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UNIVERSAL APPROXIMATION PROPERTY OF BANACH SPACE-VALUED
RANDOM FEATURE MODELS INCLUDING RANDOM NEURAL NETWORKS

ARIEL NEUFELD AND PHILIPP SCHMOCKER

ABSTRACT. We introduce a Banach space-valued extension of random feature learning, a data-driven
supervised machine learning technique for large-scale kernel approximation. By randomly initializing the
feature maps, only the linear readout needs to be trained, which reduces the computational complexity
substantially. Viewing random feature models as Banach space-valued random variables, we prove a
universal approximation result in the corresponding Bochner space. Moreover, we derive approximation
rates and an explicit algorithm to learn an element of the given Banach space by such models.

The framework of this paper includes random trigonometric/Fourier regression and in particular random
neural networks which are single-hidden-layer feedforward neural networks whose weights and biases are
randomly initialized, whence only the linear readout needs to be trained. For the latter, we can then lift the
universal approximation property of deterministic neural networks to random neural networks, even within
function spaces over non-compact domains, e.g., weighted spaces, LP-spaces, and (weighted) Sobolev
spaces, where the latter includes the approximation of the (weak) derivatives.

In addition, we analyze when the training costs for approximating a given function grow polynomially
in both the input/output dimension and the reciprocal of a pre-specified tolerated approximation error.
Furthermore, we demonstrate in a numerical example the empirical advantages of random feature models
over their deterministic counterparts.

1. INTRODUCTION

The random feature model is an architecture for the data-driven approximation of functions between
finite dimensional Euclidean spaces, which was introduced by Rahimi and Recht in [67, 68, 69] building
on earlier instances in [10, 60, 79]. It can be seen as one of the simplest supervised machine learning
technique: By randomly initializing the inner parameters of the model, only the linear readout needs to be
trained, which reduces the computational complexity substantially. In this paper, we introduce a Banach
space-valued extension of this architecture, which returns for every random initialization the correspond-
ing model as an element of the given Banach space, allowing us to learn infinite dimensional objects with
random features. Some examples include, but are not limited to, random trigonometric/Fourier regression
(see [6, 67]), kernel regression tasks (see [5, 8, 67]), Gaussian processes (see [60, 70, 79]), random neural
networks (see [31, 32, 43]), operator-valued kernels (see [4, 17, 56, 82]), and random operator learning
(see [14, 61, 62]).

Originally, random feature learning was introduced to overcome the computational limitations of
traditional kernel methods. These kernel methods map the input data into a high-dimensional feature
space to capture the nonlinear input/output relation. Even though the explicit form of this feature map
is often unknown, one can still compute the Gram matrix whose entries are given as the inner products
of features between all pairs of data points. These inner products can be efficiently calculated using
the “kernel trick”, even for infinite dimensional feature spaces, but the computational costs increase
quadratically in the number of samples. This motivated Rahimi and Recht to explore kernel approximation
through random features (see [67]) and to extend this approach to shallow architectures (see [68, 69]).
Indeed, by replacing the optimization of the non-linear feature maps with randomization, the explicit
calculation of the Gram matrix can be avoided, which reduces the computational complexity and enables
the application of kernel-based methods to large-scale datasets.

Subsequently, different works have contribued to the mathematical theory of random feature learning.
Rahimi and Recht established in [67, 68, 69] the connection to reproducing kernel Hilbert spaces
(RKHS) and proved the approximation rate O(1/+/N), where N € N denotes the number of features.

Date: October 23, 2024.

Key words and phrases. Random feature learning, random neural networks, machine learning, supervised learning,
universal approximation, approximation rates, reservoir computing, law of large numbers.

Financial support by the Nanyang Assistant Professorship Grant (NAP Grant) Machine Learning based Algorithms in
Finance and Insurance is gratefully acknowledged.



2 UNIVERSAL APPROXIMATION PROPERTY OF RANDOM FEATURE MODELS

Subsequently, [72] showed that .J := O(v/N In(V)) random features lead to an L?-generalization error
of O(1/N 1/ 4) when approximating functions between Euclidean spaces. Moreover, [18] learned random
features with the stochastic gradient descent algorithm instead of least squares, while [45] connected
the infinite-width case to neural tangent kernels (see also [20] for an extension to deep linear neural
networks). In addition, [53, 54] showed precise asymptotics of the generalization error including the
double descent curve as well as a sharp generalization error under a hypercontractivity assumption.

Our first contribution consists of a comprehensive universal approximation theorem for Banach space-
valued random feature models, presented in Theorem 3.2. In contrast to traditional kernel approximation,
this result ensures the convergence of random features to any (random) element of the given Banach
space. Indeed, by assuming that the deterministic feature maps are universal (i.e. the linear span of their
image can approximate any element of the Banach space), we can apply the strong law of large numbers
for Banach space-valued random variables (see [44, Theorem 3.1.10]) to lift the universality to random
feature models. We apply this framework to the following three instances of random feature learning:
Random trigonometric features, random Fourier regression, and random neural networks.

Random neural networks are single-hidden-layer feed-forward neural networks whose weights and
biases inside the activation function are randomly initialized (see the work [43] on extreme learning
machines and in particular the work [32] on random neural networks with ReLU activation). By training
only the linear readout, one avoids the non-convex optimization problem for training deterministic
neural networks (caused by the training of the weights and biases inside the activation function, see [35,
p- 282]) and one can replace the computationally expensive backpropagation (see [58, p. 13]) by, e.g., the
more efficient least squares method. Using the universal approximation property of deterministic neural
networks (first proven in [22, 42], see also [19, 21, 52, 64, 66]), we obtain a universal approximation
theorem for random neural networks which significantly generalizes the results in [32] from the case of
ReLU activation function and L?-spaces (resp. C°-spaces) to more general non-polynomial activation
functions and more general function spaces over non-compact domains, e.g., weighted spaces, LP-spaces,
and (weighted) Sobolev spaces over unbounded domains, where the latter includes the approximation of
the (weak) derivatives.

Our second contribution are approximation rates for learning a (possibly infinite dimensional) element
of the given Banach space by a random feature model, presented in Theorem 4.5. To this end, we assume
that the element belongs to a specific Barron space in order to represent it as expectation of the random
features (see also [7, 10, 27, 28, 48, 68]). Then, by using a symmetrization argument with Rademacher
averages and the concept of Banach space types, we obtain the desired approximation rates. In L?-spaces,
these rates allow us then to derive a generalization error for learning via the least squares method.

As a corollary, we obtain approximation rates and generalization errors for learning a function by a
random neural network, which turn out to be similar to the approximation rates for deterministic neural
networks (see e.g. [9, 10, 13, 23, 24, 49, 55, 64, 75]). To this end, we use the ridgelet transform (see [16])
and its distributional extension (see [76]) to represent the function to be approximated as expectation of
a random neuron. This approach generalizes the approximation rates and generalization errors in [32,
Section 4.2] from random neural networks with ReLLU activation to more general activation functions
and by including the approximation of the (weak) derivatives. In addition, we analyze the situation
when random neural networks overcome the curse of dimensionality in the sense that the computational
costs (measured as number of neurons) grow polynomially in both the input/output dimensions and the
reciprocal of a pre-specified tolerated approximation error.

The theoretical foundations of this paper are also relevant in scientific computing. In particular,
random neural networks have been successfully applied for solving partial differential equations (PDEs)
in mathematical physics (see [25, 26, 78, 81]), for quantum neural networks and quantum reservoirs
(see [34]), for solving the Black-Scholes PDE in mathematical finance (see [31]), for optimal stopping
(see [40]), for learning the hedging strategy via Wiener-Ito chaos expansion (see [63]), for solving
path-dependent PDEs in the context of rough volatility (see [46]), for pricing American options (see [80]),
and for solving non-linear parabolic PDEs in finance by the random deep splitting method (see [65]).

We complement these numerical examples by learning the heat equation, which shows the empirical
advantages of random feature learning over their deterministic counterparts.

1.1. QOutline. In Section 2, we introduce a Banach space-valued extension of random feature learning.
In Section 3, we show a universal approximation result for random feature models, which is applied to
random trigonometric/Fourier features and random neural networks, followed by some approximation
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rates in Section 4. In Section 5, we use the least squares method to learn a random feature model and
prove a generalization error. In Section 6, we provide a numerical example, while all proofs are given in
Section 7-10.

1.2. Notation. As usual, N := {1,2,3,...} and Ny := N U {0} denote the sets of natural numbers,
while R and C (with imaginary unit i := 1/—1 € C) represent the sets of real and complex numbers,
respectively. In addition, we define [r] := min {k € Ny : £ > r} for all r € [0, 0). Furthermore, for
any z € C, we denote its real and imaginary part as Re(z) and Im(z), respectively, whereas its complex
conjugate is defined as Z := Re(z) — Im(2)i.

Moreover, for any m € N, we denote by R” (and C™) the m-dimensional (complex) Euclidean

space, equipped with the norm |u| = /> | |u;|2, where we define Re(z) := (Re(z1), ..., Re(zm)) T
for z := (21,..., zm) " € C™. In addition, for any m,n € N, we denote by R™*" the vector space of
matrices A := (aw)f 11 " € R™*™ equipped with the matrix 2-norm [[A| = sup,egn, |4<1 [ Az],

where [,,, € R™*™ represents the identity matrix.

In addition, for a metric space (0, dg) and a Banach space (X, | - | x), we denote by C°(©; X) the
vector space of continuous maps g : © — X, equipped with the topology of compact convergence (see
[59, p. 283]), while B(O) is the Borel o-algebra of (O, dg). Moreover, du : L(U) — [0, o] denotes the
Lebesgue measure on U, with £(U) being the o-algebra of Lebesgue-measurable subsets of U € B(R™),
where a property is said to hold almost everywhere (a.e.) if it holds everywhere except on a set of
Lebesgue measure zero.

Furthermore, for every fixed m,d € N, k € No, U < R™ (open, if k£ > 1), and p € [1,0), we
introduce the following function spaces:

e CF(U;R%) denotes the vector space of k-times continuously differentiable functions f : U — R?
a € N = {a = (a1, ...,a;m) ENJ' ¢ |af i= a1 + ... + oy < k). I m = 1, we denote the
derivatives by f0) := &L . U S RY, j =0, ..., k.

e CF(U;R?) denotes the vector space of functions f € C*(U;R?) such that d, f : U — R%is
bounded for all € Ni%;. Then, the norm HfHCl’f(U;Rd) '= MaXaeNy, SUPyer [0 f(u)| turns

C’f(U ;R?) into a Banach space. Note that for & = 0 and U = R™ compact, we obtain the
Banach space of continuous functions (C°(U;R?), | - |lco(ur;ray) equipped with the supremum
norm ”fHCO(U;Rd) = ||f||cg(U;Rd) = sup,ey |f(w)]-

. C’Iljol L(U; R?), with v € [0, 0), denotes the vector space of functions f € C*(U;R) such that

Oa
HfHCk URd) '= MaXaeNy, SUPyey (H{Jr{‘:ﬁ“))ﬂ < 0.
. Ck(U Rd) , with v € (0,00), is defined as the closure of CF(U;R?Y) with respect to
| - Hckl (w:rd)- Then, (Cy(U;RY) | - Hckl (U;rd)) is by definition a Banach space. If
pol,y\77 pol,y\7?
U < R™ is bounded, then CF(U; RY) = CF(U; RY). Otherwise, f € CF(U;RY)” if and only

if f € C*(U;RY) and lim, MaXaeNg, SUPyel, [ul>r yl-HIYSH L — 0 (see [64, Lemma 4.1]).

o C*(U;R%), with U < R™ open, denotes the vector space of smooth functions f : U — R with
supp(f) € U, where supp( f) is defined as the closure of {u € U : f(u) # 0} in R™.

e S(R™;C) denotes the Schwartz space consisting of smooth functions f : R™ — C such
that maXaeng | SUPyeRm (14 u|?)" [0af(u)| < oo, for all n € Ny. Moreover, its dual space
S'(R™; C) consists of continuous linear functionals 7" : S(R™; C) — C called tempered distri-
butions (see [30 p. 332]) For example, every f € C* ‘ol 7(]Rm) defines a tempered distribution
(9= Tr(g) := §g f(w)g(w)du) € S'(R™; C) (see [30, Equation 9.26]).

e So(R; C) C S(R C) denotes the vector subspace of functions f € S(R;C) such that
SR u? f(u)du = 0 for all j € Ny (see [36, Definition 1.1.1]).

o LP(U, %, u;RY), with (possibly non-finite) measure space (U, Y, u), denotes the vector
space of (equivalence classes of) Y./B(R?)-measurable functions f : U — R? such that

1 .
HfHLP(U,E,u;]Rd) = (SU Hf(u)Hp,u(du)) & < . Then, (Lp(U727,U«§Rd>7 |- HLP(U,Z,;,L;RCI)> 18
a Banach space (see [73, Chapter 3]).

such that the partial derivative U 3 u > 0n f(u) := (u) € R? is continuous for all
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o WhkP(U, L(U), du; R?) denotes the Sobolev space of (equivalence classes of) k-times weakly
differentiable functions f : U — R% such that 0, f € LP(U, L(U), du; R?) for all « € Ni, . Then,

1
the norm || flly k.0 (0, £(0),dusrd) = (ZaeNgjk §ur 100 f (u)[[Pdu) ” urns WkP(U, L(U), du; RY)
into a Banach space (see [2, Chapter 3]).

o WhP(U, L(U),w;RY), with L(U)/B(R)-measurable w : U — [0, 0), denotes the weighted
Sobolev space of (equivalence classes of) k-times weakly differentiable functions f : U — R?
such that 0, f € LP(U, L(U),w(u)du;R?) for all « € NY,. Hereby, w : U — [0,00) is
called a weight if it is a.e. strictly positive. In this case, the norm || f |y k(v 2(0),wird) =
(Z%Ngnk §o 10af (w) [Prw(u)du) Y7 turns Wk2(U, L(U),w;RY) into a Banach space (see [50,
p. 51). Moreover, we define LP(U, L(U), w; R?) := WOP(U, L(U), w; RY).

Moreover, we follow [30, Chapter 7] and define the (multi-dimensional) Fourier transform of any function
fe LYR™, L(R™), du; C?) as

R™5¢ —  f(&):= f e*iéT“f(u)du e C4. (1)
Then, by using [44, Proposition 1.2.2], it holds that

f - e_igT“f(u)du

sup Hf(f)‘ = sup

< [ 1@l = 1l e aza @
fERm fERm Rm

In addition, the Fourier transform of any tempered distribution 7' € &'(R™; C) is defined by 7'(g) :=
T(9), for g € S(R™; C) (see [30, Equation 9.28]).

Furthermore, for 7 € [1, 00), a probability space (2, F,P), and a Banach space (X, | - | x), we denote
by L"(2, F,P; X) the Bochner space of (equivalence classes of) strongly (PP, F)-measurable maps
F :Q — X such that [F| - rp.x) = IE[HFHT’X]I/T < o0. This norm turns L™ (92, F,P; X) into a
Banach space. For more details, we refer to [44, Section 1.2.b].

|an|

Moreover, we use the Landau notation: a,, = O(b,,) (as n — ) if limsup,,_, ., T < .

2. RANDOM FEATURE LEARNING

We now present a Banach space-valued extension of the random feature learning architecture introduced
by Rahimi and Recht in [67, 68, 69]. Our approach imposes no specific structure on the random features
(e.g. sine/cosine or Fourier), nor does it assume that the Banach space is a particular function space.

To this end, we fix throughout this paper a probability space ({2, F,P), a metric space (©,dg)
representing the parameter space, and a separable Banach space (X, | - ||x) over a field K (either
K := R or K := C), which contains the elements to learn. Moreover, we assume the existence of an
independent identically distributed (i.i.d.) sequence of ©-valued random variables (6, ),en : Q@ — O.
Then, by inserting these random initializations (6, ),en into the feature maps taken from a given set
G < C%(©; X), we only need to train the linear readout that is assumed to be measurable with respect to
the o-algebra Fy := o ({0,, : n € N}).

Definition 2.1. For given G € C°(0; X), a random feature model (RF) (with respect to G) is of the form

N
Qow = Gw) =), yn(w)gn(Bn(w)) € X 3)
n=1

with respect to some N € N denoting the number of features, where g1, ..., gn € G are the feature maps,
and where the linear readouts y1, ..., yn : Q — K are assumed to be Fy/B(K)-measurable.

For a given set of feature maps G € C°(©; X), we denote by RG the set of all random feature models
(RFs) of the form (3).

Remark 2.2. Let us briefly explain how the random feature model G € RG in (3) can be implemented. For
the random initialization of (0y,)n—1.... N, we draw some w € ) and fix the values of 01 (w), ..., On(w) € ©.
Thus, by using that yi, ...,yn : Q — K are Fy/B(K)-measurable, the training of G € RG consists of
finding the optimal y; (w), ...,yn(w) € K given g1(01(w)), ...,gn(On(w)) € X. This can be achieved,
e.g., by the least squares method.
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In the following, we give an overview of several applications of this general framework, including
random trigonometric/Fourier regression and random neural networks.

2.1. Random trigonometric features. Introduced in [67, 68], random trigonometric regression uses
trigonometric functions (i.e. sines and cosines) in the feature maps. More precisely, for a compact subset
U < R™, we consider the real Banach space (X, || - | x) := (C°(U), | - |co(rs)) and the parameter space
© := R™, where (6 )nen : © — R™ denotes the i.i.d. sequence. Then, by choosing G := {R™ 39 —
h(9T ) € COU) : h € {cos,sin}}, we obtain the following random trigonometric feature model.!

Definition 2.3. A random trigonometric feature model (RTF) is of the form

N
Qsw — Gw) =), (yg)(w) cos (B (w) ") + y{? (w) sin (Hn(w)T-)) eCO(U) @

n=1

with respect to some N € N denoting the number of trigonometric features, where the linear readouts
ygl), s y](\}), yf), ey y](\?) : Q — R are assumed to be Fy/B(R)-measurable.

We denote by R7 17,1 the set of all RTFs of the form (4). Moreover, we could also consider multidi-
mensional extensions R7 7 4 with R%valued linear readouts.

2.2. Random Fourier features. Introduced in [6, 67, 68], random Fourier regression uses the Fourier
transform as feature map. For a compact subset U < R™, we consider the complex Banach space
(X, ] - |x) == (C°%U;C),| - |co,c)) and the parameter space © := R™, where (6, )pen : 2 — R™

denotes the i.i.d. sequence. Moreover, we let G consist of the single feature map R™ 3 1) — exp (i19T ) €

C%(U; C) to obtain random Fourier features.’

Definition 2.4. A random Fourier feature model (RFF) is of the form
N
Qsw = Gw) =) yn(w)exp(if)-) € C°(U;C) (5)
n=1

with respect to some N € N denoting the number of Fourier features, where the linear readouts ¥, ..., Yy :
Q — C are assumed to be Fy/B(C)-measurable.

We denote by RF 1 the set of RFFs of the form (5). Moreover, we could consider vector-valued
versions R.F 4 or Banach spaces containing CO(U ; C) (e.g. certain L2—spaces).

2.3. Random neural networks. As third particular instance of random feature learning, we consider
random neural networks that are defined as single-hidden-layer feed-forward neural networks whose
weights and biases inside the activation function are randomly initialized. Hence, only the linear readout
needs to be trained (see [31, 43]).

To this end, we fix the input and output dimension m,d € N, the order of differentiability k£ €

N, the domain U < R™ (open, if k& > 1), and some v € (0,00). Then, we consider the Banach
—

space (X, | - [x) :== (C§(U;RY) | - ”Wﬂ
O := R™ x R, where (0),)nen := (an, bn)nen @ © — R™ x R denotes the i.i.d. sequence of random
initializations, which are used for the network weights and biases. Hence, by choosing deterministic

(i.e. fully trained) neural networks as feature maps, i.e. by setting G := {Rm xR 3 (01,02) —

em(z?lT . —192) € C{f(U RA) =1, .., d}, we obtain random neural networks as particular instance of

introduced in Section 1.2 and the parameter space

random feature learning.?

IThe element h(19T . ) denotes the function U 3 u — h('ﬂTu) eR.

The element exp (i) - ) € C°(U; C) denotes the function U 3 u — exp (i u) € C.

3The element yp(91 - —92) € CF(U;R?) " denotes the function U 3 u > yp (9] u—12) € R, where y € R%. Moreover,
e; € R? denotes the i-th unit vector of R?.
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Definition 2.5. A random neural network (RN) is of the form

N
Qsw > Gw) =) yaw)p (an(w)" - —bp(w)) € CFU;RY) (6)
n=1

with respect to some N € N denoting the number of neurons and p € C’,f; (R)  representing the activation
function. Hereby, ay,...,an : 8 — R"™ and by, ...,by : 0 — R are the random network weights and
random network biases, respectively, and the linear readouts 11, ..., yn : Q@ — R? are assumed to be
Fob/B(RY)-measurable, with Fop := o ({an, by : n € N}).

For a given activation function p € Cl’f (R) ', we denote by RN f] 4 the set of all random neural networks
(RNs) of the form (6). We refer to Remark 2.2 for the implementation and training of such a random
neural network.

2.4. Further random feature models. Besides the examples in Section 2.1-2.3, the random feature
learning model could also be applied, e.g., to kernel regression tasks (see [5, 8, 67]), Gaussian processes
(see [60, 70, 79]), and operator learning (see [14, 57, 61]). However, in this paper, we focus on the three
particular instances in Section 2.1-2.3.

3. UNIVERSAL APPROXIMATION

In this section, we present our universal approximation results for the Banach space-valued random
feature models introduced in Definition 2.1. To this end, we consider for every r € [1, c0) the Bochner
(sub-)space L" (L2, Fy,IP; X) < L"(Q, F,P; X) of Fp-strongly measurable maps F' : Q@ — X such that
E[||IF H&]l/ " < 0. For more details on Bochner spaces, we refer to [44, Section 1.2.b].

Moreover, we impose the following condition on the distribution of the i.i.d. sequence of random
initializations (6,,)nen :  — © inserted in the feature maps G € C°(6; X).

Assumption 3.1 (Full support). Let (0,)nen : 2 — © be an i.i.d. sequence such that for every ¥ € ©
and r > 0 it holds that P [{w € Q : dg(01(w), ) < r}] > 0.

In addition, we assume that the feature maps G = C°(©; X) are universal in the sense that the linear
span spang (G(0)) = { 27]:[:1 Yngn(Un) : N € N, g1,...,98 € G, V1, ..., 0n € O, y1,...,yn € K}
over a field K is dense in X. Then, by using the law of large numbers for Banach space-valued random
variables (see [44, Theorem 3.3.10]), random feature models inherit the universality from the deterministic
feature maps. The proof is given in Section 7.1.

Theorem 3.2 (Universal approximation). Let Assumption 3.1 hold and let G = C°(0©; X) such that
spang (G(0)) is dense in X. Moreover, let F € L"(Q, Fyp,P; X) for some r € [1,00). Then, for every
e > 0 there exists some G € RG n L"(Q, Fy,P; X) such that

1
IF = Glrarex = EIIF - GIk]" <.

In particular, every element z € X can be approximated arbitrarily well by a random feature model
G € RG with respect to the Bochner norm || - |- 7 p;x)-

Now, we apply Theorem 3.2 to random trigonometric/Fourier regression and random neural networks
considered in Section 2.1-2.3. The corresponding proofs are given in Section 7.1.

3.1. Random trigonometric features. Assume the setting of Section 2.1 with Banach space (X, || -
|x) :== (C°U),| - |cow)) and parameter space © := R™, where U < R™ is compact. Since
spang(G(0)) = spang ({U 2 u — h(9Tu) € R : h € {cos,sin}, ¥ € R™}) forms the trigonometric
algebra on U which by the Stone-Weierstrass theorem is dense in CY(U), we obtain the following
corollary of Theorem 3.2.

Corollary 3.3 (Universal approximation). Let Assumption 3.1 hold and let F € L" (2, Fp,P; C°(U))
for some r € [1,00). Then, for every ¢ > 0 there exists a random trigonometric feature model G €

RTuan L"(Q, Fy,P; CO(U)) such that

1

IF = Gl @ rrcowy = E |IF = Gl | <e.
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3.2. Random Fourier features. Assume the setting of Section 2.1 with Banach space (X, | - |x) :=
(C°(U;C),] - |eow.c)) and parameter space © := R™, where U = R™ is compact. Then, by using that
spanc(G(0)) = spanc ({U 3 u — exp (i0 u) € C: ¥ € R™}) is dense in C°(U; C), we obtain the
following corollary.

Corollary 3.4 (Universal approximation). Let Assumption 3.1 hold and let F € L" (2, F,P; C°(U; C))
for some r € [1,0). Then, for every ¢ > 0 there exists a random Fourier feature model G € RF 1 N
L7 (9, Fy,P; CY(U; C)) such that
1
IF = Gl ro,rpcow:c) = E [HF - GHEO(U;C)] " <e

3.3. Random neural networks. In view of Theorem 3.2, we obtain a universal approximation result for
random neural networks from the universal approximation property of deterministic (i.e. fully trained)
neural networks. To this end, we fix the input and output dimension m, d € N and consider the following
type of function spaces (X, | - | x)-

Assumption 3.5. For k € No, U € R™ (open, if k = 1), and y € (0,0), let (X,| - |x) be a Banach

space consisting of functions f : U — R® such that the restriction map (Cf(R™; R%), ||| o l (RmRA)) D
pol,y ?

f v flu € X is a continuous dense embedding.

Example 3.6 ([64, Example 2.6]). The following function spaces (X, || - | x) satisfy Assumption 3.5:
(i) The Cf-space (X, | - | x) := (CF(U;RY), || - Hc{;(U;Rd)) if U < R™ is bounded.
(ii) The weighted C*-space (X, | - |x) := (CF(U;R%) | - \]Wv).
(iii) The LP-space (Xv H ’ HX) = (Lp(UvB’(U)wu;Rd)? ” ’ HLP(U,B(U),;L;RCI)) ifpe [1300) and fi :
B(U) — [0, 0) is a Borel measure with §;(1 + |u|)"p(du) < 0.
(iv) The Sobolev space (X, | - |x) = (W’%P(U’ LU), du; Rd)? |- HW’VvP(U,C(U),du;Rd)) ifpe[l,00)
and U < R™ is bounded having the segment property.*
(v) The weighted Sobolev space (X, | - ||x) := (WFP(U, L(U),w;RY), | - kw20 wiray) i
p € [1,00), U € R™ has the segment property?, the weight w : U — [0,0) is bounded,
infuep w(u) > 0 for all bounded B < U, and §;(1 + |ul|)"w(u)du < 0.
For the precise definition of these function spaces, we refer to Section 1.2.

Moreover, by using the parameter space © := R™ x R we assume that the random initializations
(0r)nen = (an, bp)nen : 2 — R™ x R have full support (see also Assumption 3.1).

Assumption 3.7 (Full support). Let (an, bp)nen : 2 — R™ X R be i.i.d. such that for every (a,b) €
R™ x Randr > 0 we have P [{w € Q : |(a1(w), b1 (w)) — (a,b)| < r}] > 0.

Then, by using the universal approximation property of deterministic neural networks, i.e. that
spang(G(0)) = spang ({U 3 u — e;p(9{u —92) € R : (¥1,092) € ©,4 = 1,...,d}) with non-
polynomial activation function p € Cf(R) is dense in X (see [64, Theorem 2.8]), we obtain a universal
approximation result for random neural networks.

Corollary 3.8 (Universal approximation). Let Assumption 3.5+3.7 hold and let p € Cf (R) " be non-
polynomial. Moreover, let F' € L (), Fo,IP; X) for some r € [1,00). Then, for every € > 0 there exists
some random neural network G € R./\/pUd N L"(Q, Fop, P; X) such that

1
IF' = Glrrrex) =E[|F-G[x] <e

In particular, every function f € X can be approximated arbitrarily well by a random neural network
G € RG with respect to the Bochner norm | - |-, 7 p; x)-

Remark 3.9. Corollary 3.8 extends the universal approximation results in [68, Theorem 3.1], [39,
Corollary 2.3], [38, Theorem 2.4.3], and [31, Corollary 3] from particular activation functions and
L2-spaces (resp. CO-spaces) to more general non-polynomial activation functions and function spaces
over non-compact domains, e.g., weighted Sobolev spaces.

4An open subset U < R™ is said to have the segment property if for every u € oU := U\U there exists an open subset
V € R™ with u € V and some vector y € R™\{0} such that for every z € U n V and ¢ € (0, 1) it holds that z + ty € U (see
[2, p. 54D).
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4. APPROXIMATION RATES

In this section, we derive some approximation rates to learn an element x € X by a random feature
model, which relates the number of features needed for a pre-given approximation error. To this end, we
assume that the set of feature maps G := {g1, ..., g} consists of finitely many maps g1, ...,ge : © — X,
where e € N.

In order to derive the approximation rates, we recall the notion of the rype of a Banach space (X, || - | x)
and refer to [3, Section 6.2] and [51, Chapter 9] for more details.

Definition 4.1. A Banach space (X, || - | x) is called of type t € [1,2] if there exists a constant Cx > 0
such that for every N € N, (xp)pn=1,..n S X, and every Rademacher sequence’ (€n)n=1,..N on a

~

(possibly different) probability space (0, F,P) it holds that

1
t t i

E

N N
n=1 n=1

Remark 4.2. Every Banach space (X, | - |x) is of type t = 1 (with Cx = 1), every Hilbert space
(X, || x) is of type t = 2 (with Cx = 1), and every LP-space as well as (weighted) W*P-Sobolev space
(withp € [1,00) and k € N) are of type t = min(2, p) (with constant C'x depending only on p € [1,0)),
see [3, Remark 6.2.11] and [64, Lemma 4.9].

X

In addition, we define the Barron space B ¢(X) as all elements x € X having a representation as
expectation of the random feature maps, which is similar to the Barron spaces introduced in [7, 10, 27,
28, 48, 68] in the context of neural networks.

Definition 4.3. Forr € [1,), e€ N, and G := {g1, ..., g}, we define the Barron space Bf; ,(X) € X
as the subset of all elements x € X such that

] < o0, (7)

X

> i01)gi(61)
=1

T = i f E
HxHIBgﬂ(X) y:(})TLRE

where the infimum is taken over all B(0)/B(R¢)-measurable maps y = (y1,...,ye) : © — R®
satisfying x = E[33_, yi(61)gi(61)]. Then, we equip the vector space By, ,(X) with the Barron norm

|- HBZ,e(X) defined in (7).

Remark 4.4. Note that | - HBE ,(x) satisfies the norm axioms. Moreover, by using Holder’s inequality, we
observe that Bz (X)) < BZ' o(X) forall 1 <71 <7y < 0.

Now, we are able to derive the following approximation rates which are based on Rademacher averages
and the Banach space type. The proof can be found in Section 8.1.

Theorem 4.5 (Approximation rates). Let (X, | - |x) be a separable Banach space of type t € [1,2]
(with constant Cx > 0), let (0y)nen : Q — © be i.id., let G := {g1,...,ge} consist of B(©)/B(X)-
measurable maps g1, ....,ge : © — X, and let v € [1,00). Then, there exists a constant Cy; > 0
(depending only onr € [1,0) and t € [1,2]) such that for every x € B, ,(X) and N € N there exists
Gn € RG n L™(Q, Fyp,P; X) with N features satisfying

Hx”Bg,e(X)

1 .
Nl_ min(r,t)

Hence, Theorem 4.5 relates the approximation error (right-hand side of (8)) to the number of features
N € N needed for the random feature model G € RG n L" (2, Fy, P; X).

In the following, we apply Theorem 4.5 to random trigonometric/Fourier regression and random neural
networks considered in Section 2.1-2.3. The proofs are given in Section 8.2.

E[|z — Gnl%]7 < CriCx (8)

A Rademacher sequence (€n)n=1,...~ on (Q, F, P) are i.i.d. random variables with P[e; = +1] = 1/2.

.....
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4.1. Random trigonometric features. To obtain rates with random trigonometric regression in a
weighted Sobolev space W P (U, L(U), w), we fix the following quantities.

Assumption 4.6. Let k € Ny, p,r € [1,00), U < R™ (open, ifk = 1), and let w : U — [0,0) be a
weight satisfying w(U) := §; w(u)du < o.

Moreover, we let © := R™ be the parameter space and consider the two features maps R™ 3 ¢ —
g1(9) :=cos (97 ) e WEP(U, L(U), w) and R™ 59 — go(¥9) :=sin (9T ) € WEP(U, L(U),w). In
addition, we impose the following condition on (6, ),en-

Assumption 4.7. Let (0,)nen : Q@ — R™ be an i.i.d. sequence of random variables, each of them having
a strictly positive probability density function pg : R™ — (0, 0).

Then, we use the real and imaginary part of the Fourier transform as linear readouts to obtain a
representation of a given f € L'(R™, L(R™), du) in terms of the random sine and cosine features. This
then implies the following result as a corollary of Theorem 4.5.

Corollary 4.8 (Approximation rates). Let Assumption 4.6+4.7 hold. Then, there exists a constant C), , >
0 (depending only on p,r € [1,0)) such that for every f € WEP(U, L(U), du) n L' (R™, L(R™), du)

A F@Ir (1912)"" L NV : :
with C'y := SRm o (07 dv < o0 and every N € N there exists some random trigonomet-

ric feature model G € RT 1 n L™ (2, Fo, P; WFP(U, L(U),w)) with N features satisfying

1 b 1
. r mrw(U)» Cy
E[Hf—GNwaU,c(U),w)] < O gy N

4.2. Random Fourier features. For approximation rates with random Fourier regression in a weighted
Sobolev space as above, we let © := R be the parameter space and consider the single feature map
R™ 3549 — g(¥) :==exp (9" ) e WFP(U, L(U),w; C).

1
T min(2pr)

Corollary 4.9 (Approximation rates). Let Assumption 4.6+4.7 hold. Then, there exists a constant
Cpr > 0 (depending only on p,r € [1,00)) such that for every f € WH*P(U,L(U),w;C) n

2 r 2\ kr/2
LYR™, L(R™), du; C) with Cy := (SR,,L lfw)‘pgg)@ll ) dﬁ) " < oo and every N € N there ex-

ists some random Fourier feature model Gy € RFy1 n L™ (Q, Fo, P; WrP(U, L(U), w; C)) with N
features satisfying

1
. mrw(U)Pr Cy
E [Hf = GNHwkm(U,uU),w;@] S Cor = gmym

3=

1——L -
N min(2,p,r)

Remark 4.10. For k = 0 and p = r = 2, the approximation rate in Corollary 4.8+4.9 coincide with the
rate O(l/\/ﬁ) proven in [68] (see also [10]).

4.3. Random neural networks. Finally, we apply Theorem 4.5 to obtain some approximation rates
for learning a given function f : U — R? by a random neural network in a weighted Sobolev space
WkP(U, L(U), w; RY), where we fix the following quantities.

Assumption 4.11. Let k € Ny, p,r € [1,00), U € R™ (open, ifk = 1), v € [0,0), and let w : U —
[0, 0) be a weight.

Moreover, we recall that © := R™ x R and impose the following condition on the random initializations
(0r)nen = (an, bp)nen : @ — R™ x R (see also Assumption 4.7).

Assumption 4.12. Let (ay, by )nen : 2 — R™ x R be an i.i.d. sequence, each of the random variables
with strictly positive probability density function p,p, : R™ x R — (0, c0).

To obtain rates for random neural networks, we apply the reconstruction formula in [76, Theorem 5.6]
to express a given function as expectation of a random neuron. To this end, we consider admissible pairs
(¥, p) € So(R; C) x C* , _(R) of a ridgelet function ¢ and an activation function p, which is a special

pol,y
case of [76, Definition 5.1] (see also [16]).
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Definition 4.13. Apair (1, p) € So(R; C) x Ck 'vol(R) is called m-admissible if the Fourier transform

T eS'(R;C)ofpeC, ko ~(R) (in the sense of distribution) coincides® on R\{0} with a locally integrable
function fz : R\{0} — C such that
P

~

(&) f7,(€)
el i= mymt | g e €\(0),
R0} 18l
Remark 4.14. If (¢, p) € Sp(R; C) x C;fol -(R) is m-admissible, then p € Cpol -(R) has to be non-

polynomial (see [64, Remark 3.2]).

Together with some appropriate ¢ € Sp(R; C), the most common activation functions such as the
sigmoid function and the ReLU function satisfy Definition 4.13.

Example 4.15 ([64, Example 3.3]). Let ¢ € Sy(R; C) with non-negative 1 € C*(R) and supp(¢)) =
[C1s Cg] for some 0 < (1 < (o < o0. Then, for every m € N and the following activation functions
peCk ol ~(R) the pair (1, p) € So(R; C) x C'pol - (R) is m-admissible:
(i) The sigmoid function p(s) := W if ke Ngand v = 0.

(ii) The tangens hyperbolicus p(s) := tanh(s) if k € Ny and v > 0.

(iil) The softplus function p(s) := In(1 + exp(s)) if k € Ng and v > 1.

(iv) The ReLU function p(s) = max(s,0) if k = 0 and v > 1.
Moreover, there exists a constant Cy, , > 0 (being independent of m € N) such that for every m € N it
holds that |C'7(:{b’p)| = Cy ,(2m/C2)™.

In addition, we follow [16, 76] and define for every ¢ € Sp(R; C) the (multi-dimensional) Ridgelet
transform of any function f € L'(R™, L(R™), du; R?) as

R™ xR3(a,0) — (Ruf)(ab)i= JRM ¥ (aTu—b) f(w)aldu € C ©

Then, we can apply the reconstruction formula in [76, Theorem 5.6] to obtain a representation of any
sufficiently integrable function as expectation of a random neuron.

Proposition 4.16 (Reconstruction, [64, Proposition 3.3]). Let Assumption 4.11+4.12 hold, let
(¥,p) € So(R;C) x C OM(R) be m-admissible, and let f € L'(R™,L(R™),du;RY) with f €
LYR™, L(R™), du; C?). Then, for a.e. u € R™, it holds that

Ry f)(a, br) } f j (

E |22 (a] u— by) Ry f)(a,b)p (a"u — b) dbda = CSPP) f (u).

[ pa,b(alabl) p( 1 1 ¢f ( ) m f( )
Remark 4.17. Recall that the set G consists of the feature maps R™ x R 3 (a,b) — gi(a,b) =
eip(aT~—b) e WhP(U, L(U), w;R?), i = 1,...,d. Hence, for every function f € W*P(U, L(U), w; R?)
satisfying the conditions of Proposition 4.16, we choose the linear readout R™ x R 3 (a,b) — y(a,b) :=
(yi(a,b));rzlv__’d = Re <m> e R? to obtain E[Zgzl yi(a1,b1)gi(a1,b1)] = fae onU,
showing that f € Bgﬁ(W’“’p(U, L(U),w; RY).

In order to extend the reconstruction also to other more general functions, we adapt the Barron spaces
in Definition 4.3 to this setting with ridgelet transform introduced in (9).

Definition 4.18. Let Assumption 4.11+4.12 hold and let ) € S(R;C). Then, we define the Barron-
ridgelet space IB%k’r’ﬁY 1 (U;RY) as vector space of L(U)/B(R?)-measurable functions f : U — R® such
that )
ra L

X r
2

(Lt fa]?) 2 (L4 i) (Ryh)(arby)| | <,

Pap(a1,01)

where the infimum is taken over all functions h € L'(R™, L(R™),du;RY) satisfying hoe
LYR™, L(R™), du; C?) and h = f a.e. on U.

OThis means that T = SR\{O} Iz, (€)g(€)dE forall g € CL(R\{0};C).
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In the following lemma, we show for the set of feature maps G defined in Remark 4.17 that

BZZ%(U R?) is a subset of By o(W*? (U, L(U), w; R?)) introduced in Definition 4.3.

Lemma 4.19. Let Assumption 4.11+4.12 hold, let G be as in Remark 4.17, let (1, p) € Sp(R; C) x

Cpolv(R)’ and define C’l(;j{f) > 0 as in (10). Then, for every [ € IE%Z’;’})(U;Rd) it holds
3+1 oy .

that || fllgg, ,wsrw,c@)wre) S 2 +pHPHc§om(R) NG p>| ”f”naak” urey: I particular, we have

B (U RY) < B (WEP(U, L(U), w; RY).

Now, as a corollary of Theorem 4.5, we obtain the following rates to approximate any given function

feWkr(U, L(U),w;RY) N BZTI)(U R?) by a random neural network.

Corollary 4.20 (Approximation rates). Let Assumption 4.11+4.12 hold such that

o) = (Lu + uun)wwm)du) " <o, (10)

Moreover, let (1, p) € So(R; C) x C;fol - (R) be m-admissible. Then, there exists Cp,, > 0 (depending

only on p,r € [1,00)) such that for every f € W*P(U, L(U), w; R?) n IB%ZZ"Z(U RY) there exists a

random neural network G € RNpUder (Q, Fup, Py WHEP(U, L(U), w; RY)) with N neurons satisfying

, % C[(}Y’p)mp HfH[BkT’Y(URd)
E[”f_GN”WI@,P(U,ﬁ(U),w;Rd)] < Gprlpler, m ‘C(w p)‘ pR——

(1)

Remark 4.21. Theorem 4.20 extends the approximation rates for random neural networks in [32,
Section 4.2] and [31, Theorem 1] from ReLU activation functions and L?-spaces (resp. C°-spaces) to
more general activation functions and weighted Sobolev spaces, where the approximation of the weak
derivatives is now included. Moreover, these rates are analogous to the ones for deterministic neural
networks in [10, 13, 16, 23, 49, 55, 64, 75].

Next, we give sufficient conditions for a function to belong to a Barron-ridgelet space introduced in
Definition 4.18. For example, the solution of the heat equation (with appropriate initial condition) at any
fixed time belongs to such a space (see Corollary 6.2.(ii)).

Proposition 4.22. Let Assumption 4.11 hold, let’ (ay,, bp)nen ~ pa @ t1 be i.i.d., and let b € So(R; C)
such that {1 := inf {|C |:Ce supp(d))} > 0. Then, there exists a constant C > 0 (being independent of

m, d € N) such that for every f € L*(R™, L(R™), du; R?) with ([y] + 2)-times differentiable Fourier
transform it holds that

(1 Hé’/CH )(2["/14-2k+3)T 71

N +

lasran < & s | [ Josfr ] . a2
vap () 1" Cesupp(¥) BENT' 14 Rm 0‘4(5/0

In particular, if r = 2 and’ (an,bn)neN ~ t;m ® t1 iid., then it holds for every [ €

LYR™, L(R™), du; RY) with ([y] + 2)-times differentiable Fourier transform that
m+1

Ci ™ - :
I/ 152 may < e SDY <me [0sF (@) (1 + lg/ca?) 2 d§> . (13)

¢ r (mTH) BENG 142
Hence, if the right-hand side of (12) or (13) is finite, we obtain that f € IE%Z’Z"Z(U; R%).

Thus, for r = 2 and (an, by )nen ~ tm ® t1 i.1.d., we can insert (13) into the right-hand side of (11) to
conclude that the approximation rate for random neural networks is the same as the approximation rate
for deterministic neural networks proven in [64, Theorem 3.6].

(7,p)

Moreover, the following estimate holds true for the constant C;,” > 0 appearing in (11), while a

lower bound for the constant |C,(,3f) ” )| > 0 is given below the list of Example 4.15.

TForm € N, t,,, denotes the Student’s ¢-distribution with probability density function R™ 3 a — 04(a) = % (1+

lal®) —(mAD2 (0, 00), where I is the Gamma function (see [1, Section 6.1]).
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Lemma 4.23 ([64, Lemma 3.9]). Let Assumption 4.11 hold with the weight U 3 u := (u, ..., um)T —

w(u) = [ wo(w) € [0,00), where wo : R — [0,00) satisfies S]R wo(s)ds = 1 and Cﬁf& -
(§p(1+ [s)7Pwo(s)ds) VP < o, Then, C&{f) < C&l’vo)m%hl/p.

In addition, we analyze the situation when the approximation of a function by random neural networks
overcomes the curse of dimensionality in the sense that the computational costs (measured as the number
of neurons NV € N) grow polynomially in both the input/output dimensions m, d € N and the reciprocal
of a pre-specified tolerated approximation error.

Proposition 4.24. Let Assumption 4.11 hold with r = 2, p > 1, and a weight as in Lemma 4.23, let
(Gn, b )nen ~ tm @ty be iiid., and let (1, p) € Sp(R; C) x Cgol,'y(R) be a pair as in Example 4.15 (with
0 < (1 < (o < o). In addition, let f € WFP(U, L(U), w; R?) satisfy the conditions of Proposition 4.22
such that the right-hand side of (13) satisfies O (m*(2/¢2)™(m + l)m/Q) for some s € Ny. Then, there

exist some constants Co, Cs > 0 such that for every m,d € N and every ¢ > 0 there exists a random
_ _min(2,p,7) . .
neural network G € RN Z g Wwith N = [02m03€ mi”@mﬂ—l] neurons satisfying

1
E [Hf - GNHIQ/Vk,p(Uyﬁ(U)’w;Rd):l ‘<e.

Hence, in this case, random neural networks overcome the curse of dimensionality.

5. LEAST SQUARES AND GENERALIZATION ERROR

In this section, we use the least squares method to learn a given function by a random feature model
in the Sobolev space W*2(U, L(U), w; RY), where we fix some k € No, U < R™ (open, if k& > 1), and
a weight w : U — [0, ) that is normalized, i.e. §; w(u)du = 1. To this end, we assume that the set
of feature maps G := {g1, ..., ge} consists of finitely many B(©)/B(W*2(U, L(U), w; R?))-measurable
maps g1, ..., ge : © — WF2(U, L(U), w; R?), where e € N.

Moreover, we fix an i.i.d. sequence of U-valued random variables (V) jen ~ w as training data, which
are independent of the random initializations (6,,)nen. From this, we define the o-algebra Fyy :=
o({0n, Vi, : n € N}) satisfying Fy < Fg < F.

In addition, for every fixed N € N, we denote by Yy the vector space of all R®* -valued random
variables y := (yiﬁn)”:l’""N, which are Fy - /B(R®*Y)-measurable. Then, for every y € Yy, we define

i=1,...,e
the corresponding random feature model as

N e
Qsw > GLW) =D > @) g(bn(w)) e WH(U, L(U), w; RY). (14)
n=1[=1

Note that (14) slightly differs from Definition 2.5 as the linear readout y € Yy is now measurable with
respect to Fy v (instead of Fy) and can therefore only be trained after the training data (V) jen has been

drawn. Moreover, we denote by RG" the set of all random feature models of the form (14).
For some fixed J € N, we now approximate a given k-times weakly differentiable function f : U — R¢
by the least squares method on the training data (V}) j=1,...,7- To this end, we aim for the random feature

model G%’\;J) € RG" with linear readout y(/) := ( Z(‘Q)Z:leN € Yy that minimizes the empirical
(weighted) mean squared error (MSE), i.e. we set
1< 2
y(‘]) (w) = argmin ey, 7 Z 2 Ci Haaf(vj(w)) - 8QG§JV(w)(Vj(w))H (15)

j=1aeNgy,

for all w € ). Hereby, the constants ¢ := (Ca)aeNomk c (0, o) control the contribution of the derivatives,

e.g., Cq 1= mlel o e Ng"., means equal contribution of each order. Moreover, for ¢ := (Coz)aeN})“ka we
' maXqeNm, Ca ,
define the number H(C) = W.
To analyze the complexity of Algorithm 1 in the following result, we count every elementary operation,
every function evaluation of g1, ..., g. € G, and each generation of a random variable as one unit. Then,

we show the following result whose proof is given in Section 9.1.
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Algorithm 1: Least squares method to learn a random feature model
Input: J, N € N and a k-times weakly differentiable function f = (fi, ..., f4) T : U — R%

Output: G?]’\EM e RGY with linear readout () : (yl(‘;));l 11’ N g Yn solving (15).
1 Generate i.i.d. random variables (RVs) (0,,,)n:17“_, ~ satisfying Assumpt10n 4.7.

2 Generate i.i.d. random variables (RVs) (V;);-1,....; ~ w independent of (6,,)5—1... N

3 Define the RV 150N valued RV G = (G i) (1) syeii ki qn,..ay With
) (i) {L e TEXNG X {1

G (j,0,i),(1,n) = CaOagri(0n)(V)) for (j,a,i) € {1,..., J} x Nge % {1,...,d} and
(,n) € {1,...,e} x {1,..., N}, where g;(0) (u) := (g1,:(9)(u)){_
4 Define the R”Nﬁk‘d-valuedRVZ = (calu fi(V, ))(My Dl T} NI (1,00 d}

5 Solve the least squares problem G ' Gi/(’) = GT Z for /) := (yél 21))([ )ell e} {1 N}

decomposition and forward/backward substitution (see [12, Section 2.2.2]).

6 Return Q5w — G% (@) = S, 3¢yt (w)gu(0a(w)) € WH2(U, L(U), w; RY).

.....

via Cholesky

Proposition 5.1. Fore e N, let G := {g1, ..., g} consist of maps g1, ..., g : © — WFE2(U, L(U), w; R?)
that are B(©)/BWH2(U, L(U), w; R?Y))-measurable, let Assumption 4.7 hold, let J, N € N,
(ca)aeny, <= (0,0), and f : U — RY be k-times weakly differentiable. Then, Algorithm 1 termi-

nates and is correct, i.e. returns G?{\;J) € RQV with y(‘] ) e YN solving (15). Moreover, the complexity of
Algorithm 1 is of order O(Jm*d(eN)? + (eN)?).

For fixed k € Ny, Proposition 5.1 shows that the computational costs for learning a given k-times
weakly differentiable function by a random feature model including the derivatives up to order k scales
polynomially in J, N, m,d € N.

Now, we bound the generalization error for learning a function by the random feature model G%” €
RGY obtained from Algorithm 1. Since the linear readout y(/) € YV minimizes the empirical MSE
in (15), the random feature model Gy( & € RGY is the best choice on the training data (V) j=1,..,J- In
order to bound the error beyond the tralning data, we combine the approximation rate in Theorem 4.5
with a result on non-parametric function regression (see [37, Theorem 11.3]). Hereby, we introduce the
truncation R? 3 2 := (21, ..., z4) T = Tp(2) := (max(min(z;, L), —L)),_, ;€ R% The proof can be
found in Section 9.2. o

Theorem 5.2 (Generalization error). For e € N, let G := {q1,...,9.} consist of B(O)/
BWH2(U, L(U),w; RY))-measurable maps g1, ...,ge : © — WE2(U, L(U),w;RY) and let Assump-
tion 4.7 hold. Then, there exists a constant Cy > 0 (being independent of m, d € N) such that for every
JNeN, L>0andf:=(f1,...f1)" € Béﬁ(WkJ(U,,C(U),w;Rd)) satisfying 0o fi(u)| < L for

all o € Ngfk, 1 =1,...,d, and uw € U, Algorithm I returns a random feature model G?j\;ﬂ e RGY with N
features being a strongly (P, Fy v )-measurable map G?]”\;J) Q- WE2(U, L(U), w; R?) such that

| 5 [ Jarto i ot o)

Hf”IB%? (Wk2(U,L(U) w;Re
<C4Lm§d% M+C4H(c) \/N ( )1 ’ ))

J
Hence, the generalization error in (16) can be made arbitrarily small by first choosing the number of
random features N € N large enough and then by increasing the sample size J € N.

(16)

Remark 5.3. Choosing J = O(\/ﬁ In(N )) random features in (16), we recover the L?*-generalization
error of 0(1 /N 1/ 4) in [72, Theorem 1] for random feature models trained via ridge regression. Previ-
ously, [69, Theorem 1] showed an L*-generalization error of O (1 /J 44 /N 1/ 4) also by using ridge
regression.
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5.1. Random neural networks. In this section, we now consider random neural networks as particular
instance of random feature learning, where (6,)nen := (an,bn)nen : @ — R™ x R is the random
initialization. To this end, we fix some 7 € [0, c0) and an activation function p € Cpol 7( ). Then, for
every fixed N € N, we denote by )V be the vector space of all F,;1/B (RdXN )-measurable random
variables y := (yn)n LN = (Yin)ie 11’ »", where F, v := Fp . Then, for any y € Yy, we define

the corresponding random neural network as
Q5w — Z ynp (a) - —bn) € Ch,(U;RY). (17)

Moreover, we denote by RN g‘; the set of all random neural networks of the form (17).
For some fixed J € N, we now approximate a given k-times weakly differentiable function f : U — R
by the least squares method on the training data (V});—1,. s, which corresponds to the random neural

network Gy RN Ud with linear readout (/) € Yy solvmg (15). In this case, we obtain the following
version of Algorlthm 1 for random neural networks.

Algorithm 2: Least squares method to learn a random neural network
Input: J, N € N and k-times weakly differentiable function f = ( fl7 e )T — R,
Output: G?j\;]) € RN ‘[}7‘; with linear readout y(7) := (yz(‘;))? 11 e VN solvmg (15).

t Generate i.i.d. random variables (RVs) (a,, bn),,,zl,_“’N ~ Da,b (see Assumption 4.12).

2 Generate i.i.d. random variables (RVs) (V;);—1,..; ~ w independent of (a, b, )n=1,... N-
J- N ) x N n=1,...,.N .
3 Define the R( "Nk D XN _yalyed RV G = (G(J @)m)(;, a)etl, ., T} <N, with

Gy = cap!!®V (@] V; — b,)ag for (j,a) € {1,..., J} x NgY andn =1,..., N.
4 fori=1,...,ddo
5 Define the R"N¢'l_valued random variable Z; := (co0a fl( )) (G,0) {1y T XN,
e 0,

6 Solve the least squares problem GTGy(J) G T Z; for yi = (y(f]) )n:1 _ via Cholesky

(i,m)
decomposition and forward/backward substitution (see [12, Section 2.2.2]).

7 Return 2 3 w +— G?\;J) (w) := 22;1 y7({]) (W)p(an(w)" - —bp(w)) € C;I;oz ,Y(U;Rd).

Corollary 5.4 (Generalization error). Let w : U — [0, 0) be a normalized weight such that the constant
C(Jj) > 0 defined in (10) is finite. Moreover, let (1, p) € So(R;C) x Cpow( ) be m-admissible
and let Assumption 4.12 hold. Then, there exists some C5 > 0 (being independent of m,d € N) such
that for every JJN € N, L > 0, and f := (f1,..., f2)' € WF2(U,L(U),w; R?) n IB%Z’%%(U;Rd)
satisfying |0 fi(u)| < L forall o € Nt =1,...,d, and w € U, Algorithm 2 returns a random neural
network GZ]/\EM € RNpUyd with N neurons being a strongly (P, F, ;v )-measurable map GZ]/\EM Q-
Wk2(U, L(U), w; RY) such that

5| 3 ), lens-1i (et Ow) [ u

aeNm

(13)
0205 [ fligee.
s 1 [(In(J) + N o ™2 1B WRY
< CsLm2d2 f—i-Cm( HPHokoMR) ‘C(wp)‘ \/N

Remark 5.5. Corollary 5.4 extends the generalization error in [31, Theorem 4.1] for random neural
networks with ReLU activation function to more general activation functions and by including the
approximation of the weak derivatives. Moreover, (18) coincides up to constants with the generalization
error for deterministic neural networks obtained in [11].
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6. NUMERICAL EXAMPLE: HEAT EQUATION

In this section®, we follow [29, Section 2.3] and consider the heat equation, which describes the
evolution of a given quantity throughout time. More precisely, we consider the partial differential
equation (PDE)

—5(t,u) =0, (t,u) € (0,00) x R™, (19)
1=1
with initial condition g : R™ — R, i.e. f(0,u) := lim;,¢ f(t,u) = g(u) for a.e. u € R™. The following
result guarantees existence and uniqueness of (19), which is a slight generalization of [29, Theorem 2.3.1]
to a.e. bounded and a.e. continuous initial conditions g : R™ — R. The proofs of the result in this section
can be found in Section 10.

Proposition 6.1. Let A € (0,0) and g : R™ — R be a.e. bounded and a.e. continuous. Then, the

Sfunction (0,00) x R™ 3 (t,u) — f(t,u) = a0 F At SR"’ Huzui‘ g(v)dv € R is the unique solution of
the PDE (19) with initial condition g : R™ — R.

For some fixed ¢ € [0,T], we now learn f(¢,-) by random trigonometric feature models, random
neural networks, and their deterministic counterparts. Here, we omit random Fourier regression as it
coincides for real-valued functions with random trigonometric features.

In the following, we provide sufficient conditions that the approximation of f (¢, -) by trigonometric
feature models and random neural networks overcomes the curse of dimensionality in the sense that
the computational costs (measured as the number of features/neurons N € N) grow polynomially in
both the input/output dimensions m, d € N and the reciprocal of a pre-specified tolerated approximation
error. To this end, we apply the approximation rates in Corollary 4.8+4.20 and introduce B, (0) :=
{fueR™: Ju| <7}, r=0.

Corollary 6.2. For \,t € (0,00) and an a.e. bounded and a.e. continuous initial condition g : R™ — R,
let f(t,-) : R™ — R be the solution of (19) at time t. Moreover, let p € [1,00), v € [0,0), and
w : R™ — [0,0) be as in Lemma 4.23. Then, the following holds:
() Let (0n)nen ~ tm be i.i.d. and assume that g € L' (R™, L(R™), du). Then, there exists Cg > 0
(being independent of m € N and g : R™ — R) such that for every N € N there exists a random
trigonometric feature model Gy € RTwrm 1 with N features satisfying

3 1 %‘WHLIRmE( ").du)
E[ t,) — GN 2 omm rimm ]2<Cmi( ) 20
Hf( ) NHL (R, L(R™),w) 0 2\t Nl mln(2 D) ( )
In particular; if p > 1 and R™ 3 u — g(u) := 1, (u) € R with R? < TV%(m + 2) for all

but finitely many m € N, then there exists C7 > 0 such that for every m € N and € > 0 there
min( p)
exists some G € RTgrm 1 with N = [076 min(2,p ] features satisfying

1
E[15(t) = Galdan cmyan|”

(ii) Let (G, bp)neny ~ tm ® t1 be iid., let (¢, p) € Sp(R;C) x Cgoly( ) as in Example 4.15
(with 0 < (1 < (o < o), and assume that g € L'(R™, L(R™), (1 + ||[u|"1*2)du). Then,
f(t,-) e ]B?ﬁ’i’})(Rm) and there exist Cs, Cg > 0 (being independent of m € Nand g : R™ — R)

such that for every N € N there exists a random neural network G € RN%.., | with N neurons

A

€. 21

satisfying
1 o\ =
2 2 ¢ ((©/6)°\ 2 19l @ c@m) (tful 1 +2)a
E |1(t,) = Oxlam,camyuy) < Com™ ( T N -
In particular, if p > 1 and R™ 3 u — g(u) := 1 g, (u) € R with R? < g;\\?(m + 2) for all

but finitely many m € N, then there exist Cg, C11 > 0 such that for every m € Nand e > 0
in(2,p)
there exists G € RN%,, | with N = [Clomclls min(2p) - 1] neurons satisfying

1
E [Hf(t» )= GNH%P(Rm,ﬁ(]Rm),w)] “<e (23)
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Now, we choose A = 4, ¢t = 1, the initial condition R™ 3 u — g(u) := IS G (u) € R with

R := 4m®*, and the weight R™ 5 u — w(u) := (27) ™2 exp (—|u|?/2) € [0, 0) satisfying the
conditions of Lemma 4.23. Then, we generate J = 2 - 10° i.i.d. data (Vj)j=1,...0 ~ w, split up into
80%,20% for training/testing, and minimize the empirical L?-error

1 2
EONICRORENEATY 24)
j=1

over random trigonometric feature models Gy € R7T rm 1, random neural networks G € R/\/ﬁg;fll, and
their deterministic counterparts, all of them having N features/neurons.
For the training of the random features, we assume that (6,,)pen ~ t, (for RTrm 1) and

2V/\
(ansb)ners ~ tm ® t1 (for RAVEEY). As R? = 16mS < Y2lm and R? = 16m%® < %gm

for all but finitely many m € N, Corollary 6.2 shows that the approximation of f(¢,-) by random
trigonometric features and random neural networks overcomes the curse of dimensionality. For their
deterministic counterparts, we minimize (24) over the deterministic trigonometric feature models
Gn € Trm 1 := spang ({R™ 3w+ h(9Tu) € R: h € {cos,sin}} ) and the deterministic neural net-
works Gy € Nﬁ%ﬂi = spanp ({}Rm 3 u — tanh (191Tu - 192) e R: (¥1,92) € R™ x ]R}), both of
them having N features/neurons. Hereby, we use the Adam algorithm (see [47]) over 3000 epochs with
learning rate v = 10~° and batchsize 500.

Figure 142 show that random trigonometric feature models as well as random neural networks are able
to learn the solution of the heat equation (19) with similar accuracy than their deterministic counterparts.
Moreover, in terms of computational efficiency, the random feature models outperform the deterministic
models by far (see Table 1).

0.10
-+ Tema =% Nom, — m=10
0.08 - VBT RTema =@ RNGm 4 m = 20
& — m =30
]
0.06 \

0.04 A

Empirical L2-error on test set

0.02 A

0.00 ELER
T T T T T T T

0 50 100 150 200 250 300 350 400
Number of neurons N

Figure 1. Learning the solution of (19): Empirical L?-error defined in (24).

8The numerical experiment has been implemented in Python on an average laptop (Lenovo ThinkPad X13 Gen2a with
Processor AMD Ryzen 7 PRO 5850U and Radeon Graphics, 1901 Mhz, 8 Cores, 16 Logical Processors). The code can be
found under the following link: https://github.com/psc25/RandomNeuralNetworks
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0.9

0.8 A

,0.5))

0.7 A

0.6

f(1,(u1,0.5,...

0.5 A

0.4

-4 TR'T', 1
B RTpm

=% Ngm o
-o- RN}%’“,I

Figure 2. Learning the solution of (19): Approximation of the function R 3 u; —
f(1, (u1,0.5,...,0.5)) € R, which is displayed for N = 200 features (resp. neurons)
for Trm 1 and N{ém 1 as well as N = 400 features (resp. neurons) for R7gm ; and

RN ;-
N=10 | N=25 ] N=50 | N=100| N =200 | N = 400
- 359.38 434.38 546.61 734.56
Rm,1 1.0-10° | 4.8-10° | 9.6-10° | 1.9 10!
RTam 0.13 0.40 0.91 2.60 9.36 30.41
= 10 ’ 85-10| 5.0-107| 2.0-10%| 8.0-10%| 3.2-10°| 1.3-10%°
Aftanh 348.43 382.21 425.88 506.86
k.1 1.0-101° | 2.4-10'0 | 4.8-10'° | 9.6- 1010
R A\/tanh 0.07 0.21 0.47 1.04 2.59 7.99
Rm11 86-106| 5.1-107| 2.0-108| 8.0-108| 3.2-10° | 1.3-10%0
- 371.36 495.81 598.58 769.88
Rm,1 1.0-10%° | 4.8-101° | 9.6-10% | 1.9 101
RTam 0.18 0.48 1.04 2.46 7.51 31.62
= 20 ] 85-10°| 5.0-107 | 2.0-10% | 8.0-10%| 3.2-10° | 1.3-10'°
Aftanh 344.64 432.72 459.36 563.23
R™,1 1.0-101° | 2.4.10'0 | 4.8-10'0 | 9.6- 1010
R A\ tanh 0.09 0.24 0.46 1.00 2.58 9.32
k™11 6.0-108| 3.5-10°| 1.4-109| 3.8-109 | 1.4-10' | 1.3- 100
- 439.63 529.50 693.85 819.93
R™,1 1.0-10%0 | 4.8-10° | 9.6-10° | 1.9 - 1012
RT s 0.20 0.48 0.97 2.41 9.09 24.37
m = 30 ’ 85-10%| 5.0-107| 2.0-108 | 8.0-108| 3.2-10% | 1.3-10%0
Aftanh 410.55 463.20 494.44 596.33
Rm,1 1.0-1019 | 2.4-1019 | 4.8-1019 | 9.6- 100
R A/ tanh 0.09 0.23 0.50 0.99 2.47 7.12
k™11 10-108| 6.1-10%| 2.4-10°| 1.6-10°| 6.4-10° | 2.6 - 100

Table 1. Learning the solution of the heat equation (19): Computational time (in italic

letters) and complexity (in scientific format 0.0 - 10°, see also Proposition 5.1).

17
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7. PROOF OF RESULTS IN SECTION 3

7.1. Proof of Theorem 3.2. For the following proofs in this section, we denote the closed ball of radius
r > 0 around ¥y € © by B, (%) := {¥ € © : do(¥,99) < 1}

Proof of Theorem 3.2. First, by using that G(0) := spang({g(¥) : g € G, ¥ € O}) is by assump-
tion dense in X together with [44, Lemma 1.2.19 (i)], i.e. that Zr, ® X := spang({Q 3 w —
lg(w)z € X : E € Fp, x € X}) is dense in L"(2, Fy,P; X'), we obtain that Zr, ® G(O) :=
spang ({2 3w — 1g(w)g(¥) e X : E€ Fy, g€ G, ¥ € ©}) is dense in L"(Q, Fp,P; X). Hence, it
suffices to show the approximation of any map of the form Q 5 w — 1g(w)g(Yy) € X, with E € Fy,
g € G,and ¥p € ©, by some G € RG n L"(£2, Fy,IP; X) with respect to | - | 1 7 p,x)- To this end, we
fix some F € Fy, g € G, Vg € O, and € > 0. Moreover, for every M, n € N, we define the map

NDow - Gunw):=yun(w)g(lp(w))eX
with Fp-measurable linear readout Q 3 w — yur,(w) = Cy} m(@ (w)) € R, where Cjy :=
P[{w e Q:61(w) € By/n(d)}] > 0 due to Assumption 3.1.

Now, we show that the sequence (]lm(Gn (w))g(Fg) — CMGMW("‘)))MEN

inwe Qandn e Nto0e X with respect to || - | x. To this end, we fix some ¢ > 0. Then, by using that
g€ G < C°©; X) is continuous, there exists some § > 0 such that for every ¥ € Bs(dJp) it holds that

l9(D0) —g(P)]x <e.

Hence, by choosing M € N large enough such that My > §—1, it follows for every M € N n [ My, )
that

converges uniformly

supsup |15 0n () (90) — CarGatn(e)|

we neN
= supsup |15 (6a)) (9(00) — 90u))|
= sup  |lg(¥o) — g(?)lx
ﬁEBl/M(ﬁo)
< sup () —g()]x <e.
9€B1 /014 (Y0)

Since € > 0 was chosen arbitrarily, this shows that the sequence (ﬂm(en(w))g(ﬁo) —

C’MGMm(w))MeN converges uniformly inw € 2 and n € N to 0 € X with respect to | - | x.

Next, we show for every fixed M,n € N that Gy, € L"(2, Fp,P; X). Indeed, by using that
Q35w (Yun(w),Op(w)) € R x O is Fp/B(R x ©)-measurable and that g € G = C°(0; X) is
continuous, it follows that the concatenation 2 3 w — Y, (w)g(0n(w)) € X is Fp/B(X)-measurable.
Hence, by using that (X, | - ||x) is separable, we can apply [44, Theorem 1.1.6+1.1.20] to conclude that
G 0 Q — X is strongly (P, Fp)-measurable. Moreover, by using Minkowski’s inequality and that the
sequence (]lmwn (@))g(90) — CrrGarn(w)) /e i by the previous step uniformly bounded in
w € Nand n € N, we have

r ol 1 r ol
| I = =—E[ICMuGrnlx]

Cwm

@ rFpx) = E[|

r]i
X

< ClME [H]lmwn)g(ﬁo)

]+ o[t 990 ~ CuGn

1 1
< G la00)lx + G sup [l (Ba()g(00) — CuGara| | < 0,

which shows that Gy, € L™ (2, Fp,P; X) for all M, n e N.
Now, we show that there exists some M; € N such that the constant maps (w — g(vp)) €

L"(Q, Fp,P; X) and (w — E[Gpr,1]) € L7(2, Fp,IP; X) are 5-close to each other with respect to

I | (@, 7p:x)- Indeed, by using that (]IW(G (w)g(Yo) — C’MGMm(w))MeN converges uni-
formly inw € Q and n € N to 0 € X with respect to | - ||x, there exists some M € N such that

€

sup sup L5 (00,())g(90) — Car Garn (@) < . (25)

neN we)

2
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Hence, by USing that E[ﬂm(el)] = P[{W eN: 91((,«}) € Bl/M1 (’ﬁo)}] = CM1 > 0, and [44
1
Proposition 1.2.2], it follows that

1
p

lg(@0) — E[Gar 1]l 10,75, x) = E[l9(00) — E[Gar, ][y ]

1
= |B| i e @910 ~ G|

= [g(0) —E[Gan ]l x

‘ X

L5y (01)
Bi/ar, (90)
< Ch, H]lBl/Ml (190)(91)9(190) —Chy GMl,l ’X] (26)
E []137(91)]
1/0; (Y0) - €
< N Ch, J?}ég HllBl/Ml (190)(91)9(190) o CMlGMLl(w)HX < %

—1
This shows that the constant maps (w — g(¢y)) € L"(Q,Fp,P;X) and (w— E[Gp,1]) €
L"(Q, Fy,P; X) are 5-close to each other with respect to | - |- (o, 7 p; x)-
Finally, we approximate the constant random variable (w — E [Gap, 1]) € LY(Q, Fp, P; X) by the
average of the i.i.d. sequence (G s, n)nen S L1(Q, Fy,P; X). Indeed, by applying the strong law of

large numbers for Banach space-valued random variables in [44, Theorem 3.3.10] with Banach space
(X, | - |lx), we conclude that

% 2 Gt NP E[Gu,a] in LY, Fp,P; X) and P-ass. 27)
n=1

Moreover, if € (1, o0), we generalize the convergence in (27) to L’"(Q Fo,P; X). To this end, we define
the sequence of real-valued random variables (Zx)nen by Zn (w HE[G M1 ] % 22]:1 Guin };,
for w e 2 and N € N. Then, by using [44, Proposition 1.2.2] and (25) it follows for every N € N that

we

N r
1
sup Zy (w) < sup <|E [Ganallx + 5 > ||GM1,n(w)X>
we n=1

< supsup (E[[|Ga 1l x] + 1G a0 (@) )"
neN we)
r

A

o sup sup | Car, Gy (W)]'y
M; neN weQ

21"
C&li£i§§<hﬂmwﬁ@w<w»gwmwx+

N

[t Do) — Can Gannlel] )

o e\r
<G (a0l +3) =€z <0

Hence, sup ey E [|Zn]1¢ 2y|>0,1] = 0. which implies that the family of random variables (Zx ) yen
is uniformly integrable (see [44, Definition A.3.1]). Thus, by using that Zn — 0, P-a.s., as N — o0 (see
(27)), and Vitali’s convergence theorem (see [44, Proposition A.3.5]), we have

dim B | [E[Gar, 1] Z Goym

] = lim E[Zx] = 0. (28)

Thus, either by (27) (if r = 1) or (28) (if 7 € (1, o0)) there exists some Ny € N such that

1y ot 5
E | |[E[Gu, 1] A > Ganm <3 (29)
n=1 X
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Finally, we define G := (w — N%) Zgil 15(w)Gayn(w)) € RG N L7(Q, Fy,P; X). Hence, by
combining (26) and (29) with Minkowski’s inequality, it follows that
T ] 1

ol
ILEg(Y0) = Glpr.rpx) =EllLeg(Wo) — G[']"

1 Mo
g(¥o) — No 1;1 Gy

1
T]r

:E[ e
——
<1
<E[

< 9(Wo) —E[Gan n]l x +E

1 Yo
9(0) - ,;1 G

3=

1O
E [GMIJI] - FO 2 GM17TL
n=1

T]
£ € _ i
< 5 + 5 = E.
Since € > 0, g € G, and ¥y € © were chosen arbitrarily, this shows that 2 5 w — 1g(w)g(¥y) € X can
be approximated by a random feature model G € RG n L"(Q, Fp, P; X) with respect to | - | .-, 7 p; x)-
Combining this together with the first step of the proof, i.e. that Zr, ® G(0) is dense in L" (€2, Fy, P; X),
we obtain the conclusion. O

7.2. Proof of Corollary 3.3+3.4+3.8.

Proof of Corollary 3.3. We aim to apply Theorem 3.2 with Banach space (X, | - | x) := (C°(U),| -
lco(try)- To this end, we first observe that (CcoU),| - |coqry) is by [15, Problem 24] separable. Moreover,
we choose © := R™ and let (6,,)pen : 2 — R™ be an i.i.d. sequence satisfying Assumption 3.1. In
addition, we define
G:={R"39—h(9")eC’U): he {cos,sin}}.
Then, for both & € {cos, sin}, we use that R™ x U 3 (¢,u) — h(97u) € R is continuous to conclude
that K x U 3 (9, u) — h(ﬁTu) € R is uniformly continuous, for all compact subsets K — R™. Hence,
the map R™ 3 ¢ > k(9T - ) € C°(U) is continuous, which shows that G = C°(©; X). Moreover,
by using the trigonometric identities cos(s) cos(t) = (cos(s — t) + cos(s + t))/2, sin(s)sin(t) =
(cos(s—t) —cos(s+1))/2, and cos(s) sin(t) = (sin(s +t) —sin(s —t))/2 for any s,t € R, we observe
that
spang(G(©)) = spang ({U 3 u+— h (19Tu) € R : h e {cos,sin}, J € R™})

is a subalgebra of CO(U), i.e. for every g1, go € spang(G(©)) we have g1 + g2 € spang(G(0)) and
g1 - g2 € spang(G(0©)). Moreover, spang (G(0)) is point separating, i.e. for any distinct u1, ug € U there
exists some g € spang(G(0)) such that g(u1) # g(us2). In addition, spank (G(©)) vanishes nowhere,
i.e. for every uy € U there exists some g € spany(G(0)) such that g(ug) # 0. Hence, we can apply
the Stone-Weierstrass theorem (see [77]) to obtain that spang(G(©)) is dense in C(U). Thus, the
conclusion follows from Theorem 3.2. (]

Proof of Corollary 3.4. We aim to apply Theorem 3.2 with Banach space (X, | - | x) := (C°(U),| -
lco(try)- To this end, we first observe that (cOU),|- |coqry) is by [15, Problem 24] separable. Moreover,
we choose © := R™ and let (0),),en : 2 — R™ be an i.i.d. sequence satisfying Assumption 3.1. In
addition, we define the singleton set

G:={R" 59— exp (i) e CO(U)}.
Then, we follow the proof of Corollary 3.8 to conclude that R™ 5 ¢ +— exp (i - ) € C°(U) is contin-
uous, which shows that G = C°(0; X). Moreover, by using the identities exp (id] u) exp (i3 u) =
exp (i(191 + 192)T’LL) and exp (iﬂlTu) = exp (—iﬁlTu) = exp (i(—ﬁl)Tu) for any 91,792 € R™ and
u € U, we observe that
spanc(G(0)) = spang ({U 3 u— exp (i9u) e C: 9 e R™})

is a subalgebra of C°(U), which is point separating, nowhere vanishing, and self-adjoint, where the

latter means that for every g € spanc(G(©)) the function © 3 9 — g(J) := g(v) € C satisfies g €
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spanc(G(©)). Hence, we can apply the complex-valued Stone-Weierstrass theorem (see e.g. [74, p. 122])
to obtain that spang(G(©)) is dense in C°(U; C). Thus, the conclusion follows from Theorem 3.2. [J

For the proof of Corollary 3.8, we first show the following auxiliary lemma about neurons and that
Banach spaces (X, || - | x) satisfying Assumption 3.5 are separable.

Lemma 7.1. Let (X, | - |x) satisfy Assumption 3.5. Then, the following holds true:
(1) Foreveryy € RY g e R™ be R, and pE C’f (R) it holds that yp (aT . —b) e X.
(ii) Forevery pe CF(R) the map R x R™ x R 5 (y,a,b) — yp(a’ - —b) € X is continuous.

(iii) The Banach space (X, | - | x) is separable.

Proof. For Part (i)., we apply [64, Lemma 2.5] to conclude that yp (aT . —b) e X forally € R% a e R™,
beR,and p e CF(R) .

For Part (ii)., we fix some £ > 0 and a sequence (Yas, ans, bar) ven S R? x R™ x R converging to
(y,a,b) € R? x R™ x R. Then, by using that ypsa$; converges uniformly in « € N, to ya® (where
a® =T, af" fora := (a1, ...,am)" € R™and a := (a1, ..., am) € NJY), the constant Cyy , := 1 +
maXaeny, ||ya®||+sup ey maxaeeny, |yaragy|| > 01is finite. Moreover, since (ar, bar) by S R™ xR
converges to (a,b) € R™ x R, the constant Cp , := 1 + ||(a, b)| + suppsen [(anrr, bar)| > 0 is finite. In
addition, there exists by definition of C¥(R)  some p € Cf(R) such that
‘p(\al)(s) — ﬁla\)(s)‘ c

— D := max su < . 30
Ip PHc;;Om(R) aeNz, Seg (14 s])” 6Cy.0Cab (30)

Now, we choose some r > 0 large enough such that (1 + 7)Y > 6e~1Cy /|7 ck(r)- Then, the inequality

1+ |aTMu — by | < 1+ |an]||ull + bar] < (1 + Jans] + [bar]) (1 + |ul]) for any u € R™ and (30) imply
that

(oD (aT w — bar) a®
max sup 1P (adu—ba) ay|
NGk ueRm\ B, 0) (1+ [ul)
(o) (gTous — b
< (o pags)) max  sup 2 1(M VM)\
e S sermary (L D)

) (aFyn = bar) = 9D ()|

< Cy,q max  sup

aeNJy erm\ B, (0) (1 + Jul)™
LO mae s 150D (af,u—bar)]
,a
PNy gy (LT lul)? 31)
(oD (T w—bas) = 2UeD (T 04— b
< Cyal1 + lass] + Pourl)? e sup L2 (art = bae) = P27 gy = )|
Y aeNGY, yeRm (1 + |CLX/[U — bM’)7
191 e my
c, — b7
* VYA 4 )
() () — 509
PV (s) = PV (s)] €
< Cy,.C | +Cha—r——
vareb Ik ek (L s Y 6CyaCa
€ €
<CyaCop—r——+-=1-.
yarabeC «Cap 6 3
Analogously, we conclude that
Jyp'D (au —b) a*]
yp a'u a €
< - 32
amgx S 3 2

0.k ueR™\ By (0)
Moreover, we define the compact subset K := {z"u —y : u € B.(0), |z| + |y| < Cup} < R. Then,
by using that p, o/, ..., p¥) € C’If‘(R) are continuous, thus uniformly continuous on K, there exists some
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d > 0 such that for every j = 0, ..., k and s1, so € K with |s; — s3] < § it holds that

P (1) = o) (s2)] <

. 33
6Cy,q 33)
Now, we define the constant C;. , := 1 + max;—_g . SUP 5. (0) |p(j) (aTu — b)| > (. Moreover, we
choose some My € N such that for every M € N [Ma, o0) it holds that |[(a — apr, b—bar)|| < 6/(1+7)

and that
€

- e 34
s e — oy < 34
Then, we conclude for every M € N n [Ma, o0) that
[(a"u—0b) = (apu—bu)| < |(a—an) uw—(b—bu)|
< |la—ap||u| +|b—5
o — arlul + b — b 5
< (la—an| +[b—bar) (1 +7)
< H(CL —apy,b— bM)”(l + 7‘) <.
Hence, by using (34) and by combining (33) with (35), it follows for every M € N n [My, 00) that
max bup Hyp led) aTu — b) a® — yMp(|a|) (aLu — bM) a%”
OceNO k ueB, (
< max sup Hyp Tu — b) a® — yprpleD (aTu — b) a%”
aeNT", weB, (0)
+ max sup HyMpl al) (a u—b) aly — yMp(| al) (a u—bM aMH
ae
0,k GB (36)
< max [ya® —yMaMH max  sup ‘p a u—b)‘
(o715 ()k .7 EN 7ku€B7~ )
+ max |yapafs| max sup )pm (ajru—bar) — pW) (a"u— b)‘
ENglk 1= ,.‘.,kuem
€ €
< —C Cya —.
60,.p re T Hya 6Cya 3
Thus, by using the inequalities (31)+(32)+(36) and that (1 + |u|)” = 1 for any u € U, we have
lye (a” - =b) —ynrp (aj; - bM)Hck , (R™;R9)
(laf) —b _ (o) (T 4 — b a
— max sup lyplV (aTu —b) a® — yarp1*V (aj,u — bar) afy |
O‘GNO k ueR™ (1 + HUH)7
< max sup Hyp(‘o‘| a u—b) @ _ yprplled (aMu—bM aMH
C“GNOk ueB, (0)
leD) (¢ Tw —b) a®
+ max sup Hyp (a ¢ ) ¢ H
aeNgh, ueR™\ B, (0) (1 + [ul)”
(el (a7 0w —b o
+ max  sup lyaep'*V (ajpu — bar) afy |
aeNg, ueR™\ B, (0) (1 + HUH)7
B
33 3
Since € > 0 was chosen arbitrarily, this shows that R? x R™ xR 3 (y, a,b) — yp(a'-—b) € CF(U;R?)
is continuous. Hence, by using that (Cff(R™;R?) ', | - ”Ck L(RmRA) ) f— flue(X,| |x)isby

Assumption 3.5 continuous, we obtain the conclusion in Part (11)
For Part (iii)., we define the subsets

(o] N T, d . N e Na Yi,--»YN € Ad7
valA] = {Uau Zyncos —ba) € R “at,...,any € A™, by, ...,by € A =&

n=1
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for A € {Q,R}. Then, by using that the map R? x R™ x R 3 (y,a,b) — yp(a' - —b) € X is continuous

(see Part 2.), we conclude that N7°%[IR] is contained in the closure of N7%[Q] with respect to | - | x.

Moreover, by using that cos € le(R) is non-polynomial, we can apply [64, Theorem 2.8] to conclude

that V°[R] is dense in X. Hence, by combining these two arguments, we obtain that A/5%;[Q] is also

dense in X. Since N °5[Q] is countable, this shows that (X, || - | x) is separable. O

Proof of Corollary 3.8. We aim to apply Theorem 3.2 with Banach space (X, || - | x) satisfying Assump-
tion 3.5. To this end, we first observe that (X, | - | x) is by Lemma 7.1.(iii) separable. Moreover, we
choose O := R™ x R and let (6,,)nen 1= (Gn, bn)nen : @ — R™ x R be an i.i.d. sequence satisfying
Assumption 3.7, which implies Assumption 3.1. In addition, we define

G:={R™ xR > (V1,92) — eip (9] - —h) e X :i=1,..,d}.
Since R xR 3 (1, ¥2) — eip(191T~—192) € X is by Lemma 7.1.(ii) continuous, we have G < C%(0; X).
Moreover, we observe that

spang (G(©)) = spang ({U su—eip (V] u—1s) e RY: (91,92) e R™ x R, i = 1, ...,d}) ,

forms the set of deterministic (i.e. fully trained) neural networks with activation function p € C,f (R) ,

where e; € R? denotes the i-th unit vector of R?. Since p € C’é“(R) is non-polynomial, we can apply
[64, Theorem 2.8] to conclude that spang (G(©)) is dense in X. Hence, the conclusion follows from
Theorem 3.2. U

8. PROOF OF RESULTS IN SECTION 4

8.1. Proof of Theorem 4.5. For the proof of Theorem 4.5, we first show the following auxiliary lemma
about Banach space types.

Lemma 8.1. Ler (X, || - ||x) be a Banach space of type t € [1,2] with constant Cx > 0, and let t' € [1,1].
Then, (X, | - | x) is a Banach space of type t' with constant C'x > 0.

Proof. Fix some N € N, (z)n=1,..n < X, and a Rademacher sequence (ey)n—1,... v defined on a
(possibly different) probability space (2, F,P). Then, by using Jensen’s inequality and the inequality
(25:1 xn)t < SN 25/ for any x1, ...,z = 0, it follows that
1
t

1
R 17 [~ t N ¥ N %/
E || enn <E || enmn < Cx (Z IIxnltx) < Cx <Z wnl&)
n=1 X n=1 X n=1 n=1
This shows that (X, || - | x) is a Banach space of type t' € [1, t] with constant C'x > 0. O

Proof of Theorem 4.5. Fix some z € Bf; y(X) and N € N. Then, by definition of Bf, ,(.X), there exists
a B(0)/B(R®)-measurable map y := (y1,...,ye)" : © — R such thatz = E[>_; yi(61)g:(01)] € X
> u(61)g(61)

and
]E [
=1 X

From this, we define for every fixed n = 1, ..., N, the map

r ol
L

] < 2| gy ,x) < 0. (37)

e

Qow = Gow) =) u(Bn(w)g(fn(w)) € X.
=1

Then, by using that 6,, :  — © is by definition Fp/B(©)-measurable and that y := (y1,...,ye) " :
© — RR° is by definition B(0)/B(R®)-measurable, the concatenation 2 > w — G, :=
Dy Ui(0n(w))gi(On(w)) € X is Fy/B(X)-measurable. Hence, by using that (X, | - | x) is separable,
we can apply [44, Theorem 1.1.6+1.1.20] to conclude that G, : Q@ — X is strongly (P, Fp)-measurable.
Thus, (37) and 6,, ~ 07 ensure that G, € L"(Q, Fp, P; X).

Now, by using that z = E[>7_, y:(61)gi(61)] = E[X;_, vi(0n)gi(0n)] = E[G,] € X for any
n =1, ..., N, the right-hand side of [51, Lemma 6.3] for the independent mean-zero random variables
(E[Gr] — Gp)n=1,....n with Rademacher sequence (e,)n—1,... v on (£, F,P) independent of (E[G,,] —
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Gpn)n=1.... N, the Kahane-Khintchine inequality in [44, Theorem 3.2.23] with constant Krmin(r,t) > 0
(depending only on r € [1,00) and min(r, t) € [1,2]), that (X, | - | x) is by assumption a Banach space
of type t € [1, 2] (with constant C'x > 0), thus by Lemma 8.1 of type min(r, t) € (1, ¢] (with the same
constant C'x > 0), and that (E[G),] — Gp)n=1,.. N ~ E[G1] — G are identically distributed, it follows
for the random feature model G := % 25:1 Gn € RG N L™ (92, Fp,P; X) that

1
N "
rql 1
Eflz - Gnlx]" = E Y, (E[Ga] = Gn) ]
Llin=1 X
2 [I& T
< E > en (E[Gn] — Gy)
Llin=1 X
mln(r,t) min(r,t)
2"£r,min(r,t) y
<—5 E > €n (B[Gn] — Gn)
n=1 X
N ()
2C r,min(r, min(r i
< X rminrt) <2 E [[E[G,] - Gal 3™ ’”])
n=1
20 ’%7‘ min(r mln T, ﬁ
= =R B[G)] - G|

mm(r t)

Hence, by using Jensen’s inequality, Minkowski’s inequality, [44, Proposition 1.2.2], the inequality (37),
and the constant C;.; := 8, imin(r¢) > 0 (depending only on r € [1,00) and ¢ € [1, 2]), we conclude for

Gy = 43N G eRG L'(Q,Fp, P; X) that

1 CX ,t) 1
Eflz — Gyli]7 < — D g g[Gy] - Gy ]
N min(r,t)
2Cxk 1) 1
< ST (1R[Gh]| x + E[IGaIX]7)
N min(r,t)
CXK/ t)
< 1_r—mm<r”G1HLerPX)
N min(r,t)
lzllgr | (x)
< CryCx ——7—,
N min(r,t)
which completes the proof. (]

8.2. Proof of Corollary 4.8+4.9+4.20 and Proposition 4.22.

Proof of Corollary 4.8. We aim to apply Theorem 4.5 onto a fixed function f € W*P(U, L(U), du) n
> ” 2\ kr/2

LY(R™, L(R™), du) with Cf = ({5 |fw)‘p§(1;r)w1 ) dv) U ~ o0. To this end, we first observe

that (W*2(U, L(U), w; RY), | - lwew(u,£(0),;rey) 18 @ separable Banach space (see [64, Lemma 4.7]).

Moreover, we define the linear readouts

m = _ Re(f() .

59 y1(09) : @m)"pp(0) e R, and .
. B Im (f(i?))

20 D= ) <

which are B(R™)/B(R)-measurable as composition of the continuous function R 3 9 — f(ﬁ) eC
(see [30, p. 214]) and the B(C)/B(R)-measurable functions returning the real and imaginary part. Then,
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by using Jensen’s inequality, it follows that

[ i< [ MO 90 < ( [ e pmcw) T

For ni )
< ( me s (1 1) cm> C <,

which shows that f e LY(R™, L(R™), du; C). Hence, we can apply the Fourier inversion theorem (see
[30, Equation 7.14]) and use that the left-hand side is real-valued to conclude for a.e. © € R™ that

g ) F o= | <2w{ng2w> ()0

f(61) T FO) T
[(QW)mpg(Ql) cos (91 u) + (27T)mp9(91)lsm (91 u)]

Re (f(61)) Ty Im(fe) -
27)"00(01) cos (91 u) @m0 (01) sin (01 u)]

= E [y1(61) cos (HlTu) + y2(61) sin (91Tu)] .

x(u) =

=
~

(39)

I
=

Thus, by using integration by parts, it holds that

f E [y1(61) cos (HITU) + y2(01) sin (HITU)] Ooh(u)du = | x(u)ogh(u)du
U U (40)

= (=)l [ 0, f(u)h(u)du,
U

which shows that the weak derivatives of E [y;(61) cos (6] -) + y2(61) sin (61 -) ] and f coincide, and
thus implies that E [y1(6;) cos (6] -) + y2(61) sin (61 )] = f € W*P(U, L(U),w). In addition, by
using that [9°] := [TT}%, 97| = T2 [9]™ < T2, (1+ H29H2)al/2 = (1+ ||19H2)k/2 for any o :=
(1, ..., o) € N and 9 := (91, ..., 0p) € R™, that [NZY| = 375 m/ < 2mF, and that w(U) :=
§iy w(u)du < o0, we conclude for every ¥ € R™ that

P

Jeos (7)o 020y = ( 5| 1o eos <M>>|”w<u>du)

m
aENo,k

B =

pw(u)du 41)

= coseD (9T 4) 9
D, ’ (9 u)
U

m
aeNo,k

< [NELJP (14 )2 ® f w(w)du
U
1k N 1
<2rmy (14 [0)°) 2 w(U)>.
Moreover, by using the same arguments as in (41), we also obtain that

E
2

3=

Jsin (97-) <2vmr (1+ [9]2)2 w(U)r. (42)

HW’%P(U,L(U),w)
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Hence, by using that E [y (61) cos (6] -) + y2(61) sin (6] )] = f € WrkP(U, L(U), w), the inequali-
ties (41)+(42), and that | Re(z)| + | Im(2)| < +/2|z| for any z € C, it follows that
1

HfHIBT S (WEP(UL(U)w)) [Hy1 (61) cos (9T ') + y2(61) sin (91 )Hgvkp (U,LU), w)]

-

<E [(‘yl(el)‘ |cos (elT')HW’w’(U,ﬁ(U) + [y2(61)] [}sin (6] - Wiveaw,e

2omru(U)? (I Re (F(0))] + [1m (7 91))\)

l
s

ST @ P61 +lor) 3)
25 T2 w(U)» J F(9)]" oy BT
< 14 |9) 2 ) dd
(27T)m < - pe(,ﬁ)r ( H H ) p@( )
_ 2%+%m§w(U)%
= (27T)m Cf < 00,

which shows that f € B, ,(X). Thus, by using that (WhP(U, L(U),w), || - lw.p (U, (0),w)) 15 @ Banach
space of type ¢ = min(2, p) with constant Cyyx,p(y/,£(1/),w) > 0 depending only on p € [1, c0) (see [64,
Lemma 4.9]), we can apply Theorem 4.5 (with constant C).; > 0 depending only on r € [1,0) and
t € [1,2]), insert the inequality (43), and define the constant C), ,. := 21/p+1/207-7tCWk',p(U7£(U)7w) >0
(depending only on p,r € [1,0)) to conclude that there exists a random trigonometric feature model
Gn € RTuan L7(Q,Fy, P; WEP(U, L(U),w)) with N features satisfying

1 ”f”IB%T (WkP(U,L(U),w))

E [Hf - GNHka-,p(U’[;(U)’w)] "< Cr,tCWkJ?(U,ﬂ(U), ) Nl W

which completes the proof. O

Proof of Corollary 4.9. We aim to apply Theorem 4.5 onto a fixed function f € W*»(U, L(U), du; C) n

> r kr/2
LY(R™, £(R™), du; C) with ( {g,, ””pgwf”f) dv)'"

(Wk»(U, L(U),w; RY), || - lwk.»(U,£(1),w;ray) is @ separable Banach space (see [64, Lemma 4.7]). More-
over, we define

< o0. To this end, we first observe that

f(v

o) o
(2m)™py ()
and follow the proof of Corollary 4.9, where the Fourier inversion theorem is applied to conclude for
a.e. v € R™ that

_ 1 ~ ewTu _ J?(ﬁ) eiﬁTu _ exp (167 u
F0) = s [ @000 = [ et )0 B [y(0)) ex (167 )]

Hence, by using the same steps as in the proof of Corollary 4.9, we obtain the conclusion from Theo-
rem 4.5. U

M3y - y):=

Proof of Lemma 4.19. Let G as in Remark 4.17, let ¢ € So(R;C), let p € C;fom( ), and fix some
fe IB%k o (U R?). Then, there exists by definition of Bk anUs RY) some h € L' (R™; L(R™), du; RY)
such that he L*(R™; L(R™), du; C?), h = f a.e. on U, and

1
ol L
2

it
(1+1ar®) ™ (1+ )
@) anb)| | <2z mn < @

E
Pap(ar,br)

Moreover, we recall that G consists of the feature maps given by

R™ xR >3 (a,b) — gi(a,b):=ep(a’ -—b) e WP (U, L), w;RY), i=1,..,d, (45)
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where e; € R% denotes the i-th unit vector. In addition, we define the linear readout
R ,b
RMxRa(ab) = yab) = e, g Re [ 00 ) cpa )
Cm P pa,b(aa b)

Then, by using Proposition 4.16 together with the fact that & : R™ — R? is R%valued and that h = f
a.e. on U, it follows for a.e. u € U that

E [y(a1,b1)p (af w—b1)] = h(u) = f(u),

which implies by following the arguments of (40) that

d
Z yi(a1, br)eip (af - —51)] =E[y(a,b1)p (af - =b1)] = f e WFP(U,L(U), w; R?).
iz1

Hence, by using that [a®| := |[["; o] = T[[% Ja|™ < (1 + ||a||2)|a‘/2 < (1+ HaHQ)k/2 for any
a:= (ag,...,an) € N[ and a := (a1, ..., a,,) € R™, the inequality [64, Equation 42] (with constant
CP) > 0 defined in (10)), that [Ny | = 35 m/ < 2mF, and (44), we have

1
d T T
| Flleg, ,wrr @ e wirey) < Z (a1,b1)eip (af u — by)
i=1 (U,L(U),w;RD)
_ L,
5 T
P
=E Z f ‘8 y(a1,b1)p (alu—b1)> w(u)du
aeNm
ﬁ ¢ (Ryg)(ar,br) \ [ » VI
a a
<E Z Re( 1(1# )wg L ) plled) (a u—bl)‘ du 47)
aeNg, Co ' pap(ar, br) U
(v:p) P 2tk x ™
< 41p] Cilw N (1+lat?) 2 (1+ [b1]?)2 (9,9)(ar. by)
P Cpolv(R) va(;b/’vp)‘ pmb(al,bl) 2 Do
(v.p)
3+1 Uw m
<2 PI\chom(R)W!f|@zy’gl(U;Rd) < o,
which shows that f € Bgve(Wk’p(U,ﬁ(U),w;Rd)). O

Proof of Corollary 4.20. We aim to apply Theorem 4.5 onto a fixed function f €
WEP(U, L(U), w; RY) A IB%Z’L’}(U;Rd), where we recall that (WHP(U,L(U),w;RY),| -
HWk,p(U7 L(U)7w;Rd)) is separable. To this end, we use that there exists by definition of IBZ (U R%)
some h € LY(R™; L(R™), du;R?) such that h € L'(R™; £L(R™),du;C?), h = f ae. on U, and
(44) holds true. Moreover, we recall that the feature maps are given by (45) and define the linear
y : R™ x R — R? as in (46). Then, by using that (W*?(U, L(U),w;R%), | - lwwr (.2 wRa))
is a Banach space of type t = min(2, p) with constant Cyy k(7 £(0),wrey > 0 depending only on
p € [1,00) (see [64, Lemma 4.9]), we can use Theorem 4.5 (with constant C,.; > 0 depending only on
r € [1,00) and ¢t € [1,2]), Lemma 4.19, and the constant C), , := 23+1/p0r7tCWk,p(U’L(U)’W;Rd) > 0
(depending only on p,r € [l,00)) to conclude that there exists a random neural network
GN € RNY, ;N L7 (Q, Fap, P WP (U, L(U),w; R?)) with N neurons satisfying

L ”f”IB%”" (Wk2(U,L(U),w;R?))
< Cr,tCkaP(U,L(U),w;]R )

'
E |17 = GV likocan v o

lollcn Cgme HfHJB‘“”(URd)
;T Chot (R) ‘ ‘

< ’
]\[1 m1n(2,p,r)
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which completes the proof. O

Proof of Proposition 4.22. For (12), let f € L*(R™, L(R™), du; R?) with ([y] + 2)-times differentiable
Fourier transform and fix some ¢ € {0, [y]| + 2}. Then, by using that b; ~ t1, the inequality [64,
Equation 46], and Minkowski’s integral inequality (with measure spaces (R, L(R"™), da) and (Ng’, x
R, P(Ng) ® B(R), du®d(), where P(Ng;) denotes the power set of N, and where P(Ng') 3 E —
w(E) =3, aenm, 1 g(a) € [0,00) is the counting measure) together with the probability disitribution
function of a; ~ tm, we have

1
X LA I
2

(L) @m0 o

”f”@iﬁ’rlvl(U;Rd) <E

Pap(a1,b1)
[y]+k aE
(1+ fas)?) 2 12y 5 5

<E|sup (1+BF) * @Reh)(a,b)

1 ([y] + 2)! (14 Ja1]?) S T

llel} 71+2-181)
<2 (12 . ﬁeN; | lasFical [0+ (o) ac
< 2% ([’Y] + 2)' Z f ‘1)[) y]+2— ‘,8‘ C)‘ J ||a f H (1 + HCLH ) ly H +2)r . T dC
h T peNp, R ()~

Hence, by using the substitution £ — (a with Jacobi determinant d§ = |(|™da, that (; := inf {|C | :

(e supp({b\)} > 0, and C := 212(]4] + 2)!max;_g (4142 §g |1/) @(¢ ¢)|d¢ > 0 (depending only on
v € [0,0) and ¢ € S(R; C)), it follows that

117 00

3=

dg | d¢

\

(7] +2)! !w e <<>! (1+H§/<H)7M)T
) f Jo IosFO = e

1
+2)r =

C1 (14 1g/c] )i’“
S —m  Sup 0 f de| .
(Z cemupp(@ meNE J Y e T

0,[v1+2

which proves (12). For (13), we use (12) and that a; ~ t,, to obtain that

C N [ )
L g 7 pay < = sup < f(€) dg
Bw,a,b(UvR ) C Ceaupp(lﬁ) BENOZ[HQ me H H pa(ﬁ/é)
_o o :
-G 3 (f JosF@ 1+ Je/al?) 4" ag)
( ) BENG 11+
which completes the proof. (]

Proof of Proposition 4.24. The proof is based on [64, Proposition 3.10] which has established a similar
result, but with respect to deterministic neural networks. To this end, we fix some m,d € Nand € > 0.

Moreover, let p > 1 and w : U — [0, o0) be a weight as in Lemma 4.23 (with constant C’ % )

independent of m,d € N and ¢ > 0), let (¢, p) € So(R; C) x C]’jol ,(R) be a pair as in Example 4.15
(with 0 < (1 < {2 < o0 and constant Cy, , > 0 being independent of m, d € N and € > 0), and fix some
f e Wkr(U, L(U), w; R?) satisfying the conditions of Proposition 4.22 such that the right-hand side

of (13) satisfies O (m*(2/2)™(m + 1)’”/2) for some s € Ny. Then, there exists some constant C' > 0

> ( being
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(being independent of m, d € N and € > 0) such that for every m, d € N it holds that

m+5

5 <me|%?<5>|}2(1+|s/<1|2)2”“’“+2dg)kow(é) (m+ D% @)

2 m
G BENG e

Hence, by using the inequality (13) in Proposition 4.22 together with (48), that I'(z) = /27 /z(x/e)*

for any = € (0, 00) (see [33, Lemma 2.4]), and that (27r/7g)/7i((21//<(22);)m/2 = (267:2/%)7”/2 < 1forany m € N,

we conclude that there exist some constants C'y, Cs > 0 (being independent of m, d € N and € > () such
that

(v,p) y+EEL
Cololer a2 f e
p Cpolw(R) CTZJ <2j)m B;b’,a’l(U;Rd)
P CQ
iy 7 "

2 m
< Gplpler . (wy o TCm? () (m+1)
poly Cop (2&) r ( +1) 3 (2

COPm ™ 2\ . @)
< Gilrlos, ’ on (2) v

1 1
Collollox, ) CRimm (2€)2Cs

Cy,p(4m)

S 20p

N[

< (Cchs)l_m '

Hence, by using that f € I@Z’;’Z(U :R%) (see Proposition 4.22), we can apply Theorem 4.5 with N =

_ _min(2,p) . . . .
[Cgmc% min(?ﬂ—l} and insert the inequality (49) to obtain a random neural network Gy € RN f, d

with N neurons satisfying

k
cl(}’;f)mi Lf ”@3’21 (URY)

3=

E [Hf - GN|‘1I;I/k,P(U,£(U)7w;Rd)] < C’p,rHPHcgom(R) ’C(W,)’ leminém)

_ (€ Em

X

T <6,
Nl_ min(2,p,r)

which completes the proof. (]

9. PROOF OF RESULTS IN SECTION 5
9.1. Proof of Proposition 5.1.

Proof of Proposition 5.1. Fix some J,N € N and a k-times weakly differentiable function f :=
(fisy fa) T+ U — R Moreover, in order to ease notation, we define m := J|NI |d € N and
n := eN € N. Then, by using the definition of the Euclidean norm, we first observe that (15) is equivalent
to

J d
: 1 2
YD) = argmingey [ 53] Y D |AfiVi@) = %G @Viw)| |, 60
j=10eNg, i=1
where G (w) = (Gl (W), -, Gl 4(w))" € WH2(U, L(U),w;R?) is defined in (14). Hence, for
every fixed w € ), the least squares problem (50) is by [12, Theorem 1.1.2] equivalent to the normal
equations G(w)TG(w)7)(w) = G(w) Z(w) stated in Line 5 of Algorithm 1, where 7/)(w) :=

(yél‘]i) (w))(Tz,n)e{L...,e}x{1,...,N} denotes the vectorized version of y(/) (w) := (yl(‘rjl) (w));flleN Thus,

the problem (50) admits by [12, Theorem 1.2.10] a solution (/) (w) := (yl(‘:l) (w))lnjlleN e ReXN,
which proves that Algorithm 1 terminates.
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Next, we show that Algorithm 1 is correct. To this end, we first prove that the R®*"V-valued random

variable y(/) := (y(‘])) - 1 N defined in (50) is Fy /B (R™)-measurable. Let us define the function

(Rmm « R™) x R 5 ((4,b),y) — [Ay—b[2eR, (51)

whose epigraphical mapping (R™*" x R™) x R* xR 3 ((4,b),y,t) — {((A,b),y,1) € (R*7 5 R™) x
R" xR : |Ay —b|? < t} is closed-valued and measurable (see [71, Definition 14.1] for the definition of
the latter). This shows that (51) is a normal integrand in the sense of [71, Definition 14.27]. Hence, we
can apply [71, Theorem 14.36] to conclude that there exists a B ((R™*7 x R™) x R™) /B (R”) measurable
map T : R™*7 x R™ — R" returning a minimizer, i.e. such that for every (A,b) e R™X7 % R™ it holds
that
JAT(A,b) - b|* = min | Ay — b|>.
yeR™

Moreover, by using that (6,)pey : € — © are by definition Fy /B(0©)-measurable, that
(Vj)jen : Q@ — U are by definition Fyy/B(U)-measurable, and that the feature maps g1, ..., ge :
0 — Wk2(U,LU),w;R?) are by assumption B(©)/B(W*2(U, L(U), w; R?))-measurable, the

R™*7_yalued random variable G = (G(La,i),(l,n))g 2)5)2{71,76,“}{;1’\1 7 ><}{1, Ly With Gy an) =

ca0ad1,i(0n)(V), for (j,a,i) € {1,...,J} x Ng x {1,...,d} and (I, n) € {1,....,e} x {1,...,N}, is
Fo.v/B(R™™)-measurable. In addition, by using that (V;) ey : Q — U are by definition Fy v /B(U)-
measurable and that f : U — R? is k-times weakly differentiable, the R™-valued random variable
Z = (ca0afi(Vi)) (ai)etl,.. STEXNI (1, dy 18 Fo,v/B(R™)-measurable. Thus, by combining this with
the B((R™*" x R™) x ]R”)/B(]R”) measurable map Y : R™*" x R™ — R™ it follows that
Qsw — §FW):=T(GWw),Z(w)) e RN

is Fpv/B(R™)-measurable, which shows that /) € Yy. Since 7/ (w) = T(G(w),Z(w)) =
min,cgi [G(w)y — Z(w)|? is by [12, Theorem 1.1.2] equivalent to the normal equations
G(w)'G(w)7) (w) = G(w)T Z(w) in Line 5, we obtain that the algorithm is correct.

Finally, we compute the complexity of Algorithm 1. In Line 1, we generate N random
variables (6y,)n—1,..n, which costs N units. In Line 2, we generate J random variables
(Vj)j=1,...s ~ w, which requires J units. In Line 3, we compute the R™*7_yalued random vari-

I,n e X {1,...,N . . .
able G = (G, 1) (fmnyefiotd) i o {1ty WA G (1) = Cadagt(Ba)i(V7). for (j v, i) €

{1,....J} x Ny x {1,...,d} and (I,n) € {1,...,;e} x {1,..., N}, which needs 2J|N .|deN units. In
Line 4, we compute the R™-valued random variable Z := (cq0a fi(V; D)) Gai)ell, ... T} <N, x{1,...,d}» Which
requires 2.J ‘No k‘d units. In Line 5, we solve the least squares problem via Cholesky decomposition and
forward/backward substitution (see [12, Section 2.2.2]), which needs

1

5mﬁ2+é~3+0(m) — (J NG| d) (eN)? é(eN) + O (J NG| deN)

units (see [12, p. 45]). Hence, by summing the computational costs and by using that ’Nqu = 2?:0 mi <
2m*, the complexity of Algorithm 1 is of order

N +J +2J [Ny’ \deN+ (J NG| d) (eN) —i—é(eN) + O (J NG, | deN)
< N +J + 4TJmFdeN + 2JmFd(eN)? + %( NP3 +0O (JmkdeN)
=0 (Jmkd(e]\f)2 + (eN)3> ,
which completes the proof. U
9.2. Proof of Theorem 5.2 and Corollary 5.4.
Proof of Theorem 5.2. Fix some JJN € N, L > 0, and a function f := (f1,..,fs)! €

BZ o(WH2(U, L(U), w; RY)) satisfying [0ufi(u)] < L forall @ € Niy, i = 1,...,d, and u € U.
J
Then, we apply Algorithm 1 to obtain some Gy( ' e RGY with R®*N_valued random variable

y) = (yl({l))? 11’ " € Y solving (15). Moreover, by using that (0,,),en : 2 — O are by definition
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Fy.v/B(©)-measurable, that the feature maps g1, ..., ge : © — WH2(U, E(U) w; R?) are by assumption
B(©)/B(W*2(U, L(U), w; RY))-measurable, and that y(/) = (y(‘]))ln 11’ e Yy is Fp v /B(REN)-
measurable, it follows that

€

N
050 W= (e @) = D) Yy waba)
Y n=1[=1
N
= <u =) y{,ﬁ(w)gz,iwn(w))(u)) e WH(U, L(U), w; RY)

is Fo v /BWE2(U, L(U),w; RY))-measurable. Hence, by using [64, Lemma 4.7], i.e. that the Ba-
nach space (W"2(U, L(U),w;R?),|| - lwr2(,c(U)wra)) i separable, we can apply [44, Theo-
rem 1.1.6+1.1.20] to conclude that G¥*” : Q — WE2(U, L(U),w;RY) is a (P, Fy .y )-strongly measur-
able map.

In order to show (16), we adapt the proof of [37, Theorem 11.3]. To this end, we define for every
aeNgyandi=1,...dthe L*(U, L(U), w)-valued random variable

Qsw - AU (W)= (UHaafz( ) — (a a4 (w)(u )))GLQ(U,ﬁ(U),w).

Moreover, we define for every fixed o € Ni,, @ = 1,...,d, and ¥ := (¢V1,...,0n) € Xr]:;l O, the
L*(U, L(U), w)-valued random variable

05w AUTPW) = (e afiln) — To (0G4 (@)(w)) ) € AU, £(U), w),

a,i,L

where 2 5w > G4 (W) = YN 3% 5 (w)gri(9n) € LA(U, L(U), w). In addition, we define

N
the corresponding (random) empirical mean squared error | - || ; of such L?(U, £L(U), w)-valued random
variables as

J 2
) 1 ) 2
Qsw — A% W) = <J AL @) V(@) ) €R  and
1
Y9 1 v 9 2\ ?
Q0 — AW = (3D AN @mGe)| ) er
j=1
Then, by using the inequality (x + y)? < 2 (:172 +y ) for any z,y = 0, it follows that

Bl Y| Haaf 7 (0a6” (00)

aeNm
v 2
<E ( i()(u))‘ w(u)du
aeN’ln 7/_
yu) y() y() 2
- 3 e H it e~ 2|8k, 2[00,
aeNm =1
2
(J) (J) () |12
<2 E Ay —QHAy 0) wafarl
Z Z [max( O‘ZLLQUE () a,i,L + azLJ

aENmk i=1
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Hence, by conditioning on Fy, by using that [N, | = Z?:o mJ < 2m*, that the random variables
(V}) jen are independent of (6,,)nen, and the notation 6 := (6),)n—1,....N, We have

B| 3 f, Jowro -7 (2687 200) ot

aeNm

()
Y
—2 HAa,i,L

el

2
‘ , 0> ,7:9] ]
L2(U,L(U)w) 7

csE| Y Z;EH A Ow| (52)

2
(1) 9
P BVt
L2(U,L(U) i Lo s

<2 ‘NO k} d max E [E [max (‘ a(j)L

Moreover, we define for every fixed « € Ni,, i = 1,...,d, and ¥ := (¥1,...,9n) € X, N _, © the vector
space of random functions

N e
gg,i::{gawHZZlnagu (Vi(w)) € L2(U, L(U),w) s y = (yin)[ 1. EyN}

Then, by following [37, p. 193], i.e. by using [37, Theorem 11.2] (with the set T7,(G3 ;) := {23 w —

(u— Tr(G(w)(u)) € LU, L(U),w) : G € gﬁ ;} and where gﬂ has for fixed a € RV*™, h e RV,
o€ Ngfk, and i = 1, ..., d the vector space dimension N in the sense of [37, Theorem 11.1]) together

with [37, Lemma 9.2+9.4 & Theorem 9.5], it follows for every u > 576L> /J that

()9
)
- 2HAC¥ZL

2
’ ,O> >u]
J

P [max (HAZ(Z)Lﬁ
VU

<P[3e T (02) : loliswcwy — 2ol > %'

L2(U,L(U),w)

(53)
2

9(12€J)2(N+1)e_ 236]ZL2 .
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Hence, by using the constant v := % In (9(12€J)2(N+1)) > 576L%/.J, the inequality (53), and that
In(108e) > 1 together with 2304 < 92161n(108e), we conclude that

W]

(g
Y
HAQ i, L ‘

(J) g
y b
-2 HAa i,L

a,i,L

E [max (HAy(J) .Y
L2(U,L(U)

o0
J() P [max <‘AZ(ZJ)L§
®© )
v —I—J P [max <’AZ@L

v

) u] du
y( 2
—2HAW7]L HJ,O > u | du

0
<v+ 9(126J)2<N+1) f e 236]41:[,2 du (54)

v

L2(U,L(U)w

N

L2(U,L(U),w)

2 2 v
_ B (9(126J)2(N+1)) +%e*%5’“2

-

<4N In(108eJ)

230412 23042
< 30J 4N (In(108e) + In(J)) + 30J

(In(.J) + 1)N
By s

< 92161In(108¢) L>

On the other hand, for the second term on the right-hand side of (52), we use that |0, fi(u)| < L for any
aeNm,i=1,..dandue U, that |TL(y)| < |ly| for any y € RY, and that the R®*"V-valued random

variable y(/) = (yl( ))n bV solves (15), to obtain that

1
A IDYDIE DN I ICIL H

ey, i=1 % j=1
1 S (J)
I EDNIN A CHART N )H
Jj=1aeN7,
1 1
S————E[=) Y & |afV)—ash () H
HHTaeNg, Co | J=laeNgy,
[ 1
1 1 2
= ————FE | min | — o F(Ve) — o.GY (VP
mlnaeN&Lk Cq yeEYVN szlaeNgzk « H af( J) « N( )( ])H

1 1<

X inf E|—= 2 y

R —— JEQEN& 2 [0 f (Vi) = 0aG% () (V)
1
2

e, e [ .
< —— inf E
< min@ENgj'k Ca yleri;N e%;n ”6af — On G H w )du

Hence, by using Theorem 4.20 (with constants C2 > 0 and Cyyk2p, £(1),w;rey > 0 independent

of f: U — R%and m,d € N, see also [64, Lemma 4.9]) together with Fy < Fo.v (with G{V €
RG n L2(Q, Fp, P, WF2(U, L(U), w; R?) having Fy/B(R¢*V)-measurable linear readout contained in
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YN as Fy S Fpv), we conclude that

1

2

2| 3 35S lahom)

aeN J
1
2
< inf E Oaf(u) — Oy Gy d
OB E| 3 ] 1es) - 2GR0 vl e
1
2
|- L ]
HfHIB2 (Wk2(U,L(U),w;R%))
< Ii(C)CgQCWk,Q(Uﬁ(U),w;R ) = \/N

Hence, by inserting (54)+(55) into (52) with the inequality /= + y < /= + /y for any 2,y > 0, and by
using the constant Cy := max (24/9216In(108e), \/g027Qka,2(U7£(U)7w;Rd)) > 0 (being independent
of f:U — R4 and m, d € N), it follows that

2| 3 ] s (2.7 0) o
aeNg, YU

< Imsdz max E [E[max ( HAy(‘.I)’ﬁ

a,i,L

2
() 9
=200
L2(U,L(U)w) ablo |

1
2

1 &) 2
FVBE Y 2o 2 Al om)]

(a(7) + DN
J
Hf”IBQ o(WE2(UL(U)wiRY))

< 2m2d2+/92161n(108¢)L

+ \/éfi(C)CZQka,Q(UJ:(U)’w;Rd)

VN
¢ 1 [(In(J)+ )N | flwz ,owr2@,cq),wra)
< Cylm2d2n|———— + C, ,
1Lm2d? 7 + Cyk(c) i
which completes the proof. O
Proof of Corollary 5.4. Fix some JJ N e N, L > 0, and some f := (f1,...,fa)! €

WE2(U, L(U), w;RY) ~ B2 (U RY) satisfying |0 fi(u)| < L for all a € Ng. i = 1,....d, and
u € U. Then, we observe that Algorithm 2 is the same as Algorithm 1 for the special case of random
neural networks with feature maps © := R™ x R 3 (91, 92) — e;p(9] - —02) € WHA(U, L(U), w; R?),
i = 1,...,d, that are continuous and thus B(©)/B(W"2(U, L(U),w; R?))-measurable (see [64,
Lemma 4.10]), where e; € R? denotes the i-th unit vector of R%. Hence, we can apply Theorem 5.2
(with constant C; > 0 independent of f : U — R? and m, d € N) to conclude that Algorithm 2 returns a

() . .
random neural network G%, ~ € RN7, , with N neurons being a strongly (IP, F, ;v )-measurable map

G?\; "o WH2(U, L(U),w; R?) such that

2| 3 ] Joar -7 (2ay” 0)[ u

aENm

(In(J) + 1)N | llwz ,owe2@,e),wray)
— .

< CyuLm?d2 + Cyi(c) \/N
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Thus, by using Lemma 4.19, it follows that

| 2| |t -1 (265" 00m)| u

aENm

(In(J) + )N

C(’Y{U m2 Hf”Bk?“/(URd)
T+ Canl©)2 2 plemy T

E |1
< CyLm2d>2 ot (®) ‘ng,p)‘ VN

Therefore, by defining the constant C5 := 23+%C'4 > 0 (being independent of f : U — R and
m, d € N), we obtain the result. O

10. PROOF OF RESULTS IN SECTION 6

Proof of Proposition 6.1. Fix some A\ € (0,00) and assume that g : R™ — R is a.e. bounded and
a.e. continuous. Then, we first observe that f(t,-) = ¢ * g is the convolution of the kernel R™ 5 y —
drt(y) := (4mAt)™™/2 exp (=[y[?/(4Xt)) € R with the initial condition g : R™ — R. Moreover, for
every y € R™, we observe that

Ivi? Ly
0Pt Iy m\ e ax SV} 2 _ mE 2%
5 Y <4>\t2 2t) (4mAt)s l; ) amnt N e OO

. . 0 2 02
Hence, by applying [41, Theorem 1.3.1], i.e. that %{(t, u) = (S5t Ort #g) (u) and %(t, u) = (% % ¢ *g)( )
for any (t,u) € (0,00) x R™ and [ = 1,...,m, and by using the identity (56), it follows for every

(t,u) € (0,00) x R™ that
0 0 # 0 i
Y. u>=(¢ﬁ;t D (u) - f ) ﬁj%u—v)g( [ AR T e s
RO AR LD

In addition, by using the substitution y — 2”\7% and the dominated convergence theorem (with ¢ :

R™ — R being a.e. continuous, hence lim;_o g(u + 2vAty) = g(u) for ae. u,y € R™, and g :
R™ — R being a.e. bounded, thus there exists some C' > 0 such that for a.e. u,y € R™ it holds that
max (|g(u + 2V Aty)|, lg(w)]) < O), we conclude for a.e. u € R™ that

1 u—v|?
hm f(t,u) = lim f e~ g(v)dv

=0 (47 \t) %
1 y
=limmJ e H2" <u+2v y)
t—0 (277)7 m
1 P
= — e” 2 d u) = g(u).
(g L% ) o) = ot
This shows that f : (0,00) x R™ — R indeed solves the PDE (19). O

Lemma 10.1. For \,t € (0, 00) and an a.e. bounded and a.e. continuous initial condition g : R"™ — R, let
f(t,-) : R™ — R be the solution of (19) at time t. Moreover, let ¢ € Ny, s € [0,00), 0 < {1 < (2 < o0,

and assume that g € L*(R™, L(R™), (1 + |u|)°du). Then, f(t,-) : R™ — C is c-times weakly
differentiable and there exists a constant C12 > 0 (being independent of m € N and g : R™ — R) such

that )
- . SFEIEP (1 + le/al?) dg)
Fomrr o2, (e

5¢+.s < C
< Cqg <(\/22/T1) ) HQ“Ll R™ L(R™), (14 ||u])edu) -
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Proof. Fix some A,t € (0,00), ¢ € Ny, s € [0,0), 0 < {; < (2 < o0, and an a.e. bounded and
a.e. continuous initial condition g € L' (R™, L(R™), (1 + |u||)°du). Then, by using that f(¢,) = ¢rs*g
(see Proposition 6.1) and Young’s convolutional inequality, we obtain that

Lf @& ) 2@, c@my,auy = [Pt * gl L1 @m c@m),au)

ALY R™ L(R™),du) ”gHLl(Rm,E(Rm),du)

1 _lwl?
= @ % Jom e dy gl @m, cmmy, (4 ul)edn) < ©

v

=1

which shows that f(¢,-) € LY(R™, L(R™), du). Next, we show for every fixed ¢ € (0, 00) that the Fourier

transform f(¢,-) : R™ — C is c-times weakly differentiable. To this end, we use Fubini’s theorem, [30,
Table 7.2.9], the substitution (; — +/2t;, and the Hermite polynomials (4, )pen in [1, Equation 22.2.15]
to conclude for every 8 := (81, ..., Bm) € Ni. and § € R™ that

0o ([T ) o (ﬁe_@ L (o)

=1 =1 9
P ¢ 18] 1 5
(2/\t) <6_2) (2\t) = DPthg (G)e™ = (57)
ﬂ (}CZBZ Cz:\/2/\t§l E G=V2Xt&

_ (-1 2an (H o (V230 l)) oI

Moreover, we use the notation R™ 3 u — pg(u) := v” := [, uﬁ ' € R and the inequality |u”| :=

T2 o] =TT Jaal® < TT2 (14 Jul)® = (1+ Jul)PT < (14 [u])° for any B := (81, ..., Bn) €

0 and u := (u1, ..., um) € R™ to obtain for every 3 € N, that

Ips gl n cman = | [oPatw|dus [ o+ fuae

= gl 1 ®m, oMY, 1+ ful))edu) < ©-

(58)

Hence, by iteratively applying [30, Theorem 7.8. (c)], we conclude that the partial derivatives 039 :
— Cexist, for all § € N{'.. Thus, by using [30, Theorem 7.8. (d)] and the Leibniz product rule, we
conclude for every 5 € N{', and § € R™ that

aT€) = 0 (a(O9©) = Y S0 5r(€)05(6), (59)
81, ﬁQENm
B1+Bo= 5

which shows that m : R™ — C is c-times weakly differentiable.
Next, we use the explicit expression of the Hermite polynomials (h,)nen given in [1, Equa-

tion 22.3.11], that ||f% < (1+\|c||2)(ﬁl*2”)/2 < 1+ [¢)H? for any I = 1,...m,

B o= (BiyenBm) € NI Gt o= 0,.,18/2], andC e R™, that YV oA

(24)! \1B/2)
max;,_1,__|4,/2| ]]ll, Zjllzl 7(2jl)(ﬁl 5T S B! Zkl 1 kz'(b’z k‘z)' = 25151! for any [ = 1,...,m and

B = (B1,...,0m) € NJ', and that [ [~ B! = B! < |B|! < ¢! forany 8 := (B1,...,0m) € Ng'. to
conclude for every 8 := (81, ..., Bm) € Ni'. and ¢ := (C1, .-, () € R™ that

m m lﬁl/QJ 29 m [ﬂl/2J
_BNGA 0% B!
[ [In <] E <[]|@+ 2y
1=1| @ =1 2B =20 | (- +1<F) =208 = 29)! (60)

53] (2%81) <2l (14 [C)

=1

(1 + l¢l?)
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Hence, by using the inequality (60) together with (57) and by using the constant Co; :=
2¢°cImax(1,2At)° max(1, (1) > 0, we conclude for every 8 € Ni', and § € R™ that

\55@(5)\ < (2x) 5 20! (1 + ngH?)? o= el

. (61)
< Cn (14 [€/G|2) % e MEP,

Moreover, by using that Y := || Z|? of Z ~ N,,,(0, I,,) follows a x?(m)-distribution with probability
density function [0, 0) 3 y — %’W € [0, o0), the substitution  — /2, and the definition of
the Gamma function in [1, Equation 6.1.1], we obtain for every b € Ny that

[Ed|

be_ 2 b 0 Qy% 1e %
oSz = B[ 12| = E[vE] = | yil Cdy
m (277) 2 0 221 7) (62)
bt+m b m4+b
S 2 f@xbgn_le_mdx_ﬂ(j)
25T (3) r(3)

Now, we use the inequality (61), the exponent ¢s := 2¢+2[s]| € Ny, the inequality (z+y)" < 2" (2" + y")
for any =,y > 0 and 7 > 0, the constant Cyg := C% 2¢s/ 2/m > 0, the substitution z > /4\t, the
constant Caz := Coyo (\/ 4Nt Cl) > (, and the identity (62) with b := 0 and b := m + 2¢, to obtain that

< Ch oy |, (1 16017 ™5 e
<O )2(73?(1) <fm Mg f /Gl ‘2”52d£>
- P (63)
=2 gyt (22m+1) (4xt) % JRm (627r)229” e
o G (T e SR

L On (GG (Go/C)?\™ 2757 (2myes)
T () <4§W> *C”(zmm) FEE)T(3)

2

For the first term on the right-hand side of (63), we use that Coy := Cag sup,,,cn (4(1(/7%2;())/)2’; < 0 to
conclude that

o ()" < (S () ()

Moreover, for the second term on the right-hand side of (63), we use that /27/z(z/e)* < I'(z) <
N2m/x(z/e) e/ (122) <\ far[x(x/e)® for any z € [1/2,0) (see [33, Lemma 2.4]), that (2m +
€s)%/2 <me/2(2 + ¢5)%/? and (2 + c5/m)™ = 2™ (1 + ¢,/(2m))™ < 2™e%/? for any m € N, and the
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constant Cys := Co32°/2/87(2¢) (s ~1)/2(47) (3¢, )¢/2e/2 > 0, to obtain that

m+cs

Cos ((Cz/(1)2>m2 2D (2mfes) < Oy ((42/41)2>m 2"7" Cg\/E(QmQZCS :
4/ At ()T (%) 4/ Mt \/?L(ngl)mﬂ 4m (26)%
((@/@)Z)m 275 VB (2e)“T \/m(m + 1)(2m + ;) F <2m + e )m
< O3

~—

Q'

A/t 4 . \2m + csv/m + 1 m (65)
<(2m:cs)%s <2+cs/m

<<2/<1)2>’” 2% V/8r(20) T S om g ((@/@) > 5

< 2 s) 2 22 2 = 2,

< Cn (zm/QAt 4 @re)zmeaer =COn (58] ™

Hence, by inserting (64)+(65) into (63), it follows that
2 7Tm2+1 - 2 2 mT'*'g 2
< BT (B Jy PO (L4 G d£>
[ c ( G/ )m Lo <<<2/<1>2)m 25T (2rgee) \ * (66)
T (73%) \dmva amV/At ) T (#5)T (%)

(C2/C1)2>m ((C2/C1)2>m C,;)é /7<(C2/C1)2)ﬂ21 e

< <O24 ( ANZ O ANZ " S VOt O ANZ me

Thus, by using (59), that [Ng,| = 335_, m? < 2m¢, the inequality 2361,826NI, 81+ fa—pl % < 2181 for
any 3 € N{J' (see [64, Equation 12]), the inequality (66), [30, Theorem 7.8. (c)] componentwise with (2),
the inequality (58), and the constant C'y5 := 2¢t1/Coy + Ca5 > 0 (being independent of m € N and
g : R™ — R), we conclude that

Cé’nﬂ%l e — 2 2 m-+s %
x: T |0sf (£, )" L+ 18/Gl) 2 de
o emye () T, (J.. 1 )

i ch < 05, 02(6)25,3(6)| 2m2“d>
S o (mz;ﬁ;nf Zm L ([ ondr@nel 1+ lerc?) ¥ ae

=

N|=

Bl
<L |, 2 B | 2 )

ﬁ1 +ﬁ2

' %TH f 05,2 O (1 + 1€/c1]2) % de
ﬁ{rel%%{“:c C{n(gﬂ-)ZmI‘ (T-‘rl) - B1PAt 1

<<2/C1)2) B cs
< 2m2° max m ) gV Coa + Cos | 2222 ) m
Brep, Ipss - 9l i @m c@m).duyV Coa 25 < VoM

D=

sets ((G2/C
< Cym™ 14 (\;%)) lgl L1 &, c®m), (14 ful)edu)s

which completes the proof. (]

Proof of Corollary 6.2. For A\,;t € (0,00) and an a.e. bounded and a.e. continuous initial condition
g:R™ — R, let f(¢,-) : R™ — R be the solution of (19) at time ¢. Moreover, let p € [1,0), v € [0, ),
and w : R™ — [0, c0) satisfy the conditions of Lemma 4.23.

For Part (i)., we fix some N € N and assume that g € L'(R™, £L(R™), du). Then, by using the
probability density function pg : R™ — [0, c0) of the Student’s ¢-distributed i.i.d. sequence (0, )nen ~ tm
and Lemma 10.1 (with (; := (2 := 1, ¢:= 0, s := 1, and constant C;2 > 0 being independent of m € N
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and g : R™ — R), we observe that

Cre) _ 1 f |f/(75»\')(19)|2d19>2
Rm

2m)m - (2m)™

FEI@F (14 102) % an)” (67

m

1 2
4 <\/m7r> ”9HL1(R JL(R™), du)

Hence, we can apply Corollary 4.8 (with constant C, 2 > 0 depending only on p € (1,00)) to obtain a
random trigonometric feature model Gy € R7Trm 1 with N features satisfying

1
w(Rm) P Cf(tv)
@m)™ Nl-wmEs

1
E [“f(tv ) - GNH%p(Rm’L‘,(Rm)Vw):l : < Cp72

Thus, by using that w : R™ — [0, 0) is a weight satisfying the conditions of Lemma 4.23, i.e. that
R™ s u— w(u) =[], wo(ul) [0, 00) for some wg : R — [0, o0) satisfying {, wo(s)ds = 1, which
implies that w(R™) = {5, w(u)du = [ ;2 §z wo(u;)du; = 1 by Fubini’s theorem, Lemma 10.1 (with
constant Co > 0 belng mdependent of m e Nand g : R™ — R), and the constant Cg := C} 2C12 > 0
(being independent of m € N and g : R™ — R), it follows that

3 w(R™ % C t,
E[17() = Gl gy | < Cr o S0

2m)™ N1 wmEn
( 1 >”; gl L1 @ 2®mY, du)

2\t lem
which proves the inequality (20). For (21), we assume that p > 1 and that R™ 3 u — g(u) :=
1,0 (u) € R with R? < */f;(m + 2) for all but finitely many m € N. Then, there exists a constant
Cr > 0 (being independent of m € N) such that for every m € N it holds that

2\ 2 1

2¢Cs ( V2elt > < ¢, ™D 68)
VAT \VAt(m + 2)

_ min(2,p)
Hence, for every ¢ > 0 and m € N, we use the inequality (20) with N = [Cre” =n@»)-T], that

m/2 pm
9]t & cEmy.au) = Speydu = F“(m/ﬁl), that I'(z) = +/27/z(x/e)® for any z € (0, 0) (see [33,
Lemma 2.4]), and (68) to obtain some Gy € RTrm 1 with N features satisfying

NI

< Cgm

Y

1
2 1

E [Hf(ta ) - GN“%;)(Rm?E(Rm)’w)] ? < Cgma

1 >3ﬂ gl 2y ®m cmmY,du)
2t Nl_m

m W%Rm

_ ot < 1 ) 2 T(m/211)
0 2\t lem
m+2

9 m LH( 2e ) 2
R 2\ T4 \m+2
) | P S
N min(2,p)
_ 2¢Cg ( V2eR? )3” 1
© Vi \VH(m +2) Nt

1-—— % )
C min(2,p

K71 €6,

1
Nl_ min(2,p)

_ 1
min(2,p)

which proves the inequality (21).
For Part (ii)., we fix some N € N and assume that g € L' (R™, L(R™), (1 + |u|))["1*2dw). Then, by
using (13) and Lemma 10.1 (with 0 < (1 < {2 < 0, ¢ := [y] + 2, s := 4[] + 5, and constant C13 > 0
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being independent of m € N and g : R™ — R), we observe that

Cm
ORISR
SN ( f ORIk 2l )\ 2
S TEIOF 1+l @) o
<2( )mF(m+1) Be%;" R ( )
+15 C/C
< 22)\1 > 190l 21 e 2y 1 a1 +2au) < -

Since |g|r1@®m crmy.dn) < 19001 @m c@my, @+ jupm2au) (R™ L(R™)du) = 1, We
can apply Young’s convolutional inequality on f(¢,-) = ¢ * g (see Proposition 6.1) to conclude that
f(t,) e LYR™, L(R™), du), which implies that f(¢,-) € IE%O’2’7 »(R™). Hence, we can use Corollary 4.20
(with constant Cy, » > 0 depending only onp € (1, 0)) to obtam arandom neural network G € RN%., 1
with N neurons satisfying

[un

1 (%p) | £t )02
) 7a, (Rm)
E I:”f(t7 ) - GNH%p(R7”,£(R7”)7w):| 2 < p7 ’p”c 0. Y,a,b i

1
"/ ‘C w P ‘ Nl_min(Q,p)

Thus, by using Lemma 4.23 (with constant C’( P) , depending only on v € [0,%0), p € (1,00), and
: R — [0,00)), Example 4.15 (with constant Cy,p > 0 depending only on ¢ € Sy(R;C) and

Cgol 7( )), Lemma 10.1 (with constant C2 > 0 being independent of m € N and g : R™ — R), and
L Cp Cﬂ({”w”gcm _ 9[y]+15 ]+15 ..
the constants Cg := T > 0and Cg := v + + > 0 (being independent of m € N and
P

g : R™ — R), we have

1 P £t ) g0z gm
U,U] ,a, (R )
E [”f(’” )= GN”%P(Rm,c(Rm»w)]Q < Gpalples,, -

) ‘CTSZLLHP)‘ Nl_m

C C]l(gqu ’*/Jrl Cén “f(t7 ) Hﬁzﬁl’:‘lf)(ﬂgm)
Cy.p @m)™ N mmes

< Cym™ ((62/61)2)? 19121 @ @), 12

2\t N~ ) ’

which proves the inequality (22). For (23), we assume that p > 1 and that R™ 3 u — g(u) :=

Lpy0)(u) € R with B2 < 2 (m
constants C'1g, C11 > 0 (being independent of m € N) such that for every m € N it holds that

+ 2) for all but finitely many m € N. Then, there exist some

2eC R2 1
2€eLsg 09(1+R) <\fe(<2/<1) > (ClomC“)l min(2,p) _ (70)
VAm VAE(m + 2)
min(2,p)
Hence, for every ¢ > 0 and m € N, we use (22) with N = [C’lomc“s min(2, p)p 1], that

19121 £ @m), 1t fuyi2an) = SEaL + lu)2du < (1 + R)P = (1+
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R)M”%, and that I'(z) > /27 /x(x/e)® for any z € (0,00) (see [33, Lemma 2.4]) to ob-
tain some Gy € RN f@fﬁ with IV neurons satisfying

1 9\ 2
G2/C1 2 gl L2 ®em £®mY, (14 fu)) 1+ 2du
E[Hf(t,-)—GNH%p(Rm,L(Rm),w)]Q <Csmcg<( /S1) (R L(R™), (L) 1 +2d)

2\t lem

W%RTIL
_ Cem® (1 + R <(C2/C1) > T(m/24T)
2\t N mmeEy

< Cym® (1 + R)P! (CQQC%R> ( +2)

mln(2 p)

)2R?
ngCg mC(1 4 R+ <\fe @/G) R)
V 47T m + 2 m1n(2 p)
(Cmmcﬂ)l_m
< i S 6,
N mmEs)
which proves the inequality (23). (]
REFERENCES

[1] Milton Abramowitz and Irene Ann Stegun. Handbook of mathematical functions with formulas,
graphs, and mathematical tables. Applied mathematics series / National Bureau of Standards 55,
Print. 9. Dover, New York, 9th edition, 1970.

[2] Robert A. Adams. Sobolev Spaces. Pure and applied mathematics. Academic Press, 1975.

[3] Fernando Albiac and Nigel J. Kalton. Topics in Banach space theory. Graduate Texts in Mathematics
233. Springer, New York, 2006.

[4] Mauricio A Alvarez, Lorenzo Rosasco, Neil D Lawrence, et al. Kernels for vector-valued functions:
A review. Foundations and Trends® in Machine Learning, 4(3):195-266, 2012.

[5] Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical
society, 68(3):337-404, 1950.

[6] Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, and Amir
Zandieh. Random Fourier features for kernel ridge regression: Approximation bounds and statistical
guarantees. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
253-262. PMLR, 06-11 Aug 2017.

[7] Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal of
Machine Learning Research, 18(19):1-53, 2017.

[8] Francis Bach. On the equivalence between kernel quadrature rules and random feature expansions.
Journal of Machine Learning Research, 18(21):1-38, 2017.

[9] Andrew R. Barron. Neural net approximation. In Proc. 7th Yale workshop on adaptive and learning
systems, volume 1, pages 69—72, 1992.

[10] Andrew R. Barron. Universal approximation bounds for superpositions of a sigmoidal function.
IEEFE Transactions on Information Theory, 39(3):930-945, 1993.

[11] Andrew R. Barron. Approximation and estimation bounds for artificial neural networks. Machine
Learning, 14:115-134, 1994.

[12] Ake Bjorck. Numerical methods for least squares problems. Society for Industrial and Applied
Mathematics, Philadelphia, 1996.

[13] Helmut Bolcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. Optimal approximation with
sparsely connected deep neural networks. SIAM Journal on Mathematics of Data Science, 1:8-45,
2019.

[14] Romain Brault, Markus Heinonen, and Florence Buc. Random fourier features for operator-valued
kernels. In Robert J. Durrant and Kee-Eung Kim, editors, Proceedings of The 8th Asian Conference
on Machine Learning, volume 63 of Proceedings of Machine Learning Research, pages 110-125,
The University of Waikato, Hamilton, New Zealand, 16-18 Nov 2016. PMLR.



42 UNIVERSAL APPROXIMATION PROPERTY OF RANDOM FEATURE MODELS

[15] Haim Brézis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext.
Springer, New York, 2011.

[16] Emmanuel J. Candes. Ridgelets: Theory and Applications. PhD thesis, Stanford University, 1998.

[17] C. Carmeli, E. De Vito, A. Toigo, and V. Umanita. Vector valued reproducing kernel Hilbert spaces
and universality. Analysis and Applications, 08(01):19-61, 2010.

[18] Luigi Carratino, Alessandro Rudi, and Lorenzo Rosasco. Learning with SGD and random features.
arXiv e-prints 2306.03303, 2018.

[19] Tianping Chen and Hong Chen. Approximation capability to functions of several variables, nonlinear
functionals, and operators by radial basis function neural networks. IEEE Transactions on Neural
Networks, 6(4):904-910, 1995.

[20] Lénac Chizat, Maria Colombo, Xavier Ferniidez-Real, and Alessio Figalli. Infinite-width limit of
deep linear neural networks. Communications on Pure and Applied Mathematics, 77(10):3958-4007,
2024.

[21] Christa Cuchiero, Philipp Schmocker, and Josef Teichmann. Global universal approximation of
functional input maps on weighted spaces. arXiv e-prints 2306.03303, 2023.

[22] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303-314, 1989.

[23] Christian Darken, James M. Donahue, Leonid Gurvits, and Eduardo D. Sontag. Rate of approx-
imation results motivated by robust neural network learning. In Proceedings of the Sixth Annual
Conference on Computational Learning Theory, COLT *93, pages 303—309, New York, NY, USA,
1993. Association for Computing Machinery.

[24] Christian Darken, James M. Donahue, Leonid Gurvits, and Eduardo D. Sontag. Rates of convex
approximation in non-Hilbert spaces. Constructive Approximation, 13:187-220, 1997.

[25] Suchuan Dong and Zongwei Li. Local extreme learning machines and domain decomposition for
solving linear and nonlinear partial differential equations. Computer Methods in Applied Mechanics
and Engineering, 387:114-129, 2021.

[26] Vikas Dwivedi and Balaji Srinivasan. Physics informed extreme learning machine (PIELM) — a rapid
method for the numerical solution of partial differential equations. Neurocomputing, 391:96-118,
2020.

[27] Weinan E, Chao Ma, and Lei Wu. The Barron space and the flow-induced function spaces for neural
network models. Constructive Approximation, 55:369-406, 2022.

[28] Weinan E, Chao Ma, Lei Wu, and Stephan Wojtowytsch. Towards a mathematical understanding of
neural network-based machine learning: What we know and what we don’t. CSIAM Transactions
on Applied Mathematics, 1(4):561-615, 2020.

[29] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate studies in mathematics.
American Mathematical Society, Providence, Rhode Island, 2nd edition, 2010.

[30] Gerald B. Folland. Fourier analysis and its applications. Brooks/Cole Publishing Company,
Belmont, California, 1st edition, 1992.

[31] Lukas Gonon. Random feature neural networks learn Black-Scholes type PDEs without curse of
dimensionality. Journal of Machine Learning Research, 24(189):1-51, 2023.

[32] Lukas Gonon, Lyudmila Grigoryeva, and Juan-Pablo Ortega. Approximation bounds for random
neural networks and reservoir systems. The Annals of Applied Probability, 33(1):28-69, 2023.

[33] Lukas Gonon, Philipp Grohs, Arnulf Jentzen, David Kofler, and David Siska. Uniform error
estimates for artificial neural network approximations for heat equations. IMA Journal of Numerical
Analysis, 42(3):1991-2054, 08 2021.

[34] Lukas Gonon and Antoine Jacquier. Universal approximation theorem and error bounds for quantum
neural networks and quantum reservoirs. arXiv e-prints 2307.12904, 2023.

[35] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[36] Loukas Grafakos. Modern Fourier Analysis. Graduate Texts in Mathematics, 250. Springer New
York, New York, NY, 3rd edition, 2014.

[37] Laszl6 Gyorfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A Distribution-Free Theory of
Non-Parametric Regression. Springer Series in Statistics. Springer, New York, Berlin, Heidelberg,
2002.

[38] Allen Hart, James Hook, and Jonathan Dawes. Embedding and approximation theorems for echo
state networks. Neural Networks, 128:234-247, 2020.



UNIVERSAL APPROXIMATION PROPERTY OF RANDOM FEATURE MODELS 43

[39] Jakob Heiss, Josef Teichmann, and Hanna Wutte. How implicit regularization of relu neural
networks characterizes the learned function — part i: the 1-d case of two layers with random first
layer. arXiv e-prints 1911.02903, 2019.

[40] Calypso Herrera, Florian Krach, Pierre Ruyssen, and Josef Teichmann. Optimal stopping via
randomized neural networks. arXiv e-prints 2104.13669, 2021.

[41] Lars Hormander. The Analysis of Linear Partial Differential Operators I: Distribution Theory and
Fourier Analysis. Classics in Mathematics. Springer, Berlin, Heidelberg, 2nd edition, 1990.

[42] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359-366, 1989.

[43] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: Theory and
applications. Neurocomputing, 70(1):489-501, 2006. Neural Networks.

[44] Tuomas Hytonen, Jan van Neerven, Mark Veraar, and Lutz Weis. Analysis in Banach Spaces,
volume 63 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer, Cham, 2016.

[45] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

[46] Antoine Jacquier and Zan Zuri¢. Random neural networks for rough volatility. arXiv e-prints
2305.01035, 2023.

[47] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015.

[48] Jason M. Klusowski and Andrew R. Barron. Risk bounds for high-dimensional ridge function
combinations including neural networks. arXiv e-prints 1607.01434, 2016.

[49] Véra Kurkova. Complexity estimates based on integral transforms induced by computational units.
Neural Networks, 33:160-167, 2012.

[50] Alois Kufner. Weighted Sobolev spaces. Teubner-Texte zur Mathematik Bd. 31. B.G. Teubner,
Leipzig, 1980.

[51] Michel Ledoux and Michel Talagrand. Probability in Banach spaces: Isoperimetry and Processes.
Ergebnisse der Mathematik und ihrer Grenzgebiete. Folge 3 Bd. 23. Springer, Berlin, 1991.

[52] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural Networks,
6(6):861-867, 1993.

[53] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Generalization error of random feature
and kernel methods: Hypercontractivity and kernel matrix concentration. Applied and Compu-
tational Harmonic Analysis, 59:3—84, 2022. Special Issue on Harmonic Analysis and Machine
Learning.

[54] Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and the double descent curve. Communications on Pure and Applied Mathematics,
75(4):667-766, 2022.

[55] Hrushikesh Narhar Mhaskar and Charles A Micchelli. Degree of approximation by neural and
translation networks with a single hidden layer. Advances in Applied Mathematics, 16(2):151-183,
1995.

[56] Charles A. Micchelli and Massimiliano Pontil. On learning vector-valued functions. Neural
Computation, 17(1):177-204, 01 2005.

[57] Ha Quang Minh. Operator-valued bochner theorem, fourier feature maps for operator-valued kernels,
and vector-valued learning. arXiv e-prints 1608.05639, 2016.

[58] Grégoire Montavon, Genevieve Orr, and Klaus-Robert Miiller. Neural Networks: Tricks of the
Trade. Theoretical Computer Science and General Issues; 7700. Springer, Berlin, Heidelberg, 2nd
edition, 2012.

[59] James R. Munkres. Topology. Pearson, Harlow, Essex, UK, 2nd, pearson new international edition,
2014.

[60] Radford M. Neal. Priors for Infinite Networks, pages 29-53. Springer, New York, NY, 1996.

[61] Nicholas H. Nelsen and Andrew M. Stuart. The random feature model for input-output maps
between Banach spaces. SIAM Journal on Scientific Computing, 43(5):A3212-A3243, 2021.



44 UNIVERSAL APPROXIMATION PROPERTY OF RANDOM FEATURE MODELS

[62] Nicholas H. Nelsen and Andrew M. Stuart. Operator learning using random features: A tool for
scientific computing. SIAM Review, 66(3):535-571, 2024.

[63] Ariel Neufeld and Philipp Schmocker. Chaotic hedging with iterated integrals and neural networks.
arXiv e-prints 2209.10166, 2022.

[64] Ariel Neufeld and Philipp Schmocker. Universal approximation results for neural networks with
non-polynomial activation function over non-compact domains. arXiv e-prints 2410.14759, 2024.

[65] Ariel Neufeld, Philipp Schmocker, and Sizhou Wu. Full error analysis of the random deep splitting
method for nonlinear parabolic pdes and pides with infinite activity. arXiv e-prints 2405.05192,
2024.

[66] Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica,
8:143-195, 1999.

[67] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Proceedings
of the 20th International Conference on Neural Information Processing Systems, NIPS’07, pages
1177-1184, Red Hook, NY, USA, 2007. Curran Associates Inc.

[68] Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random bases. In 2008
46th Annual Allerton Conference on Communication, Control, and Computing, pages 555-561,
2008.

[69] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimization
with randomization in learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,
Advances in Neural Information Processing Systems, volume 21. Curran Associates, Inc., 2008.

[70] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. MIT Press, Cambridge, MS, 1st edition, 2006.

[71] R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational analysis. Grundlehren der mathematischen
Wissenschaften; 317. Springer, Berlin, 1st edition, 1997.

[72] Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random features.
In Proceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, pages 3218-3228, Red Hook, NY, USA, 2017. Curran Associates Inc.

[73] Walter Rudin. Real and complex analysis. McGraw-Hill series in higher mathematics.
WCB/McGraw-Hill, Boston, Massachusetts, 3rd edition, 1987.

[74] Walter Rudin. Functional analysis. International series in pure and applied mathematics. McGraw-
Hill, Boston, Mass, 2nd edition, 1991.

[75] Jonathan W. Siegel and Jinchao Xu. Approximation rates for neural networks with general activation
functions. Neural Networks, 128:313-321, 2020.

[76] Sho Sonoda and Noboru Murata. Neural network with unbounded activation functions is universal
approximator. Applied and Computational Harmonic Analysis, 43(2):233-268, 2017.

[77] Marshall Harvey Stone. The generalized Weierstrass approximation theorem. Mathematics Maga-
zine, 21(4):167-184, 1948.

[78] Yiran Wang and Suchuan Dong. An extreme learning machine-based method for computational
PDEs in higher dimensions. arXiv e-prints 2309.07049, 2023.

[79] Christopher Williams. Computing with infinite networks. In M.C. Mozer, M. Jordan, and T. Petsche,
editors, Advances in Neural Information Processing Systems, volume 9. MIT Press, 1996.

[80] Xuwei Yang, Anastasis Kratsios, Florian Krach, Matheus Grasselli, and Aurelien Lucchi. Regret-
optimal federated transfer learning for kernel regression — with applications in American option
pricing. arXiv e-prints 2309.04557, 2023.

[81] Yunlei Yang, Muzhou Hou, and Jianshu Luo. A novel improved extreme learning machine algorithm
in solving ordinary differential equations by Legendre neural network methods. Advances in
Difference Equations, 2018:469, 2018.

[82] Haizhang Zhang, Yuesheng Xu, and Jun Zhang. Reproducing kernel banach spaces for machine
learning. Journal of Machine Learning Research, 10(95):2741-2775, 2009.

NANYANG TECHNOLOGICAL UNIVERSITY, DIVISION OF MATHEMATICAL SCIENCES, 21 NANYANG LINK, SINGAPORE
Email address: ariel .neufeld@ntu.edu.sg

NANYANG TECHNOLOGICAL UNIVERSITY, DIVISION OF MATHEMATICAL SCIENCES, 21 NANYANG LINK, SINGAPORE
Email address: philippt001Qe.ntu.edu.sqg



	1. Introduction
	1.1. Outline
	1.2. Notation

	2. Random feature learning
	2.1. Random trigonometric features
	2.2. Random Fourier features
	2.3. Random neural networks
	2.4. Further random feature models

	3. Universal approximation
	3.1. Random trigonometric features
	3.2. Random Fourier features
	3.3. Random neural networks

	4. Approximation rates
	4.1. Random trigonometric features
	4.2. Random Fourier features
	4.3. Random neural networks

	5. Least squares and generalization error
	5.1. Random neural networks

	6. Numerical example: Heat equation
	7. Proof of results in Section 3
	7.1. Proof of Theorem 3.2
	7.2. Proof of Corollary 3.3+3.4+3.8

	8. Proof of results in Section 4
	8.1. Proof of Theorem 4.5
	8.2. Proof of Corollary 4.8+4.9+4.20 and Proposition 4.22

	9. Proof of results in Section 5
	9.1. Proof of Proposition 5.1
	9.2. Proof of Theorem 5.2 and Corollary 5.4

	10. Proof of results in Section 6
	References

