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ABSTRACT. We introduce a Banach space-valued extension of random feature learning, a data-driven
supervised machine learning technique for large-scale kernel approximation. By randomly initializing the
feature maps, only the linear readout needs to be trained, which reduces the computational complexity
substantially. Viewing random feature models as Banach space-valued random variables, we prove a
universal approximation result in the corresponding Bochner space. Moreover, we derive approximation
rates and an explicit algorithm to learn an element of the given Banach space by such models.

The framework of this paper includes random trigonometric/Fourier regression and in particular random
neural networks which are single-hidden-layer feedforward neural networks whose weights and biases are
randomly initialized, whence only the linear readout needs to be trained. For the latter, we can then lift the
universal approximation property of deterministic neural networks to random neural networks, even within
function spaces over non-compact domains, e.g., weighted spaces, Lp-spaces, and (weighted) Sobolev
spaces, where the latter includes the approximation of the (weak) derivatives.

In addition, we analyze when the training costs for approximating a given function grow polynomially
in both the input/output dimension and the reciprocal of a pre-specified tolerated approximation error.
Furthermore, we demonstrate in a numerical example the empirical advantages of random feature models
over their deterministic counterparts.

1. INTRODUCTION

The random feature model is an architecture for the data-driven approximation of functions between
finite dimensional Euclidean spaces, which was introduced by Rahimi and Recht in [67, 68, 69] building
on earlier instances in [10, 60, 79]. It can be seen as one of the simplest supervised machine learning
technique: By randomly initializing the inner parameters of the model, only the linear readout needs to be
trained, which reduces the computational complexity substantially. In this paper, we introduce a Banach
space-valued extension of this architecture, which returns for every random initialization the correspond-
ing model as an element of the given Banach space, allowing us to learn infinite dimensional objects with
random features. Some examples include, but are not limited to, random trigonometric/Fourier regression
(see [6, 67]), kernel regression tasks (see [5, 8, 67]), Gaussian processes (see [60, 70, 79]), random neural
networks (see [31, 32, 43]), operator-valued kernels (see [4, 17, 56, 82]), and random operator learning
(see [14, 61, 62]).

Originally, random feature learning was introduced to overcome the computational limitations of
traditional kernel methods. These kernel methods map the input data into a high-dimensional feature
space to capture the nonlinear input/output relation. Even though the explicit form of this feature map
is often unknown, one can still compute the Gram matrix whose entries are given as the inner products
of features between all pairs of data points. These inner products can be efficiently calculated using
the “kernel trick”, even for infinite dimensional feature spaces, but the computational costs increase
quadratically in the number of samples. This motivated Rahimi and Recht to explore kernel approximation
through random features (see [67]) and to extend this approach to shallow architectures (see [68, 69]).
Indeed, by replacing the optimization of the non-linear feature maps with randomization, the explicit
calculation of the Gram matrix can be avoided, which reduces the computational complexity and enables
the application of kernel-based methods to large-scale datasets.

Subsequently, different works have contribued to the mathematical theory of random feature learning.
Rahimi and Recht established in [67, 68, 69] the connection to reproducing kernel Hilbert spaces
(RKHS) and proved the approximation rate Op1{

?
Nq, where N P N denotes the number of features.
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Subsequently, [72] showed that J :“ Op
?
N lnpNqq random features lead to an L2-generalization error

of Op1{N1{4q when approximating functions between Euclidean spaces. Moreover, [18] learned random
features with the stochastic gradient descent algorithm instead of least squares, while [45] connected
the infinite-width case to neural tangent kernels (see also [20] for an extension to deep linear neural
networks). In addition, [53, 54] showed precise asymptotics of the generalization error including the
double descent curve as well as a sharp generalization error under a hypercontractivity assumption.

Our first contribution consists of a comprehensive universal approximation theorem for Banach space-
valued random feature models, presented in Theorem 3.2. In contrast to traditional kernel approximation,
this result ensures the convergence of random features to any (random) element of the given Banach
space. Indeed, by assuming that the deterministic feature maps are universal (i.e. the linear span of their
image can approximate any element of the Banach space), we can apply the strong law of large numbers
for Banach space-valued random variables (see [44, Theorem 3.1.10]) to lift the universality to random
feature models. We apply this framework to the following three instances of random feature learning:
Random trigonometric features, random Fourier regression, and random neural networks.

Random neural networks are single-hidden-layer feed-forward neural networks whose weights and
biases inside the activation function are randomly initialized (see the work [43] on extreme learning
machines and in particular the work [32] on random neural networks with ReLU activation). By training
only the linear readout, one avoids the non-convex optimization problem for training deterministic
neural networks (caused by the training of the weights and biases inside the activation function, see [35,
p. 282]) and one can replace the computationally expensive backpropagation (see [58, p. 13]) by, e.g., the
more efficient least squares method. Using the universal approximation property of deterministic neural
networks (first proven in [22, 42], see also [19, 21, 52, 64, 66]), we obtain a universal approximation
theorem for random neural networks which significantly generalizes the results in [32] from the case of
ReLU activation function and L2-spaces (resp. C0-spaces) to more general non-polynomial activation
functions and more general function spaces over non-compact domains, e.g., weighted spaces, Lp-spaces,
and (weighted) Sobolev spaces over unbounded domains, where the latter includes the approximation of
the (weak) derivatives.

Our second contribution are approximation rates for learning a (possibly infinite dimensional) element
of the given Banach space by a random feature model, presented in Theorem 4.5. To this end, we assume
that the element belongs to a specific Barron space in order to represent it as expectation of the random
features (see also [7, 10, 27, 28, 48, 68]). Then, by using a symmetrization argument with Rademacher
averages and the concept of Banach space types, we obtain the desired approximation rates. In L2-spaces,
these rates allow us then to derive a generalization error for learning via the least squares method.

As a corollary, we obtain approximation rates and generalization errors for learning a function by a
random neural network, which turn out to be similar to the approximation rates for deterministic neural
networks (see e.g. [9, 10, 13, 23, 24, 49, 55, 64, 75]). To this end, we use the ridgelet transform (see [16])
and its distributional extension (see [76]) to represent the function to be approximated as expectation of
a random neuron. This approach generalizes the approximation rates and generalization errors in [32,
Section 4.2] from random neural networks with ReLU activation to more general activation functions
and by including the approximation of the (weak) derivatives. In addition, we analyze the situation
when random neural networks overcome the curse of dimensionality in the sense that the computational
costs (measured as number of neurons) grow polynomially in both the input/output dimensions and the
reciprocal of a pre-specified tolerated approximation error.

The theoretical foundations of this paper are also relevant in scientific computing. In particular,
random neural networks have been successfully applied for solving partial differential equations (PDEs)
in mathematical physics (see [25, 26, 78, 81]), for quantum neural networks and quantum reservoirs
(see [34]), for solving the Black-Scholes PDE in mathematical finance (see [31]), for optimal stopping
(see [40]), for learning the hedging strategy via Wiener-Ito chaos expansion (see [63]), for solving
path-dependent PDEs in the context of rough volatility (see [46]), for pricing American options (see [80]),
and for solving non-linear parabolic PDEs in finance by the random deep splitting method (see [65]).

We complement these numerical examples by learning the heat equation, which shows the empirical
advantages of random feature learning over their deterministic counterparts.

1.1. Outline. In Section 2, we introduce a Banach space-valued extension of random feature learning.
In Section 3, we show a universal approximation result for random feature models, which is applied to
random trigonometric/Fourier features and random neural networks, followed by some approximation
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rates in Section 4. In Section 5, we use the least squares method to learn a random feature model and
prove a generalization error. In Section 6, we provide a numerical example, while all proofs are given in
Section 7-10.

1.2. Notation. As usual, N :“ t1, 2, 3, ...u and N0 :“ N Y t0u denote the sets of natural numbers,
while R and C (with imaginary unit i :“

?
´1 P C) represent the sets of real and complex numbers,

respectively. In addition, we define rrs :“ min tk P N0 : k ě ru for all r P r0,8q. Furthermore, for
any z P C, we denote its real and imaginary part as Repzq and Impzq, respectively, whereas its complex
conjugate is defined as z :“ Repzq ´ Impzqi.

Moreover, for any m P N, we denote by Rm (and Cm) the m-dimensional (complex) Euclidean
space, equipped with the norm }u} “

a

řm
i“1 |ui|2, where we define Repzq :“ pRepz1q, ...,RepzmqqJ

for z :“ pz1, ..., zmqJ P Cm. In addition, for any m,n P N, we denote by Rmˆn the vector space of
matrices A :“ pai,jq

j“1,...,n
i“1,...,m P Rmˆn, equipped with the matrix 2-norm }A} “ supxPRn, }x}ď1 }Ax},

where Im P Rmˆm represents the identity matrix.
In addition, for a metric space pΘ, dΘq and a Banach space pX, } ¨ }Xq, we denote by C0pΘ;Xq the

vector space of continuous maps g : Θ Ñ X , equipped with the topology of compact convergence (see
[59, p. 283]), while BpΘq is the Borel σ-algebra of pΘ, dΘq. Moreover, du : LpUq Ñ r0,8s denotes the
Lebesgue measure on U , with LpUq being the σ-algebra of Lebesgue-measurable subsets of U P BpRmq,
where a property is said to hold almost everywhere (a.e.) if it holds everywhere except on a set of
Lebesgue measure zero.

Furthermore, for every fixed m, d P N, k P N0, U Ď Rm (open, if k ě 1), and p P r1,8q, we
introduce the following function spaces:

‚ CkpU ;Rdq denotes the vector space of k-times continuously differentiable functions f : U Ñ Rd

such that the partial derivative U Q u ÞÑ Bαfpuq :“ B|α|f

Bu
α1
1 ¨¨¨Buαmm

puq P Rd is continuous for all

α P Nm0,k :“ tα :“ pα1, ..., αmq P Nm0 : |α| :“ α1 ` ...` αm ď ku. If m “ 1, we denote the

derivatives by f pjq :“ Bjf
Buj

: U Ñ Rd, j “ 0, ..., k.
‚ Ckb pU ;Rdq denotes the vector space of functions f P CkpU ;Rdq such that Bαf : U Ñ Rd is

bounded for all α P Nm0,k. Then, the norm }f}Ckb pU ;Rdq :“ maxαPNm0,k supuPU }Bαfpuq} turns

Ckb pU ;Rdq into a Banach space. Note that for k “ 0 and U Ă Rm compact, we obtain the
Banach space of continuous functions pC0pU ;Rdq, } ¨ }C0pU ;Rdqq equipped with the supremum
norm }f}C0pU ;Rdq :“ }f}C0

b pU ;Rdq “ supuPU }fpuq}.
‚ Ckpol,γpU ;Rdq, with γ P r0,8q, denotes the vector space of functions f P CkpU ;Rq such that

}f}Ckpol,γpU ;Rdq :“ maxαPNm0,k supuPU
}Bαfpuq}

p1`}u}qγ
ă 8.

‚ Ckb pU ;Rdq
γ
, with γ P p0,8q, is defined as the closure of Ckb pU ;Rdq with respect to

} ¨ }Ckpol,γpU ;Rdq. Then, pCkb pU ;Rdq
γ
, } ¨ }Ckpol,γpU ;Rdqq is by definition a Banach space. If

U Ď Rm is bounded, then Ckb pU ;Rdq
γ

“ Ckb pU ;Rdq. Otherwise, f P Ckb pU ;Rdq
γ

if and only
if f P CkpU ;Rdq and limrÑ8 maxαPNm0,k supuPU, }u}ěr

}Bαfpuq}

p1`}u}qγ
“ 0 (see [64, Lemma 4.1]).

‚ C8
c pU ;Rdq, with U Ď Rm open, denotes the vector space of smooth functions f : U Ñ Rd with

supppfq Ď U , where supppfq is defined as the closure of tu P U : fpuq ‰ 0u in Rm.
‚ SpRm;Cq denotes the Schwartz space consisting of smooth functions f : Rm Ñ C such

that maxαPNm0,n supuPRm
`

1 ` }u}2
˘n

|Bαfpuq| ă 8, for all n P N0. Moreover, its dual space
S 1pRm;Cq consists of continuous linear functionals T : SpRm;Cq Ñ C called tempered distri-
butions (see [30, p. 332]). For example, every f P Ckpol,γpRmq defines a tempered distribution
`

g ÞÑ Tf pgq :“
ş

R fpuqgpuqdu
˘

P S 1pRm;Cq (see [30, Equation 9.26]).
‚ S0pR;Cq Ď SpR;Cq denotes the vector subspace of functions f P SpR;Cq such that
ş

R u
jfpuqdu “ 0 for all j P N0 (see [36, Definition 1.1.1]).

‚ LppU,Σ, µ;Rdq, with (possibly non-finite) measure space pU,Σ, µq, denotes the vector
space of (equivalence classes of) Σ{BpRdq-measurable functions f : U Ñ Rd such that
}f}LppU,Σ,µ;Rdq :“

`ş

U }fpuq}pµpduq
˘1{p

ă 8. Then, pLppU,Σ, µ;Rdq, } ¨ }LppU,Σ,µ;Rdqq is
a Banach space (see [73, Chapter 3]).
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‚ W k,ppU,LpUq, du;Rdq denotes the Sobolev space of (equivalence classes of) k-times weakly
differentiable functions f : U Ñ Rd such that Bαf P LppU,LpUq, du;Rdq for all α P Nm0,k. Then,

the norm }f}Wk,ppU,LpUq,du;Rdq :“
`
ř

αPNm0,k

ş

U }Bαfpuq}pdu
˘1{p turns W k,ppU,LpUq, du;Rdq

into a Banach space (see [2, Chapter 3]).
‚ W k,ppU,LpUq, w;Rdq, with LpUq{BpRq-measurable w : U Ñ r0,8q, denotes the weighted

Sobolev space of (equivalence classes of) k-times weakly differentiable functions f : U Ñ Rd
such that Bαf P LppU,LpUq, wpuqdu;Rdq for all α P Nm0,k. Hereby, w : U Ñ r0,8q is
called a weight if it is a.e. strictly positive. In this case, the norm }f}Wk,ppU,LpUq,w;Rdq :“
`
ř

αPNm0,k

ş

U }Bαfpuq}pwpuqdu
˘1{p turns W k,ppU,LpUq, w;Rdq into a Banach space (see [50,

p. 5]). Moreover, we define LppU,LpUq, w;Rdq :“ W 0,ppU,LpUq, w;Rdq.
Moreover, we follow [30, Chapter 7] and define the (multi-dimensional) Fourier transform of any function
f P L1pRm,LpRmq, du;Cdq as

Rm Q ξ ÞÑ pfpξq :“

ż

Rm
e´iξJufpuqdu P Cd. (1)

Then, by using [44, Proposition 1.2.2], it holds that

sup
ξPRm

›

›

›

pfpξq

›

›

›
“ sup

ξPRm

›

›

›

›

ż

Rm
e´iξJufpuqdu

›

›

›

›

ď

ż

Rm
}fpuq}du “ }f}L1pRm,LpRmq,du;Rdq. (2)

In addition, the Fourier transform of any tempered distribution T P S 1pRm;Cq is defined by pT pgq :“
T ppgq, for g P SpRm;Cq (see [30, Equation 9.28]).

Furthermore, for r P r1,8q, a probability space pΩ,F ,Pq, and a Banach space pX, } ¨ }Xq, we denote
by LrpΩ,F ,P;Xq the Bochner space of (equivalence classes of) strongly pP,Fq-measurable maps
F : Ω Ñ X such that }F }LrpΩ,F ,P;Xq :“ E

“

}F }rX

‰1{r
ă 8. This norm turns LrpΩ,F ,P;Xq into a

Banach space. For more details, we refer to [44, Section 1.2.b].
Moreover, we use the Landau notation: an “ Opbnq (as n Ñ 8) if lim supnÑ8

|an|

|bn|
ă 8.

2. RANDOM FEATURE LEARNING

We now present a Banach space-valued extension of the random feature learning architecture introduced
by Rahimi and Recht in [67, 68, 69]. Our approach imposes no specific structure on the random features
(e.g. sine/cosine or Fourier), nor does it assume that the Banach space is a particular function space.

To this end, we fix throughout this paper a probability space pΩ,F ,Pq, a metric space pΘ, dΘq

representing the parameter space, and a separable Banach space pX, } ¨ }Xq over a field K (either
K :“ R or K :“ C), which contains the elements to learn. Moreover, we assume the existence of an
independent identically distributed (i.i.d.) sequence of Θ-valued random variables pθnqnPN : Ω Ñ Θ.
Then, by inserting these random initializations pθnqnPN into the feature maps taken from a given set
G Ď C0pΘ;Xq, we only need to train the linear readout that is assumed to be measurable with respect to
the σ-algebra Fθ :“ σ ptθn : n P Nuq.

Definition 2.1. For given G Ď C0pΘ;Xq, a random feature model (RF) (with respect to G) is of the form

Ω Q ω ÞÑ Gpωq :“
N
ÿ

n“1

ynpωqgnpθnpωqq P X (3)

with respect to some N P N denoting the number of features, where g1, ..., gN P G are the feature maps,
and where the linear readouts y1, ..., yN : Ω Ñ K are assumed to be Fθ{BpKq-measurable.

For a given set of feature maps G Ď C0pΘ;Xq, we denote by RG the set of all random feature models
(RFs) of the form (3).

Remark 2.2. Let us briefly explain how the random feature modelG P RG in (3) can be implemented. For
the random initialization of pθnqn“1,...,N , we draw some ω P Ω and fix the values of θ1pωq, ..., θN pωq P Θ.
Thus, by using that y1, ..., yN : Ω Ñ K are Fθ{BpKq-measurable, the training of G P RG consists of
finding the optimal y1pωq, ..., yN pωq P K given g1pθ1pωqq, ..., gN pθN pωqq P X . This can be achieved,
e.g., by the least squares method.
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In the following, we give an overview of several applications of this general framework, including
random trigonometric/Fourier regression and random neural networks.

2.1. Random trigonometric features. Introduced in [67, 68], random trigonometric regression uses
trigonometric functions (i.e. sines and cosines) in the feature maps. More precisely, for a compact subset
U Ă Rm, we consider the real Banach space pX, } ¨ }Xq :“ pC0pUq, } ¨ }C0pUqq and the parameter space
Θ :“ Rm, where pθnqnPN : Ω Ñ Rm denotes the i.i.d. sequence. Then, by choosing G :“

␣

Rm Q ϑ ÞÑ

h
`

ϑJ ¨
˘

P C0pUq : h P tcos, sinu
(

, we obtain the following random trigonometric feature model.1

Definition 2.3. A random trigonometric feature model (RTF) is of the form

Ω Q ω ÞÑ Gpωq :“
N
ÿ

n“1

ˆ

yp1q
n pωq cos

`

θnpωqJ¨
˘

` yp2q
n pωq sin

`

θnpωqJ¨
˘

˙

P C0pUq (4)

with respect to some N P N denoting the number of trigonometric features, where the linear readouts
y

p1q

1 , ..., y
p1q

N , y
p2q

1 , ..., y
p2q

N : Ω Ñ R are assumed to be Fθ{BpRq-measurable.

We denote by RT U,1 the set of all RTFs of the form (4). Moreover, we could also consider multidi-
mensional extensions RT U,d with Rd-valued linear readouts.

2.2. Random Fourier features. Introduced in [6, 67, 68], random Fourier regression uses the Fourier
transform as feature map. For a compact subset U Ă Rm, we consider the complex Banach space
pX, } ¨ }Xq :“ pC0pU ;Cq, } ¨ }C0pU ;Cqq and the parameter space Θ :“ Rm, where pθnqnPN : Ω Ñ Rm

denotes the i.i.d. sequence. Moreover, we let G consist of the single feature map Rm Q ϑ ÞÑ exp
`

iϑJ ¨
˘

P

C0pU ;Cq to obtain random Fourier features.2

Definition 2.4. A random Fourier feature model (RFF) is of the form

Ω Q ω ÞÑ Gpωq :“
N
ÿ

n“1

ynpωq exp
`

iθJ
n ¨
˘

P C0pU ;Cq (5)

with respect to someN P N denoting the number of Fourier features, where the linear readouts y1, ..., yN :
Ω Ñ C are assumed to be Fθ{BpCq-measurable.

We denote by RFU,1 the set of RFFs of the form (5). Moreover, we could consider vector-valued
versions RFU,d or Banach spaces containing C0pU ;Cq (e.g. certain L2-spaces).

2.3. Random neural networks. As third particular instance of random feature learning, we consider
random neural networks that are defined as single-hidden-layer feed-forward neural networks whose
weights and biases inside the activation function are randomly initialized. Hence, only the linear readout
needs to be trained (see [31, 43]).

To this end, we fix the input and output dimension m, d P N, the order of differentiability k P

N0, the domain U Ď Rm (open, if k ě 1), and some γ P p0,8q. Then, we consider the Banach
space pX, } ¨ }Xq :“ pCkb pU ;Rdq

γ
, } ¨ }

Ckb pU ;Rdq
γ q introduced in Section 1.2 and the parameter space

Θ :“ Rm ˆ R, where pθnqnPN :“ pan, bnqnPN : Ω Ñ Rm ˆ R denotes the i.i.d. sequence of random
initializations, which are used for the network weights and biases. Hence, by choosing deterministic
(i.e. fully trained) neural networks as feature maps, i.e. by setting G :“

␣

Rm ˆ R Q pϑ1, ϑ2q ÞÑ

eiρ
`

ϑJ
1 ¨ ´ϑ2

˘

P Ckb pU ;Rdq
γ
: i “ 1, ..., d

(

, we obtain random neural networks as particular instance of
random feature learning.3

1The element h
`

ϑJ
¨
˘

denotes the function U Q u ÞÑ h
`

ϑJu
˘

P R.
2The element exp

`

iϑJ
¨
˘

P C0
pU ;Cq denotes the function U Q u ÞÑ exp

`

iϑJu
˘

P C.
3The element yρ

`

ϑJ
1 ¨ ´ϑ2

˘

P Ckb pU ;Rdq
γ

denotes the function U Q u ÞÑ yρ
`

ϑJ
1 u´ϑ2

˘

P Rd, where y P Rd. Moreover,
ei P Rd denotes the i-th unit vector of Rd.
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Definition 2.5. A random neural network (RN) is of the form

Ω Q ω ÞÑ Gpωq “

N
ÿ

n“1

ynpωqρ
`

anpωqJ ¨ ´bnpωq
˘

P Ckb pU ;Rdq
γ

(6)

with respect to some N P N denoting the number of neurons and ρ P Ckb pRq
γ

representing the activation
function. Hereby, a1, ..., aN : Ω Ñ Rm and b1, ..., bN : Ω Ñ R are the random network weights and
random network biases, respectively, and the linear readouts y1, ..., yN : Ω Ñ Rd are assumed to be
Fa,b{BpRdq-measurable, with Fa,b :“ σ ptan, bn : n P Nuq.

For a given activation function ρ P Ckb pRq
γ
, we denote by RN ρ

U,d the set of all random neural networks
(RNs) of the form (6). We refer to Remark 2.2 for the implementation and training of such a random
neural network.

2.4. Further random feature models. Besides the examples in Section 2.1-2.3, the random feature
learning model could also be applied, e.g., to kernel regression tasks (see [5, 8, 67]), Gaussian processes
(see [60, 70, 79]), and operator learning (see [14, 57, 61]). However, in this paper, we focus on the three
particular instances in Section 2.1-2.3.

3. UNIVERSAL APPROXIMATION

In this section, we present our universal approximation results for the Banach space-valued random
feature models introduced in Definition 2.1. To this end, we consider for every r P r1,8q the Bochner
(sub-)space LrpΩ,Fθ,P;Xq Ď LrpΩ,F ,P;Xq of Fθ-strongly measurable maps F : Ω Ñ X such that
E r}F }rXs

1{r
ă 8. For more details on Bochner spaces, we refer to [44, Section 1.2.b].

Moreover, we impose the following condition on the distribution of the i.i.d. sequence of random
initializations pθnqnPN : Ω Ñ Θ inserted in the feature maps G Ď C0pΘ;Xq.

Assumption 3.1 (Full support). Let pθnqnPN : Ω Ñ Θ be an i.i.d. sequence such that for every ϑ P Θ
and r ą 0 it holds that P rtω P Ω : dΘpθ1pωq, ϑq ă rus ą 0.

In addition, we assume that the feature maps G Ď C0pΘ;Xq are universal in the sense that the linear
span spanKpGpΘqq :“

␣
řN
n“1 yngnpϑnq : N P N, g1, ..., gN P G, ϑ1, ..., ϑN P Θ, y1, ..., yN P K

(

over a field K is dense in X . Then, by using the law of large numbers for Banach space-valued random
variables (see [44, Theorem 3.3.10]), random feature models inherit the universality from the deterministic
feature maps. The proof is given in Section 7.1.

Theorem 3.2 (Universal approximation). Let Assumption 3.1 hold and let G Ď C0pΘ;Xq such that
spanKpGpΘqq is dense in X . Moreover, let F P LrpΩ,Fθ,P;Xq for some r P r1,8q. Then, for every
ε ą 0 there exists some G P RG X LrpΩ,Fθ,P;Xq such that

}F ´G}LrpΩ,F ,P;Xq :“ E r}F ´G}rXs
1
r ă ε.

In particular, every element x P X can be approximated arbitrarily well by a random feature model
G P RG with respect to the Bochner norm } ¨ }LrpΩ,F ,P;Xq.

Now, we apply Theorem 3.2 to random trigonometric/Fourier regression and random neural networks
considered in Section 2.1-2.3. The corresponding proofs are given in Section 7.1.

3.1. Random trigonometric features. Assume the setting of Section 2.1 with Banach space pX, } ¨

}Xq :“ pC0pUq, } ¨ }C0pUqq and parameter space Θ :“ Rm, where U Ď Rm is compact. Since
spanRpGpΘqq “ spanR

`␣

U Q u ÞÑ h
`

ϑJu
˘

P R : h P tcos, sinu, ϑ P Rm
(˘

forms the trigonometric
algebra on U which by the Stone-Weierstrass theorem is dense in C0pUq, we obtain the following
corollary of Theorem 3.2.

Corollary 3.3 (Universal approximation). Let Assumption 3.1 hold and let F P LrpΩ,Fθ,P;C0pUqq

for some r P r1,8q. Then, for every ε ą 0 there exists a random trigonometric feature model G P

RT U,1 X LrpΩ,Fθ,P;C0pUqq such that

}F ´G}LrpΩ,F ,P;C0pUqq :“ E
”

}F ´G}rC0pUq

ı
1
r

ă ε.
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3.2. Random Fourier features. Assume the setting of Section 2.1 with Banach space pX, } ¨ }Xq :“
pC0pU ;Cq, } ¨ }C0pU ;Cqq and parameter space Θ :“ Rm, where U Ď Rm is compact. Then, by using that
spanCpGpΘqq “ spanC

`␣

U Q u ÞÑ exp
`

iϑJu
˘

P C : ϑ P Rm
(˘

is dense in C0pU ;Cq, we obtain the
following corollary.

Corollary 3.4 (Universal approximation). Let Assumption 3.1 hold and let F P LrpΩ,Fθ,P;C0pU ;Cqq

for some r P r1,8q. Then, for every ε ą 0 there exists a random Fourier feature model G P RFU,1 X

LrpΩ,Fθ,P;C0pU ;Cqq such that

}F ´G}LrpΩ,F ,P;C0pU ;Cqq :“ E
”

}F ´G}rC0pU ;Cq

ı
1
r

ă ε.

3.3. Random neural networks. In view of Theorem 3.2, we obtain a universal approximation result for
random neural networks from the universal approximation property of deterministic (i.e. fully trained)
neural networks. To this end, we fix the input and output dimension m, d P N and consider the following
type of function spaces pX, } ¨ }Xq.

Assumption 3.5. For k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q, let pX, } ¨ }Xq be a Banach
space consisting of functions f : U Ñ Rd such that the restriction map pCkb pRm;Rdq, }¨}Ckpol,γpRm;Rdqq Q

f ÞÑ f |U P X is a continuous dense embedding.

Example 3.6 ([64, Example 2.6]). The following function spaces pX, } ¨ }Xq satisfy Assumption 3.5:
(i) The Ckb -space pX, } ¨ }Xq :“ pCkb pU ;Rdq, } ¨ }Ckb pU ;Rdqq if U Ď Rm is bounded.

(ii) The weighted Ck-space pX, } ¨ }Xq :“ pCkb pU ;Rdq
γ
, } ¨ }

Ckb pU ;Rdq
γ q.

(iii) The Lp-space pX, } ¨ }Xq :“ pLppU,BpUq, µ;Rdq, } ¨ }LppU,BpUq,µ;Rdqq if p P r1,8q and µ :

BpUq Ñ r0,8q is a Borel measure with
ş

U p1 ` }u}qγpµpduq ă 8.
(iv) The Sobolev space pX, } ¨ }Xq :“ pW k,ppU,LpUq, du;Rdq, } ¨ }Wk,ppU,LpUq,du;Rdqq if p P r1,8q

and U Ď Rm is bounded having the segment property.4

(v) The weighted Sobolev space pX, } ¨ }Xq :“ pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq if
p P r1,8q, U Ď Rm has the segment property4, the weight w : U Ñ r0,8q is bounded,
infuPB wpuq ą 0 for all bounded B Ď U , and

ş

U p1 ` }u}qγpwpuqdu ă 8.
For the precise definition of these function spaces, we refer to Section 1.2.

Moreover, by using the parameter space Θ :“ Rm ˆ R we assume that the random initializations
pθnqnPN :“ pan, bnqnPN : Ω Ñ Rm ˆ R have full support (see also Assumption 3.1).

Assumption 3.7 (Full support). Let pan, bnqnPN : Ω Ñ Rm ˆ R be i.i.d. such that for every pa, bq P

Rm ˆ R and r ą 0 we have P rtω P Ω : }pa1pωq, b1pωqq ´ pa, bq} ă rus ą 0.

Then, by using the universal approximation property of deterministic neural networks, i.e. that
spanRpGpΘqq “ spanR

`␣

U Q u ÞÑ eiρ
`

ϑJ
1 u ´ ϑ2

˘

P Rd : pϑ1, ϑ2q P Θ, i “ 1, ..., d
(˘

with non-

polynomial activation function ρ P Ckb pRq
γ

is dense in X (see [64, Theorem 2.8]), we obtain a universal
approximation result for random neural networks.

Corollary 3.8 (Universal approximation). Let Assumption 3.5+3.7 hold and let ρ P Ckb pRq
γ

be non-
polynomial. Moreover, let F P LrpΩ,Fa,b,P;Xq for some r P r1,8q. Then, for every ε ą 0 there exists
some random neural network G P RN ρ

U,d X LrpΩ,Fa,b,P;Xq such that

}F ´G}LrpΩ,F ,P;Xq :“ E r}F ´G}rXs
1
r ă ε.

In particular, every function f P X can be approximated arbitrarily well by a random neural network
G P RG with respect to the Bochner norm } ¨ }LrpΩ,F ,P;Xq.

Remark 3.9. Corollary 3.8 extends the universal approximation results in [68, Theorem 3.1], [39,
Corollary 2.3], [38, Theorem 2.4.3], and [31, Corollary 3] from particular activation functions and
L2-spaces (resp. C0-spaces) to more general non-polynomial activation functions and function spaces
over non-compact domains, e.g., weighted Sobolev spaces.

4An open subset U Ď Rm is said to have the segment property if for every u P BU :“ UzU there exists an open subset
V Ď Rm with u P V and some vector y P Rmzt0u such that for every z P U X V and t P p0, 1q it holds that z ` ty P U (see
[2, p. 54]).
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4. APPROXIMATION RATES

In this section, we derive some approximation rates to learn an element x P X by a random feature
model, which relates the number of features needed for a pre-given approximation error. To this end, we
assume that the set of feature maps G :“ tg1, ..., geu consists of finitely many maps g1, ..., ge : Θ Ñ X ,
where e P N.

In order to derive the approximation rates, we recall the notion of the type of a Banach space pX, } ¨ }Xq

and refer to [3, Section 6.2] and [51, Chapter 9] for more details.

Definition 4.1. A Banach space pX, } ¨ }Xq is called of type t P r1, 2s if there exists a constant CX ą 0
such that for every N P N, pxnqn“1,...,N Ď X , and every Rademacher sequence5 pϵnqn“1,...,N on a
(possibly different) probability space prΩ, rF , rPq it holds that

rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnxn

›

›

›

›

›

t

X

fi

fl

1
t

ď CX

˜

N
ÿ

n“1

}xn}tX

¸

1
t

.

Remark 4.2. Every Banach space pX, } ¨ }Xq is of type t “ 1 (with CX “ 1), every Hilbert space
pX, } ¨ }Xq is of type t “ 2 (with CX “ 1), and every Lp-space as well as (weighted) W k,p-Sobolev space
(with p P r1,8q and k P N) are of type t “ minp2, pq (with constant CX depending only on p P r1,8q),
see [3, Remark 6.2.11] and [64, Lemma 4.9].

In addition, we define the Barron space BrG,θpXq as all elements x P X having a representation as
expectation of the random feature maps, which is similar to the Barron spaces introduced in [7, 10, 27,
28, 48, 68] in the context of neural networks.

Definition 4.3. For r P r1,8q, e P N, and G :“ tg1, ..., geu, we define the Barron space BrG,θpXq Ď X
as the subset of all elements x P X such that

}x}BrG,θpXq :“ inf
y:ΘÑRe

E

«
›

›

›

›

›

e
ÿ

i“1

yipθ1qgipθ1q

›

›

›

›

›

r

X

ff
1
r

ă 8, (7)

where the infimum is taken over all BpΘq{BpReq-measurable maps y :“ py1, ..., yeq
J : Θ Ñ Re

satisfying x “ E r
ře
i“1 yipθ1qgipθ1qs. Then, we equip the vector space BrG,θpXq with the Barron norm

} ¨ }BrG,θpXq defined in (7).

Remark 4.4. Note that } ¨ }BrG,θpXq satisfies the norm axioms. Moreover, by using Hölder’s inequality, we
observe that Br2G,θpXq Ď Br1G,θpXq for all 1 ď r1 ď r2 ă 8.

Now, we are able to derive the following approximation rates which are based on Rademacher averages
and the Banach space type. The proof can be found in Section 8.1.

Theorem 4.5 (Approximation rates). Let pX, } ¨ }Xq be a separable Banach space of type t P r1, 2s

(with constant CX ą 0), let pθnqnPN : Ω Ñ Θ be i.i.d., let G :“ tg1, ..., geu consist of BpΘq{BpXq-
measurable maps g1, ..., ge : Θ Ñ X , and let r P r1,8q. Then, there exists a constant Cr,t ą 0
(depending only on r P r1,8q and t P r1, 2s) such that for every x P BrG,θpXq and N P N there exists
GN P RG X LrpΩ,Fθ,P;Xq with N features satisfying

E r}x´GN}rXs
1
r ď Cr,tCX

}x}BrG,θpXq

N
1´ 1

minpr,tq

. (8)

Hence, Theorem 4.5 relates the approximation error (right-hand side of (8)) to the number of features
N P N needed for the random feature model GN P RG X LrpΩ,Fθ,P;Xq.

In the following, we apply Theorem 4.5 to random trigonometric/Fourier regression and random neural
networks considered in Section 2.1-2.3. The proofs are given in Section 8.2.

5A Rademacher sequence pϵnqn“1,...,N on prΩ, rF , rPq are i.i.d. random variables with rPrϵ1 “ ˘1s “ 1{2.
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4.1. Random trigonometric features. To obtain rates with random trigonometric regression in a
weighted Sobolev space W k,ppU,LpUq, wq, we fix the following quantities.

Assumption 4.6. Let k P N0, p, r P r1,8q, U Ď Rm (open, if k ě 1), and let w : U Ñ r0,8q be a
weight satisfying wpUq :“

ş

U wpuqdu ă 8.

Moreover, we let Θ :“ Rm be the parameter space and consider the two features maps Rm Q ϑ ÞÑ

g1pϑq :“ cos
`

ϑJ ¨
˘

P W k,ppU,LpUq, wq and Rm Q ϑ ÞÑ g2pϑq :“ sin
`

ϑJ ¨
˘

P W k,ppU,LpUq, wq. In
addition, we impose the following condition on pθnqnPN.

Assumption 4.7. Let pθnqnPN : Ω Ñ Rm be an i.i.d. sequence of random variables, each of them having
a strictly positive probability density function pθ : Rm Ñ p0,8q.

Then, we use the real and imaginary part of the Fourier transform as linear readouts to obtain a
representation of a given f P L1pRm,LpRmq, duq in terms of the random sine and cosine features. This
then implies the following result as a corollary of Theorem 4.5.

Corollary 4.8 (Approximation rates). Let Assumption 4.6+4.7 hold. Then, there exists a constant Cp,r ą

0 (depending only on p, r P r1,8q) such that for every f P W k,ppU,LpUq, duq X L1pRm,LpRmq, duq

with Cf :“
´

ş

Rm
| pfpϑq|rp1`}ϑ}2q

kr{2

pθpϑqr´1 dϑ
¯1{r

ă 8 and every N P N there exists some random trigonomet-

ric feature model GN P RT U,1 X LrpΩ,Fθ,P;W k,ppU,LpUq, wqq with N features satisfying

E
”

}f ´GN}rWk,ppU,LpUq,wq

ı
1
r

ď Cp,r
m

k
pwpUq

1
p

p2πqm

Cf

N
1´ 1

minp2,p,rq

.

4.2. Random Fourier features. For approximation rates with random Fourier regression in a weighted
Sobolev space as above, we let Θ :“ Rm be the parameter space and consider the single feature map
Rm Q ϑ ÞÑ gpϑq :“ exp

`

iϑJ ¨
˘

P W k,ppU,LpUq, w;Cq.

Corollary 4.9 (Approximation rates). Let Assumption 4.6+4.7 hold. Then, there exists a constant
Cp,r ą 0 (depending only on p, r P r1,8q) such that for every f P W k,ppU,LpUq, w;Cq X

L1pRm,LpRmq, du;Cq with Cf :“
´

ş

Rm
| pfpϑq|rp1`}ϑ}2q

kr{2

pθpϑqr´1 dϑ
¯

1
r

ă 8 and every N P N there ex-

ists some random Fourier feature model GN P RFU,1 X LrpΩ,Fθ,P;W k,ppU,LpUq, w;Cqq with N
features satisfying

E
”

}f ´GN}rWk,ppU,LpUq,w;Cq

ı
1
r

ď Cp,r
m

k
pwpUq

1
p

p2πqm

Cf

N
1´ 1

minp2,p,rq

.

Remark 4.10. For k “ 0 and p “ r “ 2, the approximation rate in Corollary 4.8+4.9 coincide with the
rate O

`

1{
?
N
˘

proven in [68] (see also [10]).

4.3. Random neural networks. Finally, we apply Theorem 4.5 to obtain some approximation rates
for learning a given function f : U Ñ Rd by a random neural network in a weighted Sobolev space
W k,ppU,LpUq, w;Rdq, where we fix the following quantities.

Assumption 4.11. Let k P N0, p, r P r1,8q, U Ď Rm (open, if k ě 1), γ P r0,8q, and let w : U Ñ

r0,8q be a weight.

Moreover, we recall that Θ :“ RmˆR and impose the following condition on the random initializations
pθnqnPN :“ pan, bnqnPN : Ω Ñ Rm ˆ R (see also Assumption 4.7).

Assumption 4.12. Let pan, bnqnPN : Ω Ñ Rm ˆ R be an i.i.d. sequence, each of the random variables
with strictly positive probability density function pa,b : Rm ˆ R Ñ p0,8q.

To obtain rates for random neural networks, we apply the reconstruction formula in [76, Theorem 5.6]
to express a given function as expectation of a random neuron. To this end, we consider admissible pairs
pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq of a ridgelet function ψ and an activation function ρ, which is a special
case of [76, Definition 5.1] (see also [16]).
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Definition 4.13. A pair pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq is called m-admissible if the Fourier transform
xTρ P S 1pR;Cq of ρ P Ckpol,γpRq (in the sense of distribution) coincides6 on Rzt0u with a locally integrable
function f

xTρ
: Rzt0u Ñ C such that

Cpψ,ρq
m :“ p2πqm´1

ż

Rzt0u

pψpξqf
xTρ

pξq

|ξ|m
dξ P Czt0u.

Remark 4.14. If pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq is m-admissible, then ρ P Ckpol,γpRq has to be non-
polynomial (see [64, Remark 3.2]).

Together with some appropriate ψ P S0pR;Cq, the most common activation functions such as the
sigmoid function and the ReLU function satisfy Definition 4.13.

Example 4.15 ([64, Example 3.3]). Let ψ P S0pR;Cq with non-negative pψ P C8
c pRq and suppp pψq “

rζ1, ζ2s for some 0 ă ζ1 ă ζ2 ă 8. Then, for every m P N and the following activation functions
ρ P Ckpol,γpRq the pair pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq is m-admissible:

(i) The sigmoid function ρpsq :“ 1
1`expp´sq

if k P N0 and γ ě 0.
(ii) The tangens hyperbolicus ρpsq :“ tanhpsq if k P N0 and γ ě 0.

(iii) The softplus function ρpsq :“ lnp1 ` exppsqq if k P N0 and γ ě 1.
(iv) The ReLU function ρpsq “ maxps, 0q if k “ 0 and γ ě 1.

Moreover, there exists a constant Cψ,ρ ą 0 (being independent of m P N) such that for every m P N it
holds that

ˇ

ˇC
pψ,ρq
m

ˇ

ˇ ě Cψ,ρp2π{ζ2qm.

In addition, we follow [16, 76] and define for every ψ P S0pR;Cq the (multi-dimensional) Ridgelet
transform of any function f P L1pRm,LpRmq, du;Rdq as

Rm ˆ R Q pa, bq ÞÑ pRψfqpa, bq :“

ż

Rm
ψ
`

aJu´ b
˘

fpuq}a}du P Cd. (9)

Then, we can apply the reconstruction formula in [76, Theorem 5.6] to obtain a representation of any
sufficiently integrable function as expectation of a random neuron.

Proposition 4.16 (Reconstruction, [64, Proposition 3.3]). Let Assumption 4.11+4.12 hold, let
pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq be m-admissible, and let f P L1pRm,LpRmq, du;Rdq with pf P

L1pRm,LpRmq, du;Cdq. Then, for a.e. u P Rm, it holds that

E
„

pRψfqpa1, b1q

pa,bpa1, b1q
ρ
`

aJ
1 u´ b1

˘

ȷ

“

ż

Rm

ż

R
pRψfqpa, bqρ

`

aJu´ b
˘

dbda “ Cpψ,ρq
m fpuq.

Remark 4.17. Recall that the set G consists of the feature maps Rm ˆ R Q pa, bq ÞÑ gipa, bq :“
eiρ

`

aJ ¨´b
˘

P W k,ppU,LpUq, w;Rdq, i “ 1, ..., d. Hence, for every function f P W k,ppU,LpUq, w;Rdq

satisfying the conditions of Proposition 4.16, we choose the linear readout Rm ˆR Q pa, bq ÞÑ ypa, bq :“

pyipa, bqqJ
i“1,...,d :“ Re

ˆ

pRψfqpa,bq

C
pψ,ρq
m pa,bpa,bq

˙

P Rd to obtain E
“
řd
i“1 yipa1, b1qgipa1, b1q

‰

“ f a.e. on U ,

showing that f P BrG,θpW k,ppU,LpUq, w;Rdqq.

In order to extend the reconstruction also to other more general functions, we adapt the Barron spaces
in Definition 4.3 to this setting with ridgelet transform introduced in (9).

Definition 4.18. Let Assumption 4.11+4.12 hold and let ψ P SpR;Cq. Then, we define the Barron-
ridgelet space rBk,r,γψ,a,bpU ;Rdq as vector space of LpUq{BpRdq-measurable functions f : U Ñ Rd such
that

}f}
rBk,r,γψ,a,bpU ;Rdq

:“ inf
h
E

»

–

›

›

›

›

›

›

`

1 ` }a1}2
˘

γ`k
2

`

1 ` |b1|2
˘

γ
2

pa,bpa1, b1q
pRψhqpa1, b1q

›

›

›

›

›

›

rfi

fl

1
r

ă 8,

where the infimum is taken over all functions h P L1pRm,LpRmq, du;Rdq satisfying ph P

L1pRm,LpRmq, du;Cdq and h “ f a.e. on U .

6This means that xTρpgq “
ş

Rzt0u
f
xTρ

pξqgpξqdξ for all g P C8
c pRzt0u;Cq.
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In the following lemma, we show for the set of feature maps G defined in Remark 4.17 that
rBk,r,γψ,a,bpU ;Rdq is a subset of BrG,θpW k,ppU,LpUq, w;Rdqq introduced in Definition 4.3.

Lemma 4.19. Let Assumption 4.11+4.12 hold, let G be as in Remark 4.17, let pψ, ρq P S0pR;Cq ˆ

Ckpol,γpRq, and define C
pγ,pq

U,w ą 0 as in (10). Then, for every f P rBk,r,γψ,a,bpU ;Rdq it holds

that }f}BrG,θpWk,ppU,LpUq,w;Rdqq ď 2
3` 1

p }ρ}Ckpol,γpRq

C
pγ,pq

U,w mk{p

|C
pψ,ρq
m |

}f}
rBk,r,γψ,a,bpU ;Rdq

. In particular, we have

rBk,r,γψ,a,bpU ;Rdq Ď BrG,θpW k,ppU,LpUq, w;Rdqq.

Now, as a corollary of Theorem 4.5, we obtain the following rates to approximate any given function
f P W k,ppU,LpUq, w;Rdq X rBk,r,γψ,a,bpU ;Rdq by a random neural network.

Corollary 4.20 (Approximation rates). Let Assumption 4.11+4.12 hold such that

C
pγ,pq

U,w :“

ˆ
ż

U
p1 ` }u}qγpwpuqdu

˙
1
p

ă 8. (10)

Moreover, let pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq be m-admissible. Then, there exists Cp,r ą 0 (depending

only on p, r P r1,8q) such that for every f P W k,ppU,LpUq, w;Rdq X rBk,r,γψ,a,bpU ;Rdq there exists a
random neural networkGN P RN ρ

U,dXLrpΩ,Fa,b,P;W k,ppU,LpUq, w;Rdqq withN neurons satisfying

E
”

}f ´GN}rWk,ppU,LpUq,w;Rdq

ı
1
r

ď Cp,r}ρ}Ckpol,γpRq

C
pγ,pq

U,w m
k
p

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

}f}
rBk,r,γψ,a,bpU ;Rdq

N
1´ 1

minp2,p,rq

. (11)

Remark 4.21. Theorem 4.20 extends the approximation rates for random neural networks in [32,
Section 4.2] and [31, Theorem 1] from ReLU activation functions and L2-spaces (resp. C0-spaces) to
more general activation functions and weighted Sobolev spaces, where the approximation of the weak
derivatives is now included. Moreover, these rates are analogous to the ones for deterministic neural
networks in [10, 13, 16, 23, 49, 55, 64, 75].

Next, we give sufficient conditions for a function to belong to a Barron-ridgelet space introduced in
Definition 4.18. For example, the solution of the heat equation (with appropriate initial condition) at any
fixed time belongs to such a space (see Corollary 6.2.(ii)).

Proposition 4.22. Let Assumption 4.11 hold, let7 pan, bnqnPN „ pa b t1 be i.i.d., and let ψ P S0pR;Cq

such that ζ1 :“ inf
␣

|ζ| : ζ P suppp pψq
(

ą 0. Then, there exists a constant C1 ą 0 (being independent of
m, d P N) such that for every f P L1pRm,LpRmq, du;Rdq with prγs ` 2q-times differentiable Fourier
transform it holds that

}f}
rBk,r,γψ,a,bpU ;Rdq

ď
C1

ζ
m
r
1

sup
ζPsuppp pψq

ÿ

βPNm
0,rγs`2

¨

˝

ż

Rm
}Bβ

pfpξq}r

`

1 ` }ξ{ζ}2
˘

p2rγs`k`3qr
2

θApξ{ζqr´1
dξ

˛

‚

1
r

. (12)

In particular, if r “ 2 and7 pan, bnqnPN „ tm b t1 i.i.d., then it holds for every f P

L1pRm,LpRmq, du;Rdq with prγs ` 2q-times differentiable Fourier transform that

}f}
rBk,2,γψ,a,bpU ;Rdq

ď
C1

ζ
m
2
1

π
m`1

4

Γ
`

m`1
2

˘
1
2

ÿ

βPNm
0,rγs`2

ˆ
ż

Rm

›

›Bβ
pfpξq

›

›

2 `
1 ` }ξ{ζ1}2

˘2rγs`k`m`5
2 dξ

˙
1
2

. (13)

Hence, if the right-hand side of (12) or (13) is finite, we obtain that f P rBk,r,γψ,a,bpU ;Rdq.

Thus, for r “ 2 and pan, bnqnPN „ tm b t1 i.i.d., we can insert (13) into the right-hand side of (11) to
conclude that the approximation rate for random neural networks is the same as the approximation rate
for deterministic neural networks proven in [64, Theorem 3.6].

Moreover, the following estimate holds true for the constant Cpγ,pq

U,w ą 0 appearing in (11), while a

lower bound for the constant
ˇ

ˇC
pψ,ρq
m

ˇ

ˇ ą 0 is given below the list of Example 4.15.

7For m P N, tm denotes the Student’s t-distribution with probability density function Rm Q a ÞÑ θApaq “
Γppm`1q{2q

πpm`1q{2

`

1`

}a}
2
˘´pm`1q{2

P p0,8q, where Γ is the Gamma function (see [1, Section 6.1]).
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Lemma 4.23 ([64, Lemma 3.9]). Let Assumption 4.11 hold with the weight U Q u :“ pu1, ..., umqJ ÞÑ

wpuq :“
śm
l“1w0pulq P r0,8q, where w0 : R Ñ r0,8q satisfies

ş

Rw0psqds “ 1 and Cpγ,pq

R,w0
:“

` ş

Rp1 ` |s|qγpw0psqds
˘1{p

ă 8. Then, Cpγ,pq

U,w ď C
pγ,pq

R,w0
mγ`1{p.

In addition, we analyze the situation when the approximation of a function by random neural networks
overcomes the curse of dimensionality in the sense that the computational costs (measured as the number
of neurons N P N) grow polynomially in both the input/output dimensions m, d P N and the reciprocal
of a pre-specified tolerated approximation error.

Proposition 4.24. Let Assumption 4.11 hold with r “ 2, p ą 1, and a weight as in Lemma 4.23, let
pan, bnqnPN „ tmb t1 be i.i.d., and let pψ, ρq P S0pR;Cq ˆCkpol,γpRq be a pair as in Example 4.15 (with
0 ă ζ1 ă ζ2 ă 8). In addition, let f P W k,ppU,LpUq, w;Rdq satisfy the conditions of Proposition 4.22
such that the right-hand side of (13) satisfies O

`

msp2{ζ2qmpm` 1qm{2
˘

for some s P N0. Then, there
exist some constants C2, C3 ą 0 such that for every m, d P N and every ε ą 0 there exists a random

neural network GN P RN ρ
U,d with N “

P

C2m
C3ε

´
minp2,p,rq

minp2,p,rq´1
T

neurons satisfying

E
”

}f ´GN}2Wk,ppU,LpUq,w;Rdq

ı
1
2

ď ε.

Hence, in this case, random neural networks overcome the curse of dimensionality.

5. LEAST SQUARES AND GENERALIZATION ERROR

In this section, we use the least squares method to learn a given function by a random feature model
in the Sobolev space W k,2pU,LpUq, w;Rdq, where we fix some k P N0, U Ď Rm (open, if k ě 1), and
a weight w : U Ñ r0,8q that is normalized, i.e.

ş

U wpuqdu “ 1. To this end, we assume that the set
of feature maps G :“ tg1, ..., geu consists of finitely many BpΘq{BpW k,2pU,LpUq, w;Rdqq-measurable
maps g1, ..., ge : Θ Ñ W k,2pU,LpUq, w;Rdq, where e P N.

Moreover, we fix an i.i.d. sequence of U -valued random variables pVjqjPN „ w as training data, which
are independent of the random initializations pθnqnPN. From this, we define the σ-algebra Fθ,V :“
σptθn, Vn : n P Nuq satisfying Fθ Ď Fθ,V Ď F .

In addition, for every fixed N P N, we denote by YN the vector space of all ReˆN -valued random
variables y :“ pyi,nq

n“1,...,N
i“1,...,e , which are Fθ,V {BpReˆN q-measurable. Then, for every y P YN , we define

the corresponding random feature model as

Ω Q ω ÞÑ GyN pωq :“
N
ÿ

n“1

e
ÿ

l“1

yl,npωqglpθnpωqq P W k,2pU,LpUq, w;Rdq. (14)

Note that (14) slightly differs from Definition 2.5 as the linear readout y P YN is now measurable with
respect to Fθ,V (instead of Fθ) and can therefore only be trained after the training data pVjqjPN has been
drawn. Moreover, we denote by RGV the set of all random feature models of the form (14).

For some fixed J P N, we now approximate a given k-times weakly differentiable function f : U Ñ Rd
by the least squares method on the training data pVjqj“1,...,J . To this end, we aim for the random feature

model Gy
pJq

N P RGV with linear readout ypJq :“
`

y
pJq

i,n

˘n“1,...,N

i“1,...,e
P YN that minimizes the empirical

(weighted) mean squared error (MSE), i.e. we set

ypJqpωq “ argminyPYN

¨

˝

1

J

J
ÿ

j“1

ÿ

αPNm0,k

c2α
›

›BαfpVjpωqq ´ BαG
y
N pωqpVjpωqq

›

›

2

˛

‚ (15)

for all ω P Ω. Hereby, the constants c :“ pcαqαPNm0,k Ă p0,8q control the contribution of the derivatives,

e.g., cα :“ m´|α|, α P Nm0,k, means equal contribution of each order. Moreover, for c :“ pcαqαPNm0,k , we

define the number κpcq :“
maxαPNm

0,k
cα

minαPNm
0,k

cα
.

To analyze the complexity of Algorithm 1 in the following result, we count every elementary operation,
every function evaluation of g1, ..., ge P G, and each generation of a random variable as one unit. Then,
we show the following result whose proof is given in Section 9.1.
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Algorithm 1: Least squares method to learn a random feature model
Input: J,N P N and a k-times weakly differentiable function f “ pf1, ..., fdqJ : U Ñ Rd.
Output: GypJq

N P RGV with linear readout ypJq :“
`

y
pJq

l,n

˘n“1,...,N

l“1,...,e
P YN solving (15).

1 Generate i.i.d. random variables (RVs) pθnqn“1,...,N satisfying Assumption 4.7.
2 Generate i.i.d. random variables (RVs) pVjqj“1,...,J „ w independent of pθnqn“1,...,N .

3 Define the RpJ¨|Nm
0,k|¨dqˆpe¨Nq-valued RV G “ pGpj,α,iq,pl,nqq

pl,nqPt1,...,euˆt1,...,Nu

pj,α,iqPt1,...,JuˆNm
0,kˆt1,...,du

with

Gpj,α,iq,pl,nq :“ cαBαgl,ipθnqpVjq for pj, α, iq P t1, ..., Ju ˆ Nm
0,k ˆ t1, ..., du and

pl, nq P t1, ..., eu ˆ t1, ..., Nu, where glpϑqpuq :“ pgl,ipϑqpuqqJ
i“1,...,d P Rd.

4 Define the RJ¨|Nm
0,k|¨d-valued RV Z :“ pcαBαfipVjqqJ

pj,α,iqPt1,...,JuˆNm
0,kˆt1,...,du

.

5 Solve the least squares problem GJGy⃗pJq “ GJZ for y⃗pJq :“
`

y
pJq

pl,nq

˘J

pl,nqPt1,...,euˆt1,...,Nu
via Cholesky

decomposition and forward/backward substitution (see [12, Section 2.2.2]).
6 Return Ω Q ω ÞÑ GypJq

N pωq :“
řN

n“1

ře
l“1 y

pJq

l,n pωqglpθnpωqq P W k,2pU,LpUq, w;Rdq.

Proposition 5.1. For e P N, let G :“ tg1, ..., geu consist of maps g1, ..., ge : Θ Ñ W k,2pU,LpUq, w;Rdq

that are BpΘq{BpW k,2pU,LpUq, w;Rdqq-measurable, let Assumption 4.7 hold, let J,N P N,
pcαqαPNm0,k Ă p0,8q, and f : U Ñ Rd be k-times weakly differentiable. Then, Algorithm 1 termi-

nates and is correct, i.e. returns Gy
pJq

N P RGV with ypJq P YN solving (15). Moreover, the complexity of
Algorithm 1 is of order O

`

JmkdpeNq2 ` peNq3
˘

.

For fixed k P N0, Proposition 5.1 shows that the computational costs for learning a given k-times
weakly differentiable function by a random feature model including the derivatives up to order k scales
polynomially in J,N,m, d P N.

Now, we bound the generalization error for learning a function by the random feature model Gy
pJq

N P

RGV obtained from Algorithm 1. Since the linear readout ypJq P YN minimizes the empirical MSE
in (15), the random feature model Gy

pJq

N P RGV is the best choice on the training data pVjqj“1,...,J . In
order to bound the error beyond the training data, we combine the approximation rate in Theorem 4.5
with a result on non-parametric function regression (see [37, Theorem 11.3]). Hereby, we introduce the
truncation Rd Q z :“ pz1, ..., zdqJ ÞÑ TLpzq :“ pmaxpminpzi, Lq,´Lqq

J
i“1,...,d P Rd. The proof can be

found in Section 9.2.

Theorem 5.2 (Generalization error). For e P N, let G :“ tg1, ..., geu consist of BpΘq{

BpW k,2pU,LpUq, w;Rdqq-measurable maps g1, ..., ge : Θ Ñ W k,2pU,LpUq, w;Rdq and let Assump-
tion 4.7 hold. Then, there exists a constant C4 ą 0 (being independent of m, d P N) such that for every
J,N P N, L ą 0, and f :“ pf1, ..., fdqJ P B2

G,θpW
k,2pU,LpUq, w;Rdqq satisfying |Bαfipuq| ď L for

all α P Nm0,k, i “ 1, ..., d, and u P U , Algorithm 1 returns a random feature model Gy
pJq

N P RGV with N

features being a strongly pP,Fθ,V q-measurable map Gy
pJq

N : Ω Ñ W k,2pU,LpUq, w;Rdq such that

E

»

–

ÿ

αPNm0,k

ż

U

›

›

›
Bαfpuq ´ TL

´

BαG
ypJq

N p¨qpuq

¯›

›

›

2
wpuqdu

fi

fl

1
2

ď C4Lm
k
2 d

1
2

c

plnpJq ` 1qN

J
` C4κpcq

}f}B2
G,θpWk,2pU,LpUq,w;Rdqq

?
N

.

(16)

Hence, the generalization error in (16) can be made arbitrarily small by first choosing the number of
random features N P N large enough and then by increasing the sample size J P N.

Remark 5.3. Choosing J “ O
`
?
N lnpNq

˘

random features in (16), we recover the L2-generalization
error of O

`

1{N1{4
˘

in [72, Theorem 1] for random feature models trained via ridge regression. Previ-
ously, [69, Theorem 1] showed an L2-generalization error of O

`

1{J1{4 ` 1{N1{4
˘

also by using ridge
regression.
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5.1. Random neural networks. In this section, we now consider random neural networks as particular
instance of random feature learning, where pθnqnPN :“ pan, bnqnPN : Ω Ñ Rm ˆ R is the random
initialization. To this end, we fix some γ P r0,8q and an activation function ρ P Ckpol,γpRq. Then, for
every fixed N P N, we denote by YN be the vector space of all Fa,b,V {BpRdˆN q-measurable random
variables y :“ pynqJ

n“1,...,N :“ pyi,nq
n“1,...,N
i“1,...,d , where Fa,b,V :“ Fθ,V . Then, for any y P YN , we define

the corresponding random neural network as

Ω Q ω ÞÑ GyN pωq :“
N
ÿ

n“1

ynρ
`

aJ
n ¨ ´bn

˘

P Ckpol,γpU ;Rdq. (17)

Moreover, we denote by RN ρ,V
U,d the set of all random neural networks of the form (17).

For some fixed J P N, we now approximate a given k-times weakly differentiable function f : U Ñ Rd
by the least squares method on the training data pVjqj“1,...,J , which corresponds to the random neural

networkGy
pJq

N P RN ρ,V
U,d with linear readout ypJq P YN solving (15). In this case, we obtain the following

version of Algorithm 1 for random neural networks.

Algorithm 2: Least squares method to learn a random neural network
Input: J,N P N and k-times weakly differentiable function f “ pf1, ..., fdqJ : U Ñ Rd.
Output: GypJq

N P RN ρ,V
U,d with linear readout ypJq :“

`

y
pJq

i,n

˘n“1,...,N

i“1,...,d
P YN solving (15).

1 Generate i.i.d. random variables (RVs) pan, bnqn“1,...,N „ pa,b (see Assumption 4.12).
2 Generate i.i.d. random variables (RVs) pVjqj“1,...,J „ w independent of pan, bnqn“1,...,N .
3 Define the RpJ¨|Nm

0,k|qˆN -valued RV G “ pGpj,αq,nq
n“1,...,N
pj,αqPt1,...,JuˆNm

0,k
with

Gpj,αq,n :“ cαρ
p|α|q

`

aJ
nVj ´ bn

˘

aαn for pj, αq P t1, ..., Ju ˆ Nm
0,k and n “ 1, ..., N .

4 for i “ 1, ..., d do
5 Define the RJ¨|Nm

0,k|-valued random variable Zi :“ pcαBαfipVjqqJ
pj,αqPt1,...,JuˆNm

0,k
.

6 Solve the least squares problem GJGy
pJq

i “ GJZi for ypJq

i :“
`

y
pJq

pi,nq

˘J

n“1,...,N
via Cholesky

decomposition and forward/backward substitution (see [12, Section 2.2.2]).

7 Return Ω Q ω ÞÑ GypJq

N pωq :“
řN

n“1 y
pJq
n pωqρ

`

anpωqJ ¨ ´bnpωq
˘

P Ck
pol,γpU ;Rdq.

Corollary 5.4 (Generalization error). Let w : U Ñ r0,8q be a normalized weight such that the constant
C

pγ,2q

U,w ą 0 defined in (10) is finite. Moreover, let pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq be m-admissible
and let Assumption 4.12 hold. Then, there exists some C5 ą 0 (being independent of m, d P N) such
that for every J,N P N, L ą 0, and f :“ pf1, ..., fdqJ P W k,2pU,LpUq, w;Rdq X rBk,2,γψ,a,bpU ;Rdq

satisfying |Bαfipuq| ď L for all α P Nm0,k, i “ 1, ..., d, and u P U , Algorithm 2 returns a random neural

network Gy
pJq

N P RN ρ
U,d with N neurons being a strongly pP,Fa,b,V q-measurable map Gy

pJq

N : Ω Ñ

W k,2pU,LpUq, w;Rdq such that

E

»

–

ÿ

αPNm0,k

ż

U

›

›

›
Bαfpuq ´ TL

´

BαG
ypJq

N p¨qpuq

¯›

›

›

2
wpuqdu

fi

fl

1
2

ď C5Lm
k
2 d

1
2

c

plnpJq ` 1qN

J
` C5κpcq}ρ}Ckpol,γpRq

C
pγ,2q

U,w m
k
2

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

}f}
rBk,2,γψ,a,bpU ;Rdq

?
N

.

(18)

Remark 5.5. Corollary 5.4 extends the generalization error in [31, Theorem 4.1] for random neural
networks with ReLU activation function to more general activation functions and by including the
approximation of the weak derivatives. Moreover, (18) coincides up to constants with the generalization
error for deterministic neural networks obtained in [11].
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6. NUMERICAL EXAMPLE: HEAT EQUATION

In this section8, we follow [29, Section 2.3] and consider the heat equation, which describes the
evolution of a given quantity throughout time. More precisely, we consider the partial differential
equation (PDE)

Bf

Bt
pt, uq ´ λ

m
ÿ

l“1

B2f

Bu2l
pt, uq “ 0, pt, uq P p0,8q ˆ Rm, (19)

with initial condition g : Rm Ñ R, i.e. fp0, uq :“ limtÑ0 fpt, uq “ gpuq for a.e. u P Rm. The following
result guarantees existence and uniqueness of (19), which is a slight generalization of [29, Theorem 2.3.1]
to a.e. bounded and a.e. continuous initial conditions g : Rm Ñ R. The proofs of the result in this section
can be found in Section 10.

Proposition 6.1. Let λ P p0,8q and g : Rm Ñ R be a.e. bounded and a.e. continuous. Then, the

function p0,8q ˆ Rm Q pt, uq ÞÑ fpt, uq “ 1

p4πλtq
m
2

ş

Rm e
´

}u´v}2

4λt gpvqdv P R is the unique solution of

the PDE (19) with initial condition g : Rm Ñ R.

For some fixed t P r0, T s, we now learn fpt, ¨q by random trigonometric feature models, random
neural networks, and their deterministic counterparts. Here, we omit random Fourier regression as it
coincides for real-valued functions with random trigonometric features.

In the following, we provide sufficient conditions that the approximation of fpt, ¨q by trigonometric
feature models and random neural networks overcomes the curse of dimensionality in the sense that
the computational costs (measured as the number of features/neurons N P N) grow polynomially in
both the input/output dimensions m, d P N and the reciprocal of a pre-specified tolerated approximation
error. To this end, we apply the approximation rates in Corollary 4.8+4.20 and introduce Brp0q :“
tu P Rm : }u} ď ru, r ě 0.

Corollary 6.2. For λ, t P p0,8q and an a.e. bounded and a.e. continuous initial condition g : Rm Ñ R,
let fpt, ¨q : Rm Ñ R be the solution of (19) at time t. Moreover, let p P r1,8q, γ P r0,8q, and
w : Rm Ñ r0,8q be as in Lemma 4.23. Then, the following holds:

(i) Let pθnqnPN „ tm be i.i.d. and assume that g P L1pRm,LpRmq, duq. Then, there exists C6 ą 0
(being independent of m P N and g : Rm Ñ R) such that for every N P N there exists a random
trigonometric feature model GN P RT Rm,1 with N features satisfying

E
”

}fpt, ¨q ´GN}2LppRm,LpRmq,wq

ı
1
2

ď C6m
1
4

ˆ

1
?
2λtπ

˙
m
2 }g}L1pRm,LpRmq,duq

N
1´ 1

minp2,pq

. (20)

In particular, if p ą 1 and Rm Q u ÞÑ gpuq :“ 1BRp0qpuq P R with R2 ď
?
λt?
2e

pm ` 2q for all
but finitely many m P N, then there exists C7 ą 0 such that for every m P N and ε ą 0 there

exists some GN P RT Rm,1 with N “
P

C7ε
´

minp2,pq

minp2,pq´1
T

features satisfying

E
”

}fpt, ¨q ´GN}2LppRm,LpRmq,wq

ı
1
2

ď ε. (21)

(ii) Let pan, bnqnPN „ tm b t1 be i.i.d., let pψ, ρq P S0pR;Cq ˆ C0
pol,γpRq as in Example 4.15

(with 0 ă ζ1 ă ζ2 ă 8), and assume that g P L1pRm,LpRmq, p1 ` }u}rγs`2qduq. Then,
fpt, ¨q P rB0,2,γ

ψ,a,bpR
mq and there exist C8, C9 ą 0 (being independent of m P N and g : Rm Ñ R)

such that for every N P N there exists a random neural network GN P RN ρ
Rm,1 with N neurons

satisfying

E
”

}fpt, ¨q ´GN}2LppRm,LpRmq,wq

ı
1
2

ď C8m
C9

ˆ

pζ2{ζ1q2
?
2λtπ

˙

m
2 }g}L1pRm,LpRmq,p1`}u}rγs`2qduq

N
1´ 1

minp2,pq

. (22)

In particular, if p ą 1 and Rm Q u ÞÑ gpuq :“ 1BRp0qpuq P R with R2 ď
ζ21

?
λt

ζ22
?
2e

pm` 2q for all
but finitely many m P N, then there exist C10, C11 ą 0 such that for every m P N and ε ą 0

there exists GN P RN ρ
Rm,1 with N “

P

C10m
C11ε

´
minp2,pq

minp2,pq´1
T

neurons satisfying

E
”

}fpt, ¨q ´GN}2LppRm,LpRmq,wq

ı
1
2

ď ε. (23)
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Now, we choose λ “ 4, t “ 1, the initial condition Rm Q u ÞÑ gpuq :“ 1
BRp0q

puq P R with

R :“ 4m0.4, and the weight Rm Q u ÞÑ wpuq :“ p2πq´m{2 exp
`

´}u}2{2
˘

P r0,8q satisfying the
conditions of Lemma 4.23. Then, we generate J “ 2 ¨ 105 i.i.d. data pVjqj“1,...,J „ w, split up into
80%{20% for training/testing, and minimize the empirical L2-error

ˆ

1

J

J
ÿ

j“1

|fp1, Vjq ´GN p¨qpVjq|
2

˙
1
2

(24)

over random trigonometric feature models GN P RT Rm,1, random neural networks GN P RN tanh
Rm,1, and

their deterministic counterparts, all of them having N features/neurons.
For the training of the random features, we assume that pθnqnPN „ tm (for RT Rm,1) and

pan, bnqnPN „ tm b t1 (for RN tanh
Rm,1). As R2 “ 16m0.8 ď

?
λt?
2e
m and R2 “ 16m0.8 ď

ζ21
?
λt

ζ22
?
2e
m

for all but finitely many m P N, Corollary 6.2 shows that the approximation of fpt, ¨q by random
trigonometric features and random neural networks overcomes the curse of dimensionality. For their
deterministic counterparts, we minimize (24) over the deterministic trigonometric feature models
GN P TRm,1 :“ spanR

` ␣

Rm Q u ÞÑ h
`

ϑJu
˘

P R : h P tcos, sinu
( ˘

and the deterministic neural net-
works GN P N tanh

Rm,1 :“ spanR
`␣

Rm Q u ÞÑ tanh
`

ϑJ
1 u ´ ϑ2

˘

P R : pϑ1, ϑ2q P Rm ˆ R
(˘

, both of
them having N features/neurons. Hereby, we use the Adam algorithm (see [47]) over 3000 epochs with
learning rate γ “ 10´5 and batchsize 500.

Figure 1+2 show that random trigonometric feature models as well as random neural networks are able
to learn the solution of the heat equation (19) with similar accuracy than their deterministic counterparts.
Moreover, in terms of computational efficiency, the random feature models outperform the deterministic
models by far (see Table 1).

Figure 1. Learning the solution of (19): Empirical L2-error defined in (24).

8The numerical experiment has been implemented in Python on an average laptop (Lenovo ThinkPad X13 Gen2a with
Processor AMD Ryzen 7 PRO 5850U and Radeon Graphics, 1901 Mhz, 8 Cores, 16 Logical Processors). The code can be
found under the following link: https://github.com/psc25/RandomNeuralNetworks
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Figure 2. Learning the solution of (19): Approximation of the function R Q u1 ÞÑ

fp1, pu1, 0.5, ..., 0.5qq P R, which is displayed for N “ 200 features (resp. neurons)
for TRm,1 and N ρ

Rm,1 as well as N “ 400 features (resp. neurons) for RT Rm,1 and
RN ρ

Rm,1.

N “ 10 N “ 25 N “ 50 N “ 100 N “ 200 N “ 400

m “ 10

TRm,1
359.38 434.38 546.61 734.56

1.0 ¨ 1010 4.8 ¨ 1010 9.6 ¨ 1010 1.9 ¨ 1011

RT Rm,1
0.13 0.40 0.91 2.60 9.36 30.41

8.5 ¨ 106 5.0 ¨ 107 2.0 ¨ 108 8.0 ¨ 108 3.2 ¨ 109 1.3 ¨ 1010

N tanh
Rm,1

348.43 382.21 425.88 506.86
1.0 ¨ 1010 2.4 ¨ 1010 4.8 ¨ 1010 9.6 ¨ 1010

RN tanh
Rm,1

0.07 0.21 0.47 1.04 2.59 7.99
8.6 ¨ 106 5.1 ¨ 107 2.0 ¨ 108 8.0 ¨ 108 3.2 ¨ 109 1.3 ¨ 1010

m “ 20

TRm,1
371.36 495.81 598.58 769.88

1.0 ¨ 1010 4.8 ¨ 1010 9.6 ¨ 1010 1.9 ¨ 1011

RT Rm,1
0.18 0.48 1.04 2.46 7.51 31.62

8.5 ¨ 106 5.0 ¨ 107 2.0 ¨ 108 8.0 ¨ 108 3.2 ¨ 109 1.3 ¨ 1010

N tanh
Rm,1

344.64 432.72 459.36 563.23
1.0 ¨ 1010 2.4 ¨ 1010 4.8 ¨ 1010 9.6 ¨ 1010

RN tanh
Rm,1

0.09 0.24 0.46 1.00 2.58 9.32
6.0 ¨ 108 3.5 ¨ 109 1.4 ¨ 1010 3.8 ¨ 1010 1.4 ¨ 1011 1.3 ¨ 1010

m “ 30

TRm,1
439.63 529.50 693.85 819.93

1.0 ¨ 1010 4.8 ¨ 1010 9.6 ¨ 1010 1.9 ¨ 1011

RT Rm,1
0.20 0.48 0.97 2.41 9.09 24.37

8.5 ¨ 106 5.0 ¨ 107 2.0 ¨ 108 8.0 ¨ 108 3.2 ¨ 109 1.3 ¨ 1010

N tanh
Rm,1

410.55 463.20 494.44 596.33
1.0 ¨ 1010 2.4 ¨ 1010 4.8 ¨ 1010 9.6 ¨ 1010

RN tanh
Rm,1

0.09 0.23 0.50 0.99 2.47 7.12
1.0 ¨ 108 6.1 ¨ 108 2.4 ¨ 109 1.6 ¨ 109 6.4 ¨ 109 2.6 ¨ 1010

Table 1. Learning the solution of the heat equation (19): Computational time (in italic
letters) and complexity (in scientific format 0.0 ¨ 100, see also Proposition 5.1).
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7. PROOF OF RESULTS IN SECTION 3

7.1. Proof of Theorem 3.2. For the following proofs in this section, we denote the closed ball of radius
r ą 0 around ϑ0 P Θ by Brpϑ0q :“ tϑ P Θ : dΘpϑ, ϑ0q ď ru.

Proof of Theorem 3.2. First, by using that GpΘq :“ spanKptgpϑq : g P G, ϑ P Θuq is by assump-
tion dense in X together with [44, Lemma 1.2.19 (i)], i.e. that IFθ b X :“ spanKptΩ Q ω ÞÑ

1Epωqx P X : E P Fθ, x P Xuq is dense in LrpΩ,Fθ,P;Xq, we obtain that IFθ b GpΘq :“
spanKptΩ Q ω ÞÑ 1Epωqgpϑq P X : E P Fθ, g P G, ϑ P Θuq is dense in LrpΩ,Fθ,P;Xq. Hence, it
suffices to show the approximation of any map of the form Ω Q ω ÞÑ 1Epωqgpϑ0q P X , with E P Fθ,
g P G, and ϑ0 P Θ, by some G P RG X LrpΩ,Fθ,P;Xq with respect to } ¨ }LrpΩ,F ,P;Xq. To this end, we
fix some E P Fθ, g P G, ϑ0 P Θ, and ε ą 0. Moreover, for every M,n P N, we define the map

Ω Q ω ÞÑ GM,npωq :“ yM,npωqgpθnpωqq P X

with Fθ-measurable linear readout Ω Q ω ÞÑ yM,npωq :“ C´1
M 1

B1{M pϑ0q
pθnpωqq P R, where CM :“

P
“␣

ω P Ω : θ1pωq P B1{M pϑ0q
(‰

ą 0 due to Assumption 3.1.
Now, we show that the sequence

`

1
B1{M pϑ0q

pθnpωqqgpϑ0q ´ CMGM,npωq
˘

MPN converges uniformly
in ω P Ω and n P N to 0 P X with respect to } ¨ }X . To this end, we fix some ε ą 0. Then, by using that
g P G Ď C0pΘ;Xq is continuous, there exists some δ ą 0 such that for every ϑ P Bδpϑ0q it holds that

}gpϑ0q ´ gpϑq}X ă ε.

Hence, by choosing M0 P N large enough such that M0 ą δ´1, it follows for every M P N X rM0,8q

that
sup
ωPΩ

sup
nPN

›

›

›
1
B1{M pϑ0q

pθnpωqqgpϑ0q ´ CMGM,npωq

›

›

›

X

“ sup
ωPΩ

sup
nPN

›

›

›
1
B1{M pϑ0q

pθnpωqq
`

gpϑ0q ´ gpθnpωqq
˘

›

›

›

X

“ sup
ϑPB1{M pϑ0q

}gpϑ0q ´ gpϑq}X

ď sup
ϑPB1{M0

pϑ0q

}gpϑ0q ´ gpϑq}X ă ε.

Since ε ą 0 was chosen arbitrarily, this shows that the sequence
`

1
B1{M pϑ0q

pθnpωqqgpϑ0q ´

CMGM,npωq
˘

MPN converges uniformly in ω P Ω and n P N to 0 P X with respect to } ¨ }X .
Next, we show for every fixed M,n P N that GM,n P LrpΩ,Fθ,P;Xq. Indeed, by using that

Ω Q ω ÞÑ pyM,npωq, θnpωqq P R ˆ Θ is Fθ{BpR ˆ Θq-measurable and that g P G Ď C0pΘ;Xq is
continuous, it follows that the concatenation Ω Q ω ÞÑ yM,npωqgpθnpωqq P X is Fθ{BpXq-measurable.
Hence, by using that pX, } ¨ }Xq is separable, we can apply [44, Theorem 1.1.6+1.1.20] to conclude that
GM,n : Ω Ñ X is strongly pP,Fθq-measurable. Moreover, by using Minkowski’s inequality and that the
sequence

`

1
B1{M pϑ0q

pθnpωqqgpϑ0q ´ CMGM,npωq
˘

MPN is by the previous step uniformly bounded in
ω P Ω and n P N, we have

}GM,n}LrpΩ,F ,P;Xq “ E r}GM,n}rXs
1
r “

1

CM
E r}CMGM,n}rXs

1
r

ď
1

CM
E
”
›

›

›
1
B1{M pϑ0q

pθnqgpϑ0q

›

›

›

r

X

ı
1
r

`
1

CM
E
”
›

›

›
1
B1{M pϑ0q

pθnqgpϑ0q ´ CMGM,n

›

›

›

r

X

ı
1
r

ď
1

CM
}gpϑ0q}X `

1

CM
sup
ωPΩ

›

›

›
1
B1{M pϑ0q

pθnpωqqgpϑ0q ´ CMGM,n

›

›

›

X
ă 8,

which shows that GM,n P LrpΩ,Fθ,P;Xq for all M,n P N.
Now, we show that there exists some M1 P N such that the constant maps pω ÞÑ gpϑ0qq P

LrpΩ,Fθ,P;Xq and pω ÞÑ ErGM1,1sq P LrpΩ,Fθ,P;Xq are ε
2 -close to each other with respect to

} ¨ }LrpΩ,F ,P;Xq. Indeed, by using that
`

1
B1{M pϑ0q

pθnpωqqgpϑ0q ´ CMGM,npωq
˘

MPN converges uni-
formly in ω P Ω and n P N to 0 P X with respect to } ¨ }X , there exists some M1 P N such that

sup
nPN

sup
ωPΩ

›

›

›
1
B1{M1

pϑ0q
pθnpωqqgpϑ0q ´ CM1GM1,npωq

›

›

›

X
ă
ε

2
. (25)
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Hence, by using that E
“

1
B1{M1

pϑ0q
pθ1q

‰

“ P
“␣

ω P Ω : θ1pωq P B1{M1
pϑ0q

(‰

“ CM1 ą 0, and [44,
Proposition 1.2.2], it follows that

}gpϑ0q ´ ErGM1,1s}LrpΩ,F ,P;Xq
“ E

“

}gpϑ0q ´ ErGM1,1s}
r
X

‰
1
r “ }gpϑ0q ´ ErGM1,1s}X

“

›

›

›

›

E
„

1

CM1

1
B1{M1

pϑ0q
pθ1qgpϑ0q ´GM1,1

ȷ
›

›

›

›

X

ď E

«

1
B1{M1

pϑ0q
pθ1q

CM1

›

›

›
1
B1{M1

pϑ0q
pθ1qgpϑ0q ´ CM1GM1,1

›

›

›

X

ff

ď

E
”

1
B1{M1

pϑ0q
pθ1q

ı

CM1
loooooooooomoooooooooon

“1

sup
ωPΩ

›

›

›
1
B1{M1

pϑ0q
pθ1qgpϑ0q ´ CM1GM1,1pωq

›

›

›

X
ă
ε

2
.

(26)

This shows that the constant maps pω ÞÑ gpϑ0qq P LrpΩ,Fθ,P;Xq and pω ÞÑ ErGM1,1sq P

LrpΩ,Fθ,P;Xq are ε
2 -close to each other with respect to } ¨ }LrpΩ,F ,P;Xq.

Finally, we approximate the constant random variable pω ÞÑ E rGM1,1sq P L1pΩ,Fθ,P;Xq by the
average of the i.i.d. sequence pGM1,nqnPN Ď L1pΩ,Fθ,P;Xq. Indeed, by applying the strong law of
large numbers for Banach space-valued random variables in [44, Theorem 3.3.10] with Banach space
pX, } ¨ }Xq, we conclude that

1

N

N
ÿ

n“1

GM1,n
NÑ8
ÝÑ E rGM1,1s in L1pΩ,Fθ,P;Xq and P-a.s. (27)

Moreover, if r P p1,8q, we generalize the convergence in (27) to LrpΩ,Fθ,P;Xq. To this end, we define
the sequence of real-valued random variables pZN qNPN by ZN pωq :“

›

›E
“

GM1,1

‰

´ 1
N

řN
n“1GM1,n

›

›

r

X
,

for ω P Ω and N P N. Then, by using [44, Proposition 1.2.2] and (25), it follows for every N P N that

sup
ωPΩ

ZN pωq ď sup
ωPΩ

˜

}E rGM1,1s}X `
1

N

N
ÿ

n“1

}GM1,npωq}X

¸r

ď sup
nPN

sup
ωPΩ

`

E
“

}GM1,1}X

‰

` }GM1,npωq}X

˘r

ď
2r

CrM1

sup
nPN

sup
ωPΩ

}CM1GM1,npωq}
r
X

ď
2r

CrM1

sup
nPN

sup
ωPΩ

ˆ

›

›

›
1
B1{M1

pϑ0q
pθ1pωqqgpϑ0q

›

›

›

X
`

`

›

›

›
1
B1{M1

pϑ0q
pθ1pωqqgpϑ0q ´ CM1GM1,npωq

›

›

›

X

˙r

ă
2r

CrM1

´

}gpϑ0q}X `
ε

2

¯r
“: CZ ă 8.

Hence, supNPN E
“

|ZN |1t|ZN |ąCZu

‰

“ 0, which implies that the family of random variables pZN qNPN
is uniformly integrable (see [44, Definition A.3.1]). Thus, by using that ZN Ñ 0, P-a.s., as N Ñ 8 (see
(27)), and Vitali’s convergence theorem (see [44, Proposition A.3.5]), we have

lim
NÑ8

E

«›

›

›

›

›

E rGM1,1s ´
1

N

N
ÿ

n“1

GM1,n

›

›

›

›

›

r

X

ff

“ lim
NÑ8

ErZN s “ 0. (28)

Thus, either by (27) (if r “ 1) or (28) (if r P p1,8q) there exists some N0 P N such that

E

«›

›

›

›

›

E rGM1,1s ´
1

N0

N0
ÿ

n“1

GM1,n

›

›

›

›

›

r

X

ff

1
r

ă
ε

2
. (29)
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Finally, we define G :“
`

ω ÞÑ 1
N0

řN0
n“1 1EpωqGM1,npωq

˘

P RG X LrpΩ,Fθ,P;Xq. Hence, by
combining (26) and (29) with Minkowski’s inequality, it follows that

}1Egpϑ0q ´G}LrpΩ,F ,P;Xq “ E r}1Egpϑ0q ´G}
r
s
1
r

“ E

«

1E
loomoon

ď1

›

›

›

›

›

gpϑ0q ´
1

N0

N0
ÿ

n“1

GM1,n

›

›

›

›

›

r ff 1
r

ď E

«›

›

›

›

›

gpϑ0q ´
1

N0

N0
ÿ

n“1

GM1,n

›

›

›

›

›

rff 1
r

ď }gpϑ0q ´ E rGM1,ns}X ` E

«›

›

›

›

›

E rGM1,ns ´
1

N0

N0
ÿ

n“1

GM1,n

›

›

›

›

›

rff 1
r

ă
ε

2
`
ε

2
“ ε.

Since ε ą 0, g P G, and ϑ0 P Θ were chosen arbitrarily, this shows that Ω Q ω ÞÑ 1Epωqgpϑ0q P X can
be approximated by a random feature model G P RG X LrpΩ,Fθ,P;Xq with respect to } ¨ }LrpΩ,F ,P;Xq.
Combining this together with the first step of the proof, i.e. that IFθ b GpΘq is dense in LrpΩ,Fθ,P;Xq,
we obtain the conclusion. □

7.2. Proof of Corollary 3.3+3.4+3.8.

Proof of Corollary 3.3. We aim to apply Theorem 3.2 with Banach space pX, } ¨ }Xq :“ pC0pUq, } ¨

}C0pUqq. To this end, we first observe that pC0pUq, } ¨ }C0pUqq is by [15, Problem 24] separable. Moreover,
we choose Θ :“ Rm and let pθnqnPN : Ω Ñ Rm be an i.i.d. sequence satisfying Assumption 3.1. In
addition, we define

G :“
␣

Rm Q ϑ ÞÑ h
`

ϑJ¨
˘

P C0pUq : h P tcos, sinu
(

.

Then, for both h P tcos, sinu, we use that Rm ˆ U Q pϑ, uq ÞÑ h
`

ϑJu
˘

P R is continuous to conclude
that K ˆ U Q pϑ, uq ÞÑ h

`

ϑJu
˘

P R is uniformly continuous, for all compact subsets K Ă Rm. Hence,
the map Rm Q ϑ ÞÑ h

`

ϑJ ¨
˘

P C0pUq is continuous, which shows that G Ď C0pΘ;Xq. Moreover,
by using the trigonometric identities cospsq cosptq “ pcosps ´ tq ` cosps ` tqq{2, sinpsq sinptq “

pcosps´ tq ´ cosps` tqq{2, and cospsq sinptq “ psinps` tq ´ sinps´ tqq{2 for any s, t P R, we observe
that

spanRpGpΘqq “ spanR
`␣

U Q u ÞÑ h
`

ϑJu
˘

P R : h P tcos, sinu, ϑ P Rm
(˘

is a subalgebra of C0pUq, i.e. for every g1, g2 P spanRpGpΘqq we have g1 ` g2 P spanRpGpΘqq and
g1 ¨ g2 P spanRpGpΘqq. Moreover, spanRpGpΘqq is point separating, i.e. for any distinct u1, u2 P U there
exists some g P spanRpGpΘqq such that gpu1q ‰ gpu2q. In addition, spanRpGpΘqq vanishes nowhere,
i.e. for every u0 P U there exists some g P spanRpGpΘqq such that gpu0q ‰ 0. Hence, we can apply
the Stone-Weierstrass theorem (see [77]) to obtain that spanRpGpΘqq is dense in C0pUq. Thus, the
conclusion follows from Theorem 3.2. □

Proof of Corollary 3.4. We aim to apply Theorem 3.2 with Banach space pX, } ¨ }Xq :“ pC0pUq, } ¨

}C0pUqq. To this end, we first observe that pC0pUq, } ¨ }C0pUqq is by [15, Problem 24] separable. Moreover,
we choose Θ :“ Rm and let pθnqnPN : Ω Ñ Rm be an i.i.d. sequence satisfying Assumption 3.1. In
addition, we define the singleton set

G :“
␣

Rm Q ϑ ÞÑ exp
`

iϑJ¨
˘

P C0pUq
(

.

Then, we follow the proof of Corollary 3.8 to conclude that Rm Q ϑ ÞÑ exp
`

iϑJ ¨
˘

P C0pUq is contin-
uous, which shows that G Ď C0pΘ;Xq. Moreover, by using the identities exp

`

iϑJ
1 u

˘

exp
`

iϑJ
2 u

˘

“

exp
`

ipϑ1 ` ϑ2qJu
˘

and exp
`

iϑJ
1 u

˘

“ exp
`

´iϑJ
1 u

˘

“ exp
`

ip´ϑ1qJu
˘

for any ϑ1, ϑ2 P Rm and
u P U , we observe that

spanCpGpΘqq “ spanC
`␣

U Q u ÞÑ exp
`

iϑJu
˘

P C : ϑ P Rm
(˘

is a subalgebra of C0pUq, which is point separating, nowhere vanishing, and self-adjoint, where the
latter means that for every g P spanCpGpΘqq the function Θ Q ϑ ÞÑ gpϑq :“ gpϑq P C satisfies g P
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spanCpGpΘqq. Hence, we can apply the complex-valued Stone-Weierstrass theorem (see e.g. [74, p. 122])
to obtain that spanCpGpΘqq is dense in C0pU ;Cq. Thus, the conclusion follows from Theorem 3.2. □

For the proof of Corollary 3.8, we first show the following auxiliary lemma about neurons and that
Banach spaces pX, } ¨ }Xq satisfying Assumption 3.5 are separable.

Lemma 7.1. Let pX, } ¨ }Xq satisfy Assumption 3.5. Then, the following holds true:

(i) For every y P Rd, a P Rm, b P R, and ρ P Ckb pRq
γ

it holds that yρ
`

aJ ¨ ´b
˘

P X .

(ii) For every ρ P Ckb pRq
γ

the map Rd ˆ Rm ˆ R Q py, a, bq ÞÑ yρ
`

aJ ¨ ´b
˘

P X is continuous.
(iii) The Banach space pX, } ¨ }Xq is separable.

Proof. For Part (i)., we apply [64, Lemma 2.5] to conclude that yρ
`

aJ ¨ ´b
˘

P X for all y P Rd, a P Rm,

b P R, and ρ P Ckb pRq
γ
.

For Part (ii)., we fix some ε ą 0 and a sequence pyM , aM , bM qMPN Ď Rd ˆ Rm ˆ R converging to
py, a, bq P Rd ˆ Rm ˆ R. Then, by using that yMaαM converges uniformly in α P Nm0,k to yaα (where
aα :“

śm
l“1 a

αl
l for a :“ pa1, ..., amqJ P Rm and α :“ pα1, ..., αmq P Nm0,k), the constant Cy,a :“ 1 `

maxαPNm0,k }yaα}`supMPNmaxαPNm0,k }yMa
α
M} ą 0 is finite. Moreover, since paM , bM qJ

MPN Ď RmˆR
converges to pa, bq P Rm ˆ R, the constant Ca,b :“ 1 ` }pa, bq} ` supMPN }paM , bM q} ą 0 is finite. In
addition, there exists by definition of Ckb pRq

γ
some rρ P Ckb pRq such that

}ρ´ rρ}Ckpol,γpRq :“ max
αPNm0,k

sup
sPR

ˇ

ˇρp|α|qpsq ´ rρp|α|qpsq
ˇ

ˇ

p1 ` |s|qγ
ă

ε

6Cy,aCa,b
. (30)

Now, we choose some r ą 0 large enough such that p1 ` rqγ ě 6ε´1Cy,a}rρ}Ckb pRq. Then, the inequality
1`

ˇ

ˇaJ
Mu´ bM

ˇ

ˇ ď 1` }aM}}u} ` |bM | ď p1` }aM} ` |bM |qp1` }u}q for any u P Rm and (30) imply
that

max
αPNm0,k

sup
uPRmzBrp0q

›

›yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM
›

›

p1 ` }u}qγ

ď

˜

max
αPNm0,k

}yMa
α
M}

¸

max
αPNm0,k

sup
uPRmzBrp0q

ˇ

ˇρp|α|q
`

aJ
Mu´ bM

˘ˇ

ˇ

p1 ` }u}qγ

ď Cy,a max
αPNm0,k

sup
uPRmzBrp0q

ˇ

ˇρp|α|q
`

aJ
Mu´ bM

˘

´ rρp|α|q
`

aJ
Mu´ bM

˘
ˇ

ˇ

p1 ` }u}qγ

` Cy,a max
αPNm0,k

sup
uPRmzBrp0q

ˇ

ˇ

rρp|α|q
`

aJ
Mu´ bM

˘ˇ

ˇ

p1 ` }u}qγ

ď Cy,ap1 ` }aM} ` }bM}qγ max
αPNm0,k

sup
uPRm

ˇ

ˇρp|α|q
`

aJ
Mu´ bM

˘

´ rρp|α|q
`

aJ
Mu´ bM

˘ˇ

ˇ

`

1 `
ˇ

ˇaJ
Mu´ bM

ˇ

ˇ

˘γ

` Cy,a
}rρ}Ckb pRq

p1 ` rqγ

ď Cy,aCa,b max
j“0,...,k

sup
sPR

ˇ

ˇρpjqpsq ´ rρpjqpsq
ˇ

ˇ

p1 ` |s|qγ
` Cy,a

ε

6Cy,aCa,b

ă Cy,aCa,b
ε

6Cy,aCa,b
`
ε

6
“
ε

3
.

(31)

Analogously, we conclude that

max
αPNm0,k

sup
uPRmzBrp0q

›

›yρp|α|q
`

aJu´ b
˘

aα
›

›

p1 ` }u}qγ
ă
ε

3
. (32)

Moreover, we define the compact subset K :“
␣

xJu ´ y : u P Brp0q, }x} ` }y} ď Ca,b
(

Ď R. Then,

by using that ρ, ρ1, ..., ρpkq P Ckb pRq
γ

are continuous, thus uniformly continuous on K, there exists some
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δ ą 0 such that for every j “ 0, ..., k and s1, s2 P K with |s1 ´ s2| ă δ it holds that
ˇ

ˇ

ˇ
ρpjqps1q ´ ρpjqps2q

ˇ

ˇ

ˇ
ă

ε

6Cy,a
. (33)

Now, we define the constant Cr,ρ :“ 1 ` maxj“0,...,k supuPBrp0q

ˇ

ˇρpjq
`

aJu´ b
˘ˇ

ˇ ą 0. Moreover, we
choose some M2 P N such that for every M P NX rM2,8q it holds that }pa´aM , b´ bM q} ă δ{p1`rq

and that
max
αPNm0,k

}yaα ´ yMa
α
M} ă

ε

6Cr,ρ
. (34)

Then, we conclude for every M P N X rM2,8q that
ˇ

ˇ

`

aJu´ b
˘

´
`

aJ
Mu´ bM

˘ˇ

ˇ ď
ˇ

ˇpa´ aM qJu´ pb´ bM q
ˇ

ˇ

ď }a´ aM}}u} ` |b´ bM |

ď p}a´ aM} ` |b´ bM |q p1 ` rq

ď }pa´ aM , b´ bM q}p1 ` rq ă δ.

(35)

Hence, by using (34) and by combining (33) with (35), it follows for every M P N X rM2,8q that

max
αPNm0,k

sup
uPBrp0q

›

›

›
yρp|α|q

`

aJu´ b
˘

aα ´ yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM

›

›

›

ď max
αPNm0,k

sup
uPBrp0q

›

›

›
yρp|α|q

`

aJu´ b
˘

aα ´ yMρ
p|α|q

`

aJu´ b
˘

aαM

›

›

›

` max
αPNm0,k

sup
uPBrp0q

›

›

›
yMρ

p|α|q
`

aJu´ b
˘

aαM ´ yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM

›

›

›

ď max
αPNm0,k

}yaα ´ yMa
α
M} max

j“0,...,k
sup

uPBrp0q

ˇ

ˇ

ˇ
ρpjq

`

aJu´ b
˘

ˇ

ˇ

ˇ

` max
αPNm0,k

}yMa
α
M} max

j“0,...,k
sup

uPBrp0q

ˇ

ˇ

ˇ
ρpjq

`

aJ
Mu´ bM

˘

´ ρpjq
`

aJu´ b
˘

ˇ

ˇ

ˇ

ď
ε

6Cr,ρ
Cr,ρ ` Cy,a

ε

6Cy,a
“
ε

3
.

(36)

Thus, by using the inequalities (31)+(32)+(36) and that p1 ` }u}qγ ě 1 for any u P U , we have
›

›yρ
`

aJ ¨ ´b
˘

´ yMρ
`

aJ
M ¨ ´bM

˘
›

›

Ckpol,γpRm;Rdq

“ max
αPNm0,k

sup
uPRm

›

›yρp|α|q
`

aJu´ b
˘

aα ´ yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM
›

›

p1 ` }u}qγ

ď max
αPNm0,k

sup
uPBrp0q

›

›

›
yρp|α|q

`

aJu´ b
˘

aα ´ yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM

›

›

›

` max
αPNm0,k

sup
uPRmzBrp0q

›

›yρp|α|q
`

aJu´ b
˘

aα
›

›

p1 ` }u}qγ

` max
αPNm0,k

sup
uPRmzBrp0q

›

›yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM
›

›

p1 ` }u}qγ

ă
ε

3
`
ε

3
`
ε

3
“ ε.

Since ε ą 0 was chosen arbitrarily, this shows that RdˆRmˆR Q py, a, bq ÞÑ yρ
`

aJ ¨´b
˘

P Ckb pU ;Rdq
γ

is continuous. Hence, by using that pCkb pRm;Rdq
γ
, } ¨ }Ckpol,γpRm;Rdqq Q f ÞÑ f |U P pX, } ¨ }Xq is by

Assumption 3.5 continuous, we obtain the conclusion in Part (ii).
For Part (iii)., we define the subsets

N cos
U,drAs :“

#

U Q u ÞÑ

N
ÿ

n“1

yn cos
`

aJ
n ¨ ´bn

˘

P Rd : N P N, y1, ..., yN P Ad,
a1, ..., aN P Am, b1, ..., bN P A

+

Ď X,
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for A P tQ,Ru. Then, by using that the map Rd ˆRm ˆR Q py, a, bq ÞÑ yρ
`

aJ ¨ ´b
˘

P X is continuous
(see Part 2.), we conclude that N cos

U,drRs is contained in the closure of N cos
U,drQs with respect to } ¨ }X .

Moreover, by using that cos P Ckb pRq
γ

is non-polynomial, we can apply [64, Theorem 2.8] to conclude
that N cos

U,drRs is dense in X . Hence, by combining these two arguments, we obtain that N cos
U,drQs is also

dense in X . Since N cos
U,drQs is countable, this shows that pX, } ¨ }Xq is separable. □

Proof of Corollary 3.8. We aim to apply Theorem 3.2 with Banach space pX, } ¨ }Xq satisfying Assump-
tion 3.5. To this end, we first observe that pX, } ¨ }Xq is by Lemma 7.1.(iii) separable. Moreover, we
choose Θ :“ Rm ˆ R and let pθnqnPN :“ pan, bnqnPN : Ω Ñ Rm ˆ R be an i.i.d. sequence satisfying
Assumption 3.7, which implies Assumption 3.1. In addition, we define

G :“
␣

Rm ˆ R Q pϑ1, ϑ2q ÞÑ eiρ
`

ϑJ
1 ¨ ´ϑ2

˘

P X : i “ 1, ..., d
(

.

Since RmˆR Q pϑ1, ϑ2q ÞÑ eiρ
`

ϑJ
1 ¨´ϑ2

˘

P X is by Lemma 7.1.(ii) continuous, we have G Ď C0pΘ;Xq.
Moreover, we observe that

spanRpGpΘqq “ spanR

´!

U Q u ÞÑ eiρ
`

ϑJ
1 u´ ϑ2

˘

P Rd : pϑ1, ϑ2q P Rm ˆ R, i “ 1, ..., d
)¯

,

forms the set of deterministic (i.e. fully trained) neural networks with activation function ρ P Ckb pRq
γ
,

where ei P Rd denotes the i-th unit vector of Rd. Since ρ P Ckb pRq
γ

is non-polynomial, we can apply
[64, Theorem 2.8] to conclude that spanRpGpΘqq is dense in X . Hence, the conclusion follows from
Theorem 3.2. □

8. PROOF OF RESULTS IN SECTION 4

8.1. Proof of Theorem 4.5. For the proof of Theorem 4.5, we first show the following auxiliary lemma
about Banach space types.

Lemma 8.1. Let pX, } ¨ }Xq be a Banach space of type t P r1, 2s with constant CX ą 0, and let t1 P r1, ts.
Then, pX, } ¨ }Xq is a Banach space of type t1 with constant CX ą 0.

Proof. Fix some N P N, pxnqn“1,...,N Ď X , and a Rademacher sequence pϵnqn“1,...,N defined on a
(possibly different) probability space prΩ, rF , rPq. Then, by using Jensen’s inequality and the inequality
`
řN
n“1 xn

˘t1{t
ď
řN
n“1 x

t1{t
n for any x1, ..., xN ě 0, it follows that

rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnxn

›

›

›

›

›

t1

X

fi

fl

1
t1

ď rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnxn

›

›

›

›

›

t

X

fi

fl

1
t

ď CX

˜

N
ÿ

n“1

}xn}tX

¸

1
t

ď CX

˜

N
ÿ

n“1

}xn}t
1

X

¸

1
t1

.

This shows that pX, } ¨ }Xq is a Banach space of type t1 P r1, ts with constant CX ą 0. □

Proof of Theorem 4.5. Fix some x P BrG,θpXq and N P N. Then, by definition of BrG,θpXq, there exists
a BpΘq{BpReq-measurable map y :“ py1, ..., yeq

J : Θ Ñ Re such that x “ E r
ře
i“1 yipθ1qgipθ1qs P X

and

E

«›

›

›

›

›

e
ÿ

i“1

ypθ1qgpθ1q

›

›

›

›

›

r

X

ff
1
r

ď 2}x}BrG,θpXq ă 8. (37)

From this, we define for every fixed n “ 1, ..., N , the map

Ω Q ω ÞÑ Gnpωq :“
e
ÿ

i“1

ylpθnpωqqglpθnpωqq P X.

Then, by using that θn : Ω Ñ Θ is by definition Fθ{BpΘq-measurable and that y :“ py1, ..., yeq
J :

Θ Ñ Re is by definition BpΘq{BpReq-measurable, the concatenation Ω Q ω ÞÑ Gn :“
ře
l“1 ylpθnpωqqglpθnpωqq P X is Fθ{BpXq-measurable. Hence, by using that pX, } ¨ }Xq is separable,

we can apply [44, Theorem 1.1.6+1.1.20] to conclude that Gn : Ω Ñ X is strongly pP,Fθq-measurable.
Thus, (37) and θn „ θ1 ensure that Gn P LrpΩ,Fθ,P;Xq.

Now, by using that x “ E r
ře
i“1 yipθ1qgipθ1qs “ E r

ře
i“1 yipθnqgipθnqs “ ErGns P X for any

n “ 1, ..., N , the right-hand side of [51, Lemma 6.3] for the independent mean-zero random variables
pErGns ´Gnqn“1,...,N with Rademacher sequence pϵnqn“1,...,N on pΩ,F ,Pq independent of pErGns ´
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Gnqn“1,...,N , the Kahane-Khintchine inequality in [44, Theorem 3.2.23] with constant κr,minpr,tq ą 0
(depending only on r P r1,8q and minpr, tq P r1, 2s), that pX, } ¨ }Xq is by assumption a Banach space
of type t P r1, 2s (with constant CX ą 0), thus by Lemma 8.1 of type minpr, tq P p1, ts (with the same
constant CX ą 0), and that pErGns ´Gnqn“1,...,N „ ErG1s ´G1 are identically distributed, it follows
for the random feature model GN :“ 1

N

řN
n“1Gn P RG X LrpΩ,Fθ,P;Xq that

E r}x´GN}
r
Xs

1
r “

1

N
E

«›

›

›

›

›

N
ÿ

n“1

pErGns ´Gnq

›

›

›

›

›

r

X

ff

1
r

ď
2

N
E

«
›

›

›

›

›

N
ÿ

n“1

ϵn pErGns ´Gnq

›

›

›

›

›

r

X

ff

1
r

ď
2κr,minpr,tq

N
E

»

–

›

›

›

›

›

N
ÿ

n“1

ϵn pErGns ´Gnq

›

›

›

›

›

minpr,tq

X

fi

fl

1
minpr,tq

ď
2CXκr,minpr,tq

N

˜

N
ÿ

n“1

E
”

}ErGns ´Gn}
minpr,tq
X

ı

¸

1
minpr,tq

“
2CXκr,minpr,tq

N
1´ 1

minpr,tq

E
”

}ErG1s ´G1}
minpr,tq
X

ı
1

minpr,tq
.

Hence, by using Jensen’s inequality, Minkowski’s inequality, [44, Proposition 1.2.2], the inequality (37),
and the constant Cr,t :“ 8κr,minpr,tq ą 0 (depending only on r P r1,8q and t P r1, 2s), we conclude for
GN :“ 1

N

řN
n“1Gn P RG X LrpΩ,Fθ,P;Xq that

E r}x´GN}
r
Xs

1
r ď

2CXκr,minpr,tq

N
1´ 1

minpr,tq

E r}ErG1s ´G1}
r
Xs

1
r

ď
2CXκr,minpr,tq

N
1´ 1

minpr,tq

´

}ErG1s}X ` E r}G1}rXs
1
r

¯

ď
4CXκr,minpr,tq

N
1´ 1

minpr,tq

}G1}LrpΩ,F ,P;Xq

ď Cr,tCX
}x}BrG,θpXq

N
1´ 1

minpr,tq

,

which completes the proof. □

8.2. Proof of Corollary 4.8+4.9+4.20 and Proposition 4.22.

Proof of Corollary 4.8. We aim to apply Theorem 4.5 onto a fixed function f P W k,ppU,LpUq, duq X

L1pRm,LpRmq, duq with Cf :“
` ş

Rm
| pfpϑq|rp1`}ϑ}2q

kr{2

pθpϑqr´1 dϑ
˘1{r

ă 8. To this end, we first observe

that pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq is a separable Banach space (see [64, Lemma 4.7]).
Moreover, we define the linear readouts

Rm Q ϑ ÞÑ y1pϑq :“
Re

`

pfpϑq
˘

p2πqmpθpϑq
P R, and

Rm Q ϑ ÞÑ y2pϑq :“ ´
Im

`

pfpϑq
˘

p2πqmpθpϑq
P R,

(38)

which are BpRmq{BpRq-measurable as composition of the continuous function Rm Q ϑ ÞÑ pfpϑq P C
(see [30, p. 214]) and the BpCq{BpRq-measurable functions returning the real and imaginary part. Then,
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by using Jensen’s inequality, it follows that

ż

Rm
| pfpϑq|dϑ ď

ż

Rm

| pfpϑq|

pθpϑq
pθpϑqdϑ ď

˜

ż

Rm

| pfpϑq|r

pθpϑqr
pθpϑqdϑ

¸
1
r

ď

˜

ż

Rm

| pfpϑq|r

pθpϑqr´1

`

1 ` }ϑ}2
˘
kr
2 dϑ

¸
1
r

“ Cf ă 8,

which shows that pf P L1pRm,LpRmq, du;Cq. Hence, we can apply the Fourier inversion theorem (see
[30, Equation 7.14]) and use that the left-hand side is real-valued to conclude for a.e. u P Rm that

xpuq “
1

p2πqm

ż

Rm
pfpϑqeiϑ

Judϑ “

ż

Rm

pfpϑq

p2πqmpθpϑq
eiϑ

Jupθpϑqdϑ

“ E

«

pfpθ1q

p2πqmpθpθ1q
cos

`

θJ
1 u

˘

`
pfpθ1q

p2πqmpθpθ1q
i sin

`

θJ
1 u

˘

ff

“ E

«

Re
`

pfpθ1q
˘

p2πqmpθpθ1q
cos

`

θJ
1 u

˘

´
Im

`

pfpθ1q
˘

p2πqmpθpθ1q
sin

`

θJ
1 u

˘

ff

“ E
“

y1pθ1q cos
`

θJ
1 u

˘

` y2pθ1q sin
`

θJ
1 u

˘‰

.

(39)

Thus, by using integration by parts, it holds that

ż

U
E
“

y1pθ1q cos
`

θJ
1 u

˘

` y2pθ1q sin
`

θJ
1 u

˘‰

Bαhpuqdu “

ż

U
xpuqBαhpuqdu

“ p´1q|α|

ż

U
Bαfpuqhpuqdu,

(40)

which shows that the weak derivatives of E
“

y1pθ1q cos
`

θJ
1 ¨
˘

` y2pθ1q sin
`

θJ
1 ¨
˘‰

and f coincide, and
thus implies that E

“

y1pθ1q cos
`

θJ
1 ¨
˘

` y2pθ1q sin
`

θJ
1 ¨
˘‰

“ f P W k,ppU,LpUq, wq. In addition, by

using that
ˇ

ˇϑα
ˇ

ˇ :“
ˇ

ˇ

śm
l“1 ϑ

αl
l

ˇ

ˇ “
śm
l“1 |ϑl|

αl ď
śm
l“1

`

1 ` }ϑ}2
˘αl{2

“
`

1 ` }ϑ}2
˘k{2 for any α :“

pα1, ..., αmq P Nm0,k and ϑ :“ pϑ1, ..., ϑmq P Rm, that
ˇ

ˇNm0,k
ˇ

ˇ “
řk
j“0m

j ď 2mk, and that wpUq :“
ş

U wpuqdu ă 8, we conclude for every ϑ P Rm that

›

›cos
`

ϑJ¨
˘
›

›

Wk,ppU,LpUq,wq
“

¨

˝

ÿ

αPNm0,k

ż

U

ˇ

ˇBα
`

cos
`

ϑJu
˘˘
ˇ

ˇ

p
wpuqdu

˛

‚

1
p

“

¨

˝

ÿ

αPNm0,k

ż

U

ˇ

ˇ

ˇ
cosp|α|q

`

ϑJu
˘

ϑα
ˇ

ˇ

ˇ

p
wpuqdu

˛

‚

1
p

ď
ˇ

ˇNm0,k
ˇ

ˇ

1
p
`

1 ` }ϑ}2
˘
k
2

ˆ
ż

U
wpuqdu

˙
1
p

ď 2
1
pm

k
p
`

1 ` }ϑ}2
˘
k
2 wpUq

1
p .

(41)

Moreover, by using the same arguments as in (41), we also obtain that

›

›sin
`

ϑJ¨
˘›

›

Wk,ppU,LpUq,wq
ď 2

1
pm

k
p
`

1 ` }ϑ}2
˘
k
2 wpUq

1
p . (42)
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Hence, by using that E
“

y1pθ1q cos
`

θJ
1 ¨
˘

` y2pθ1q sin
`

θJ
1 ¨
˘‰

“ f P W k,ppU,LpUq, wq, the inequali-
ties (41)+(42), and that |Repzq| ` | Impzq| ď

?
2|z| for any z P C, it follows that

}f}BrG,θpWk,ppU,LpUq,wqq ď E
”

›

›y1pθ1q cos
`

θJ
1 ¨
˘

` y2pθ1q sin
`

θJ
1 ¨
˘
›

›

r

Wk,ppU,LpUq,wq

ı
1
r

ď E
”´

|y1pθ1q|
›

›cos
`

θJ
1 ¨
˘
›

›

Wk,ppU,LpUq,wq
` |y2pθ1q|

›

›sin
`

θJ
1 ¨
˘
›

›

Wk,ppU,LpUq,wq

¯rı 1
r

ď
2

1
pm

k
pwpUq

1
p

p2πqm
E

»

–

´

ˇ

ˇRe
`

pfpθ1q
˘ˇ

ˇ `
ˇ

ˇ Im
`

pfpθ1q
˘ˇ

ˇ

¯r

pθpθ1qr

`

1 ` }θ1}2
˘
kr
2

fi

fl

1
r

ď
2

1
p

` 1
2m

k
pwpUq

1
p

p2πqm

˜

ż

Rm

ˇ

ˇ pfpϑq
ˇ

ˇ

r

pθpϑqr

`

1 ` }ϑ}2
˘
kr
2 pθpϑqdϑ

¸
1
r

“
2

1
p

` 1
2m

k
pwpUq

1
p

p2πqm
Cf ă 8,

(43)

which shows that f P BrG,θpXq. Thus, by using that pW k,ppU,LpUq, wq, } ¨ }Wk,ppU,LpUq,wqq is a Banach
space of type t “ minp2, pq with constant CWk,ppU,LpUq,wq ą 0 depending only on p P r1,8q (see [64,
Lemma 4.9]), we can apply Theorem 4.5 (with constant Cr,t ą 0 depending only on r P r1,8q and
t P r1, 2s), insert the inequality (43), and define the constant Cp,r :“ 21{p`1{2Cr,tCWk,ppU,LpUq,wq ą 0

(depending only on p, r P r1,8q) to conclude that there exists a random trigonometric feature model
GN P RT U,1 X LrpΩ,Fθ,P;W k,ppU,LpUq, wqq with N features satisfying

E
”

}f ´GN}rWk,ppU,LpUq,wq

ı
1
r

ď Cr,tCWk,ppU,LpUq,wq

}f}BrG,θpWk,ppU,LpUq,wqq

N
1´ 1

minp2,p,rq

ď Cp,r
m

k
pwpUq

1
p

p2πqm

Cf

N
1´ 1

minp2,p,rq

,

which completes the proof. □

Proof of Corollary 4.9. We aim to apply Theorem 4.5 onto a fixed function f P W k,ppU,LpUq, du;Cq X

L1pRm,LpRmq, du;Cq with
` ş

Rm
| pfpϑq|rp1`}ϑ}2q

kr{2

pθpϑqr´1 dϑ
˘1{r

ă 8. To this end, we first observe that

pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq is a separable Banach space (see [64, Lemma 4.7]). More-
over, we define

Rm Q ϑ ÞÑ ypϑq :“
pfpϑq

p2πqmpθpϑq
P C,

and follow the proof of Corollary 4.9, where the Fourier inversion theorem is applied to conclude for
a.e. u P Rm that

fpuq “
1

p2πqm

ż

Rm
pfpϑqeiϑ

Judϑ “

ż

Rm

pfpϑq

p2πqmpθpϑq
eiϑ

Jupθpϑqdϑ “ E
“

ypθ1q exp
`

iθJ
1 u

˘‰

.

Hence, by using the same steps as in the proof of Corollary 4.9, we obtain the conclusion from Theo-
rem 4.5. □

Proof of Lemma 4.19. Let G as in Remark 4.17, let ψ P S0pR;Cq, let ρ P Ckpol,γpRq, and fix some

f P rBk,r,γψ,a,bpU ;Rdq. Then, there exists by definition of rBk,r,γψ,a,bpU ;Rdq some h P L1pRm;LpRmq, du;Rdq

such that ph P L1pRm;LpRmq, du;Cdq, h “ f a.e. on U , and

E

»

–

›

›

›

›

›

›

`

1 ` }a1}2
˘

γ`k
2

`

1 ` |b1|2
˘

γ
2

pa,bpa1, b1q
pRψhqpa1, b1q

›

›

›

›

›

›

rfi

fl

1
r

ď 2}f}
rBk,r,γψ,a,bpU ;Rdq

ă 8. (44)

Moreover, we recall that G consists of the feature maps given by

Rm ˆ R Q pa, bq ÞÑ gipa, bq :“ eiρ
`

aJ ¨ ´b
˘

P W k,ppU,LpUq, w;Rdq, i “ 1, ..., d, (45)



UNIVERSAL APPROXIMATION PROPERTY OF RANDOM FEATURE MODELS 27

where ei P Rd denotes the i-th unit vector. In addition, we define the linear readout

Rm ˆ R Q pa, bq ÞÑ ypa, bq :“ pyipa, bqqJ
i“1,...,d :“ Re

˜

pRψfqpa, bq

C
pψ,ρq
m pa,bpa, bq

¸

P Rd. (46)

Then, by using Proposition 4.16 together with the fact that h : Rm Ñ Rd is Rd-valued and that h “ f
a.e. on U , it follows for a.e. u P U that

E
“

ypa1, b1qρ
`

aJ
1 u´ b1

˘‰

“ hpuq “ fpuq,

which implies by following the arguments of (40) that

E

«

d
ÿ

i“1

yipa1, b1qeiρ
`

aJ
1 ¨ ´b1

˘

ff

“ E
“

ypa1, b1qρ
`

aJ
1 ¨ ´b1

˘‰

“ f P W k,ppU,LpUq, w;Rdq.

Hence, by using that
ˇ

ˇaα
ˇ

ˇ :“
ˇ

ˇ

śm
l“1 a

αl
l

ˇ

ˇ “
śm
l“1 |al|

αl ď
`

1 ` }a}2
˘|α|{2

ď
`

1 ` }a}2
˘k{2 for any

α :“ pα1, ..., αmq P Nm0,k and a :“ pa1, ..., amq P Rm, the inequality [64, Equation 42] (with constant

C
pγ,pq

U,w ą 0 defined in (10)), that
ˇ

ˇNm0,k
ˇ

ˇ “
řk
j“0m

j ď 2mk, and (44), we have

}f}BrG,θpWk,ppU,LpUq,w;Rdqq ď E

»

–

›

›

›

›

›

d
ÿ

i“1

yipa1, b1qeiρ
`

aJ
1 u´ b1

˘

›

›

›

›

›

r

Wk,ppU,LpUq,w;Rdq

fi

fl

1
r

“ E

»

—

–

¨

˝

ÿ

αPNm0,k

ż

U

ˇ

ˇ

ˇ
Bα

´

ypa1, b1qρ
`

aJ
1 u´ b1

˘

¯
ˇ

ˇ

ˇ

p
wpuqdu

˛

‚

r
p

fi

ffi

fl

1
r

ď E

»

—

–

¨

˝

ÿ

αPNm0,k

›

›

›

›

›

Re

˜

aα1 pRψgqpa1, b1q

C
pψ,ρq
m pa,bpa1, b1q

¸›

›

›

›

›

p
ż

U

ˇ

ˇ

ˇ
ρp|α|q

`

aJ
1 u´ b1

˘

ˇ

ˇ

ˇ

p
du

˛

‚

r
p

fi

ffi

fl

1
r

ď 4}ρ}Ckpol,γpRq

C
pγ,pq

U,w

ˇ

ˇ

ˇ
Nm0,k

ˇ

ˇ

ˇ

1
p

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

E

»

–

›

›

›

›

›

›

`

1 ` }a1}2
˘

γ`k
2

`

1 ` |b1|2
˘

γ
2

pa,bpa1, b1q
pRψgqpa1, b1q

›

›

›

›

›

›

rfi

fl

1
r

ď 2
3` 1

p }ρ}Ckpol,γpRq

C
pγ,pq

U,w m
k
p

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

}f}
rBk,r,γψ,a,bpU ;Rdq

ă 8,

(47)

which shows that f P BrG,θpW k,ppU,LpUq, w;Rdqq. □

Proof of Corollary 4.20. We aim to apply Theorem 4.5 onto a fixed function f P

W k,ppU,LpUq, w;Rdq X rBk,r,γψ,a,bpU ;Rdq, where we recall that pW k,ppU,LpUq, w;Rdq, } ¨

}Wk,ppU,LpUq,w;Rdqq is separable. To this end, we use that there exists by definition of rBk,r,γψ,a,bpU ;Rdq

some h P L1pRm;LpRmq, du;Rdq such that ph P L1pRm;LpRmq, du;Cdq, h “ f a.e. on U , and
(44) holds true. Moreover, we recall that the feature maps are given by (45) and define the linear
y : Rm ˆ R Ñ Rd as in (46). Then, by using that pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq

is a Banach space of type t “ minp2, pq with constant CWk,ppU,LpUq,w;Rdq ą 0 depending only on
p P r1,8q (see [64, Lemma 4.9]), we can use Theorem 4.5 (with constant Cr,t ą 0 depending only on
r P r1,8q and t P r1, 2s), Lemma 4.19, and the constant Cp,r :“ 23`1{pCr,tCWk,ppU,LpUq,w;Rdq ą 0

(depending only on p, r P r1,8q) to conclude that there exists a random neural network
GN P RN ρ

U,d X LrpΩ,Fa,b,P;W k,ppU,LpUq, w;Rdqq with N neurons satisfying

E
”

}f ´GN}rWk,ppU,LpUq,w;Rdq

ı
1
r

ď Cr,tCWk,ppU,LpUq,w;Rdq

}f}BrG,θpWk,ppU,LpUq,w;Rdqq

N
1´ 1

minp2,p,rq

ď Cp,r}ρ}Ckpol,γpRq

C
pγ,pq

U,w m
k
p

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

}f}
rBk,r,γψ,a,bpU ;Rdq

N
1´ 1

minp2,p,rq

,
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which completes the proof. □

Proof of Proposition 4.22. For (12), let f P L1pRm,LpRmq, du;Rdq with prγs ` 2q-times differentiable
Fourier transform and fix some c P t0, rγs ` 2u. Then, by using that b1 „ t1, the inequality [64,
Equation 46], and Minkowski’s integral inequality (with measure spaces pRm,LpRmq, daq and pNm0,k ˆ

R,PpNm0,kq bBpRq, dµb dζq, where PpNm0,kq denotes the power set of Nm0,k, and where PpNm0,kq Q E ÞÑ

µpEq :“
ř

αPNm0,k
1Epαq P r0,8q is the counting measure) together with the probability disitribution

function of a1 „ tm, we have

}f}
rBk,r,γψ,a,bpU ;Rdq

ď E

»

–

›

›

›

›

›

›

`

1 ` }a1}2
˘

γ`k
2

`

1 ` |b1|2
˘

γ
2

pa,bpa1, b1q
pRψfqpa1, b1q

›

›

›

›

›

›

rfi

fl

1
r

ď E

»

–sup
rbPR

›

›

›

›

›

›

`

1 ` }a1}2
˘

rγs`k
2

papa1q

´

1 `
ˇ

ˇrb
ˇ

ˇ

2
¯

rγs`2
2

pRψfq
`

a1,rb
˘

›

›

›

›

›

›

rfi

fl

1
r

ď 2
rγs

2
prγs ` 2q!

π
E

»

–

›

›

›

›

›

›

`

1 ` }a1}2
˘

2rγs`k`2
2

papa1q

ÿ

βPNm
0,rγs`2

ż

R

›

›Bβ
pfpζaq

›

›

ˇ

ˇ

ˇ

pψprγs`2´|β|qpζq

ˇ

ˇ

ˇ
dζ

›

›

›

›

›

›

rfi

fl

1
r

ď 2
rγs

2
prγs ` 2q!

π

ÿ

βPNm
0,rγs`2

ż

R

ˇ

ˇ

ˇ

pψprγs`2´|β|qpζq

ˇ

ˇ

ˇ

¨

˝

ż

Rm

›

›Bβ
pfpζaq

›

›

r

`

1 ` }a}2
˘

p2rγs`k`2qr
2

papaqr´1
da

˛

‚

1
r

dζ.

Hence, by using the substitution ξ ÞÑ ζa with Jacobi determinant dξ “ |ζ|mda, that ζ1 :“ inf
␣

|ζ| :

ζ P suppp pψq
(

ą 0, and C1 :“ 2rγs{2prγs ` 2q! maxj“0,...,rγs`2

ş

R
ˇ

ˇ pψpjqpζq
ˇ

ˇdζ ą 0 (depending only on
γ P r0,8q and ψ P SpR;Cq), it follows that

}f}
rBk,r,γψ,a,bpU ;Rdq

ď
prγs ` 2q!

π

ÿ

βPNm
0,rγs`2

ż

R

ˇ

ˇ

ˇ

pψprγs`2´|β|qpζq

ˇ

ˇ

ˇ

ζ
m
2

¨

˝

ż

Rm

›

›Bβ
pfpξq

›

›

r

`

1 ` }ξ{ζ}2
˘

p2rγs`k`2qr
2

papξ{ζqr´1
dξ

˛

‚

1
r

dζ

ď
C1

ζ
m
2
1

sup
ζPsuppp pψq

ÿ

βPNm
0,rγs`2

¨

˝

ż

Rm

›

›Bβ
pfpξq

›

›

r

`

1 ` }ξ{ζ}2
˘

p2rγs`k`2qr
2

papξ{ζqr´1
dξ

˛

‚

1
r

,

which proves (12). For (13), we use (12) and that a1 „ tm to obtain that

}f}
rBk,r,γψ,a,bpU ;Rdq

ď
C1

ζ
m
2
1

sup
ζPsuppp pψq

ÿ

βPNm
0,rγs`2

˜

ż

Rm

›

› pfpξq
›

›

r

`

1 ` }ξ{ζ}2
˘2rγs`k`2

papξ{ζq
dξ

¸

1
2

“
C1

ζ
m
2
1

π
m`1

4

Γ
`

m`1
2

˘
1
2

ÿ

βPNm
0,rγs`2

ˆ
ż

Rm

›

›Bβ
pfpξq

›

›

2 `
1 ` }ξ{ζ1}2

˘2rγs`k`m`5
2 dξ

˙
1
2

,

which completes the proof. □

Proof of Proposition 4.24. The proof is based on [64, Proposition 3.10] which has established a similar
result, but with respect to deterministic neural networks. To this end, we fix some m, d P N and ε ą 0.
Moreover, let p ą 1 and w : U Ñ r0,8q be a weight as in Lemma 4.23 (with constant Cpγ,pq

R,w0
ą 0 being

independent of m, d P N and ε ą 0), let pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq be a pair as in Example 4.15
(with 0 ă ζ1 ă ζ2 ă 8 and constant Cψ,ρ ą 0 being independent of m, d P N and ε ą 0), and fix some
f P W k,ppU,LpUq, w;Rdq satisfying the conditions of Proposition 4.22 such that the right-hand side
of (13) satisfies O

`

msp2{ζ2qmpm` 1qm{2
˘

for some s P N0. Then, there exists some constant C ą 0
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(being independent of m, d P N and ε ą 0) such that for every m, d P N it holds that

C1

ζ
m
2
1

ÿ

βPNm
0,rγs`2

ˆ
ż

Rm

›

›Bβ
pfpξq

›

›

2 `
1 ` }ξ{ζ1}2

˘2rγs`k`m`5
2 dξ

˙
1
2

ď Cms

ˆ

2

ζ2

˙m

pm` 1q
m
2 . (48)

Hence, by using the inequality (13) in Proposition 4.22 together with (48), that Γpxq ě
a

2π{xpx{eqx

for any x P p0,8q (see [33, Lemma 2.4]), and that πm{4p2{ζ2qm

p2π{ζ2qmp1{p2eqqm{2 “
`2e

?
π

π2

˘m{2
ď 1 for any m P N,

we conclude that there exist some constants C2, C3 ą 0 (being independent of m, d P N and ε ą 0) such
that

Cp}ρ}Ckpol,γpRq

C
pγ,pq

R,w0
m
γ` k`1

p

Cψ,ρ

´

2π
ζ2

¯m }f}
rBk,r,γψ,a,bpU ;Rdq

ď Cp}ρ}Ckpol,γpRq

C
pγ,pq

R,w0
m
γ` k`1

p π
m`1

4

Cψ,ρ

´

2π
ζ2

¯m
Γ
`

m`1
2

˘
1
2

Cms

ˆ

2

ζ2

˙m

pm` 1q
m
2

ď Cp}ρ}Ckpol,γpRq

C
pγ,pq

R,w0
m
γ` k`1

p π
m`1

4

Cψ,ρ

´

2π
ζ2

¯m ´

4π
m`1

¯
1
4 `m`1

2e

˘
m`1

2

Cms

ˆ

2

ζ2

˙m

pm` 1q
m
2

ď 2Cp
Cp}ρ}Ckpol,γpRqC

pγ,pq

R,w0
π

1
4 p2eq

1
2C3

Cψ,ρp4πq
1
4

Cms

ď
`

C2m
C3
˘1´ 1

minp2,pq .

(49)

Hence, by using that f P rBk,r,γψ,a,bpU ;Rdq (see Proposition 4.22), we can apply Theorem 4.5 with N “
Q

C2m
C3ε

´
minp2,pq

minp2,pq´1

U

and insert the inequality (49) to obtain a random neural network GN P RN ρ
U,d

with N neurons satisfying

E
”

}f ´GN}rWk,ppU,LpUq,w;Rdq

ı
1
r

ď Cp,r}ρ}Ckpol,γpRq

C
pγ,pq

U,w m
k
p

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

}f}
rBk,r,γψ,a,bpU ;Rdq

N
1´ 1

minp2,p,rq

ď

`

C2m
C3
˘1´ 1

minp2,pq

N
1´ 1

minp2,p,rq

ď ε,

which completes the proof. □

9. PROOF OF RESULTS IN SECTION 5

9.1. Proof of Proposition 5.1.

Proof of Proposition 5.1. Fix some J,N P N and a k-times weakly differentiable function f :“
pf1, ..., fdqJ : U Ñ Rd. Moreover, in order to ease notation, we define rm :“ J |Nm0,k|d P N and
rn :“ eN P N. Then, by using the definition of the Euclidean norm, we first observe that (15) is equivalent
to

ypJqpωq “ argminyPYN

¨

˝

1

J

J
ÿ

j“1

ÿ

αPNm0,k

d
ÿ

i“1

c2α

ˇ

ˇ

ˇ
BαfipVjpωqq ´ BαG

y
N,ipωqpVjpωqq

ˇ

ˇ

ˇ

2

˛

‚, (50)

where GyN pωq :“ pGyN,1pωq, ..., GyN,dpωqqJ P W k,2pU,LpUq, w;Rdq is defined in (14). Hence, for
every fixed ω P Ω, the least squares problem (50) is by [12, Theorem 1.1.2] equivalent to the normal
equations GpωqJGpωqy⃗pJqpωq “ GpωqJZpωq stated in Line 5 of Algorithm 1, where y⃗pJqpωq :“
`

y
pJq

pl,nq
pωq

˘J

pl,nqPt1,...,euˆt1,...,Nu
denotes the vectorized version of ypJqpωq :“

`

y
pJq

l,n pωq
˘n“1,...,N

l“1,...,e
. Thus,

the problem (50) admits by [12, Theorem 1.2.10] a solution ypJqpωq :“
`

y
pJq

l,n pωq
˘n“1,...,N

l“1,...,e
P ReˆN ,

which proves that Algorithm 1 terminates.
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Next, we show that Algorithm 1 is correct. To this end, we first prove that the ReˆN -valued random
variable ypJq :“

`

y
pJq

l,n

˘n“1,...,N

l“1,...,e
defined in (50) is Fθ,V {BpRrnq-measurable. Let us define the function

pR rmˆrn ˆ R rmq ˆ Rrn Q ppA, bq, yq ÞÑ }Ay ´ b}2 P R, (51)

whose epigraphical mapping pR rmˆrnˆR rmqˆRrnˆR Q ppA, bq, y, tq ÞÑ
␣

ppA, bq, y, tq P pR rmˆrnˆR rmqˆ

Rrn ˆ R : }Ay ´ b}2 ď t
(

is closed-valued and measurable (see [71, Definition 14.1] for the definition of
the latter). This shows that (51) is a normal integrand in the sense of [71, Definition 14.27]. Hence, we
can apply [71, Theorem 14.36] to conclude that there exists a BppR rmˆrnˆR rmqˆRrnq{BpRrnq-measurable
map Υ : R rmˆrn ˆR rm Ñ Rrn returning a minimizer, i.e. such that for every pA, bq P R rmˆrn ˆR rm it holds
that

}AΥpA, bq ´ b}2 “ min
yPRrn

}Ay ´ b}2.

Moreover, by using that pθnqnPN : Ω Ñ Θ are by definition Fθ,V {BpΘq-measurable, that
pVjqjPN : Ω Ñ U are by definition Fθ,V {BpUq-measurable, and that the feature maps g1, ..., ge :

Θ Ñ W k,2pU,LpUq, w;Rdq are by assumption BpΘq{BpW k,2pU,LpUq, w;Rdqq-measurable, the
R rmˆrn-valued random variable G “ pGpj,α,iq,pl,nqq

pl,nqPt1,...,euˆt1,...,Nu

pj,α,iqPt1,...,JuˆNm0,kˆt1,...,du
with Gpj,α,iq,pl,nq :“

cαBαgl,ipθnqpVjq, for pj, α, iq P t1, ..., Ju ˆ Nm0,k ˆ t1, ..., du and pl, nq P t1, ..., eu ˆ t1, ..., Nu, is
Fθ,V {BpR rmˆrnq-measurable. In addition, by using that pVjqjPN : Ω Ñ U are by definition Fθ,V {BpUq-
measurable and that f : U Ñ Rd is k-times weakly differentiable, the R rm-valued random variable
Z :“ pcαBαfipVjqqpj,α,iqPt1,...,JuˆNm0,kˆt1,...,du is Fθ,V {BpR rmq-measurable. Thus, by combining this with

the BppR rmˆrn ˆ R rmq ˆ Rrnq{BpRrnq-measurable map Υ : R rmˆrn ˆ R rm Ñ Rrn, it follows that

Ω Q ω ÞÑ y⃗pJqpωq :“ ΥpGpωq, Zpωqq P Re¨N

is Fθ,V {BpRrnq-measurable, which shows that ypJq P YN . Since y⃗pJqpωq “ ΥpGpωq, Zpωqq “

minyPRrn }Gpωqy ´ Zpωq}2 is by [12, Theorem 1.1.2] equivalent to the normal equations
GpωqJGpωqy⃗pJqpωq “ GpωqJZpωq in Line 5, we obtain that the algorithm is correct.

Finally, we compute the complexity of Algorithm 1. In Line 1, we generate N random
variables pθnqn“1,...,N , which costs N units. In Line 2, we generate J random variables
pVjqj“1,...,J „ w, which requires J units. In Line 3, we compute the R rmˆrn-valued random vari-
able G “ pGpj,α,iq,pl,nqq

pl,nqPt1,...,euˆt1,...,Nu

pj,α,iqPt1,...,JuˆNm0,kˆt1,...,du
with Gpj,α,iq,pl,nq :“ cαBαglpθnqipVjq, for pj, α, iq P

t1, ..., Ju ˆ Nm0,k ˆ t1, ..., du and pl, nq P t1, ..., eu ˆ t1, ..., Nu, which needs 2J
ˇ

ˇNm0,k
ˇ

ˇdeN units. In
Line 4, we compute the R rm-valued random variableZ :“ pcαBαfipVjqqpj,α,iqPt1,...,JuˆNm0,kˆt1,...,du, which

requires 2J
ˇ

ˇNm0,k
ˇ

ˇd units. In Line 5, we solve the least squares problem via Cholesky decomposition and
forward/backward substitution (see [12, Section 2.2.2]), which needs

1

2
rmrn2 `

1

6
rn3 ` Oprmrnq “

1

2

`

J
ˇ

ˇNm0,k
ˇ

ˇ d
˘

peNq2 `
1

6
peNq3 ` O

`

J
ˇ

ˇNm0,k
ˇ

ˇ deN
˘

units (see [12, p. 45]). Hence, by summing the computational costs and by using that
ˇ

ˇNm0,k
ˇ

ˇ “
řk
j“0m

j ď

2mk, the complexity of Algorithm 1 is of order

N ` J ` 2J
ˇ

ˇNm0,k
ˇ

ˇ deN `
1

2

`

J
ˇ

ˇNm0,k
ˇ

ˇ d
˘

peNq2 `
1

6
peNq3 ` O

`

J
ˇ

ˇNm0,k
ˇ

ˇ deN
˘

ď N ` J ` 4JmkdeN ` 2JmkdpeNq2 `
1

6
peNq3 ` O

´

JmkdeN
¯

“ O
´

JmkdpeNq2 ` peNq3
¯

,

which completes the proof. □

9.2. Proof of Theorem 5.2 and Corollary 5.4.

Proof of Theorem 5.2. Fix some J,N P N, L ą 0, and a function f :“ pf1, ..., fdqJ P

B2
G,θpW

k,2pU,LpUq, w;Rdqq satisfying |Bαfipuq| ď L for all α P Nm0,k, i “ 1, ..., d, and u P U .

Then, we apply Algorithm 1 to obtain some Gy
pJq

N P RGV with ReˆN -valued random variable
ypJq “

`

y
pJq

l,n

˘n“1,...,N

l“1,...,e
P YN solving (15). Moreover, by using that pθnqnPN : Ω Ñ Θ are by definition
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Fθ,V {BpΘq-measurable, that the feature maps g1, ..., ge : Θ Ñ W k,2pU,LpUq, w;Rdq are by assumption
BpΘq{BpW k,2pU,LpUq, w;Rdqq-measurable, and that ypJq “

`

y
pJq

l,n

˘n“1,...,N

l“1,...,e
P YN is Fθ,V {BpReˆN q-

measurable, it follows that

Ω Q ω ÞÑ Gy
pJq

N pωq :“
´

u ÞÑ Gy
pJq

N,i pωqpuq

¯J

i“1,...,d
:“

N
ÿ

n“1

e
ÿ

l“1

y
pJq

l,N pωqglpθnpωqq

:“

˜

u ÞÑ

N
ÿ

n“1

e
ÿ

l“1

y
pJq

l,N pωqgl,ipθnpωqqpuq

¸J

i“1,...,d

P W k,2pU,LpUq, w;Rdq

is Fθ,V {BpW k,2pU,LpUq, w;Rdqq-measurable. Hence, by using [64, Lemma 4.7], i.e. that the Ba-
nach space pW k,2pU,LpUq, w;Rdq, } ¨ }Wk,2pU,LpUq,w;Rdqq is separable, we can apply [44, Theo-

rem 1.1.6+1.1.20] to conclude that Gy
pJq

: Ω Ñ W k,2pU,LpUq, w;Rdq is a pP,Fθ,V q-strongly measur-
able map.

In order to show (16), we adapt the proof of [37, Theorem 11.3]. To this end, we define for every
α P Nm0,k and i “ 1, ..., d the L2pU,LpUq, wq-valued random variable

Ω Q ω ÞÑ ∆ypJq

α,i,Lpωq :“
´

u ÞÑ Bαfipuq ´ TL

´

BαG
ypJq

N,i pωqpuq

¯¯

P L2pU,LpUq, wq.

Moreover, we define for every fixed α P Nm0,k, i “ 1, ..., d, and ϑ :“ pϑ1, ..., ϑN q P
ŚN

n“1Θ, the
L2pU,LpUq, wq-valued random variable

Ω Q ω ÞÑ ∆ypJq,ϑ
α,i,L pωq :“

´

u ÞÑ Bαfipuq ´ TL

´

BαG
ypJq,ϑ
N,i pωqpuq

¯¯

P L2pU,LpUq, wq,

where Ω Q ω ÞÑ Gy
pJq,ϑ
N,i pωq :“

řN
n“1

ře
l“1 y

pJq

l,n pωqgl,ipϑnq P L2pU,LpUq, wq. In addition, we define
the corresponding (random) empirical mean squared error } ¨ }J of such L2pU,LpUq, wq-valued random
variables as

Ω Q ω ÞÑ

›

›

›
∆ypJq

α,i,Lpωq

›

›

›

J
:“

˜

1

J

J
ÿ

j“1

ˇ

ˇ

ˇ
∆ypJq

α,i,LpωqpVjpωqq

ˇ

ˇ

ˇ

2
¸

1
2

P R and

Ω Q ω ÞÑ

›

›

›
∆ypJq,ϑ
α,i,L pωq

›

›

›

J
:“

˜

1

J

J
ÿ

j“1

ˇ

ˇ

ˇ
∆ypJq,ϑ
α,i,L pωqpVjpωqq

ˇ

ˇ

ˇ

2
¸

1
2

P R.

Then, by using the inequality px` yq2 ď 2
`

x2 ` y2
˘

for any x, y ě 0, it follows that

E

»

–

ÿ

αPNm0,k

ż

U

›

›

›
Bαfpuq ´ TL

´

BαG
ypJq

N p¨qpuq

¯›

›

›

2
wpuqdu

fi

fl

ď E

»

–

ÿ

αPNm0,k

d
ÿ

i“1

ż

U

ˇ

ˇ

ˇ
Bαfipuq ´ TL

´

BαG
ypJq

N,i p¨qpuq

¯ˇ

ˇ

ˇ

2
wpuqdu

fi

fl

“
ÿ

αPNm0,k

d
ÿ

i“1

E

«

ˆ

›

›

›
∆ypJq

α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆ypJq

α,i,L

›

›

›

J
` 2

›

›

›
∆ypJq

α,i,L

›

›

›

J

˙2
ff

ď 2
ÿ

αPNm0,k

d
ÿ

i“1

E

«

max

ˆ

›

›

›
∆ypJq

α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆ypJq

α,i,L

›

›

›

J
, 0

˙2

` 4
›

›

›
∆ypJq

α,i,L

›

›

›

2

J

ff

.
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Hence, by conditioning on Fθ, by using that |Nm0,k| “
řk
j“0m

j ď 2mk, that the random variables
pVjqjPN are independent of pθnqnPN, and the notation θ :“ pθnqn“1,...,N , we have

E

»

–

ÿ

αPNm0,k

ż

U

›

›

›
Bαfpuq ´ TL

´

BαG
ypJq

N p¨qpuq

¯›

›

›

2
wpuqdu

fi

fl

ď 2
ˇ

ˇNm0,k
ˇ

ˇ d max
αPNm

0,k
i“1,...,d

E

«

E

«

max

ˆ

›

›

›
∆ypJq

α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆ypJq

α,i,L

›

›

›

J
, 0

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

Fθ

ffff

` 8E

»

–

ÿ

αPNm0,k

d
ÿ

i“1

1

J

J
ÿ

j“1

›

›

›
∆ypJq

α,i,Lp¨qpVjq
›

›

›

2

fi

fl

ď 4mkd max
αPNm

0,k
i“1,...,d

E

«

E

«

max

ˆ

›

›

›
∆ypJq,ϑ
α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆ypJq,ϑ
α,i,L

›

›

›

J
, 0

˙2
ff ˇ

ˇ

ˇ

ˇ

ˇ

ϑ“θ

ff

` 8E

»

–

ÿ

αPNm0,k

d
ÿ

i“1

1

J

J
ÿ

j“1

›

›

›
∆ypJq

α,i,Lp¨qpVjq
›

›

›

2

fi

fl .

(52)

Moreover, we define for every fixed α P Nm0,k, i “ 1, ..., d, and ϑ :“ pϑ1, ..., ϑN q P
ŚN

n“1Θ the vector
space of random functions

Gϑα,i :“

#

Ω Q ω ÞÑ

N
ÿ

n“1

e
ÿ

l“1

yl,nBαgl,ipϑqpVjpωqq P L2pU,LpUq, wq : y “ pyl,nq
n“1,...,N
l“1,...,e P YN

+

.

Then, by following [37, p. 193], i.e. by using [37, Theorem 11.2] (with the set TL
`

Gϑα,i
˘

:“
␣

Ω Q ω ÞÑ

pu ÞÑ TLpGpωqpuqqq P L2pU,LpUq, wq : G P Gϑα,i
(

and where Gϑα,i has for fixed a P RNˆm, b P RN ,
α P Nm0,k, and i “ 1, ..., d the vector space dimension N in the sense of [37, Theorem 11.1]) together
with [37, Lemma 9.2+9.4 & Theorem 9.5], it follows for every u ą 576L2{J that

P

«

max

ˆ

›

›

›
∆ypJq,ϑ
α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆ypJq,ϑ
α,i,L

›

›

›

J
, 0

˙2

ą u

ff

ď P
„

Dg P TL

´

Gϑα,i
¯

: }g}L2pU,LpUq,wq ´ 2}g}J ą

?
u

2

ȷ

ď 9p12eJq2pN`1qe´ Ju
2304L2 .

(53)
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Hence, by using the constant v :“ 2304L2

J ln
`

9p12eJq2pN`1q
˘

ą 576L2{J , the inequality (53), and that
lnp108eq ě 1 together with 2304 ď 9216 lnp108eq, we conclude that

E

«

max

ˆ

›

›

›
∆ypJq,ϑ
α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆ypJq,θ
α,i,L

›

›

›

J
, 0

˙2
ff

“

ż 8

0
P

«

max

ˆ

›

›

›
∆ypJq,ϑ
α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆ypJq,θ
α,i,L

›

›

›

J
, 0

˙2

ą u

ff

du

ď v `

ż 8

v
P

«

max

ˆ

›

›

›
∆ypJq,ϑ
α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆ypJq,ϑ
α,i,L

›

›

›

J
, 0

˙2

ą u

ff

du

ď v ` 9p12eJq2pN`1q

ż 8

v
e´ Ju

2304L2 du

“
2304L2

J
ln
´

9p12eJq2pN`1q
¯

looooooooooomooooooooooon

ď4N lnp108eJq

`
2304L2

J
e´ Jv

2304L2

ď
2304L2

J
4N plnp108eq ` lnpJqq `

2304L2

J

ď 9216 lnp108eqL2 plnpJq ` 1qN

J
.

(54)

On the other hand, for the second term on the right-hand side of (52), we use that |Bαfipuq| ď L for any
α P Nm0,k, i “ 1, ..., d, and u P U , that }TLpyq} ď }y} for any y P Rd, and that the ReˆN -valued random

variable ypJq “
`

y
pJq

l,n

˘n“1,...,N

l“1,...,d
solves (15), to obtain that

E

»

–

ÿ

αPNm0,k

d
ÿ

i“1

1

J

J
ÿ

j“1

›

›

›
∆ypJq

α,i,Lp¨qpVjq
›

›

›

2

fi

fl

1
2

“ E

»

–

1

J

J
ÿ

j“1

ÿ

αPNm0,k

›

›

›
TL

´

BαfpVjq ´ BαG
ypJq

N p¨qpVjq
¯›

›

›

2

fi

fl

1
2

ď
1

minαPNm0,k cα
E

»

–

1

J

J
ÿ

j“1

ÿ

αPNm0,k

c2α

›

›

›
BαfpVjq ´ BαG

ypJq

N p¨qpVjq
›

›

›

2

fi

fl

1
2

“
1

minαPNm0,k cα
E

»

–min
yPYN

¨

˝

1

J

J
ÿ

j“1

ÿ

αPNm0,k

c2α
›

›BαfpVjq ´ BαG
y
N p¨qpVjq

›

›

2

˛

‚

fi

fl

1
2

ď
1

minαPNm0,k cα
inf
yPYN

E

»

–

1

J

J
ÿ

j“1

ÿ

αPNm0,k

c2α
›

›BαfpVjq ´ BαG
y
N p¨qpVjq

›

›

2

fi

fl

1
2

ď
maxαPNm0,k cα

minαPNm0,k cα
inf
yPYN

E

»

–

ÿ

αPNm0,k

ż

U

›

›Bαfpuq ´ BαG
y
N p¨qpuq

›

›

2
wpuqdu

fi

fl

1
2

.

Hence, by using Theorem 4.20 (with constants C2,2 ą 0 and CWk,2pU,LpUq,w;Rdq ą 0 independent

of f : U Ñ Rd and m, d P N, see also [64, Lemma 4.9]) together with Fθ Ď Fθ,V (with GfN P

RG X L2pΩ,Fθ,P;W k,2pU,LpUq, w;Rdq having Fθ{BpReˆN q-measurable linear readout contained in
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YN as Fθ Ď Fθ,V ), we conclude that

E

»

–

ÿ

αPNm0,k

d
ÿ

i“1

1

J

J
ÿ

j“1

›

›

›
∆ypJq

α,i,Lp¨qpVjq
›

›

›

2

fi

fl

1
2

ď κpcq inf
yPYN

E

»

–

ÿ

αPNm0,k

ż

U

›

›Bαfpuq ´ BαG
y
N p¨qpuq

›

›

2
wpuqdu

fi

fl

1
2

ď κpcqE
„

›

›

›
f ´GfN

›

›

›

2

Wk,2pU,LpUq,w,Rdq

ȷ
1
2

ď κpcqC2,2CWk,2pU,LpUq,w;Rdq

}f}B2
G,θpWk,2pU,LpUq,w;Rdqq

?
N

.

(55)

Hence, by inserting (54)+(55) into (52) with the inequality
?
x` y ď

?
x`

?
y for any x, y ě 0, and by

using the constant C4 :“ max
`

2
a

9216 lnp108eq,
?
8C2,2CWk,2pU,LpUq,w;Rdq

˘

ą 0 (being independent
of f : U Ñ Rd and m, d P N), it follows that

E

»

–

ÿ

αPNm0,k

ż

U

›

›

›
Bαfpuq ´ TL

´

BαG
ypJq

N p¨qpuq

¯
›

›

›

2
wpuqdu

fi

fl

1
2

ď 2m
k
2 d

1
2 max

αPNm
0,k

i“1,...,d

E

«

E
„

max

ˆ

›

›

›
∆ypJq,ϑ
α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆ypJq,ϑ
α,i,L

›

›

›

J
, 0

˙2ȷˇ
ˇ

ˇ

ˇ

ϑ“θ

ff
1
2

`
?
8E

»

–

ÿ

αPNm0,k

d
ÿ

i“1

1

J

J
ÿ

j“1

›

›

›
∆ypJq

α,i,Lp¨qpVjq
›

›

›

2

fi

fl

1
2

ď 2m
k
2 d

1
2

a

9216 lnp108eqL

c

plnpJq ` 1qN

J

`
?
8κpcqC2,2CWk,2pU,LpUq,w;Rdq

}f}B2
G,θpWk,2pU,LpUq,w;Rdqq

?
N

ď C4Lm
k
2 d

1
2

c

plnpJq ` 1qN

J
` C4κpcq

}f}B2
G,θpWk,2pU,LpUq,w;Rdqq

?
N

,

which completes the proof. □

Proof of Corollary 5.4. Fix some J,N P N, L ą 0, and some f :“ pf1, ..., fdqJ P

W k,2pU,LpUq, w;Rdq X rBk,2,γψ,a,bpU ;Rdq satisfying |Bαfipuq| ď L for all α P Nm0,k, i “ 1, ..., d, and
u P U . Then, we observe that Algorithm 2 is the same as Algorithm 1 for the special case of random
neural networks with feature maps Θ :“ Rm ˆR Q pϑ1, ϑ2q ÞÑ eiρ

`

ϑJ
1 ¨ ´ϑ2

˘

P W k,2pU,LpUq, w;Rdq,
i “ 1, ..., d, that are continuous and thus BpΘq{BpW k,2pU,LpUq, w;Rdqq-measurable (see [64,
Lemma 4.10]), where ei P Rd denotes the i-th unit vector of Rd. Hence, we can apply Theorem 5.2
(with constant C4 ą 0 independent of f : U Ñ Rd and m, d P N) to conclude that Algorithm 2 returns a
random neural network Gy

pJq

N P RN ρ
U,d with N neurons being a strongly pP,Fa,b,V q-measurable map

Gy
pJq

N : Ω Ñ W k,2pU,LpUq, w;Rdq such that

E

»

–

ÿ

αPNm0,k

ż

U

›

›

›
Bαfpuq ´ TL

´

BαG
ypJq

N p¨qpuq

¯›

›

›

2
wpuqdu

fi

fl

1
2

ď C4Lm
k
2 d

1
2

c

plnpJq ` 1qN

J
` C4κpcq

}f}B2
G,θpWk,2pU,LpUq,w;Rdqq

?
N

.



UNIVERSAL APPROXIMATION PROPERTY OF RANDOM FEATURE MODELS 35

Thus, by using Lemma 4.19, it follows that

E

»

–

ÿ

αPNm0,k

ż

U

›

›

›
Bαfpuq ´ TL

´

BαG
ypJq

N p¨qpuq

¯›

›

›

2
wpuqdu

fi

fl

1
2

ď C4Lm
k
2 d

1
2

c

plnpJq ` 1qN

J
` C4κpcq23` 1

2 }ρ}Ckpol,γpRq

C
pγ,2q

U,w m
k
2

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

}f}
rBk,2,γψ,a,bpU ;Rdq

?
N

.

Therefore, by defining the constant C5 :“ 23` 1
2C4 ą 0 (being independent of f : U Ñ Rd and

m, d P N), we obtain the result. □

10. PROOF OF RESULTS IN SECTION 6

Proof of Proposition 6.1. Fix some λ P p0,8q and assume that g : Rm Ñ R is a.e. bounded and
a.e. continuous. Then, we first observe that fpt, ¨q “ ϕλ,t ˚ g is the convolution of the kernel Rm Q y ÞÑ

ϕλ,tpyq :“ p4πλtq´m{2 exp
`

´}y}2{p4λtq
˘

P R with the initial condition g : Rm Ñ R. Moreover, for
every y P Rm, we observe that

Bϕλ,t
Bt

pyq “

ˆ

}y}2

4λt2
´
m

2t

˙

e´
}y}2

4λt

p4πλtq
m
2

“ λ
m
ÿ

l“1

ˆ

4y2l
p4λtq2

´
2

4λt

˙

e´
}y}2

4λt

p4πλtq
m
2

“ λ
m
ÿ

l“1

B2ϕλ,t
By2l

pyq. (56)

Hence, by applying [41, Theorem 1.3.1], i.e. that Bf
Bt pt, uq “

`Bϕλ,t
Bt ˚g

˘

puq and B2f
Bu2l

pt, uq “
`B2ϕλ,t

B2yl
˚g
˘

puq

for any pt, uq P p0,8q ˆ Rm and l “ 1, ...,m, and by using the identity (56), it follows for every
pt, uq P p0,8q ˆ Rm that

Bf

Bt
pt, uq “

Bpϕλ,t ˚ gq

Bt
puq “

ż

Rm

Bϕλ,t
Bt

pu´ vqgpvqdv “

ż

Rm
λ

m
ÿ

l“1

B2ϕλ,t
By2l

pu´ vqgpvqdv

“ λ
m
ÿ

l“1

B2pϕλ,t ˚ gq

Bu2l
puq “ λ

m
ÿ

l“1

B2f

Bu2l
pt, uq.

In addition, by using the substitution y ÞÑ u´v
2

?
λt

and the dominated convergence theorem (with g :

Rm Ñ R being a.e. continuous, hence limtÑ0 g
`

u ` 2
?
λty

˘

“ gpuq for a.e. u, y P Rm, and g :
Rm Ñ R being a.e. bounded, thus there exists some C ą 0 such that for a.e. u, y P Rm it holds that
max

`
ˇ

ˇg
`

u` 2
?
λty

˘
ˇ

ˇ, |gpuq|
˘

ď C), we conclude for a.e. u P Rm that

lim
tÑ0

fpt, uq “ lim
tÑ0

1

p4πλtq
m
2

ż

Rm
e´

}u´v}2

4λt gpvqdv

“ lim
tÑ0

1

p2πq
m
2

ż

Rm
e´

}y}2

2 g
´

u` 2
?
λty

¯

dy

“

ˆ

1

p2πq
m
2

ż

Rm
e´

}y}2

2 dy

˙

gpuq “ gpuq.

This shows that f : p0,8q ˆ Rm Ñ R indeed solves the PDE (19). □

Lemma 10.1. For λ, t P p0,8q and an a.e. bounded and a.e. continuous initial condition g : Rm Ñ R, let
fpt, ¨q : Rm Ñ R be the solution of (19) at time t. Moreover, let c P N0, s P r0,8q, 0 ă ζ1 ď ζ2 ă 8,
and assume that g P L1pRm,LpRmq, p1 ` }u}qcduq. Then, {fpt, ¨q : Rm Ñ C is c-times weakly
differentiable and there exists a constant C12 ą 0 (being independent of m P N and g : Rm Ñ R) such
that

ζm2 π
m`1

4

ζ
m
2
1 p2πqmΓ

`

m`1
2

˘
1
2

ÿ

βPNm0,c

ˆ
ż

Rm

ˇ

ˇBβ
{fpt, ¨qpξq

ˇ

ˇ

2 `
1 ` }ξ{ζ1}2

˘

m`s
2 dξ

˙
1
2

ď C12m
5c`s

4

ˆ

pζ2{ζ1q2
?
2λtπ

˙

m
2

}g}L1pRm,LpRmq,p1`}u}qcduq.
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Proof. Fix some λ, t P p0,8q, c P N0, s P r0,8q, 0 ă ζ1 ă ζ2 ă 8, and an a.e. bounded and
a.e. continuous initial condition g P L1pRm,LpRmq, p1`}u}qcduq. Then, by using that fpt, ¨q “ ϕλ,t ˚g
(see Proposition 6.1) and Young’s convolutional inequality, we obtain that

}fpt, ¨q}L1pRm,LpRmq,duq “ }ϕλ,t ˚ g}L1pRm,LpRmq,duq

ď }ϕλ,t}L1pRm,LpRmq,duq}g}L1pRm,LpRmq,duq

“

˜

1

p4πλtq
m
2

ż

Rm
e´

}y}2

4λt dy
looooooooooooomooooooooooooon

“1

¸

}g}L1pRm,LpRmq,p1`}u}qcduq ă 8,

which shows that fpt, ¨q P L1pRm,LpRmq, duq. Next, we show for every fixed t P p0,8q that the Fourier
transform {fpt, ¨q : Rm Ñ C is c-times weakly differentiable. To this end, we use Fubini’s theorem, [30,
Table 7.2.9], the substitution ζl ÞÑ

?
2λtξl, and the Hermite polynomials phnqnPN in [1, Equation 22.2.15]

to conclude for every β :“ pβ1, ..., βmq P Nm0,c and ξ P Rm that

Bβ
yϕλ,tpξq “ Bβ

¨

˝

m
ź

l“1

ż

R
e´iξlul

e´
u2l
4λt

?
4πλt

dul

˛

‚“ Bβ

˜

m
ź

l“1

e´λtξ2l

¸

“

m
ź

l“1

Bβl

Bξβll

´

e´λtξ2l

¯

“ p2λtq
|β|

2

m
ź

l“1

Bβl

Bζβll

ˆ

e´
ζ2l
2

˙ ˇ

ˇ

ˇ

ˇ

ζl“
?
2λtξl

“ p2λtq
|β|

2

m
ź

l“1

p´1qβlhβlpζlqe
´
ζ2l
2

ˇ

ˇ

ˇ

ˇ

ζl“
?
2λtξl

“ p´1q|β|p2λtq
|β|

2

˜

m
ź

l“1

hβl

´?
2λtξl

¯

¸

e´λt}ξ}2 .

(57)

Moreover, we use the notation Rm Q u ÞÑ pβpuq :“ uβ :“
śm
l“1 u

βl
l P R and the inequality

ˇ

ˇuβ
ˇ

ˇ :“
ˇ

ˇ

śm
l“1 u

βl
l

ˇ

ˇ “
śm
l“1 |ul|

βl ď
śm
l“1p1` }u}qβl “ p1` }u}q|β| ď p1` }u}qc for any β :“ pβ1, ..., βmq P

Nm0,c and u :“ pu1, ..., umq P Rm to obtain for every β P Nm0,c that

}pβ ¨ g}L1pRm,LpRmq,duq “

ż

Rm

ˇ

ˇ

ˇ
uβgpuq

ˇ

ˇ

ˇ
du ď

ż

Rm
|gpuq|p1 ` }u}qcdu

“ }g}L1pRm,LpRmq,p1`}u}qcduq ă 8.

(58)

Hence, by iteratively applying [30, Theorem 7.8. (c)], we conclude that the partial derivatives Bβpg :
Rm Ñ C exist, for all β P Nm0,c. Thus, by using [30, Theorem 7.8. (d)] and the Leibniz product rule, we
conclude for every β P Nm0,c and ξ P Rm that

Bβ
{fpt, ¨qpξq “ Bβ

´

yϕλ,tpξqpgpξq

¯

“
ÿ

β1,β2PNm0
β1`β2“β

β!

β1!β2!
Bβ1

yϕλ,tpξqBβ2pgpξq, (59)

which shows that {fpt, ¨q : Rm Ñ C is c-times weakly differentiable.
Next, we use the explicit expression of the Hermite polynomials phnqnPN given in [1, Equa-

tion 22.3.11], that |ζl|
βl´2jl ď

`

1 ` }ζ}2
˘pβl´2jlq{2

ď
`

1 ` }ζ}2
˘βl{2 for any l “ 1, ...,m,

β :“ pβ1, ..., βmq P Nm0 , jl “ 0, ..., tβl{2u, and ζ P Rm, that
řtβl{2u

jl“1
βl!

2jljl!pβl´2jlq!
ď

maxjl“1,...,tβl{2u
p2jlq!
jl!

řtβl{2u

jl“1
βl!

p2jlq!pβl´2jlq!
ď βl!

řβl
kl“1

βl!
kl!pβl´klq!

“ 2βlβl! for any l “ 1, ...,m and
β :“ pβ1, ..., βmq P Nm0 , and that

śm
l“1 βl! “ β! ď |β|! ď c! for any β :“ pβ1, ..., βmq P Nm0,c to

conclude for every β :“ pβ1, ..., βmq P Nm0,c and ζ :“ pζ1, ..., ζmq P Rm that

m
ź

l“1

|hβlpζlq| ď

m
ź

l“1

¨

˝

tβl{2u
ÿ

jl“1

βl!|ζl|
βl´2jl

2jljl!pβl ´ 2jlq!

˛

‚ď

m
ź

l“1

¨

˝

`

1 ` }ζ}2
˘

βl
2

tβl{2u
ÿ

jl“1

βl!

2jljl!pβl ´ 2jlq!

˛

‚

ď
`

1 ` }ζ}2
˘

|β|

2

m
ź

l“1

´

2βlβl!
¯

ď 2cc!
`

1 ` }ζ}2
˘
c
2 .

(60)
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Hence, by using the inequality (60) together with (57) and by using the constant C21 :“
2cc! maxp1, 2λtqcmaxp1, ζ1qc ą 0, we conclude for every β P Nm0,c and ξ P Rm that

ˇ

ˇ

ˇ
Bβ

yϕλ,tpξq

ˇ

ˇ

ˇ
ď p2λtq

|β|

2 2cc!
´

1 `
›

›

?
2λtξ

›

›

2
¯
c
2
e´λt}ξ}2

ď C11

`

1 ` }ξ{ζ1}2
˘
c
2 e´λt}ξ}2 .

(61)

Moreover, by using that Y :“ }Z}2 of Z „ Nmp0, Imq follows a χ2pmq-distribution with probability
density function r0,8q Q y ÞÑ

ym{2´1 expp´y{2q

2m{2Γpm{2q
P r0,8q, the substitution x ÞÑ y{2, and the definition of

the Gamma function in [1, Equation 6.1.1], we obtain for every b P N0 that

ż

Rm
}z}b

e´
}z}2

2

p2πq
m
2

dz “ E
”

}Z}b
ı

“ E
”

Y
b
2

ı

“

ż 8

0
y
b
2
y
m
2

´1e´
y
2

2
m
2 Γ

`

m
2

˘ dy

“
2
b`m
2

2
m
2 Γ

`

m
2

˘

ż 8

0
x
b`m
2

´1e´xdx “
2
b
2Γ

`

m`b
2

˘

Γ
`

m
2

˘ .

(62)

Now, we use the inequality (61), the exponent cs :“ 2c`2rss P N0, the inequality px`yqr ď 2r pxr ` yrq

for any x, y ě 0 and r ě 0, the constant C22 :“ C2
212

cs{2?
π ą 0, the substitution z ÞÑ

?
4λtξ, the

constant C23 :“ C22

`
?
4λtζ1

˘´cs
ą 0, and the identity (62) with b :“ 0 and b :“ m` 2cs to obtain that

ζ2m2 π
m`1

2

ζm1 p2πq2mΓ
`

m`1
2

˘

ż

Rm

ˇ

ˇBβ1
yϕλ,tpξq

ˇ

ˇ

2 `
1 ` }ξ{ζ1}2

˘
m
2

`s
dξ

ď C2
11

ζ2m2 π
m`1

2

ζm1 p2πq2mΓ
`

m`1
2

˘

ż

Rm

`

1 ` }ξ{ζ1}2
˘

m`cs
2 e´2λt}ξ}2dξ

ď C22
ζ2m2 p2πq

m
2

ζm1 p2πq2mΓ
`

m`1
2

˘

ˆ
ż

Rm
e´2λt}ξ}2dξ `

ż

Rm
}ξ{ζ1}m`cse´2λt}ξ}2dξ

˙

“ C22
ζ2m2

ζm1 p2πqmΓ
`

m`1
2

˘

p4λtq
m
2

ż

Rm

e´
}z}2

2

p2πq
m
2

dz

` C23
ζ2m2

ζ2m1 p2πqmΓ
`

m`1
2

˘

p4λtq
m
2

ż

Rm
}z}m`cs e

´
}z}2

2

p2πq
m
2

dz

“
C22

Γ
`

m`1
2

˘

ˆ

ζ22{ζ1

4π
?
λt

˙m

` C23

ˆ

pζ2{ζ1q2

4π
?
λt

˙m 2
m`cs

2 Γ
`

2m`cs
2

˘

Γ
`

m`1
2

˘

Γ
`

m
2

˘ .

(63)

For the first term on the right-hand side of (63), we use that C24 :“ C22 supmPN
pζ1{p2

?
2qqm

Γppm`1q{2q
ă 8 to

conclude that

C22

Γ
`

m`1
2

˘

ˆ

ζ22{ζ1

4π
?
λt

˙m

ď
C22

Γ
`

m`1
2

˘

ˆ

ζ1

2
?
2

˙mˆ

pζ2{ζ1q2
?
2λtπ

˙m

ď C24

ˆ

pζ2{ζ1q2
?
2λtπ

˙m

. (64)

Moreover, for the second term on the right-hand side of (63), we use that
a

2π{xpx{eqx ď Γpxq ď
a

2π{xpx{eqxe1{p12xq ď
a

4π{xpx{eqx for any x P r1{2,8q (see [33, Lemma 2.4]), that p2m `

csq
cs{2 ď mcs{2p2 ` csq

cs{2 and p2 ` cs{mqm “ 2mp1 ` cs{p2mqqm ď 2mecs{2 for any m P N, and the
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constant C25 :“ C232
cs{2

?
8πp2eqpcs´1q{2p4πq´1p3csq

cs{2ecs{2 ą 0, to obtain that

C23

ˆ

pζ2{ζ1q2

4π
?
λt

˙m 2
m`cs

2 Γ
`

2m`cs
2

˘

Γ
`

m`1
2

˘

Γ
`

m
2

˘ ď C23

ˆ

pζ2{ζ1q2

4π
?
λt

˙m 2
m`cs

2

b

8π
2m`cs

`

2m`cs
2e

˘

2m`cs
2

b

4π
m`1

`

m`1
2e

˘
m`1

2

b

4π
m

`

m
2e

˘
m
2

ď C23

ˆ

pζ2{ζ1q2

4π
?
λt

˙m
2
m`cs

2

?
8πp2eq

cs´1
2

4π

a

mpm` 1qp2m` csq
cs
2

?
2m` cs

?
m` 1

looooooooooooooomooooooooooooooon

ďp2m`csq
cs
2

ˆ

2m` cs
m

looomooon

ď2`cs{m

˙m

ď C23

ˆ

pζ2{ζ1q2

2π
?
2λt

˙m
2
cs
2

?
8πp2eq

cs´1
2

4π
p2 ` csq

cs
2 m

cs
2 2me

cs
2 “ C25

ˆ

pζ2{ζ1q2
?
2λtπ

˙m

m
cs
2 .

(65)

Hence, by inserting (64)+(65) into (63), it follows that
˜

ζ2m2 π
m`1

2

ζm1 p2πq2mΓ
`

m`1
2

˘

ż

Rm

ˇ

ˇBβ1
yϕλ,tpξq

ˇ

ˇ

2 `
1 ` }ξ{ζ1}2

˘

m`s
2 dξ

¸
1
2

ď

˜

C22

Γ
`

m`1
2

˘

ˆ

ζ22{ζ1

4π
?
λt

˙m

` C23

ˆ

pζ2{ζ1q2

4π
?
λt

˙m 2
m`cs

2 Γ
`

2m`cs
2

˘

Γ
`

m`1
2

˘

Γ
`

m
2

˘

¸

1
2

ď

ˆ

C24

ˆ

pζ2{ζ1q2
?
2λtπ

˙m

` C25

ˆ

pζ2{ζ1q2
?
2λtπ

˙m

m
cs
2

˙

1
2

ď
a

C24 ` C25

ˆ

pζ2{ζ1q2
?
2λtπ

˙

m
2

m
cs
4 .

(66)

Thus, by using (59), that
ˇ

ˇNm0,c
ˇ

ˇ “
řc
j“0m

j ď 2mc, the inequality
ř

β1,β2PNm0 , β1`β2“β
β!

β1!β2!
ď 2|β| for

any β P Nm0 (see [64, Equation 12]), the inequality (66), [30, Theorem 7.8. (c)] componentwise with (2),
the inequality (58), and the constant C12 :“ 2c`1

?
C24 ` C25 ą 0 (being independent of m P N and

g : Rm Ñ R), we conclude that

ζm2 π
m`1

4

ζ
m
2
1 p2πqmΓ

`

m`1
2

˘
1
2

ÿ

βPNm0,c

ˆ
ż

Rm

ˇ

ˇBβ
{fpt, ¨qpξq

ˇ

ˇ

2 `
1 ` }ξ{ζ1}2

˘

m`s
2 dξ

˙
1
2

ď
ζm2 π

m`1
4

ζ
m
2
1 p2πqmΓ

`

m`1
2

˘
1
2

ÿ

βPNm0,c

ÿ

β1,β2PNm0
β1`β2“β

β!

β1!β2!

ˆ
ż

Rm

ˇ

ˇBβ1
yϕλ,tpξqBβ2pgpξq

ˇ

ˇ

2 `
1 ` }ξ{ζ1}2

˘

m`s
2 dξ

˙
1
2

ď
ˇ

ˇNm0,c
ˇ

ˇ max
βPNm0,c

¨

˚

˚

˝

ÿ

β1,β2PNm0
β1`β2“β

β!

β1!β2!

˛

‹

‹

‚

max
β2PNm0,c

sup
ξPRm

ˇ

ˇBβ2pgpξq
ˇ

ˇ

¨ max
β1PNm0,c

˜

ζ2m2 π
m`1

2

ζm1 p2πq2mΓ
`

m`1
2

˘

ż

Rm

ˇ

ˇBβ1
yϕλ,tpξq

ˇ

ˇ

2 `
1 ` }ξ{ζ1}2

˘

m`s
2 dξ

¸
1
2

ď 2mc2c max
β2PNm0,c

}pβ2 ¨ g}L1pRm,LpRmq,duq

a

C24 ` C25

ˆ

pζ2{ζ1q2
?
2λtπ

˙

m
2

m
cs
4

ď C9m
5c`s

4

ˆ

pζ2{ζ1q2
?
2λtπ

˙

m
2

}g}L1pRm,LpRmq,p1`}u}qcduq,

which completes the proof. □

Proof of Corollary 6.2. For λ, t P p0,8q and an a.e. bounded and a.e. continuous initial condition
g : Rm Ñ R, let fpt, ¨q : Rm Ñ R be the solution of (19) at time t. Moreover, let p P r1,8q, γ P r0,8q,
and w : Rm Ñ r0,8q satisfy the conditions of Lemma 4.23.

For Part (i)., we fix some N P N and assume that g P L1pRm,LpRmq, duq. Then, by using the
probability density function pθ : Rm Ñ r0,8q of the Student’s t-distributed i.i.d. sequence pθnqnPN „ tm
and Lemma 10.1 (with ζ1 :“ ζ2 :“ 1, c :“ 0, s :“ 1, and constant C12 ą 0 being independent of m P N
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and g : Rm Ñ R), we observe that

Cfpt,¨q

p2πqm
:“

1

p2πqm

˜

ż

Rm

ˇ

ˇ
{fpt, ¨qpϑq

ˇ

ˇ

2

pθpϑq
dϑ

¸

1
2

“
π
m`1

4

p2πqmΓ
`

m`1
2

˘
1
2

ˆ
ż

Rm

ˇ

ˇ
{fpt, ¨qpϑq

ˇ

ˇ

2 `
1 ` }ϑ}2

˘

m`1
2 dϑ

˙
1
2

ď C4m
1
4

ˆ

1
?
2λtπ

˙
m
2

}g}L1pRm,LpRmq,duq ă 8.

(67)

Hence, we can apply Corollary 4.8 (with constant Cp,2 ą 0 depending only on p P p1,8q) to obtain a
random trigonometric feature model GN P RT Rm,1 with N features satisfying

E
”

}fpt, ¨q ´GN}2LppRm,LpRmq,wq

ı
1
2

ď Cp,2
wpRmq

1
p

p2πqm

Cfpt,¨q

N
1´ 1

minp2,pq

.

Thus, by using that w : Rm Ñ r0,8q is a weight satisfying the conditions of Lemma 4.23, i.e. that
Rm Q u ÞÑ wpuq :“

śm
l“1w0pulq P r0,8q for some w0 : R Ñ r0,8q satisfying

ş

Rw0psqds “ 1, which
implies that wpRmq “

ş

Rm wpuqdu “
śm
l“1

ş

Rw0pulqdul “ 1 by Fubini’s theorem, Lemma 10.1 (with
constant C12 ą 0 being independent of m P N and g : Rm Ñ R), and the constant C6 :“ Cp,2C12 ą 0
(being independent of m P N and g : Rm Ñ R), it follows that

E
”

}fpt, ¨q ´GN}2LppRm,LpRmq,wq

ı
1
2

ď Cp,2
wpRmq

1
p

p2πqm

Cfpt,¨q

N
1´ 1

minp2,pq

ď C6m
1
4

ˆ

1
?
2λtπ

˙
m
2 }g}L1pRm,LpRmq,duq

N
1´ 1

minp2,pq

,

which proves the inequality (20). For (21), we assume that p ą 1 and that Rm Q u ÞÑ gpuq :“

1BRp0qpuq P R with R2 ď
?
λt?
2e

pm ` 2q for all but finitely many m P N. Then, there exists a constant
C7 ą 0 (being independent of m P N) such that for every m P N it holds that

2eC6
?
4π

ˆ

?
2eR2

?
λtpm` 2q

˙

m
2

ď C
1´ 1

minp2,pq

7 . (68)

Hence, for every ε ą 0 and m P N, we use the inequality (20) with N “
P

C7ε
´

minp2,pq

minp2,pq´1
T

, that
}g}L1pRm,LpRmq,duq “

ş

BRp0q
du “ πm{2Rm

Γpm{2`1q
, that Γpxq ě

a

2π{xpx{eqx for any x P p0,8q (see [33,
Lemma 2.4]), and (68) to obtain some GN P RT Rm,1 with N features satisfying

E
”

}fpt, ¨q ´GN}2LppRm,LpRmq,wq

ı
1
2

ď C6m
1
4

ˆ

1
?
2λtπ

˙
m
2 }g}L1pRm,LpRmq,duq

N
1´ 1

minp2,pq

“ C6m
1
4

ˆ

1
?
2λtπ

˙
m
2

π
m
2 Rm

Γpm{2`1q

N
1´ 1

minp2,pq

ď C6m
1
4

ˆ

R2

?
2λt

˙

m
2

b

m`2
4π

´

2e
m`2

¯
m`2

2

N
1´ 1

minp2,pq

ď
2eC6
?
4π

ˆ

?
2eR2

?
λtpm` 2q

˙

m
2 1

N
1´ 1

minp2,pq

ď
C

1´ 1
minp2,pq

7

N
1´ 1

minp2,pq

ď ε,

which proves the inequality (21).
For Part (ii)., we fix some N P N and assume that g P L1pRm,LpRmq, p1 ` }u}qrγs`2duq. Then, by

using (13) and Lemma 10.1 (with 0 ă ζ1 ă ζ2 ă 8, c :“ rγs ` 2, s :“ 4rγs ` 5, and constant C12 ą 0
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being independent of m P N and g : Rm Ñ R), we observe that

ζm2
p2πqm

}fpt, ¨q}
rB0,2,γ
ψ,a,bpRmq

ď C1
ζm2 π

m`1
4

ζ
m
2
1 p2πqmΓ

`

m`1
2

˘

ÿ

βPNm0,c

ˆ
ż

Rm

ˇ

ˇBβ
{fpt, ¨qpξq

ˇ

ˇ

2 `
1 ` }ξ{ζ1}2

˘2rγs`m`5
2 dξ

˙
1
2

ď C12m
9rγs`15

4

ˆ

pζ2{ζ1q2
?
2λtπ

˙

m
2

}g}L1pRm,LpRmq,p1`}u}qrγs`2duq ă 8.

(69)

Since }g}L1pRm,LpRmq,duq ď }g}L1pRm,LpRmq,p1`}u}qrγs`2duq ă 8 and }ϕλ,t}L1pRm,LpRmq,duq “ 1, we
can apply Young’s convolutional inequality on fpt, ¨q “ ϕλ,t ˚ g (see Proposition 6.1) to conclude that
fpt, ¨q P L1pRm,LpRmq, duq, which implies that fpt, ¨q P rB0,2,γ

ψ,a,bpR
mq. Hence, we can use Corollary 4.20

(with constantCp,2 ą 0 depending only on p P p1,8q) to obtain a random neural networkGN P RN ρ
Rm,1

with N neurons satisfying

E
”

}fpt, ¨q ´GN}2LppRm,LpRmq,wq

ı
1
2

ď Cp,2}ρ}C0
pol,γpRq

C
pγ,pq

U,w
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

}fpt, ¨q}
rB0,2,γ
ψ,a,bpRmq

N
1´ 1

minp2,pq

.

Thus, by using Lemma 4.23 (with constant Cpγ,pq

R,w0
depending only on γ P r0,8q, p P p1,8q, and

w0 : R Ñ r0,8q), Example 4.15 (with constant Cψ,ρ ą 0 depending only on ψ P S0pR;Cq and
ρ P C0

pol,γpRq), Lemma 10.1 (with constant C12 ą 0 being independent of m P N and g : Rm Ñ R), and

the constants C8 :“
Cp,2C

pγ,pq

R,w0
C12

Cψ,ρ
ą 0 and C9 :“ γ ` 1

p `
9rγs`15

4 ą 0 (being independent of m P N and
g : Rm Ñ R), we have

E
”

}fpt, ¨q ´GN}2LppRm,LpRmq,wq

ı
1
2

ď Cp,2}ρ}C0
pol,γpRq

C
pγ,pq

U,w
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

}fpt, ¨q}
rB0,2,γ
ψ,a,bpRmq

N
1´ 1

minp2,pq

ď
Cp,2C

pγ,pq

R,w0

Cψ,ρ
m
γ` 1

p
ζm2

p2πqm

}fpt, ¨q}
rB0,2,γ
ψ,a,bpRmq

N
1´ 1

minp2,pq

ď C8m
C9

ˆ

pζ2{ζ1q2
?
2λtπ

˙

m
2 }g}L1pRm,LpRmq,p1`}u}qrγs`2duq

N
1´ 1

minp2,pq

,

which proves the inequality (22). For (23), we assume that p ą 1 and that Rm Q u ÞÑ gpuq :“

1BRp0qpuq P R with R2 ď
ζ21

?
λt

ζ22
?
2e

pm ` 2q for all but finitely many m P N. Then, there exist some
constants C10, C11 ą 0 (being independent of m P N) such that for every m P N it holds that

2eC8
?
4π

mC9p1 `Rqrγs`2

ˆ

?
2epζ2{ζ1q2R2

?
λtpm` 2q

˙

m
2

ď
`

C10m
C11

˘1´ 1
minp2,pq . (70)

Hence, for every ε ą 0 and m P N, we use (22) with N “
P

C10m
C11ε

´
minp2,pq

minp2,pq´1
T

, that
}g}L1pRm,LpRmq,p1`}u}qrγs`2duq “

ş

BRp0q
p1 ` }u}qrγs`2du ď p1 ` Rqrγs`2

ş

BRp0q
du “ p1 `
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Rqrγs`2 πm{2Rm

Γpm{2`1q
, and that Γpxq ě

a

2π{xpx{eqx for any x P p0,8q (see [33, Lemma 2.4]) to ob-

tain some GN P RN tanh
Rm,1 with N neurons satisfying

E
”

}fpt, ¨q ´GN}2LppRm,LpRmq,wq

ı
1
2

ď C8m
C9

ˆ

pζ2{ζ1q2
?
2λtπ

˙

m
2 }g}L1pRm,LpRmq,p1`}u}qrγs`2duq

N
1´ 1

minp2,pq

“ C8m
C9p1 `Rqrγs`2

ˆ

pζ2{ζ1q2
?
2λtπ

˙

m
2

π
m
2 Rm

Γpm{2`1q

N
1´ 1

minp2,pq

ď C8m
C9p1 `Rqrγs`2

ˆ

pζ2{ζ1q2R2

?
2λt
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m
2

b

m`2
4π

´

2e
m`2

¯
m`2

2

N
1´ 1

minp2,pq

ď
2eC8
?
4π

mC9p1 `Rqrγs`2

ˆ

?
2epζ2{ζ1q2R2

?
λtpm` 2q

˙

m
2 1

N
1´ 1

minp2,pq

ď

`

C10m
C11

˘1´ 1
minp2,pq

N
1´ 1

minp2,pq

ď ε,

which proves the inequality (23). □
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