2312.08410v2 [cs.LG] 20 Dec 2023

arXiv

UNIVERSAL APPROXIMATION PROPERTY OF RANDOM NEURAL NETWORKS

ARIEL NEUFELD AND PHILIPP SCHMOCKER

ABSTRACT. In this paper, we study random neural networks which are single-hidden-layer feedforward
neural networks whose weights and biases are randomly initialized. After this random initialization, only
the linear readout needs to be trained, which can be performed efficiently, e.g., by the least squares method.
By viewing random neural networks as Banach space-valued random variables, we prove a universal
approximation theorem within a large class of Bochner spaces. Hereby, the corresponding Banach space can
be significantly more general than the space of continuous functions over a compact subset of a Euclidean
space, namely, e.g., an LP-space or a Sobolev space, where the latter includes the approximation of the
derivatives. Moreover, we derive approximation rates and an explicit algorithm to learn a deterministic
function by a random neural network. In addition, we provide a full error analysis and study when random
neural networks overcome the curse of dimensionality in the sense that the training costs scale at most
polynomially in the input and output dimension. Furthermore, we show in two numerical examples the
empirical advantages of random neural networks compared to fully trained deterministic neural networks.

1. INTRODUCTION

Inspired by the functionality of human brains, (artificial) neural networks have been discovered in
[McCulloch and Pitts, 1943] and provide as a machine learning technique an algorithmic approach for
the quest of artificial intelligence (see [Turing, 1950] and [Mitchell, 1997]). Fundamentally, a neural
network consists of nodes arranged in hierarchical layers with connections between adjacent layers, which
can be mathematically expressed as the concatenation of affine and non-linear functions.

However, the theoretical approximation properties of neural networks were only proven later by, e.g.,
[Cybenko, 1989], [Hornik et al., 1989], [Hornik, 1991], [Leshno et al., 1993], [Chen and Chen, 1995],
and [Pinkus, 1999]. In mathematical terms, this property is usually shown in universal approximation
theorems, which establish density of the set of neural networks within a given function space. For
example, neural networks are able to approximate any continuous function arbitrarily well on a given
compact subset of a Euclidean space. Subsequently, different works have established approximation
rates, which describe the relation between the approximation error and the number of network pa-
rameters; see e.g. [Barron, 1992], [Barron, 1993], [Darken et al., 1993], [Mhaskar and Micchelli, 1995],
[Darken et al., 1997], [Ktrkova, 2012], [Bolcskei et al., 2019], and [Siegel and Xu, 2020].

Despite the theoretical progress in the 1990s, neural networks have only attracted wider attention after
the turn of the millennium by showing promising applications in the fields of image classification (see
e.g. [Krizhevsky et al., 2012]), speech recognition (see e.g. [Hinton et al., 2012]) and computer games
(see e.g. [Silver et al., 2016]). This was due to the drastic improvements in computational power and new
optimization techniques such as stochastic gradient descent algorithms like, e.g., the Adam algorithm (see
[Kingma and Ba, 2015]). However, the training of a neural network remains a challenging task. First of
all, the learning procedure is a non-convex optimization problem, i.e. the algorithm locates one of many
local minimas, but possibly not the optimal solution (see [Goodfellow et al., 2016, p. 282]). Moreover,
the iterative backpropagation improving the solution at each training step is slow, in particular for deep
neural networks (see [Montavon et al., 2012, p. 13]). In addition, one would like to overcome the curse
of dimensionality, i.e. that the training costs scale at most polynomially in the input and output dimension,
which is still an open problem for neural networks (see [Goodfellow et al., 2016, p. 155]).

In order to tackle these training limitations of deterministic neural networks, we suggest to use random
neural networks instead. Inspired by the works on extreme learning machines (see [Huang et al., 2006]),
random feature models (see [Rahimi and Recht, 2007] and [Rudi and Rosasco, 2017]), as well as reser-
voir computing (see [Maass et al., 2002], [Jaeger and Haas, 2004], [Grigoryeva and Ortega, 2018], and
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[Gonon and Ortega, 2021]), random neural networks are single-hidden-layer feed-forward neural net-
works whose weights and biases are randomly initialized, and only the linear readout is trained (see
[Gonon et al., 2023a] with ReLLU activation function). In this form, we retrieve a convex optimization
problem without iterative backpropagation, which can be solved efficiently on any average computer.

Our first contribution consists of a universal approximation theorem for random neural networks. To
this end, we view random neural networks as random functions that return for every random initialization
the corresponding network as a function in a suitable Banach space. This allows us to apply the strong law
of large numbers for Banach space-valued random variables (see [Hytonen et al., 2016, Theorem 3.1.10])
to lift the universal approximation property of deterministic neural networks to random neural networks,
where the approximation error is quantified in a Bochner norm. This allows us to significantly generalize
the first universal approximation results in [Gonon et al., 2023a] from deterministic functions to random
functions, from the ReLLU activation function to more general non-polynomial activation functions, as
well as from L?-spaces to more general function spaces including, e.g., the derivatives.

In order to obtain this universal approximation result of random neural networks, we first generalize
the universal approximation theorem for deterministic neural networks from the classical formulation
on compacta to function spaces over unbounded Euclidean domains, e.g. LP-spaces and Sobolev spaces
(see also [Hornik et al., 1990] and [Hornik, 1991]). More precisely, for k € Ny, we consider Banach
spaces that are obtained as completions of the space of bounded and &-times differentiable functions with
bounded derivatives with respect to a weighted norm related to the polynomial growth of the activation
function. In order to establish density of the set of deterministic neural networks in those function spaces,
we apply the classical Hahn-Banach separation argument (as in [Cybenko, 1989, Theorem 1]) and use a
Riesz representation theorem (similar to [Dorsek and Teichmann, 2010, Theorem 2.4]) to express any
continuous linear functional on the dense subspace with the help of finite signed Radon measures. Hence,
by assuming that the activation function is non-polynomial, we can use Korevaar’s distributional extension
(see [Korevaar, 1965]) of Wiener’s Tauberian theorem (see [Wiener, 1932]) to obtain global universal
approximation results beyond compact subsets of a Euclidean space (see also [Cuchiero et al., 2023]).

Our second contribution consists of approximation rates for learning a deterministic function by a
random neural network, which relates the required size of the random neural network to the pre-given
approximation error. To this end, we assume that the function to be approximated has a Fourier transform
that is sufficiently regular and integrable, whereas the approximation error is measured with respect to a
weighted Sobolev norm. In particular, we use the Ridgelet transform introduced by [Candes, 1998] and
its distributional extension in [Sonoda and Murata, 2017] to represent the function to be approximated as
expectation of a particular random neural network. Then, we follow the derivations for the approximation
rates of deterministic neural networks and use a symmetrization argument with Rademacher averages. This
generalizes the approximation rates in [Gonon et al., 2023a, Section 4.2] (see also [Gonon et al., 2023b]
for an infinite dimensional version) for random neural networks with ReLU activation function to more
general activation functions and the inclusion of the (weak) derivatives into the approximation.

Moreover, by using the least squares method, we provide an algorithm to learn a deterministic function,
where we show in a full error analysis that random neural networks can overcome the curse of dimensional-
ity, i.e. that the training costs scale at most polynomially in the input and output dimension. Therefore, ran-
dom neural networks are suited as non-parametric regression method to learn high-dimensional functions
(see [Gyorfi et al., 2002], [Rahimi and Recht, 2007], [Rudi and Rosasco, 2017], [Carratino et al., 2018],
[Chen et al., 2020], [Mannelli et al., 2020], [Mei and Montanari, 2022], and [Heiss et al., 2023]).

The theoretical foundations of random neural networks are relevant in scientific computing. For exam-
ple, in mathematical physics, random neural networks have been successfully applied to solve partial differ-
ential equations (PDESs) (see [Yang et al., 2018], [Dwivedi and Srinivasan, 2020], [Dong and Li, 2021],
and [Wang and Dong, 2023]), for photonic systems (see [Lupo et al., 2021]), and for quantum reservoirs
(see [Gonon and Jacquier, 2023]). Moreover, random neural networks have been applied in mathematical
finance, e.g., for learning option prices in the Black-Scholes model (see [Gonon, 2023]), for optimal
stopping (see [Herrera et al., 2021]), for learning the hedging strategy via Wiener-Ito chaos expansion
(see [Neufeld and Schmocker, 2022] and [Neufeld and Schmocker, 2023]), for solving path-dependent
PDEs in the context of rough volatility (see [Jacquier and Zurié, 2023]), for pricing American options
(see [Yang et al., 2023]), and for random deep splitting methods (see [Neufeld et al., 2023]).

We complement these numerical examples by learning the solution of the heat equation and the price
of a Basket option, showing the empirical advantages of random neural networks over deterministic ones.
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1.1. Outline. In Section 2, we recall deterministic neural networks and generalize their universal
approximation property. In Section 3, we define random neural networks as Banach space-valued random
variables and show their universal approximation property. In Section 4, we prove some approximation
rates and develop an explicit algorithm to learn a deterministic function by a random neural network
including a full error analysis. In Section 5, we show in numerical examples how to apply random neural
networks and demonstrate their numerical advantages. Finally, all proofs are contained in Section 6-10.

1.2. Notation. In the following, we introduce the notation of some standard function spaces and the
Fourier transform for distributions. Readers who are familiar with these concepts may skip this section.

Asusual, N := {1,2,3,...} and Ny := NU{0} denote the sets of natural numbers, whereas Z represents
the set of integers. Moreover, R and C denote the sets of real and complex numbers, respectively,
where i := 4/—1 € C represents the imaginary unit. In addition, for any r € R, we define |r| :=
max{k€Z:k <r}and|r|:=min{k € Z : k > r}. Furthermore, for any z € C, we denote its real and
imaginary part as Re(z) and Im(z), respectively, whereas its complex conjugate is Z := Re(z) — Im(z)s.

Moreover, for any m € N, we denote by R (and C™) the m-dimensional (complex) Euclidean space,

which is equipped with the Euclidean norm [ju| = /3", ]uzP In addition, for any m,n € N, we
denote by R™*" the vector space of matrices A = (a; j)f 11 e R™*™ which is equipped with the
matrix 2-norm |A[ = supgegn, |4|<1 |Az[, where I,,, € Rmxm is the identity matrix.

Furthermore, for U < R™, we denote by B(U) the o-algebra of Borel-measurable subsets of U.
Moreover, for U € B(R™), we denote by L(U) the o-algebra of Lebesgue-measurable subsets of U,
while du : L(U) — [0, 0] denotes the Lebesgue measure on U. Then, a property is said to hold true
almost everywhere (shortly a.e.) if it holds everywhere true except on a set of Lebesgue measure zero.

Moreover, for every fixed m,d € Nand U < R™, we introduce the following function spaces:

(i) C°(U;R?) denotes the vector space of continuous functions f : U — R,

(i) C* (U ;Rd), with k € N and U < R™ open, denotes the vector space of k-times continu-
ously differentiable functions f : U — R? such that for every multi-index o € Nok =
{a=(a1,...;0m) e NJ' ¢ |a| := a1 + ... + ayy, < k} the partial derivative U 3 u — o f (1) :=
%( u) € R4 is continuous. If m = 1, we write () : an U —-RYL5=0,..,k

(iii) Cf(U ;RY), with k € Ng and U < R™ (open, if k > 1), denotes the vector space of bounded
functions f € C*(U;R?) such that 0, f : U — R? is bounded for all o € Ng'- Then, the norm

| flep ey = max sup o f(u)].

OkueU

turns (CF(U;RY), | - ||C§(U;Rd)) into a Banach space. Note that for £ = 0 and U < R™ being

compact, we obtain the usual Banach space (C°(U;R%), | - |lco(ur;ray) of continuous functions,
which is equipped with the supremum norm || f{ co(y/ray := Hf“cl())(U;Rd) = sup,ep | f(w)]-
(iv) C* ol V(U; R%), with k € No, U < R™ (open, if k > 1), and 7 € [0, c0), denotes the vector space
of functions f € C*(U;R) of ~-polynomial growth such that
|0af (u)

) = max su
ey, wma = B3¢ S0P Ty

) C’k(U' Rd)ﬂ/ with k € Ny, U < R™ (open, if k = 1), and y € (0, 20), is defined as the closure of
k d k(77 Rd) : s
Cy(U;R®) with respect to | - ”Ck L(URY: Then, (Cy(U;R9) || - Hck LW rd)) is by definition

a Banach space. If U < R™ is bounded, then CF(U;RY)" = C"‘(U,Rd). Otherwise, [ €

e . .
CE(U;R9) " if and only if f € C*(U; Rd) and lim; oo MaXaeny, SUPyer, ju|>r (”Hfm))ﬂ =0

(see Lemma 6.1). For example, if f € C pol o WU; R%), with v € [0,7), then f € CF(U;R9) .
(vi) C%(U;R%), with U < R™ open, denotes the vector space of smooth functions f : U — R? such
that supp(f) € U, where supp(f) is defined as the closure of {u € U : f(u) # 0} in R™.
(vii) LZIOC(U ; ]Rd), with U < R™, denotes the space of Lebesgue measurable functions f : U — R4
such that for every compact subset X < R™ with K c U it holds that { . || f (u)|du < co.
(viii) S(R™; C) denotes the Schwartz space consisting of smooth functions f : R” — C such that the
seminorms maXaeny, SUPycgm (1 + u|?)" [0af (u)| are finite, for all n € No. Then, we equip



S(R™; C) with the locally convex topology induced by these seminorms (see [Folland, 1992,
p. 330]). Moreover, its dual space S’(R™;C) consists of continuous linear functionals 7" :
S(R™; C) — C called tempered distributions (see [Folland, 1992, p. 332]). Hereby, we say that
f € L}, (R™;C) induces Ty € S'(R™; C) if S(R™;C) 3 g — Ty(g) := §gm f(w)g(w)du € C
is continuous. For example, if there exists some n € N such that {,,, (1 + [[u]?) ™" | f(u)|du <
oo, then the function f € L} (R™;C) induces the tempered distribution 77 € S'(R™;C)
(see [Folland, 1992, Equation 9.26]). Conversely, for an open subset U < R™, a tempered
distribution T € S'(R™; C) is said to coincide on U with fr € L}, (U;C)if T(g) = Tt,(9)
for all g € CF(U; C). In addition, the support of any tempered distribution 7" € S'(R™; C) is
defined as the complement of the largest open set U < R™ on which T' € §'(R™; C) vanishes,
i.e. T'(g) = 0 forall g e CX(U;C).

(ix) So(R;C) = S(R; C) denotes the vector subspace of functions f € S(R; C) with § v’ f (u)du =
0 for all 5 € Ny (see [Grafakos, 2014, Definition 1.1.1]). Using the Fourier transform (see (1)
below) and [Folland, 1992, Theorem 7.5 (c)], this is equivalent to f(j ) (0) = 0 for all j € Ny.

x) LP(U, %, u;R?), with p € [1,00), U < R™, and (possibly non-finite) measure space (U, %, ),
denotes the vector space of (equivalence classes of) ¥3/B(R?)-measurable functions f : U — RY
such that

1ot oty = ( | f(U)Hpu(dU)> " <o

Then, (LP(U, ¥, u; RY), || - | Lo, sr4)) is @ Banach space (see [Rudin, 1987, p. 96]).

(xi) WkP(U, L(U), du;R?), with k € N, p € [1,0), and U < R™ open, denotes the Sobolev space
of (equivalence classes of) k-times weakly differentiable functions f : U — R? such that
Ouf € LP(U, L(U), du; R?) for all o € NgY, (see [Adams, 1975, Chapter 3]). Then, the norm

P

T T—— L |00 f (w)|Pdu

m
O‘ENO,k

turns WP (U, L(U), du; RY) into a Banach space (see [Adams, 1975, Theorem 3.2]).

(xii) WhP(U, L(U), w;RY), with k € N, p € [1,00), U < R™ open, and £L(U)/B(R)-measurable
w : U — [0, ), denotes the weighted Sobolev space of (equivalence classes of) k-times weakly
differentiable functions f : U — R% such that 0, f € LP(U, L(U), w(u)du; R?) for all a € NG
Moreover, w : U — [0, c0) is called a weight if w is a.e. strictly positive. In this case, the norm

P
flwsswewwnn = | 3 | loas@lPo(ds
aeNB’}k U
turns WHP(U, L(U),w; R?) into a Banach space (see [Kufner, 1980, p. 5]).

(xiii) WOP(U, L(U), w; RY), withp € [1,00) and U € B(R™), is defined as LP(U, L(U), w(u)du; RY).

In addition, if the functions are real-valued, we abbreviate C*(U) := C*¥(U;R), LP(U, %, u) :=
LP(U, %, u; R), etc. Moreover, we define the complex-valued function spaces C*(U; C?) = C*(U;R??),
LP(U, %, ;€% =~ LP(U, 3, u; R??), etc. as in (i)-(xii) (except (viii)+(ix)) by identifying C¢ =~ R??,
_ Furthermore, we say that an open subset U < R admits the segment property if for every u € U :=
U\U there exists an open neighborhood V' < R™ around u € U and a vector y € R"\{0} such that for

every z € U n'V and t € (0,1) it holds that z + ty € U (see [Adams, 1975, p. 54]).
Moreover, we define the (multi-dimensional) Fourier transform of any f € L*(R™, L(R™), du; C?) as

Rro¢ o flo | e duect n
]Rm
see [Folland, 1992, p. 247]. Then, by using [Hytonen et al., 2016, Proposition 1.2.2], it follows that

sup [FO] = swp || @] < | 1#@ldn = 1l ez auzs O

£eR™ £eR™

In addition, the Fourier transform of any tempered distribution 7' € S’(R"™; C) is defined by T (9) :=
T(g), for g € S(R™; C) (see [Folland, 1992, Equation 9.28]).



2. DETERMINISTIC NEURAL NETWORKS

Before we introduce random neural networks in Section 3, we first consider classical (deterministic)
neural networks. Inspired by the functionality of a human brain (see [McCulloch and Pitts, 1943]),
deterministic neural networks can be described by a composition of affine and non-affine functions.

Definition 2.1. For p € C°(R), a function ¢ : R™ — R? is called a deterministic (single-hidden-layer
feed-forward) neural network if it is of the form
N

R™su —  o(u) = > ynp (aju—by) e R, 3)

n=1
for some N € N denoting the number of neurons, where aq, ...,any € R™, b1, ....,by € R, and y1, ..., yn €
R represent the weight vectors, biases, and linear readouts, respectively.

In this paper, we only consider single-hidden-layer feed-forward neural networks of the form (3) and
simply refer to them as (deterministic) neural networks.

Definition 2.2. For U € R™ and p € C°(R), we denote by NN pU g the set of all neural networks of the
form (3) restricted to U with corresponding activation function p € C°(R).

Hidden Layer

Input Layer
Output Layer

R™ 3w o(u) e R?

OO0O00OO0O

Figure 1. A neural network ¢ : R™ — R? withm = 3,d = 2,and N = 5.

Deterministic neural networks admit the so-called universal approximation property, which establishes
the density of the set of deterministic neural networks within a given function space. For example, every
continuous function can be approximated arbitrarily well on a compact subset of a Euclidean space (see
e.g. [Cybenko, 1989], [Hornik, 1991], [Pinkus, 1999], and the references therein).

In order to generalize the approximation properties of deterministic neural networks beyond continuous
functions on compact subsets, we now consider the following type of function spaces. For this purpose,
we fix the input dimension m € N and the output dimension d € N throughout the rest of this paper.

Definition 2.3. For k € Ny, U < R™ (open, if k = 1), v € (0, 0), we call a Banach space (X, | - ||x) a
(k, U, y)-approximable function space if X consists of functions f : U — RY and the restriction map

(Cg(Rmde)a H : Hcgol,'y(Rm;Rd)) > f = f|U € (X, H ° ”X) (4)
is a continuous dense embedding.

Remark 2.4. The restriction map in (4) is a continuous dense embedding if it is continuous and its image
is dense in X with respect to || - || x. By definition of Cf(R™;R?) " in Notation (v), this is equivalent to

(CER™ R, | - ”C;foz W(Rm;Rd)) 5> f flue (X,|-|x) being a continuous dense embedding.

The continuous dense embedding in (4) has two important consequences. First, any (k,U,~)-
approximable function space (X, | - ||x) is a separable Banach space which is needed for the notion of

Bochner spaces in Section 3. Moreover, for any activation function p € Cf (R) , the set of deterministic
neural networks NN, , = X is well-defined in the function space (X, | - | x).

Lemma 2.5. For k € No, U < R™ (open, if k = 1), v € (0,0), let (X,| - ||x) be an (k,U,~)-
approximable function space. Then, the following holds true:

(i) The Banach space (X, | - |x) is separable.
(ii) For every p € Cf(R) it holds that J\/’J\/’%m,d c C’f(Rm; R%) " and ./\/'./\/'pU’d c X.



In order to derive the following universal approximation result, we now assume that the activation
function p € C’f (R) is non-polynomial. This is equivalent to the condition that the Fourier transform
T, € §'(R; C) of the tempered distribution' (g — T),(g) := {5 p(s)g(s)ds) € S'(R; C) is supported at a
non-zero point (see e.g. [Rudin, 1991, Examples 7. 16 ) The proof can be found in Section 7.2.
Theorem 2.6 (Universal Approximation). For k € No, U < R™ (open, if k = 1), v € (0,00), let

(X, |- |lx) be an (k,U,~)-approximable function space and assume that p € CF (]R)7 is non-polynomial.
Then, NN, , is dense in X with respect to || - | x.

Theorem 2.6 yields a global universal approximation result beyond compact subsets of a Euclidean
space and is therefore interesting in its own right. Let us compare Theorem 2.6 to the existing literature.

Remark 2.7. Theorem 2.6 unifies the following universal approximation theorems (UATs):

(1) Theorem 2.6 extends the UATs in [Cybenko, 1989, Theorem 1], [Hornik et al., 1989, Theo-
rem 2.4], [Hornik, 1991, Theorem 2], [Leshno et al., 1993, Theorem 1], [Chen and Chen, 1995,
Theorem 3], and [Pinkus, 1999, Theorem 3.1] for continuous functions on compact subsets of a
Euclidean space to more general functions on unbounded Euclidean domains. The latter three
results are for non-polynomial activation functions.

(i1) Theorem 2.6 extends the UAT in [Hornik, 1991, Theorem 3+4] and [Hornik et al., 1990, Corol-
lary 3.6+3.8] on (weighted) Sobolev spaces to more general function spaces.

(ii1) Theorem 2.6 extends the UAT in [Cuchiero et al., 2023, Theorem 4.13] for functions defined on
weighted (infinite dimensional) domains to differentiable functions.

Towards the end of this section, let us give some examples of (k, U, )-approximable function spaces
which include some of the standard function spaces introduced in Section 1.2.

Example 2.8. Forany k € No, U < R™ (open, if k = 1), and y € (0, 00), the following Banach spaces
(X, | - |lx) are (k, U, ~)-approximable function spaces:

Function space (X, | - || x) Notation | additional assumptions
TR .
i) (Co (TR, |- lopwmay) . (i) | ifU = R™ is bounded
keNgandU < R™ (open, ifk = 1)
E(r7-md) | .
(11) (Cb (Uv R ) ) H HC}’;GIW(U;]R‘!)) ) none
k € No, U < R™ (open, ifk = 1), and ~ € (0, 0)
(LP(U’ E?M;Rd>7 H ’ HLP(U,E,M;Rd)> = B(U);
(i) k=0pe[l,), U< R™, (x) | ifp:B(U) — [0,00] is a Borel-measure,
and measure space (U, %, 1) and if §,; (1 + ||Ju])"Pp(du) < o0
(iv) (WHhP (U, L(U), du; R, [ - [wes 0, c0),durd)) (xi) if U  R™ has the segment property
keN,pe[l,0), and U < R™ open and if U < R™ is bounded
kp mdy | if U < R™ has the segment property,
) (WHP(U, L(U), w; R, || HWk,p(U,.C(U)yw;]Rd)) (xiD) ifw:U — [07 OO) is bounded,
keN, pe[l,0), U< R™ open, ifinf,ep w(u) > 0 for all bounded B < U,
and weight w : U — [0, 00) and if §, (1 + ||Ju])"Pw(u)du < o

Moreover, let us give some examples of non-polynomial activation functions p € Cf(R) , which
includes the standard activation functions such as, e.g., the sigmoid function and the ReLU function.

Example 2.9. For k € Ny and v € (0,0), the following functions p € Cé“ (]R)ﬁ{ are non-polynomial,
where its Fourier transform T,, € S'(R; C) coincides on R\{0} with the function fT e L} (R\{0};C):

pE C’f(R) keNo ye(0,00) | f € L} (R\{0};C)
(i)  Sigmoid function p(s) := 1+e . keNy v>0 f:/r; &) = ﬁ
(ii)  Tangens hyperbolicus p(s) := tanh(s) keNg v>0 fﬁ, (&) = m
(iii) Softplus function p(s):=In(1+e°) | keNy v>1 fﬁ (&) = gsm;l%
(iv) ReLU function p(s) :=max(s,0) | k=0 ~y>1 fﬁ (&) = —5%

INote that p € CF(R) " induces the tempered distribution (9 To(g) :=§z p(s)g(s)ds) € S'(R;C)as p e C’f(R)'y is
of polynomial growth (see [Folland, 1992, Equation 9.26]).



3. RANDOM NEURAL NETWORKS

In order to induce randomness in a neural network, we assume throughout this paper the existence of a
probability space (2, F,P) which supports an independent and identically distributed (i.i.d.) sequence of
R™-valued random variables (A, )nen : 2 — R™ and an i.i.d. sequence of R-valued random variables
(Bp)nen : 2 — R. Then, we define the o-algebra generated by (A, )nen and (By, )nen as

Fap:=0({A,, B, :neN}). ®)
Moreover, we impose the following condition on the distribution of (A, ),en and (By, )nen.
Assumption 3.1. The random vector (A1, By) : Q — R™ x R satisfies for every a € R™, b € R, and
r>0thatP[{weQ: (A1 (w),Bi(w)) — (a,b)| <r}] > 0.

Moreover, for k € Nyg, U < R™ (open, if & > 1), and v € (0,00), let (X, | - |x) be an (k, U, ~)-
approximable function space (see Definition 2.3). Then, any F4 g-strongly measurable random variable
F : Q — X can be seen as random function (U 3 u — F(w)(u) € RY) € X for w € () (see Section 8.1).

Now, we introduce random neural networks as random functions, where the weight vectors and biases
inside the activation function are obtained from (A, ) ey and (By,)nen, respectively. Hereby, the linear
readout is also a random variable, but which is observable with respect to (A, )nen and (By)nen-
Definition 3.2. Let k € Ny, U < R™, v € (0,0), and p € Cf(R) . Then, we call a map ® : Q) —
C’f (U; Rd)7 a random neural network if it is of the form®

N _
Qow > Bw) =D Walw)p (An(w)T - ~Bu(w)) € CFU;RY) (6)
n=1

for some N € N denoting the number of neurons. Moreover, Ay, ...,Ax : @ - R™ and By, ..., By :
Q) — R are the random weight vectors and random bias, respectively, while the F 4 g/B(R®)-measurable
random variables W1, ..., Wyx : Q — R4 represent the linear readouts.

Definition 3.3. We denote by RN @ g the set of all random neural networks of the form (6) with corre-
sponding activation function p € Céf(R) , for some k € Ny and ~y € (0, 00).
Let us briefly explain how a random neural network can be trained on a computer (see also Section 4.2).

Remark 3.4. For the random initializtion of (Ay, By)n=1,... N, we draw some w € Q) and fix the values
of A1(w), ..., An(w) € R™ and By(w), ..., Bx(w) € R. Thus, by using that W,..., Wy : Q — R?
are Fa /B (RY)-measurable, the training of some ® € RN’ '& 4 consists of finding the optimal vectors
Wi(w), ..., Wp(w) € R given Ay (w), ..., Ax(w) € R™ and By (w), ..., By (w) € R (see Algorithm 1).

In the following, we now lift the universal approximation property of deterministic neural networks in
Theorem 2.6 to this setting involving randomness. The proof can be found in Section 8.3.

Theorem 3.5 (Universal Approximation). For k € No, U < R (open, if k = 1), and v € (0,0), let

(X, | - |lx) be an (k,U,~)-approximable function space and assume that p € CF (R)7 is non-polynomial.
Moreover, let (A1, By) satisfy Assumption 3.1 and let F' € L"(Q, F 4 g, P; X) for some r € [1,00). Then,
the following holds true:

(i) For every e > ( there exists some ® € RN‘(}d N L"(Q, Fa,B,P; X) such that
1
| = @7 px) = E[|F - 2[%]" <e.
(ii) For every §,e > O there exists some O € R./\/pUd N L"(Q, Fa.p,P; X) such that
Pl{weQ: |F(w) - 0(w)x > )] <6.

Remark 3.6. Note that every deterministic function f € X is a constant random function (w — f) €
L™ (Q, Fa,B,P; X) and can therefore be approximated by a random neural network ® € RN pU a

Theorem 3.5 generalizes the universal approximation results in [Rahimi and Recht, 2008, Theo-
rem 3.1], [Hart et al., 2020, Theorem 2.4.3], [Gonon et al., 2023a, Corollary 3], and [Gonon, 2023,
Corollary 6] from deterministic functions to random functions, from particular activation functions
(such as the ReLLU function) to more general non-polynomial activation functions, as well as from
particular Banach spaces (e.g. L?-spaces) to more general (k, U, v)-approximable function spaces.

2The notation W, (W)p (An(w)" - —Bn(w)) refers to the function U 3 u > Wy (w)p (An(w) u — Bn(w)) € R%.



4. APPROXIMATION RATES FOR LEARNING A DETERMINISTIC FUNCTION

In this section, we provide approximation rates for learning a deterministic function by a random neural
network. For this purpose, we assume the following for the random initialization (A, B1) : 2 — R™ x R.

Assumption 4.1. A, : Q - R™ and B : Q — R are independent. Moreover, A1 admits a probability
density function 0 4 : R™ — (0, 00) which is strictly positive. In addition, By : Q@ — R follows a Student’s
t-distribution®, i.e. By ~ t1(v) for some v € (0,0). In this case, we write (A1, B1) ~ 04 ®t(v).

To derive the approximation rates, we apply the reconstruction formula in [Sonoda and Murata, 2017,
Theorem 5.6] to obtain an integral representation of the function to be approximated (see also Section 9.2).

To this end, we consider the following pairs (¢, p) € Sp(R;C) x CI’;OM(R) consisting of a ridgelet

function ¢ € Sy(R; C) (see Notation (ix)) and an activation function p € C;foz, 7(R) (see Notation (iv)),
which is a special case of [Sonoda and Murata, 2017, Definition 5.1] (see also [Candes, 1998]).

Definition 4.2. For k € Ny, v € [0,0), and m € N, a pair (1, p) € So(R;C) x CF | _(R) is called

pol,y
m-admissible if T, € S'(R; C) coincides on R\{0} with a function fﬁ € L}, .(R\{0}; C) such that

b(E)f7,(©)
CWr) = (27)m~L J — L gg e C\ {0}, (7)
R} &
Remark 4.3. If (¢, p) € So(R;C) x CSOZ’V(R) is m-admissible, then p € C]];om(R) has to be non-

polynomial. Indeed, otherwise the support of ﬁ € §'(R; C) is contained in {0} < R (see e.g. [Rudin, 1991,
Examples 7.16]), which implies that (7) vanishes for any choice of 1 € Sp(R; C).

4.1. Approximation Rates. In this section, we now provide the approximation rates for learning a
deterministic function by a random neural network. The proof can be found in Section 9.3.

Theorem 4.4 (Approximation Rates). For k € Ny, p,r € (1,00), U < R™ (open, if k = 1), and
v €[0,00), let w: U — [0, 00) be a weight such that

C(U?{f) = (L(l + Hu|\)7pw(u)du> ’ < o0. ®)

Moreover, for v € (0,00), let (A1, B1) ~ 04 ®t1(v) satisfy Assumption 4.1, and let (1, p) € So(R; C) x

C’;fom(R) be m-admissible. Then, there exists C7 > 0 (independent of m,d € N) such that for every

fe LYR™, LR™), du; RY) with ([y] + [v] + 1)-times weakly differentiable Fourier transform satisfying
1

00 3oy (L [E/CDE2PIDr 7
Cy:= jeNgmﬁ%}ir»m], JR T (me 10sf (&) 0A(€/0) 1 d£> d¢ < o, (9)

P01+ w1+
the following holds true:
() It holds that f € WP (U, L(U), w; R?).
(ii) For every N € N there exists some ®x € RN, ; 0 L7(, Fap, P; WHEP(U, L(U), w; RY))
having N neurons such that

(v:p) k

1 c\P) o 1+ v]+1
. . Uw Cf mp

E [”f - QNHVVIC,;D(U’g(U),w;Rd)] <C

10
1 ‘Cr(rllfvp)‘ Nl_m ’ ( )

(iii) For every 0, > 0 there exists some @ € RNY, ; 0 L™(Q, Fa g, Py WEP(U, L(U), w; RY))
having N € N neurons, with

N> CP Cp IR\ T Cr |
- 1’ w,p)’ Sire ; (11)
Cm

such that P [{w €Q:|f — en(W)llwrew,c)wrdy = 6}] < 0.

3By ~ t1(v) has probability density function R 3 b — 6p(b) = 11:(((1}/;7)"\)/% (1+ bz/y)_(H")/Q € (0,00), where T'

denotes the Gamma function (see [Abramowitz and Stegun, 1970, Section 6.1])
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Theorem 4.4 relates the number of neurons NV € N needed for a random neural network to approximate
a deterministic function with pre-given error tolerance € > 0 (and probability threshold § > 0 for (iii)).

Remark 4.5. Theorem 4.4 is related to the following approximation rates in the literature:

(i) Theorem 4.4 extends the approximation rates for random neural networks in [Gonon et al., 2023a,
Section 4.2] and [Gonon, 2023, Theorem 1] from the ReLU activation function and Bochner
space L*(Q, F,P; X), with X := L*(R™, B(R™), i; RY) for some probability measure ju :
BR™) — [0,1] or X := C([~M, M]) for some M > 0, to more general activation functions
and more general L"-Bochner spaces with weighted Sobolev space X := WP (U, L(U), w; R?).

(ii) Theorem 4.4 provides analogous approximation rates as the ones for deterministic neural net-
works in [Barron, 1993], [Darken et al., 1993], [Siegel and Xu, 2020], and the references therein.

Moreover, for 7 = 2, we use the equivalent characterization of Sobolev spaces via Fourier transform
(see [Grubb, 2009, Lemma 6.8]) to provide sufficient conditions for f € L' (R™, £L(R™), du; R?) to have
a weakly differentiable Fourier transform such that the constant C'y > 0 defined in (9) is finite.

Example 4.6. Let k € No, 7 = 2, y € [0,0), and v € (0, 0). Moreover, let* (A1, By) ~ t,(v) @ t1(v)
and let 1 € So(R; C) such that supp(z’p\) [51 &) for some 0 < & < & < o (see Example 4.7 (b)
below) Iff e LY(R™, L(R™), (1 + [[uf )P TH1H gy, RE) A mt2kt Al 43 I+42(Rm £(R™) (14| -
N2+ RD), then the Fourier transform fiR™ - RYjs ([v]+[v]+1)-times weakly differentiable
and the constant C'y = 0 defined in (9) is finite.

p)

Finally, we estimate the constants C’[(] W
learning a deterministic function by a random neural network overcomes the curse of dimensionality.

i),

Example 4.7. Let k € Ny, p € (1,00), U € R™ (open, if k = 1), v € [0, 00). Then, the following holds:
(a) For C'[(Zf): Let w : U — [0, ) be a weight of separable form w(u) := wo(u1) - - - wo(um,) for
allw := (uy, ..., um) " € U, where wo : R — [0, 00) is another weight satisfying § wo(s)ds = 1,

and C’H(Qq’fg = (§p(1+ |s])Pwo(s)ds) Y2 o0, Then, it holds that C[(Zf) < Cﬂ(gfgmwrl/p.

(b) For ) Let 1 € So(R; C) be such that Ve CF(R) is non-negative with supp({b\) [£1,&2]
for some 0 < & < & < oo. Then, for every standard activation function p € C¥ ol 7(]R) in
Example 2.9 and every m € N the pair (1, p) € So(R; C) x C* ol ~(R) is m-admissible.

peCh, (R) keNo ve[0,0) | f7 € Lj,(R\{0};C)
(i)  Sigmoid function p(s) = 1+1e,s keNyg v=0 fTAp (&) = ﬁ
(ii) Tangens hyperb. p(s) := tanh(s) keNg v=0 fTAp (&) = Sh(nE/3)
(i)  Softplus function p(s) :=In(l+e°) |keNy ~v=1 fTAp (&) = Zeinh(nE)
(iv) ReLU function  p(s) := max(s,0) |k=0 ~=1 ffp (&) = _g%

Moreover, there exists Cy, , > 0 (independent of m, d € N) such that ‘C,(,ff”p)‘ > Cy ,(2m/&)™.

Remark 4.8. Assume the setting of Example 4.6+4.7, where we choose without loss of generality
& € (0, v/ 2). Then, there exists some Cy > 0 (independent of m,d € N and f : R™ — R?) such that

C(%p)c y+1/pem, T ~ m+2k+4[y]+3[v]+4 3
Svw DS g, WU TS (j 057 (©)12 (1+|£||2)”+3+“d5)2
‘Cﬁ?”)‘ (2r&r)mT () 2 PG \JR

(12)

Hence, if the right-hand side of (12) grows at most polynomially in m, d € N, we conclude from (10)+(11)
that f : R™ — R? can be learned by a random neural network without the curse of dimensionality.

Note that the integral on the right-hand side of (12) with 8 = 0 € NB’}M 41 also appears as

Barron norm in the approximation rates of deterministic neural networks (see [Barron, 1993, Equation 3],

[Klusowski and Barron, 2016, Theorem 6], [Siegel and Xu, 2020, Equation 5], and [E et al., 2022, Sec-

tion 2.1]). However, in our case of random neural networks, we also have to include the weak derivatives.

4A; ~ tm(v) has probability density function R™ 3 a +— 64 (a) = % (1+ Ha|\2/u)7(m+u>/2 € (0, 0).



10

4.2. Algorithm and Complexity. In this section, we provide an explicit algorithm to learn a deterministic

function by a random neural network. For some fixed k € Ng, U < R™ (open, if £ > 1), and a weight

w : U — [0,00), which is normalized, i.e. {;; w(u)du = 1, let the training data (V})jen ~ w be an

i.i.d. sequence of U-valued random variables, which is independent of (A,,, By, )nen. Moreover, we define
Fap S Fapy :i=0({An, Bp, V, :neN}) C F.

Next, we fix some N € N and define Wy as the vector space of all R**V-valued random variables

W = (Win)?:llj:';iN, which are Fj4 By/B(RdXN )-measurable. Then, for an activation function
Cp ol 7( ) and every W € Wy, we define the corresponding random neural network as
T
Qowe BN (w (Z Win(w)p (An(w) " - —Bn<w>)> eCh, (U;RY.  (13)
i=1,...,d

Note that (13) slightly differs from Definition 3.2, as the linear readout W € Wy is now measurable with
respect to F4 p,v (instead of F4 p) and can therefore only be trained after the training data has been
drawn. Moreover, we denote by RN ’()]"; the set of all random neural networks of the form (13).

Now, we fix some .J € N and approximate a given deterministic function f : U — R<. To this end, we
n=1,....N
use the least squares method to find the linear readout W (/) = (Wi(i)) ; € Wy of the random
M i=1,..,
neural network <I>]V\I,/<J) € RN @Z which minimizes the empirical weighted mean squared error (MSE), i.e.

W) = argming,,, Z Z 2 0af (Vi) = ca0l () H (14)

] 1a€N

Hereby, the constants (Ca)aeNglk < (0, 00) control the contribution of the derivatives, e.g., ¢, := m~lel]
’ max,enm Co
0,k

o € Ng., means equal contribution of each order. Moreover, we define <(Ca)aeN6“k> =

min, m Cq
aENO,k

Algorithm 1: Learning a random neural network

Input: k € Ng, U < R™ (open, if k = 1), v € [0, ), normalized weight w : U — [0, o0),
p € Chy (R), (ca)aeny, < (0,00), (A1, Bi) ~ 4 ® t1(v) satisfying Assumption 4.1,
and k-times weakly differentiable function f = (f1, ..., fd) :U — R4,

N
Output: @yVV(J) € R.N"{j‘; with linear readout W (/) : (W(J)) € Wh solving (14).
) =1

1 Generate i.i.d. random variables (A,,, By )n=1,.. N ~ 04 ® t1(v) (see Assumption 4.1).
2 Generate i.i.d. random variables (V});-1,...,; ~ w, which are independent of (A,,, By )n=1,... N-

3 Define the R/ NoixD*N _yalued random Varlable R = (R(j,a), n)(j_al)e{lN TIxND, with components

Ry = caplV (A]V; — B,) A, for (j,a) € {1,...,J} x Ny andn = 1,...,N.
4 fori=1,...,ddo
5 Define the R7 M6kl -valued random variable Y; := (cadafi(Vj))(j.a)et1,...s Fx Nz,

) _

6 Solve the least squares problem R RW; = RTY; for Wi( ) via Cholesky decomposition and

forward/backward substitution (see [Bjorck, 1996, Section 2.2.2]), where Wi(J) = (W(J)) N

T

7 Retum @ 5w o> @ (w) 1= (SL W @0 (An(@) T —Ba(w)) | € Ol (U,

ol,y

To analyze the complexity of Algorithm 1, we count every elementary operation, function evaluation,
and generation of one-dimensional random variable as one unit and define €, 4% (.J, V) as this number.

Proposition 4.9. For k € Ny, U < R™ (open, if k = 1), v € [0,00), let w : U — [0,0) be a
normalized weight. Moreover, let p € Cpol - (R), (ca)aeN(Tk c (0,0), let (A1, B1) ~ 04 ® t1(v) satisfy
Assumption 4.1, and let f : U — R? be k-times weakly differentiable. Then, the following holds true:
(i) Algorithm I terminates and is correct, i.e. returns <I>]V\I,/(J) eR ﬁg with W) solving (14).
(ii) The complexity of Algorithm 1 is of order’ €y q.1,(J, N) = O ((k + 1)dJm* 1N? + dN3).

lag,N|
by, NI

SWe use the Landau notation, i.e. ayn = O(byn) (as J, N — o) if lim SUD 7 N oo < o0.
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For fixed k£ € N, this shows that the computational costs for learning a deterministic function by a
random neural network including the derivatives up to order k scales polynomially in J, N, m,d € N.

4.3. Generalization Error. In this section, we bound the generalization error for learning a deterministic
function f : R™ — R? by the random neural network <I>]V\I,/<J) € RN @Z obtained from Algorithm 1.

Since the linear readout W (/) minimizes the empirical MSE in (14), <I>W(J) e RN? ’Z is the best choice
on the training data (V});—1, . In the following, we bound the error beyond (V});—1, ;.

To this end, we combine the approximation rate in Theorem 4.4 (ii) with a result on non-parametric
function regression (see [Gyorfi et al., 2002, Theorem 11.3]). Moreover, we define for every L > 0 the
truncation of a vector by R? 5 y := (y1,...,94)" — T1(y) := (max(min(y;, L), —L))lemd e R%.
The proof of the following result can be found in Section 9.4.

Theorem 4.10 (Generalization Error). For k € Ny, U € R™ (open, ifk = 1), v € [0,0), let w : U —
[0, 0) be a normalized weight such that the constant C'[(gf) > 0 defined in (8) is finite. Moreover, for
v e (0,00), let (A1, By) ~ 04 ® t1(v) satisfy Assumption 4.1, and let (¢, p) € So(R;C) x C| ol“/( )
be m-admissible. Then, there exists a constant Cs > 0 (independent of m,d € N) such that for every
J,NeN, L>0,and f :=(fi,..., fa)" € L'(R™, L(R™), du; R?) with |0, fi(u)| < L for all a € Ngy,
i=1,...,d andu e U, and with ([y| + [v]| + 1)-times weakly differentiable Fourier transform sansfymg

1

\‘” Q) o (1+ us/a\) (k201 H[]42) ) 2
Cy:= JGNON[O ax o J R (J}Rm Hﬁﬁf( 3l é/C) d§) d¢ < oo (15)

o, [Y1+[v]+1

we obtain from Algorithm 1 some @]V\[,/(J) € RN f;‘; with N neurons, which is an F g v-strongly
measurable map @K‘,/(J) 1 Q — WE2(U, L(U), w; R?) such that

W<J>
(12) K y
< 3L\/mkd\/lr\1/(jj) +1VN T Cun <(CQ)QGN%) Cgésfm%zh\/;[ 1+1

Theorem 4.10 shows together with Proposition 4.9 that learning a deterministic function by a random
neural network overcomes the curse of dimensionality under some conditions (see Remark 4.8).

Remark 4.11. Theorem 4.10 is related to the following results in the existing literature:

(1) Theorem 4.10 extends the generalization error in [Gonon, 2023, Theorem 4.1] for random neural
networks with ReLU activation function to more general activation functions and by including
the approximation of the weak derivatives.

(i1) The approximation rate in Theorem 4.10 coincides up to constants with the approximation rate for
deterministic neural networks obtained in the seminal work of [Barron, 1994]. There, the neural
network parameters (including the weight vectors and biases inside the activation function) are
estimated via empirical risk minimization over a constrained parameter set.

4.4. Conclusion. Finally, we summarize the advantages of using random neural networks to learn a
deterministic function instead of fully trained deterministic neural networks:

(i) Convexity: The least squares method in (14) forms a convex optimization problem and thus has a
minimizer. This is not the case for deterministic neural networks, where the optimization problem
is non-convex due to the training of the parameters inside the non-linear activation function.

(i1) Efficiency: Algorithm 1 with the least squares method is more efficient than the training of
deterministic neural network as it does not require the iterative backpropagation procedure and
the amount of trainable parameters (i.e. the parameter space) is much smaller.

(iii) No optimization error: Since the least squares method in (14) directly returns a minimizer, we do
not have to consider an additional optimization error. This is not the case for deterministic neural
networks, which are trained, e.g., via stochastic gradient descent. For example, this additional
optimization error has not been addressed in [Barron, 1994] (see Remark 4.11 (ii)).
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5. NUMERICAL EXAMPLES

In this section, we illustrate in two numerical examples® how random neural networks can be applied
in empirical tasks and how they numerically outperform fully trained deterministic neural networks.

5.1. Mathematical Physics: Learning the solution of the heat equation. In the first example, we
follow [Evans, 2010, Section 2.3] and consider the heat equation, which describes the evolution of a
given quantity throughout time. More precisely, we consider the partial differential equation (PDE)
of o 02 f m
E(t,u)—/\za—u%(t,u)zﬁ (t,u) € (0,0) x R™, (16)
where we assume that the quantity is initially described by a function g : R™ — R, i.e. we impose the
initial condition f (0, u) := lim; 0 f(¢,u) = g(u) for a.e. u € R™.
The first part of the following result is a slight generalization of [Evans, 2010, Theorem 2.3.1] to
a.e. continuous functions, where we define B, (0) := {u € R™ : |u| < r}, r = 0, for the last part.

Lemma 5.1. Ler \,v € (0,0), v € [0,00), and g : R™ — R be a.e. bounded and a.e. continuous. Then:
(1) The function

1 wu—v|2
(0,00) x R™ 3 (t,u) — f(t,u) = mf o g(v)dveR (17)
(4mAt)z Jrm
is the unique solution of the PDE (16) with initial condition g : R™ — R.
(ii) Let p € (1,00) and assume also that g € L*(R™, L(R™), (1 + |u|)1*+1+1dw) with

Cy = gl @m c@m), (@4 july #0414y < ©-

Moreover, let (A1, B1) ~ tm(v) ® t1(v) and w : R™ — [0, 0) be a weight of separable form

as in Example 4.7 (a). In addition, let (1, p) € So(R;C) x CSOI’W(R) be m-adimissible as in

Example 4.7 (b) with supp(¢)) = [£1,&2] for some 0 < & < & < o0. Then, there exist some
constants Cy, Cs > 0 (independent of m € N) such that for every N € N there exists some
Dy € RNE,. | 0 L2(Q, Fap,P; LP(R™, L(R™), w(u)du)) with N neurons satisfying

c 3(I+[]+2)e2 | 2
, C4'm5<1+< ) )cg

2
£ [”f(t’ )= (I)NHLP(RW,E(RM)M(U)W)] < N mmE ' 1o
(iii) For R > 0and k € [0,1/2), the function g := Ig—m € LYR™, L(R™), (14| u])"+ 141 gy)
is a.e. bounded, a.e. continuous, and the right-hand side of (18) grows polynomially in m € N.

Now, we learn the solution f(1,-) of the heat equation (16) by deterministic neural networks and
random neural networks, where we choose A = 4 and the initial condition g(u) := ]lm(u), with

R = 4 and k = 0.4. Moreover, we generate J = 2 - 10° i.i.d. data (V;);=1.....7 ~ Nin(0, I,) which are
split up into 80% for training and 20% for testing. Then, we minimize the empirical L?-error

on(V;), ¢n € NNgm  having N neurons,
On(-)(Vj), ®n€RNRm  having N neurons,

(19)
over the training data, where R 5 s — p(s) = tanh(s) € R. Hereby, we use the Adam algorithm
(see [Kingma and Ba, 2015]) for the deterministic neural networks (over 3000 epochs with learning rate
v = 10~° and batchsize 500), whereas for the random neural networks, we let (A1, B1) ~ t,,(v) ®@t1(v),
with v = 20, and apply a batch normalization before the activation function.

Figure 2 shows that random neural networks are indeed able to learn the solution of the heat equation
(16). Note that in order to achieve a similar approximation quality as for deterministic neural networks,
the number of neurons in the hidden layer of the random neural networks should be about three times
larger than in the hidden layer of the deterministic neural networks. However, in terms of computational
efficiency, random neural networks outperform deterministic neural networks by far (see also Section 4.4).

; !
(} DALV - mw?) with N (V) = {
j=1

The numerical experiments have been implemented in Python on an average laptop (Lenovo ThinkPad X13 Gen2a with
Processor AMD Ryzen 7 PRO 5850U and Radeon Graphics, 1901 Mhz, 8 Cores, 16 Logical Processors). The code can be
found under the following link: https://github.com/psc25/RandomNeuralNetworks


https://github.com/psc25/RandomNeuralNetworks
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(b) Approximation of R 3 u; — f(1,(u1,0.5,...,0.5)) € R

m = 10 m = 20 m = 30

NNGny | RNGny | NNGoy | RNBoy | NNgny | RNBny

N —10 985.93 0.08 994.53 0.11 1056.62 0.12
N 6.96-101° 1.65-107| 1.32-1011  2.13-107 | 1.94- 101  2.61 - 107

N = 50 1028.83 0.47 1078.05 0.54 1045.09 0.58
- 2.81-10"  221-10% | 5.35-1011  2.26-108 | 7.90- 1011  2.31-108

N — 100 1105.79 1.07 1110.50 1.13 1179.85 1.12
- 5.45-10  837-10% | 1.04-10'2 8.42-10% | 1.53-10'2 8.47-108

N — 200 1164.95 2.63 1194.23 2.79 1268.09 2.87
- 1.07-10'2  3.27-10° | 2.05-10'2 3.28-10° | 3.02-10'2 3.28-10°
493 4.9] 5.03

N =300 7.31-10° 7.31-10° 7.32-10°
7.58 7.57 7.59

N = 400 1.29 - 1010 1.29 - 1010 1.30 - 1010

(c) Computational time (in seconds, italic font) and complexity %,,.1,0(.J; N) (in scientific format)

Figure 2. Learning the solution of the heat equation (16) with deterministic neural
networks (label NN 1)1%’",1) and random neural networks (label RN ﬂgm,ﬂ In (a), the
learning performance is displayed in terms of the empirical L?-error (19) on the test set.
In (b), the learned networks (with N = 200 for NN ﬁm,l and N = 400 for RN ﬁ%mg)
are compared to the true solution u — f(1, (u1,0.5,...,0.5)). In (c), the computational
time and the complexity ), 1,0(J, V) (see also Proposition 4.9 (ii)) are shown.
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5.2. Mathematical Finance: Basket option pricing in Black-Scholes model. In the second exam-
ple, we consider the problem of pricing a financial derivative written on multiple assets in the multi-
dimensional Black scholes model. More precisely, for 7' > 0 and m € N, we assume that the stock prices
processes (X¢)seo,7] := (X}, .. X”l)te[0 7y are forevery [ = 1,....,mandt € [0, T given by

2
X! = X exp <<r - ‘;) t+ Jth> . (20)

where X} € (0,00)™ is the initial price, where r > 0 is the interest rate, and where (Wi)ielor) =
(WL, .., wm) L te[0,T] is an m-dimensional Brownian motion. Then, for a given strike price K > 0, we

learn the pricing function of the geometric Basket call option g(X7) whose payoff function is given by
1

(0,00)™ 32 := (x1,.... &) — g(z) := max <H$l> — K, 0]eR. (21)

Hence, by using the Feynman-Kac formula, the pricing function is given by the conditional expectation
v(t,z) == e "T-OE [9(X7)| X = x| which is the unique viscosity solution of the PDE
ov 0% o Ov

t +— t,u)+ —(t,x)—rv(t,z) =0, (t,z)e (0,T)x(0,00)™
(k) hg ity g )+ Y g ) r() =0, (62) € (0.7)x(0,2)
with terminal condition v(7T', z) = g(z) for all x € (0, 00)™ (see [Grohs et al., 2023, Proposition 2.23]).
Thus, by using log-prices u; := In(z;), I = 1, ..., m, the new pricing function

Ft,w) = TR [g(Xr) | X, = (exp()Ls,_ ] 22)
is the unique viscosity solution of the transformed partial differential equation
8f 0' N Of m
=t llg 1 6%6% (t,u) + rl; G bW =rf(tu) =0, (tu) € (0,T) x R™,

with terminal condition f(T',u) = g(u) for all u € R™ (see [Grohs et al., 2023, Corollary 2.24]).
Moreover, by using that (", X%) m_ (T~ X4) Y exp ((r—o0%/2) T+ 2 %", WL), where
the sum of Brownian motions satisfies & > " W% ~ N(0, "%T), it follows that

({L)" (1) oo ((-5) 7227

is log-normally distributed, with Z ~ N(0, 1). Hence, the option price v(¢, ) can be computed via the
classical Black-Scholes formula in [Black and Scholes, 1973] for a one-dimensional put option, i.e.
1

v(t,u) = e "TIE [g(X7)| Xy = 2] = Ke T~ t)@N 0,1)(d2) — (H 331) On(0,1)(d1),

where d; := % (m Sty In(z) + (r+02/2) T) and dy := dy — %, and where O (0,1) :

R — [0, 1] denotes the cumulative distribution function of the standard normal distribution A/(0, 1).
Now, we learn f(0, -) by deterministic and random neural networks, with = 0.01, 0 = 0.5, K = 82,

and T = 1. Moreover, we generate .JJ = 2-10° i.i.d. uniformly distributed data (V;) =1, s ~ U([4,5]™)

split up into 80% for training and 20% for testing. Then, we minimize the empirical L?-error

1
J 3 .
1 9 on(V}), ¢©N € NN, | having N neurons,
— 0,V;) —Nn(V; ith Ny (V; '
(J;'f( 2 N (Vi) ) v (Vi) = {<I>N()(VJ), ®y € RNgm ; having N neurons,

(23)
over the training data, where we use the same setting as in Section 5.1 except the learning rate v = 0.001.
Figure 3 shows that the the pricing function (22) can indeed be learned by random neural networks.
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(b) Approximation of R 3 u; — f(0, (u1,In(82),...,In(82))) e R

m = 10 m = 20 m = 30

NNy  RNGuy | NNGuy  RNGuy | NVS.  RNGw,
N —10 1055.14 0.08 1048.98 0.10 998.91 0.09
6.96-10°  1.65-107 | 1.32-10'  2.13-107 | 1.94-10!  2.61-107
N -0 1001.17 0.44 1020.82 0.51 1037.85 051
2.81-10"  2.21-108 | 5.35-10''  2.26-10%8 | 7.90-10''  2.31-108
N — 100 1059.16 1.00 1104.42 1.05 1181.24 1.07
5.45-10"  8.37-108 | 1.04-10'2 842108 | 1.53-10'2  8.47.108
N — 200 1174.53 2.88 1242.82 2.65 1262.51 2.61
1.07-102  3.27-10° | 2.05-102  3.28-10° | 3.02-10'2  3.28-10°
5.82 4.65 4.63
N =300 7.31-10° 7.31 - 10° 7.32 - 10°
11.03 7.70 7.46
N =400 1.29 - 100 1.29 - 1010 1.30 - 1010

(c) Computational time (in seconds, italic font) and complexity %, 1,0(.J; N) (in scientific format)

Figure 3. Learning the pricing function (22) of the Basket option (21) written on the
geometric Brownian motions (20) with deterministic neural networks (label NN ﬁ%m D)

and random neural networks (label RN f{m 1)- In (a), the learning performance is
displayed in terms of the empirical L?-error (23) on the test set. In (b), the learned
networks (with N' = 200 for NN%,, ; and N = 400 for RN%., ;) are compared to the

true solution u; — f(0, (u1,1n(82), ...,1n(82))). In (c), the computational time and the
complexity €, 1,0(J, N) (see also Proposition 4.9 (ii)) are shown.
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6. PROOFS OF RESULTS IN SECTION 1.

In this section, we show an equivalent characterization for functions in the Banach space (CF(U;R9) ', |-
Hck0l w(U;Rd)) introduced in Notation (v), where k € Ny, U < R™ (open, if £ > 1), and v € (0, o0).
This 7generalizes the results in [Dorsek and Teichmann, 2010, Theorem 2.7] and [Cuchiero et al., 2023,
Lemma 2.7] to differentiable functions defined on an open subset of an Euclidean space.

In the following, we denote the factorial of a multi-index o := (a1, ..., app,) € NJ' by ol := [ )2, eyl
Moreover, we denote by B, (ug) := {u € R™ : |u — ug| < r} and B, (ug) := {u € R™ : |u — ug| < r}
the open and closed ball with radius > 0 around ug € R™, respectively.

Lemma 6.1. Let k € No, U € R™ (open, if k = 1), and v € (0,0). Then, the following holds true:
(i) If U < R™ is bounded, then C}(U; JRd)7 = CF(U;RY).
(ii) If U < R™ is unbounded, then f € C’f(U; R%) " ifand only if f € C’k(U; Rd) and

Noaf )l _

lim max  sup (24)
r—00 aeNgh, ueU\B,(0) ( + HUH)
Proof. The conclusion in (i) follows from the definition of (CF(U;R9) || - || l (U;rd))- Now, for
pol,y A7

sufficiency in (ii), fix some f € CF(U;R?) . Then, by definition of Cf(U; Rd)7 there exists a sequence
(gn)neny S CF(U;R?) with limy, o0 | f — gnHCk L(URY) = = 0, which implies for every fixed r > 0 that

aa - a n
lim max sup [0af(u) = Oagn(uw)| < (1+7)7 lim max  sup 1% f () 97 (w)]
n—0 aeNg", uelU nB,.(0) n—00 aeN{", el B, (0) (1 + HuH)

(1 + "q)7 hm Hf gnHC’c URd) = 0.

This together with the Fundamental Theorem of Calculus shows that f |Um]B ©) : UnB.(0) - R? is
k-times differentiable since for every fixed a € N, the partial derivative 0 f|,; . 5,00 - : UnB,(0) —» R?

is continuous as uniform limit of continuous functlons Hence, by using that U is locally compact, it
follows from [Munkres, 2014, Lemma 46.3+46.4] that 0, f : U — R? is continuous everywhere on
U. Since this holds true for every o € N{’; , we apply again the Fundamental Theorem of Calculus to
conclude that f € Ck(U ; Rd). Moreover, in order to show (24), we fix some € > 0 and choose some
n € N large enough such that | f — g,|| ck . (UiRd) < /2. Moreover, we choose r > 0 sufficiently large

such that (1 4+ 7)Y > 271 gy, ck(U;r#) holds true, which implies that

Ndaf(wl _ [0af () = Qag(w)] N0ag(u) |

max  sup max sup max  sup
B Sl G ) R e S HuH) o o A+ Tl

- € N H9||c§(U;Rd) - € n € _ .
2 (L+7r) 2 2 )
Since € > 0 was chosen arbitrarily, we obtain (24).

For necessity in (i), let f € C’k(U ; Rd) such that (24) holds true and fix some £ > 0. Moreover, we
choose some h € C(R™) such that h(u) = 1 for all u € B1(0), h(u) = 0 for all u € R"™\B2(0), and
that there exists a constant C, > 0 such that for every o € N, and u € R™ it holds that |04 h(u)| < Ch.
In addition, by using (24), there exists some r > 1 such that

I (2% )]
oey iy L+ [ul)7 ~ 1+ 286G,

(25)

From this, we define the functions R™ 3 u — h,.(u) := h(u/r) e Rand U 3 u — g(u) := hy(u) f(u) €
R?, which both have bounded support. Furthermore, we use the binomial theorem to conclude for every
o € Nj* that

m o
2% < 2|a| (26)
b1, ﬁz;‘N 61'62 ﬁeZN:m ﬂ Bil(eu — 51 Hﬁ;o Ail(a H

B1+Bo=c vi: Bl<al
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Then, by using the Leibniz product rule together with the triangle inequality, the inequality (26), that
|0ahr ()] = |Oah(u/r)|r~1o1 < O for any o € N, and v € R™, and the inequality (26), it follows for
every o € N, and u € U that

Oa < 0 0 < 2FC 0 . 27
10ag(u)| < N ;Nm 5115 ,! 81 M (w)| ([0, f (w)| hﬁgrelg?fk 10, f (u)] (27)
B1+pB2=a

Hence, by using that 0ng(u) = 0q(hy(u) f(u)) = O f(u) for any o € Ni}, and u € U n B,.(0) (as
hy(u) = 1 for any u € B,(0)), and the inequalities (27) and (25), the function g € CF(U; R?) satisfies

|9af (1) = Oag(u)|

= dlogwmt = S0 S0 (W Ty
O T B 0 BN Y0
oo QAT oS T Tul)
o

+ max  sup
0y e (L + 1)

0 0
B 7 )] SNSRI (¥,
aeNg * uwelU\B,(0) (1 + H H) aeNgy, uelU\B,(0) ( + “u“)
£ & £
< ——F—+2°Clh——— ==¢.
L+o2rCy, © MTraRg,  ©
Since € > 0 was chosen arbitrarily, it follows that f € C*(U;R?) . O

7. PROOFS OF RESULTS IN SECTION 2.

In this section, we provide the proofs of the results Section 2. In Section 7.1, we prove Lemma 2.5,
whereas the main result of Section 2, i.e. the universal approximation property of deterministic neural
networks in Theorem 2.6, is proven in Section 7.2. Finally, we verify Example 2.8+2.9 in Section 7.3.

7.1. Proof of Lemma 2.5.

Proof of Lemma 2.5. For k € Nyg, U < R™ (open, if £ > 1), and v € (0,0), let (X, | - | x) be an
(k, U, ~)-approximable function space. Then, in order to show (i), we define the subset

N NeN
A=_{U>su— Z (yn,l cos (al’lu) + Yp,2sin (ag’Qu)) ER: yYn1,Yn2€Q » < C’f(Rm) (28)
n=1 Qan,1,0n,2 € Q™

and the vector subspace W := {U 3 u > (a1(u),...,aq(u))" € R?: ay,...,aq € A} = CF(R™;RY).
In addition, we define the weight R 3 u — 1 (u) := (1 + |u])¢ € (0, o), which is admissible in the
sense of [Cuchiero et al., 2023, Definition 2.1] and [Schmocker, 2022, Definition 3.1].

First, if k = 0, we observe that A is a point separating subalgebra of C(R™) < CJ(R™)", which
vanishes nowhere and consists only of bounded functions, thus by [Cuchiero et al., 2023, Remark 3.5]
point separating of ¢)-moderate growth in the sense of [Cuchiero et al., 2023, Definition 3.4]. Hence, by
applying the weighted Stone-Weierstrass theorem in [Cuchiero et al., 2023, Theorem 3.6] componentwise,
it follows that W is dense in CP (R™; R?) " with respect to || - ”C;O)ol (R RY)-

On the other hand, if £k > 1, we observe that A is a point separating subalgebra of C’f(Rm) c

CF(R™)" which vanishes nowhere and for every v € R™\{0} there exists some a € A such that
v (0yalu), ..., O, a(u)) # 0. Moreover, since .A consists only of bounded functions and the function

R™su +— (cos (elTu) ,sin (elTu) , COS (TrelTu) ,sin (WelTu))szl € RA™,
with ¢; € R™ being the [-th unit vector of R™, is a continuous embedding with components from .4, we
conclude that A is locally point separating of order £ in the sense of [Schmocker, 2022, Remark 3.22].
Hence, by applying the weighted Nachbin theorem in [Schmocker, 2022, Theorem 3.40] componentwise,

. . R A
it follows that W is dense in Cf(R™;R?)  with respect to | - |- L (RmR):
pol,y ’
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Finally, in both cases k = 0 and k > 1, we use that (X, | - | x) is (k, U, )-approximable function

P R ———N

space, i.e. that the restriction map (CF(R™;R%) | - ”Ckl ®mrdy) 3 f = flo € (X[ |x) is by
pol,y ’

Remark 2.4 a continuous dense embedding, to conclude that V is dense in X with respect to | - | x.

Therefore, since the set WV is by definition countable, it follows that (X, | - ||x) is separable.
For (ii), we fix some p € Cf(R) ,y € R% a e R™, and b € R, and define the constant Cyap =
1+ maxaenm |ya®| (1 + [a] + [b])7 > 0, where a® := [[}Z; ;" for a := (a1, vy Gpy) | € R™ and
: -
b

o= (a1, ..., aun) € Ni'.. Then, by definition of Cy(R) ', there exists some p € CF(R) such that

I~ Plox, gy o= max sup 2D =P0@] e
Cpolrr(R) 7=0,....k scR (1 + ‘SD7 Cy,a,b

Hence, by using the inequality 1 + [a"u — b] < 1+ ||al||ul| + [b] < (1 + [a] + [b])(1 + [ul), it follows
for the function yp (a’ - —b) := (u — yp (a'u — b)) € CF(R™;R?) that

lypleD (a7 — b) a® — yple) (aTu — b) a®

T b —0d(al . — =
lyp (a b) —yp (a b) Hcgom(Rm;Rd) a@@k e (1 + [u])
lyp (aTu—1b) —yp (a"u—0b)|
a
< <O‘I£I\?§l,(k lya®| (1 + [l + ’b|>> ;3\?5; e (1+|aTu—b])"

() _ 3
) (s) — pU)(s)|
<Cy,q
b ke (L+ s
g

< Cy,a,bT =e.
y,a,b

Since ¢ > 0 was chosen arbitrarily and yp (a' - —b) € CF(R™;R?), it follows that yp (a' - —b) €

Cf (R™;R?) . Thus, by using that NN%,, , is defined as vector space consisting of functions of the

form R™ 5 u — yp (a"u—b) € RY withy € R%, a € R™, and b € R, the triangle inequality implies
that NN%m,d c CFR™; Rd)ﬂ/. Finally, by using that (X, || - ||x) is (k, U, ~y)-approximable function
space, i.e. that the restriction map in (4) is a continuous embedding, it follows that NN Z 4 EX U

7.2. Proof of Theorem 2.6. In this section, we provide the proof of Theorem 2.6, i.e. the universal
approximation property of deterministic neural networks NN pU7 4 inany (k, U, ~y)-approximable function
space (X, | - | x), where k € No, U < R™ (open, if k > 1), v € (0,0), and p € CF(R) .

The idea of the proof is the following. By contradiction, we assume that N/ pU, 4 € X is not dense
in X with respect to || - | x. Then, by applying the classical Hahn-Banach separation argument (as in
[Cybenko, 1989, Theorem 1]), we obtain a non-zero continuous linear functional [ : X — R which

vanishes on the vector subspace NN pU 4 & X. Moreover, by using the continuous embedding in (4), we

can express [ : X — R on the dense subspace C’f(Rm; Rd)7 with finite signed Radon measures. This
relies on the Riesz representation theorem in [Dorsek and Teichmann, 2010, Theorem 2.4].
Subsequently, we use the distributional extension of Wiener’s Tauberian theorem in [Korevaar, 1965],
which generalizes the classical Wiener Tauberian theorem, i.e. that span {R 3 s — p(s + b) e R: be R}
is dense in L(R, £(R), du) if and only if the Fourier transform p (in the classical sense) does not have

any zeros (see [Wiener, 1932]). Then, by using this and that p € Cff (]R)7 is non-polynomial, we conclude
that [ : X — R vanishes everywhere on X, which contradicts the initial assumption that [ : X — R is
non-zero. Hence, N7, , must be dense in X with respect to | - | x.

To be able to prove Theorem 2.6 as outlined above, we now first generalize the Riesz representation
theorem in [Dorsek and Teichmann, 2010, Theorem 2.7] to this vector-valued case with derivatives.
Hereby, we define M., (R™) as the vector space of finite signed Radon measures 7 : B(R™) — R with
Spm (1 + [u])Y|n|(du) < oo, where |n] : B(R™) — [0, 0) denotes the corresponding total variation
measure. Moreover, we denote by Z* the dual space of a Banach space (Z, | - ||z) which consists of
continuous linear functionals [ : Z — R and is equipped with the norm |||z« := sup_cz .|, <1 [1(2)]-



19

. . e ——
Proposition 7.1 (Riesz representation). For k € Ng and v € (0,00), let | : CF(R™;R?)" — R be a
continuous linear functional. Then, there exist some signed Radon measures (na i) aeN™ d

M (R™) such that for every f = (fi,..., f2)| € CF(R™;R%) " it holds that

0k7

()= D D] Gafilu)nai(du).

Proof. First, we show the conclusion for £ = 0 and d = 1. Indeed, by defining R™ 5 u — 1(u) :=
(1+ |u])” € (0,00), the tuple (R™, 1)) is a weighted space in the sense of [Dorsek and Teichmann, 2010,

p- 5]. Hence, the conclusion follows from [Dérsek and Teichmann, 2010, Theorem 2.4].
T
Now, for the general case of £ > 1 and d > 2, we fix a continuous linear functional [ : C’f (R™; R4)" —

R and define the number M := [N | - d and the map
— _ -
CFR™RY) 5 f —  E(f):i= (0afi)aenm i 1.4 € CQR™;RM) ",

0,k

Moreover, we denote by Img(Z) := {E(f) : f € CE(R™;RY) } c CY(R™; RM)" the image vector
. = AR Y — e .
subspace. Then, by using that £ : CF(R™;R%)" — Img(Z) is by definition bijective, there exists an
: P ——— e ny—
inverse map =~ ! : Img(E) — CF(R™; Rd)v. Moreover, we conclude for every f € Cf(R™;R?) " that
1oaf ()]
f m.pd) = INax sup
=l = S 250 T Tl
[9af ()] _ [P0 fi)aeg, i=1,...a
)

—1
= ((aafi)aeNg”k,i:L--wd)‘ ck | (R™;R4)
pol,y ’

= sup max u
ueRm aeNgy (1 + HuH) ueRm (1+ |u

= Hf”ck 1y (RTRM)>

: — - e y——T . . _
which shows that Z~! : Img(Z) — CF(R™;R%) " is continuous. Hence, the concatenation [ o =~ ! :
Img(Z) — R is a continuous linear functional on Img(=), which can be extended by using the Hahn-

. . . VY VAN
Banach theorem to a continuous linear functional [y : Cbo (R™;RM)" — R such that for every f €

CF(R™;RY) it holds that
lo((Oafi)aen, i=1,...4) = (1o=71) ((Oafi)aeNg,,i=1,..d) = 1(f). (29)

Now, for every fixed a € NJ, and i = 1,...,d, we define the linear map Cp(R™) 3 g — lo(g) :=
lo(geai) € R, where e,; € RM := RNkl ~ RN 5 Re denotes the (e, 7)-th unit vector of

RM .— RNGxl4 ~ RINGE 5 R, Then, for every g € CO(R™), it follows with Z := CO(R™; RM)

that
llai(9)] = [lo(9ea)| < [lollz+|geasilco,, @mmry = lollz+lglco, wm),

which shows that [, ; : CI?(RW) — R is a continuous linear functional. Hence, by using (29) and by
applying for every o € Ni, and ¢ = 1, ..., d the case with k£ = 0 and d = 1, there exist some Radon

-----

W(f)=(loZ=7h) ((Oafi)aeng,,i=1,....d)
= lo((aafi)aeNg"k,z’=1,...,d)

Z Z lom, afzeocz

aEN

Yy | 2atitwm(au),

aeNm i=1

which completes the proof. U
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Next, we show that every non-polynomial activation function p € C’{f (R) is discriminatory in the
sense of [Cybenko, 1989, p. 306]. For this purpose, we generalize the proof of [Chen and Chen, 1995,
Theorem 1] from compactly supported signed Radon measures to measures in M., (R"). Hereby, we
follow the distributional extension of Wiener’s Tauberian theorem in [Korevaar, 1965, Theorem A].

Proposition 7.2. For v € (0,0), let n € M+(R™) be a signed Radon measure and assume that
p€ CY(R) is non-polynomial. If for every a € R™ and b € R it holds that

J P (aTu — b) n(du) =0, (30)
then it follows that n = 0 € M~ (R™).

Proof. We follow the proof of [Cuchiero et al., 2023, Proposition 4.4 (A3)] and assume that p € CI?(R)
is non-polynomial. Then, by using e.g. [Rudin, 1991, Examples 7.16], there exists a non-zero point
to € R\{0} which belongs to the support of fo e §'(R; C). Moreover, let n € M., (R™) satisfy (30) and
assume by contradiction that 7 € M., (R™) is non-zero.

Now, for every a € R™, we define the push-forward measure 7, := n o (aT-)_l : B(R) - R by
Na(B) :=n ({ue R™: a"u e B}), for B € B(R). Moreover, for every fixed A € R\{0}, we define the
function R 3 s — py(s) := p(As) € R. Then, by applying [Bogachev, 2007, Theorem 3.6.1] (to the
positive and negative part of n € M., (R")) and by using the assumption (30) (with Aa € R and A\b € R
instead of a € R™ and b € R, respectively), it follows for every a € R™ and b € R that

j pa(s —b)ng(ds) = J P ()\aTu — Ab) n(du) = 0. (31)
R R™

Since n € M., (R™) is non-zero, there exists some a € R such that na : B(R) — R is non-zero.
Hence, there exists some h € S(R; C) such that (z +— f(z) 1= (h *n14)( = (gh(—2z—s na(ds))

L' (R, L(R), du; C) is also non-zero. Then, by using that the Fourier transforrn is injective, f R—C
is non-zero, too, i.e. there exists some ¢; € R\{0} such that f(tl) # (0. Hence, by using [Folland, 1992,
Table 7.2.2], the function (z — fo(z) := f(z)e~"1%) € LY(R, L(R), du; C) satisfies fo(()) = f(tl) # 0.
Moreover, we choose \ := % € R\{0} and define the function R 3 z + pg(z) := pr(2)e 1% € C.
Next, we use [Bogachev, 2007, Theorem 3.6.1] (applied to || : B(R™) — [0, )), the inequality
1+ ’)\a U — b’ < 1+ [M|allllull + A6 < max(1, |A])(1 + |a|)(1 + |b\)(1 —|— |u|) for any a,u € R™
and b,y € R, the inequality (1 + [b])7 < 27 (1 + [b] )7/2 < 27 (1+ [b] ) 2l for any b € R, and that
for every y € R the reflected translation R 5 b — Ey(b) := h(—y — b) € R of the Schwartz function
h € S(R;C) is again a Schwartz function (see [Folland, 1992, p. 331]) to conclude for every y € R that

f f (=g — B)Ipa(s — b)|mal(ds)db = f |h<—y—b>|f 1p (AaTu — AB)| ] (du)db
R JR Rm™ R

o (3aTu— 35 .
< fR |h(—y — b)]| (usgg;)n A+ hatu— M) JR (1+ [Aa'u— /\b’) In|(du)db

< max(, A1+ ol (sup 20 ([ ey = olcs o) [ o ful) ol

~ 2]+
< max(1, [A])7(1 + HGH)’YHPHCSOIW(R) (Sup ’hy(b)‘ (1+16) /2] )
’ yeR

([ rt®) [ i <

(32)
Then, by using the substitution z — s — b and the identity (31), it follows for every y € R that
for ) = [ =200 pp @)z = e [ () = a2z
= emyf J h(z —y — s)px(2)na(ds)dz = eitlyf h(—y — b) f pr(s — b)ne(ds)db = 0,
R JR R R

(33)
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where (32) ensures that the convolution f * pg : R — R is well-defined.

Moreover, let ¢ € S(R; C) such that ¢(§) = 1, forall { € [—1, 1], and ¢(§) = 0, forall € € R\[—-2, 2].
In addition, for every n € N, we define (s — ¢, (s) := 2¢ (1)) € S(R;C). Then, by following the
proof of [Korevaar, 1965, Theorem Al], there exists some large enough n € N and w € L'(R, £(R), du)
such that w # fy = @2, € S(R; C), Hence, by using (32), we conclude for every g € S(R; C) that

(Tpo * d2n) (9) 2= Tpo (P2n(— ) # ) = (g dan % p0)(0) = (g% w * fo x po)(0) =0,  (34)
where ¢, (— -) denotes the function R 5 s — ¢9,(—s) € R. Thus, by using [Folland, 1992, Equa-
tion 9.32] together with (34), i.e. that ¢, Thy = Ty * dan = 0 € S'(R; C), and that gon (€) = H(2n€) =
1 forany £ € [—5-, 5], it follows that 7}, € S'(R; C) vanishes on (—5-, 5-).

Finally, for some fixed g € C°((to — #I/\\’to + ﬁ\/\l)’ C), we define (z — go(2) := g (5 +t0)) €
CP((—5=,5-);C). Hence, by using the definition of 7, € S'(R;C), the substitution { — &/,
[Folland, 1992, Table 9.2.2], and that 7},, € S’(R; C) vanishes on (— 5, o), we conclude that

T 2n0 2n
To(g) = T)(5) = f p(E)3(E)dE = A f PAOFNC)C = f po(O)eS g TN ()2
R RA R (35)
_ fR po(Q)Gb(C)C = Ty () = T (g0) = 0,

where g(//\)\) denotes the Fourier transform of the function (s — g(s/\)) € S(R; C). Since the function

—~

g e CP((to — #W’ to + #I/\\)’ C) was chosen arbitrary, (35) shows that 7, € S’'(R; C) vanishes on
the set (to — #\)\I’ to + ﬁ) This however contradicts the assumption that ¢y € R\{0} belongs to the
support off“; € §'(R; C) and shows that n = 0 € M., (R). O

Next, we show some properties of measures 1 € M., (R™), v € (0, ), whenever they are convoluted
with a bump function. For this purpose, we introduce the smooth bump function ¢ : R™ — R defined by

. Ceiﬁ, u € B1(0),
Plu) {0, u € R™\B4 (0),

where C' > 0 is a normalizing constant such that @[ 1 (gm £(®m),qu) = 1. From this, we define for

every fixed 6 > 0 the mollifier R™ 3 u — ¢5(u) := (%mgb (4) € R. Moreover, for any 7 € (0, ) and
n € M, (R™), we define the function R 3 u — (¢s * n)(u) := (5. ¢s(u — v)n(dv) € R.

Lemma 7.3. For vy € (0,0), letne M,(R™) and f € Cg(Rm)v. Then, the following holds true:

(i) For every § > 0 the function ¢5 1 : R™ — R is smooth with 0o,(¢s *n)(u) = (Oads * 1) (u)
forall o € Ni" and v € R™.
(ii) For every § > 0 and oo € N[ it holds that

lim  sup |f(w)a(@s % m)(w)]| = 0.

"% eR™\ B, (0)

(iii) For every 6 > 0 and o € Ni* it holds that 0o (¢ps * n)(u)du’B(Rm) e M, (R™).
(iv) For every § > 0 and o € N[J' the map

(e

PR oy, @) oS = | f(a(6s e m)(udu e

is a continuous linear functional.
(v) Forevery § > 0 it holds that

fu)(¢s *n)(u)du = J fu+ y)n(du)ds(y)dy.
]Rm m ]Rm
(vi) It holds that

lim (u)(¢s * n)(w)du = | f(u)n(du).
=0 Jgm R™
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Proof. Fix some vy € (0,00), n € M,(R™), f € CE(]R’”)A/, d > 0, and o € Njj*. For (i), we first show
that 0,¢s * 17 : R™ — R is continuous. Indeed, we observe that for every u, ug, v € R™, it holds that

max (|0nds(u — v)|,|0ads(ug — v)|) < C11 := sup |Oads(u1)| < o0. (36)

u1ER™
Then, the dominated convergence theorem (with (36) and that n € M., (R™) is finite) implies that
lim (a¢s *n)(u) = lim | Oads(u —v)n(dv) = f das(uo — v)n(dv) = (Gads * n)(uo);
u—uQ uU—uo Jrpm m

which shows that d,¢5 * 7 : R™ — R is continuous. Moreover, for every fixed 5 € Nj'and [ = 1,...,m
(with ¢; € R™ denoting the [-th unit vector of R™), we use the mean-value theorem to conclude for every
u,v € R™ and h € R that

max (‘ 05(}55(U + hel — Z) — ngﬁg(u — v)

< Cio:= sup [0g4e¢s(u1)| < 0.
uiER™

|08, 05 (u — U)|>
37

Then, the dominated convergence theorem (with (37) and that n € M., (R™) is finite) implies that
(05 = n)(u + her) — (9p¢s * ) (u)

Oey (Oags *n)(u) = lim

h—0 h
iy [ Ze®s(uther—v) = Gsdsu = v)n(dv)

- ij Op+e,P5(w — v)N(dv) = (Opye,Ps * ) (w).

Hence, by induction on 5 € N[, it follows that 0, (¢5 * 1) (u) = (Oads * n)(u) for any u € R™. This
together with the previous step shows (i).

For (ii), we use (i), that supp(¢s) = Bs(0) implies supp(daps) S Bs(0), the inequality 1 + = + y <
(1 + x)(1 + y) for any 2,y > 0, that the constant C13 := Supyegm |Oa®s(y)| > 0 is finite, and that
n € M, (R™) to conclude that

Cra = sup ((1+ ul)"[(ds *n)(u)]) < sup Jm(l + [u])7 0ads(u — )] |nl(dv)du

ueR™ ueRm

< sup J (L+ Ju—v| +]v])7 |0ads(u —v)| Inl(dv) < Crs(1 + 5)7f (L + [ol)7[nl(dv) < oo.
ueR™ m W—é RrR™
<

Hence, by using this and that f € CP(R™)  together with Lemma 6.1, it follows that

i swp|a(os )l = tim s (L8 ) o s )
"% LeRm\ B, (0) =0, gmgyg) |+ lul)
= (14 lim sup M =0,
r=0 cpmgrey (T lul)?

which shows (ii).

For (iii), we first prove that dq (¢s * 1) (u)du| BRm) B(R™) — R is a signed Radon measure. For this
purpose, we denote its positive and negative part by 75+ := + (0a(d5 * 1) (u)) 1 du] BRm) B(R™) —
[0, 00] satisfying 15+ — 75— = Oa (@5 * n)(u)du|B(Rm), where s; := max(s,0) and s_ := —min(s, 0),
for any s € R. Moreover, we define the finite constant C'j5 := sup,,cpm |0a¢s(u)| > 0. Then, for every

u € R™, we choose a compact subset X < R with u € K and use that n € M, (R™) is finite to
conclude that

() = & [ (@G5 ). du < ( [ du) up | (Pss * 1) (w)

ue K
=:|K|

< K| sup fR |Oa¢s(u — )| [n|(dv) < C1s5|K][n|(R™) < oo.
ue m
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This shows that both measures 75 + : B(R™) — [0, 0] are locally finite. In addition, it holds for every
B e B(R™) that

ma(B) = = [ (@alés el du

= inf{if (Oa(ps *m)(u)) . du: U < R™ open with B < U}
U +
=inf {ns+(U) : U < R™ open with B < U},

which shows that both measures 75 4 : B(R™) — [0, o0] are outer regular. Moreover, it holds for every
B e B(R™) that

m(B) = % | (@ulos )W) du

= sup {+J (Oa(gs *m)(u)) . du : K < B relatively compact}
x +

= sup {75+ (K) : K c B relatively compact} ,

which shows that both measures 75 + : B(R™) — [0, 00] are inner regular. Hence, both measures 7; + :
B(R™) — [0, 0] are Radon measures and 0, (¢s * n)(u)du‘B(Rm) = N5+ — Ns— : BR™) — [0, 0]
is thus a signed Radon measure. Furthermore, by using the triangle inequality, that supp(¢s) = Bs(0)
implies supp(Ja¢5) < Bs(0), the inequality 1 +z+y < (1+2)(1+y) forany x, y > 0, the substitution
y — u — v together with [0 ds || 1 (mm £(Rm),qu) < 0, and that n € M, (R™), we have

j (L + [uf)7 205 * n)(w)] du < j f (1 + )" a5t — v) duln] dv)
Rm™ Rm JR™

< f f (L4 o — o] +o]) |0atss (u — v)| duln|(dv)
m Jpm ——

<é

<o (sup [ 1owostu=alae) ([ e polrii@))

veR™

< (4 atl s ccaman ([ 0+ 1ol ) <

This shows that 0, (¢s * n)(u)du‘B(Rm)
For (iv), we use (iii) to conclude that the constant C := §g... (1 + [u)Y [(¢s * 1) ()| du > 0 is finite.
Then, it follows for every f € CP(R™) " that

e M, (R™) is a finite signed Radon measure.

(u)0a(¢s * n)(u)du

Rm

< (swp OO [l oatos el au

uekm (14 [luf)?
= ClGHfHogol ®R™)>

Y

which shows that C)(R™) " 3 f > {5, f(u)da(¢s * n)(u)du € R is a continuous linear functional.
For (v), we use the substitution v — v + y to conclude that

£ () (65 * 1) (u)du = f F(w)s(u — v)n(dv)du
R™ m Jrm

- J W F @ wn(d)ésy)dy.

For (vi), we define for every € (0,1) the function R 5 u — (s * f)(u) := (g ds(u—v)f(v)dv €
R. Then, by using the triangle inequality, that supp(¢s) = Bj(0), the substitution y — u — v together

with o [9s(W)|dy = (@6l L1 m crm)aw) = [OlL1@m c@m)an = 1, the inequality 1 + z +y <
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(1+2)(1 + y) for any z,y > 0, and that f € CP(R™) ", it follows for every u € R™ that

@53 1< [ Jostu— ol L2+ ol

T+ ol
o O e — ol de
< | tostu— g S+l + | sk
7(v) B
< (Jo testu—otan) (om0 ) ol

< ([ 10st0lay) 11y, o0+ 07+ Jul?
< 2| flon, {1+ ul).

Moreover, by using that f € Cg (R™) ", we conclude for every u € R™ that

< (sup L0 ) (ot 1l < Wleg, om0+ Tl (9)

uerm (1 + |Jul

Hence, by using (v), Fubini’s theorem, the substitution 4 — v+y, and the dominated convergence theorem
(with (38), (39), (1 + |u])” € LY(R™, B(R™), |n|) as n € M.,(R™), and [Evans, 2010, Theorem C.7],
i.e. that ¢s = f : R™ — R converges a.e. to f : R™ — R, as § — 0), it follows that

lim fw)(os =n)(u)du = hm J ) [+ y)n(dv)es(y)dy

0—0 Jrm

= lim - ( . flo+ y)(bs(y)dy) n(dv)

~tin [ ([ ot~ wswan) niaw

which completes the proof. O
Finally, we provide the proof of Theorem 2.6, i.e. the universal approximation property of deterministic
neural networks N'A/7; ; in any (k, U, v)-approximable function space (X, | -|| x ), where k € No, U € R™
(open, if k > 1), v € (0,0), and p € CF(R) is the activation function.
Proof of Theorem 2.6. First, we use that (X, || - || x) is an (k, U, y)-approximable function space together
P A ——
with Lemma 2.5 (ii) to conclude that NN, ; € CF(R™;RY) " and that NN, < X.

Now, we assume by contradiction that NN {74 is not dense in X with respect to | - | x. Then, by
using that (X, | - | x) is (k, U, ~y)-approximable, i.e. that the restriction map in (4) is a continuous dense
embedding, it follows from Remark 2.4 that N A%, , cannot be dense in C’f(]Rm; }Rd)7 with respect
to | - o | (Rm RA)- Hence, by applying the Hahn-Banach theorem, there exists a non-zero continuous

pol,y ’
linear functional [ : C¥(R™; R4)" — R such that for every ¢ € N tom g it holds that (@) =
Next, we use the Riesz representation result in Proposition 7.1 to conclude that there exist some signed
e A N O
Radon measures (Wa,z’)aeN&J:l,...d e M, (R™) such that for every f € le(Rm; R9) " it holds that

Z Z aafz naz(du)
aeNm =1

Since I() = 0 for any ¢ € NN, 4 it follows for every a € R™, b e R, and i = 1,...,d that

l (eip ()\aT Z J ‘O‘l a u— b) a®nq,i(du) =0, (40)

aeNm



25

where e;p ()\aT : —b) denotes the function R™ 3 u — ¢;p ()\aTu — b) e R with e; € R? being the i-th
unit vector of R, and where a® := [1% @) fora:= (a1, ...,a,) € R™and a := (a1, ..., ) € NG

Now, we define for every fixed § > 0 the linear map I : C{f(Rm; R?)" — R by

Z Z f afz 5 * ﬁ)(u)d%

aeNm i=1

for f € CF(R™; Rd)’ . Then, Lemma 7.3 (iv) shows that /; : C’k’ R™;R4)" — R is a continuous linear
b

functional as it is a finite sum of the continuous linear functionals Cf (R™;RY) " 5 f > (5., 0o fi(w)(¢s *
n)(u)du € R taken over o € Nj, and i = 1, ..., d. Moreover, for every fixed i = 1, ..., d, we define

R™ 5w hsi(u) = > (=)0, (¢5 % nas) (u) € R,

m
aENO’k

which satisfies hs ;(u)du € M. (R™) as it is a finite linear combination of finite signed Radon measures
Oa (05 * Nai) (u)du € M~ (R™) taken over o € NgY, (see Lemma 7.3 (iii)). Hence, integration by parts
together with Lemma 7.3 (ii) shows that

l5(f> = Z Z J ozfz G5 * na,i) (u)du

aeNm i=1

= ) Z Dl fi(w)éa (66 # Nay) (u)du

aeNm i=1 Rm™

:Z héz )d

Thus, by using this, Lemma 7.3 (v), and (40) (with b — a'y € R instead of b € R), it follows for every
aeR™ beR,andi = 1,...,d that

f p(a"u—b)hsi(u)du =) f PV (0w = b) a® (65 * N i) (u)du
" aeNgy, VR

2, f oD (@ (u + y) = b) a0 i (du) ds (y)du
aeN7?

| @ = @=a"9)) sst —o.

moN\S

=0

Now, for every i = 1,...,d, we apply Proposition 7.2 with h;;(u)du € M. (R™) to conclude that
hsi(u)du = 0 € M., (R™), and thus hs;(u) = O for a.e. u € R™. Hence, it follows for every

f e CFR™RY) that
Z w)hsi(u)du = 0,

which shows that l5 : CFf(R™; R?) — R vanishes everywhere on Cf(R™; R%).
. . y
Finally, we use Lemma 7.3 (vi) to conclude for every f € CF(R™;R9) " that

Z ZJ Oa fi(u)Na,i(du) = hm Z ZJ fi(u 5*n)(u)du=5lirgolg(f)=0,

aeNm i aeNm i

which shows that [ : Cf (R™; R?) " — R vanishes everywhere. This however contradicts the assumption

that l : Cf(R™; R?)" — R is non-zero. Hence, NAY; ; is dense in X with respect to || - || x. O
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7.3. Proof of Example 2.8+2.9. For the proof of Example 2.8 (v), we first generalize the approximation
result for unweighted Sobolev spaces in [Adams, 1975, Theorem 3.18] to weighted Sobolev spaces
(WHEP(U, L(U), w; RY), | - lw.p(,£(U),w;r4)) introduced in Notation (xii).

Proposition 7.4 (Approximation in Weighted Sobolev Spaces). For k € N, p € [1,0), and U < R™
open and having the segment property, let w : U — [0, 00) be a bounded weight such that for every
bounded subset B = U it holds that inf,egw(u) > 0. Then, {f|y : U - R?: f e CX(R™;R?)} is

dense in WEP(U, L(U), w; RY) with respect to || - lwew (U, 20 10R4)-

Proof. First, we follow the proof of [Adams, 1975, Theorem 3.18] to show that every fixed function
f e WrP(U, L(U), w; R?) can be approximated by elements from { f|y : U — R?: f € CX(R™;R%)}
with respect to | - |[yyr.p(u,£(17),wire)- For this purpose, we choose some h € C°(R™) which satisfies
h(u) = 1 for all u € B;1(0), h(u) = 0 for all u € R™\B2(0), and that there exists a constant C, > 0
such that for every o € Ni; and w € R™ it holds that |0nf(u)| < Cp. In addition, we define for every
fixed 7 > 1 the functions R™ 3 u > h,(u) := h(u/r) e Rand U 3 u — f.(u) := f(u)h,(u) € RY,
which both have bounded support. Then, by using the Leibniz product rule together with the triangle
inequality, that |0nh, (u)| = |0ah(u/r)| =1l < Cy, for any o € NI, and u € R™, and the inequality
(26), it follows for every a € Ngfk and u € U that 7

p

|
loafr(@)P < | 3 a.2! |08, r ()]0, f (w)]

|
P pilp
B1+B2=a

< 2PCP max |0, f(u)|P
7 g 135, )]
<2 3 05 fw)l”.
/BQEN&’,C
Hence, by using this, it follows for every V' € £(U) that
b

rlwer@cormsn = | Y] fv 100 i ()P0 (a)

m
OLENO’k

m % P P
< NGy (agl§§kfv ENAOI w(u)du) )

S =

1
<2 | Y [ 1o f@lPetd
BaeNgy Y
1
<2k, ‘Ng?k | Fllwse (v,c (v wrdy < O
Thus, by taking V := U in (41), we conclude that f, € W*?(U, L(U), w; R?). Similarly, by using the
triangle inequality, that du f;-(u) = 0a(f(u)hs(u)) = da f(u) for any o € Niy and u € U n B, (0) (as
hy(u) = 1 for any u € B,(0)), and (41) with V' := U\B,(0), it follows that

f - frHW’W(Um]BT(0),£(UmIBT(O)),w;Rd) +Hf - frHkaP(U\]BT(O),C(U\IBT(O)),w;Rd)

If = Felwrrw ey wrty <

=0

< flwre@w B @.congonwre T 1frlwre 0Em,c008©) wra

k m 1
< (14 2O NG ) 1 00 0B @ ey

Since the right-hand side tends to zero, as 7 — o, this shows that f € W*P(U, L(U), w; R?) can be
approximated by elements of {f € W"P(U, L(U), w;R?) : supp(f) < U is bounded} with respect to
| lwr,2(0),w0;re)- Hence, we only need to show the approximation of the latter by elements from

{flv:U—R%: fe CPR™RY)} with respect to | - [k (v £ (1) wird) -
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Therefore, we now fix some f € WP (U, L(U),w; R?) with bounded support supp(f) < U and
some € > 0. Moreover, by recalling that w : U — [0, c0) is bounded, we can define the finite constant
Cy := sup,ey w(u) > 0. Then, by using that f(u) = 0 for any u € U\ supp(f), thus 0, f(u) = 0 for
w(u) > 0, we have

any a € Nif, and u € U\ supp(f), and the assumption that Cy,,, := infoecqupp()
1
p
I lwsswewransn = | 3 outtan| = 3 j 1aaflPd
Nmk U O(GN"L Supp

<cpl Zf Pt@Putin| —c [ 3 j 0o f () [P ()

aeNg’, upp(f) aeNgY,

B =

f,w”f”kap(U,g(U),w;Rd) < 0.

This shows that f € W*P(U, L(U), du; R?). Hence, by applying [Adams, 1975, Theorem 3.18] (with
U < R™ having the segement property) componentwise, there exists some g € C2°(R™; R?) such that

€
If = gHW’“»P(U,L(U),du,]Rd) = Z J |0a f(u) = Oag(u)|Pdu | < o
aeN™T w

Thus, by using that w : U — [0, 00) is bounded with C), := sup,,c;; w(u) < oo, it follows that

1
P
1f = gl e dugs) = f 00 f (4) — ag(u)|Pr(u)du
aeNm
1
<o X f 00 () — dag(u)|Pdu
aeNm
< chiw =e.

Since f € WHP(U, L(U),w; R?) with bounded support supp(f) < U and ¢ > 0 were chosen ar-
bitrarily, it follows together with the first step that {f|y : U — R?: f € C(R™;R%)} is dense in
WHEP(U, L(U),w; R?) with respect to | - lwew (U204 O

Proof of Example 2.8. For (i), we use that U < R™ is bounded to define the finite constant Co; :=
sup,ey (1 + |u])?. Then, it follows for every f € CP(R™; R?) that

1o leg sy = mas sup 12 ()]

0k uel
0
< <Sup(1+ u)7> max sup ——————— |0t ()]
uelU aENOkUEU( + [luf)

S C21Hf“cgom(ﬂw;ﬂed)-
Moreover, by using that { f|¢ : f € CF(R™;R?)} = CF(U; RY), the image {f|v : f € CF(R™;RY)} of
the continuous embedding (4) is dense in CF(U; RY) with respect to || - ”Cf(U;Rd).

For (ii), the restriction map in (4) is by definition continuous. Moreover, by using that C k(U R%) " i
defined as the closure of C¥ (U; R?) with respect to | - | Ck,_(UiRY): the image {g| : g € CF(R™; RY) } =

CF(U;R?) of the continuous embedding (4) is dense in C’If(U, Rd) with respect to | - ||« | (UsR)"
pol,y A7

For (iii), we first recall that £ = 0. Then, we use that f € CE(R’"; Rd) is continuous to conclude
that its restriction f|; : U — R%is B(U)/B(R?)-measurable. Moreover, we define the finite constant
Cag := §;;(1+ [[u]))Ppu(du) > 0, which implies that i : B(U) — [0, c0) is finite as u(U) = §;; u(du) <
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Cs9 < 0. Then, it follows for every f € CO (R™; Rd) that

110 2 0300 et =(j L) du>

_— %Su If ()]
< (JU(l + [Jul))"P p(d )) ueg (1 + [ul)”

1
Chlflen, mmzsy

which shows that the restriction map in (4) is continuous. In order to show that its image is dense, we fix
some f € LP(U, B(U), u; R?) and & > 0. Then, we extend f : U — R to the function

R"su — T(U) = {(]:(’LL), Zig;n\(]

Moreover, we extend p : B(U) — [0,0) to the Borel measure B(R™) 3 E — @a(E) := u(U n
E) € [0,00), which implies that f € LP(R™, B(R™),i; R?). Hence, by applying [Bogachev, 2007,
Corollary 2.2.2] componentwise (with i(B) = p(U n B) < p(U) < Cy < oo for any bounded
B € B(R™)), there exists some g € C°(R™; R?Y) < CY(R™; R?) with || f — 9l e ®m BEm) ERY) < €
which implies
Lf = gloll e w,Bw) wrey = |f — 9l Lo @m Bm) mRe) < €-

Since f € C%(U;R?) and € > 0 were chosen arbitrarily, the image {f|v : f € C(R™;R?)} of the
continuous embedding (4) is dense in LP(U, B(U), u; R?) with respect to | - | Lo (B0, ey

For (iv), we first use that f € C{f(Rm; R?) is k-times differentiable to conclude for every o € Ngfk that

Ouflv : U — R%is L(U)/B(R%)-measurable. Moreover, we use that U — R™ is bounded to define the
finite constant C3 := §,;(1 + |u/)?Pdu > 0. Then, it follows for every f € CF(R™;R) that

p
o carasn = | X | 1aflPdn

aENm

< <|N6’fk| J, <1+|u|>vpdu> max sup Le/ WL

aeNTY, uelU (1 + HUH)’W

< (Cas ’NglkD Hf”ck L (R™;R4)>
which shows that the restriction map in (4) is continuous. In addltlon, by applying [Adams, 1975, Theo-
rem 3.18] componentwise, {g|y : g € CX(R™; R?)} is dense in WHP(U, L(U), du; R?) with respect to
|- I .@)dura)- Since CL(R™;R?Y) < CF(R™; R?), the image {g|v : g € CF(R™;R?)} of the
continuous embedding (4) is dense in W*P (U, L(U), du; R?) with respect to || - lwew (U, 20, dusr)-
For (v), we use that f € Cf(Rm;Rd) is k-times differentiable to conclude for every a € Ng?k

that 0o f|y : U — R%is L(U)/B(R?)-measurable. Moreover, by using the finite constant Cyy :=
§(1+ [[u)Pw(u)du > 0, it follows for every f € CF(R™;R?) that

1

P

1 wer@ewymzn = | S j |00 f () [P ()

aeNm

< (gl [ @t e sup P00

aeNGY uel (1 + HUH)

1
< (Caa [NGR|) P Hchgom(Rm;Rd).
which shows that the restriction map in (4) is continuous. In addition, we apply Proposition 7.4 to conclude
that {g|v : g € CX(R™;R)} is dense in W*P(U, L(U), w; R?) with respect t0 | - | yr(17,2(17) aor)-
Since CX(R™; RY) < CF(R™;RY), it follows that the image {g|i : g € Cf(R™;R%)} of the continuous
embedding (4) is dense in W*P(U, L(U), w; R?) with respect to || - kw20 10R4) - O
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Proof of Example 2.9. First, since p € C’k( ) is of polynomial growth, in each case (i)-(iv), it induces
the tempered distribution (g — T),(g) := { p g(s)ds) € S'(R; C) (see [Folland, 1992, p. 332]).

For (ii), we recall that tanh’(¢) = cosh(f )2 holds true for all £ € R. Moreover, the Fourier transform
of the function (s — h(s) := m) e L'(R, L(R), du) is for every £ € R given by

~ 2

h(§) = cosh(e)2 = 2w tanh’(&). (42)

Then, by using <g — (pl : T/tasl) (9) := Tramn(p1 -g)> e S8'(R;C), [Folland, 1992, Equation 9.31]

with R 3 s — pi(s) := s € R, the definition of m e §'(R;C), the identity (42), and the Plancherel
theorem in [Folland, 1992, p. 222], it follows for every g € C(R\{0}; C) that

T (019) = (p1 Toamn) (9) = Tt (9) = (=) Toaurs 9)
- (1) [ (a1 = 3* [ B 3)
- (i) [ W@t -

—T
r sinh (7€/2)

Hence, Tyann € S (R; C) coincides on R\ {0} with (g - th —(£) = W) e L (R\{0};C).

(p1 - 9)(€)dS.

1
1+exp

o(s) = 3 (tanh () + 1) forall s € R. Then, by using the linearity of the Fourier transform on S'(R; C),
[Folland, 1992, Equation 9.30], that 7} (g) = 279 (g) := 2mg(0) for any g € S(R; C) (see [Folland, 1992,
Equation 9.35]), the identity (43), and the substitution £ — £/2, it follows for every g € C°(R\{0}; C)
that

For (i), we denote by (s — o(s) = = s)> e CFR ) the sigmoid function and observe that

T,(9) = %Ttanh@)(g) + lﬁ(g) - }T/mﬁ (g (§>> - 2%9(0)
T —iT (44)
-3), st (w72) o(82) & - |, e

Hence, T, € S'(R; C) coincides on R\{0} with (5 = fr (€)= ﬁ) e L} (R\{0};C).

For (iii), we denote by (s — o("1)(s) := In(1 + ¢*)) € CF(R) the softplus function and observe
that 4£5(-1(s) = o(s) for all s € R. Then, by using [Folland, 1992, Equation 9.31] with R 5 s
p1(s) := s € R and the identity (44), it follows for every g € C°(R\{0}; C) that
o

—_

1~ 1 - —
Tooomne9) = (- Ton) @) = §T00) = 1 | spliso(de = | cmlson-g) (€0
Hence, T, 1, (-1 € §'(R; C) coincides on R\{0} with (f — fT/(:) &) = {sm_ihﬂ—(ﬂf)) e L} (R\{0};C).

For (iv), we denote by (s — ReLU(s) := max(s,0)) € C? (]R)7 the ReLU function and observe that
ReLU(s) = max(s,0) = %‘s' for all s € R. Moreover, the absolute value R 5 s — |s| € R is
weakly differentiable with %|s| = sgn(s) for all s € R, where sgn(s) := 1if s > 0, sgn(0) := 0,
and sgn(s) := —1if s < 0. Then, by using the linearity of the Fourier transform on S’(R;C),
that 7/},\1(9) = 2mid'(g) := 2mig’(0) for any g € S(R;C) with R 5 s — pi(s) := s € R (see
[Folland, 1992, Equation 9.35]), [Folland, 1992, Equation 9.31], and [Folland, 1992, Example 9.4.4],

i.e. that fsg\n( —2i §p (5 d¢ for any g € C(R\{0}; C), it follows for every g € C2°(R\{0}; C) that
1~ 1~ 27 1 —~
TreLu(p1-9) = 5T (p1-9) + *T|.|(p1 -g) — (1 9)'(0) + 5 (pl : TH) (9)
1 —~ -2
= Zngn(g) =9 Ri d§ = f 52 (p1 - 9)(§)déE.

Hence, TreLu € S'(R; C) coincides on R\{0} with <§ — f

TReLU

(6) = =) € LL(R\{0}C). O
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8. PROOFS OF RESULTS IN SECTION 3.

In this section, we provide the proofs of the results in Section 3. First, we give a short introduction into
the notion of Bochner spaces in Section 8.1. Subsequently, we show in Section 8.2 that every random
neural network is a strongly measurable map. Finally, in Section 8.3, we prove the main result of Section 3,
i.e. the universal approximation property of random neural networks formulated in Theorem 3.5.

8.1. Introduction to Bochner Spaces. In this section, we give a short introduction into the notion
of Bochner spaces over a probability space, which allows us to consider random functions as Banach
space-valued random variables. To this end, we follow the textbook [Hytonen et al., 2016]. Readers who
are familiar with this topic may skip this section.

Throughout this paper, we fix a probability space (2, F,P) and assume that (X, | - ||x) is a separable
Banach space. Moreover, for a sub-g-algebra Fy < F, we define the set of Fy-simple functions as

Tr, @ X := {QMHZnE )fie X:TeN, E; e Fo, fleX}
=1

Using this, a map F' : 0 — X is called Fy-strongly measurable if there exists a sequence of simple
functions (Sir) meny S Zr, ® X converging P-as. to F' : @ — X, i.e. there exists some A € Fj with
P[A] = 1 such that for every w € A it holds that

lim ||F(w) — SM(CU)“X = 0.
M—o0

Now, for any Fy-simple function S = Zi[:l 1g, fi € Ir, ® X, we define the Bochner integral of S as

J S(w = Z P(E.
Then, one can introduce the Bochner space L" (2, Fo, P; X ) forr € [1,00).

Definition 8.1. For r € [1,00) and Fy < F, the Bochner space L" (2, Fo,P; X) is defined as the vector
space of all (equivalence classes of) Fo-strongly measurable maps F : Q0 — X such that

E[lF|x]:= L |E(w)xP[dw] < oo.

Moreover, we equip L" (2, Fo, P; X) with the L"-norm given by ||F|| -, 7 p;x) := E [HFHS(]%

One can show that the expectation (i.e. the Bochner integral) of every F' € L" (), Fo, P; X) exists as a
limit of Fy-simple functions. Moreover, for every r € [1, o0), it follows analogously to the real-valued
case that (L"(2, Fo,P; X), | - |zr,7p;x)) is a Banach space. In addition, the usual properties of
LP-spaces are satisfied, e.g., Jensen’s inequality, Minkowski’s inequality, and Fubini’s theorem (see
[Hytonen et al., 2016, Section 1.2]). Furthermore, we set L" (2, F,P) := L"(Q, F,P; R).

8.2. Preliminary Results: Strong Measurability of Random Neural Networks. In this section, we
show that every random neural network ® € RN? U.d is F 4 p-strongly measurable with values in an
(k,U,~)-approximable function space (X, | - |x), where k € Ny, U < R™ (open, if & > 1), and

€ (0,0). For this purpose, we first show that the convergence of weight vectors, bias, and linear
readouts implies the convergence of the corresponding neurons as functions in (X, || - | x).

Lemma 8.2. For k € No, U < R™ (open, if k = 1), and v € (0,0), let (X, | - ||x) be an (k,U,~)-
approximable function space and let p € C’f (R) . Then, for every sequence (yYnr,anr,bar)ven <
R? x R™ x R converging to (y,a,b) € R? x R™ x R, we have that

Jim o (a7 - ~8) — parp (aF - —bar) | 0. 4s)
where yp (aT . —b) denotes the function U 3 u — yp (aTu — b) e R4

Proof. Let (yar, anr, bar) men © R? x R™ x R be a sequence converging to (y,a,b) € R x R™ x R
and fix some € > 0. Then, by using that y,sa$, converges uniformly in « € No .. 0 ya®, the constant

Cya =1+ maxaeny, [ya®| + suppreny maxaeny, [yarag;| > 0 s finite, where a® := [ 1%, @ for
a:= (a1,....,am)" € R™ and (a1, ..., am) € Ny, Moreover, by using that (ans,bar) hrew S R™ x R
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converges to (a,b) € R™ x R, the constant Cy j, := 1 + ||(a, )| + suppsen ||(@rr, bar)| > 0 s finite. In
addition, by using that p € C}f (]R)W, there exists by definition of C¥(R) " some p € CF(R) with

. Sl (s) — plal) (s .
lo=les, e 1= e sup 2L P 0

< .
OCENO k seR (1 + |S|)’Y GnyaCavb

Now, we choose 7 > 0 large enough such that (1 + )7 > 6s71Cy /|7 ci(r)- Then, the inequality
1+ |aju—bur| < 1+ lang||ull + [bar] < (1 + Jans] + [bas) (1 + |ul) for any u € R™ and (46) imply

(e (o7 4 — o (ah) (0T u —
max  sup HyMp (aMu bM) aMH < Cy, max  sup | (CLMU bM)|
aeNg", ueR™\B,.(0) (1 + ”u”)’y aeNgh, ueR™\B,-(0) (1 + HUH)’Y

(IaD) (@7 4 — _ (lel) _
< Oy, max sup ‘,0 (aMu bM) P (aMu bM)’
aeNgT, ueR™\B, (0) (1 + HuH)’Y

[PV (afu = bar) |

+ Cy,q max sup

NGy epmyoy (L ul)?
a a T
< oatt+lnl + ) s g = TP el
WPlegz)
YL+ )
(0)(5) — 30) (s ;
< CraCas 0%, 500 | (1)+ \87)”( L 066, aCon
3 9 g
< Cy,aca,bm + 6 = 3

Analogously, we conclude that

yp' (a'u —b) a®
() (oT

€
max sup < —=. (48)
I A Sy R ) 3

Moreover, we define the compact subset K := {xTu —y:ueB.(0), |z + |y < } < R. Then,

by using that p, ¢/, ..., p*) € C’f (R) are by Lemma 6.1 continuous, thus uniformly continuous on K,
there exists some ¢ > 0 such that for every j = 0, ..., k and s1, s9 € K with |s; — s2| < § it holds that

£
6Cya

P9 (s1) = 9P (s2)| < (49)
Now, we define the constant C,. , := 1 + max;—o,.. SUD,, 5 (0) | p(j) (aTU — b)| > 0. Moreover, we

choose some M € N such that for every M € N~ [My, o0) it holds that |[(a — apr, b—bar)|| < 6/(1+7)
and that

o « €
— — 50
mex lya yMaM||<60T’p (50)
Then, it follows for every M > M that
‘(aTu—b) (aMu—bM)lé‘(a—aM u—(b—bM)‘
< |la —ap|ul +10—0
Ja— sl + b = b -
< (o —anrl + 16— bar]) (1 +7)
< (@ —apnr, b —bar) (1 +7) < 0.
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Hence, by using (50) and by combining (49) with (51), it follows for every M € N n [M), c0) that

max sup Hyp l]) aTu — b) a® — yprplled (a]\—/lu — bM) Q%H

0k ueIB
< max sup ‘yp aTu — b) a® — yMp(‘ o)) (a U — b)
aENO & EIB

+ max Sup HyMp led) (aTu — b) ayy — yMp(| o)) (aMu — bM aMH
aeNOk E]B (52)

< max |ya® —yMaMH max  sup ’p(J) (a” u—b)’
aeNg, j=0,. ’kuEIBT(O)

+ max HyMaMH max  sup ‘,0(3 ayu—bar) — p) (a'u— b)‘
a€lNok

N ueB,(0)
S 9
<—Cppt Cpa—— ==
6C., " TV6C,. 3

Thus, by combining (47) and (48) with (52), we conclude that

lvp (a” - =b) —yarp (ans - =ba) e | onma)

e s 19210 (0T 8) 6 — g (= )

 ael ek (1 + ful)

< max sup Hyp (aTu — b) a® — yMp(‘ al) (aMu — by aMH
OZENOk EIB

lyplo) (aTu = b) a®|
(1 4 [Jul)

+ max sup
aeN"
0,k ueR™\B,(0)

lyaep1*D (agpu —bar) |
(1 + [ull)”

+ max sup
aeNT"
0,k ueRm\]B (0)

£
<= + = + 5 =€
3 3 3
Since € > 0 was chosen arbitrarily, we obtain (45) with respect to | - |-« __(rm;ra) instead of |- x
pol,y ’

Finally, by using that (X, || - | x) is (k, U, v)-approximable, i.e. that the restriction map (CJ (R"; Rd)v, I
Hck L(RmRY) )2 f— fluve(X,|-|x)is by Remark 2.4 continuous, the convergence in (45) follows

also w1th respect to || - | x. O

Now, we can use Lemma 8.2 to show that every random neural networks ® € R/\/ p U.d is well-defined
as F 4, p-strongly measurable map with values in an (k, U, )-approximable function space (X, | - | x).

Proposition 8.3. For k € No, U < R™ (open, ifk > 1), v € (0,00), and p € Cf(]R) et (X, ||| x) be an
(k, U, ~)-approximable function space. Then, every random neural network ® € RN ij 4 Is well-defined
as Fa,p-strongly measurable map ® : Q@ — X with values in the separable Banach space (X, | - || x).

Proof. First, we show that every ® € RN ’(}7 4 takes values in the separable Banach space (X, | - | x).
Indeed, since (X, | - |x) is an (k, U, ~y)-approximable function space, Lemma 2.5 (ii) implies that
d(w) e NNpUd C X for all w € 2. Moreover, Lemma 2.5 (i) shows that (X, || - | x) is separable.

Now, by using that RN? U.d is defined as vector space of maps of the form Q 3 w — R, (w) :=
Wo(w)p (An(w)" - =By (w )) € X, withn € Nand F4 g/B(R?)-measurable W, : 2 — R, it suffices
to show that R, : 2 — X is F4 p-strongly measurable. To this end, we use that W, :  — R4
is Fa p/B(R%)-measurable and that R? is finite dimensional to conclude that there exists a sequence
(Whtn)men of Fa p-simple functions Wy, : @ — R4 converging pointwise to W, :  — R? in RY,
Then, for every M € N, we define the map

CKT'
Q3w Ryrp(w) := Wayn(w) Z A OOk < M Aﬁ/f) =4
(a,,B)E([—M27M2]f\Z)m+1
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" Ty ag+1 8 B+1
EM,n,(ocﬁ) = {W eQ: An((.U) € >< |:]\4l,, lM ) and Bn(UJ) € |:M, M)} € ./T"A7B
=1

and where (a, B) 1= (a1, ..., am, B) T € Z™FL. Since Wiy, : Q — R%is an F4 p-simple function, the
product of Wiy (An(w), By(w)) with the indicators 1, ., for (o, 8) € ([—MQ, M?] n Z)MH,
is again an indicator function, which implies that (Rs.)ven S Zr, 5 @ NN 4 P

Next, for any a := (a1, ...,a,,) ' € R™, we use the notation |a| := (|ay], .. [ m]) " € Z™. Then, for
everyw e Q,ue U,and M € N n [M,,, ) with My, := max (|| A, (w)], ]B (w)]), it follows that

MAy(w)|"u  |[MBy(w
Rat)(u) = Wi (B2 DL,
This provides us with an expilict expression for Ry, (w) € NN [pj 4 once w € € is fixed.
Finally, we show that (Rs,)men : € — X converges pointwise to R, : 2 — X with respect to || - | x.

For every fixed w € 2, we use Lemma 8.2 with (WMﬁn(An (w), Bp(w)), lM‘L}\Z(w)J, lM]i}(w)J)MeN c

R? x R™ x R converging to (W, (A, (w), Bn(w)), An(w), Bu(w)) € RY x R™ x R to conclude that
lm [ Rasn(w) — Rn(w)lx
M—a0

(53)

: |MAp(w)]"- [MBy(w)] T
This shows that the map R,, : 2 — X is strongly measurable as pointwise limit of the F4 p-simple
functions (Rpsn)men : 2 — X. O

8.3. Proof of Theorem 3.5. In this section, we provide the proof of the main result of Section 3, i.e. the
universal approximation property of random neural networks. For this purpose, we assume that (X, |- | x)
is an (k, U, 7v)-approximable function space, where k € Ny, U < R™ (open, if £ > 1), and ~y € (0, 0).
Let us first briefly sketch the main idea of the proof. Fix some r € [0,00) and F € L" (€2, Fa 5, P; X).
Then, we first apply [Hytonen et al., 2016, Lemma 1.2.19 (i)] to approximate F' € L" (€2, F4 g, P; X) by

an F 4 p-simple function of the form Zle g fi,withl e N, Ey,...,Er e Fap,and fi,..., fre X, ie.
I

F ~ Y gfi inL'(Q,Fap P;X). (54)
i=1

Now, for every fixed 7+ = 1,...,I, we use that p € C’g‘“(R) is non-polynomial to conclude from the
universal approximation result for deterministic neural networks in Theorem 2.6 that there exists some

p; = Z;]i:l Yi P (azj . _bi,j> € J\fj\f&d, with J; e N, a; ; e R™, b; j e R,and y; ; € R4, such that
]lE,fz 5 ILEZ'SOi = Z ﬂEiyi,jp (azj . —biJ‘) in LT(Q,.FA7B,]P); X) (55)

Next, for every fixed j = 1, ..., J;, we use that p € CF(R) is by Lemma 6.1 k-times differentiable to
conclude for every n € N and small enough 6 > 0 that

]lEiyi,jp (azj . _bi,j) x ]lElE [Wn,i,jp (AT . —Bn)] in LT(Q .FA B,]P)' X) (56)

where Q 3w — W, ; i(w) := C’glyi,j]l{H(AmBn) (ai.jbig)|<6) € R? is F4 p/B(R?)-measurable, with
Cs :=P[{weQ:|(A1,B1) — (aij, bij)| < d}] > 0. Finally, we apply the strong law of large numbers
for Banach space-valued random variables in [Hytﬁnen et al., 2016, Theorem 3.3.10] to conclude that

15E[Whijp (Al - —B1)] ~ @;;:=— Z 15, Waijp (A} - —By)  inL7(Q, Fap,P; X),
n 1
(57)
where ®; ; € RN pU 4 1s a random neural network. Hence, for Theorem 3.5 (i), we combine (54)-(57)
to approximate F' € L" (€2, F4 g, P; X) by the random neural network ® := Zle Z}]Z:1 ®; ;€ RN,
Moreover, Theorem 3.5 (ii) follows from Theorem 3.5 (i) and Chebyshev’s inequality.



34

Now, let us first prove the approximation steps in (56)+(57) together in the following proposition.

Proposition 8.4. For k € No, U < R™ (open, if k > 1), v € (0,0), let (X, - |x) be (k,U,~)-
approximable function space and let p € CF(R) . Moreover, let v € [1,00) and let (Ay, By) satisfy

Assumption 3.1. Then, for everye > 0, E' € Fap, y € RY a € R™, and b € R there exists some
® e RN, , 0 L™ (2, Fa,p,P; X) such that

H]lEyp (aT : —b) -0

1
iz = B[t ) o] ] <<

Proof. Fix somer € [1,00),e >0, E€ Fap,y€ R?, a € R™, and b € R. Then, for every M,n € N,
we define the map

Qow — Runw):=Wyw)p(Ay(w)" - —B,(w)) e X

with Fa_p/B(R?)-measurable random variable

Qsw o Wylw) = ClMynE(w)ngM(An(w), Bu(w)) € RY

where
Gy = {(z,y) e R" xR : |(z,y) — (a,b)| <1/M} € BR™ x R)

and Cpy := P[{we Q: (41(w), B1(w)) € Gp}] > 0 due to Assumption 3.1. Hereby, we recall that
(An, Bn)nen is an i.i.d. sequence, which implies that (A, B,) ~ (A1, B1) is identically distributed.
Moreover, since Wy, : © — R? is by definition F4 5/B(R?)-measurable, it follows that Ry, €
RN, 4- Hence, by using that (X, || - | x) is an (k, U, v)-approximable function space, it follows from
Proposition 8.3 that Ry, : 2 — X is F4 p-strongly measurable for all M,n € N.

Now, we show that the sequence (1.¢,, (An(w), Bn(w))yp (a’ - —b) — Cas Rarn(w)) 4 ep CONVerges
uniformly in w € Q and n € N to 0 € X with respect to | - | x. For this purpose, we use Lemma 8.2 to
conclude that the map

R™" xR (z,y) — ypla -=b)—yp(z" —y)e(X,] |x)
is continuous. Hence, by using that the norm X 3 f — || f|x € R is continuous, it follows that
R™ xR3(z,y) — |yp(a" =) —yp(a"-—y)| R

is continuous as concatenation of continuous maps. Thus, for every M € N, we use that Gp; € R™ x R
is compact to conclude from the extreme value theorem that there exists some (aps, bar) € G s such that

sup yp(a’ - —b) —yp (@' —y) |y = Jve (o - =b) —yp (arr - —bar)
(z,y)eGm
Moreover, by using that Gar41 < Gy for all M € N and that (), Gu = {(a,b)}, the sequence

(y, anr, bar) ey S RY x R™ x R converges to (y, a,b) € R? x R™ x R. Hence, by using Lemma 8.2,
it follows that

lim sup sup ”]lGM (An(w)a Bn(w))yp (aT ' _b) - CMRM,n(w)”X

M—0 yeQ) neN

= lim supsup ||]IGM(An(UJ), By (w)) (yp (CLT : —b) —Yyp (An(W)T ) _Bn(w>))Hx

M—0 4,eQ) neN

o T._p) _ T, _
T, b (0 T el

= Jlim fyp (a’-=b) —yp (ar - —bu)|x = 0.

This shows that (L¢,, (An(w), Bp(w))yp (a” - —b) — CrrRasp(w))
andn € Nto 0 € X with respectto || - | x.

Aren converges uniformly inw € €
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Next, we show that Ry, € L"(Q, Fa p,P; X) for all M,n € N. For this purpose, we recall that
Ryrpn + 2 — X is F4 p-strongly measurable as shown above. Moreover, we use the previous step

to conclude that the sequence (1¢,, (A, (w), Bn(w))yp (a” - —b) — CrRun(w)) ey 18 uniformly
bounded in w € 2 and n € N, i.e. that

C := supsup H]IGM Ap(w), Bp(w))yp (aT . —b) — CyvRyrn(w)

neN we)

| <.

Hence, by using this and Minkowski’s inequality, it follows for every M, n € N that
r L 1 r ol
EllRyalx]" = G—ElICuBaralx]”
M

1
< G BTGy (A Bu)yp (a” - =b) %]

1
T

1
s r
i

1 1
< @Hyp (a"-=b)|x + & S |1, (An(w), Ba(w)yp (a” - —b) — CarRazn(w

1
+ @E |:H]IGM (An, Bn)yp (CLT ’ _b) -

)x

<@Hyﬂ(a =b) | + Coy =%

which shows that Ry, € L"(2, Fa g, P; X) forall M,n e N.

Now, we show that there exists some M3 € N such that the constant maps (w — yp (a” - b)) €
L(Q, F,P; X) and (w+— E[Ry;1]) € L7(Q, F,P; X) are §-close with respect to | - | -0, 7 px)-
Indeed, by using the previous step, i.e. that (L¢,, (4y(w), Bn(w))yp (a’ - —b) — CMRM:”(W))MEN
converges uniformly in w € Q and n € N to 0 € X with respect to | - || x, it follows that there exists some
M3 € N such that

supsup | 1y, (An(w), Ba(@))yp (a7 - =) = Ca Rasgnlw) | < 5. (58)

neN we)

Hence, by using that 2 5 w — S(w) — E[Rag,1] € X is constant, the identities E[1¢,,, (41, B1)] =
P[{weQ: (Ai1(w), Bi(w)) € Gy }] = Ch, and [Hytonen et al., 2016, Proposition 1.2.2], we have

1

lyp (a” - =b) — E[Rag, ] L™ (Q,F,P;X) [Hyp( —b) — B[R ]HX];
= [yp(a” - —b) — E[Ras, 1]

H [ ILGN[?’ (A17 Bl)yp ( b) - RM3,1:|

.
< E |:]1C7']\/13 (Aly Bl)

1
'C’]M?)]IGM‘%lyp (aT : 7b) - RM3,1

(59)
.
E [ﬂngizl’Bl)] sup H]IGM3 (A1 (w), Bi(w))yp (aT : _b) - CM3RM371(W)HX = g

wef

<

<

This shows that the constant maps (w — yp (a' - —b)) € L"(Q,F,P;X) and (w — E[Rag,1]) €
L"(Q, F,P; X) are §-close with respect to | - || - (o, 7, x)-
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Finally, we approximate the constant random variable (w — E [Ras,1]) € LY(Q, F,P; X) by the
average of the i.i.d. sequence (Raz; n)nen S L1(2, Fa g, P; X). Indeed, by applying the strong law of

large numbers for Banach space-valued random variables in [Hytonen et al., 2016, Theorem 3.3.10] with
Banach space (X, || - |x), we conclude that

1 - . .
N Z Rigyn =y g [Rasy1] in LY(Q,F,P;X) and P-as. withrespetto || - |x.  (60)
=1

Moreover, if > 1, we generalize in (60) the convergence to L™ (€2, F,[P; X'). To this end, we define the

sequence of random variables (Zxn) yeny by Zn(w) 1= HE [Ras 1] — % ij:l Rgym ;, for w € Q and
N € N. Then, [Hytonen et al., 2016, Proposition 1.2.2] and (58) imply for every N € N that
N T
1
sup Z (w) < sup (I\E[RMs,l]\X + 5 > !RMs,n(W)IX>
we) we) ne1

< sup sup (E [HRMg,l
neN we
T

]+ [ Rass (@) )"

<

sup sup ||Cazy Rz n ()|
eSSt ()

27‘
< g smmeup (1o, (e Batup o —0)] <

+ Ly, (An(w), Ba(@))p (a - —b) cMgRMg,nwx)

2" EN\T
<G (@™ =)l +3) = Cz <o

From this, we observe that sup yen E [\Z NI ZN|>Cz}] = 0, which shows that the family of random
variables (Zn)nen is uniformly integrable (see [Hytonen et al., 2016, Definition A.3.1]). Thus, by
using (60), i.e. that Zy — 0, P-as., as N — o0, together with Vitali’s convergence theorem in
[Hytonen et al., 2016, Proposition A.3.5], it follows that

-

]\P_I)HOOE E [RM& N Z RM&

n=1

] = lim E[Zy] = 0. (61)
N—0

X

Hence, either by (60) (if » = 1) or (61) (if r € (1, 20)) there exists some Ny € N such that

r oL
™
]<

X

Thus, by defining & := (w A oI (% )RMg,n(w)) e RN?,, A L'(Q, Fap,P; X) and by
combining (59) and (62) with Minkowski’s inequality, it follows that

1
LT (2,7 P;X) [H]lEyp( ~b) — 2| ]T

E

E[Ras1] — ~— Z Rty (62)

IR

H]lEyp (aT . —b) P

T 1 NO r %
:E[ 1g |yp (a —b) — Fo ZlRMgm ]
<1 n=
ST
T [— —_—
<E [ Yyp (a b) Ny ,;1 Ry
_ 1
1 N() ™
<|yp(a" - =b) —E[Raynl|x +E | |E[Rassn] — N > Ratym ]
L n=1

<€+€—5
2 92 7

which completes the proof. U
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Proof of Theorem 3.5. In order to show (i), we fix some F' € L"(Q, F4 g,P; X) and € > 0. Then, by
using [Hytonen et al., 2016, Lemma 1.2.19 (i)], i.e. that the set of F4 g-simple functions IJ—'A,B ®RX =

{Z{Zl 1g,fi:1eN, E;e Fap, fi€ X} is dense in L" (82, Fa p,P; X) with respect to ||| .- (o, 7 p;x)>»

there exists some [ € N, Fy, ..., E1 € F4 g, and f1, ..., fr € X such that
I I " c
-2 et —Zﬂmﬁ] <3 (63)
i=1 L™ (Q,F,P;X) i=1 X

Now, for every i = 1,..., I, we use that p € CF(R) ' is non-polynomial to conclude from Theorem 2.6
that there exists a deterministic neural network ¢ = Zle Yi P (aZj ¥ ]> e NN? U.d® with J; € N,
i1y -y Q4 J; € R™, bi71, ooy b@]i € R, and Yily - Yi J; € Rd such that

Hfz Soz”X <357 (64)

3[

Moreover, forevery ¢ = 1,..., T and j = 1, ..., J;, we apply Proposition 8.4 to conclude that there exists
some ®; ; € RN, , such that

1

r €
E[[Layisp (al; - —bis) = @il ] <5 ht ot Jp)

Hence, by defining the random neural network ® := Zle Z‘j]izl D€ RNY, ;N L"(Q, Fap,P; X)
and by combining (63), (64), and (65) with Minkowski’s inequality, it follows that

r ek

X]

I — @ ro,7px) == E[|F — (I)”X]
Ty I
X =1

T I
i=1 1=1

E[F—

I
Z Z [H]lE vigp (al; - —bij) — q’z‘u‘”;]

(65)

Zﬂm |

i=1j5=1

X

S|

rqt I
+ E ]lE f %)
X] DLE[ Ifi =il 7

i=1

I
g, f;
i=1

<1

S =

E’fz

] +Z\fz vill x

X =1

I 1
2 [\11]; vigp (al; - —big) — ‘bi,jﬂ;]r
i=1j
e €
37137 (J1+”+JI)3(J1+..+J1) ©

which proves the inequality (i).

In order to show (ii), we fix some F' € L"(Q, F4 5,P; X) and §,¢ > 0. Then, by using (i) with
0" > 0 on the right-hand side instead of ¢ > 0, there exists some ® € RN’(}d N L"(Q,Fap, P X)
such that

E[|F - ®[%] < 6&".
Hence, by using this and Chebyshev’s inequality, it follows that
1 1
Plwe R [F - ow)lx > e}] < E[IF - B[] < b =5,

which completes the proof. U
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9. PROOFS OF RESULTS IN SECTION 4.

In this section, we provide the proofs of the results in Section 4. First, we recall the Radon transform
(see [Helgason, 1999]) and the ridgelet transform (see [Candes, 1998] and [Sonoda and Murata, 2017])
in Section 9.1. Then, we use the reconstruction formula of [Sonoda and Murata, 2017] in Section 9.2
to derive an integral representation of the function to be approximated. This is used in Section 9.3 to
show the main result of Section 4, i.e. the approximation rates in Theorem 4.4 for learning a deterministic
function. Finally, in Section 9.4, we prove the generalization error formulated in Theorem 4.10.

9.1. Preliminary Results: Radon Transform and Ridgelet Transform. In the following, we denote
by S™! := {v € R™: |[v| = 1} the unit sphere in R™ and define for every (v,h) € S™ 1 x R the
hyperplane H}", := {u € R™ : u"v = h}. Then, we follow [Sonoda and Murata, 2017, Section 2.5] and
recall that the Radon transform of any function f € L'(R™, L(R™), du; R?) is defined by

Sl xRs(w,h) — (Rf)(v,h) = f(u)du € RY (66)
H™,
Now, we denote by L®1(S™~1 xR, L(S™~! xR), duv®dh; R?) the vector space of L(S™ ! xR)/B(R%)-
measurable functions Q : S ! x R — R such that

Q] Lot (sm—1 xR £ (51 xR, dv@dh;R) i= SUP J 1Q(v, h)[|dh < 0.

peS§m—1

For completeness, we show the following simple generalizations of the Radon transform’s properties
(including the Fourier slice theorem in [Helgason, 1999, Equation 4]) from the original one-dimensional
setting to this multi-dimensional setting.

Lemma 9.1. The following holds true:
() The Radon transform R : L'(R™, L(R™), du;R?) — LS 1 x R, L(S™ ! x R),dv ®
dh; R?) defined in (66) is a continuous linear operator.
(ii) Forevery f € LY(R™, L(R™),du; R?), v e S™1, and ¢ € R, we have (Rf)(v,-)(§) = f(fv).

Proof. Fix some f € L'(R™, L(R™),du;R?). For (i), we use that the function S™~! x R x R™ 3
(v, hyu) = Tgm (u) f(u) € R?is £(S™! x R x R™)/B(R%)-measurable to conclude that

S X R5(v,h) F(u)du — f Ly, (u)f(u)du € R

Hgfh m
is £(S™~! x R)/B(R%)-measurable. Moreover, by using the definition of the Radon transform in (66)
and that  J,.g H", = R™, we conclude that

HRfHLwal(Sm—lxR,E(Sm—lxR),dv@dh;]Rd) = Ssup J I(Rf)(v,h)||dh < sup f f Hf )| dudh

veSm—1 veSm—1

| 1@l = 1l ez

(67)

This shows that R : L'(R™, L(R™), du; R?) — L®H(S™ 1 xR, L(S™ ! xR), dv®dh; R?) is bounded.

Since the Radon transform is by definition linear, it follows that R : L'(R™, L(R™), du; RY) —
LY S™ I x R, L(S™ ! x R), dv ® dh; RY) is continuous.

In order to show (ii), we use the definition of the Fourier transform in (1), the definition of the Radon

transform in (66), that h = v ' for any u € Hv ,» and that Hth = R™ for any v € S™! to

conclude for every v € S~ ! and ¢ € R that

R0, )(€) = fR<Rf><v,h>e—ifhdh - j F(w)e™ € dudh

R H;’jh
= | e i Tugy = f(ew),

which completes the proof. U
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Next, we define the space Y"1 := §™~1 x (0,00) x R. Then, for any fixed 1) € Sp(R; C), we follow
[Candes, 1998] and [Sonoda and Murata, 2017, Section 3.2] and recall that the ridgelet transform (in
polar coordinates) of any function f € L'(R™, L(R™), du; R?) is defined by

Y™t 5 (v,5,t) —  (Ryf)(v,s,t) = J (Rf)(v,h)y <h_t> 1dh e C%, (68)
R S S

For completeness, we show the following simple generalizations of the Ridgelet transform’s properties
from the original one-dimensional setting to this multi-dimensional setting (see also [Kostadinova et al., 2014]
for continuity results between (Lizorkin) Schwartz spaces and distributions).

Lemma 9.2. Let ¢ € So(R;C) and Y™ 5 (v,s,t) > wn(v,s,t) := s € [0,0) be a weight. Then,
the following holds true:
(i) The ridgelet transform Ry, : L*(R™, L(R™), du; RY) — LP(Y™ L L(Y™ 1) we; C) defined
in (68) is a continuous linear operator.
(i) Forevery f € LY(R™, L(R™), du;R?) and (v, s,t) € Y™+ it holds that

) (ws.t) = 5= | Fleoplles)eas

Proof. Fix some f € L'(R™, L(R™), du; R?). Then, by using Lemma 9.1 (i), i.e. that Y"*! x R 3
(v, 8,8, h) = (Rf) (v, h)p (1)L e Cdis £(Y™ ! x R)/B(C?)-measurable, it follows that

Y™ 3 (v,5,t) = (Ryf)(v,s,t) = JR(Rf)(v, h)ap (hs_t> %dh e C?

is £(Y™*+1)/B(C?)-measurable. Moreover, by using the definition of the Ridgelet transform (see (68)),
the inequality (67), and that ||[¢)||co(r;c) := sup,eg [¥(2)| < o, we conclude that

h—t
HmwaLOC(Ym+17E(Ym+1)7wm;(cd) = sup S

1
R h —— | =dh
(v,s,t)eY™m+1 JR( f)(v’ )w ( S ) S

< sup J|Rfvh‘¢< )‘dh
(v,s,t)eYm+1

< [Wlosee) sup j [(RF) (v, )| dh

(69)

= [¥lcomse) ”Rf”Lw’l(Sm—1®R,E(Sm—1®R),1®1;Rd)
< Yleowsey 1 £ 121 @m, £@m),dusra)-

This shows that R, : LY(R™, L(R™), du; RY) — L®(Y™ L, £(Y™H1), we; CY) is bounded. Hence,
by using that the ridgelet transform in polar coordinates is by definition linear, we conclude that Ry, :
LYR™, L(R™), du; RY) — L®(Y™F1 L(Y™+) we; C9) is continuous.

In order to show (ii), we use the definition of the Ridgelet transform (see (68)), the Plancherel theorem
in [Folland, 1992, p. 222], Lemma 9.1 (ii), [Folland, 1992, Table 7.2.2], and [Folland, 1992, Table 7.2.4]
to conclude for every (v, s,t) € Y™*! that

(930 ) (0,5, = f (), (’H) Lan

- 5 | ®OEI©T (e
- ff&@ws§>@%
= 57 | Feorites)eas

which shows (ii) and completes the proof. U
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9.2. Preliminary Results: Integral Representation and Bochner Norm. In order to obtain the approx-
imation rates in Theorem 4.4, we discretize an integral representation of the function to be approximated.
This is a standard technique in approximation theory and has been also used for deterministic neu-
ral networks (see e.g. [Carroll and Dickinson, 1989], [Ito, 1991], [Barron, 1993], [Darken et al., 1993],
[Karkova, 2012], [Kainen et al., 2007], and [Sonoda and Murata, 2017]). In our context of random neu-
ral networks, we express the function to be approximated as expectation of a random neuron.

For this purpose, we use the reconstruction formula in [Sonoda and Murata, 2017, Theorem 5.6] to
express any sufficiently regular and integrable function as the expectation of a random neuron. Hereby, we
define the real part of a vector z := (21, ..., zm) | € C"™as Re(z) := (Re(z1), ..., Re(zn)) " € C™. More-
over, we follow [Sonoda and Murata, 2017, Definition 4.4] and recall that the dual ridgelet transform ERL
of any function Q : S™ ! x (0, 0) xR — C satisfying Q (v, s, v u—s ) = (z — () (v, s, vy — sz)) €
S(R;C) forallv e S™1, s € (0,00), and u € R™ is defined by

6
R"su — (SRT ;= lim J Jsz (Q (v,s,vTu—s-)) SimdsdveRd.
S§m—1

61~>0

Proposition 9.3 (Integral Representation). For v € (0,0), let (A1, B1) ~ 04 ® t1(v) satisfy Assump-
tion4.1, and let (v, p) € So(R; C)x L, (R; C) be m-admissible. Moreover; let f € L*(R™, L(R™), du; R?)
with f € LY(R™, L(R™), du; C?) and define for every u € R™ the map

Qaw — Rl(w):=W/(w)p (An(w)Tu — Byp(w)) € R, (70)

where

PRy ) uﬁZEiiu EREIE HﬁZﬁiiu ) .
Re ( C#L/),p)eA(An(w))eB(Bn(w)) ) lfAn(w) # 0,
0

0, if Ap(w) =

Qow — Wl(w) := (71)

Then, for a.e. u € R™, it holds that E[Rf; (w)] = f(uw).

Proof Fixne Nand f = (fl,. L f0)T e LYR™, £(R™), du; RY) with f € LY(R™, £(R™), du; C).
Moreover, we define the map R}, : Q — WHEP(U, L(U),w; R?) as in (70) with Wi Q- R asin (71).
Then, by using that f € L (R™, L(R™), du; C?), it follows for every i = 1, ..., d that

Il caman = | [F©]de< | 17@1E = 1 ls@mcamacy <2 @2

Hence, by using that (A4,,, B,,) ~ (A1, By) is identically distributed with probability density functions
64 : R™ — (0,00) and 0 : R — (0, 0), respectively, that the left-hand side is real-valued, the

substitution (R™\{0}) x R 3 (a,b) — (v,s,2) = (i, Aralu — b) e S ! x (0,00) x R with

laf laf”
Jacobi determinante dbda = s~ ™dzdsdv, and [Sonoda and Murata, 2017, Theorem 5.6] applied to
fi € LY(R™, L(R™), du) with f; € L' (R™, E(Rm), du; C) by (72), it follows for a.e. u € R™ that

1

mwf % me)) o
a u—>b)0s(a)fp(b)dbda
me\{O}f 0.4(a)05(b) P ) 04(a)0(b)
1

)0
1 a b
- R a'u—1b) dbda
e me\{o}fR< ﬂ’f)(uw o o) P @)

o (L[ Lo s s2) o) )
= —— i)v,s,v u—sz)plz)—dzdsdv
C’r(r’Lijp) Sm—l O R w p Sm i:1,...,d

:
1
- 59 Jim, | f (B ) (05,07 ) - dsdo
i=1,..,d
1
= oy (OURf) @)y g = (), a = S0

This proves that E[Rfl(u)] = f(u) fora.e. u € R™. O
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Note that Proposition 9.3 is not concerned about any measurability properties of the random neuron Rl
in (70). To this end, we follow Proposition 8.3 to show that such random neurons are strongly measurable
with values in a weighted Sobolev space WP (U, L(U), w; R?) introduced in Notation (xii)+(xiii).

For this purpose, we first show that (W*P(U, L(U),w,R%), | - lwew(u,2(0),0,R4Y) 18 separable.

Lemma 94. Let k € Ny, pe [1,00), U € R™ (open, ifk > 1), and w : U — [0, 0) be a weight. Then,
the Banach space (W*P(U, L(U), w,R?), || - lwkw (U,2(0),0,R4Y) in Notation (xii)+(xiii) is separable.

Proof. First, we show the conclusion for k = 0, i.e. that the Banach space (W% (U, L(U), w; R?), | -
lwourw,c@ywray) == (LPU, LIU), w(w)du; RY), | - [ 1o(17,2(17) wo(u)du:re)) defined in Notation (xiii) is
separable. For this purpose, we observe that B(U) is generated by sets of the form U n X, [r1.1,771,2),
with 71,72 € Q, 1 = 1,..., m. Moreover, by using that £(U) and B(U ) coincide up to Lebesgue nullsets
and that w : U — [0, o0) is a weight, i.e. that the measure spaces (U, L(U), w(u)du) and (U, L(U), du)
share the same null sets, we conclude that (U, L(U), w(u)du) is countably generated up to w(u)du-null
sets. Hence, by applying [Doob, 1994, p. 92] componentwise, it follows that (WP (U, L(U),w; R?), | -
lwor e wray) = (LP(U, LU), w(u)du; RY), |- | 1o u,£0) a(u)dusrey) 15 separable.

Now, for the general case of k > 1, we consider the Banach space (W*P(U, L(U), w,R%),| -
lw.p(U,£(),,r4)) introduced in Notation (xii). Then, we define the map

WEP(U,LU),w,RY) 3 f = E(f) i= (@af)aeny, € X LP(U,LU), w(w)du,RY) =: Z,

m
O‘ENo,k

where Z is equipped with the norm gz := ZaENS“”k |9all e (0,2 (0) ,du,reys Tor g 1= (ga)aeNg}k € Z.
Then, by using the previous step, we conclude that the Banach space (Z, ||| z) is separable as finite product
of separable Banach spaces. Hence, by using that W*?(U, £(U),w,R?) is by definition isometrically
isomorphic to the closed vector subspace Img(Z) := {E(f): fe WFP(U,L(U),w,RY)} < Z, it
follows that (WP (U, L(U),w,R%),|| - lwkp (U, £(07),10,R4Y ) 18 Separable. O

Next, we apple the same arguments as in the proof of Proposition 8.3 to obtain strong measurability.
Lemma 9.5. For k € Ny, p € (1,0), U < R™ (open, ifk > 1), v € [0,0), and p € Cpol (R), let
w : U — [0,00) be a weight such that the constant C((Zf) > 0 defined in (8) is finite. Moreover, for a
sub-o-algebra Fyp < Fo S F, let W : Q) — RY be an Fy/R-measurable random vector and define

Qow = Ry(w):=W(w)p(An(w)" - =B, (w)) e WFP(U, L(U), w,RY).
Then, the map R,, : Q@ — WFP(U, L(U),w, R?) is Fy-strongly measurable with values in the separable
Banach space (WP (U, L(U), w; R?), || - lwr,£U),wR))-

Proof. First, we show that the map R,, : Q — WH*P(U, L(U), w, R?) takes values in the Banach space
(WHEP(U, L(U), w; RY), | - lwp (U, (0),wra))s Where the latter is by Lemma 9.5 separable. Indeed,
since p € C’;fol (R) is k-times differentiable, it follows for every fixed w € 2 and « € Np' that U 3 u —
OaRpn(w) = Wf( )pleD (A (w) Tu — Bp(w)) An(w )O‘ e R%is £(U)/B(RY)-measurable. Moreover,
byusingthatpeCpOM( ), i.e. that [p¥) (s)| < ||pHCk g)(1+[s)? forany j = 0,...,k and s € R, the
inequality 1+ |An(w) u — By (w)] < 1+ | An(w )HHUH + \Bn(w)\ < (L4 [ An(@) |+ [Ba(w)) (1 + [ul)

for any v € R™, and that C’((}Yf) = (§,(1+ HuH)“’pw(u)du) P2 0is finite, we conclude that

Rt canumn = 2 | W@ (A) = Bulw) An(w)*|[ wlu)da

aeNm

< Z HWf H f 1+’An(w)Tu—Bn(w)wa(u)du

<| X [W@aee]" |0+ 1Al 18D | 0 P <

This shows that R,,(w) € W*P(U, L(U), w; R?) for all w € €.
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Now, in order to show that R,, : Q — W*P(U, L(U),w,R%) is Fo-strongly measurable, we aim to
apply the same arguments as in Proposition 8.3. For this purpose, we first show that for every sequence
(yar, anr, bar) pren S R x R™ x R converging to (y, a,b) € RY x R™ x R, it holds that

Jim fyp (a® - =b) = ynp (anr - —=ban) [y (v, e ) wme) = 0 (73)

where yp (aT . —b) denotes the function U 3 u — yp (aTu — b) € RY. Indeed, fix a sequence
(yar, anr, bar) eny € R? x R™ x R converging to (y,a,b) € RY x R™ x R. Then, by using that
ymagy(1+ [an| + |bar|) converges uniformly in o € N to ya®(1 + [a| + [b]), the constant Cy 45 :=
maxaeng, [ya®| (1 + af + [b]) + suppen <maxaeN3?k lyacad, | (1 + Jaas] + \bM])> 0 is finite,
where a® := [, a;" for a := (a1, ...,a,) " € R™ and o € Ng'y.- Hence, by using that p € c* ol (R),
ie. that |p) ()| < HpHck g)(1+]s[)? forany j = 0, ...,k and s € R, the inequality 1+‘aMu—bM‘ <

1+ Janm]|lu] + bar] < (1 + HaMH + |bar|)(1 + |Ju|) for any M € N and u € R™, it follows for every
a € Ng', ue U, and M € N that

HyMP b (GMU — by CLMH lyarads| ‘P(M (aMU - bM)‘
< ynmafyll HPHC”“ ® (1+ |ansu —bal)” (74)
< [lyarady | (1 + HaMH o )Mpler, @+ [ul)?
< Caplollen, @1+ ul).
Analogously, we conclude for every o € Nii%y and w € U that
D (e = bar) | < € @+ ). 75)

Hence, by using the triangle inequality together with the inequality (z + 3)? < 2P~! (2P + yP) for any
xz,y = 0 as well as the inequalities (74) and (75), it follows for every o € NO 4o» W€ U, and M € N that

o1V (T = 1) a® = gD (afru — bu)
<20t (Hyp(‘o") (aTu—b)a®| + HyMP“aD (apru — bar) “ﬂHp) 7o
<20y, bHPH (1 + [ul)™®

~(R)

Thus, by applying the R%valued dominated convergence theorem in [Hyténen et al., 2016, Proposi-
P
tion 1.2.5] (with (76) and §; (1 + [[ul))"” w(u)du = (C’gﬁ?) < oo by assumption), we have

A/]{igloo Hyp (aT ‘ —b) —Ymp (aX/[ : _bM) HW’W(UL(U),w;Rd)

B =

= Z lim J Hyp(lal) (aTu —b)a* — yarplled (a&u —bu) a%pr(u)du = 0.

M—o0 U
aENg?k

This shows the desired convergence in (73). Hence, by applying the same arguments as in the proof
of Proposition 8.3 (with (73) instead of Lemma 8.2 and with Fo/B(R%)-measurable W : Q — R?
instead of an F4 p /B(R%)-measurable W : Q — R%, where it holds that F 4.B < Fo), it follows that
Ry : Q — WHEP(U, L(U), w, R?) is Fo-strongly measurable. O
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Finally, for the approximation rates in Theorem 4.4, we compute the Bochner norm of the random
neuron R}, : Q0 — Wk» (U, L(U),w; R?) with linear Wi : @ — R? also used in Proposition 9.3.

Proposition 9.6. For k € Ny, p € [1,0), U < R™ (open, ifk > 1), v € (0,0), let w : U — [0, 00)
be a weight such that the constant C[(]?qf ) >0 defined in (8) is finite. Moreover, for v € (0,0),
let (A1,B1) ~ 04 @ t1(v) satisfy Assumption 4.1, and let (1,p) € So(R;C) x C% . _(R) be m-

pol,y
admissible. Then, there exists a constant C31 > 0 (independent of m,d € N) such that for every

fe LYR™, L(R™), du; RY) with ([y] + [v] + 1)-times weakly differentiable Fourier transform satisfying

\W )| (1 JeD g
Crim o3 f (JRm |25 7(€)1 <s/<>r1 dg) & < oo, (71)

N M+M+1

the map

Qsw = Rlw):=W](wp(An(w) - —Bu(w)) € W (U, LU),w;RY) (78
with e o

(R ) (T2 Tt TAteT) A
Qow — Wl(w):= Re( TP (AninBaten )7 nw) #0, (79)
07 lfAn(W) = 07
satisfies RY, € RN, ;0 L7 (2, Fa g, B; W(U, L(U), w; RY)) with
(v,p)
Rl < 05y S0 ST el (80)
"L (@, F PWEe (U,LU)w;RY)) ‘Cy(;/),p)‘

Proof. Fix some f € L*(R™, L(R™), du; R?) with ([y] + [v] + 1)-times weakly differentiable Fourier
transform and finite constant C'y > 0 defined in (77). Then, we define RL:Q — Wke(U, £(U), w; RY)
as in (78) with linear readout Wi :Q - Reasin (79). Hence, by using that Wi 0 - Riis by
definition F4 g /B(Rd) measurable and Lemma 9.5 (with Fy := F4 p), it follows that Rf Q —
WkP(U, L(U ) w; R?) is well-defined as F 4 p-strongly measurable map in RN/ 17,4 With values in the
separable Banach space (WP (U, L(U), w; R?), || - lwr(,£(U),wR))-

In order to show the inequality (80), we fix some c € {0, [y]| 4+ [v] + 1}. Then, by using Lemma 9.2 (ii),
c-times integration by parts, the Leibniz product rule together with the chain rule, the substitution ¢ — £s,
and the inequality |(v/s)?| < ]_[’16;1 | P /5P < Hlﬁ:l lo|#1/s% = (1 + 1/s)8l < (1 + 1/s)¢ for any
veS™ L se(0,00),and 8 € N, it follows for every (v, s,t) € Y™+ that

oy ) w5001 = o

f&mZ es)

2 ¢

zft
= ()

11 ~ i
5 f = (feviies) e%H

11 o Ban F e eI (£.aysc— 181 it
27r € ﬂe%m 18]1(c — |B])! JRU 9ﬁf(€v)¢ —181) (§s)s“1Plettdg

H&af (o) [0 gs) | ag

O ] e P

o 1 CON| | 2181
£()" g [l

Hence, by using this, Minkowski’s integral inequality (with measure spaces (R™\{0}, L(R"\{0}), da)
and (N7, x R, P(Ng,) ® B(R), u ® d(¢), where P(N{'; ) denotes the power set of N, and where

1 c!
= mz e )

N

1 c!
"2, 24 TAle i
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P(Ngy) 2 E — pu(E) = ZaeNng 1z () € [0,00) is the counting measure), the substitution £ — (a
with Jacobi determinant d§ = |¢ |mda, and the constant C'y > 0 in (77), it follows for every b € R that

(Lm\{o}W( (| d) <|Z||‘11|“Z|>Dda)

(v+k+c+1)r r 7
% (J}Rm\{@} = ‘9(11‘()@”_ (ﬁ%m f Haﬁf Ca) H ’¢ R ’ ) da)

<
IBD (1 +_HaH)G7}+k+c+l)r 5 N " v p (81)
< — B%;” f \w (J}Rm\{@} G logf(Ca)|"da | d¢
\w e G ’
= 0 r d d
2 pey J (JRW\{O} 19701 0a(&/C) 5) ‘
S;E;‘Nchy.

Thus, by using the inequality (z + y)1HVI+1 < 2D+ (g DIHPIFL 4o I+VIFY) for any 2,y > 0,
Minkowski’s inequality, the inequality (81) with ¢ = 0 and ¢ = [y] + [v] + 1, that [N§y| = 1, and that

|N81M v il = Zgﬂg 1L i < 2mI+IV1+1 we conclude for every b € R that

[ e mer o )],
R\ (0} Oa(a)

. 1
) (1 + Jal)PTRn L+ )OO o) (g i ger) |

< a
=\ (0) fala)

(1+ [a )0+ (1 4 [p| 111 AN
< 2l f ( )1 4 i
R™\{0} Oa(a)"—
1
1+ HaH)(%kz)r 1 b r P
< gl j A+ a5 ] o da
(( ey a0 e T Tl

(Lo S (a0 o (G )

o (O m (M + 1+ D! fym
< 2['Y+ 1 <27T |N0,0‘ Cf + T ’NO,[’Y]+[V]+1‘ Cf

< ofr+l (;cf N Wzm[ﬂ”ﬂ“cf)
T T

olv+v]+2
27

Ju

)«) )

< (7] + [v] + DtmP Iy

(82)
Moreover, we use that p € C¥ pol (R), i.e. that P9 ()| < [lpllcx l ®)(1 + [s[)7 forany j =0, ...,k and
pol,y

s € R, the inequality 1 + [a"u — b| < 1 + [af[ul + [b] < (1 + [a| + [b])(1 + |lu]) for any a,u € R™
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and b € R, and the finite constant C’ . ) > 0 to conclude for every a € R™, be R, and j = 0, ..., k that

(L ‘p(j) (a"u—1b) ’p w(u)du>; <lelex, @ (J (1+|a"u—0])"w )du> 7

< ey, @+ lal + o0 [ @+ ) wiw)an

= lellex,, gyt + lall + 1b)7CED.

v (83)

In addition, by using the constant C), := 1;%(;/;7)1/\)/@ > 0 and the inequality /= + y < \/x + /y for any
x,y = 0, it follows for every b € R that

L oy @ <ct 1+ T\ < C M min (1,4/0) 7 (1 + ). (84)
0p(b) v v Y N Y

Hence, by using that (A,, B,) ~ (A1, B1) ~ 64 ® t1(v) is identically distributed with probability
density functions 4 : R™ — (0,00) and fp : R — (0,00) (see Assumption 4.1), the inequality
(83), that |a®| = TTZ la|® < TT;Z, 1+ [a)™ < (1 + [al)* for any a € Ngy and a € R™,
that [Ng%| = Z _om/ < 2mF, the inequality (84), the inequality (82), and the constant C3; :=

QUP olv+vl+2

Comin(Tv5) HpHckol ®) 2 (7] + [v] + 1)! > 0 (independent of m, d € N), we have

S =

H L@ B ke (U L) wRY) [H ap (4o ) W"”p(U,ll(U),w;Rd)]
p z -
Y (O :
AL U2 ] e ) e (aTu—b) 0| w(w)du | 64(a)95(b)dads
a0} \ o, S| O 0(a)0(0)
L b

al? | () (‘L % L3 )
f fﬂw\{o} agm ‘ i ‘ 04(a)P05(b f ‘p G “_b)’ w(u)du | 9.4(a)fp(b)dadb

05 (b)dadb

< lolor, @CHLY ff ja2? (1 + lall + 67 | (%) (757 o L)H
Cﬁf’p" 20} \ o 0.4(a) /P05 (b)?

Nz | ol )OO (1+ Jal) o5 (1 + 1ol (@R ) (27 74 1) d
< su a
‘C#f p\ bkt Jrm o) Oa(a)10p(b)"
l.
< f eB(b)db>
R
=1
1
2pmp|\puck oY f (1 + [a]) 007 (1 + |p)) +v+ DT (mf)(i m,ﬁ) ; '
sup = a
‘cwm‘c mln( /) bk \ Jrmo) Ba(a)

2mrlplor, @C it

<
’C’,(ff’p)’ C,min (1,/v) 27

(7] + [v] + DtmP oy

(v:p)
ki Com

et

which completes the proof. U

C%ﬂnp

S =

e
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9.3. Proof of Theorem 4.4. In this section, we prove the approximation rates in Theorem 4.4. Let
us first sketch the main ideas of the proof. To this end, we fix some f € LY(R™, L(R™),du) with
([7] + [v] + 1)-times weakly differentiable Fourier transform and finite constant C'y > 0 defined in (8).

Then, we define the random neural network 5 := % 25:1 R£ e RN ('0]7 g as average of the random
neurons Q 3 w — R} (w) 1= Wi (w)p (A,(w)T - =B, (w)) € WrEP(U, L(U), w; RY) defined in (78),
where k € No, p € [1,00), U € R™ (open, if k > 1), and w : U — [0, 0) is a weight. Then, by using
the integral representation in Proposition 9.3, i.e. that f = E[Rfl], a symmetrization argument with
Rademacher averages, and the Banach space type of W*? (U, L(U), w, R?%), we obtain the inequality

(el ) |

r s
n=1

r T 1
E [Hf - ‘I)NHWk,p(U,z(U),w,JRd)] = I

Whp(U,L(U),w,RY)

|
C LT(Qv‘F:P;Wk’p(Uv‘C(U)vw§Rd))
1 )

< JR
N~ mnen

where C > 0 is a constant and where HRZ

Lr(QUF P:W ko (U, £(U) wiRY)) is given in Proposition 9.3.
First, we recall the notion of Banach space types and refer to [Albiac and Kalton, 2006, Section 6.2],
[Ledoux and Talagrand, 1991, Chapter 9], and [Hytonen et al., 2016, Section 4.3.b] for more details.

Definition 9.7 ([Hytonen et al., 2016, Definition 4.3.12 (1)]). A Banach space (X, | - | x) is called of
type t € [1,2] if there exists a constant Cx > 0 such that for every N € N, (fn)n=1,..8v S X, and
Rademacher sequence (€y)n—1,...N (i.e. i.i.d. random variables (€,)n—1,. N defined on a probability

space (Q, F,P) with Ple,, = +1] = 1/2), it holds that

t

I t N 5
n=1 X n=1

Then, by [Albiac and Kalton, 2006, Remark 6.2.11 (b)+(c)], every Banach space (X, | - |x) is of
type t = 1 with constant C'x = 1, whereas only some Banach spaces have non-trivial type ¢t € (1, 2],
e.g., every Hilbert space (X, || - | x) is of type ¢ = 2 with constant C'x = 1.

Lemma 9.8. Let (X, |- | x) be a Banach space of type t € [1, 2] with constant Cx > 0, and let t' € [1,1].
Then, (X, | - | x) is a Banach space of type t' with constant C'x > 0.

Proof. Let (X, | - ||x) be a Banach space of type ¢ € [1,2] with constant Cx > 0, and let ¢ € [1,¢].
Moreover, we fix some N € N, (f,)n=1,..~ S X, and an i.i.d. sequence (€,),—1, .~ defined on a
probability space (€2, F,P) such that P[e,, = +1] = 1/2. Then, by applying Jensen’s inequality and the

t'/t /
inequality (ZnNzl :Un> <3N b/ for any z1, ..., 2y > 0, it follows that

1
7

/ 1
t t =

N % N ) t
< Cx (Z antx> < Cx (Z |fntX> :
n=1

n=1

1
N t t

Z €nfn

n=1

N

Z €nfn

n=1

E <E

X X

This shows that (X, | - | x) is also a Banach space of type ¢’ € [1, t] with the same constant Cy > 0. O

Moreover, [Albiac and Kalton, 2006, Theorem 6.2.14] shows that (LP(U, X, u1; R9), | - | LP (U5, jRY))
introduced in Notation (x) is a Banach space of type ¢ = min(2, p) with constant C' LU, uRd) > 0
depending only on p € [1,00). Now, we show that this still holds true for the weighted Sobolev space
(WHEP(U, L(U), w; RY), | - lwkp (U, (0 ,w;ray) introduced in Notation (xii)+(xiii).

Lemma 9.9. Let k € Ny, p € [1,00), U € R™ (open, if k > 1), and w : U — [0, 0) be a weight. Then,
the Banach space (W"P (U, L(U),w; R%), | - lwew(U,2(0),;re) introduced in Notation (xii)+(xiii) is
of type t = min(2, p) with constant Cyyk.p (v, £(1),w;re) > 0 depending only on p € [1, o).

Proof. First, we recall that (W*P(U, L(U), w; R%), || - lwe»(U,2(0),w;rey) is @ Banach space. Indeed,
this follows from [Rudin, 1987, p. 96] (for k = 0) and [Adams, 1975, Theorem 3.2] (for k& > 1).
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Now, we fix some N € N, (fn)n -1,..N S W’“’(U L(U), w;R?), and an i.i.d. sequence (€,)n=1,.. N

defined on a probability space (€, F, ]P) such that P[e,, = +1] = 1/2. Then, by using Fubini’s theorem
and the classical Khintchine inequality in [Ledoux and Talagrand, 1991, Lemma 4.1] with constant
Cp, > 0 depending only on p € [1, c0), it follows that

N p % N p %
E Z enfn =E Z f Z €nOafn(u)| w(u)du
n=1 Wk (U,L(U),w;R) O‘eNg,Lk Ulln=1
N p %
= Z f E Z €n0a fr (1) ] w(u)du (85)
aeNg?k U Llln=1

P

N ) 2
<G, Oafn(u w(u)du
%m jU (Z Jafulu)] ) ()

1
P

p/2
If p € [1,2], we use (85) and the inequality <Zg:1 :z:n> < ZN 1 xﬁ/ for any z1,...,2y = 0 to
conclude that

1 1
N min(2,p) min(2,p) N P »
E Z €ntn =E Z €ntn
n=1 Whp(U,L(U),w;RY) n=1 Whp(U,L(U),w;RY)

[MiS]
B =

N

AN (Zwafn ) w(w)du

aeNm

=

<o (2% [, teass@lr wtw

n=1 aeNm

(Z ”fTLH]/Vkp(ULj U)w]Rd)> .

This shows for p € [1, 2] that the Banach space (W*?(U, L(U), w;RY), | - lwkp (U, (0 ,wimay) 18 Of type
t = min(2, p), where the constant C}, > 0 depends only on p € [1, ).

Otherwise, if p € (2, ), we consider the measure spaces ({1, ..., N}, P({1,...,N}),n) and (No 1o X
U, P(NG) @ L(U), p @ w), where P({1, ..., N}) and P(N7’;) denote the power sets of {1, ..., N} and
Ng'y.» respectively, and where P({1,...,N}) 3 A — n(A) := ZN L4(n) € [0,0) and P(Nf) ®
LWU)3 (A, B)— (p®w)(A,B) := (ZaeNm T4 ) )) § 5 w(u)du € [0, 0] are both measures. Then,

by using the Minkowski inequality in [Hytonen et al., 2016, Proposition 1.2.22] with p > 2, it follows
forevery f € L2({1,..., N}, P({1, ..., N}),n; LP(NIY, x U, P(N,) ® L(U), p ® w; R?)) that

HfHLP(Ngjk xU,P(Ng )®L(U),u@w; L2 ({1,...,N},P({1,....N}),mR)) (86)
S 2, NP N s Lo (N < U PN R L(U) i@ RE)) -

Now, we define the map {1,..., N} x (Ng%, x U) 3 (n; a,u) — £(n;a, u) 1= da fn(u) € R? satisfying

1
2\ 2

N P
11 22 (1,00 VY P N i L (N < U P (N BV juiRE)) = D j 100 fru (w) [P (u)du

n=1 aeNm

N 2
<Z |f"|12/Vk»P(U,£(U)7w;Rd)) < 0,

n=1

(87)
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which shows that f € L?({1, ..., N}, P({1, ..., N}),n; LP(N7, x U, P(Ng%)®L(U), p@w; R9)). Hence,
by using first Jensen’s inequality and then by combining (85) and (86) with (87), we conclude that

N min(2,p) m S 2 B %
E Z 6nfn =E Z 6nfn
n=1 Wk (U,L(U),w;RE) | lIn=1 Wk (U,L(U),w;R?) |
_ 1
N p P
< IE Z Enfn
| In=1 WP (U,L(U)w;RY) |
%
<a| ¥ | (Z O n(w)] ) w(u)du
aEN'IIL

= Cplfll Lo, < U PN @LW) p@W L2 ({1, NYP(1,..,N ) miR))

< CpHfHL2({1,...,N}773({17...,N}),77;LP(N3?,CxU,P(N(fk)@E(U),u@w;Rd))

min(2,p)
min
Z Hwakp Uﬁ(U w]Rd) .

This shows for p € (2, c0) that the Banach space (WP (U, L(U),w;R?),|| - lwr(,£(U),wirey) is Of
type t = min(2, p), where the constant C}, > 0 depends only on p € [1, c0). O

Proof of Theorem 4.4. Fix some f € L'(R™, L(R™), du; R?) with ([v] + [v] + 1)-times weakly differ-
entiable Fourier transform and finite constant C'y > 0 defined in (9). Then, for every fixed n € N, we
define the map RY, : @ — W*P(U, £L(U), w; R?) as in (78). Hence, by using Proposition 9.6, it follows
that R), € RN? ba O L7(Q, Fap, By WEP(U, L(U), w; R?)) with Bochner norm bounded by (80).

In order to show (i), we use that 1) € So(R; C) is necessarily non-zero (otherwise (1, p) € So(R; C) x
Cpol 7( ) cannot be m-admissible), implying that 1/1 € Sp(R; C) is also non-zero (by the injectivity of
the Fourier transform) to conclude from C'y < oo that there exists some ¢ € R\{0} such that

r (1 (k+2[y]+[v]+2)r v
1+ J&/¢l) AR )

(JRm U8 NG

Thus, by using Holder’s inequality, the substitution a — £/¢, and (88), it follows that

1

r—1

s cmmancn = [ [F©)]d < meQJé/z)‘H (JRm oate/crac)

o~ 2442\ 7 =
< (f Hf(g) (1 +[&/¢l) i d£> <|<|j eA(a)da> < 0.
R™ -

0405/
Hence, by using that (1, p) € Sp(R; C) x C]I;ol -
Proposition 9.3 to conclude for a.e. u € R™ that IE[RJ;] (u) = E[be(u)] = f(u). Moreover, if k > 1, we

use this, that E[Rfl] e WhkP(U, L(U), du; R?) by Proposition 9.6, and integration by parts to conclude
for every o € Nij, and g € C°(U) that

LaaE[R,{]( Yg(u)du = ( alf Rf wg(w)du = ( a'f £ (1) dag(u

_ j Do ()9 () du
U

This shows for every o € Ni, and a.e. u € U that OoE[R}|(u) = 0.E[RA(u)] = 0af(u), which
implies that f = E[R},] € W*P(U, L(U), w; RY).

=1
(89)
(R) is m-admissible together with (89), we can apply
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In order to show (ii), we fix some N € N, Then, by using that f = E[RZ;] e WhP(U,L(U),w; RY),
the right-hand side of [Ledoux and Talagrand, 1991, Lemma 6.3] for the independent mean-zero ran-

dom variables (E [R,{] - R£) L (with iid. (e)pon,.. v satistying Ple, = +1] = 1/2 being
n=1,...,

independent of (E [Rfl] — Rfl) ), the Kahane-Khintchine inequality in [Hytonen et al., 2016,
n=1,...,

Theorem 3.2.23] with constant k, := Ay min(rmin(2,p)) > 0 only depending on r € (1,00) and

min(r, min(2,p)) € (1,2], that (W*P(U, L(U),w; RY), | - lwk.p(,£(),w;re)) is by Lemma 9.9 a Ba-
nach space of type min(2, p) € (1, 2] (with constant Cp, := Cyykp(u,(1)w;re) > 0 depending only on
p € (1,2]), thus by Lemma 9.8 of type min(2, p, ) € [0, min(2, p)] (with the same constant C), > 0),
Jensen’s inequality, Minkowski’s inequality, [Hytonen et al., 2016, Proposition 1.2.2], the inequality (80),
and the constant C := 4C) k), C31 > 0 (independent of m,d € Nand f : R™ — R%), it follows that

3, (e[wt] - )

1
s T

1
r P 1
E [Hf - ‘I)NHWk,p(U,L(U),w;Rd)] = NE

Wk (U,L(U),w;R?)

1
9 N r r
- 25 S el )
n=1 Wk (U,L(U),w;R4)
) N min(rmin(2,p)) | wEGmEE)
< %E e <IE [R{i] - R,{)
n=1 Wk (U,L(U),w;R?)

1
min(2,p,r) min(2,p,r)
Wk (U,L(U)w;R?)

< 2t (i [[e[r] - &

. N T
_ 2C’p/~epl,r E ‘E [Riz _ ! min(2,p,r) }mm(&p,r)
N mmeen Whe(U,L(U),w;R?)
< e g |e[R]] - &l ’
Nl mme@sn . Wk (U,L(U),wiR?)

2C, r
< ot | B[R] +E R, ]
N1~ mmesn WkP(U,L(U),w;R?) Wkp(U,L(U),w;RY)

< ACpkp,r
=S
N min(2,p,r)

f

‘ n

LT (Q,F,P;Wkp(U,L(U),w;R4))

(7:p)
< 4Cpkp s - CU,w Cfm%+[’ﬂ+[l/]+1
Nk [l

C((Jvﬂf)of m§+[v]+[u]+1

<O -
‘ng'g%p)‘ Nl_m

This shows the approximation rate in (ii).

Finally, in order to show (iii), we fix some &, & > 0. Then, for every N € N satisfying the inequality in
(iii) there exists by (ii) some @ € RN, , ~ L"(Q, F,P; WrP(U, L(U), w; R?)) with N € N neurons
such that

1 cOP o By 4]+
517 — Sty || < G e I
’ o ‘C;ﬁﬂ’p)‘ Nlimin(Q,p,r)
Hence, by applying Chebyshev’s inequality, it follows that
1 de”
P [{w e Hf - (I)N(W)||Wk,p(U’£(U)’w;Rd) = E}] < ?E [”f - CI)N”;«/Vk,p(U,L(U%w;Rd)] < ? = 57

which completes the proof. U
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In the following, we also provide the proof of Example 4.6+4.7 and Remark 4.8.

Proof of Example 4.6. Fix some f := (f1,..., fs)7 € L'(R™, LR™), (1 + |u])1H¥1+1du; RY) A
W2kt A8l +42(gm p(RmY (14 |- [)2HPIED: RD) Now, we first show that f : R™ — C% s
([v] + [v] + 1)-times weakly differentiable. Indeed, for every fixed i = 1, ..., d, we use the polynomial
R™ 5 u — uﬁ =TI, u) e Rfor B e NG 4] 1- that WP =TT Jwl® < T2+ ul)? <
(1 + |Juf)PH¥1+1 for any . € R™ and 8 € Nm[ |+[v]+1 to conclude for every 5 € Nit ) that

lps - fil L1 mm cRm) du) = me ‘uﬁfi(u)‘ du
< | IR )P

< | fllprmm, cm), (14 ful) 1+ 1+ dura)y < 9O

Hence, by iteratively applying [Folland 1992, Theorem 7.8. (c)] to every component f; : R™ — C,
i =1, ...,d, the partial derivative aﬂf (85f1, . (95fd) : R™ — C4 exists for all § € N ]+ [u]+1°

Next, we show that the constant C'y > 0 defined in (9) is finite. To this end, we ﬁx some 3 €
NG 4141 @nd @ = 1,..., d, and define s := m+2k+4[y]+3[v]+4 € Ny. Then, we observe that R™ >
u— (pg - f;)(u) := v’ f;(u) € Ris k-times weakly differentiable, where u” := [}, u;". Moreover,

1/2
by using the inequality (Zle xz> < Zle x'/2 for all zy,...,z4 > 0, the multivariate Leibniz
ol

product rule, the finite constant Cp := ZaeNm > M A2ENT A Az —a T Dl 0, and the inequality
[ =TT Jwl® <TI0+ u)? < (1+ HuH)S for any u € R™, it follows that

N|=

lps - fillws2@m comm),du) < Z f Oa (Uﬁfi(u))‘2 du

aeNm

N
NI

< Z fm Z )\1?/!\2!%\1 <u5) Ox, fi(u)| du

aEN’.TS A1, AN
’ A +Ag=a
1
al Bl 4, 2\
Z Z Aol J (B*A ) 1a>\2fi( ) du
CYENng A17A25N6rf§ 1:A2: R™ 1

Al tAg=«a

<ot max ([ 10n P 1+ ) ””du)

A2€ 0,s

D=

<cp| Y j [ong f () 21 + ful)2C

A2eNg,

= 005!”f”Wm+2k+4m+3[v1+4,2(Rm,g(Rm),(H”.H)z(h1+[v1+1>;Rd) < X%,
which shows that ps - f; € W*2(R™, L(R™), du). Hence, by using [Folland, 1992, Theorem 7.8. (c)],
the inequality <Zf:1 xz> 12 < Zf;l V2 for all 21, ..., x4 = 0 and [Grubb, 2009, Lemma 6.8], i.e. that
ps - f; € WH(R™, L(R™), du) implies SRm (s - F)(©)] (1 + [€]?)

([, 10sFi00 1+ 1) ) ( | o pue] @ gt )
R™ —1 JRm

d 1

Z(f (05 O] (L+ ) >2<oo.

d€ < o0, we conclude that

(90)
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Finally, by using that supp({b\) = [£1,&] for some 0 < &1 < & < oo, that (z + y)? < 2 (9:2 + yg)

for any x,y > 0, the constant Cy1 1= MaXjenyn[0,[+]+[v]+1] Sg @(j)(c )‘ d¢ > 0 (independent of
m,d e Nand f : R™ — Rd) that A1 ~ t,,(v) with 04(a)~! = % (1+ HaHQ/V)(mH/)/2 <

% (1+ |al /1/) VD2 for any a € R™, the constant Cys := Cy (1/5%)(2k+4M+3[V]+4)/2 >

0 (independent of m, d € N and f : R™ — R%), and (90), it follows that

\w D¢ (1+ us/a\) )\ 3
Cr = 2 d¢| d
f geNOm [0, M+ u]+1] J ‘C| (J}Rm 195 ( ) (§/C) 5) ‘

OH
- PO (0 () R ey N
< ¥ | ([ 1RO +C2) i) ae) ac
PG 14wl
C ~ 2 A F v ’3 2
< 41 max f ”aﬁf(f)|2< HgH > (2) — (1_'_”5’) d{
52 PENG 4141 m 3 ( ) Z31
Cluom'd max (1 A1) ~ m+2k+4[~]+3[v]+4 3
< Comt e W ([ et (16T ) <
I (mfr)e AENG 4141 \JRm
oD
which completes the proof. (]

Proof of Example 4.7. In order to show (a), let w : U — [0, o0) be a weight of separable form w(u) :=
wo(u1) -+ - wo(um) for all u := (ug, ..., un,) " € U, where wg : R — [0, c0) is another weight satisfying

§g wo(s)ds = 1 and C]l(ngo) = (§R(1 + |s])Pwo(s )ds)l/p < oo. Then, by using that 1 + |ul <
1+ Zl 1 |ul| Zl 1 (1 + |wy) for any u := (uy, vy Upy) | € R™, the inequality (21 + ... + 2,,) 7P <

m? (z]?... + zV) for any z1, ..., z,, = 0, and Fubini’s theorem, it follows that
1

oy = ([ @+ ubyruta)’

(J (m (1 + |wl) ) w(u)du) ’
U \i=1
!

<3

=1

1
P

RNgE

f (1 + u|)"™ wo(uy) - - -wo(um)du>
Rm

(j + Jw])P wo(w dul) HJ wo (u; duz>
R
%/_z

1%l

(o)

1

RS

< C’H(ng ™,

which shows the inequality in (a).

In order to show (b), we first observe in each case (i)- (1V) that p € C ‘ol 7(]R) is of polynomial
growth and thus induces the tempered distribution (g — Ty(g) := §z p( ds) e S'(R;C) (see
[Folland, 1992, p. 332]). Now, we fix some m € N and ¢ € SO(R, C) Wlth non-negative 1 € C*(R)
such that supp(zz;) = [£1,&2] for some 0 < & < & < oo. Then, by using Example 2.9, the Fourier
transform ﬁ € §'(R; C) coincides on R\{0} with the function fA e L} (R\{0};C) given in the last

loc

column of (i)-(iv). Hence, in each case (i)-(iv), we use that 12 eCr ( ) is non-negative to conclude that

(&) f7 (€) & P(€) f (€)

¢ # 0

[SIE
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This shows that (1, p) € Sp(R;C) x CF pol 7( ) is m-admissible. Moreover, in each case (i)-(iv), we

define the constant Cy, , := (27) 1| S fT €)d¢ | (independent of m € N) to conclude that
P
& D(6) I, (€) & 056 | o\ 2\
o9 = (on m—lf PORO | [ TR0 ()" o, ()"
‘ ‘ (&) N : : 2 : &2 PP\ &
which completes the proof. U

Proof of Remark 4.8. Assume the setting of Example 4.6+4.7 with a function f e LYR™, L(R™), (1 +

Hu“)[’y]-i-[l/]-i-ldu;Rd) A Wm+2k+4[’y]+3[u]+4,2(Rm’ﬁ(Rm)’ (1 + ” H) v|+1). Rd) and some ¢ €
So(R; C) such that supp(zZ) = [£1,&2], where 0 < & < & < 0. Then, by using Example 4.7 (a),
i.e. that there exists a constant C]I(Q&ﬁ 3 > 0 (independent of m,d € N and f : R™ — R?) such that

C'((J:Yf ) < Cﬂ(&’f{ 3m7+1/p, Example 4.7 (b), i.e. that there exists a constant C'y, , > 0 (independent of

m,d € Nand f : R™ — R%) such that |C’T(,3f)’p)| > Cy p(2m/€2)™, the inequality (91) (with constant
Cyo > 0, independent of m,d € N and f : R™ — Rd), the constant Cy := C'( )C¢ pCa2 > 0

Rwo

(independent of m,d € N and f : R™ — R?), and that &; € (0, 1/_1/2], i.e. that /v < 1/£, we have
(v.p) m m m
CU,w Cr < C(%p)mwl/pr §y' Cyomt max (1/&1,/v)
‘C@%’p)‘ R,wo P (27T)m r (m;—u)%

R miok bl alee 3
max ([ joafor g T ae)

BeEN™

0,[v]+[v]+1
m~/+1/p§m7.r% . m+2k+4[v]+3[v]+4 %
o ([ 1eaftor ey )
(2m& )T (m;”) 2 PENG w1+ "
which completes the proof. U

9.4. Proof of Proposition 4.9 and Theorem 4.10. In this section, we first prove the properties of
Algorithm 1 stated in Proposition 4.9. Subsequently, we prove Theorem 4.10 which provides us with the
generalization error of learning a deterministic function by a random neural network.

Proof of Proposition 4.9. Fix a k-times weakly differentiable function f : U — R? and some J, N € N,

=1,..,.N
For (i), we first observe that an R4*"V-valued random variable W) = (W-(J)>7‘L L satisfies (14) if
1=

7_'|_'-7
and only if for every i = 1, ..., d the R -valued random variable Wi(‘]) = (Wi(i) LN satisfies
’ n= LA
N 2
J ~
Wz‘( )= = arg mmWeWN1 Z Z Ca |Oafi(V] Z W pllD (AZVJ‘ — By) A}
_] 1 aeNO & n=1 92)
= arg manEW

~ ~\T
where Wy 1 consists of all RN _-valued F 4.B,v/B (IR{N )-measurable random variables W = (Wn> e
n=1,...,

Then, by using [Bjorck, 1996, Theorem 1.1.2], (92) forms for every fixed w € {2 the least squares prob-

lem R(w)TR(w)Wi(J) (w) = R(w)"Y;(w). Hence, the least squares problem in Step 6 admits by

[Bjorck, 1996, Theorem 1.2.10] a solution Wi(‘]) (w) € RN, which shows that Algorithm 1 terminates.
Next, we show that Algorithm 1 is correct. Indeed, by using the first step, (92) is equivalent to

the condition RTRWi(‘]) = R'Y; stated in Step 6 of Algorithm 1. Hence, the R**" -valued random
=1,..,N
variable W (/) — (W-(J)>n d indeed solves (14). In the following, we now show that W) is

in
i=1,.

Fa.pv/B(RN*4)-measurable. For this purpose, we define M := J - NG| and the set-valued function

RN S RM 5 (ry) = E(ny) = {weRY 1w =argmingpn |y — r@?}.  (93)
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Then, by using [Bjorck, 1996, Theorem 1.1.2], we have w € Z(r, y) if and only if 7 "rw = ry. Hence,
it follows for every open subset U < R?*Y that the set

{(r,y)e]RMXN XRM:E(r,y)mUaé@}
:{(r,y)ERMXNXRM:{wERN:rTrwery}mU;é@}

is BIRM*N x RM)_measurable. Thus, by using the Kuratowski-Ryll-Nardzewski measurable selec-
tion theorem in [Kuratowski and Ryll-Nardzewski, 1965], there exists an B(RM*N x RM)/B(RV)-
measurable selection of (93), i.e. an B(RM*N x RM)/B(RY)-measurable function y : RM*N x RM
RN such that x(r,y) = arg mingcgn ||y — r@|? for all (r,y) € RM*N x RM Since the RM*N_valued

random variable R in Step 3 is by definition F4 gy /B (RM xN )-measurable and the RN _valued
random variable Y; in Step 5 is by definition F4 g v /B (RM )-measurable, we conclude that

Qsw — W (w) = arg ming; = x(R(w),Y (w)) e RY

7 WeWn 1

~ 2
Yi(w) = R@)W ()|

is Fa g v/B(RY)-measurable. This implies that the R4*"-valued random W (/) = (WA(J)> L is
1= PARRS)
Fapv/B (]RdXN )-measurable, which shows that W € Wy and that the algorithm is correct.
In order to show (ii), we compute the complexity &, 4.x(/, N) of Algorithm 1. In Step 1, we
generate the random variables (A, By)n=1,.. v ~ 04 ® t1(v), which needs N(m + 1) units. In
Step 2, we generate the random variables (V});—1..j ~ w, which requires Jm units. In Step 1, we

compute the R/ NGk <N

R

-valued random variable R = (R ), )”:1 with components

o N
n (j,a)e{l,...,J}xNg}k
jaym = capl®V (ATV; — B,) Ag, for (j,a) € {1,...,J} x Ng and n = 1, ..., N, which needs
JIN?k|N<m+(m—1)+ 1 + 1 +laj+1+_ 1 ) < J|INGR| N(2m + k + 3)
) \ —— S — ,
AI‘/J +By p(‘a‘)(~) ,A% Ca-

units. In Step 5 (inside the for-loop), we compute for fixed ¢ = 1, ..., d the R7*INGkl_valued random
variable Y; := (Caaafi(‘/j))(j7a)€{]_7m,J}XNg’Lk, which requires 2J|Ng", | units. In Step 6 (inside the
for-loop), we solve for fixed i = 1, ..., d the least squares problem via Cholesky decomposition and for-
ward/backward substitution, which needs 1.J|Ng [ N2 + N3 4+ O (J;Ngfkuv) units (see [Bjorck, 1996,
p- 45]). Hence, the complete for-loop in Step 4 executing d-times Step 5+6 requires

d <2J NG| + %J NG | N2 + éN?’ + O (J Ngy| N)> = O (dJ |Nj| N? + dN?)

units. Thus, by combining these results and using that [Nf, | = Z?:o mJ < 2mF, it follows that

GCmank(J,N) = N(m+ 1)+ Jm + J[Ng4| N(2m + k + 3) + O (dJ [Nj,| N> + dN?)
-0 ((k + 1) dJmFIN? ¢ dN3> ,

which completes the proof. U

Next, we provide the proof of Theorem 4.10. Let us briefly outline the main ideas of the proof, where
we here in the outline assume for simplicity that ¥ = 0 and d = 1. Moreover, we fix some J, N € N
and a function f € L*(R™, L(R™), du) with |f(u)| < L forall u € U and ([v] + [v] + 1)-times weakly
differentiable Fourier transform such that the constant C'y > 0 defined in (15) is finite. Then, we obtain
from Algorithm 1 a random neural network @%m € RN ’&Z with linear readout W (/) e Wy solving
(14). From this, we define the L?(U, L(U), w)-valued random variable

Osw — AVY W)= <u — f(u) - Ty, (q%“” (w)(u))) e LX(U, L(U), w).
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In addition, we define the empirical version Q 5 w — HA%VU) HJ = (4 ZJ ) HAWU) VJ)HZ)I/Q cR
%) . . .
of |AY (U.£(U) ) Then, by using the inequality (z + y)? <2 (2? + y?) forany z,y > 0, we have
2
o) o] -
[ [ro- ()| wlwyd o
e
[( bl wew)w A PR A (94)
) ®) ? |2
< 2E [max (‘A?" —9 HAEV‘ ,o) ] + SE “AEV‘ ] .
L2(U,L(U)w) J 7

Now, for the first term on the right hand-side of (94), we follow the results on non-parametric function

regression in [Gyorfi et al., 2002, Section 11.3] to derive an upper bound for the difference between
HAW(J) ]|L2(U7£(U)7w) and its empirical version HAW(J) | ;- Hereby, we use in particular that W) € Wy
is the least squares solution of (14) and that (V});—1,.. j ~ wisii.d.

Moreover, for the second term on the right-hand side of (94), we use that the mean squared error
(MSE) is minimized by W) € Wy and is thus smaller than the MSE of the random neural network

WV e RN ’[’] 4 used in Theorem 4.4, and that (V) jen are independent of (A;,, By, )nen to conclude that

. {HAEV@ j _E % ZJl ’ ch(J) (w)(‘/})‘2
<x|1: j ) - e @)
- 5[t - H}

Hence, we can upper bound the second term on the right-hand side of (94) with Theorem 4.4 (ii).

Proof of Theorem 4.10. Fix some J, N € N, L > 0, and f € L*(R™, L(R™), du; R?) with [0, f; (u)| <
Lforallao e N, i =1,...,d,and w € U, and ([y] 4 [v] + 1)-times weakly differentiable Fourier trans-

form such that the constant C'y > 0 defined in (15) is finite. Then, we apply Algorithm 1 to obtain some
T n=1,...,N

@%w € RN @‘; with R®N_yalued random variable W (/) = <W7§J)> LN (W(J)) €

) n=1,...,

wn ).

Wh solving (14). Moreover, by using Lemma 9.5 (with Fo := F4 p v satisfying F4 p < FAfB;/“gl F),

it follows that q)]v\[[/(J) : Q — WE2(U, L(U),w; RY) is an Fa p,y-strongly measurable map with values
in the separable Banach space (W*2(U, L(U), du;R?), || - w2, o) dusrd))-

In order to show (15), we adapt the proof of [Gyorfi et al., 2002, Theorem 11.3]. To this end, we define
for every v € Niy and ¢ = 1, ..., d the L2(U, L(U), w)-valued random variable

Qsw > AV ()= (UH&afi( )~ Ty, (a @Ni”(w)(u))) e LX(U, L(U), w).

Moreover, we define for every fixed o € Niiy, @ = 1,...,d, a := (ai,...,an)" € RV>*™ and b :=
(by,...,bn)" € RN the L?(U, L(U), w)-valued random variable

Qow > AL () (uHaafi() 71, (220" (@)(w) ) € L2, £(U), w),

a,i,L

()
where Q 3 w — @%’b)’w ’ (W) == 3N W, ( )plel (al - —b,) a2 € Cr,,(U), where ay :=
[1%, 4" € R. In addition, we deﬁne the (random) emplrlcal mean squared error || - |7 of such an

L?(U, L(U), w)-valued random variable as

w ()
Qsw HAmL

(3o ex
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()
and analogously for HAaaZbLW H . Then, by using the inequality (z + y)? < 2 (2% 4 y*) for any

z,y > 0, conditioning on Fy4 g, that [N, Z? oM < 2mF, that the random variables (V) ey are
independent of (A,,, By, )nen, and the notation (A, B) := (An, Bp)n=1,....n it follows that

| 3 [ loro-m et o)
W 2
<E| Y zj 0ufilw) = To, (23S ()(@)) | w(w)du

aeNm i=1

) N \2
5 S E[(188 e -2Ja80], 2]
aeNmk i=1
2
J) €] J)
< 2 ZE[<maX <HAZ‘I’/Z’L L2(U.L(U )w)_2 AdiL 7’ >+2HAZV’L J> ]
aeNm =1
2
) ) 2
) ZE[maX(HAgv,Z,L o~ 2|A] o) o ]
aeN =
2
(J) (J
2|Nw|d£§%ﬁ?%ﬁ[1& e (|82 =225, 0) 0|
d 1 J -
+8E| ) 232’ AYin () H
aeNm i=1 " j=1
[ 2
< 4mFd max —max E[ max (HA )LW(J) HA DR ,O> ]
aeNgYy i=1,....d L2(U,L(U),w J
. (a,b)=(A,B)
d 1 J "
+8E| >, D5, 2 ’AKV,Z,L H
ocENm i=1 "~ j=1
95)
Moreover, we define for every fixed a € N, @ = 1,...,d, a := (a1, ...,aN)T e RY*™ and b :=

(b1,...,biw) " € RY the vector space of random functions

b
i=1,...,

N =1,...,
ggj;b) = {Q SDW Z Wz,npﬂa') (a'r—g : _bn) a?{ € C]())ol,’y(U) : V[N/ = (V[N/l n) b € WN} .

n=1

Then, by following [Gyorfi et al., 2002, p. 193], i.e. by using [Gyorfi et al., 2002, Theorem 11.2] (with

the set T, 1= {Q 3w (u > T (@(w)(w)) € Cy (U) : @ € G2 | and where G has for

fixed a € RN *m he RN o€ Ngfk, and ¢ = 1,...,d the vector space dimension N in the sense of
[Gyorfi et al., 2002, Theorem 11.1]) together with [Gyorfi et al., 2002, Lemma 9.2], [Gyorfi et al., 2002,
Lemma 9.4], and [Gyorfi et al., 2002, Theorem 9.5], it follows for every u > 57612 /J that

2
(S ~2falty ], .0) > ]
L2(U,L(U)w) J

a, u
P[ageng( D glwcw)a —2ugu>q

(96)
2

9(12€J) (N+1)e 2304L2
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Hence, by using the constant v := % In (9(12€J)2(N+1)) > 576L%/.J, the inequality (96), and that
In(108e) > 1 together with 2304 < 92161n(108e), we conclude that

E [max <HA$;{?)L7W“> et 9 HAg‘lbLWH )2]

[ lmax (S O P ) ] "

x 2
(a,b), W) (a,b), WD)
<v+ L P [max (HAOZZ',L L2(U,E(U),w) - H aa,i,L J s 0 > ul du
0
<v+ 9(12€J)2(N+1) f e_%gﬁdu 97)
v
2 ) .
_ 2304L I (9(12€J)2(N+1)> %6_2361“2
J )T
<AN In(108¢.])
2304L2 2304L2

= = AN (In(108¢) + In(J)) +

(In(J) + 1)N
Ry S

J
< 92161n(108¢)L>

On the other hand, for the second term on the right-hand side of (95), we use that |0, f; (u)| < L for any
aeNgy,i=1,...d,and u € U, that [T (y)|| < |y for any y € RY, that the RY*V -valued random

i\n

=1,..,N
variable W (/) = (VV}(‘])>7‘1 solves (14), and Theorem 4.4 together with 74 g S F4 By (With
K3

=1,...,

constant C > 0 independent of m, d € N, where q){\, € RN, A L*(Q, Fap, By WE2(U, L(U), w; RY)
has F4 /B (R4*N)-measurable linear readout contained in Wy as F. A.B S Fa,B,v) to conclude that

d J
Bl ¥ N3 ariro H Iy i (ortr - aatf >H

aeNgy i=1 " j=1 j 1aeNy
[
1 1 (J)
<t w25 S @) - duel H
mingenm Ce J -
0,k Jj=1aeNg",
~ 1
J 2
1 1 W 2
. w
- E| i (LY . <vj>—aa<1>N<~><vj>H
MiNaeNg, Ca WeWn j=1aeNr,
1 . 1Y 2
<—— inf E|= Z Co [0af(V}) = Oa (I)N H
mingenm Co 7 J “
0,k WeWn j=1aeNp",

1
2
maxgenm C
< TR g R “(aaf — 0,0 () H w(u)du
N,

MINaeNg, Ca WeWn | oe

<K ((Coc)aeNB’fk> [‘f -

DOy s+l
< ((@oery ) €1 cie] VN

2
Hwk 2(U,L(U)w Rd)]

(98)
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Hence, by inserting (97) and (98) into (95) with the inequality \/z + y < \/z + /y forany 2,y > 0, and
by using the constant C'5 := max <2«/9216 In(108e), \/gCH) > 0 (independent of m, d € N), we have

5| 3, Jewse -1 (2 Ow)

aeNm

N

2m2\f max max E
aeN Okz 1,...,

i <‘ Aaalwaw _o H A(@b) W)
L2(U,L(U),w)

9]

(a.b)=

azL

+VBE | D] i;]i

aeNm ]

s H

(7,2) k
. m(J) + WN CU,w Cf ma v+
< 2m2v/d/9216 In(108¢) L ai + 8k ((Ca)aeN’” ) 1 ’ng,p)’ VN

Vmkdy/In(J) + VN C2Cp b+
< gy Ymhdy/n() + o ((cadacrip, ) 12 ,
Vi ‘C v, p>‘ VN
which completes the proof. O

10. PROOFS OF RESULTS IN SECTION 5.
In this section, we provide the proof of Lemma 5.1 in the numerical examples in Section 5.1.

Proof of Lemma 5.1. In order to show (i), we fix some A > 0 and an initial condition g : R™ — R that is
a.e. continuous and a.e. bounded. Then, we first observe that (17) can be expressed as convolution of the
kernel (0,00) x R™ 5 (t,5) — daq(t,y) = (4mAt) ™2 exp (—%) € R with the initial condition
g : R™ — R. Moreover, for every (t,y) € (0,00) x R™, it holds that that

_ \yH2

2
8q§ )\Za%m Iy @ oz /\i 2\ e v
by 4t (4mrt)% O\ (402 4nt (4mAan)E

l

99)
Hence, by using [Hormander, 1990, Theorem 1.3.1], i.e. that f( u) = <a¢A Lo g) (u) and g%{(t,u) =
l

(aaf;l’t * g) (u) for any (t,u) € (0,00) x R™ and [ = 1, ..., m, and the identity (99), it follows for every

(t,u) e (0,00) x R™ that

S Apri *9) & (P 9)
Z;& pn (t,u)—/\E T(t,u)

0P o 02
= fm ( ?t (t,u—wv)— /\Z (;;;;’t(t,u—v)> g(v)dv = 0.
U—v : :
Wers and the dominated convergence theorem (with the fact
that g : R™ — R is a.e. continuous, i.e. that lim; ,q g (u + 2v/ /\ty> = g(u) for a.e. u,y € R™, and that
g : R™ — R is a.e. bounded, i.e. that there exists some Cj; > 0 such that for a.e. u, y € R"™ it holds that

max (’g <u + 2\/%3/)’ , ]g(u)\) < Cy), we conclude for a.e. u € R™ that

1 u—v|? 1
hm f(t,u) = lim mf e U5 g(v)dv = lim o J e_Hy2H (u + 2V y)
Rm m

t—0 (477)\15)? t—0 (27‘()5

_ ((%%)m JRW dy) g(u) = g(u).

This shows that the function f : (0,00) x R™ — R defined in (17) indeed solves the PDE (16).

(4,B)

N
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In order to prove (ii), we ﬁx some v € [0,0), p € [1,0), A\,t,v € (0,0), and N € N, and let
g e LY(R™, L(R™), (1+ |u])"#[*1+1dy) be a.e. continuous and a.e. bounded. Moreover, let w : R™ —

[0,0) be as in Example 2.8 (a), and let (¢, p) € Sp(R; C) x Cgol -(R) be as in Example 2.8 (b) with

supp () = [€1, &] for some 0 < &, < & < 0. Now, we first show that f(t,-) € L'(R™, L(R™), du).
Indeed, by using (i), i.e. that f(t,u) = (dry * g)(u) := (g dr(u — y)g(y)dy for any u € R™ (with
ot : R™ — R defined above), and Young’s convolutional inequality, it follows that

L(R™) du) ”gHLl(Rm,E(Rm),du)

LF @) 2 @m,c@my,auy = 19at * gl L1 @m £@m), du

1 lv |
_ (WS JRm e dy) 1912 @om 2 m (ot pupy 1100y < 905

-~

=1

which shows that f(t,-) € L'(R™, L(R™), du).
Next, we show that the Fourier transform f(t,-) : R™ — C s ([y]| + [v]| + 1)-weakly differentiable.
To this end, we use Fubini’s theorem, [Folland, 1992, Table 7.2.9], the substitution (; — +/2At&;, and

the Hermite polynomials (A, )pen in [Abramowitz and Stegun, 1970, Equation 22.2.15], to conclude for
every B € Ng‘m 41 and £ € R™ that

56¢At — s HJ 71§l’ul e~ w | = o (ﬁ e’\t51> ﬁ ;;;l 7”5[)
=1

=1
m

181 z
(2Xt) 2 DPhg (G)e™ =
=N E b G=v2Xitg

— ()Pl 2xt) s (H hg, (m&)> o AEN?

(100)

Moreover, we use the polynomial R™ 5 u — u” := [[}"; u;" € R, the inequality [u®| = [T, [w]|* <
T2 (U Jul)? = (1 [ul)Pl < (14 Ju)PH for any 6 € N
for every (8 € Ng?[ﬂ ]+l that

I+ [v]+1 and u € R™ to obtain

Ips - QHLl(Rm,E(Rm),du) = f

m

B V]+v]+1
ot au< | oI P

= lgll 21 @m cmy, (1 fuly 1+ 10y < -

Hence, by iteratively applying [Folland, 1992, Theorem 7.8. (c)], we conclude that the partial derivative
0pg : R™ — C exists, forall § € NS”M RIE Thus, by using [Folland, 1992, Theorem 7.8. (d)] and the
Leibniz product rule, we conclude for every (5 € NB”M 41 and £ € R™ that

09F(0€) = 03 (3a(O3€) = 3 510 5rl€)03(E), (102)
B1, BQENm
B1+B2= 5

which shows that ﬁt,\) :R™ — Cis ([y] + [v] + 1)-weakly differentiable.

Now, we compute the constant C'y; ) > 0 defined in (9). To this end, we define the constant
¢:= 1+ [y] + [v] € N (independent of m € N). Then, by using the explicit expression of the Hermite
polynomials in [Abramowitz and Stegun, 1970, Equation 22.3.11] together with the triangle inequality,
that \Q]Bl*% < (1 + <A < (1 + [¢]) forany I = 1,...,m, Be NI, j; = 0, ..., |3/2], and { €

!
R™, that Zﬂ 1 ylﬂ(%illgm < maxj—1,..|5/2 (2”) ZJL’?L/EJ m < 51'2’;2 1 % =
263! forany I = 1,...,m and B € N7, the 1nequahty [T, 8! =B <|B' < c!forany S e Np'e» @
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the inequality (z + y)? < 2 (:z:2 +y ) for any z,y > 0, it follows for every 3 € Ng', and ¢ € R™ that

Fn o [ (0 a6e \ o (o
|7, (G| < A+1ED™ 2, 557975 —5o
R 1 \ 2 Pl -2t ) = 205N B = 27)! (103)

m
<L+ JCDPIT 2% 8 < 201 + )7 < 20t el (1 + [¢)%) -

=1

Hence, by inserting (103) into (100) and by using the constant C5; := 2°!max(1,2At)¢ > 0, we
conclude for every 3 € Ng', and £ € R™ that

]ag@(f)] < (2M) 7 20! (1 + H\/mtgf) TR < o (1+ [€]2) 2 eel?, (104)

Moreover, for every b € Ny, we use that Y := || Z|? of Z ~ N,,,(0, I,,) follows a x2(m)-distribution

e 22 ¢ [0, ), the substituti 2, and th
We[ , 00), the substitution z — y/2, and the

definition of the Gamma function in [Abramowitz and Stegun, 1970, Equation 6.1.1] to obtain that

with probability density function [0, 0) 3 y —

67HZ2H b © Ly les
Joo 11 gtz =B [12 ] = B[] = | o fara
Rm™ ) 2 0 2 =z
bim . (105)
&N m I (7
= 77,12 - J 22 ey = 2%7( 2 )
22T (3) Jo ()

Now, in order to ease notation, we define s,,, := m + sg € Ny (depending on m € N) with s¢ := 4[] +
3[v] + 4 € Ny (independent of m € N). Then, by using the inequality (104) together with the constant
Csa := (51 max (1/V fl) > 0 (independent of m € N), that (z4)*m/2+¢ < 25m/2+c ( sm/2+e | ySm/2+C)
for any =,y > 0, the substitution z — \/K§ the identity (105) with b := 0 e Ngand b :=m + t € Ny,

50/2 4 s0/2
and the constants Cs3 := (C522° <12§#> e > 0, Csy := Cso(2Mt)" € <%) ’ > 0, and

cp := 80/2 + c € [0, 00) (independent of m € N) to conclude that

4 Sm

— 2/ gl l€2\\ AR PN ET e
me 10560018)| (16&3 <V+§%>> d§<052<16€%3> f ( 51) de

sm. 4 2 sm _ 2 1 _ 2
< Cep275 e (16&73) <V z f 2xt[¢]| d¢ + — e ), Hé-HSm-&-Zce 22t df)
1 m
4 m e—”Zz” (%)% e_uz2u2
<oar® (5lhs) | ren? [ Gt g o T e
17T m ) 2 lm 2 Rm T) 2
Sm 4 STm s m 4 STm 2 = sm+2¢ F m+sm+2c
S C5222+C< ; 3> ve (2m)2 +C52< % 3> . (2m) L g (731)
16&7m 16&3m £5m (4At) B He r(m)

_ %ﬁ)m % mF(m—l-co)
=G5 (%g% Cs A/ A€ r(m)
(106)

Moreover, for the second term on the right-hand side of (106), we use [Gonon et al., 2021, Lemma 2.4],

i.e. that /27 /z(x/e)* < T(z) < /27 /x(x/e)*e™(12%) < | /dr [x(x/e)* for any x € [1/2,0), and the

constant Css := 2¥/2(1 4 ¢9)® > 0 (independent of m € N) to obtain that

8m m+co ,—m—cop
T F(m +co) € m+co (1 m+co
T Trf’,nr—i_ :10+1/ < n;+ m mtv o < \/ﬁ2m+% m (m +mCJ(32
(2) 2 ) \/%(%) Ye 2 T,?IV (m;y) 2 72 m2m’ 2

(107)
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m
Hence, by using the inequalities (106)+(107), the finite constant Cs5 := Cs3 SUp,,,exy (%) JT (22 >
0 (independent of m € N), and the inequality /z + y < /2 + ,/y for any z,y > 0, it follows that

Hl\.’)

< C53<

[ andrto] v g *

m 3
) 2 I'(m+ co
r(757) *C“( ) T (3)T (%

v 4/ MES

m 1 m

& +3 (1+co)é5\*  2cm

S| Cos+Chy | —2==] MmO 2(2+ 2¢ Cs3 +/Csy | —===] m 4 .
< 55 54 (MW{% 2( 0)™ 53 54 2VNE?

Now, we use that supp(zz) = [&1, &), the identity (102), Minkowski’s inequality, the inequality (x +
y)? <2 (xQ + y2) for any z,y > 0, the constant Cs6 := maX;eNgn[0,[y]+[v]+1] S& C)’d( >0
(independent of m € N), the inequality (26) for the sum of multinomial coefﬁ01ents that Ay ~ t,,,(v) with

— I'(v/2)(7v)™/2 m-+v)/2 '(v/2)(7v)™/2 m+|[v])/2 m
Oa(a)™! = % (1+ ||a||2/7/)(i[ ] :)3/[ ]<4)/£(/(n25”,))/2) (1+ Ha”z/y)( WD/ for any a € R™,
+3[v]+
the constant Cs7; := 2°Csg (mggéi?i&) !
1
[Folland, 1992, Theorem 7.8. (c)] componentwise, the inequality (108), that ¢y < 3[v| + 3[v] + 3,

the inequality (2), the inequality (101), and the constants C5g := C57 max (Csgs, 054)1/ 2 and Cyg :=
(2¢9 + 1)/4 > 0 (independent of m € N) to conclude that

max(1,1/v)1/2 > 0 (independent of m € N),

N

1/1(”(0 — 2 (1 + ||£/CH)4M+2[V]+4
Cf(t,~) - jeNOm[g}%}i[u]H], JR m% (JRW ’aﬂf(t, )(f)‘ 04(E/0) df) d¢

BENG 1w 41
2 3
& [00(0) 8 (L+ Je/glyhteaim+s
= max ™ a g d d
) (e B B eO056) a0 o«
B1+B2= 6
_ ~ 2\ A2\ 2
. o 0 nu(©8,90) (14 145)" p
56 IMax m
BENOC 81,82 ENm 61'62' m 51 914 (6%)
B1+B2= ,3
— 2
e f 195, 624()2,3(6) <1+ ”5”2>4m+§[1 O (%) () <1 |€H2>m+m .
< max
% 51.5aeng, | Jgm & & I (m3%) vt
1
- 9 4 9 m+4[y]+3[v]+4 2
¢ le] 2
(27T)m J ‘aﬁl(b)\,t(g)’ (165%71’3( + ? -
- )
Csr g | | F () dg Jngx sup ‘(pﬁg g)(ﬁ)‘
27.‘. m 1 + C g % 2co+1
<C57(§7272 Css + (2 \ﬁ0)€12> e Ipss gl em o m).au)
(2m)™ B[yl +3[v] +9)&3\ *
gcf’gm%@ b 2mv/AtE2 : 191 21 e £ om), (14 g1+ 100y < 20

(109)

N
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Since Cy = 0 is finite, we can apply Theorem 4.4 (ii) (with constant C; > 0, independent of m € N) to
conclude that there exists some @y € RNE,, | n L*(Q, Fa g, P; LP(R™, L(R™), w(u)du)) such that

) O i +iv+1
(C,%“’)( Ny

1
E [||f(t, ) — <I>N\Iip(Rm,c(Rm>,w<u>du>] <G

Hence by using that the weight w : R™ — [0, 00) is as in Example 4.7 (a), i.e. that there exists a constant
el s (independent of m € N) such that C’H@’? 1)1; < Cﬂ(gfgmwl/p, that (¢, p) € Sp(R; C) xC’gol ,(R)

R ;Wo
is as in Example 4.7 (b), i.e. that there exists a constant Cy, , > 0 (independent of m € N) such that

‘Cr(,;p’p | = Cy p(2m/&)™, the inequality (109), and the constants Cy := ClCﬂ({ ,C58/Cypp > 0 and
Cs:=~v+1/p+[y] + [v] + 1 > 0 (independent of m € N), it follows that

COP) O i+ i1+
‘Céff’”’)‘ e

1
2

E |:Hf(t7 ) - q)NH%p(Rm’L(Rm)’w(u)du)] < C1

C(%p) T+ em V41 oy o\ 2
< ¢ B I € 2" [ (B30 +9)8
Copl2m)™ Nlim & 27/ M2

) Hg“Ll(Rm,L(Rm),(H—”u||)[’v1+[l'1+1du)

o (B[] +3[v]+3)e2\ T
< cm™ (1 * <We§2) > l90 1 R 2y, (14 a1+ 11410y
= NI mmEs ’

which proves the inequality (18) in (ii).
Finally, in order to show (iii), we fix some R > 0 and « € [0,1/2). Then, the function R™ 3 u —
g(u) = ]lm(u) € R is a.e. bounded and a.e. continuous. Moreover, by using the inequality

|ul?> = 2;” " ul2 < mR?m?F = m**1R? for any u € B,,xz(0), that the volume of the ball B,.(0) is
y forany r > 0, and [Gonon et al., 2021, Lemma 2.4], i.e. that [(z) > +/27/x(x/e)*

equal to W
for any x € (0, 00), it follows that
Cy += loloa oo, i aprsireia = [ oI+ a1
_ (1 . mH%R) m+ru1+1f iy (1 . mH%R) P+ % (meR)™
B (0) r(3+1)
1\ v+t
L NP 2en)S R 2¢ (14 mrtER) (2em) % R™
<2 (1 + m”*iR) - o< (12 r) =%
A s (m + 2)2 m
Hence, by inserting this into the right-hand side of (18) and by using the constant
m 1\ v+t m

oo (1, (3114 28) T\ 2 (LemiR) T eem A

Cop:=sup | Cym™® | 1+ < o0,
meN 2mV/ &2 mm(1/2=x)
which is finite as s € [0, 1/2), we conclude that
c 3 +[v1+2e3 | 2
C4m 5 <1 + <W> > Cg
Nl_min%Q,p)
2\ 2e(14m= 2 R) T em) B R
Cym© (1 + (3([71+M+2>5§) : ) e(1+m"t2 ) (2em)
2V ME? mm(1/2=) Ceo
NI~ mmEs N mmEs

This shows that the right-hand side of (18) grows polynomially in m € N. (]
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