEs. It is crucial both from a theoretical, but especially also from a practical point of
view to provide a rigorous error analysis and complexity analysis of these numerical methods. Indeed, while the
precise error analysis allows, in the context of option pricing, to precisely determine the true absolute error of the
output of the numerical algorithm to the theoretical price of the option under consideration, a rigorous complexity
analysis allows to determine how well an algorithm scales in dependence of the space-dimension of the underlying
PDE. Ideally, one would like to build a numerical algorithm whose precise error and complexity analysis can be
determined and whose number of computational operations only grows polynomially in the dimension d and the
reciprocal of the precision ε. Due to the Feynman-Kac formula for the Black-Scholes PDE, allowing to write the
solution of the Black-Scholes PDE in form of an expectation of the payoff function h : Rd+ → R with respect to
the multivariate log-normal distribution, Monte Carlo based algorithms have demonstrated both theoretically and
practically to be efficient for pricing high-dimensional options under the Black-Scholes model. In particular, the
computational complexity of Monte Carlo methods typically does not grow exponentially in the dimension d and
the reciprocal of the precision ε. We refer to, e.g., [2, 30] for numerical methods which involve finite difference or
finite element, to, e.g., [11] for Monte Carlo based methods, as well as to, e.g., [8, 9, 27, 34, 37] for deep learning
based methods to approximately solve the (multidimensional) Black-Scholes PDE.

In recent years, there has been a rapid development of numerical methods dealing with problems in quantitative
finance using quantum computers. The motivation comes from the fact that qubits, compared to classical bits,
are allowed quantum mechanically to be in a state of superposition, from which one anticipates that quantum
computers should be able to achieve much higher computational power than classical (super-) computers. We also
refer to [32] for a universal approximation theorem for quantum neural networks. The applications of quantum
algorithms in finance include portfolio optimization [64], the computation of risk measures such as Value at Risk
(VAR) [74], volatility modeling [7], and option pricing, particularly in the Black-Scholes model [15, 23, 28, 44, 61,
63, 64, 69]. We also refer to the monograph [42] and surveys [26, 41, 55] for (further) applications of quantum
computing in finance. Furthermore, [5, 6, 18, 21, 45, 51] proposed quantum algorithms to approximately solve
different PDEs than the Black-Scholes PDE used in finance for option pricing.

While [28] proposes a hybrid quantum-classical algorithm to approximately solve the one-dimensional Black-
Scholes PDE exploiting its relation to the Schrödinger equation in imaginary time and [44] proposes a variational
quantum approach, most literature uses quantum Monte Carlo methods to approximately solve the Black-Scholes
PDE in order to price financial options. More precisely, these works rely on the Quantum Amplitude Estimation
algorithm (QAE) [12] which estimates the expected value of a random parameter (see Section 2.3 for a detailed
discussion) based on an extension of Grover’s search algorithm [36]. Several variations of the Quantum Amplitude
Estimation algorithm have been proposed recently, see e.g. [1, 29, 31, 33, 47, 52, 57, 60, 70, 73, 75]. Quantum
Monte Carlo methods can ideally achieve a quadratic speed-up [38],[50] compared to classical (i.e. non-quantum)
Monte Carlo methods. However, the quadratic speedup can only be achieved if there is a so-called oracle quantum
circuit which can correctly upload the corresponding distribution in rotated form, without any approximation
errors (caused, e.g., from discretization and rotation), such that it is applicable to a quantum amplitude estimation
algorithm. This assumption however in most cases cannot be justified in practice, as highlighted, e.g., in [15, 76].

In this paper, we propose a quantum Monte Carlo algorithm to solve high-dimensional Black-Scholes PDEs with
correlation and general payoff function which is continuous and piece-wise affine (CPWA), enabling to price most
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relevant payoff functions used in finance (see also Section 2.1.2). Our algorithm follows the idea of the quantum
Monte Carlo algorithm proposed in [15, 63, 69] which first uploads the multivariate log-normal distribution and
the payoff function in rotated form and then applies a QAE algorithm to approximately solve the Black-Scholes
PDE to price options.

Our main contribution lies in a rigorous error analysis as well as complexity analysis of our algorithm. To that
end, we first introduce quantum circuits that can perform arithmetic operations on two complement’s numbers
representing signed dyadic rational numbers, together with its complexity analysis. This allows us to provide
a rigorous error and complexity analysis when uploading first a truncated and discretized approximation of the
multivariate log-normal distribution and then uploading an approximation of the CPWA payoff function in rotated
form, where the approximation consists of truncation as well as the rounding of the coefficients of the CPWA
payoff function. This together with a rigorous error and complexity analysis when applying the modified iterative
quantum amplitude estimation algorithm [29] allows us to control the output error of our algorithm to be bounded
by the pre-specified accuracy level ε ∈ (0, 1), while bounding its computational complexity; we refer to Theorem 1
for the precise statement of our main result. In particular, we prove that the computational complexity of our
algorithm only grows polynomially in the space dimension d of the Black-Scholes PDE and in the (reciprocal of the)
accuracy level ε. This is in line with classical (i.e. non-quantum) Monte Carlo methods, where the number of Monte
Carlo samples required in order to approximate the solution of the Black-Scholes PDE only grows polynomially
in the dimension d and ε−1, see, e.g., [39]. Moreover, we show that for payoff functions which are bounded, our
algorithm indeed has a speed-up compared to classical Monte Carlo methods. To the best of our knowledge, this is
the first work in the literature which provides a rigorous mathematical error and complexity analysis for a quantum
Monte Carlo algorithm which approximately solves high-dimensional PDEs. We refer to Remark 2.22 for a detailed
discussion of the complexity analysis.

Furthermore, we provide numerical simulations in one and two dimensions for six different payoff functions.
To that end, we developed a package we named qfinance within the Qiskit framework tailored to price CPWA
options with respect to the Black-Scholes model. Moreover, we discuss the potential extension of the numerical
simulations to arbitrary space dimension.

The rest of this paper is organized as follows. In Section 2, we introduce the main setting of this paper, present
our algorithm, and state our main theorem, as well as provide a detailed discussion of our complexity analysis. In
Section 3 we present our numerical simulations in one and two space dimensions as well as discuss their potential
extension to higher dimensions. In Section 4, we introduce and analyze all relevant quantum circuits we need in our
quantum Monte Carlo algorithm. In Section 5, we provide a detailed error analysis of the steps of our algorithm
outlined in Section 2.4.1. Finally, in Section 6, we provide the proof of Theorem 1.

Notation. We denote the set of real numbers and positive real numbers by R and R+ := (0,∞), respectively. The
set of natural numbers is denoted by N := {1, 2, . . .}, and we use N0 := N ∪ {0}. The set of complex numbers is
denoted by C, and we define i :=

√
−1. Moreover, we denote by I2 and I⊗n

2 the corresponding identity matrices
in C2×2 and C2n×2n , respectively, for every n ∈ N. Furthermore, for each n ∈ N we denote by U(2n) the set
of unitary matrices in C2n×2n , i.e. matrices U ∈ C2n×2n satisfying UU† = U†U = I⊗n

2 , where U† denotes the
conjugate transpose of U .

2 Setting and Main result
2.1 Black-Scholes PDE for option pricing
Let r ∈ (0,∞) be the risk-free interest rate, let T ∈ (0,∞) be a finite time horizon determining the maturity, and
let d ∈ N be the number of assets. We consider the multiple-asset Black-Scholes PDE

∂u

∂t
+ 1

2

d∑
i,j=1

Cijxixj
∂2u

∂xi∂xj
+

d∑
i=1

rxi
∂u

∂xi
− ru = 0, in [0, T )× Rd+ (1)

subjected to a terminal condition u(T, ·) = h(·). Here, h : Rd+ → R represents the payoff function and u(t,x)
represents the option price at time t with spot price x. The covariance matrix C = (Ci,j)di,j=1 ∈ Rd×d is assumed
to be symmetric positive definite with a Cholesky factorization C = σσ⊤, where σ ∈ Rd×d is the log-volatility
coefficient matrix, so that there is a unique risk-neutral measure (see, e.g., [14]). Note that the PDE (1) has a unique
solution1 whenever h : Rd+ → R is continuous and at most polynomially growing, see, e.g., [34, Proposition 2.22,
Corollary 4.5].

2.1.1 Geometric Brownian motion process for the price evolution of multiple assets

In the multidimensional Black-Scholes model, the prices of the d stocks under consideration are modeled by a
multidimensional geometric Brownian motion (GBM) having constant growth rate and volatility, see, e.g., [14].
We briefly describe the dynamics of the geometric Brownian motion process for multiple assets.

1The solution u(t,x) of the PDE (1) is meant in the viscosity sense, see, e.g., [19],[34].
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Let (Ω,F ,P) be a probability space and let W = (W 1, . . . ,W d) : [0, T ]×Ω→ Rd be a standard d-dimensional
Brownian motion. For a log-volatility coefficient matrix σ ∈ Rd×d assumed to be invertible, let σ1, . . . ,σd ∈ Rd
denote the row vectors of matrix σ, and let σi := ∥σi∥ℓ2(Rd). Let S = (S1, . . . , Sd) : [0, T ]× Ω→ Rd+ be the stock
price process governed by the following stochastic differential equation

dSit = Sit

rdt+
d∑
j=1

σijdW
j
t

 , for i = 1, . . . , d, (2)

with some initial spot price S0 ∈ Rd+. Here St = (S1
t , . . . , S

d
t ) represents the values of each stock i = 1, . . . , d at

time 0 ≤ t ≤ T . Let R = (R1, . . . , Rd) : [0, T ] × Ω → Rd be the log-return process defined component-wise by
Rit = ln

(
Sit/S

i
0
)

for i = 1, . . . , d. It follows from Itô’s formula for all t ∈ [0, T ] that

dRit = (r − 1
2σ

2
i )dt+

d∑
j=1

σijdW
j
t , for i = 1, . . . , d, (3)

with initial condition Ri0 = 0 for i = 1, . . . , d. Let µ̂ = (µ̂1, . . . , µ̂d) ∈ Rd be a vector satisfying µ̂i = (r − 1
2σ

2
i )

for i = 1, . . . , d. From equation (3), it holds that RT is a multivariate normal distribution with mean T µ̂ and
covariance TC. Hence, by taking the inverse of the log transform, we observe that the law of the stock price process
ST = S0 exp(RT ) is a multivariate log-normal distribution with log-mean T µ̂ and log-covariance TC. In general,
for a given fixed initial condition (t, x) ∈ [0, T ] × Rd+, there is a well-known formula for the probability transition
density function of ST , subjected to the condition that St = x.
Lemma 2.1 (Density formula) Let d ∈ N, let x = (x1, . . . , xd) ∈ Rd+, and let t ∈ [0, T ). Let µ = (µ1, . . . , µd) ∈
Rd be given by µi = ln(xi) + (r − 1

2σ
2
i )(T − t) for i = 1, . . . , d and let Σ ∈ Rd×d be given by Σ = (T − t)C. Then,

the stock price process ST introduced by (2) conditional on St = x follows a multivariate log-normal distribution
with log-mean µ and log-covariance Σ, and the joint transition probability density function is given by

p(y, T ;x, t) :=
exp
(
− 1

2 (log(y)− µ)⊤Σ−1(log(y)− µ)
)

(2π)d/2(detΣ)1/2∏d
i=1 yi

, (4)

where for y = (y1, . . . , yd) ∈ Rd+, log(y) ∈ Rd is given by

(log(y))i = ln(yi), i = 1, . . . , d. (5)

Proof. See, e.g., Campolieti and Makarov [14, page 485-486].

Throughout the paper we impose the following assumption on the covariance matrix C ≡ Cd in dependence of
the dimension d.
Assumption 2.2 (Covariance matrix) There is a constant C1 ∈ [1,∞) not depending on the dimension d ∈ N
such that the covariance matrix C ≡ Cd = ((Cd)i,j)di,j=1 ∈ Rd×d defined as in (1) satisfies for every i, j = 1, . . . , d
that

|(Cd)i,j | ≤ C1. (6)

2.1.2 Continuous piece-wise affine (CPWA) payoff functions

For any d ∈ N, we consider a payoff function h : Rd+ → R, which takes the stock prices ST ∈ Rd+ at terminal
time T as input. The option price u(t,x) ∈ R at time t ∈ [0, T ) given that the spot price satisfies St = x ∈ Rd+ is
characterized by the following Feynman-Kac formula (see, e.g., [14, Equation (13.33)])

u(t,x) = e−r(T−t)E[h(ST ) | St = x] = e−r(T−t)
∫
Rd

+

h(y)p(y, T ;x, t) dy, (7)

where p(·, T ;x, t) is the transition density formula given in Lemma 2.1. In this paper, we consider payoff functions
restricted to the class of continuous piece-wise affine functions2. This type of function represents most of the payoff
functions seen in financial mathematics literature [53]; see also the examples below.
Definition 2.3 (CPWA payoff) Let d ∈ N. A function h : Rd+ → R is a continuous piece-wise affine (CPWA)
function if it can be represented as

h(x) =
K∑
k=1

ξk max{ak,l · x + bk,l : l = 1, . . . , Ik}, (8)

where K, Ik ∈ N and ξk ∈ {−1, 1} for k = 1, . . . ,K, and where ak,l ∈ Rd, bk,l ∈ R for k = 1, . . . ,K, l = 1, . . . , Ik.
2In particular, any CPWA function is linearly growing, see, e.g., Lemma 5.2. Hence the PDE (1) has a unique solution.
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Throughout the paper we impose the following assumptions on the CPWA payoff function h : Rd+ → R in
dependence of the dimension d.
Assumption 2.4 (CPWA) There is a constant C2 ∈ [1,∞) not depending on the dimension d ∈ N such that the
CPWA function h : Rd+ → R defined as in (8) satisfies both

max {∥ak,l∥∞, |bk,l| : k = 1, . . . ,K, l = 1, . . . , Ik} ≤ C2 (9)

and
K ·max{I1, . . . , IK} ≤ C2d. (10)

Example 2.5 The list below contains examples showcasing that many popular payoff functions h : Rd+ → R used
in finance are CPWA, see also [53, Appendix EC.2]. In the following, we denote ei the i-th unit vector in Rd.

1. Call option on the i-th asset with strike κ: setting K = 1, ξ1 = 1, I1 = 2, a1,1 = ei, a1,2 = 0, b1,1 = −κ,
b1,2 = 0, we have

h(x) = max{xi − κ, 0}. (11)

2. Basket call option with weights w and strike κ: setting K = 1, ξ1 = 1, I1 = 2, a1,1 = w, a1,2 = 0, b1,1 = −κ,
b1,2 = 0, we have

h(x) = max{w · x− κ, 0}. (12)

3. Spread call option: using setting 2., but by replacing a1,1 with a1,1 =
∑
i∈I ei−

∑
j∈I′ ej for I, I ′ ⊂ {1, . . . , d}

and I ∩ I ′ = ∅, we have

h(x) = max

∑
i∈I

x−
∑
j∈I′

xj − κ, 0

 . (13)

4. Call-on-max option with strike κ: setting K = 1, ξ1 = 1, I1 = d+ 1, a1,j = ej, b1,j = −κ for all j = 1, . . . , d,
a1,d+1 = 0, b1,d+1 = 0, we have

h(x) = max{x1 − κ, . . . , xd − κ, 0}. (14)

5. Call-on-min option with strike κ: setting K = 2, ξ1 = 1, ξ2 = −1, I1 = d, I2 = d + 1, a1,j = a2,j = −ej,
b1,j = b2,j = κ for all j = 1, . . . , d, a1,d+1 = 0, b1,d+1 = 0, we have

h(x) = max{κ− x1, . . . , κ− xd, 0} −max{κ− x1, . . . , κ− xd}. (15)

6. Best-of-call option with strikes κ1, . . . , κd: setting K = 1, ξ1 = 1, I1 = d + 1, a1,j = ej, b1,j = −κj for all
j = 1, . . . , d, a1,d+1 = 0, b1,d+1 = 0, we have

h(x) = max{x1 − κ1, . . . , xd − κd, 0}. (16)

We note that all of the above examples satisfy Assumption 2.4 provided that the coefficients (ak,l, bk,l) are bounded
by some constant C2 ∈ [1,∞) uniformly in the dimension d, c.f. (9).

2.2 Brief Introduction to Quantum Computing
In this section, we briefly introduce the notions used in quantum computing. A classic reference for this subject is
the textbook by Nielsen and Chuang [54].

2.2.1 Dirac Bra-Ket notation and tensor products

In this section, we recall the Dirac bra-ket notation from quantum mechanics. Let H be a finite dimensional
complex Hilbert space. A vector v ∈ H, also referred as a state, is denoted by the ket notation |v⟩. The inner
product of two vectors v, w ∈ H is denoted by the bra-ket notation ⟨v|w⟩ := ⟨v, w⟩ ∈ C. Elements u ∈ H∗ of the
dual space H∗ are denoted by the bra notation ⟨u|. The action of the dual vector u ∈ H∗ on a vector v ∈ H is also
denoted by the bra-ket notation ⟨u|v⟩. The action of a linear operator A : H → H on a vector |v⟩ is denoted by
A |v⟩. The operator A acts on dual vectors ⟨u| ∈ H∗ by the rule (⟨u|A) |v⟩ := ⟨u| (A |v⟩) := ⟨u,Av⟩ for all v ∈ H
which is also denoted by ⟨u|A|v⟩. A special case is the expectation value of an operator A on a normalized state,
i.e. a state |ψ⟩ satisfying ⟨ψ|ψ⟩ = 1, which is denoted by ⟨A⟩ := ⟨ψ|A|ψ⟩. The linear operator given by the outer
product of two vectors v, u ∈ H is denoted by |v⟩ ⟨u| : H → H, whose action on a vector |x⟩ ∈ H is defined by
(|v⟩ ⟨u|) |x⟩ := ⟨u|x⟩ |v⟩.

For the Hilbert space H = C2, we consider the n-fold tensor product Hilbert space H⊗n := H⊗ · · · ⊗H ≃ C2n .
We denote a state ψ ∈ H⊗n by |ψ⟩n, where the subscript n emphasizes the (log2)-dimension of the tensor product
Hilbert space H⊗n. We use the orthonormal basis Bn = {|i⟩n : i = (i1, i2, . . . , in) ∈ {0, 1}n} ⊂ C2n , where
|i⟩n := |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |in⟩ := |i1⟩ |i2⟩ · · · |in⟩, i ∈ {0, 1}n. The basis Bn is referred as the computational basis in
the literature.
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We illustrate some examples of tensor product of vectors and operators for n = 2 using the standard matrix-
vector notation. The standard orthonormal basis {|0⟩ , |1⟩} ⊂ H = C2 is given by

|0⟩ :=
[
1
0

]
, |1⟩ :=

[
0
1

]
. (17)

The standard orthonormal basis for H⊗H is given by the tensor product basis,

B2 =
{
|i⟩2 = |i1⟩ ⊗ |i2⟩ : i1, i2 ∈ {0, 1}

}
=




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 . (18)

Let |v⟩ = (v1, v2)⊤, |u⟩ = (u1, u2)⊤ ∈ H. The tensor product of these two vectors is given by

|v⟩ ⊗ |u⟩ =
[
v1
v2

]
⊗
[
u1
u2

]
=
[
v1u
v2u

]
=


v1u1
v1u2
v2u1
v2u2

 . (19)

The Kronecker product of two square matrices A,B ∈ C2×2 is given by

A⊗B =
[
a1 a2
a3 a4

]
⊗
[
b1 b2
b3 b4

]
=
[
a1B a2B
a3B a4B

]
=


a1b1 a1b2 a2b1 a2b2
a1b3 a1b4 a2b3 a2b4
a3b1 a3b2 a4b1 a4b2
a3b3 a3b4 a4b3 a4b4

 . (20)

Furthermore, one can deduce from (20) and (19) that the following (multi)-linearity relation holds

(A⊗B)(|v⟩ ⊗ |u⟩) = A |v⟩ ⊗B |u⟩ . (21)

Similar rules for tensor and Kronecker products in H⊗n, n ≥ 3 can be deduced inductively. Note that the tensor
product of vectors and operators may not be commutative.

2.2.2 Qubits, quantum gates, and quantum circuits

A classical computing bit, x ∈ {0, 1}, represents a basic unit of computing information. The qubit (quantum bit) is
the generalization of the classical bit, and it represents a unit of quantum information. Quantum mechanics allow
the qubit to be in a state of superposition. For example, a single qubit may represent a normalized vector |ψ⟩ in
superposition of the state |0⟩ and |1⟩ simultaneously, and we may express |ψ⟩ as

|ψ⟩ = α |0⟩+ β |1⟩ , with |α|2 + |β|2 = 1, and α, β ∈ C. (22)

For n ≥ 2, an arbitrary n-qubit state |ψ⟩n is represented by a normalized vector in C2n which can be described by
a C-linear combination in the computational basis Bn, i.e.

|ψ⟩n =
∑

i∈{0,1}n

αi |i⟩n , with
∑

i∈{0,1}n

|αi|2 = 1. (23)

The coefficients αi ∈ C in (23) are referred as probability amplitudes (or simply amplitudes) due to the fact that for
each |i⟩n ∈ Bn we have that the square amplitude |αi|2 = |⟨i|ψ⟩|2 is the probability of observing that the state |ψ⟩n
collapses during a projective measurement to the state |i⟩n, according to Born’s rule; see, e.g., [48, Chapter 2.5].

Both classical bits and qubits are manipulated using circuit gates. The classical bits on a computer are processed
by a series of logical/boolean gates, e.g. NOT, OR, and AND gates. The input bits are connected by wires and
gates to the output bits. A circuit diagram is often accompanied to show how these gates are placed. In contrast,
the qubits on a quantum computer are manipulated by a sequence of elementary quantum gates; these quantum
gates act on either one or two qubits at a time. The state evolution of the qubits, according to the axioms of
quantum mechanics, is unitary. Thus, quantum gates are unitary operators, represented by unitary matrices in
U(2n) ⊂ C2n×2n , where n is the number of qubits acted on by the quantum gate. A quantum circuit is a finite
sequence of composition of quantum gates and wires (wires represent the identity operator). The fact that the
product of unitary matrices is again a unitary matrix implies that the quantum circuit performs a unitary operation
in the Hilbert spaceH⊗n. Similar to classical computer boolean circuits, quantum circuits are presented by a circuit
model diagram, which specifies where and how the quantum gates and wires are placed. For example, Figure 1
shows the quantum circuit for the Toffoli gate (see Example 2.18), which corresponds to the classical boolean gate
NOT with two control bits.

Next, we provide some examples of quantum circuit gates commonly used in the literature which allows us to
describe an algebraic definition for a quantum circuit; see Definition 2.14.
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Figure 1: Implementation of the Toffoli gate as a quantum circuit using single-qubit gates and CNOT gates. 3

Example 2.6 (Pauli transformation gates) The one-qubit gates corresponding to the Pauli transformations
are

I := σI :=
[
1 0
0 1

]
, X := σx :=

[
0 1
1 0

]
, Y := σy :=

[
0 −i
i 0

]
, Z := σz :=

[
1 0
0 −1

]
. (24)

These gates satisfy the relations I = −iσxσyσz, I = σ2
x = σ2

y = σ2
z , where i :=

√
−1, and they span the group of

2× 2-unitary matrices.
Example 2.7 (Hadamard gate) The Hadamard gates is given by

H := 1√
2

[
1 1
1 −1

]
. (25)

It maps the computation basis states to a uniform superposition, i.e. H |0⟩ := |+⟩ := 1√
2 (|0⟩ + |1⟩) and H |1⟩ :=

|−⟩ := 1√
2 (|0⟩ − |1⟩).

Example 2.8 (Phase shift gates) For ϕ ∈ [0, 2π], we define the family of phase shift gates

P (ϕ) :=
[
1 0
0 eiϕ

]
. (26)

Special cases include the Pauli Z gate, S gate, and T gate:

Z := P (π) =
[
1 0
0 −1

]
, S := P (π/2) =

[
1 0
0 i

]
, T := P (π/4) =

[
1 0
0 eiπ/4

]
. (27)

Example 2.9 (Rotation gates) For θ ∈ [0, 4π], we introduce the three rotation gates:

Rx(θ) := exp(−iθX/2) =
[

cos
(
θ
2
)

−i sin
(
θ
2
)

−i sin
(
θ
2
)

cos
(
θ
2
) ] , (28)

Ry(θ) := exp(−iθY/2) =
[
cos
(
θ
2
)
− sin

(
θ
2
)

sin
(
θ
2
)

cos
(
θ
2
) ] , (29)

Rz(θ) := exp(−iθZ/2) =
[
e−iθ/2 0

0 eiθ/2

]
. (30)

Example 2.10 (Controlled-NOT gate) The controlled-NOT gate has the following matrix representation

CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (31)

The CNOT acts on two qubits: the first qubit is the control qubit and the second qubit is the target qubit, which is
flipped if the control qubit is in state |1⟩.
Example 2.11 (Swap gate) The swap gate has the following matrix representation

SWAP :=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (32)

3This figure can be found on https://commons.wikimedia.org/wiki/File:Qcircuit_ToffolifromCNOT.svg
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Definition 2.12 (Elementary quantum gate set) We call any element of the set of 1-qubit and 2-qubits
quantum gates G ⊂ C2×2 ∪ C22×22 defined by

G :=
{
X,Y, Z,H, S, T,Rx(θ), Ry(θ), Rz(θ), P (ϕ) : θ ∈ (0, 4π), ϕ ∈ (0, 2π)} ∪ {CNOT,SWAP

}
(33)

as elementary gates; (see Examples 2.6–2.11).
Remark 2.13 (Universality of G) We note that the set of quantum gates G in (33) is universal in the sense
of the Solovay-Kitaev theorem [54, Appendix 3]. Moreover, the set G consists of quantum gates used in practical
quantum computing softwares, such as IBM’s Qiskit [59] and Google’s Cirq [22].
Definition 2.14 (Quantum circuit) Let n,M,L ∈ N. A quantum circuit Q acting on n qubits is a 2n × 2n
unitary matrix of the form4

Q =
L∏
l=1

(Gl,1 ⊗Gl,2 ⊗ · · · ⊗Gl,nl
) ∈ U(2n), (34)

where (Gl,1, Gl,2, . . . , Gl,nl
)Ll=1 ⊂ G∪{I2}, and

∏nl

m=1 dim(Gl,m) = 2n for all l = 1, . . . , L. We define the following
quantum circuit complexities5:

• M = number of elementary quantum gates used to construct quantum circuit Q, i.e.

M :=
L∑
l=1

nl∑
j=1

1G(Gl,j), (35)

• n = number of qubits used in quantum circuit Q, and

• L = depth of quantum circuit Q.

Remark 2.15 (Depth) For any quantum circuit Q, we may bound its depth complexity by the number of gates in
the quantum circuit. In this paper, we focus only on the number of elementary gates and qubits used in constructing
quantum circuits.
Remark 2.16 (Inverse Q†) We note that the set of elementary quantum gates defined in (33) is closed under
matrix inversion. Moreover, for any unitary matrix Q, the matrix inverse Q−1 is also the conjugate transpose Q†.
Thus, for any quantum circuit Q satisfying Definition 2.14, we can construct the quantum circuit Q† representing
its inverse by

Q† =
L−1∏
l=0

(G†
L−l,1 ⊗G

†
L−l,2 ⊗ · · · ⊗G

†
L−l,nL−l

). (36)

Remark 2.17 (Ancilla qubits) In most quantum circuits, auxiliary qubits are used as additional memory to
perform necessary quantum computations but may not be used for the output. One calls these qubits ancilla qubits
or simply ancillas and denotes them by |anc⟩⋆, where the subscript ⋆ usually indicates in the literature that the
amount of ancillas used are not specified precisely. The complexity of a quantum circuit is usually described by the
number of elementary quantum gates used, and the number of qubits and ancilla qubits used. For simplicity, we
count both qubits and ancilla qubits together as the number of qubits used in a circuit.
Example 2.18 (Toffoli gate as a quantum circuit) The classical AND gate, which takes a pair of bits x, y ∈
{0, 1} as input, returns the bit AND(x, y) := xy as output. This classical gate is not a reversible operation. Hence
the AND gate cannot be represented by a unitary matrix. However, we can implement the quantum version of this
classical logic gate by using 3 qubits. The operation |a⟩ |b⟩ |c⟩ 7→ |a⟩ |b⟩ |c+ ab mod 2⟩ is reversible. This operation
is implemented as a quantum gate called the Toffoli gate (also referred as the CCNOT gate). The Toffoli gate has
the matrix representation

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (37)

For a, b, c ∈ {0, 1}, we have
CCNOT : |a⟩ |b⟩ |c⟩ 7→ |a⟩ |b⟩ |c+ ab mod 2⟩ . (38)

4Note that for any n ∈ N and any Q1 . . . , QL ∈ U(2n), their product is defined by
∏L

l=1 Ql := QLQL−1 · · · Q2Q1 ∈ U(2n).
5The indicator function 1S for a non-empty subset S ⊂ H is the unique function satisfying 1S : H → {0, 1} such that 1S(x) = 1 if

x ∈ S and 1S(x) = 0 if x ̸∈ S.
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Here one refers |a⟩ as the control qubit, |b⟩ the target qubit, and |c⟩ the output qubit.
The Toffoli gate is constructed as a quantum circuit on three qubits using the Hadamard gates, T gates, and

CNOT gates; see also Figure 1 for the corresponding circuit diagram. The quantum circuit for the Toffoli gate uses
15 elementary gates in total.

2.2.3 Quantum measurements

We use the following definition to describe the quantum measurement of any arbitrary normalized state character-
ized by n-qubits. For further details, we refer to, e.g., [48, Chapter 2.5].
Definition 2.19 (Quantum measurement in the computational basis) Let n ∈ N and let Bn := {|i⟩n :=
|i1⟩ ⊗ · · · ⊗ |in⟩ | i = (i1, . . . , in) ∈ {0, 1}n} be the computational basis of C2n . For each |i⟩n ∈ Bn and for any
normalized state |ψ⟩n, we define a projector Mi := |i⟩n ⟨i|n : C2n → C2n which is defined by (|i⟩n ⟨i|n) |ψ⟩n :=
⟨i|ψ⟩n |i⟩n. A measurement of a normalized state |ψ⟩n in the computational basis induces a discrete probability
space (Ω,F ,Pψ), where Ω = {0, 1}n is the sample space, F = 2Ω is the σ-algebra, and Pψ : F → [0, 1] is the
discrete probability measure defined by

Pψ({i}) := ⟨ψ|M†
iMi|ψ⟩n = | ⟨ψ|i⟩n |

2, i ∈ Ω. (39)

2.3 Quantum amplitude estimation algorithms
In this section, we briefly review quantum algorithms for solving the quantum amplitude estimation (QAE) problem.
Given an unitary operator A acting on n+ 1 qubits, defined by

A |0⟩n |0⟩ =
√

1− a |ψ0⟩n |0⟩+
√
a |ψ1⟩n |1⟩ , (40)

where the so-called bad state is |ψ0⟩n |0⟩ and the good state is |ψ1⟩n |1⟩, Brassard et al. introduced in [12] the
amplitude estimation problem where the goal is to estimate the unknown amplitude a ∈ [0, 1], which is the
probability of measuring the good state |ψ1⟩n |1⟩ according to Born’s rule. Let a = sin2(θa) for some θa ∈ [0, π2 ] so
that we can rewrite (40) as

A |0⟩n |0⟩ = cos(θa) |ψ0⟩n |0⟩+ sin(θa) |ψ1⟩n |1⟩ . (41)

To achieve a quantum speed-up, they introduced in [12] the amplitude amplification operator (also known as the
Grover operator)

Q := AS0A†Sψ0 , (42)

where S0 := I⊗n+1
2 − 2 |0⟩n+1 ⟨0|n+1, and Sψ0 := I⊗n

2 ⊗ Z. Note that for every k ∈ N, it holds that

QkA |0⟩n |0⟩ = cos((2k + 1)θa) |ψ0⟩n |0⟩+ sin((2k + 1)θa) |ψ1⟩n |1⟩ , (43)

(c.f. [12, Section 2]). We observe that measuring (43) boosts the probability of obtaining the good state to
sin2((2k+ 1)θa) which is larger than sin2(θa) when measuring (41) directly, provided θa is sufficiently small so that
(2k+ 1)θa ≤ π

2 . Using quantum Fourier transform and a number of multi-controlled operators for Qk, Brassard et
al. designed the QAE algorithm [12, Algorithm(Est_Amp)] to estimate a with high probability using only O(ε−1)
queries of A (see [12, Theorem 12]). It is noted that Brassard et al.’s algorithm enables a quadratic speed-up for
many approximation problems which are solved classically by Monte Carlo simulations under the assumption that
the corresponding distribution can be uploaded in rotated form (41). However, due to difficulties in implementing
large number of controlled unitary operators as well as the quantum Fourier transform (QFT) operator on quantum
computers, several variants of the QAE algorithm without using QFT have been proposed recently; see e.g., [1, 31,
33, 47, 52, 57, 60, 70, 73, 75]. In this paper, we use the modified iterative quantum amplitude estimation algorithm
(Modified IQAE) [29, Algorithm 1] introduced recently by Fukuzawa et al. [29], which is a modification of the
IQAE algorithm presented by Suzuki et al. [70]. In brief, the Modified IQAE algorithm consists of several rounds
where for each round i, the algorithm maintains a confidence interval [θ(i)

l , θ
(i)
u ] so that θa lies inside this interval

with a certain probability. The confidence interval is narrowed in each subsequent round until the terminating
condition θu − θl < 2ε for prespecified ε ∈ (0, 1) is satisfied. The return output of the Modified IQAE algorithm is
the confidence interval [al, au] for a, where al := sin2(θl) and au := sin2(θu). The following statement is a direct
rephrase of the main results in [29].
Proposition 2.20 Let α, ε ∈ (0, 1) and let A be an (n+ 1)-qubit quantum circuit satisfying

A |0⟩n |0⟩ =
√

1− a |ψ0⟩n |0⟩+
√
a |ψ1⟩n |1⟩ (44)

where n ∈ N, |ψ0⟩n , |ψ1⟩n are normalized states, a ∈ [0, 1], and where A can be constructed with NA ∈ N number
of elementary gates. Then, the following holds.
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1. The Modified IQAE Algorithm [29, Algorithm 1] outputs a confidence interval [al, au] that satisfies

a ̸∈ [al, au], with probability at most α, (45)

where 0 ≤ au − al < 2ε. In particular, the estimator â := au+al

2 of a satisfies

|a− â| < ε, with probability at least 1− α, (46)

2. the Modified IQAE Algorithm uses at most
62
ε

ln
(

21
α

)
(47)

applications of A, and

3. the Modified IQAE Algorithm uses n+ 1 qubits and requires at most

π

4ε (8n2 + 23 +NA) (48)

number of elementary gates.

Proof. Item 1. and Item 2. are proven in [29, Theorem 3.1] and [29, Lemma 3.7], respectively. For Item 3., we note
that [29, Algorithm 1 Modified IQAE] uses quantum circuits QkA which is defined by (43), where k ∈ N. Let us
construct the operator Q (c.f. (42)), as outlined in [62, Section 3]. We note that the operator Sψ0 be constructed
using one Z gate (c.f. Example 2.6). By direct computation (or see [62, Figure 5]), the operator S0 satisfy the
identity

S0 = X⊗(n+1)(I⊗n
2 ⊗H)Cn(X)(I⊗n

2 ⊗H)X⊗(n+1), (49)

where Cn(X) is the generalized version of Toffoli gate, which uses the first n-qubits for control. The multi-control
gate Cn(X) is constructed as a quantum circuit in [66, Theorem 2] using 2n2 − 6n+ 5 controlled X-rotation gates
CRx(θ), where each CRx(θ) gate can be constructed with 4 elementary gates by the following definition

CRx(θ) = (I2 ⊗Rx( θ2 ))CNOT(I2 ⊗Rx( θ2 ))CNOT, (50)

see also the proof of Lemma 4.15. Thus, by (49), the operator S0 can be constructed using

(n+ 1) + 1 + 4(2n2 − 6n+ 5) + 1 + (n+ 1) ≤ 8n2 + 22 (51)

elementary gates. Finally, since the set of elementary gates is closed under inversion, the number of elementary
gates used to construct A† is the same as the number of elementary gates used for A. Hence, the number of
elementary gates used to construct Q is at most

NA + 1 +NA + (8n2 + 22) = 8n2 + 23 + 2NA. (52)

Next, by [29, Lemma 3.1], the integer k satisfies the bound 2k + 1 ≤ π
4ε . Thus, the number of elementary gates

used to construct the operator QkA is at most

k(8n2 + 23 + 2NA) +NA

= k(8n2 + 23) + (2k + 1)NA

≤ (2k + 1)(8n2 + 23 +NA)

≤ π

4ε (8n2 + 23 +NA).

(53)

Remark 2.21 Let us remark the following on the Modified IQAE algorithm [29].

1. The total number of rounds t ∈ N in [29, Algorithm 1 Modified IQAE] is bounded by log3( π4ε ), see [29, Section
3.1]. For each round i = 1, . . . , t, the quantum circuit QkiA is prepared on a quantum computer, where each
ki ∈ N are found recursively by using the subroutine [29, Algorithm 2, FindNextK]. Note that each of these
quantum circuits require the same number of qubits as with the quantum circuit A. Moreover, each ki satisfy
2ki + 1 ≤ π

4ε , [29, Lemma 3.1].

2. Since the number kt is the maximum among the ki’s, we infer that [29, Algorithm 1, Modified IQAE] requires
the number of elementary gates used to construct the quantum circuit QktA on a quantum computer in order
to run the Modified IQAE algorithm, which can be bounded by (48).
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3. The query complexity (i.e. number of applications) of A in Proposition 2.20 is defined to be the number of
times the operator Q is applied in the algorithm, which is

t∑
i=1

kiNi, (54)

where Ni is the number of measurements made on QkiA |0⟩n |0⟩ in round i. Hence, the query complexity of
A can be interpreted as the computational running time for the Modified IQAE algorithm. It was shown in
[29, Lemma 3.7] that this number is bounded by (47).

4. We emphasize that other versions of the QAE (or IQAE) algorithm offer essentially the same query complexity
(i.e. O( 1

ε ln
( 1
α

)
) up to logarithmic factors of ε−1). In this paper, we chose the Modified IQAE for the quantum

ampltitude estimation subroutine in Algorithm 1 since the bounds on the query complexities in [29] were
explicit. We refer the reader to Section 3.2 in [46] for a detailed comparison for the query complexities of the
different QAE algorithms that are available in the literature.

2.4 Algorithm 1 and main result
In this section, we first present our quantum Monte Carlo algorithm named Algorithm 1 to solve Black-Scholes
PDEs (1) with corresponding CPWA payoff function (8). Moreover, we then outline Algorithm 1 and present our
main result in Theorem 1, namely a convergence and complexity analysis of our algorithm.

Algorithm 1: Quantum algorithm for solving Black-Scholes PDEs with CPWA payoff functions
Input: ε ∈ (0, 1), α ∈ (0, 1), d ∈ N, r, T ∈ (0,∞), (t,x) ∈ [0, T )× Rd+, covariance matrix Cd ∈ Rd×d, and

CPWA function

Rd+ ∋ x 7→ h(x) =
K∑
k=1

ξk max{ak,l · x + bk,l : l = 1, . . . , Ik} ∈ R

Output: Ũt,x ∈ R
1 Set C1, C2, C3 ∈ [1,∞) to be the constants given by Assumption 2.2, Assumption 2.4, and Assumption

4.16, respectively.
2 Set

n1 := ⌈n1,d,ε⌉, n2 := 1 + ⌈log2(C2)⌉, m1 := ⌈m1,d,ε⌉, m2 := ⌈m2,d,ε⌉,

where n1,d,ε,m1,d,ε,m2,d,ε are defined in (315)-(317) in Proposition 5.12.
3 Set

N = (202), γ = (321), s = (322), and ãn2,m2,k,l, b̃n2,m2,k,l = (267) for k = 1, . . .K, l = 1, . . . Ik.

4 Construct probability distribution quantum circuit P ≡ Pd,ε using Assumption 4.16 (with n← n1,
m← m1, ε← ε

6C2
2d

22n1+1 in the notation of Assumption 4.16).
5 Construct CPWA payoff with rotation quantum circuit Rh given by Proposition 4.24 (with s← s,

ak,l,j ← En2,m2(ãn2,m2,k,l,j), bk,l ← En2,m2 (̃bn2,m2,k,l) for k = 1, . . . ,K, l = 1, . . . , Ik, j = 1, . . . , d in the
notation of Proposition 4.24).

6 Construct the quantum circuit A = Rh(P ⊗ I⊗(N−d(n1+m1))
2 ) using the quantum circuits Rh and P.

7 Set â = au+al

2 using the output [al, au] from the modified iterative quantum amplitude estimation
algorithm [29, Algorithm 1 Modified IQAE] (with ε← εs

12 , α← α, Nshots ← 1, and A ← A in the notation
of [29, Algorithm 1]).

8 Return Ũt,x := s−1γe−r(T−t)(2â− 1).

2.4.1 Outline of Algorithm 1

The steps of Algorithm 1 can be briefly described into four parts as follows:

1. upload the transition probability function p(·, T ;x, t) given in (4),

2. upload the CPWA payoff function h : Rd+ → R given in (8),

3. apply the Modified IQAE algorithm [29, Algorithm 1] to obtain an estimated amplitude â ∈ [0, 1],

4. rescale the estimated amplitude â to output Ũt,x which approximates u(t,x) defined in (7).

11



Figure 2: Flowchart of Algorithm 1. (Top left) (1) Construction of the operator A using probability distribution operator P
and CPWA payoff operator Rh. (Top right) (2) Construction of the Grover operator using the operator A, oracle operator
Sψ0 and phase flip operator S0. (Bottom) (3) Illustration of the Modified Iterative Quantum Amplitude Estimation algorithm
to produce the final estimate Ũt,x.

More precisely, in order to apply the Modified IQAE algorithm in step 3, we first need to upload both the prob-
ability distribution function and the payoff function as quantum circuits. For the first step, we need to truncate
and discretize the distribution function on a grid. The corresponding parameters n1,m1 ∈ N encodes the grid
([−2n1−1, 2n1−1 − 2−m1 ] ∩ 2−m1Z)d, which is the support of the discretized distribution. Then, the truncated,
discretized distribution can be uploaded approximately on the quantum computer using the quantum circuit P,
introduced in Section 4.3. The corresponding parameter γ is needed to renormalize the amplitude coefficients in
P |0⟩d(n1+m1) to [0, 1]. We note that step 1 accounts for the truncation error, quadrature error, and distribution
loading error in Section 5, see Proposition 5.4, Proposition 5.5, and Proposition 5.10, respectively.

In step 2, we discretize the coefficients (ak,l, bk,l) of the CPWA payoff function (8) onto a grid. The corresponding
parameter n2 ∈ N encodes the bounds on the coefficients while the parameter m2 ∈ N encodes the rounding off
accuracy level for the coefficients. We construct the quantum circuit Rh that encodes the approximated CPWA
payoff in a phase amplitude using controlled Y -rotation gates. The corresponding parameter s ≡ s indicates the
scaling parameter for the rotation circuit Rh, see Proposition 4.24. We account for the errors for approximating the
payoff function h : Rd+ → R and the rotation errors in Proposition 5.8 and Proposition 5.11. The quantum circuit
A is then defined as the combination (i.e. composition) of the two quantum circuits P and Rh which enables us
to apply quantum amplitude estimation (QAE) algorithms.

In step 3, we apply the Modified IQAE algorithm6 [29] with A to get an output â ∈ [0, 1]. Then in the last step,
since the estimated amplitude â given by the Modified IQAE algorithm is between 0 and 1, we need to rescale this
number to approximate the option price u(t,x). We account for the QAE error in Proposition 5.12.

6We emphasize that the other QAE algorithms can also be used since the query complexities are essentially similar to [29], c.f.
Remark 2.21 Item 4.
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2.4.2 Main Theorem

Theorem 1 Let ε ∈ (0, 1), α ∈ (0, 1), d ∈ N, r, T ∈ (0,∞), (t,x) ∈ [0, T )×Rd+, and covariance matrix Cd ∈ Rd×d

be the input of Algorithm 1. Let u(t,x) ∈ R be the option price given by (7) with CPWA payoff h : Rd+ → R given by
(8), let Assumption 2.2, Assumption 2.4, and Assumption 4.16 hold with respective constants C1, C2, C3 ∈ [1,∞),
and let c,C1,C2,C3 ∈ [2,∞) be constants defined by

c := 2C2
2e

4C2
1T

2
e2rT max

i=1,...,d
{1, x2

i }, (55)

C1 := 648C2 log2(c), (56)

C2 := (1.6× 108)C4
2C3

(
27 log2(c)

)max{3,2C3}
, (57)

C3 := (6.1× 105)C2c
3
2 . (58)

Then, Algorithm 1 outputs Ũt,x ∈ R which satisfies

|u(t,x)− Ũt,x| ≤ ε, with probability at least 1− α, (59)

where the number of qubits used in Algorithm 1 is at most

C1d
2(1 + log2(dε−1)), (60)

the number of elementary gates used in Algorithm 1 is at most

C2d
max{10.75,4.75+C3}ε−3(1 + log2(dε−1))max{3,2C3}, (61)

and the number of applications7 of quantum circuit A in Algorithm 1 is at most

C3d
4.75ε−3 ln

( 21
α

)
. (62)

Remark 2.22 Let us remark the following on the complexity of Algorithm 1.

1. The bounds (60) and (61) on the number of qubits and the number of elementary gates in Algorithm 1 specify
the requirements on the quantum computer needed to run Algorithm 1. The bound (62) on the number of
applications of quantum circuit A can be interpreted as the computational running time for Algorithm 1.

2. The O(ε−3) running time complexity in (62) can be attributed as follows.

(i) The truncation of the integral (7) from Rd+ to the cube [0,M ]d requires M ∼ 2n1 ∼ O(ε−1), see Propo-
sition 5.4.

(ii) Since the payoff function h grows linearly, ∥h∥L∞((0,M)d) grows of order O(ε−1). Hence we require the

scaling parameter s to satisfy s ∼ O

((
ε

∥h∥3
L∞((0,M)d)

)1/2
)
∼ O(ε2), see Proposition 5.11.

(iii) We use the Modified IQAE to output â with accuracy εs ∼ O(ε3) to obtain the estimate (59), see
Proposition 5.12. This implies the query complexity bound (62).

In the case where the payoff function h : Rd+ → R is bounded uniformly in x ∈ Rd+, then the scaling

parameter s requires only O(ε
1
2 ), see (ii) above. This implies that the number of applications of A can be

reduced to O(ε− 3
2 ), which is a speed-up compared to classical Monte Carlo methods and recovers the complexity

observed in [69]. We highlight that the fact that an unbounded payoff function can lead to a higher complexity
has been already outlined in [15, Equation (36)]. Moreover, we highlight that one cannot expect to obtain
O(ε−1), which would have meant to have a quadratic speed-up over classical Monte Carlo methods, since one
cannot expect to have an oracle which can perfectly upload the distribution and payoff function in rotated form
(see, e.g., (44) or [15, Equation (16)]), as already pointed out, e.g., in [38].

3. We note from (59)–(62) that the number of qubits and elementary gates used in Algorithm 1 as well as the
number of applications of the quantum circuit A grow only polynomially8 in d and ε−1. This is in line with
classical (i.e. non-quantum) Monte Carlo methods, where the number of Monte Carlo samples required in
order to approximate the solution of the Black-Scholes PDE u(t,x) only grows polynomially in the dimension
d and ε−1, see, e.g., [39].
Indeed, let N ∈ N be the number of classical Monte Carlo samples, let Y (n), n = 1, . . . , N be N inde-
pendent samples of the stock price process ST given that St = x (c.f. Lemma 2.1), and let uNMC(t,x) :=

7c.f. Remark 2.21 Item 3. for the precise meaning of number of applications.
8under the additional assumption that maxi=1,...,d{|xi|} is uniformly bounded in d ∈ N. This assumption is naturally fulfilled in

practice, as x2
i corresponds to the (squared) spot price of the i-th asset.
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e−r(T −t)

N

∑N
n=1 h(Y (n)) be the classical Monte Carlo approximation of u(t,x). By using Markov inequality,

the linear growth property of the payoff function h under Assumption 2.4 (see Lemma 5.2), and second mo-
ment estimates for the multi-variate lognormal distribution under Assumption 2.2 (see (237)), we see for any
prescribed accuracy ε ∈ (0, 1) that

P
(
|u(t,x)− uNMC(t,x)| ≥ ε

)
= P

(∣∣∣∣∣E[h(ST ) |St = x]− 1
N

N∑
n=1

h(Y (n))
∣∣∣∣∣ ≥ εer(T−t)

)

≤
E
[∣∣∣E[h(ST ) |St = x]− 1

N

∑N
n=1 h(Y (n))

∣∣∣2]
ε2e2r(T−t)

≤
2C4

2d
3
(

1 + de2C2
1T

2
e2rT maxi=1,...,d{1, x2

i }
)

Nε2e2r(T−t) .

Therefore, for any confidence level α ∈ (0, 1), by choosing

N ≥
2C4

2d
3
(

1 + de2C2
1T

2
e2rT maxi=1,...,d{1, x2

i }
)

αε2e2r(T−t) ,

we can ensure that
P
(
|u(t,x)− uNMC(t,x)| ≥ ε

)
≤ α

as required. Since each sample of Y (n) requires d copies of standard Gaussian random variables, we conclude
that the total computational cost for a classical Monte Carlo method to approximately solve the multi-variate
Black-Scholes PDE (1) is about Nd = O(d5ε−2).

4. The explicit constants (56)–(58) are not likely to be sharp since we did not optimize every inequality when
bounding the number of elementary gates used to construct the quantum circuits in Section 4.4.

3 Numerical Simulations
In this section, we discuss the implementation of the proposed quantum algorithm, and illustrate its numerical
performance on six concrete European options introduced in Example 2.5 in dimensions one and two. We have
developed a package we named qfinance using the Qiskit framework to implement our proposed algorithm. The
OptionPricing class within this package enables the user to input the stock parameters (i.e. mean µ, volatility σ,
correlation ρ, interest rate r, current time t, spot price St, and maturity T ), select from any of the six classes of
CPWA payoff functions h presented in Example 2.5, together with its corresponding parameters (i.e. weights and
strikes), as well as specify the error tolerance ε in order to obtain an approximated value for the solution u(t,x)
of the PDE (1) with payoff function h which corresponds to the fair price of the option h at time t given spot
price St = x.

In our presented numerical simulations, we implement Algorithm 1 to approximate the expected option payoff
u(t,x) at time t = 0, see (7) for the analytic expression. In Section 3.1 for the single vanilla call option, we use an
initial spot price of x = S0 = 2.0, volatility of σ = 0.4, an annual risk-free interest rate of r = 0.04, and a time to
maturity of T = 40 days. In Sections 3.2, 3.4 –3.6, we used two assets with each asset following the same parameters
as above, and where the assets are correlated to each other with a correlation coefficient of ρ = 0.2. These asset
parameters are processed to produce an expected future price of µST

:= E[ST ] ≈ 2.00879 with a standard deviation
σST
≈ 0.267168. In Section 3.3, the initial spot price is lowered to S0 = 0.5 to reduce the approximation error, and

this results in a expected future price of µST
:= E[ST ] ≈ 0.502197 with a standard deviation σST

≈ 0.083697.
All numerical experiments presented in this section were implemented using IBM’s quantum computing toolkit

Qiskit [59]. We utilized the LogNormalDistribution class from Qiskit to load the multivariate log-normal
distribution on the quantum computer. We discretize each asset price ST using three qubits, hence into eight
distinct values on equally spaced points in the interval [max{µST

−3σST
, 0}, µST

+3σST
]. Namely, |000⟩ is mapped

to max{µST
− 3σST

, 0} and |111⟩ is mapped to µST
+ 3σST

in the natural binary order.
The integration of the distribution loading quantum circuit and the payoff quantum circuit forms the quantum

circuit A, which is used as the input for the Quantum Amplitude Estimation (QAE) algorithm. We employ the
Modified Iterative Quantum Amplitude Estimation (Modified IQAE) in [29, Algorithm 1], with the parameters
α = 0.005 and ϵ = 0.001; see Proposition 2.20. For the numerical results, Estimated (mid) corresponds to Ũt,x (see
line 8 of Algorithm 1 for the precise rescaling of â) whereas Estimated (high) and Estimated (low) correspond to
the same scaling as line 8 of Algorithm 1 but with respect to au and aℓ, respectively. All numerical experiments in
this section were implemented in Python using Qiskit on an Ubuntu 22.04 machine with a AMD Ryzen 9 5950X
@ 3.875GHz CPU with 64GB of RAM and Nvidia GeForce RTX3090 GPU. The source codes are available at
https://github.com/jianjun-dot/quantum-finance.
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3.1 Vanilla Call Option
We first consider a single-variable call option with strike κ with the following payoff function

h(x) = max{x− κ, 0}. (63)

We then test the algorithm efficacy across a range of strike prices. The results, shown in Figure 3 demonstrate
that the estimated expected payoffs align closely with the reference values, which are computed based on the
probabilities in LogNormalDistribution.

Figure 3: Comparison of the expected payoff estimates from the algorithm for the vanilla call option across a range of strike
prices with the reference expected payoff. The tested strike prices are labeled on the horizontal axis.

Strike Price κ Reference Estimated (mid) Estimated (high) Estimated (low)
1.33 0.679331 0.679036 0.680195 0.677876
1.45 0.559664 0.559867 0.561016 0.558718
1.57 0.442470 0.441612 0.448517 0.434707
1.69 0.329094 0.328816 0.335622 0.322009
1.81 0.231919 0.232101 0.237502 0.226700
1.93 0.146172 0.147515 0.148352 0.146678
2.05 0.089769 0.090915 0.091357 0.090473
2.17 0.046210 0.047473 0.048274 0.046673
2.29 0.024531 0.025329 0.025692 0.024967
2.41 0.010191 0.010727 0.011324 0.010129

Table 1: Numerical results for vanilla call options

3.2 Basket Call Option
In our example, we consider the basket call with two assets and strike κ where the weight of each asset is set to
one, i.e.,

h(x1, x2) = max{x1 + x2 − κ, 0}. (64)

Compared to the vanilla call option, the basket call option is more complex and requires the additional use of an
adder circuit to compute x1 +x2. The results of the algorithm across a range of strike prices are shown in Figure 4.
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Figure 4: Expected payoff estimates from our proposed algorithm for the basket call option across a range of strike prices,
compared with the reference expected payoff. The strike prices tested are labeled on the horizontal axis.

Strike Price κ Reference Estimated (mid) Estimated (high) Estimated (low)
3.62 0.426180 0.427173 0.428978 0.425367
3.65 0.402294 0.404174 0.416717 0.391631
3.68 0.378408 0.379875 0.381912 0.377837
3.72 0.346561 0.350753 0.363412 0.338095
3.75 0.322675 0.322466 0.335617 0.309314
3.78 0.298789 0.300295 0.302123 0.298467
3.81 0.279313 0.276816 0.288819 0.264814
3.84 0.261602 0.269334 0.281401 0.257267
3.87 0.243890 0.246027 0.255811 0.236242
3.90 0.226178 0.224180 0.233560 0.214800

Table 2: Numerical results for basket call options

3.3 Spread Call Option
We consider a spread call option involving two assets, given by

h(x1, x2) = max{x1 − x2 − κ, 0}, (65)

where κ is the strike price. Unlike the basket call option, which uses an addition operation, the spread call option
requires a subtraction circuit to compute x1 − x2. This subtraction operation adds complexity to the quantum
circuit due to the introduction of negative numbers as a result of the computation. Given that the input to the
payoff function circuit falls within the domain {0, 1, . . . , 2n}, where n is the number of qubits used to represent the
number, additional processing of the subtraction results (which includes negative integers) to non-negative integers
is required to maintain computational consistency.

We assess the performance of our algorithm across a range of strike prices, with the results shown in Figure 5.

Strike Price κ Reference Estimated (mid) Estimated (high) Estimated (low)
0.010 0.026466 0.026805 0.027640 0.025970
0.015 0.025174 0.025178 0.026008 0.024348
0.02 0.023883 0.024037 0.024871 0.023204
0.025 0.022591 0.023138 0.023978 0.022299
0.03 0.021300 0.021790 0.022623 0.020958
0.035 0.020008 0.019895 0.020714 0.019076
0.04 0.018717 0.019175 0.019988 0.018362
0.045 0.017425 0.018021 0.018831 0.017211
0.05 0.016134 0.016448 0.017254 0.015641
0.055 0.014842 0.014569 0.015341 0.013797

Table 3: Numerical results for spread call options
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Figure 5: Expected payoff estimates from the algorithm for the spread call option across a range of strike prices, compared
with the reference expected payoff. The strike prices tested is labeled on the horizontal axis.

3.4 Call-on-max Option
We explore a call-on-max option involving two assets and strike κ, defined by the payoff function

h(x1, x2) = max{x1 − κ, x2 − κ, 0}. (66)

This option requires the use of a comparison circuit Q(comp) (later introduced in Lemma 4.13) to select of the
higher value of {x1 − κ, x2 − κ} to compute the payoff. The algorithm is evaluated across a range of strike prices,
with the results presented in Figure 6.

Figure 6: Expected payoff estimates from the algorithm for the call-on-max option across a range of strike prices, compared
with the reference expected payoff. The strike prices tested is labeled on the horizontal axis.

Strike Price κ Reference Estimated (mid) Estimated (high) Estimated (low)
1.33 0.804465 0.805098 0.813612 0.796584
1.45 0.684487 0.685483 0.690424 0.680542
1.57 0.564676 0.564527 0.565501 0.563553
1.69 0.446152 0.447838 0.452069 0.443607
1.81 0.332589 0.332920 0.334962 0.330878
1.93 0.228361 0.233305 0.238528 0.228082
2.05 0.146165 0.145905 0.150115 0.141696
2.17 0.081361 0.082417 0.083002 0.081833
2.29 0.043842 0.044748 0.045053 0.044444
2.41 0.019170 0.019729 0.020016 0.019441

Table 4: Numerical results for call-on-max options
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3.5 Call-on-min Option
We consider the two-asset call-on-min option with the following payoff function

h(x1, x2) = max{min{x1, x2} − κ, 0}. (67)

This option is similar to that of the call-on-max option, resulting in a similar circuit design. The main change to
the circuit is in selecting the lower value, rather than the higher value, of the comparison for the computation of
the payoff. The performance of our proposed algorithm is evaluated across a range of strike prices, with the results
shown in Figure 7.

Figure 7: Expected payoff estimates from the algorithm for the call-on-min option across a range of strike prices, compared
with the reference expected payoff. The strike prices tested is labeled on the horizontal axis.

Strike Price κ Reference Estimated (mid) Estimated (high) Estimated (low)
1.33 0.549242 0.549779 0.556598 0.542961
1.45 0.429959 0.429376 0.437922 0.420830
1.57 0.315390 0.313495 0.319649 0.307340
1.69 0.207789 0.208521 0.209452 0.207590
1.81 0.127052 0.128095 0.129009 0.127182
1.93 0.061264 0.072553 0.073112 0.071993
2.05 0.030753 0.031998 0.032863 0.031132
2.17 0.009879 0.011256 0.012077 0.010435
2.29 0.004124 0.005356 0.005689 0.005022
2.41 0.000863 0.001378 0.001902 0.000854

Table 5: Numerical results for call-on-min options

3.6 Best-of-call Option
The best-of-call option is the most complex option among the examples discussed, as it involves multiple assets with
multiple strike prices. Its circuit requires a combination of the subtraction subroutine, the comparator subroutine
and multiple payoff function circuits. In our case, we consider a two assets, two strike prices best-of-call option,
with the following payoff function

h(x1, x2) = max{x1 − κ1, x2 − κ2, 0}. (68)

We tested our proposed algorithm across a range of strike prices, with the results shown in Figure 8.

3.7 Discussion on the numerical simulations and their possible extension to higher
dimensions

We see from the numerical results that the algorithm meets our performance expectations. Compared to the results
in [69, 74], our work extends the application to cover more complex call options, focusing on multi-asset call options
such as spread call, call-on-max, call-on-min and best-of-call options. New circuits are constructed to handle these
options, incorporating components such as subtraction subroutines and comparison subroutines.
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Figure 8: Expected payoff estimates from the algorithm for the best-of-call option across a range of strike prices, compared
with the reference theoretical expected payoff. The strike price of the first asset is fixed, while the strike price of the second
assets is varied.

Second strike price fixed at κ2 = 2.01
Strike Price κ1 Reference Estimated (mid) Estimated (high) Estimated (low)

1.74 0.317163 0.318514 0.324408 0.312619
1.80 0.275635 0.270604 0.280077 0.261131
1.85 0.246069 0.239256 0.248482 0.230031
1.90 0.217595 0.215355 0.223858 0.206853
1.96 0.193578 0.195811 0.203952 0.187671
2.01 0.173564 0.172656 0.183125 0.162187
2.06 0.159330 0.155583 0.161787 0.149379
2.12 0.142249 0.131429 0.142335 0.120523
2.17 0.134635 0.136207 0.145155 0.127260
2.22 0.127487 0.127613 0.136500 0.118725

Table 6: Numerical results for best-of-call options

Currently, our implementation is limited to options involving two variables. Nevertheless, the framework can be
easily extended to multiple variables through the integration of multipleQcomp subroutines for variable comparisons.
To discuss the involving steps more in detail, let us consider, e.g., the extension of the Best-of-call option from two
variables to three variables. The payoff function of the three variable case is defined as:

h(x1, x2, x3) = max{x1 − κ1, x2 − κ2, x3 − κ3, 0} (69)

which can be decomposed into multiple nested two-variable comparisons:

h(x1, x2, x3) = max{max{max{x1 − κ1, x2 − κ2}, x3 − κ3}, 0}. (70)

This approach systematically extends the circuit from the two-variable case. For each variable, an ancilla regis-
ter is added to load the corresponding strike price. Three different subtraction subroutines are applied on the
corresponding variable and its ancilla, resulting in three different registers with that stores |x1 − κ1⟩, |x2 − κ2⟩,
|x3 − κ3⟩. To determine the maximum of three registers, we can use two comparison operators. The first Qcomp
operation compares registers |x1 − κ1⟩ and |x2 − κ2⟩, storing the comparison results in the ancilla register |c1⟩. By
controlling on the results of the ancilla register |c1⟩, a second Qcomp(max{x1 − κ1, x2 − κ2}, x3 − κ3) operation
then compares the result max{x1 − κ1, x2 − κ2} from the first comparison with x3 − κ3, and stores the result in
another ancilla register |c2⟩. Using the outcomes of the two comparison operators Qcomp(x1 − κ1, x2 − κ2) and
Qcomp(max{x1 − κ1, x2 − κ2}, x3 − κ3), the largest value can be identified as outlined Table 7. Accordingly, by
controlling the circuit based on the comparison results, the appropriate register can be selected to compute the
expected payoff. By iteratively applying this nested Qcomp strategy, the algorithm can be generalized to calculate
the payoff for any d variables.

For general CPWA payoff functions, we expect a quadratic increase (ignoring logarithmic factors) with respect
to the dimension d in the number of qubits resource requirement due to the following two reasons – the number
of comparison operations required is O(d) under Assumption 2.4 and the computation for each affine sum (i.e.
x 7→ ak,l · x + bk,l in (8)) requires O(d) arithmetic operations and storage. We refer to equation (218) for
the amount N of qubits needed to upload the (discretized version of the) CPWA payoff function, which under
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Assumption 2.4 satisfies N = O(d2). This and line 6 of Algorithm 1 hence imply that the amount of qubits needed
for Algorithm 1 scales quadratically in the dimension d of the PDE.

We highlight that the presented steps involving nested Qcomp can be similarly applied to other options presented
in Example 2.5.

However, current quantum computing hardware are still too nascent to handle complex computations involving
multiple variables. Thus, given the computational constraints, only two variables systems are implemented and
tested in the package. As compute power increases, we can use the method described to extend the circuit to
accommodate more variables.

|c1⟩

Qcomp(x1 − κ1, x2 − κ2)

|c2⟩

Qcomp(max{x1 − κ1, x2 − κ2}, x3 − κ3)

|x1⟩
Subtract

|κ1⟩

|x2⟩
Subtract

|κ2⟩

|x3⟩
Subtract

|κ3⟩

|0⟩

|x1 − κ1⟩

|x2 − κ2⟩

Figure 9: Description of the circuit to compare three variables. The first Qcomp(x1 − κ1, x2 − κ2) compares the subtraction
result stored in the register |κ1⟩ and |κ2⟩, and the result of the comparison is store in register |c1⟩. The second comparison
Qcomp(max{x1 −κ1, x2 −κ2}, x3 −κ3) is then controlled on the results from the first comparison, thereby selecting the correct
register for the second comparison. The result of the second comparison is then stored in |c2⟩.

Measurement results for |c1⟩3 Measurement results for |c2⟩3 Maximal value
100 100 x3 − κ3
100 010 x2 − κ2
100 001 x2 − κ2
010 100 x3 − κ3
010 010 x1 − κ1
010 001 x1 − κ1
001 100 x3 − κ3
001 010 x1 − κ1
001 001 x1 − κ1

Table 7: The measurement results for the corresponding Qcomp operations, and the identified maximal value among the three
variables. The ancilla register |c1⟩ holds the result for the first comparison Qcomp(x1 − κ1, x2 − κ2) between x1 − κ1 and
x2 − κ2, whereas |c2⟩ holds the result of the second comparison Qcomp(max{x1 − κ1, x2 − κ2}, x3 − κ3). For cases where the
two variables are equal, the first variable is selected as the maximal value. The ancilla results can locate the maximal value
for computing the payoff in the subsequent parts of the circuit.

4 Quantum Circuits
In Section 4.1, we introduce the so-called two’s complement method for representing signed dyadic rational numbers
on a bounded interval using binary strings of finite length. These binary strings correspond to the grid points on the
truncated interval. The binary strings are represented by the qubits on the quantum computer, in the form of linear
combinations of the computational basis states |i⟩n = |i1⟩ |i2⟩ . . . |in⟩, where i = (i1, . . . , in) ∈ {0, 1}n. In Section
4.2, we describe how quantum circuits are constructed to perform arithmetic operations on two complement’s
numbers. In Section 4.3, we assume that the discretized multivariate log-normal distribution can be loaded on the
quantum computer with complexities comparable to the estimates in [15]. In Section 4.4, the approximate option
payoff function is loaded, by using quantum circuits that perform arithmetic operations on numbers represented
by the two’s complement method.
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4.1 Representing signed dyadic rationals using the two’s complement method
The two’s complement method is a way of representing signed integers on a computer using binary strings, see e.g.
Chapter 2.2 [13] for an introduction to the subject. We first describe the representation of signed integers using
the two’s complement method. For a given n ∈ N and for an integer x ∈ [−2n−1, 2n−1 − 1]∩Z, we encode x in the
two’s complement method by a n-bit string denoted by (xn−1, xn−2, · · · , x0) ∈ {0, 1}n. The value of the integer x
is converted from the bit string (xn−1, · · · , x0) by the following formula

x = −xn−12n−1 +
n−2∑
k=0

xk2k. (71)

The most significant bit (MSB) is the bit xn−1 ∈ {0, 1} which determines the sign of x. There are classical computer
algorithms for performing arithmetic operations (such as addition and multiplication) in the two’s complement
representation, such as the carry adder algorithm and Booth’s multiplication algorithm [13]. Numbers with a
fractional part can also be represented using the two’s complement method. This can be done by introducing
the radix point (commonly referred as the decimal point in decimal expansion) to separate the integer part and
fractional part. The additional bits are mapped to the dyadics 2−m,m ∈ N to represent the fractional part of a
number.
Definition 4.1 (Two’s complement representation) Let n ∈ N, m ∈ N0. For m ≥ 1, we define the following
set of (n,m)-bit strings by

Fn,m := {0, 1}n × {0, 1}m := {((xn−1, xn−2, . . . , x0), (x−1, . . . , x−m)) ∈ {0, 1}n × {0, 1}m}, (72)

and the set of dyadic rational numbers on a closed interval by

Kn,m := [−2n−1, 2n−1 − 2−m] ∩ 2−mZ := {−2n−1,−2n−1 + 2−m,−2n−1 + 2 · 2−m, . . . , 2n−1 − 2−m}. (73)

Further, we denote
Kn,m,+ := Kn,m ∩ [0,∞), and Kn,m,− := Kn,m ∩ (−∞, 0), (74)

and we denote

Fn,m,+ := {((0, xn−2, . . . , x0), (x−1, . . . , x−m)) : xn−2, . . . , x−m ∈ {0, 1}}, and
Fn,m,− := {((1, xn−2, . . . , x0), (x−1, . . . , x−m)) : xn−2, . . . , x−m ∈ {0, 1}}.

(75)

If m = 0, we then use the usual signed integers Kn,0 := [−2n−1, 2n−1 − 1] ∩ Z and the set of n-bit strings
Fn,0 := {(xn−1, · · · , x0) ∈ {0, 1}n}, and define Kn,0,± and Fn,0,± analogously.
Definition 4.2 (Encoder and decoder maps) Let n ∈ N, m ∈ N0. We define the encoder function which maps
the rational numbers to bit strings by

En,m : Kn,m −→ Fn,m
y 7→ ((xn−1, xn−2, . . . , x0), (x−1, . . . , x−m))

(76)

where we define En,m(y) = ((xn−1, xn−2, . . . , x0), (x−1, . . . , x−m)) recursively by

xn−1 =
{

1, if y < 0,
0, if y ≥ 0,

xn−2 =
{

1, if −xn−12n−1 + 2n−2 ≤ y,
0, if −xn−12n−1 + 2n−2 > y,

(77)

and for k = n− 3, n− 4, . . . ,−m,

xk =


1, if −xn−12n−1 +

n−2∑
j=k+1

xj2j + 2k ≤ y,

0, if −xn−12n−1 +
n−2∑
j=k+1

xj2j + 2k > y.

(78)

We define the decoder function which maps the bit strings to the rational numbers by

Dn,m : Fn,m −→ Kn,m

((xn−1, xn−2, . . . , x0), (x−1, . . . , x−m)) 7→ −xn−12n−1 +
n−2∑
k=−m

xk2k.
(79)
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The sets Fn,m and Kn,m are equivalent in the following sense.
Proposition 4.3 (Bijection between (n,m)-bit strings and dyadics) Let n ∈ N, m ∈ N0. The sets Fn,m and
Kn,m (c.f. Definition 4.1) have the same finite cardinality, and the encoder and decoder functions En,m : Kn,m −→
Fn,m and Dn,m : Fn,m −→ Kn,m (c.f. Definition 4.2) are bijective and inverses of the other.

Proof. For the first part of the statement, by observing that

Kn,m = {j · 2−m : j = 0, 1, . . . , 2n+m−1 − 1} ∪ {−j · 2−m : j = 1, . . . , 2n+m−1}, (80)

it follows that

#Kn,m = 2 · 2n+m−1 = 2n · 2m = #({0, 1}n × {0, 1}m) = #Fn,m,

where we denote by #A the cardinality of a set A. This shows that the two sets Fn,m and Kn,m have the same
cardinality. Injectivity is clear from Definition 4.2, and bijectivity follows from injectivity since both sets have same
finite cardinality.

In the later sections, we will use the notation Fkn,m := Fn,m × · · · × Fn,m︸ ︷︷ ︸
k-times

for any k ∈ N. The arithmetic algo-

rithms in two’s complement (TC) representation for signed rational numbers can be extended from the arithmetic
algorithms on the two’s complemment signed integers. The modifying process is done by shifting the fractional
bits to the integer bits, applying the integer arithmetic algorithms, then shifting the integer bits back to fractional
bits. The proofs in the two following lemmas provide the extension procedure.
Lemma 4.4 (Addition in two’s complement) Let n1, n2 ∈ N, and let n := max{n1, n2}. Let ⊞ : Fn1,0 ×
Fn2,0 → Fn+1,0 be the addition algorithm for integers represented in the two’s complement method. Then, for any
m1,m2 ∈ N0 with m := max{m1,m2}, there is a natural extension of the addition algorithm to the rational numbers
represented in the two’s complement method where ⊞ : Fn1,m1 × Fn2,m2 → Fn+1,m, such that for any x ∈ Fn1,m1 ,
y ∈ Fn2,m2 , there is an unique element x ⊞ y ∈ Fn+1,m that satisfies

x ⊞ y = En+1,m(Dn1,m1(x) + Dn2,m2(y)). (81)

Proof. First, consider the case where both m1 and m2 are positive. Let x = ((xn1−1, . . . , x0), (x−1, . . . , x−m1)) ∈
Fn1,m1 and y = ((yn2−1, . . . , y0), (y−1, . . . , y−m2)) ∈ Fn2,m2 be given. For every p, q, r ∈ N with r ≥ q, define a
left-shift operator τr : Fp,q → Fp+r,0 defined by

τr : ((zp−1, . . . , z0), (z−1, . . . , z−q)) 7→ (zp−1, . . . , z0, z−1, . . . , z−q, 0, . . . , 0︸ ︷︷ ︸
(r − q)-times

). (82)

Then, it holds that
τm(x) = (xn1−1, . . . , x0, x−1, . . . , x−m1 , . . . , x−m) ∈ Fn1+m,0, (83)

τm(y) = (yn2−1, . . . , y0, y−1, . . . , y−m2 , . . . , y−m) ∈ Fn2+m,0, (84)

where x−k = 0 for k = m1 + 1, . . . ,m if m1 < m and y−l = 0 for l = m2 + 1, . . . ,m if m2 < m. Hence, we may
apply the integer addition algorithm and get an output τm(x) ⊞ τm(y) ∈ Fn+1+m,0. Then, for every p, r ∈ N with
r ≤ p, we define a right-shift operator τ−r : Fp,0 → Fp−r,r defined by

τ−r : (zp−1, . . . , z0) 7→ ((zp−1, . . . , zr), (zr−1, . . . , z0)) . (85)

Let τm(x) ⊞ τm(y) = z = (zn+m, zn+m−1, . . . , z0), for some bit string z ∈ Fn+m+1,0. Then, we have

τ−m(τm(x) ⊞ τm(y)) = ((zn+m, zn+m−1, . . . , zm), (zm−1, . . . , z0)) ∈ Fn+1,m. (86)

Furthermore, it holds that Dn1+m,0(τm(x)) = 2mDn1,m1(x) and Dn2+m,0(τm(x)) = 2mDn2,m2(y). This implies that

x ⊞ y := τ−m(τm(x) ⊞ τm(y)) = τ−mEn+m+1,0(2m(Dn1,m1(x) + Dn2,m2(y))) = En+1,m(Dn1,m1(x) + Dn2,m2(y)).
(87)

Hence we have shown (81). The cases where m1 and/or m2 equals to zero follow analogously.

Lemma 4.5 (Multiplication in two’s complement) Let n1, n2 ∈ N, and let n := n1+n2. Let � : Fn1,0×Fn2,0 →
Fn,0 be the multiplication algorithm for integers represented in the two’s complement method. Then, for any
m1,m2 ∈ N0 with m := m1+m2, there is a natural extension of the multiplication algorithm to the rational numbers
represented in the two’s complement method where � : Fn1,m1 × Fn2,m2 → Fn,m such that for any x ∈ Fn1,m1 ,
y ∈ Fn2,m2 , there is an unique element x � y ∈ Fn,m, where

x � y = En,m(Dn1,m1(x) ·Dn2,m2(y)). (88)
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|i1⟩ |i3⟩

|i2⟩ |i4⟩

|i3⟩ |i1⟩

|i4⟩ |i2⟩

Figure 10: An example for the quantum circuit for permutation in Lemma 4.8, with π = (13)(24).

Proof. First, consider the case where both m1 and m2 are positive. Let x = ((xn1 , . . . , x0), (x−1, . . . , x−m1)) ∈
Fn1,m1 and y = ((yn2 , . . . , y0), (y−1, . . . , y−m2)) ∈ Fn2,m2 be given. Then, with the left-shift operator τm defined in
(82) in the proof of the previous lemma, it holds that τm(x) ∈ Fn1+m,0 and τm(y) ∈ Fn2+m,0. Hence, applying the
multiplication algorithm on integers we have τm(x)�τm(y) ∈ Fn+m,0. This implies that τ−m(τm(x)�τm(y)) ∈ Fn,m.
We verify that

x � y := τ−m(τm(x) � τm(y)) = τ−m (En+m,0(2mDn1,m1(x) ·Dn2,m2(y))) = En,m(Dn1,m1(x) ·Dn2,m2(y)). (89)

Hence we have shown (88). The cases where m1 and/or m2 equals to zero follow analogously.

4.2 Quantum circuits for elementary arithmetic operations
We now describe quantum circuits for arithmetic and elementary operations (such as addition, multiplication,
comparison, absolute value), on qubit registers representing numbers in two’s complement method. There are
many quantum circuits for performing arithmetic operations with its quantum circuit complexities available in the
literature, see, e.g., [4, 20, 24, 65, 67, 72]. We first introduce in Lemma 4.8 an important quantum circuit to perform
permutations, which will be necessary for arithmetic computations in the later parts. We have included quantum
circuit diagrams in this section to visualize the construction of the quantum circuits for their better understanding.
For Lemma 4.9, Lemma 4.11, and Lemma 4.13, we refer the reader to [67] for its quantum circuit diagrams.
Definition 4.6 (Cycle) ([25, Section 1.3, pg 29]) Let n,m ∈ N satisfy 2 ≤ m ≤ n, and let {a1, . . . , am} ⊂
{1, 2, . . . , n} be distinct numbers. A cycle C := (a1a2 · · · am) is a permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n} such
that

σ(j) =


ai+1, if j = ai for 1 ≤ i ≤ m− 1,
a1, if j = am,

j, if j ̸∈ {a1, . . . , am}.
(90)

Proposition 4.7 (Cycle decomposition theorem) ([25, Section 4.1, pg 115]) Let n ∈ N and π : {1, 2, . . . , n} →
{1, 2, . . . , n} be a permutation. Then π can be written as a composition of disjoint cycles9

π = C1C2 · · ·Ck = (a1a2 · · · am1)(am1+1am1+2 · · · am2) · · · (amk−1+1amk−1+2 · · · amk
), (91)

where k is the number of cycles, and {aj : j = 1, . . . ,mk} ⊂ {1, . . . , n} are distinct integers. Moreover, the cycle
decomposition above is unique up to a rearrangement of the cycles and up to a cyclic permutation of the integers
within each cycle.

Lemma 4.8 (Quantum circuit for permutation) 1. Let n ∈ N, and let π : {1, . . . , n} → {1, . . . , n} be a
permutation. Then, there is a quantum circuit Tπ ∈ U(2n) on n qubits such that for every |i⟩n = |i1⟩ · · · |in⟩ ∈
{0, 1}n, it holds that

Tπ |i⟩n = Tπ |i1⟩ · · · |in⟩ =
∣∣iπ(1)

〉
· · ·
∣∣iπ(n)

〉
, (92)

and that Tπ uses at most 2n2 swap gates (c.f. Example 2.11).
See Figure 10 for an example.

2. Let Q ∈ U(2n) be a given quantum circuit such that for every |i⟩n ∈ {0, 1}n,

Q |i⟩n =
∑

j=(j1,...,jn)∈{0,1}n

αi,j |j1⟩ · · · |jn⟩ , (93)

where αi,j ∈ C. Then, TπQ is also a quantum circuit such that for every |i⟩n ∈ {0, 1}n,

TπQ |i⟩n =
∑

j∈{0,1}n

αi,j
∣∣jπ(1)

〉
· · ·
∣∣jπ(n)

〉
. (94)

9We adopt the convention that cycles of length 1 will not be written.
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Proof. Firstly, we show, for any j, k ∈ {1, 2, . . . , n}, j < k, and for any n-qubit |i⟩n = |i1⟩ · · · |in⟩ ∈ {0, 1}n, that
there exists a quantum circuit Tj↔k consisting of 2(k − j)− 1 swap gates (c.f. Example 2.11) where it holds that

Tj↔k : |i⟩n = |i1⟩ · · · |ij−1⟩ |ij⟩ |ij+1⟩ · · · |ik−1⟩ |ik⟩ |ik+1⟩ · · · |in⟩
7→ |i1⟩ · · · |ij−1⟩ |ik⟩ |ij+1⟩ · · · |ik−1⟩ |ij⟩ |ik+1⟩ · · · |in⟩ .

(95)

Denote by S := SWAP ∈ U(22) the swap gate (c.f. Example 2.11) which satisfy for all |i1⟩ |i2⟩ ∈ {0, 1}2 that

S |i1⟩ |i2⟩ = |i2⟩ |i1⟩ . (96)

If k − j = 1, (i.e. k = j + 1) then we simply set

Tj↔j+1 = I⊗j−1
2 ⊗ S ⊗ I⊗n−j−1

2 . (97)

If k − j ≥ 2, then proceeding inductively set

Tj↔k =
k−j−1∏
l=1

(I⊗k−2−l
2 ⊗ S ⊗ I⊗n−k+l

2 )
k−j−1∏
l=0

(I⊗j−1+l
2 ⊗ S ⊗ I⊗n−j−1−l

2 ), (98)

(c.f. Definition 2.14), where we use the usual convention that I⊗0
2 = 1 ∈ C and A ⊗ 1 = A = 1 ⊗ A for any

A ∈ U(2m), m ∈ N. By direct verification, we note that Tj↔k satisfy (95) for all |i⟩n ∈ {0, 1}n and that only
2(k − j)− 1 swap gates were required in its construction.

Secondly, by the cycle decomposition theorem (Proposition 4.7), the given permutation π can be written as a
composition of disjoint cycles (c.f. Definition 4.6, Proposition 4.7) as

π = C1C2 · · ·Ck = (a1a2 · · · am1)(am1+1am1+2 · · · am2) · · · (amk−1+1amk−1+2 · · · amk
), (99)

where k is the number of cycles, and a1, . . . , amk
∈ {1, . . . , n} are distinct numbers. Note by convention that each

of these cycles has length ml ≥ 2. For each of these cycles Cl = (aml−1+1 · · · aml
), l = 1 . . . , k, with m0 := 0 we

construct the quantum circuits TCl
, l = 1, . . . , k, via

TCl
=

ml−1∏
i=ml−1

Tai↔ai+1 = Taml−1↔aml
· · · Taml−1+1↔aml−1+2Taml−1 ↔aml−1+1 , (100)

where the quantum circuits Tai↔ai+1 are constructed based on the first step of the proof (c.f. (95), (97), (98)).
Finally, we construct the quantum circuit Tπ via

Tπ =
k∏
l=1
TCl

= TCk
· · · TC2TC1 . (101)

Thus, (95), (99), (100), and (101) imply that the quantum circuit Tπ satisfies (92). Moreover, we note that the
total number of quantum circuits of the form Tj↔k (c.f. (95)) is mk ≤ n, where each of these quantum circuits
requires 2|ai − ai+1| − 1 ≤ (2n − 1) swap gates. Hence, the total number of swap gates used to construct Tπ is
at most n · (2n− 1) ≤ 2n2. Thus, we have proved the first statement of the lemma. The second statement of the
lemma follows directly from the fact that Tπ is a linear operator.

Lemma 4.9 (Quantum circuit for addition) ([67, Section 3.1, QNMAdd]) Let n1, n2 ∈ N, with n1 ≥ n2.
Then, there is a quantum circuit Q(+) on (n1 + n2 + 1) qubits such that for any a ∈ Fn1,0, b ∈ Fn2,0,

Q(+) : |0⟩ |a⟩n1
|b⟩n2

7→ |a⊞ b⟩n1+1 |b⟩n2
. (102)

The quantum circuit Q(+) requires n2
1 + 3n1 + 18 + 1

2 (n2(2n1 − n2 + 3)) elementary gates.

Corollary 4.10 (Quantum circuit for addition with fractional part) Let n1, n2,m1,m2 ∈ N, with n1 +m1 ≥
n2 +m2. Let n = n1 + n2, and m = m1 +m2. Then, there is a quantum circuit Q̃(+) on (n+m+ 1) qubits such
that for any a ∈ Fn1,m1 , b ∈ Fn2,m2 ,

Q̃(+) : |a⟩n1+m1
|b⟩n2+m2

|0⟩ 7→ |b⟩n2+m2
|a⊞ b⟩n1+m1+1 . (103)

The quantum circuit Q̃(+) requires at most 29(n+m+ 1)2 elementary gates. See Figure 11 for the circuit diagram.

Proof. By Lemma 4.8, there is a quantum circuit Tπ1 with at most 2(n1 + m1 + n2 + m2 + 1)2 = 2(n + m + 1)2

swap gates satisfying
Tπ1 : |a⟩n1+m1

|b⟩n2+m2
|0⟩ 7→ |0⟩ |a⟩n1+m1

|b⟩n2+m2
. (104)
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|a⟩n1+m1

Tπ1 Q(+) Tπ2

|b⟩n2+m2

|b⟩n2+m2
|a ⊞ b⟩n1+m1+1

|0⟩

|0⟩

|a⊞ b⟩
|a⟩n1+m1

|b⟩n2+m2
|b⟩n2+m2

Figure 11: Circuit diagram for Q̃(+) in Corollary 4.10.

Note that by Lemma 4.4, we can extend the addition operation ⊞ : Fn1+m1,0×Fn2+m2,0 → Fn+m+1,0 to ⊞ : Fn1,m1×
Fn2,m2 → Fñ+1,m̃ where ñ = max{n1, n2} and m̃ = max{m1,m2}. This, the hypothesis that n1 +m1 ≥ n2 +m2,
and Lemma 4.9 (with n1 ← n1 + m1, n2 ← n2 + m2 in the notation of Lemma 4.9) imply that there exists a
quantum circuit Q(+) such that for any a ∈ Fn1,m1 , b ∈ Fn2,m2 that

Q(+) : |0⟩ |a⟩n1+m1
|b⟩n2+m2

7→ |a⊞ b⟩n1+m1+1 |b⟩n2+m2
, (105)

and that the number of elementary gates required to construct Q(+) is

(n1 +m1)2 + 3(n1 +m1) + 18 + 1
2 (n2 +m2)(2(n1 +m1)− (n2 +m2) + 3). (106)

Moreover, by Lemma 4.8, there is a quantum circuit Tπ2 such that

|a⊞ b⟩n1+m1+1 |b⟩n2+m2
7→ |b⟩n2+m2

|a⊞ b⟩n1+m1+1 , (107)

which uses at most 2(n+m+ 1)2 swap gates.
Define the quantum circuit Q̃(+) := Tπ2Q(+)Tπ1 . Observe that (104), (105), and (107) shows that Q̃(+) satisfies

(103), and that the total number of elementary gates required to construct Q̃(+) is at most

2(n+m+ 1)2 + (n1 +m1)2 + 3(n1 +m1) + 18 + 1
2 (n2 +m2)(2(n1 +m1)− (n2 +m2) + 3) + 2(n+m+ 1)2

≤ 2(n+m+ 1)2 + (n1 +m1)2 + 3(n1 +m1) + 18 + (n+m+ 1)2 + 3
2(n+m+ 1)2 + 2(n+m+ 1)2

≤ (2 + 1 + 3 + 18 + 1 + 2 + 2)(n+m+ 1)2

= 29(n+m+ 1)2.

(108)

Lemma 4.11 (Quantum circuit for multiplication) ([67, Section 3.5, QNMMul]) Let n1, n2 ∈ N, with n1 ≥ n2.
Then, there is a quantum circuit Q(×) on (2n1 + 3n2 + 3) qubits such that for any a ∈ Fn1,0, b ∈ Fn2,0,

Q(×) : |0⟩ |0⟩n1+n2
|a⟩n1

|b⟩n2
|0⟩n2

|0⟩2 7→ |anc⟩ |a� b⟩n1+n2
|a⟩n1

|b⟩n2
|anc⟩n2+2 . (109)

The quantum circuit Q(×) requires ( 1
2 (5n2

1 + n1) + 4n2
2 + 4n1n2 + 6n2 + 7) elementary gates.

Corollary 4.12 (Quantum circuit for multiplication with fractional part) Let n1, n2,m1,m2 ∈ N, with
n1 +m1 ≥ n2 +m2. Let n := n1 + n2 and m := m1 +m2. Then, there is a quantum circuit Q̃(×) on (2n+ 2m+
n2 +m2 + 3) qubits such that for any a ∈ Fn1,m1 , b ∈ Fn2,m2 ,

Q̃(×) : |a⟩n1+m1
|b⟩n2+m2

|0⟩n+m |0⟩n2+m2+3 7→ |a⟩n1+m1
|b⟩n2+m2

|a� b⟩n+m |anc⟩n2+m2+3 . (110)

The quantum circuit Q̃(×) requires at most 61(n+m+ 1)2 elementary gates. See Figure 12 for the circuit diagram.

Proof. By Lemma 4.8, there is a quantum circuit Tπ with at most 2(2n+ 2m+n2 +m2 + 3)2 swap gates satisfying
for any a ∈ Fn1,m1 , b ∈ Fn2,m2 that

Tπ : |a⟩n1+m1
|b⟩n2+m2

|0⟩n+m |0⟩n2+m2+3 7→ |0⟩ |0⟩n+m |a⟩n1+m1
|b⟩n2+m2

|0⟩n2+m2
|0⟩2 . (111)

Note that by Lemma 4.5, we can extend the multiplication operation � : Fn1+m1,0 × Fn2+m2,0 → Fn+m,0 to
� : Fn1,m1 × Fn2,m2 → Fn,m. This, the condition that n1 + m1 ≥ n2 + m2, and Lemma 4.11 (with n1 ←
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|a⟩n1+m1

Tπ1 Q(×) Tπ2

|a⟩n1+m1

|b⟩n2+m2
|b⟩n2+m2

|0⟩n+m |a� b⟩n+m

|0⟩n2+m2+3 |anc⟩n2+m2+3

|0⟩ |anc⟩

|0⟩n+m |a� b⟩n+m

|a⟩n1+m1
|a⟩n1+m1

|b⟩n2+m2
|b⟩n2+m2

|0⟩n2+m2
|anc⟩n2+m2+2

|0⟩2

Figure 12: Circuit diagram for Q̃(×) in Corollary 4.12.

n1 +m1, n2 ← n2 +m2 in the notation of Lemma 4.11) imply that there exists a quantum circuit Q(×) such that
for any a ∈ Fn1,m1 , b ∈ Fn2,m2

Q(×) : |0⟩ |0⟩n+m |a⟩n1+m1
|b⟩n2+m2

|0⟩n2+m2
|0⟩2 7→ |anc⟩ |a� b⟩n+m |a⟩n1+m1

|b⟩n2+m2
|anc⟩n2+m2+2 , (112)

and that the number of elementary gates required to construct Q(×) is at most

(1
2(5(n1 +m1)2 + (n1 +m1)) + 4(n2 +m2)2 + 4(n1 +m1)(n2 +m2) + 6(n2 +m2) + 7). (113)

By another application of Lemma 4.8, there is a quantum circuit Tπ′ with at most 2(2n+ 2m+n2 +m2 + 3)2 swap
gates satisfying

Tπ′ : |anc⟩ |a� b⟩n+m |a⟩n1+m1
|b⟩n2+m2

|anc⟩n2+m2+2 7→ |a� b⟩n+m |a⟩n1+m1
|b⟩n2+m2

|anc⟩n2+m2+3 . (114)

We define the quantum circuit Q̃(×) = Tπ′Q(×)Tπ. Hence, (111), (112), and (114) imply that the quantum circuit
Q̃(×) satisfy (110) for all a ∈ Fn1,m1 , b ∈ Fn2,m2 . Moreover, the number of elementary gates required to construct
Q̃(×) is at most

2(2n+ 2m+ n2 +m2 + 3)2 + 1
2(5(n1 +m1)2 + (n1 +m1)) + 4(n2 +m2)2 + 4(n1 +m1)(n2 +m2)

+ 6(n2 +m2) + 7 + 2(2n+ 2m+ n2 +m2 + 3)2

≤ 2 · 32(n+m+ 1)2 + 5
2(n+m+ 1)2 + 1

2(n+m+ 1) + 4(n+m+ 1)2 + 4(n+m+ 1)2

+ 6(n+m+ 1) + 7(n+m+ 1) + 2 · 32(n+m+ 1)2

≤ (18 + 3 + 1 + 4 + 4 + 6 + 7 + 18)(n+m+ 1)2

= 61(n+m+ 1)2.

(115)

Lemma 4.13 (Quantum circuit for integer comparison) ([67, Section 3.4, QComp]) Let n1, n2 ∈ N, with
n1 ≥ n2. Let n = n1 + n2. Then, there is a quantum circuit Q(comp) on (n1 + n2 + 4) qubits such that for any
a ∈ Fn1,0, b ∈ Fn2,0,

Q(comp) : |0⟩ |a⟩n1
|b⟩n2

|0⟩ |0⟩ |0⟩ 7→ |a⊟ b⟩n1+1 |b⟩n2
|c1⟩ |c2⟩ |c3⟩ , (116)

where10

|c1⟩ |c2⟩ |c3⟩ =


|1⟩ |0⟩ |0⟩ , if Dn1,0(a) > Dn2,0(b),
|0⟩ |1⟩ |0⟩ , if Dn1,0(a) < Dn2,0(b),
|0⟩ |0⟩ |1⟩ , if Dn1,0(a) = Dn2,0(b).

(117)

The quantum circuit Q(comp) uses (n2
1 + 3n1 + 41 + n2(2n1 − n2 + 3)/2) elementary gates.

10The notation a ⊟ b here refers to subtraction for a pair of two complement numbers, i.e., for any a, b ∈ Fn,m, a ⊟ b ∈ Fn+1,m is
defined by En+1,m(Dn,m(a) − Dn,m(b)).

26



|a⟩n1+m1

Tπ

Q(+)

Tπ

|a⟩n1+m1

Q(comp)

|b⟩n2+m2
|b⟩n2+m2

|0⟩ |c1⟩

|0⟩ |c2⟩

|0⟩ |c3⟩

|0⟩2 |anc⟩2

|0⟩

|(a⊟ b) ⊞ b⟩
|0⟩

|a⊟ b⟩n1+m1+1 |a⊟ b⟩

|a⟩n1+m1

|b⟩n2+m2
|b⟩ |b⟩

|b⟩n2+m2

|c1⟩

|0⟩ |c2⟩

|0⟩ |c3⟩

Figure 13: Circuit diagram for Q̃(comp) in Corollary 4.14.

Corollary 4.14 (Quantum circuit for fractional comparison) Let n1, n2,m1,m2 ∈ N, with n1+m1 ≥ n2+m2.
Let n = n1 + n2, and m = m1 +m2. Then, there is a quantum circuit Q̃(comp) on (n+m+ 5) qubits such that for
any a ∈ Fn1,m1 , b ∈ Fn2,m2 ,

Q̃(comp) : |a⟩n1+m1
|b⟩n2+m2

|0⟩5 7→ |a⟩n1+m1
|b⟩n2+m2

|c1⟩ |c2⟩ |c3⟩ |anc⟩2 , (118)

where

|c1⟩ |c2⟩ |c3⟩ =


|1⟩ |0⟩ |0⟩ , if Dn1,m1(a) > Dn2,m2(b),
|0⟩ |1⟩ |0⟩ , if Dn1,m1(a) < Dn2,m2(b),
|0⟩ |0⟩ |1⟩ , if Dn1,m1(a) = Dn2,m2(b).

(119)

The quantum circuit Q̃(comp) requires at most 175(n + m + 1)2 elementary gates. See Figure 13 for the circuit
diagram.

Proof. The construction of the quantum circuit Q̃(comp) consists of the following steps.

1. We first employ the permutation circuit Tπ from Lemma 4.8 so that

Tπ : |a⟩n1+m1
|b⟩n2+m2

|0⟩5 7→ |0⟩ |0⟩ |a⟩n1+m1
|b⟩n2+m2

|0⟩ |0⟩ |0⟩ . (120)

In this step, the number of elementary gates used is at most 2(n+m+ 5)2.

2. Next, we use the comparison quantum circuit Q(comp) from Lemma 4.13 (with n1 ← n1 +m1, n2 ← n2 +m2
in the notation of Lemma 4.13) to obtain

I2 ⊗Q(comp) : |0⟩ |0⟩ |a⟩n1+m1
|b⟩n2+m2

|0⟩ |0⟩ |0⟩ 7→ |0⟩ |a⊟ b⟩n1+m1+1 |b⟩n2+m2
|c1⟩ |c2⟩ |c3⟩ , (121)

where |c1⟩ |c2⟩ |c3⟩ satisfy (119). In this step, the number of elementary gates used is

(n1 +m1)2 + 3(n1 +m1) + 41 + (n2 +m2)
(
2(n1 +m1)− (n2 +m2) + 3

)
/2.

3. We use the adder quantum circuit Q(+) from Lemma 4.9 (with n1 ← n1 + m1 + 1, n2 ← n2 + m2 in the
notation of Lemma 4.9) to obtain

Q(+) ⊗ I⊗3
2 : |0⟩ |a⊟ b⟩n1+m1+1 |b⟩n2+m2

|c1⟩ |c2⟩ |c3⟩ 7→ |(a⊟ b) ⊞ b⟩n1+m1+2 |b⟩n2+m2
|c1⟩ |c2⟩ |c3⟩ . (122)

In this step, the number of elementary gates used is

(n1 +m1 + 1)2 + 3(n1 +m1 + 1) + 18 + 1
2
(
(n2 +m2)(2(n1 +m1 + 1)− (n2 +m2) + 3)

)
.

4. As elements of Fn1+2,m2 , it can be directly checked that

(a⊟ b) ⊞ b =
{

((1, 1, an1−1, . . . , a0), (a−1, . . . , a−m1)) if Dn1,m1(a) < 0,
((0, 0, an1−1, . . . , a0), (a−1, . . . , a−m1)) if Dn1,m1(a) ≥ 0.
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|c⟩ |c⟩

|0⟩ Ry( θ2 ) Ry( θ2 ) (Ry(θ))c |0⟩

Figure 14: Circuit diagram for CRy(θ) in Lemma 4.15.

In the above expression, we treat the leftmost two bits as ancilla qubits and rewrite |(a⊟ b) ⊞ b⟩n1+m1+2 =
|anc⟩2 |a⟩n1+m1

. We apply another permutation circuit Tπ from Lemma 4.8 to obtain

Tπ : |(a⊟ b) ⊞ b⟩n1+m1+2 |b⟩n2+m2
|c1⟩ |c2⟩ |c3⟩ 7→ |a⟩n1+m1

|b⟩n2+m2
|c1⟩ |c2⟩ |c3⟩ |anc⟩2 . (123)

In this step, the number of elementary gates used is at most 2(n+m+ 5)2.

The desired quantum circuit Q̃(comp) is constructed from the above steps. We note that the number of elementary
gates used to construct Q̃(comp) is at most

2(n+m+ 5)2 + [(n1 +m1)2 + 3(n1 +m1) + 41 + (n2 +m2)(2(n1 +m1)− (n2 +m2) + 3)/2]

+ [(n1 +m1 + 1)2 + 3(n1 +m1 + 1) + 18 + 1
2
(
(n2 +m2)(2(n1 +m1 + 1)− (n2 +m2) + 3)

)
] + 2(n+m+ 5)2

≤ 2 · 52(n+m+ 1)2 + [(n+m+ 1)2 + 3(n+m+ 1) + 41 + (n+m+ 1)2 + 3
2(n+m+ 1)]

+ [(n+m+ 1)2 + 3(n+m+ 1) + 18 + (n+m+ 1)2 + 3
2(n+m+ 1)2 + 2(n+m+ 1)2] + 2 · 52(n+m+ 1)2

≤ (50 + 48 + 27 + 50)(n+m+ 1)2

= 175(n+m+ 1)2.

(124)

Lemma 4.15 (Controlled Y -rotations) For any θ ∈ (0, 4π), there is a controlled Y -rotation gate acting on two
qubits that performs the following operation

CRy(θ) : |c⟩ |0⟩ 7→ |c⟩ (Ry(θ))c |0⟩ =
{
|c⟩ |0⟩ , if c = 0,
|c⟩ (cos(θ/2) |0⟩+ sin(θ/2) |1⟩), if c = 1.

(125)

The quantum circuit to construct CRy(θ) requires two Ry(θ/2) gates (see Example 2.9) and two CNOT gates (see
Example 2.10). See Figure 14 for the circuit diagram.

Proof. The quantum circuit can be constructed by the following definition

CRy(θ) = (I2 ⊗Ry(θ/2))(CNOT)(I2 ⊗Ry(θ/2))(CNOT). (126)

4.3 Distribution loading
The task of loading an arbitrary n-qubit state on a quantum computer is known generally to be a hard problem,
as highlighted, e.g., in [43]. However, in some cases, the problem of loading states representing certain probability
distributions on a quantum computer have been shown to be polynomially tractable. Grover and Rudolph have
shown an efficient method to load a discrete approximation of any log-concave probability distributions [35]. Re-
cently, Zoufal et al. have employed the so-called quantum Generative Adversarial Networks (qGANs) for learning
and loading of probability distributions such as the uniform, normal, or log-normal distributions, including their
multivariate versions [76]. For these distributions, it has been shown empirically that the qGANs can well ap-
proximate the truncated and discretized distributions, and the gate complexity of the qGANs circuits scale only
polynomially in the number of input qubits. In [15], Chakrabarti et. al. constructed a quantum circuit for upload-
ing the discretized multivariate log-normal distributions, where they used the Variational Quantum Eigensolvers
(VQE) approach [56] to upload quantum circuits for approximating the cumulative log-return process Rit, defined in
(3). It was estimated that loading the discretized multivariate log-normal distribution requires O(Ld2n log2(ε−1))
gates, where L ∈ N is the depth of each variational quantum circuit for approximating the Gaussian distribution
and n is the number of qubits used in each quantum circuit for approximating the Gaussian distribution, see [15,
Appendix E]. Justified by the above examples in the literature, we make the following assumption.
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Assumption 4.16 (Loading of discretized multivariate log-normal distribution) Let n,m ∈ N, and let
T > 0. For every d ∈ N and (t,x) ∈ [0, T ) × Rd+ let pd(·, T ;x, t) : Rd+ → R+ be the log-normal transition density
given by (4). Then, we assume that there exists a constant C3 ∈ [1,∞) such that for every d ∈ N and ε > 0 there
exists a quantum circuit Pd,ε on d(n+m) qubits such that the number of elementary gates used to construct Pd,ε
is at most

C3d
C3(n+m)C3(log2(ε−1))C3 (127)

and that Pd,ε satisfies
Pd,ε |0⟩d(n+m) =

∑
i=(i1,...,id)∈Fd

n,m,+

√
p̃i |i1⟩n+m · · · |id⟩n+m , (128)

with coefficients p̃i ∈ [0, 1] satisfying ∑
i∈Fd

n,m,+

p̃i = 1 (129)

and ∑
i∈Fd

n,m,+

∣∣p̃i − γ−1pi,m
∣∣ ≤ ε, (130)

where

pi,m :=
∫
Qi,m

pd(y, T ;x, t) dy, Qi,m := [Dn,m(i1),Dn,m(i1) + 2−m)× · · · × [Dn,m(id),Dn,m(id) + 2−m), (131)

and
γ :=

∑
i∈Fd

n,m,+

pi,m ∈ (0, 1) (132)

is a normalization constant.
Remark 4.17 In case one uses the quantum circuit constructed in [15, Appendix E] to upload the discretized
multivariate log-normal distribution, the corresponding constant C3 defined in Assumption 4.16 can be chosen to
be C3 := max{2, L}, where L ∈ N is the depth of each variational quantum circuit involved in [15, Appendix E]
for approximating the involved Gaussian distributions; we refer to [15, Appendix E] for the precise construction of
their quantum circuit.
Remark 4.18 For general probability distributions, loading of its discretized probability density function (PDFs)
remains one of the main problems in quantum computing. In the quantum computing literature, this step is also
referred to as quantum state preparation, and it is an important initialization step for many quantum algorithms
for pricing options. Recently, there has been new approaches to the quantum state preparation problem in the
literature, that are not related to the qGAN or VQE methods reviewed above. In [40], the authors considered the
quantum state preparation problem for probability distribution with smooth differentiable density functions, such as
the normal distribution, where they proposed an algorithm based on the matrix product state (MPS) approximation
method, and provide an error analysis and numerical convergence for the single-variate normal distribution. In
[58], the author proposed a quantum binomial tree algorithm to approximate the option prices in a discrete time
setting. We refer the reader to [16] for a similar random walk based algorithm, and to [71] for a hybrid classical
quantum approach based on deconvolution methods for the quantum state preparation problem. However, to the
best of our knowledge, there seems not to be any result in the literature that provides rigorous upper bounds on the
quantum circuit complexities and as well as convergence for general multi-variate distributions.

4.4 Loading CPWA payoff functions
The goal of this section is to upload (an approximation of) the payoff function h : Rd → R given in (8) to a quantum
circuit. To that end, let K ∈ N be the number of component functions of the payoff function h given in (8), and
for k = 1, . . . ,K, let hk : [0,M ]d → R be (up to the sign) the corresponding k-th component of h given by

hk(x) = max{ak,l · x + bk,l : l = 1, . . . , Ik}, (133)

where ak,l ∈ Rd, bk,l ∈ R for l = 1, . . . , Ik. The parameters (ak,l, bk,l) are approximated by the two’s complement
method with binary strings of a suitable length. These binary strings are loaded on a qubit register using quantum
circuits with X-gates, see Lemma 4.19. Using the arithmetic quantum circuits that we have constructed in the
Section 4.2, we construct a quantum circuit which computes the two’s complement-discretized version of the payoff
function hk(x). The discrete payoff function is then loaded by a controlled Y -rotation circuit, see Lemma 4.23 and
Proposition 4.24. We have also included quantum circuit diagrams in this section for the ease of understanding of
the involved quantum circuits.
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|i1⟩n1+m1

Tπ
⊗d

k=1 Q(k)
(×)

Tπ

|i1⟩n1+m1

|i2⟩n1+m1
|i2⟩n1+m1

...
|id⟩n1+m1

|id⟩n1+m1

|0⟩(d+1)(n2+m2)

Xa,b

Q(+) Tπ

∣∣(⊞dl=1 al � il
)
⊞ b
〉
n+m+d

|0⟩d(n+m)

|0⟩d(n2+m2+3)

|0⟩d |anc⟩

Figure 15: Circuit diagram for Qd,n,m
+ in Lemma 4.19.

Lemma 4.19 (Quantum circuit for affine sums) Let d, n1, n2 ∈ N, m1,m2 ∈ N0. Let n := n1 + n2, and
m := m1 +m2. Let a1, . . . , ad, b ∈ Fn2,m2 . Then, there is a quantum circuit Qd,n,m+ on N qubits, where

N := d(n1 +m1) + (d+ 1)(n2 +m2) + d(n+m) + d(n2 +m2 + 3) + d (134)

such that for any i1, . . . , id ∈ Fn1,m1 ,

Qd,n,m+ : |i1⟩n1+m1
· · · |id⟩n1+m1

|0⟩(d+1)(n2+m2) |0⟩d(n+m) |0⟩d(n2+m2+3) |0⟩d

7→ |i1⟩n1+m1
· · · |id⟩n1+m1

∣∣∣∣( d

⊞
k=1

(ak � ik)) ⊞ b

〉
n+m+d

|anc⟩p ,
(135)

with p := d(2n2 + 2m2 + 3) + (n2 + m2) + (d − 1)(n + m), and where (⊞dk=1(ak � ik)) ⊞ b ∈ Fd+n,m is the two’s
complement binary string representing the affine sum(

d∑
k=1

(Dn2,m2(ak) ·Dn1,m1(ik))
)

+ Dn2,m2(b) ∈ Kn+d,m, (136)

(c.f. Definition 4.2). The quantum circuit Qd,n,m+ uses at most 563d3(n+m+ 1)2 elementary gates. See Figure 15
for the circuit diagram.

Proof. The construction of this circuit involves the following steps:

1. We first load the given two’s complement binary strings a1, . . . , ad, b ∈ Fn2,m2 on the qubit register |0⟩(d+1)(n2+m2) =
|0⟩n2+m2

· · · |0⟩n2+m2
. To that end, we use the Pauli X gate (see Example 2.6) to flip the bit 0 to 1 according

the binary strings a1, . . . , ad, b if necessary, to obtain the state

Xa,b : |0⟩n2+m2
· · · |0⟩n2+m2

7→ |a1⟩n2+m2
· · · |ad⟩n2+m2

|b⟩n2+m2
, (137)

where we define

Xa,b :=
(

d⊗
k=1

n2−1⊗
l=−m2

Xak(l)

)
⊗

(
n2−1⊗
l=−m2

Xb(l)

)
, (138)

given the binary strings ak = ((ak(l))n2−1
l=0 , (ak(l))−1

l=−m2
) = ((ak(n2 − 1), . . . , ak(0)), (ak(−1), . . . , ak(−m2)))

∈ Fn2,m2 and b = ((b(n2 − 1), . . . , b(0)), (b(−1), . . . , b(−m2))) ∈ Fn2,m2 . Note that we use the convention of
X0 = I2 for any unitary matrix X. We define the quantum circuit

X̃a,b := I
⊗d(n1+m1)
2 ⊗Xa,b ⊗ I⊗(d(n+m)+d(n2+m2+3)+d)

2 . (139)

Hence, for any i1, . . . , id ∈ Fn1,m1 , we have

X̃a,b : |i1⟩n1+m1
· · · |id⟩n1+m1

|0⟩(d+1)(n2+m2) |0⟩d(n+m) |0⟩d(n2+m2+3) |0⟩d
7→ |i1⟩n1+m1

· · · |id⟩n1+m1
|a1⟩n2+m2

· · · |ad⟩n2+m2
|b⟩n2+m2

|0⟩d(n+m) |0⟩d(n2+m2+3) |0⟩d ,
(140)

and the number of Pauli X gates used to construct the quantum circuit X̃a,b is at most

(d+ 1)(n2 +m2). (141)
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2. Next, we apply the permutation quantum circuit Tπ from Lemma 4.8 to prepare for the upcoming d multi-
plications so that

Tπ : |i1⟩n1+m1
· · · |id⟩n1+m1

|a1⟩n2+m2
· · · |ad⟩n2+m2

|b⟩n2+m2
|0⟩d(n+m) |0⟩d(n2+m2+3) |0⟩d

7→
d⊗
k=1

(
|ik⟩n1+m1

|ak⟩n2+m2
|0⟩n+m |0⟩n2+m2+3

)
⊗ |b⟩n2+m2

|0⟩d

= |i1⟩n1+m1
|a1⟩n2+m2

|0⟩n+m |0⟩n2+m2+3 · · · |id⟩n1+m1
|ad⟩n2+m2

|0⟩n+m |0⟩n2+m2+3 |b⟩n2+m2
|0⟩d .

(142)

The number of swap gates used to construct Tπ in this step is at most 2N2.

3. Next, for each k = 1, . . . , d, we apply the multiplication quantum circuit Q(k)
(×) := Q̃(×) from Corollary 4.12

(with n1 ← n1, n2 ← n2,m1 ← m1,m2 ← m2, a ← ik, b ← ak in the notation of Corollary 4.12) on each
component (|ik⟩n1+m1

|ak⟩n2+m2
|0⟩n+m |0⟩n2+m2+3) such that

d⊗
k=1
Q(k)

(×) :
d⊗
k=1

(
|ik⟩n1+m1

|ak⟩n2+m2
|0⟩n+m |0⟩n2+m2+3

)
⊗ |b⟩n2+m2

|0⟩d

7→
d⊗
k=1

(
|ik⟩n1+m1

|ak⟩n2+m2
|ak � ik⟩n+m |anc⟩n2+m2+3

)
⊗ |b⟩n2+m2

|0⟩d

= |i1⟩n1+m1
|a1⟩n2+m2

|a1 � i1⟩n+m |anc⟩n2+m2+3 · · ·
· · · |id⟩n1+m1

|ad⟩n2+m2
|ad � id⟩n+m |anc⟩n2+m2+3 |b⟩n2+m2

|0⟩d .

(143)

The number of elementary gates used in this step is at most

d · 61(n+m+ 1)2. (144)

4. We apply the permutation quantum circuit Tπ from Lemma 4.8 to prepare for the upcoming d additions so
that

Tπ :
d⊗
k=1

(
|ik⟩n1+m1

|ak⟩n2+m2
|ak � ik⟩n+m |anc⟩n2+m2+3

)
⊗ |b⟩n2+m2

|0⟩d

7→ |i1⟩n1+m1
· · · |id⟩n1+m1

|a1 � i1⟩n+m |a2 � i2⟩n+m |0⟩ |a3 � i3⟩n+m |0⟩ · · ·
· · · |ad � id⟩n+m |0⟩ |b⟩n2+m2

|0⟩ |anc⟩d(2n2+2m2+3) .

(145)

Here, we consolidate the qubits |a1⟩n2+m2
, . . . , |ad⟩n2+m2

in the ancilla qubit placeholder |anc⟩d(2n2+2m2+3)
as we do not need them in the later computations. The number of elementary gates used for this step is at
most 2N2.

5. We perform the following addition inductively on the sums for k = 1, . . . , d− 1

⊞ : Fn+k−1,m × Fn,m → Fn+k,m,

(
k

⊞
l=1

(al � il), (ak+1 � ik+1)
)
7→

k+1
⊞
l=1

(al � il), (146)

and the addition

⊞ : Fn+d−1,m × Fn2,m2 → Fn+d,m,

(
d
⊞
l=1

(al � il), b
)
7→ (

d
⊞
l=1

(al � il)) ⊞ b, (147)

(c.f. Lemma 4.4 for definition of ⊞). That is, we apply the quantum circuit Q(k)
(+) := Q(+) from Corollary

4.10 inductively for k = 1, . . . , d − 1 (with n1 ← n + k − 1, n2 ← n, m1 ← m, m2 ← m, a ←
k
⊞
l=1

(al � il),

b ← ak+1 � ik+1 in the notation of Corollary 4.10), and we apply the quantum circuit Q(b)
(+) := Q(+) (with

n1 ← n+ d− 1, n2 ← n2, m1 ← m, m2 ← m2, a ←
d
⊞
l=1

(al � il), b ← b in the notation of Corollary 4.10) so
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that

|i1⟩n1+m1
· · · |id⟩n1+m1

|a1 � i1⟩n+m |a2 � i2⟩n+m |0⟩ |a3 � i3⟩n+m |0⟩ · · ·
· · · |ad � id⟩n+m |0⟩ |b⟩n2+m2

|0⟩ |anc⟩d(2n2+2m2+3)

Q(1)
(+)7−−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|a2 � i2⟩n+m

∣∣∣∣ 2
⊞
l=1

al � il

〉
n+m+1

|a3 � i3⟩n+m |0⟩ · · ·

· · · |ad � id⟩n+m |0⟩ |b⟩n2+m2
|0⟩ |anc⟩d(2n2+2m2+3)

Q(2)
(+)7−−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|a2 � i2⟩n+m |a3 � i3⟩n+m

∣∣∣∣ 3
⊞
l=1

al � il

〉
n+m+2

· · ·

· · · |ad � id⟩n+m |0⟩ |b⟩n2+m2
|0⟩ |anc⟩d(2n2+2m2+3)

...
...

Q(d−1)
(+)7−−−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|a2 � i2⟩n+m |a3 � i3⟩n+m · · ·

· · · |ad � id⟩n+m

∣∣∣∣ d⊞l=1
al � il

〉
n+m+d−1

|b⟩n2+m2
|0⟩ |anc⟩d(2n2+2m2+3)

Q(b)
(+)7−−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|a2 � i2⟩n+m |a3 � i3⟩n+m · · ·

· · · |ad � id⟩n+m |b⟩n2+m2

∣∣∣∣( d

⊞
l=1

al � il) ⊞ b

〉
n+m+d

|anc⟩d(2n2+2m2+3) .

(148)

The number of elementary gates used for this step is at most

d−1∑
k=1

29[(n+m+ k − 1) + (n+m) + 1]2 + 29[(n+m+ d− 1) + (n2 +m2) + 1]2

≤ 29d · 4d2(n+m+ 1)2

= 116d3(n+m+ 1)2,

(149)

where we use the fact that [(n+m+ k− 1) + (n+m) + 1]2 ≤ (2n+ 2m+ d)2 ≤ 4d2(n+m+ 1)2 when k ≤ d.

6. We consolidate the ancillary qubits by combining the qubits (labeled |a2 � i2⟩ , . . . , |ad � id⟩ , |b⟩) under ancilla
qubits |anc⟩⋆. The permutation circuit Tπ from Lemma 4.8 performs the following operation

Tπ : |i1⟩n1+m1
· · · |id⟩n1+m1

|a2 � i2⟩n+m · · · |ad � id⟩n+m |b⟩n2+m2

∣∣∣∣( d

⊞
l=1

al � il) ⊞ b

〉
n+m+d

|anc⟩d(2n2+2m2+3)

7→ |i1⟩n1+m1
· · · |id⟩n1+m1

∣∣∣∣( d
⊞
l=1

al � il) ⊞ b

〉
n+m+d

|anc⟩d(2n2+2m2+3)+(n2+m2)+(d−1)(n+m) .

(150)

The number of elementary gates used for this step is at most 2N2.

The resulting quantum circuit Qd,n,m+ is a composition of the quantum circuits from each of the above steps. To
deduce its gate complexity, we sum up the number of elementary gates used in each step. We note from the
definition of n,m ∈ N and the definition of N in (134) that

N := d(n1 +m1) + (d+ 1)(n2 +m2) + d(n+m) + d(n2 +m2 + 3) + d

≤ [d+ 2d+ d+ 3d+ d](n+m+ 1)
= 8d(n+m+ 1).

(151)

Summing the number of elementary gates used in each step, we find that the number of elementary gates used in
total is at most

(d+ 1)(n2 +m2) + 2N2 + 61d(n+m+ 1)2 + 2N2 + 116d3(n+m+ 1)2 + 2N2

≤ 2d(n+m+ 1) + 3 · 2(8d(n+m+ 1))2 + 61d(n+m+ 1)2 + 116d3(n+m+ 1)2

≤ (2 + 3 · 2 · 82 + 61 + 116)d3(n+m+ 1)2

= 563d3(n+m+ 1)2.

(152)
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|a⟩n+m

Q̃(comp)
Xc1,a Xc2,b Xc3,b

|a⟩n+m

|b⟩n+m |b⟩n+m

|0⟩4 |anc⟩4

|0⟩n+m |Mn,m(a, b)⟩n+m

Figure 16: Circuit diagram for Qn,m
(max) in Lemma 4.20.

Lemma 4.20 (Quantum circuit for maximum of two numbers) Let n,m ∈ N, and let Mn,m : Fn,m×Fn,m →
Fn,m be a function defined by

Mn,m(a, b) := En,m(max{Dn,m(a),Dn,m(b)}), ∀a, b ∈ Fn,m. (153)

(c.f. Definition 4.2). Then, there is a quantum circuit Qn,m(max) on 3(n+m) + 5 qubits such that for any a, b ∈ Fn,m,

Qn,m(max) : |a⟩n+m |b⟩n+m |0⟩5 |0⟩n+m 7→ |a⟩n+m |b⟩n+m |anc⟩5 |Mn,m(a, b)⟩n+m , (154)

which uses at most 1045(n+m+ 1)3 elementary gates. See Figure 16 for the circuit diagram.

Proof. The construction of this quantum circuit involves the following steps:

1. We use the comparison quantum circuit Q̃(comp) in Corollary 4.14 (with n1 ← n, n2 ← n, m1 ← m,m2 ← m,
a← a and b← b in the notation of Corollary 4.14) to obtain

Q̃(comp) ⊗ I⊗n+m
2 : |a⟩n+m |b⟩n+m |0⟩5 |0⟩n+m 7→ |a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2 |0⟩n+m , (155)

where

|c1⟩ |c2⟩ |c3⟩ =


|1⟩ |0⟩ |0⟩ , if Dn,m(a) > Dn,m(b),
|0⟩ |1⟩ |0⟩ , if Dn,m(a) < Dn,m(b),
|0⟩ |0⟩ |1⟩ , if Dn,m(a) = Dn,m(b).

(156)

The number of gates used in this step is at most 175(2n+ 2m+ 1)2 elementary gates.

2. We apply (n + m) Toffoli gate (circuits) CCNOT defined in Example 2.18 on the control qubit |c1⟩, target
qubits |a⟩n+m, and output qubits |0⟩n+m. More precisely, for a = ((an−1, . . . , a0), (a−1, . . . , a−m)) ∈ Fn,m,
we apply for each j = −m, . . . , n− 1 a Toffoli gate Cc1,aj = CCNOT (with a← c1, b← aj , and c← 0 in the
notation of Example 2.18)

Cc1,aj
: |c1⟩ |aj⟩ |0⟩ 7→ |c1⟩ |aj⟩Xc1aj |0⟩ =

{
|c1⟩ |aj⟩ |1⟩ , if c1 = 1 and aj = 1,
|c1⟩ |aj⟩ |0⟩ , otherwise.

(157)

For each j = −m, . . . , n− 1, we apply the permutation quantum circuit Tj before and after each Toffoli gate
Cc1,aj

. We define the quantum circuit Xc1,j by

Xc1,j := Tj
(
I⊗n+m−1

2 ⊗ I⊗n+m
2 ⊗ I⊗4

2 ⊗ I⊗n−j−1
2 ⊗ Cc1,aj

⊗ I⊗m+j
2

)
Tj , (158)

which computes from (155) the following

|a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2 |0⟩n+m
Tj7−→
∣∣âj〉

n+m−1 |b⟩n+m |c2⟩ |c3⟩ |anc⟩2 |0⟩n−j−1 |c1⟩ |aj⟩ |0⟩ |0⟩m+j
Cc1,aj7−−−−→

∣∣âj〉
n+m−1 |b⟩n+m |c2⟩ |c3⟩ |anc⟩2 |0⟩n−j−1 |c1⟩ |aj⟩Xc1aj |0⟩ |0⟩m+j

Tj7−→ |a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2 |0⟩n−j−1 X
c1aj |0⟩ |0⟩m+j ,

(159)

where
∣∣âj〉

n+m−1 := |an−1⟩ · · · |aj+1⟩ |aj−1⟩ · · · |a−m⟩. Finally, we define the quantum circuit Xc1,a by

Xc1,a :=
n−1∏
j=−m

Xc1,j , (160)
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and we compute that

Xc1,a : |a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2 |0⟩n+m

7→ |a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2

 n−1⊗
j=−m

Xc1aj |0⟩n+m

 .
(161)

Note that the number of elementary gates used in this step is at most (n+m)[15 + 2 ·2(3(n+m) + 5)2], since
each Toffoli gate circuit requires 15 gates, and each permutation circuit uses 2(3(n+m) + 5)2 gates.

3. We repeat step 2 but by instead using the control qubit |c2⟩ with target qubits |b⟩n+m. We define the quantum
circuits Xc2,b similarly, and we compute that

Xc2,b : |a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2

 n−1⊗
j=−m

Xc1aj |0⟩n+m


7→ |a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2

 n−1⊗
j=−m

Xc2bjXc1aj |0⟩n+m

 .

(162)

4. We repeat step 2 but by instead using the control qubit |c3⟩ with target qubits |b⟩n+m. We define the quantum
circuits Xc3,b similarly, and we compute that

Xc3,b : |a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2

 n−1⊗
j=−m

Xc2bjXc1aj |0⟩n+m


7→ |a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2

 n−1⊗
j=−m

Xc3bjXc2bjXc1aj |0⟩n+m

 .

(163)

Since the qubits |c1⟩ |c2⟩ |c3⟩ may only take one of the three possible values as in (156), it holds for each j =
−m, . . . , n− 1 that

Xc3bjXc2bjXc1aj =
{
Xaj , if Dn,m(a) > Dn,m(b),
Xbj , if Dn,m(a) ≤ Dn,m(b).

(164)

Thus, we have

|a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2

 n−1⊗
j=−m

Xc3bjXc2bjXc1aj |0⟩n+m


=

|a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2
(⊗n−1

j=−mX
aj |0⟩n+m

)
, if Dn,m(a) > Dn,m(b),

|a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2
(⊗n−1

j=−mX
bj |0⟩n+m

)
, if Dn,m(a) ≤ Dn,m(b),

=
{
|a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2 |a⟩n+m , Dn,m(a) > Dn,m(b),
|a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2 |b⟩n+m , Dn,m(a) ≤ Dn,m(b),

= |a⟩n+m |b⟩n+m |c1⟩ |c2⟩ |c3⟩ |anc⟩2 |Mn,m(a, b)⟩n+m .

(165)

The above output is equivalent (154) where we treat |c1⟩ |c2⟩ |c3⟩ as ancilla qubits. We find that the total number
of elementary gates used is at most

175(2n+ 2m+ 1)2 + 3 · (n+m)[15 + 2 · 2(3(n+m) + 5)2]
≤ 175 · 22(n+m+ 1)2 + 3 · 15(n+m) + 3(n+m) · 2 · 2 · 52(n+m+ 1)2

≤ (700 + 45 + 300)(n+m+ 1)3

= 1045(n+m+ 1)3.

(166)

Corollary 4.21 (Quantum circuit for maximum of I numbers) Let I, n,m ∈ N. Let MI,n,m : FIn,m → Fn,m
be a function defined by

MI,n,m(i1, . . . , iI) = En,m(max{Dn,m(i1), . . . ,Dn,m(iI)}), ∀(i1, . . . , iI) ∈ FIn,m. (167)
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|i1⟩n+m

Tπ

|i2⟩n+m

...

|iI⟩n+m

|0⟩(I−1)(n+m+4)

...

...

...

|i1⟩n+m

Qn,m
(max)

Tπ

|i1⟩n+m

|i2⟩n+m |i2⟩n+m

|0⟩4

|0⟩n+m

Qn,m
(max)

|i3⟩n+m |iI⟩n+m

|0⟩4

|anc⟩(I−2)(n+m)+4(I−1)

|0⟩n+m

...

Qn,m
(max)

|iI⟩n+m

|0⟩4

|0⟩n+m |MI,n,m(i1, . . . , iI)⟩n+m

Figure 17: Circuit diagram for QI,n,m
(max) in Corollary 4.21.

(c.f. Definition 4.2). Then, there is a quantum circuit QI,n,m(max) on N qubits, where

N := I(n+m) + (I − 1)(n+m+ 5) (168)

such that for any i1, . . . , iI ∈ Fn,m,

QI,n,m(max) : |i1⟩n+m · · · |iI⟩n+m |0⟩(I−1)(n+m+5)

7→ |i1⟩n+m · · · |iI⟩n+m |anc⟩(I−2)(n+m)+5(I−1) |MI,n,m(i1, . . . , iI)⟩n+m ,
(169)

which uses at most 1189I2(n+m+ 1)3 elementary gates. See Figure 17 for the circuit diagram.

Proof. For any i1, . . . , iI ∈ Fn,m, observe that the function MI,n,m can be written recursively by setting

m1 := i1,

m2 := M2,n,m(i1, i2),
m3 := M2,n,m(m2, i3) = M3,n,m(i1, i2, i3),

...
mI := M2,n,m(mI−1, iI) = · · · = MI,n,m(i1, . . . , iI).

(170)

With this setup in mind, we construct the quantum circuit QI,n,m(max) as follows.

1. We first apply the permutation quantum circuit Tπ from Lemma 4.8 to obtain

Tπ : |i1⟩n+m · · · |iI⟩n+m |0⟩(I−1)(n+m+5)

7→ |i1⟩n+m |i2⟩n+m |0⟩5 |0⟩n+m |i3⟩n+m |0⟩5 |0⟩n+m |i4⟩n+m · · · |iI⟩n+m |0⟩5 |0⟩n+m .
(171)

The number of elementary gates used is at most 2N2.

2. We apply inductively the maximum circuit for two TC numbers Q(k)
(max) from Lemma 4.20 for k= 1, . . . , I − 1

(with n← n, m← m, a← mk, b← ik+1 in the notation of Lemma 4.20) so that
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|i1⟩n1+m1

T I
π ◦ Qd,n,m

+,I ◦ · · · ◦ T 1
π ◦ Qd,n,m

+,1 Tπ

|i1⟩n1+m1

...
...

|id⟩n1+m1
|id⟩n1+m1

|0⟩⋆

QI,n+d,m
(max)

|anc⟩⋆

|0⟩n+m+d
|h(i)⟩n+m+d

|i1⟩

...

|id⟩

|hI (i)⟩ |hI (i)⟩

...
...

|h1(i)⟩ |h1(i)⟩

|0⟩ |anc⟩

|anc⟩ |h(i)⟩

Figure 18: Circuit diagram for Qh in Proposition 4.22.

|i1⟩n+m |i2⟩n+m |0⟩5 |0⟩n+m |i3⟩n+m |0⟩5 |0⟩n+m |i4⟩n+m · · · |iI⟩n+m |0⟩5 |0⟩n+m

Q(1)
(max)7−−−−→ |i1⟩n+m |i2⟩n+m |anc⟩5 |M2,n,m(i1, i2)⟩n+m |i3⟩n+m |0⟩5 |0⟩n+m · · · |iI⟩n+m |0⟩5 |0⟩n+m

= |i1⟩n+m |i2⟩n+m |anc⟩5 |m2⟩n+m |i3⟩n+m |0⟩5 |0⟩n+m · · · |iI⟩n+m |0⟩5 |0⟩n+m

Q(2)
(max)7−−−−→ |i1⟩n+m |i2⟩n+m |anc⟩5 |m2⟩n+m |i3⟩n+m |anc⟩5 |M2,n,m(m2, i3)⟩n+m |i4⟩n+m |0⟩5 |0⟩n+m

· · · |iI⟩n+m |0⟩5 |0⟩n+m

=: |i1⟩n+m |i2⟩n+m |anc⟩5 |m2⟩n+m |i3⟩n+m |anc⟩5 |m3⟩n+m |i4⟩n+m |0⟩5 |0⟩n+m

· · · |iI⟩n+m |0⟩5 |0⟩n+m
...

...
Q(I)

(max)7−−−−→ |i1⟩n+m |i2⟩n+m |anc⟩5 |m2⟩n+m |i3⟩n+m · · · |mI−1⟩n+m |iI⟩n+m |anc⟩5 |M2,n,m(mI−1, iI)⟩n+m

=: |i1⟩n+m |i2⟩n+m |anc⟩5 |m2⟩n+m |i3⟩n+m · · · |mI−1⟩n+m |iI⟩n+m |anc⟩5 |mI⟩n+m .

(172)

The number of elementary gates used in this step is at most

I · 1045(n+m+ 1)3. (173)

3. We consolidate the ancillary qubits by combining the following qubits: (I − 1) times of |anc⟩4, and (I − 1)
times of |m2⟩n+m, · · · , |mI−1⟩n+m under the placeholder qubit |anc⟩(I−2)(n+m)+4(I−1). The permutation
quantum circuit Tπ from Lemma 4.8 performs the following operation

Tπ : |i1⟩n+m |i2⟩n+m |anc⟩5 |m2⟩n+m |i3⟩n+m · · · |mI−1⟩n+m |iI⟩n+m |anc⟩5 |mI⟩
7→ |i1⟩n+m |i2⟩n+m · · · |iI⟩n+m |anc⟩(I−2)(n+m)+5(I−1) |mI⟩n+m .

(174)

The number of elementary gates used in this step is at most 2N2.

The resulting quantum circuit QI,n,m(max) is a composition of the quantum circuits from each of the above steps. The
number of elementary gates used in total is the sum of the number of gates used in each step which is at most

2N2 + 1045I(n+m+ 1)3 + 2N2

= 1045I(n+m+ 1)3 + 4[I(n+m) + (I − 1)(n+m+ 5)]2

≤ 1045I(n+m+ 1)3 + 4[I(n+m+ 1) + 5I(n+m+ 1)]2

≤ 1045I(n+m+ 1)3 + 4 · 62(I(n+m+ 1))2

≤ 1189I2(n+m+ 1)3.

(175)
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Proposition 4.22 (Quantum circuit for loading CPWA component functions) Let I, d, n1, n2,m1,m2 ∈
N. Define n := n1 + n2, m := m1 + m2, and p := d(2n2 + 2m2 + 3) + (n2 + m2) + (d − 1)(n + m). Let
{al,j}l=1,...,I;j=1,...,d, {bl}l=1,...,I ⊂ Fn2,m2 . Let hl : Fdn1,m1

→ Fn+d,m, l = 1, . . . , I be functions defined by

hl(i1, . . . , id) =
d
⊞
j=1

(al,j � ij) ⊞ bl, ∀(i1, . . . , id) ∈ Fdn1,m1
, (176)

let MI,n+d,m : FIn+d,m → Fn+d,m be a function defined by

MI,n+d,m(i1, . . . , iI) = En+d,m(max{Dn+d,m(i1), . . . ,Dn+d,m(iI)}), ∀(i1, . . . , iI) ∈ FIn+d,m. (177)

Define h : Fdn1,m1
→ Fn+d,m by

h(i) := MI,n+d,m
(
h1(i), . . . , hI(i)

)
, ∀i = (i1, . . . , id) ∈ Fdn1,m1

. (178)

Then, there is a quantum circuit Qh on N qubits, where

N := d(n1 +m1) + I(n+m+ d+ p) + (I − 1)(n+m+ d+ 5), (179)

such that for any i = (i1, . . . , id) ∈ Fdn1,m1
,

Qh : |i1⟩n1+m1
· · · |id⟩n1+m1

|0⟩I(n+m+d+p)+(I−2)(n+m+d)+5(I−1) |0⟩n+m+d

7→ |i1⟩n1+m1
· · · |id⟩n1+m1

|anc⟩I(n+m+d+p)+(I−2)(n+m+d)+5(I−1) |h(i)⟩n+m+d ,
(180)

which uses at most 10651I3d3(n+m+ 1)3 elementary gates. See Figure 18 for the circuit diagram.

Proof. The construction of the quantum circuit Qh involves the following steps:

1. We first prepare the I affine sums hl(i1, . . . , id) from (176), using Lemma 4.19.
For l = 1, . . . , I, we apply the quantum circuits (Qd,n,m+,l )l=1,...,I of Lemma 4.19
(with (d, n1, n2,m1,m2, a1, . . . , ad, b) ← (d, n1, n2,m1,m2, al,1, . . . , al,d, bl) in the notation of Lemma 4.19)
followed by an application of the permutation circuit Tπ from Lemma 4.8, where we compute

|i1⟩n1+m1
· · · |id⟩n1+m1

|0⟩I(n+m+d+p) |0⟩(I−1)(n+m+d+5)

Qd,n,m
+,17−−−−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|h1(i)⟩n+m+d |anc⟩p |0⟩(I−1)(n+m+d+p) |0⟩(I−1)(n+m+d+5)

T 1
π7−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|0⟩n+m+d+p |h1(i)⟩n+m+d |anc⟩p |0⟩(I−2)(n+m+d+p) |0⟩(I−1)(n+m+d+5)

Qd,n,m
+,27−−−−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|h2(i)⟩n+m+d |anc⟩p |h1(i)⟩n+m+d |anc⟩p

· |0⟩(I−2)(n+m+d+p) |0⟩(I−1)(n+m+d+5)

T 2
π7−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|0⟩n+m+d+p |h2(i)⟩n+m+d |h1(i)⟩n+m+d |anc⟩2p

· |0⟩(I−3)(n+m+d+p) |0⟩(I−1)(n+m+d+5)

...
...

Qd,n,m
+,I7−−−−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|hI(i)⟩n+m+d |anc⟩p

· · · |h2(i)⟩n+m+d |h1(i)⟩n+m+d |anc⟩(I−1)p |0⟩(I−1)(n+m+d+5)

T I
π7−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|hI(i)⟩n+m+d · · · |h2(i)⟩n+m+d |h1(i)⟩n+m+d

· |0⟩(I−1)(n+m+d+5) |anc⟩Ip .

(181)

In this step, the number of elementary gates used is at most

I[2N2 + 563d3(n+m+ 1)2]. (182)

2. Next, we compute the maximum value amongst the affine sums h1, . . . , hI . We apply the quantum circuit
QI,n+d,m

(max) of Corollary 4.21 (with I ← I, n← d+ n, m← m, i1, . . . , iI ← h1(i), . . . , hI(i) in the notation of
Corollary 4.21) where we have

|i1⟩n1+m1
· · · |id⟩n1+m1

|hI(i)⟩n+m+d · · · |h2(i)⟩n+m+d |h1(i)⟩n+m+d

· |0⟩(I−1)(n+m+d+5) |anc⟩Ip
QI,n+d,m

(max)7−−−−−−→ |i1⟩n1+m1
· · · |id⟩n1+m1

|hI(i)⟩n+m+d · · · |h2(i)⟩n+m+d |h1(i)⟩n+m+d

|anc⟩(I−2)(n+m+d)+5(I−1) |h(i)⟩n+m+d |anc⟩Ip

(183)
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. . .

. . .

. . .

. . .

|i−m⟩

Tπ

|i−m⟩

...
...

|i0⟩ |i0⟩

...
...

|in−1⟩
Tπ

|in−1⟩

|0⟩ Ry(a0) CRy(−a12n−1) CRy(−a12n−2) CRy(−a12−m) cos
(
f̄(i)

2

)
|0⟩ + sin

(
f̄(i)

2

)
|1⟩

Figure 19: Circuit diagram for Rf in Lemma 4.23.

In this step, the number of elementary gates used is at most

1189I2(n+m+ d+ 1)3. (184)

3. We use the permutation quantum circuit Tπ from Lemma 4.8 and we put the qubits |hI(i)⟩n+m+d · · · |h1(i)⟩n+m+d
under |anc⟩, so that we have

|i1⟩n1+m1
· · · |id⟩n1+m1

|hI(i)⟩n+m+d · · · |h1(i)⟩n+m+d

· |anc⟩(I−2)(n+m+d)+5(I−1) |h(i)⟩n+m+d |anc⟩Ip
Tπ7−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|anc⟩I(n+m+d+p)+(I−2)(n+m+d)+5(I−1) |h(i)⟩n+m+d .

(185)

We hence reach the desired state (180). In this step, the number of elementary gates used is at most

2N2. (186)

We note that
p = d(2n2 + 2m2 + 3) + (n2 +m2) + (d− 1)(n+m) ≤ 4d(n+m+ 1). (187)

Hence, we obtain that

N = d(n1 +m1) + I(n+m+ d+ p) + (I − 1)(n+m+ d+ 5)
≤ d(n+m+ 1) + Id(n+m+ 1) + Ip+ (d+ 5)I(n+m+ 1)
≤ (1 + 1 + 4 + 1 + 5)Id(n+m+ 1)
= 12Id(n+m+ 1).

(188)

Thus, the total number of elementary gates used is at most

I[2N2 + 563d3(n+m+ 1)2] + 1189I2(n+m+ d+ 1)3 + 2N2

= (I + 1)2N2 + 563Id3(n+m+ 1)2 + 1189I2(n+m+ d+ 1)3

≤ 4IN2 + 563Id3(n+m+ 1)2 + 1189I2(2d)3(n+m+ 1)3

≤ 4I(12Id(n+m+ 1))2 + 563Id3(n+m+ 1)2 + 1189I2(2d)3(n+m+ 1)3

≤ (4 · 122 + 563 + 1189 · 23)I3d3(n+m+ 1)3

= 10651I3d3(n+m+ 1)3.

(189)

Lemma 4.23 (Quantum circuit for Y -rotation) Let n ∈ N, m ∈ N0, a0, a1 ∈ R, and let f(x) = a1x + a0 for
x ∈ R. Define

f̄(i) := f ◦Dn,m(i), ∀i ∈ Fn,m. (190)

Then, there is a quantum circuit Rf on (n+m+ 1) qubits such that for any i ∈ Fn,m,

Rf : |i⟩n+m |0⟩ 7→ |i⟩n+m [cos
(
f̄(i)/2

)
|0⟩+ sin

(
f̄(i)/2

)
|1⟩], (191)

which uses 13(n+m+ 1)3 elementary gates. See Figure 19 for the circuit diagram.

Proof. The quantum circuit Rf is constructed from the following steps:
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1. We apply the Y -rotation gate Ry(θ) from Example 2.9 (with parameter θ ← a0 in the notation of Example
2.9) to obtain the state

I⊗n+m
2 ⊗Ry(a0) : |i⟩n+m |0⟩ 7→ |i⟩n+m (cos(a0/2) |0⟩+ sin(a0/2) |1⟩). (192)

2. We apply the controlled Y -rotation gate CRy(θ) of Lemma 4.15 on the qubit |in−1⟩ (with parameter θ ←
−a1 · 2n−1, control qubit c ← in−1 and target qubit 0 ← (cos(a0/2) |0⟩ + sin(a0/2) |1⟩) in the notation of
Lemma 4.15) to obtain

I⊗n+m−1
2 ⊗ CRy(−a1 · 2n−1) : |i−m⟩ · · · |i0⟩ · · · |in−1⟩ (cos(a0/2) |0⟩+ sin(a0/2) |1⟩)
7→ |i−m⟩ · · · |i0⟩ · · · |in−1⟩ (cos

(
(−a12n−1in−1 + a0)/2

)
|0⟩+ sin

(
(−a12n−1in−1 + a0)/2

)
|1⟩)

=
{
|i⟩n+m (cos(a0/2) |0⟩+ sin(a0/2) |1⟩), if in−1 = 0,
|i⟩n+m (cos

(
(−a12n−1 + a0)/2

)
|0⟩+ sin

(
(−a12n−1 + a0)/2

)
|1⟩), if in−1 = 1.

(193)

3. Similarly, we inductively apply for k = n − 2, . . . , 0, . . . ,−m the permutation quantum circuit Tk↔n−1 from
Lemma 4.8, the controlled Y -rotation gate CRy(θ) (with parameter θ ← a12k and control qubit c ← ik in
the notation of Lemma 4.15), and another permutation circuit Tk↔n−1 to obtain

|i−m⟩ · · · |i0⟩ · · · |in−1⟩ (cos
(
(−a12n−1in−1 + a0)/2

)
|0⟩+ sin

(
(−a12n−1in−1 + a0)/2

)
|1⟩)

Tn−2↔n−17−−−−−−−→ |i−m⟩ · · · |i0⟩ · · · |in−1⟩ |in−2⟩ (cos
(
(−a12n−1in−1 + a0)/2

)
|0⟩+ sin

(
(−a12n−1in−1 + a0)/2

)
|1⟩)

CRy(a12n−2)7−−−−−−−−−→ |i−m⟩ · · · |i0⟩ · · · |in−1⟩ |in−2⟩
(

cos
(
(a1(2n−2in−2 − 2n−1in−1) + a0)/2

)
|0⟩

+ sin
(
(a1(2n−2in−2 − 2n−1in−1) + a0)/2

)
|1⟩
)

Tn−2↔n−17−−−−−−−→ |i−m⟩ · · · |i0⟩ · · · |in−2⟩ |in−1⟩
(

cos
(
(a1(2n−2in−2 − 2n−1in−1) + a0)/2

)
|0⟩

+ sin
(
(a1(2n−2in−2 − 2n−1in−1) + a0)/2

)
|1⟩
)

...
...

7→ |i⟩n+m (cos
(

(a1(−2n−1in−1 +
n−2∑
k=−m

2kik) + a0)/2
)
|0⟩+ sin

(
(a1(−2n−1in−1 +

n−2∑
k=−m

2kik) + a0)/2
)
|1⟩)

= |i⟩n+m [cos
(
f̄(i)/2

)
|0⟩+ sin

(
f̄(i)/2

)
|1⟩]

(194)

The permutation circuits Tπ from Lemma 4.8 requires 2(n + m + 1)2 gates and the controlled Y -rotation gate
CRy(θ) requires 4 elementary gates (c.f. Lemma 4.15). Hence, the total number of gates required for circuit Rf is

1 + 4 + (n+m− 1)[2 · 2(n+m+ 1)2 + 4] ≤ 13(n+m+ 1)3. (195)

Thus, we conclude the proof of the lemma.

Proposition 4.24 (Quantum circuit for CPWA payoff function with Y -rotation) Let d ∈ N, n1, n2,m1,
m2 ∈ N, K ∈ N, I1, · · · , IK ∈ N, ξ1, . . . , ξK ∈ {−1, 1}, and s ∈ (0, 1). Define n := n1 + n2, m = m1 + m2, and
p := d(2n2 + 2m2 + 3) + (n2 +m2) + (d− 1)(n+m). Let {ak,l,j}k=1,...,K;l=1,...,Ik;j=1,...,d, {bk,l}k=1,...,K;l=1,...,Ik

⊂
Fn2,m2 . For k = 1, . . . ,K, l = 1, . . . , Ik, let hk,l : Fdn1,m1

→ Fn+d,m be functions defined by

hk,l(i) :=
d
⊞
j=1

(ak,l,j � ij) ⊞ bk,l, ∀i = (i1, . . . , id) ∈ Fdn1,m1
. (196)

For k = 1, . . . ,K, let ξk ∈ F2,0 be defined by
ξk := E2,0(ξk), (197)

let MIk,n+d,m : FIk

n+d,m → Fn+d,m be defined by

MIk,n+d,m(i1, . . . , iIk
) := En+d,m(max{Dn+d,m(i1), . . . ,Dn+d,m(iIk

)}), ∀(i1, . . . , iIk
) ∈ FIk

n+d,m, (198)

and let hk : Fdn1,m1
→ Fn+d,m be defined by

hk(i) := MIk,n+d,m
(
hk,1(i), . . . , hk,Ik

(i)
)
, ∀i = (i1, . . . , id) ∈ Fdn1,m1

. (199)
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. . .

. . .

|i1⟩n1+m1

Qh1

Tπ1

Qh2

Tπ2

QhK

TπK

|i1⟩n1+m1

...
...

|id⟩n1+m1
|id⟩n1+m1

|0⟩⋆

|anc⟩q1+···+qK

Q̃(1)
(×)

|h1(i)⟩n+m+d

Xξ1

∣∣ξ1
〉

2∣∣h1(i) � ξ1
〉
n+m+d+2

|anc⟩5

Q̃(2)
(×)

|h2(i)⟩n+m+d

Xξ2

∣∣ξ2
〉

2∣∣h2(i) � ξ2
〉
n+m+d+2

|anc⟩5

...

Q̃(K)
(×)

|hK(i)⟩n+m+d

XξK

∣∣ξK〉2∣∣hK(i) � ξK
〉
n+m+d+2

|anc⟩5

|0⟩K

Figure 20: Circuit diagram for Rh in Proposition 4.24 (Steps 1–3).

Let h : Fdn1,m1
→ Fn+d+K+1,m be defined by

h(i) :=
K

⊞
k=1

(ξk � hk(i)), ∀i = (i1, . . . , id) ∈ Fdn1,m1
. (200)

Let f : R→ R be a function defined by f(x) = sx+ π
2 , and define f̄ : Fn+d+K+1,m → R by

f̄(i) := f ◦Dn+d+K+1,m(i), ∀i ∈ Fn+d+K+1,m. (201)

Then, there is a quantum circuit Rh on N qubits, where

N := d(n1 +m1) +
K∑
k=1

qk + 2K(n+m+ d+ 5),

qk := Ik(n+m+ d+ p) + (Ik − 2)(n+m+ d) + 5(Ik − 1), k = 1, . . . ,K,
(202)

such that for any i = (i1, . . . , id) ∈ Fdn1,m1
,

Rh : |i1⟩n1+m1
· · · |id⟩n1+m1

|0⟩q1+···+qK
|0⟩2K(n+m+d+5)

7→ |i1⟩n1+m1
· · · |id⟩n1+m1

|anc⟩q1+···+qK+2K(n+m+d+5)−1
[
cos
(
f̄(h(i))/2

)
|0⟩+ sin

(
f̄(h(i))/2

)
|1⟩
]
,

(203)

which uses at most 16186K3 (maxk=1,...,K{Ik})3
d3(n+m+ 1)3 elementary gates. See Figure 20 and Figure 21 for

the circuit diagram.

Proof. The construction of the quantum circuit Rh involves the following steps:

1. We first prepare the K component functions hk using Proposition 4.22. For k = 1, . . . ,K, we apply the
quantum circuits (Qhk

)k=1,...,K of Proposition 4.22 (with I, d, n1,m1, n2,m2 ← Ik, d, n1,m1, n2,m2, al,j ←
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|i1⟩

Tπ

...
|id⟩

|anc⟩

|h1(i)⟩∣∣ξ1
〉

∣∣h1(i) � ξ1
〉

|anc⟩

|h2(i)⟩∣∣ξ2
〉

∣∣h2(i) � ξ2
〉

|anc⟩

...
|hK(i)⟩∣∣ξK〉∣∣hK(i) � ξK

〉
|anc⟩

|0⟩K

=⇒

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|i1⟩ |i1⟩n1+m1

...
...

|id⟩ |id⟩n1+m1

|anc⟩

|anc⟩⋆

∣∣h1(i) � ξ1
〉

Q(1)
(+)

∣∣h2(i) � ξ2
〉

|0⟩

Q(2)
(+)

∣∣h3(i) � ξ3
〉

|0⟩

...
Q(K)

(+)

∣∣hK(i) � ξK
〉

|0⟩
Rf

|h(i)⟩n+m+d+K+1

|0⟩ [cos
(
f̄(h(i))/2

)
|0⟩

+ sin
(
f̄(h(i))/2

)
|1⟩]

Figure 21: Circuit diagram for Rh in Proposition 4.24 (Steps 4–6).

ak,l,j , and bl ← bk,l in the notation of Proposition 4.22) followed by an application of the permutation circuit
Tπ from Lemma 4.8, where we compute

|i1⟩n1+m1
· · · |id⟩n1+m1

|0⟩q1+···+qK
|0⟩2K(n+m+d+5)

= |i1⟩n1+m1
· · · |id⟩n1+m1

|0⟩q1
|0⟩n+m+d |0⟩q2

|0⟩n+m+d · · · |0⟩qK
|0⟩n+m+d |0⟩K(n+m+d+10)

Qh17−−−→ |i1⟩n1+m1
· · · |id⟩n1+m1

|anc⟩q1
|h1(i)⟩n+m+d |0⟩q2

|0⟩n+m+d · · · |0⟩qK
|0⟩n+m+d |0⟩K(n+m+d+10)

Tπ17−−→ |i1⟩n1+m1
· · · |id⟩n1+m1

|0⟩q2
|0⟩n+m+d |anc⟩q1

|h1(i)⟩n+m+d · · · |0⟩qK
|0⟩n+m+d |0⟩K(n+m+d+10)

Qh27−−−→ |i1⟩n1+m1
· · · |id⟩n1+m1

|anc⟩q2
|h2(i)⟩n+m+d |anc⟩q1

|h1(i)⟩n+m+d · · · |0⟩qK
|0⟩n+m+d |0⟩K(n+m+d+10)

...
...

QhK7−−−→ |i1⟩n1+m1
· · · |id⟩n1+m1

|anc⟩qK
|hK(i)⟩n+m+d · · · |anc⟩q1

|h1(i)⟩n+m+d |0⟩K(n+m+d+10)
TπK7−−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|anc⟩q1+···+qK

|h1(i)⟩n+m+d |0⟩2 |0⟩n+m+d+2 |0⟩5
· |h2(i)⟩n+m+d |0⟩2 |0⟩n+m+d+2 |0⟩5 · · · |hK(i)⟩n+m+d |0⟩2 |0⟩n+m+d+2 |0⟩5 |0⟩K

(204)

In this step, the number of elementary gates used is at most

K · 2N2 +
K∑
k=1

10651I3
kd

3(n+m+ 1)3 (205)

2. Next, we load the strings ξk ∈ F2,0 into the qubits |0⟩2 for k = 1, . . . ,K using the Pauli X gates (c.f. Example
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2.6)
|i1⟩n1+m1

· · · |id⟩n1+m1
|anc⟩q1+···+qK

|h1(i)⟩n+m+d |0⟩2 |0⟩n+m+d+2 |0⟩5
· |h2(i)⟩n+m+d |0⟩2 |0⟩n+m+d+2 |0⟩5 · · · |hK(i)⟩n+m+d |0⟩2 |0⟩n+m+d+2 |0⟩5 |0⟩K

7−→ |i1⟩n1+m1
· · · |id⟩n1+m1

|anc⟩q1+···+qK
|h1(i)⟩n+m+d

∣∣ξ1
〉

2 |0⟩n+m+d+2 |0⟩5
· |h2(i)⟩n+m+d

∣∣ξ2
〉

2 |0⟩n+m+d+2 |0⟩5 · · · |hK(i)⟩n+m+d
∣∣ξK〉2 |0⟩n+m+d+2 |0⟩5 |0⟩K .

(206)
The number of elementary gates used in this step is at most

2K. (207)

3. We perform K multiplication using the quantum circuit Q̃(k)
(×) = Q̃(×) from Corollary 4.12 (with n1 ← n+ d,

m1 ← m, n2 ← 2, m2 ← 0, a← hk(i), and b← ξk in the notation of Corollary 4.12 for k = 1, . . . ,K)

|i1⟩n1+m1
· · · |id⟩n1+m1

|anc⟩q1+···+qK
|h1(i)⟩n+m+d

∣∣ξ1
〉

2 |0⟩n+m+d+2 |0⟩5
· |h2(i)⟩n+m+d

∣∣ξ2
〉

2 |0⟩n+m+d+2 |0⟩5 · · · |hK(i)⟩n+m+d
∣∣ξK〉2 |0⟩n+m+d+2 |0⟩5 |0⟩K

Q̃(1)
(×)7−−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|anc⟩q1+···+qK

|h1(i)⟩n+m+d
∣∣ξ1
〉

2

∣∣h1(i) � ξ1
〉
n+m+d+2 |anc⟩5

· |h2(i)⟩n+m+d
∣∣ξ2
〉

2 |0⟩n+m+d+2 |0⟩5 · · · |hK(i)⟩n+m+d
∣∣ξK〉2 |0⟩n+m+d+2 |0⟩5 |0⟩K

...
...

Q̃(K)
(×)7−−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|anc⟩q1+···+qK

|h1(i)⟩n+m+d
∣∣ξ1
〉

2

∣∣h1(i) � ξ1
〉
n+m+d+2 |anc⟩5

· · · |hK(i)⟩n+m+d
∣∣ξK〉2

∣∣hK(i) � ξK
〉
n+m+d+2 |anc⟩5 |0⟩K .

(208)
The number of elementary gates used in this step is at most

K · 61(n+m+ d+ 3)2. (209)

4. We use the permutation circuit Tπ to reorder the qubits for addition, where
|i1⟩n1+m1

· · · |id⟩n1+m1
|anc⟩q1+···+qK

|h1(i)⟩n+m+d
∣∣ξ1
〉

2

∣∣h1(i) � ξ1
〉
n+m+d+2 |anc⟩5

· · · |hK(i)⟩n+m+d
∣∣ξK〉2

∣∣hK(i) � ξK
〉
n+m+d+2 |anc⟩5 |0⟩K

Tπ7−−→ |i1⟩n1+m1
· · · |id⟩n1+m1

|anc⟩q1+···+qK +K(n+m+d+7)
∣∣h1(i) � ξ1

〉
n+m+d+2

∣∣h2(i) � ξ2
〉
n+m+d+2 |0⟩∣∣h3(i) � ξ3

〉
n+m+d+2 |0⟩ · · ·

∣∣hK(i) � ξK
〉
n+m+d+2 |0⟩ |0⟩ .

(210)

The number of elementary gates used in this step is at most
2N2. (211)

5. We perform the following addition inductively on the sums for k = 1, . . . ,K − 1

⊞ : Fn+d+2+k−1,m × Fn+d+2,m → Fn+d+2+k,m, (
k

⊞
l=1

(hl(i) � ξl),hk+1(i) � ξk+1) 7→
k+1
⊞
l=1

(hl(i) � ξl), (212)

where we apply the quantum circuit Q(+) from Corollary 4.10 inductively for k = 1, . . . ,K − 1 (with n1 ←
n+ d+ 2 + k − 1, m1 ← m, n2 ← n+ d+ 2, m2 ← m in the notation of Corollary 4.10) so that

|i1⟩n1+m1
· · · |id⟩n1+m1

|anc⟩q1+···+qK +K(n+m+d+7)
∣∣h1(i) � ξ1

〉
n+m+d+2

∣∣h2(i) � ξ2
〉
n+m+d+2 |0⟩∣∣h3(i) � ξ3

〉
n+m+d+2 |0⟩ · · ·

∣∣hK(i) � ξK
〉
n+m+d+2 |0⟩ |0⟩

Q(1)
(+)7−−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|anc⟩q1+···+qK +K(n+m+d+7)

∣∣h2(i) � ξ2
〉
n+m+d+2

∣∣∣∣ 2
⊞
l=1

(hl(i) � ξl)
〉
n+m+d+3∣∣h3(i) � ξ3

〉
n+m+d+2 |0⟩ · · ·

∣∣hK(i) � ξK
〉
n+m+d+2 |0⟩ |0⟩

...
...

Q(K)
(+)7−−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|anc⟩q1+···+qK+K(n+m+d+7)

∣∣h2(i) � ξ2
〉
n+m+d+2

∣∣h3(i) � ξ3
〉
n+m+d+2

· · ·
∣∣hK(i) � ξK

〉
n+m+d+2

∣∣∣∣ K⊞l=1
(hl(i) � ξl)

〉
n+m+d+K+1

|0⟩

=: |i1⟩n1+m1
· · · |id⟩n1+m1

|anc⟩q1+···+qk+K(n+m+d+7)+(K−1)(n+m+d+2) |h(i)⟩n+m+d+K+1 |0⟩ .
(213)
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The number of elementary gates used in this step is at most

K−1∑
k=1

29[(n+m+ d+ 2 + k − 1) + (n+m+ d+ 2) + 1]2 (214)

6. Lastly, we apply the quantum circuit Rf from Lemma 4.23 (with a1 ← s, a0 ← π/2, n ← n + d + K + 1,
m← m in the notation of Lemma 4.23)

|i1⟩n1+m1
· · · |id⟩n1+m1

|anc⟩q1+···+qk+K(n+m+d+7)+(K−1)(n+m+d+2) |h(i)⟩n+m+d+K+1 |0⟩
Rf7−−→ |i1⟩n1+m1

· · · |id⟩n1+m1
|anc⟩q1+···+qk+K(n+m+d+7)+(K−1)(n+m+d+2) |h(i)⟩n+m+d+K+1[

cos
(
f̄(h(i))/2

)
|0⟩+ sin

(
f̄(h(i))/2

)
|1⟩
]

=: |i1⟩n1+m1
· · · |id⟩n1+m1

|anc⟩q1+···+qK+2K(n+m+d+5)−1
[
cos
(
f̄(h(i))/2

)
|0⟩+ sin

(
f̄(h(i))/2

)
|1⟩
]
.

(215)

This is the desired state (203). The number of elementary gates used in this step is at most

13(n+ d+K + 1 +m+ 1)3. (216)

Note that p ≤ 4d(n+m+ 1) (c.f. (187)), hence, for each k = 1, . . . ,K,

qk = Ik(n+m+ d+ p) + (Ik − 2)(n+m+ d) + 5(Ik − 1)
≤ Ik(n+m+ d+ 4d(n+m+ 1)) + (Ik − 2)(n+m+ d) + 5(Ik − 1)
≤ Ik(d(n+m+ 1) + 4d(n+m+ 1)) + 6Ikd(n+m+ 1)
= 11Ikd(n+m+ 1).

(217)

Hence,

N = d(n1 +m1) +
K∑
k=1

qk + 2K(n+m+ d+ 5)

≤ d(n+m+ 1) +K · max
k=1,...,K

{Ik} · 11d(n+m+ 1) + 12Kd(n+m+ 1)

≤ 24K · max
k=1,...,K

{Ik} · d(n+m+ 1).

(218)

Thus, the total number of elementary gates used is at most

K · 2N2 +
K∑
k=1

10651I3
kd

3(n+m+ 1)3 + 2K

+K · 61(n+m+ d+ 3)2 + 2N2

+
K−1∑
k=1

29[(n+m+ d+ 2 + k − 1) + (n+m+ d+ 2) + 1]2 + 13(n+ d+K + 1 +m+ 1)3

≤ 2 · 242K3
(

max
k=1,...,K

{Ik}
)2

d2(n+m+ 1)2 + 10651K
(

max
k=1,...,K

{Ik}
)3

d3(n+m+ 1)3 + 2K

+ 61 · 42Kd2(n+m+ 1)2 + 2 · 242K3
(

max
k=1,...,K

{Ik}
)2

d2(n+m+ 1)2

+ 29K[3Kd(n+m+ 1) + 3d(n+m+ 1) + 1]2 + 13(4Kd(n+m+ 1))3

≤ 2 · 242K3
(

max
k=1,...,K

{Ik}
)2

d2(n+m+ 1)2 + 10651K
(

max
k=1,...,K

{Ik}
)3

d3(n+m+ 1)3 + 2K

+ 61 · 42Kd2(n+m+ 1)2 + 2 · 242K3
(

max
k=1,...,K

{Ik}
)2

d2(n+m+ 1)2

+ 29K[7Kd(n+m+ 1)]2 + 13 · 43K3d3(n+m+ 1)3

≤ (2 · 242 + 10651 + 2 + 61 · 42 + 2 · 242 + 29 · 72 + 13 · 43)K3
(

max
k=1,...,K

{Ik}
)3

d3(n+m+ 1)3

= 16186K3
(

max
k=1,...,K

{Ik}
)3

d3(n+m+ 1)3.

(219)
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5 Error analysis
In this section, we provide the detailed error analysis of the steps of Algorithm 1 outlined in Section 2.4.1. We
begin the error analysis with a few basic lemmas.
Lemma 5.1 (Lipschitz constant of CPWA functions) Let h : Rd+ → R be a CPWA function given by (8).
Let Assumption 2.4 hold with corresponding constant C2 ∈ [1,∞). Then, h : Rd+ → R is Lipschitz continuous with
Lipschitz constant

L :=
K∑
k=1

max
1≤l≤Ik

{∥ak,l∥∞}
√
d ≤ C2

2d
3
2 , (220)

i.e.
∀x,y ∈ Rd+ : |h(x)− h(y)| ≤ C2

2d
3
2 ∥x− y∥2. (221)

Proof. Following the proof of Lemma 3.3 in [53], the CPWA function h : Rd+ → R admits the following represen-
tation:

h(x) =


a′

1 · x + b′
1, if x ∈ Ω1,

...
a′
J · x + b′

J , if x ∈ ΩJ ,
(222)

where J :=
∏K
k=1 Ik ∈ N and the coefficients {a′

j , b
′
j : j = 1, . . . , J} are of the form

a′
j :=

K∑
k=1

ξkak,l∗
k
, b′

j :=
K∑
k=1

ξkbk,l∗
k
, (223)

for some l∗k ∈ {1, 2, . . . , Ik} (the specific choice of index l∗k can be found in the proof of Lemma 3.3 in [53]), and
where Ω1, . . . ,ΩJ are polyhedrons whose union is Rd+. Note that some of these sets Ωj can be empty. We claim
that

∀x,y ∈ Rd+ : |h(x)− h(y)| ≤ max
1≤j≤J

{∥a′
j∥∞} ·

√
d∥x− y∥2. (224)

Let x,y ∈ Rd+ be fixed. Consider the line segment from x to y given by the set Γ := {γ(t) := x+t(y−x) : t ∈ [0, 1]}.
If the line segment Γ lies entirely in one of polyhedron Ωj∗ , then by linearity of h in Ωj∗ and the Hölder’s inequality,
it follows that

|h(x)− h(y)| = |a′
j∗
· (x− y)| ≤ ∥a′

j∗
∥∞∥x− y∥1 ≤ max

1≤j≤J
{∥a′

j∥∞} ·
√
d∥x− y∥2.

In the general case, the line segment Γ may be contained in some n ≥ 2 polyhedrons Ωj1 , . . . ,Ωjn
, such that

there are n + 1 points {γ(t0), γ(t1), . . . , γ(tn)} ⊂ Γ with a partition {0 =: t0 < t1 < · · · < tn := 1}, satisfying
γ(tm) ∈ Ωjm ∩ Ωjm+1 for m = 1, . . . , n− 1. Again by the same argument, it holds for all m = 1, . . . , n− 1 that

|h(γ(tm))− h(γ(tm−1))| = |a′
jm
· (γ(tm)− γ(tm−1))| ≤ ∥a′

jm
∥∞(tm − tm−1)

√
d∥x− y∥2.

Hence, summing over m, we have

|h(x)− h(y)| ≤
n∑

m=1
∥a′

jm
∥∞(tj − tj−1)

√
d∥x− y∥2

≤ max
1≤j≤J

{∥a′
j∥∞} ·

√
d∥x− y∥2.

Thus, the claim (224) is proven. Next, by (223), it follows that

max
1≤j≤J

{∥a′
j∥∞} ≤

K∑
k=1

max
1≤l≤Ik

{∥ak,l∥∞}. (225)

This, (224) and Assumption 2.4 concludes the lemma.

Lemma 5.2 (Linear growth of CPWA) Let h : Rd+ → R be a CPWA function given by (8). Let Assumption
2.4 hold with corresponding constant C2 ∈ [1,∞). Then, for all x ∈ Rd+, it holds that

|h(x)| ≤ C2
2d

3
2 (1 + ∥x∥2). (226)

Proof. Note that Lemma 5.1 and an application of the triangle equality shows that

|h(x)| ≤ |h(x)− h(0)|+ |h(0)| ≤ C2
2d

3
2 ∥x∥2 + |h(0)|. (227)

Moreover, by (8) and Assumption 2.4, we have for all k = 1, . . . ,K that

|h(0)| ≤ K ·max{|bk,l| : l = 1, . . . , Ik} ≤ C2
2d. (228)

This and (227) implies (226).
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5.1 Step 1: Truncation error bounds
Lemma 5.3 Let Y be a log-normal random variable with parameters µ ∈ R and σ2 ∈ (0,∞). Let Z be a standard
normal random variable. Then it holds that

(i) for all k ∈ N,
E[Y k] = ekµ+ k2σ2

2 , (229)

(ii) for all y ∈ [0,∞) that
P(Z ≥ y) ≤ 1

2e
− y2

2 . (230)

Proof. Item (i) is proven in [3, Chapter 2.3], and Item (ii) is proved in [17, Eq. 6].

Proposition 5.4 (Truncation error) Let ε ∈ (0, 1), d ∈ N, r, T ∈ (0,∞), and (t,x) ∈ [0, T ) × Rd+. Let
h : Rd+ → R be a CPWA function given by (8). Let Assumption 2.2 and Assumption 2.4 hold with respective
constants C1, C2 ∈ [1,∞). Let p(·, T ;x, t) : Rd+ → R+ be the log-normal transition density function given by (4).
Let Md,ε ∈ [1,∞) satisfy

Md,ε = 2C2
2d

5
2 ε−1e4C2

1T
2
e2rT max

i=1,...,d
{1, x2

i }. (231)

Let u : [0, T ]× Rd+ → R be the option price given by

u(t,x) := e−r(T−t)
∫
Rd

+

h(y)p(y, T ;x, t) dy, (232)

and for every M ≥Md,ε, let ūM,t,x ∈ R be the truncated solution given by

ūM,t,x := e−r(T−t)
∫

[0,M ]d

h(y)p(y, T ;x, t) dy. (233)

Then, the truncation solution satisfies the following estimate

|u(t,x)− ūM,t,x| ≤ ε. (234)

Proof. Let Σ ≡ Σd := (T − t)Cd ∈ Rd×d, and µ ≡ µd ∈ Rd denote the log-covariance and log-mean parameters
for the multivariate log-normal random variable Y with the probability density function p(·, T ;x, t) given by
Lemma 2.1. Using Lemma 5.2, (232), (233), the fact that e−r(T−t) ≤ 1, and Cauchy-Schwarz inequality,

|u(t,x)− ūM,t,x| = e−r(T−t)

∣∣∣∣∣
∫
Rd

+

h(y)p(y, T ;x, t) dy −
∫

[0,M ]d

h(y)p(y, T ;x, t) dy
∣∣∣∣∣

≤ C2
2d

3
2 E[(1 + ∥Y ∥2)2]1/2P(Y /∈ [0,M ]d)1/2,

(235)

where
P(Y /∈ [0,M ]d) =

∫
Rd

+\[0,M ]d

p(y, T ;x, t) dy.

Let X = (X1, . . . , Xd) ∼ N (µ,Σ) be the multivariate Gaussian random variable and recall that Xi = ln(Yi) for
i = 1, . . . , d. Using Lemma 5.3 (i), we have

E[∥Y ∥2
2] =

d∑
i=1

E[Y 2
i ] =

d∑
i=1

E[e2Xi ] =
d∑
i=1

e2µi+2σ2
ii , (236)

where µi = ln(xi) + (r − 1
2σ

2
ii)(T − t) and σii = Σi,i. We use the bound e2µi ≤ maxi=1,...,d{1, x2

i }e2rT and
e2σ2

ii ≤ e2C2
1T

2 by Assumption 2.2 and conclude that

E[∥Y ∥2
2] ≤ de2C2

1T
2
e2rT max

i=1,...,d
{1, x2

i }. (237)

By Cauchy-Schwarz inequality, we have (1+∥Y ∥2)2 ≤ 2(1+∥Y ∥2
2). Also, note that maxi{1, x2

i }1/2 = maxi{1, |xi|}
and 1 ≤ de2C2

1T
2
e2rT maxi{1, x2

i }. Combining the above bounds, we arrive at

E[(1 + ∥Y ∥2)2]1/2 ≤ 2d1/2eC
2
1T

2
erT max

i=1,...,d
{1, |xi|}. (238)

Hence, we have
|u(t,x)− ūM,t,x| ≤ 2C2

2d
2eC

2
1T

2
erT max

i=1,...,d
{1, |xi|} · P(Y /∈ [0,M ]d)1/2. (239)
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Moreover, for all i = 1, . . . , d, we have the inclusions

{Yi ≤M} = {Xi ≤ ln(M)} ⊇ {|Xi − µi| ≤ ln(M)− µi}. (240)

Note that since M ≥Md,ε ≥ eµi , we have that ln(M) ≥ µi. By Sidak’s correlation inequality [68, Corollary 1], we
have

P

(
d⋂
i=1
{|Xi − µi| ≤ ln(M)− µi}

)
≥

d∏
i=1

P({|Xi − µi| ≤ ln(M)− µi}), (241)

and hence,

P(Y /∈ [0,M ]d) = 1− P

(
d⋂
i=1
{Yi ≤M}

)
≤ 1−

d∏
i=1

P({|Xi − µi| ≤ ln(M)− µi}). (242)

Denote by Z the standard normal random variable. Using Lemma 5.3 (ii) and Assumption 2.2, we have

P({|Xi − µi| ≤ ln(M)− µi}) = 1− 2P(Z ≥ ln(M)− µi
σii

) ≥ 1− e
− (ln(M)−µi)2

2σ2
ii ≥ 1− e

− (ln(M)−µi)2

2C2
1 T 2

. (243)

Moreover, using ln(M) > 0 and M ≥Md,ε ≥ maxi=1,...,d{1, x2
i }e2rT e4C2

1T
2 ≥ e2µie4C2

1T
2 , we have

ln(M) ≥ 2µi + 4C2
1T

2

⇐⇒ (ln(M))2 ≥ (2µi + 4C2
1T

2) ln(M)
⇐⇒ (ln(M))2 − 2µi ln(M) + µ2

i ≥ 4C2
1T

2 ln(M) + µ2
i

=⇒ (ln(M)− µi)2 ≥ 4C2
1T

2 ln(M)

⇐⇒ − (ln(M)− µi)2

2C2
1T

2 ≤ −2 ln(M)

⇐⇒ e
− (ln(M)−µi)2

2C2
1 T 2 ≤M−2.

(244)

Using Bernoulli’s inequality, that is (1 + z)d ≥ 1 + dz for any z ∈ [−1,∞), and the fact that −M−2 ∈ [−1, 0), we
have

P(Y /∈ [0,M ]d) ≤ 1− (1−M−2)d ≤ dM−2. (245)

Thus, by (239), (245), and (231), we conclude that

|u(t,x)− ūM,t,x| ≤ 2C2
2d

5
2 eC

2
1T

2
erT max

i=1,...,d
{1, |xi|}M−1 ≤ 2C2

2d
5
2 eC

2
1T

2
erT max

i=1,...,d
{1, |xi|}M−1

d,ε ≤ ε. (246)

5.2 Step 2: Quadrature error bounds
Proposition 5.5 (Quadrature error) Let d ∈ N, r, T ∈ (0,∞), n ∈ N ∩ {2, 3, . . .}, m ∈ N, and (t,x) ∈
[0, T ) × Rd+. Let M ∈ [1,∞) be defined by M := 2n−1. Let h : Rd+ → R be the CPWA function given by (8).
Let Assumption 2.4 hold with corresponding constant C2 ∈ [1,∞). Let p(·, T ;x, t) : Rd+ → R+ be the log-normal
transition density given by (4). Let ũn,t,x ∈ R be the truncated solution given by

ũn,t,x := e−r(T−t)
∫

[0,M ]d

h(y)p(y, T ;x, t) dy, (247)

and let ũn,m,t,x ∈ R be the truncated quadrature solution given by

ũn,m,t,x := e−r(T−t)
∑

j∈Kd
n,m,+

h(j)pj,m, (248)

where for j = (j1, . . . , jd) ∈ Kdn,m,+ (c.f Definition 4.1),

pj,m :=
∫
Qj,m

p(y, T ;x, t) dy, and Qj,m := [j1, j1 + 2−m)× · · · × [jd, jd + 2−m). (249)

Then,
|ũn,t,x − ũn,m,t,x| ≤ C2

2d
22−m. (250)
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Proof. Let [·]m : Rd+ → (2−mZ)d be a function defined by

[y]m =
(
⌊2my1⌋

2m , . . . ,
⌊2myd⌋

2m

)
, (251)

where ⌊·⌋ is the floor function. With this function, it holds for every j ∈ Kdn,m,+ that

∀y ∈ Qj,m, [y]m = j. (252)

Moreover, since
[0,M)d =

⊔
j∈Kd

n,m,+

Qj,m (253)

is a disjoint union of sets, it follows that

ũn,m,t,x = e−r(T−t)
∑

j∈Kd
n,m,+

∫
Qj,m

h([y]m)p(y, T ;x, t) dy = e−r(T−t)
∫

[0,M ]d

h([y]m)p(y, T ;x, t) dy. (254)

Furthermore, observe that
∀y ∈ Rd+, ∥y − [y]m∥1 ≤ d2−m. (255)

Hence, by definition of ũn,t,x in (247), (254), by the fact that e−r(T−t) ≤ 1, by the Lipschitz continuity of h(·) in
Lemma 5.2, by Assumption 2.4, (255), and by the fact that p(y, T ;x, t) is a probability density function supported
on Rd+, we conclude that

|ũn,t,x − ũn,m,t,x| ≤ e−r(T−t)
∫

[0,M ]d

|h(y)− h([y]m)|p(y, T ;x, t) dy

≤
∫

[0,M ]d

C2
2d∥y − [y]m∥1p(y, T ;x, t) dy

≤ C2
2d

22−m.

(256)

Corollary 5.6 (Truncation and quadrature errors) Let ε ∈ (0, 1), d ∈ N, r, T ∈ (0,∞), and (t,x) ∈
[0, T ) × Rd+. Let u(t,x) be the option price given by (7). Let h : Rd+ → R be the CPWA function given by (8).
Let Assumption 2.2 and Assumption 2.4 hold with respective constants C1, C2 ∈ [1,∞). For every η ∈ (0, 1), let
Md,η ∈ [1,∞) be given by (231). For every n,m ∈ N satisfying

n ≥ 1 + log2(Md,ε/2), (257)

m ≥ log2(C2
2d

2(ε/2)−1) (258)

let ũn,m,t,x be the truncated quadrature solution given as in (248). Then

|u(t,x)− ũn,m,t,x| ≤ ε. (259)

Proof. By (257), it holds that
M := 2n−1 ≥ 2nd,ε−1 ≥Md,ε/2.

Let ũn,t,x be the truncated solution given by (247). By Proposition 5.4 (with ε ← ε/2 and M ← 2n−1 in the
notation of Proposition 5.4), it follows that

|u(t,x)− ũn,t,x| ≤ ε/2. (260)

Moreover, by (258), it holds that C2
2d

22−m ≤ ε/2. Hence, by Proposition 5.5, it follows that

|ũn,t,x − ũn,m,t,x| ≤ ε/2. (261)

Thus, (259) follows from triangle inequality.
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5.3 Step 3: Approximation error bounds for payoff function
Lemma 5.7 (Sublinear property of the max-function) Let ε > 0, n ∈ N, and let (ai)ni=1, (ãi)ni=1 ⊂ R satisfy
for all i = 1, . . . , n:

|ai − ãi| ≤ ε. (262)
Then, ∣∣∣∣ max

i=1,...,n
{ai} − max

i=1,...,n
{ãi}

∣∣∣∣ ≤ ε. (263)

Proof. Let i ∈ {1, . . . , n} be arbitrary. The fact that ãi ≤ maxj=1,...,n{ãj} and (262) imply that

ai − max
j=1,...,n

{ãj} ≤ ai − ãi ≤ |ai − ãi| ≤ ε. (264)

Since i was arbitrarily chosen, taking maximum over i = 1, . . . , n yields

max
i=1,...,n

{ai} − max
j=1,...,n

{ãj} ≤ ε. (265)

Repeating the argument by symmetry concludes (263).

Proposition 5.8 (Approximating payoff function) Let d ∈ N, r, T ∈ (0,∞), (t,x) ∈ [0, T ) × Rd+, n1 ∈
N ∩ {2, 3, . . .}, and m1 ∈ N0. Let h : Rd+ → R be the CPWA function given by (8). i.e.

h(x) =
K∑
k=1

ξk max{ak,l · x + bk,l : l = 1, . . . , Ik}.

Let Assumption 2.4 hold with corresponding constant C2 ∈ [1,∞), and let n2 ∈ N ∩ {2, 3, . . .} be defined by

n2 := 1 + ⌈log2(C2)⌉. (266)

For every m2 ∈ N0 define the function [·]m2 : R → 2−m2Z by [x]m2 := ⌊2m2x⌋
2m2 , x ∈ R. For every m2 ∈ N0,

k = 1, . . . ,K, and l = 1, . . . , Ik, define ãn2,m2,k,l = (ãn2,m2,k,l,1, · · · , ãn2,m2,k,l,d) ∈ Rd and b̃n2,m2,k,l ∈ R by

ãn2,m2,k,l,i := [(ak,l)i]m2 , i = 1, . . . , d,
b̃n2,m2,k,l := [bk,l]m2 ,

(267)

and define the function h̃n2,m2 : Rd → R by

h̃n2,m2(x) :=
K∑
k=1

ξk max{ãn2,m2,k,l · x + b̃n2,m2,k,l : l = 1, . . . , Ik}. (268)

Let ũn1,m1,t,x ∈ R be the truncated quadrature solution given as in (248). i.e.

ũn1,m1,t,x := e−r(T−t)
∑

j∈Kd
n1,m1,+

h(j)pj,m1 .

For every m2 ∈ N0 let ũn1,m1,n2,m2,t,x ∈ R be the truncated quadrature solution with an approximated payoff
function given by

ũn1,m1,n2,m2,t,x := e−r(T−t)
∑

j∈Kd
n1,m1,+

h̃n2,m2(j)pj,m1 (269)

Then, for every m2 ∈ N0 it holds that (ãn2,m2,k,l, b̃n2,m2,k,l) ∈ Kd+1
n2,m2

and that

|ũn1,m1,t,x − ũn1,m1,n2,m2,t,x| ≤ C2d
22n1−m2 . (270)

Proof. By Assumption 2.4, it holds that

∀k = 1, . . . ,K, ∀l = 1, . . . , IK , ∀i = 1, . . . , d : |(ak,l)i|, |bk,l| ≤ C2. (271)

Hence, by Definition 4.1, (267), and (268), it follows that (ãn2,m2,k,l, b̃n2,m2,k,l) ∈ Kd+1
n2,m2

. Furthermore, observe
that

∀c > 0 : |c− [c]m2 | ≤ 2−m2 . (272)
Hence, for all k = 1, . . . ,K, l = 1, . . . , Ik, and x ∈ Rd+, it follows that

|ak,l · x + bk,l − (ãn2,m2,k,l · x + b̃n2,m2,k,l)| ≤ (d+ 1)2−m2 max{1,max{(x)i : i = 1, . . . , d}}. (273)
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Moreover, since Kn1,m1 ⊂ [−2n1−1, 2n1−1] (c.f. Definition 4.1), it follows for all k = 1, . . . ,K, l = 1, . . . , Ik that

∀j ∈ Kdn1,m1,+ : |ak,l · j + bk,l − (ãn2,m2,k,l · j + b̃n2,m2,k,l)| ≤ (d+ 1)2n1−12−m2 . (274)

Hence, by Lemma 5.7, it holds for all k = 1, . . . ,K that

|max{ak,l · j + bk,l : l = 1, . . . , Ik} −max{ãn2,m2,k,l · j + b̃n2,m2,k,l : l = 1, . . . , Ik}| ≤ (d+ 1)2n1−12−m2 . (275)

Hence, by Assumption 2.4, it follows that

∀j ∈ Kdn1,m1,+ : |h(j)− h̃n2,m2(j)| ≤ K(d+ 1)2n1−12−m2 ≤ C2d
22n1−m2 . (276)

Furthermore, since e−r(T−t) ≤ 1 and

0 <
∑

j∈Kd
n1,m1,+

pj,m1 =
∫

[0,2n1−1]d

p(y, T ;x, t) dy ≤ 1,

we conclude that

|ũn1,m1,t,x − ũn1,m1,n2,m2,t,x| ≤ C2d
22n1−m2+1e−r(T−t) ·

∑
j∈Kd

n1,m1,+

pj,m1 ≤ C2d
22n1−m2 . (277)

Corollary 5.9 (Truncation and quadrature with approximated payoff errors) Let ε ∈ (0, 1), d ∈ N,
r, T ∈ (0,∞), and (t,x) ∈ [0, T )× Rd+. Let u(t,x) be the option price given by (7). Let h : Rd+ → R be the CPWA
function given by (8). Let Assumption 2.2 and Assumption 2.4 hold with respective constants C1, C2 ∈ [1,∞), and
let n2 := 1 + ⌈log2(C2)⌉. For every η ∈ (0, 1), let Md,η ∈ [1,∞) be given by (231). For every n1,m1,m2 ∈ N
satisfying

n1 ≥ 1 + log2(Md,ε/3), (278)
m1 ≥ log2(C2

2d
2(ε/3)−1), (279)

m2 ≥ 1 + log2(Md,ε/3) + log2(C2d
2(ε/3)−1), (280)

let ũn1,m1,n2,m2,t,x ∈ R be the truncated quadrature solution with an approximated payoff function be given by (269).
Then we have that

|u(t,x)− ũn1,m1,n2,m2,t,x| ≤ ε. (281)

Proof. Let ũn1,m1,t,x be the quadrature solution given by (248). By (278), (279), and Corollary 5.6 (with ε← 2ε/3
in the notation of Corollary 5.6), it follows that

|u(t,x)− ũn1,m1,t,x| ≤ 2ε/3. (282)

Moreover, by Proposition 5.8 (with m2 ← m2 in the notation of Proposition 5.8) and (280), it follows that

|ũn1,m1,t,x − ũn1,m1,n2,m2,t,x| ≤ C2d
22n1−m2 ≤ ε/3. (283)

Thus, the conclusion follows from the triangle inequality.

5.4 Step 4: Distribution loading error bounds
Proposition 5.10 (Distribution loading errors) Let ε ∈ (0, 1), d ∈ N, r, T ∈ (0,∞), and (t,x) ∈ [0, T )× Rd+.
Let u(t,x) be the option price given by (7). Let h : Rd+ → R be the CPWA function given by (8). Let Assumption 2.2
and Assumption 2.4 hold with respective constants C1, C2 ∈ [1,∞), and let n2 := 1+⌈log2(C2)⌉. For every η ∈ (0, 1),
let Md,η ∈ [1,∞) be given by (231) and for every n1,m1 ∈ N let {p̃j,η : j ∈ Kdn1,m1,+} ⊂ [0, 1] satisfy∑

j∈Kd
n1,m1,+

p̃j,η = 1 (284)

and ∑
j∈Kd

n1,m1,+

|p̃j,η − γ−1pj,m1 | ≤
η

C2
2d

22n1+1 , (285)

where for all j = (j1, . . . , jd) ∈ Kdn1,m1,+,

pj,m1 :=
∫
Qj,m1

p(y, T ;x, t) dy, Qj,m1 := [j1, j1 + 2−m1)× · · · × [jd, jd + 2−m1), (286)
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and
γ :=

∑
j∈Kd

n1,m1,+

pj,m1 ∈ (0, 1). (287)

Moreover, for every n1,m1,m2 ∈ N satisfying

n1 ≥ 1 + log2(Md,ε/4), (288)
m1 ≥ log2(C2

2d
2(ε/4)−1), (289)

m2 ≥ 1 + log2(Md,ε/4) + log2(C2d
2(ε/4)−1), (290)

let h̃n2,m2 : Rd → R be given by (268), and let ũn1,m1,n2,m2,p,t,x ∈ R be the truncated quadrature solution with
approximated payoff and loaded distribution given by

ũn1,m1,n2,m2,p,t,x := γe−r(T−t)
∑

j∈Kd
n1,m1,+

p̃j,ε/4h̃n2,m2(j), (291)

Then,
|u(t,x)− ũn1,m1,n2,m2,p,t,x| ≤ ε. (292)

Proof. Let ũn1,m1,n2,m2,t,x ∈ R be the quadrature solution with an approximated payoff function be given by (269).
Note that by Corollary 5.9 (with ε← 3ε/4 in the notation of Corollary 5.9), it holds that

|u(t,x)− ũn1,m1,n2,m2,t,x| ≤ 3ε/4. (293)

Moreover, by Lemma 5.2 and (276), it holds for every j ∈ Kdn1,m1,+ that

|h̃n2,m2(j)| ≤ |h(j)− h̃n2,m2(j)|+ |h(j)|
≤ C2d

22n1−m2 + C2
2d(1 + ∥j∥1)

≤ C2d
22n1−m2 + C2

2d(1 + d2n1−1)
≤ C2d

22n1−m2 + C2
2d

22n1

≤ C2
2d

22n1+1.

(294)

Hence, by (269) and (291), using (285), the fact that 0 < γ, e−r(T−t) ≤ 1, and the above estimate, we have

|ũn1,m1,n2,m2,t,x − ũn1,m1,n2,m2,p,t,x| ≤ γe−r(T−t) · max
j∈Kd

n1,m1,+

|h̃n2,m2(j)| ·
∑

j∈Kd
n1,m1,+

|p̃j,ε/4 − γ−1pj,m1 |

≤ ε/4.
(295)

Thus, the conclusion follows from triangle inequality.

5.5 Step 5: Rotation error bounds
Proposition 5.11 (Rotation error) Let ε ∈ (0, 1), d ∈ N, r, T ∈ (0,∞), and (t,x) ∈ [0, T ) × Rd+. Let u(t,x)
be the option price given by (7). Let h : Rd+ → R be the CPWA function given by (8). Let Assumption 2.2 and
Assumption 2.4 hold with respective constants C1, C2 ∈ [1,∞), and let n2 := 1 + ⌈log2(C2)⌉. For every η ∈ (0, 1)
let Md,η ∈ [1,∞) be given by (231), for every n1,m1,m2 ∈ N let {p̃j,η : j ∈ Kdn1,m1,+} ⊂ [0, 1] satisfy∑

j∈Kd
n1,m1,+

p̃j,η = 1 (296)

and ∑
j∈Kd

n1,m1,+

|p̃j,η − γ−1pj,m1 | ≤
η

C2
2d

22n1+1 , (297)

where for all j = (j1, . . . , jd) ∈ Kdn1,m1,+,

pj,m1 :=
∫
Qj,m1

p(y, T ;x, t) dy, Qj,m1 := [j1, j1 + 2−m1)× · · · × [jd, jd + 2−m1), (298)

and
γ :=

∑
j∈Kd

n1,m1,+

pj,m1 ∈ (0, 1), (299)
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let sd,η ∈ (0,∞) be defined by

sd,η :=
√

η

(C2
2d

22n1+1)3 , (300)

let h̃n2,m2 : Rd → R be given by (268), and let an1,n2,m1,m2,η ∈ [0, 1] be the amplitude given by

an1,n2,m1,m2,η =
∑

j∈Kd
n1,m1,+

p̃j,η sin2
(

sd,ηh̃n2,m2 (j)
2 + π

4

)
. (301)

Moreover, for every n1,m1,m2 ∈ N satisfying
n1 ≥ 1 + log2(Md,ε/5), (302)
m1 ≥ log2(C2

2d
2(ε/5)−1), (303)

m2 ≥ 1 + log2(Md,ε/5) + log2(C2d
2(ε/5)−1), (304)

let ũn1,m1,n2,m2,p,a,t,x ∈ R be the truncated quadrature solution with approximated payoff and loaded distribution
with rotation given by

ũn1,m1,n2,m2,p,a,t,x := s−1γe−r(T−t)(2a− 1), (305)
where here

s := sd,ε/5, and a =: an1,n2,m1,m2,ε/5.

Then, the following holds:
(i)

ũn1,m1,n2,m2,p,a,t,x = s−1γe−r(T−t)
∑

j∈Kd
n1,m1,+

p̃j,ε/5 sin
(
sh̃n2,m2(j)

)
. (306)

(ii)
|u(t,x)− ũn1,m1,n2,m2,p,a,t,x| ≤ ε. (307)

Proof. First, recall the trigonometric identity that for all x ∈ R

sin2(x2 + π

4 ) = 1− cos2(x2 + π

4 ) = 1− 1
2(1 + cos(x+ π/2)) = 1

2 + 1
2 sin(x). (308)

This, (301),(305), and the fact that
∑

j∈Kd
n1,m1,+

p̃j,ε/5 = 1 imply that

ũn1,m1,n2,m2,p,a,t,x = s−1γe−r(T−t)
∑

j∈Kd
n1,m1,+

p̃j,ε/5

[
2 sin2

(
s̃hn2,m2 (j)

2 + π

4

)
− 1
]

= s−1γe−r(T−t)
∑

j∈Kd
n1,m1,+

p̃j,ε/5 sin
(
sh̃n2,m2(j)

)
,

which proves Item (i). Next, for the proof of Item (ii), note that by Taylor expansion, one has for any x ∈ [−1, 1]
the estimate

| sin(x)− x| ≤
(

|x|3

3! + |x|5

5! + |x|7

7! + · · ·
)
≤ |x|3

(
e− [1 + 1

1! + 1
2! ]
)
≤ |x|3. (309)

Moreover, since |h̃n2,m2(j)| ≤ C2
2d

22n1+1 (c.f. (294)), by (300), it holds for all j ∈ Kdn1,m1,+ that

|sh̃n2,m2(j)| ≤
√
ε/5 ≤ 1. (310)

This, (309), (300), and the fact that |h̃n2,m2(j)| ≤ C2
2d

22n1+1 hence ensure for all j ∈ Kdn1,m1,+ that

s−1| sin
(
sh̃n2,m2(j)

)
− sh̃n2,m2(j)| ≤ s−1|sh̃n2,m2(j)|3 = s2|h̃n2,m2(j)|3 ≤ ε/5. (311)

Let here ũn1,m1,n2,m2,p,t,x ∈ R be the truncated quadrature solution with approximated payoff and loaded distri-
bution given by

ũn1,m1,n2,m2,p,t,x := γe−r(T−t)
∑

j∈Kd
n1,m1,+

p̃j,ε/5h̃n2,m2(j).

This, (311), (306), and the fact that

0 < γe−r(T−t)
∑

j∈Kd
n1,m1,+

p̃j,ε/5 ≤ 1

imply that
|ũn1,m1,n2,m2,p,t,x − ũn1,m1,n2,m2,p,a,t,x| ≤ ε/5. (312)

Furthermore, by Proposition (5.10) (with ε← 4ε/5 in the notation of Proposition (5.10)), it holds that
|u(t,x)− ũn1,m1,n2,m2,p,t,x| ≤ 4ε/5. (313)

Hence, the conclusion follows from the triangle inequality.
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5.6 Step 6: Quantum amplitude estimation error bounds
Proposition 5.12 (Combined errors) Let ε ∈ (0, 1), d ∈ N, r, T ∈ (0,∞), and (t,x) ∈ [0, T )× Rd+. Let u(t,x)
be the option price given by (7). Let h : Rd+ → R be the CPWA function given by (8). Let Assumption 2.2 and
Assumption 2.4 hold with respective constants C1, C2 ∈ [1,∞), and let

n2 := 1 + ⌈log2(C2)⌉ (314)

For every η ∈ (0, 1), let Md,η ∈ [1,∞) be given by (231). Let n1,d,ε,m1,d,ε,m2,d,ε ∈ (0,∞) be defined by

n1,d,ε := 1 + log2(Md,ε/6), (315)
m1,d,ε := log2(C2

2d
2(ε/6)−1), (316)

m2,d,ε := 1 + log2(Md,ε/6) + log2(C2d
2(ε/6)−1). (317)

Moreover, for every n1,m1,m2 ∈ N satisfying n1 ≥ n1,d,ε, m1 ≥ m1,d,ε, and m2 ≥ m2,d,ε, let {p̃j,ε/6 : j ∈
Kdn1,m1,+} ⊂ [0, 1] satisfy ∑

j∈Kd
n1,m1,+

p̃j,ε/6 = 1 (318)

and ∑
j∈Kd

n1,m1,+

|p̃j,ε/6 − γ−1pj,m1 | ≤
ε

6C2
2d

22n1+1 , (319)

where for all j = (j1, . . . , jd) ∈ Kdn1,m1,+,

pj,m1 :=
∫
Qj,m1

p(y, T ;x, t) dy, Qj,m1 := [j1, j1 + 2−m1)× · · · × [jd, jd + 2−m1), (320)

and
γ :=

∑
j∈Kd

n1,m1,+

pj,m1 ∈ (0, 1), (321)

let s ≡ sd,ε/6 ∈ (0,∞) be defined by

s ≡ sd,ε/6 :=

√
ε/6

(C2
2d

22n1+1)3 , (322)

let h̃n2,m2 : Rd → R be given by (268), let a ≡ an1,n2,m1,m2,ε/6 ∈ [0, 1] be the amplitude given by

a ≡ an1,n2,m1,m2,s,ε/6 :=
∑

j∈Kd
n1,m1,+

p̃j,ε/6 sin2

(
sh̃n2,m2(j)

2 + π

4

)
, (323)

let â ∈ [0, 1] satisfy
|a− â| ≤ εs

12 , (324)

and let Ũt,x be the approximated solution given by

Ũt,x := s−1γe−r(T−t)(2â− 1). (325)

Then,
|u(t,x)− Ũt,x| ≤ ε. (326)

Proof. Let here ũn1,m1,n2,m2,p,a,t,x ∈ R be the truncated quadrature solution with approximated payoff and loaded
distribution with rotation given by

ũn1,m1,n2,m2,p,a,t,x := s−1γe−r(T−t)(2a− 1).

By Proposition 5.11 item (ii) (with ε← 5ε/6 in the notation of Proposition 5.11), it holds that

|u(t,x)− ũn1,m1,n2,m2,p,a,t,x| ≤ 5ε/6. (327)

Using 0 < γe−r(T−t) ≤ 1 and (324), it follows that

|ũn1,m1,n2,m2,p,a,t,x − Ũt,x| ≤ 2s−1|a− â| ≤ ε/6. (328)

Hence, we conclude (326).
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6 Proof of Theorem 1
In this section, we provide the proof of Theorem 1.

Proof of Theorem 1. First, let n1, n2,m1,m2, N, γ, s be defined as in line 2–3 of Algorithm 1, and set n := n1 + n2
and m := m1 + m2. Let h : Fdn1,m1

→ Fn+d+K+1+m be defined as in (200), and let p := d(2n2 + 2m2 + 3) and
N, {qk}Kk=1 ∈ N be given by (202) from Proposition 4.24. By Assumption 4.16, it holds that

P |0⟩d(n1+m1) =
∑

i∈Fd
n1,m1,+

√
p̃i |i1⟩n1+m1

· · · |id⟩n1+m1
. (329)

Hence, together with Proposition 4.24, the circuit A := Rh(P ⊗ I⊗(N−d(n1+m1))
2 ) satisfies

A |0⟩N =
∑

i∈Fd
n1,m1,+

√
p̃i |i1⟩n1+m1

· · · |id⟩n1+m1
|anc⟩q1+···+qK+2K(n+m+d+5)−1 [cos

(
f̄(h(i))/2

)
|0⟩+ sin

(
f̄(h(i))/2

)
|1⟩]

=
∑

i∈Fd
n1,m1,+

√
p̃i cos

(
f̄(h(i))/2

)
|i1⟩n1+m1

· · · |id⟩n1+m1
|anc⟩q1+···+qK+2K(n+m+d+5)−1 |0⟩

+
∑

i∈Fd
n1,m1,+

√
p̃i sin

(
f̄(h(i))/2

)
|i1⟩n1+m1

· · · |id⟩n1+m1
|anc⟩q1+···+qK+2K(n+m+d+5)−1 |1⟩

=:
√

1− a |ψ0⟩N−1 |0⟩+
√
a |ψ1⟩N−1 |1⟩ ,

(330)

where as in Proposition 4.24, f̄ : Fn+d+K+1,m → R is defined by f̄(i) = f ◦ Dn+d+K+1,m(i) and f(x) = sx + π
2 ,

and a ∈ [0, 1] is given by
a :=

∑
i∈Fd

n1,m1,+

p̃i sin2(f̄(h(i))/2). (331)

By Proposition 4.24 and Proposition 5.8, we note that the function h̃n2,m2 given in (268) coincides with the function
Dn+d+K+1,m(h) when restricted to the domain Fdn1,m1

. Using this and Proposition 5.12 (with ε ← ε
6C2

2d
22n1+1 in

the notation of Assumption 4.16), we have

a =
∑

i∈Fd
n1,m1,+

p̃i sin2
(
sDn+d+K+1,m(h(i))

2 + π

4

)
= an1,n2,m1,m2,s,ε/6, (332)

where an1,n2,m1,m2,s,ε/6 is defined in (323). By Proposition 2.20, the output â from line 7 of Algorithm 1 satisfies
the bound

|a− â| ≤ εs/12, with probability at least 1− α. (333)

Thus, the estimate (59) follows from Proposition 5.12. Next, we count the total number of qubits and elementary
gates used to construct circuit A. Let Md,ε/6 be the constant given by (231), and note that

Md,ε/6 = 6cd
5
2 ε−1. (334)

Moreover, recall that for any v ∈ R, one has ⌈v⌉ ≤ v+ 1. Hence, by (315)-(317) and the bound on Md,ε/6, we have
the following bounds

n1 = ⌈n1,d,ε⌉ ≤ 2 + log2(Md,ε/6) = 2 + log2(2 · 3cd
5
2 ε−1), (335)

n2 ≤ 2 + log2(C2) ≤ 2 + log2(c
1
2 ), (336)

m1 = ⌈m1,d,ε⌉ ≤ 1 + log2(C2
2d

2(ε/6)−1) ≤ 1 + log2(2 · 3cd2ε−1), (337)

m2 = ⌈m2,d,ε⌉ ≤ 2 + log2(Md,ε/6) + log2(C2d
2(ε/6)−1) ≤ 2 + log2(2232c

3
2 d

9
2 ε−2). (338)

Furthermore,

n+m+ 1 = n1 + n2 +m1 +m2 + 1 ≤ 8 + log2(2434c4d9ε−4) = log2(2734c4d9ε−4). (339)

By Proposition 4.24 and the fact that A = Rh(P ⊗ I⊗N−d(n1+m1)
2 ), the quantum circuit A uses N qubits, where

N is given by (202). Using the upper bound (218) for N , Assumption 2.4, and (339), we thus have the following
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bound on the number of qubits used for the circuit A

N ≤ 24K · max
k=1,...,K

Ik · d(n+m+ 1)

≤ 24C2d · d(n+m+ 1)
≤ 24C2d

2 log2(2734c4d9ε−4)
≤ 24C2d

2(log2(2734) + 4 log2(c) + 9 log2(dε−1))
≤ 24C2d

2(14 + 4 log2(c) + 9 log2(dε−1))
≤ 24C2d

2 · 27 log2(c)(1 + log2(dε−1))
≤ 648C2 log2(c)d2(1 + log2(dε−1))
=: C1d

2(1 + log2(dε−1)).

(340)

Next, we count the number of elementary gates used to construct the quantum circuit A, which will be denoted
by NA. By Assumption 4.16, the number of elementary gates used to construct P is at most (127) with (n← n1,
m ← m1, ε ← ε

6C2
2d

22n1+1 in the notation of Assumption 4.16). Hence, using (335) and (337), the number of
elementary gates used to construct P is bounded by

C3(n1 +m1)C3dC3(log2(6ε−1C2
2d

22n1+1))C3

= C3(n1 +m1)C3dC3(log2(6C2
2d

2ε−1) + n1 + 1))C3

≤ C3(3 + log2(2232c2d
9
2 ε−2))C3dC3(log2(2 · 3cd2ε−1) + 3 + log2(2 · 3cd

5
2 ε−1))C3

= C3d
C3(log2(2532c2d

9
2 ε−2))2C3 .

(341)

By Proposition 4.24, Assumption (2.4), and the bound (339), the number of elementary gates used to construct
Rh is estimated by at most

16186K3(max{I1, . . . , Ik}
)3
d3(n+m+ 1)3 ≤ 16186(C2d)3d3 (log2(2734c4d9ε−4)

)3
. (342)

Hence, summing up (341) and (342), the number of elementary gates used to construct quantum circuit A is at
most

NA ≤ C3d
C3(log2(2532c2d

9
2 ε−2))2C3 + 16186(C2d)3d3 (log2(2734c4d9ε−4)

)3
. (343)

Next, we count the number of elementary gates used in line 7 of Algorithm 1, which by Remark 2.21 Item 2.
coincides with the number of elementary gates used to construct the quantum circuit QktA in the Modified IQAE
algorithm. Note that this number is also the number of elementary gates used in Algorithm 1. Using (322) and
(335), the number s−1 is bounded by

s−1 =
(
6ε−1(C2

2d
22n1+1)3) 1

2 ≤
√

6ε− 1
2C2d

(
23+log2(6cd

5
2 ε−1)

) 3
2

= 2
13
2 32C2c

3
2 d

19
4 ε−2. (344)

Thus, by using Proposition 2.20 Item 3. (with A ← A, ε ← εs/12, n ← N − 1, and N ← NA in the Notation
of Proposition 2.20) together with (340) and (343), we conclude that the number of elementary gates used in
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Algorithm 1 is bounded by
π

4 εs12
(8N2 + 23 +NA)

≤ 2
13
2 33πC2c

3
2 d

19
4 ε−3[8(24C2d

2 log2(2734c4d9ε−4)
)2 + 23

+ C3d
C3(log2(2532c2d

9
2 ε−2))2C3 + 16186(C2d)3d3 (log2(2734c4d9ε−4)

)3 ]
≤ 2

13
2 33πC4

2C3d
max{10.75,4.75+C3}ε−3[8 · 242(log2(2734c4d9ε−4))2 + 23

+ (log2(2532c2d
9
2 ε−2))2C3 + 16186

(
log2(2734c4d9ε−4)

)3 ]
≤ 2

13
2 33πC4

2C3d
max{10.75,4.75+C3}ε−3

[
8 · 242( log2(2734) + 4 log2(c) + 9

)2(1 + log2(dε−1)
)2 + 23

+
(

log2(2532) + 2 log2(c) + 9
2
)2C3(1 + log2(dε−1))2C3

+ 16186
(

log2(2734) + 4 log2(c) + 9
)3(1 + log2(dε−1)

)3
]

≤ 2
13
2 33π

[
8 · 242 ·

(
(14 + 4 + 9) log2(c)

)2 + 23 +
(
(8.2 + 2 + 4.5) log2(c))2C3

+ 16186
(
(14 + 4 + 9) log2(c)

)3
]
C4

2C3d
max{10.75,4.75+C3}ε−3(1 + log2(dε−1))max{3,2C3}

≤ 2
13
2 33π

[
8 · 242 + 23 + 1 + 16186

]
· C4

2C3
(
27 log2(c)

)max{3,2C3}
dmax{10.75,4.75+C3}ε−3(1 + log2(dε−1))max{3,2C3}

≤ (1.6× 108)C4
2C3

(
27 log2(c)

)max{3,2C3}
dmax{10.75,4.75+C3}ε−3(1 + log2(dε−1))max{3,2C3}

=: C2d
max{10.75,4.75+C3}ε−3(1 + log2(dε−1))max{3,2C3}.

(345)

Lastly, we count the number of applications on A. Using (47) (with ε ← εs/12 and α ← α in the notation
Proposition 2.20) and bound for s−1 (c.f. (344)), the number of applications on A is at most

62·12
εs ln

( 21
α

)
≤ 62 · 12 · 2

13
2 32C2c

3
2 d

19
4 ε−3 ln

( 21
α

)
≤ (6.1× 105)C2c

3
2 d4.75ε−3 ln

( 21
α

)
=: C3d

4.75ε−3 ln
( 21
α

)
. (346)

7 Conclusion
In this paper we have developed with Algorithm 1 a quantum Monte Carlo algorithm to approximately solve
(potentially high-dimensional) Black-Scholes PDEs. The contributions of this paper are the following.

First, our algorithm allows the payoff function to be of general form and is only required to be CPWA. From
a financial point of view, this is not very restrictive, as most European options are CPWA, see also the various
relevant examples provided in Example 2.5. This extends the existing quantum algorithms which typically require
the CPWA payoff function to be either one-dimensional or to be a basket option.

Moreover, we provided a mathematical rigorous error and complexity analysis of Algorithm 1, which we see as
our main contribution of the paper. This allows us to prove that the computational complexity of the algorithm
only grows polynomially in the space dimension d of the PDE and the prescribed reciprocal of the accuracy ε. In
addition, we see that for CPWA payoff functions which are uniformly bounded, the computational running time
of Algorithm 1 scales O(ε−3/2). Therefore, compared to classical (i.e. non quantum-based) Monte Carlo algorithms
which scale O(ε−2), we indeed have proved that Algorithm 1 provides a speed-up.

Furthermore, we have developed a package we named qfinance within the Qiskit framework which can be
used to run Algorithm 1 on a computer for the case d = 1, 2. The OptionPricing class within this package enables
the user to input all parameters of the underlying stocks, to choose the class of CPWA payoff functions within
the ones presented in Example 2.5, as well as to specify to error tolerance level. We numerically demonstrated the
applicability of our algorithm in this low-dimensional setting. Moreover, we have discussed the scalability of our
algorithm by explaining how one could extend our code for the general d-dimensional setting. We also highlighted
that the limitation of the numerical simulation are not caused by our developed Algorithm 1, but due to the limited
quantum computing hardware currently available.

We emphasize that the outline of Algorithm 1, namely to approximate the solution of the Black-Scholes PDE
via its Feynman-Kac representation by first uploading the transition probability of the underlying (log-normally
distributed) SDE, followed by the uploading of the payoff function, and then applying a Quantum amplitude
estimation algorithm to estimate the solution of the PDE is not new and has been already applied, e.g., in [15,
63, 69]. However, so far, no mathematical rigorous error and complexity analysis of such a quantum Monte Carlo
algorithm to solve Black-Scholes PDEs, or any quantum based algorithm to solve PDEs, has been provided in the
literature, which was the main goal of this paper.
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