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ABSTRACT. In this paper, we study random neural networks which are single-hidden-layer feedforward
neural networks whose weights and biases are randomly initialized. After this random initialization, only
the linear readout needs to be trained, which can be performed efficiently, e.g., by the least squares method.
By viewing random neural networks as Banach space-valued random variables, we prove a universal
approximation theorem within a large class of Bochner spaces. Hereby, the corresponding Banach space can
be significantly more general than the space of continuous functions over a compact subset of a Euclidean
space, namely, e.g., an Lp-space or a Sobolev space, where the latter includes the approximation of the
derivatives. Moreover, we derive approximation rates and an explicit algorithm to learn a deterministic
function by a random neural network. In addition, we provide a full error analysis and study when random
neural networks overcome the curse of dimensionality in the sense that the training costs scale at most
polynomially in the input and output dimension. Furthermore, we show in two numerical examples the
empirical advantages of random neural networks compared to fully trained deterministic neural networks.

1. INTRODUCTION

Inspired by the functionality of human brains, (artificial) neural networks have been discovered in
[McCulloch and Pitts, 1943] and provide as a machine learning technique an algorithmic approach for
the quest of artificial intelligence (see [Turing, 1950] and [Mitchell, 1997]). Fundamentally, a neural
network consists of nodes arranged in hierarchical layers with connections between adjacent layers, which
can be mathematically expressed as the concatenation of affine and non-linear functions.

However, the theoretical approximation properties of neural networks were only proven later by, e.g.,
[Cybenko, 1989], [Hornik et al., 1989], [Hornik, 1991], [Leshno et al., 1993], [Chen and Chen, 1995],
and [Pinkus, 1999]. In mathematical terms, this property is usually shown in universal approximation
theorems, which establish density of the set of neural networks within a given function space. For
example, neural networks are able to approximate any continuous function arbitrarily well on a given
compact subset of a Euclidean space. Subsequently, different works have established approximation
rates, which describe the relation between the approximation error and the number of network pa-
rameters; see e.g. [Barron, 1992], [Barron, 1993], [Darken et al., 1993], [Mhaskar and Micchelli, 1995],
[Darken et al., 1997], [Kůrková, 2012], [Bölcskei et al., 2019], and [Siegel and Xu, 2020].

Despite the theoretical progress in the 1990s, neural networks have only attracted wider attention after
the turn of the millennium by showing promising applications in the fields of image classification (see
e.g. [Krizhevsky et al., 2012]), speech recognition (see e.g. [Hinton et al., 2012]) and computer games
(see e.g. [Silver et al., 2016]). This was due to the drastic improvements in computational power and new
optimization techniques such as stochastic gradient descent algorithms like, e.g., the Adam algorithm (see
[Kingma and Ba, 2015]). However, the training of a neural network remains a challenging task. First of
all, the learning procedure is a non-convex optimization problem, i.e. the algorithm locates one of many
local minimas, but possibly not the optimal solution (see [Goodfellow et al., 2016, p. 282]). Moreover,
the iterative backpropagation improving the solution at each training step is slow, in particular for deep
neural networks (see [Montavon et al., 2012, p. 13]). In addition, one would like to overcome the curse
of dimensionality, i.e. that the training costs scale at most polynomially in the input and output dimension,
which is still an open problem for neural networks (see [Goodfellow et al., 2016, p. 155]).

In order to tackle these training limitations of deterministic neural networks, we suggest to use random
neural networks instead. Inspired by the works on extreme learning machines (see [Huang et al., 2006]),
random feature models (see [Rahimi and Recht, 2007] and [Rudi and Rosasco, 2017]), as well as reser-
voir computing (see [Maass et al., 2002], [Jaeger and Haas, 2004], [Grigoryeva and Ortega, 2018], and
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[Gonon and Ortega, 2021]), random neural networks are single-hidden-layer feed-forward neural net-
works whose weights and biases are randomly initialized, and only the linear readout is trained (see
[Gonon et al., 2023a] with ReLU activation function). In this form, we retrieve a convex optimization
problem without iterative backpropagation, which can be solved efficiently on any average computer.

Our first contribution consists of a universal approximation theorem for random neural networks. To
this end, we view random neural networks as random functions that return for every random initialization
the corresponding network as a function in a suitable Banach space. This allows us to apply the strong law
of large numbers for Banach space-valued random variables (see [Hytönen et al., 2016, Theorem 3.1.10])
to lift the universal approximation property of deterministic neural networks to random neural networks,
where the approximation error is quantified in a Bochner norm. This allows us to significantly generalize
the first universal approximation results in [Gonon et al., 2023a] from deterministic functions to random
functions, from the ReLU activation function to more general non-polynomial activation functions, as
well as from L2-spaces to more general function spaces including, e.g., the derivatives.

In order to obtain this universal approximation result of random neural networks, we first generalize
the universal approximation theorem for deterministic neural networks from the classical formulation
on compacta to function spaces over unbounded Euclidean domains, e.g. Lp-spaces and Sobolev spaces
(see also [Hornik et al., 1990] and [Hornik, 1991]). More precisely, for k P N0, we consider Banach
spaces that are obtained as completions of the space of bounded and k-times differentiable functions with
bounded derivatives with respect to a weighted norm related to the polynomial growth of the activation
function. In order to establish density of the set of deterministic neural networks in those function spaces,
we apply the classical Hahn-Banach separation argument (as in [Cybenko, 1989, Theorem 1]) and use a
Riesz representation theorem (similar to [Dörsek and Teichmann, 2010, Theorem 2.4]) to express any
continuous linear functional on the dense subspace with the help of finite signed Radon measures. Hence,
by assuming that the activation function is non-polynomial, we can use Korevaar’s distributional extension
(see [Korevaar, 1965]) of Wiener’s Tauberian theorem (see [Wiener, 1932]) to obtain global universal
approximation results beyond compact subsets of a Euclidean space (see also [Cuchiero et al., 2023]).

Our second contribution consists of approximation rates for learning a deterministic function by a
random neural network, which relates the required size of the random neural network to the pre-given
approximation error. To this end, we assume that the function to be approximated has a Fourier transform
that is sufficiently regular and integrable, whereas the approximation error is measured with respect to a
weighted Sobolev norm. In particular, we use the Ridgelet transform introduced by [Candès, 1998] and
its distributional extension in [Sonoda and Murata, 2017] to represent the function to be approximated as
expectation of a particular random neural network. Then, we follow the derivations for the approximation
rates of deterministic neural networks and use a symmetrization argument with Rademacher averages. This
generalizes the approximation rates in [Gonon et al., 2023a, Section 4.2] (see also [Gonon et al., 2023b]
for an infinite dimensional version) for random neural networks with ReLU activation function to more
general activation functions and the inclusion of the (weak) derivatives into the approximation.

Moreover, by using the least squares method, we provide an algorithm to learn a deterministic function,
where we show in a full error analysis that random neural networks can overcome the curse of dimensional-
ity, i.e. that the training costs scale at most polynomially in the input and output dimension. Therefore, ran-
dom neural networks are suited as non-parametric regression method to learn high-dimensional functions
(see [Györfi et al., 2002], [Rahimi and Recht, 2007], [Rudi and Rosasco, 2017], [Carratino et al., 2018],
[Chen et al., 2020], [Mannelli et al., 2020], [Mei and Montanari, 2022], and [Heiss et al., 2023]).

The theoretical foundations of random neural networks are relevant in scientific computing. For exam-
ple, in mathematical physics, random neural networks have been successfully applied to solve partial differ-
ential equations (PDEs) (see [Yang et al., 2018], [Dwivedi and Srinivasan, 2020], [Dong and Li, 2021],
and [Wang and Dong, 2023]), for photonic systems (see [Lupo et al., 2021]), and for quantum reservoirs
(see [Gonon and Jacquier, 2023]). Moreover, random neural networks have been applied in mathematical
finance, e.g., for learning option prices in the Black-Scholes model (see [Gonon, 2023]), for optimal
stopping (see [Herrera et al., 2021]), for learning the hedging strategy via Wiener-Ito chaos expansion
(see [Neufeld and Schmocker, 2022] and [Neufeld and Schmocker, 2023]), for solving path-dependent
PDEs in the context of rough volatility (see [Jacquier and Žurič, 2023]), for pricing American options
(see [Yang et al., 2023]), and for random deep splitting methods (see [Neufeld et al., 2023]).

We complement these numerical examples by learning the solution of the heat equation and the price
of a Basket option, showing the empirical advantages of random neural networks over deterministic ones.
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1.1. Outline. In Section 2, we recall deterministic neural networks and generalize their universal
approximation property. In Section 3, we define random neural networks as Banach space-valued random
variables and show their universal approximation property. In Section 4, we prove some approximation
rates and develop an explicit algorithm to learn a deterministic function by a random neural network
including a full error analysis. In Section 5, we show in numerical examples how to apply random neural
networks and demonstrate their numerical advantages. Finally, all proofs are contained in Section 6-10.

1.2. Notation. In the following, we introduce the notation of some standard function spaces and the
Fourier transform for distributions. Readers who are familiar with these concepts may skip this section.

As usual, N :“ t1, 2, 3, ...u and N0 :“ NYt0u denote the sets of natural numbers, whereas Z represents
the set of integers. Moreover, R and C denote the sets of real and complex numbers, respectively,
where i :“

?
´1 P C represents the imaginary unit. In addition, for any r P R, we define tru :“

max tk P Z : k ď ru and rrs :“ min tk P Z : k ě ru. Furthermore, for any z P C, we denote its real and
imaginary part as Repzq and Impzq, respectively, whereas its complex conjugate is z :“ Repzq ´ Impzqi.

Moreover, for any m P N, we denote by Rm (and Cm) the m-dimensional (complex) Euclidean space,
which is equipped with the Euclidean norm }u} “

a

řm
i“1 |ui|2. In addition, for any m,n P N, we

denote by Rmˆn the vector space of matrices A “ pai,jq
j“1,...,n
i“1,...,m P Rmˆn, which is equipped with the

matrix 2-norm }A} “ supxPRn, }x}ď1 }Ax}, where Im P Rmˆm is the identity matrix.
Furthermore, for U Ď Rm, we denote by BpUq the σ-algebra of Borel-measurable subsets of U .

Moreover, for U P BpRmq, we denote by LpUq the σ-algebra of Lebesgue-measurable subsets of U ,
while du : LpUq Ñ r0,8s denotes the Lebesgue measure on U . Then, a property is said to hold true
almost everywhere (shortly a.e.) if it holds everywhere true except on a set of Lebesgue measure zero.

Moreover, for every fixed m, d P N and U Ď Rm, we introduce the following function spaces:
(i) C0pU ;Rdq denotes the vector space of continuous functions f : U Ñ Rd.

(ii) CkpU ;Rdq, with k P N and U Ď Rm open, denotes the vector space of k-times continu-
ously differentiable functions f : U Ñ Rd such that for every multi-index α P Nm0,k :“

tα “ pα1, ..., αmq P Nm0 : |α| :“ α1 ` ...` αm ď ku the partial derivativeU Q u ÞÑ Bαfpuq :“
B|α|f

Bu
α1
1 ¨¨¨Buαmm

puq P Rd is continuous. If m “ 1, we write f pjq :“ Bjf
Buj

: U Ñ Rd, j “ 0, ..., k.

(iii) Ckb pU ;Rdq, with k P N0 and U Ď Rm (open, if k ě 1), denotes the vector space of bounded
functions f P CkpU ;Rdq such that Bαf : U Ñ Rd is bounded for all α P Nm0,k. Then, the norm

}f}Ckb pU ;Rdq :“ max
αPNm0,k

sup
uPU

}Bαfpuq}.

turns pCkb pU ;Rdq, } ¨ }Ckb pU ;Rdqq into a Banach space. Note that for k “ 0 and U Ă Rm being

compact, we obtain the usual Banach space pC0pU ;Rdq, } ¨ }C0pU ;Rdqq of continuous functions,
which is equipped with the supremum norm }f}C0pU ;Rdq :“ }f}C0

b pU ;Rdq “ supuPU }fpuq}.
(iv) Ckpol,γpU ;Rdq, with k P N0, U Ď Rm (open, if k ě 1), and γ P r0,8q, denotes the vector space

of functions f P CkpU ;Rq of γ-polynomial growth such that

}f}Ckpol,γpU ;Rdq :“ max
αPNm0,k

sup
uPU

}Bαfpuq}

p1 ` }u}qγ
ă 8.

(v) Ckb pU ;Rdq
γ
, with k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q, is defined as the closure of

Ckb pU ;Rdq with respect to } ¨ }Ckpol,γpU ;Rdq. Then, pCkb pU ;Rdq
γ
, } ¨ }Ckpol,γpU ;Rdqq is by definition

a Banach space. If U Ď Rm is bounded, then Ckb pU ;Rdq
γ

“ Ckb pU ;Rdq. Otherwise, f P

Ckb pU ;Rdq
γ

if and only if f P CkpU ;Rdq and limrÑ8 maxαPNm0,k supuPU, }u}ěr
}Bαfpuq}

p1`}u}qγ
“ 0

(see Lemma 6.1). For example, if f P Ckpol,γ0pU ;Rdq, with γ0 P r0, γq, then f P Ckb pU ;Rdq
γ
.

(vi) C8
c pU ;Rdq, with U Ď Rm open, denotes the vector space of smooth functions f : U Ñ Rd such

that supppfq Ď U , where supppfq is defined as the closure of tu P U : fpuq ‰ 0u in Rm.
(vii) L1

locpU ;Rdq, with U Ď Rm, denotes the space of Lebesgue measurable functions f : U Ñ Rd
such that for every compact subset K Ă Rm with K Ă U it holds that

ş

K }fpuq}du ă 8.
(viii) SpRm;Cq denotes the Schwartz space consisting of smooth functions f : Rm Ñ C such that the

seminorms maxαPNm0,n supuPRm
`

1 ` }u}2
˘n

|Bαfpuq| are finite, for all n P N0. Then, we equip



4

SpRm;Cq with the locally convex topology induced by these seminorms (see [Folland, 1992,
p. 330]). Moreover, its dual space S 1pRm;Cq consists of continuous linear functionals T :
SpRm;Cq Ñ C called tempered distributions (see [Folland, 1992, p. 332]). Hereby, we say that
f P L1

locpRm;Cq induces Tf P S 1pRm;Cq if SpRm;Cq Q g ÞÑ Tf pgq :“
ş

Rm fpuqgpuqdu P C
is continuous. For example, if there exists some n P N such that

ş

Rm
`

1 ` }u}2
˘´n

|fpuq|du ă

8, then the function f P L1
locpRm;Cq induces the tempered distribution Tf P S 1pRm;Cq

(see [Folland, 1992, Equation 9.26]). Conversely, for an open subset U Ď Rm, a tempered
distribution T P S 1pRm;Cq is said to coincide on U with fT P L1

locpU ;Cq if T pgq “ TfT pgq

for all g P C8
c pU ;Cq. In addition, the support of any tempered distribution T P S 1pRm;Cq is

defined as the complement of the largest open set U Ď Rm on which T P S 1pRm;Cq vanishes,
i.e. T pgq “ 0 for all g P C8

c pU ;Cq.
(ix) S0pR;Cq Ď SpR;Cq denotes the vector subspace of functions f P SpR;Cq with

ş

R u
jfpuqdu “

0 for all j P N0 (see [Grafakos, 2014, Definition 1.1.1]). Using the Fourier transform (see (1)
below) and [Folland, 1992, Theorem 7.5 (c)], this is equivalent to pf pjqp0q “ 0 for all j P N0.

(x) LppU,Σ, µ;Rdq, with p P r1,8q, U Ď Rm, and (possibly non-finite) measure space pU,Σ, µq,
denotes the vector space of (equivalence classes of) Σ{BpRdq-measurable functions f : U Ñ Rd
such that

}f}LppU,Σ,µ;Rdq :“

ˆ
ż

U
}fpuq}pµpduq

˙
1
p

ă 8.

Then, pLppU,Σ, µ;Rdq, } ¨ }LppU,Σ,µ;Rdqq is a Banach space (see [Rudin, 1987, p. 96]).
(xi) W k,ppU,LpUq, du;Rdq, with k P N, p P r1,8q, and U Ď Rm open, denotes the Sobolev space

of (equivalence classes of) k-times weakly differentiable functions f : U Ñ Rd such that
Bαf P LppU,LpUq, du;Rdq for all α P Nm0,k (see [Adams, 1975, Chapter 3]). Then, the norm

}f}Wk,ppU,LpUq,du;Rdq :“

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq}pdu

˛

‚

1
p

turns W k,ppU,LpUq, du;Rdq into a Banach space (see [Adams, 1975, Theorem 3.2]).
(xii) W k,ppU,LpUq, w;Rdq, with k P N, p P r1,8q, U Ď Rm open, and LpUq{BpRq-measurable

w : U Ñ r0,8q, denotes the weighted Sobolev space of (equivalence classes of) k-times weakly
differentiable functions f : U Ñ Rd such that Bαf P LppU,LpUq, wpuqdu;Rdq for all α P Nm0,k.
Moreover, w : U Ñ r0,8q is called a weight if w is a.e. strictly positive. In this case, the norm

}f}Wk,ppU,LpUq,w;Rdq :“

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq}pwpuqdu

˛

‚

1
p

turns W k,ppU,LpUq, w;Rdq into a Banach space (see [Kufner, 1980, p. 5]).
(xiii) W 0,ppU,LpUq, w;Rdq, with p P r1,8q andU P BpRmq, is defined asLppU,LpUq, wpuqdu;Rdq.
In addition, if the functions are real-valued, we abbreviate CkpUq :“ CkpU ;Rq, LppU,Σ, µq :“

LppU,Σ, µ;Rq, etc. Moreover, we define the complex-valued function spaces CkpU ;Cdq – CkpU ;R2dq,
LppU,Σ, µ;Cdq – LppU,Σ, µ;R2dq, etc. as in (i)-(xii) (except (viii)+(ix)) by identifying Cd – R2d.

Furthermore, we say that an open subset U Ď Rm admits the segment property if for every u P BU :“
UzU there exists an open neighborhood V Ď Rm around u P BU and a vector y P Rmzt0u such that for
every z P U X V and t P p0, 1q it holds that z ` ty P U (see [Adams, 1975, p. 54]).

Moreover, we define the (multi-dimensional) Fourier transform of any f P L1pRm,LpRmq, du;Cdq as

Rm Q ξ ÞÑ pfpξq :“

ż

Rm
e´iξJufpuqdu P Cd, (1)

see [Folland, 1992, p. 247]. Then, by using [Hytönen et al., 2016, Proposition 1.2.2], it follows that

sup
ξPRm

›

›

›

pfpξq

›

›

›
“ sup

ξPRm

›

›

›

›

ż

Rm
e´iξJufpuqdu

›

›

›

›

ď

ż

Rm
}fpuq}du “ }f}L1pRm,LpRmq,du;Rdq. (2)

In addition, the Fourier transform of any tempered distribution T P S 1pRm;Cq is defined by pT pgq :“
T ppgq, for g P SpRm;Cq (see [Folland, 1992, Equation 9.28]).
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2. DETERMINISTIC NEURAL NETWORKS

Before we introduce random neural networks in Section 3, we first consider classical (deterministic)
neural networks. Inspired by the functionality of a human brain (see [McCulloch and Pitts, 1943]),
deterministic neural networks can be described by a composition of affine and non-affine functions.

Definition 2.1. For ρ P C0pRq, a function φ : Rm Ñ Rd is called a deterministic (single-hidden-layer
feed-forward) neural network if it is of the form

Rm Q u ÞÑ φpuq “

N
ÿ

n“1

ynρ
`

aJ
nu´ bn

˘

P Rd, (3)

for someN P N denoting the number of neurons, where a1, ..., aN P Rm, b1, ..., bN P R, and y1, ..., yN P

Rd represent the weight vectors, biases, and linear readouts, respectively.

In this paper, we only consider single-hidden-layer feed-forward neural networks of the form (3) and
simply refer to them as (deterministic) neural networks.

Definition 2.2. For U Ď Rm and ρ P C0pRq, we denote by NN ρ
U,d the set of all neural networks of the

form (3) restricted to U with corresponding activation function ρ P C0pRq.

Input Layer

Hidden Layer

Output Layer

Rm Q u φpuq P Rd

Figure 1. A neural network φ : Rm Ñ Rd with m “ 3, d “ 2, and N “ 5.

Deterministic neural networks admit the so-called universal approximation property, which establishes
the density of the set of deterministic neural networks within a given function space. For example, every
continuous function can be approximated arbitrarily well on a compact subset of a Euclidean space (see
e.g. [Cybenko, 1989], [Hornik, 1991], [Pinkus, 1999], and the references therein).

In order to generalize the approximation properties of deterministic neural networks beyond continuous
functions on compact subsets, we now consider the following type of function spaces. For this purpose,
we fix the input dimension m P N and the output dimension d P N throughout the rest of this paper.

Definition 2.3. For k P N0, U Ď Rm (open, if k ě 1), γ P p0,8q, we call a Banach space pX, } ¨ }Xq a
pk, U, γq-approximable function space if X consists of functions f : U Ñ Rd and the restriction map

pCkb pRm;Rdq, } ¨ }Ckpol,γpRm;Rdqq Q f ÞÑ f |U P pX, } ¨ }Xq (4)

is a continuous dense embedding.

Remark 2.4. The restriction map in (4) is a continuous dense embedding if it is continuous and its image
is dense in X with respect to } ¨ }X . By definition of Ckb pRm;Rdq

γ
in Notation (v), this is equivalent to

pCkb pRm;Rdq
γ
, } ¨ }Ckpol,γpRm;Rdqq Q f ÞÑ f |U P pX, } ¨ }Xq being a continuous dense embedding.

The continuous dense embedding in (4) has two important consequences. First, any pk, U, γq-
approximable function space pX, } ¨ }Xq is a separable Banach space which is needed for the notion of
Bochner spaces in Section 3. Moreover, for any activation function ρ P Ckb pRq

γ
, the set of deterministic

neural networks NN ρ
U,d Ď X is well-defined in the function space pX, } ¨ }Xq.

Lemma 2.5. For k P N0, U Ď Rm (open, if k ě 1), γ P p0,8q, let pX, } ¨ }Xq be an pk, U, γq-
approximable function space. Then, the following holds true:

(i) The Banach space pX, } ¨ }Xq is separable.
(ii) For every ρ P Ckb pRq

γ
it holds that NN ρ

Rm,d Ď Ckb pRm;Rdq
γ

and NN ρ
U,d Ď X .
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In order to derive the following universal approximation result, we now assume that the activation
function ρ P Ckb pRq

γ
is non-polynomial. This is equivalent to the condition that the Fourier transform

xTρ P S 1pR;Cq of the tempered distribution1 `g ÞÑ Tρpgq :“
ş

R ρpsqgpsqds
˘

P S 1pR;Cq is supported at a
non-zero point (see e.g. [Rudin, 1991, Examples 7.16]). The proof can be found in Section 7.2.

Theorem 2.6 (Universal Approximation). For k P N0, U Ď Rm (open, if k ě 1), γ P p0,8q, let
pX, } ¨ }Xq be an pk, U, γq-approximable function space and assume that ρ P Ckb pRq

γ
is non-polynomial.

Then, NN ρ
U,d is dense in X with respect to } ¨ }X .

Theorem 2.6 yields a global universal approximation result beyond compact subsets of a Euclidean
space and is therefore interesting in its own right. Let us compare Theorem 2.6 to the existing literature.

Remark 2.7. Theorem 2.6 unifies the following universal approximation theorems (UATs):
(i) Theorem 2.6 extends the UATs in [Cybenko, 1989, Theorem 1], [Hornik et al., 1989, Theo-

rem 2.4], [Hornik, 1991, Theorem 2], [Leshno et al., 1993, Theorem 1], [Chen and Chen, 1995,
Theorem 3], and [Pinkus, 1999, Theorem 3.1] for continuous functions on compact subsets of a
Euclidean space to more general functions on unbounded Euclidean domains. The latter three
results are for non-polynomial activation functions.

(ii) Theorem 2.6 extends the UAT in [Hornik, 1991, Theorem 3+4] and [Hornik et al., 1990, Corol-
lary 3.6+3.8] on (weighted) Sobolev spaces to more general function spaces.

(iii) Theorem 2.6 extends the UAT in [Cuchiero et al., 2023, Theorem 4.13] for functions defined on
weighted (infinite dimensional) domains to differentiable functions.

Towards the end of this section, let us give some examples of pk, U, γq-approximable function spaces
which include some of the standard function spaces introduced in Section 1.2.

Example 2.8. For any k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q, the following Banach spaces
pX, } ¨ }Xq are pk, U, γq-approximable function spaces:

Function space pX, } ¨ }Xq Notation additional assumptions

(i) pCk
b pU ;Rdq, } ¨ }Ck

b pU ;Rdqq
(iii) if U Ă Rm is bounded

k P N0 and U Ď Rm (open, if k ě 1)

(ii) pCk
b pU ;Rdq

γ
, } ¨ }Ck

pol,γpU ;Rdqq
(v) none

k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q

(iii)
pLppU,Σ, µ;Rdq, } ¨ }LppU,Σ,µ;Rdqq

(x)
if Σ “ BpUq,

k “ 0, p P r1,8q, U Ď Rm, if µ : BpUq Ñ r0,8s is a Borel-measure,
and measure space pU,Σ, µq and if

ş

U
p1 ` }u}qγpµpduq ă 8

(iv) pW k,ppU,LpUq, du;Rdq, } ¨ }Wk,ppU,LpUq,du;Rdqq
(xi)

if U Ă Rm has the segment property
k P N, p P r1,8q, and U Ď Rm open and if U Ă Rm is bounded

(v)
pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq

(xii)

if U Ď Rm has the segment property,
if w : U Ñ r0,8q is bounded,

k P N, p P r1,8q, U Ď Rm open, if infuPB wpuq ą 0 for all bounded B Ď U ,
and weight w : U Ñ r0,8q and if

ş

U
p1 ` }u}qγpwpuqdu ă 8

Moreover, let us give some examples of non-polynomial activation functions ρ P Ckb pRq
γ
, which

includes the standard activation functions such as, e.g., the sigmoid function and the ReLU function.

Example 2.9. For k P N0 and γ P p0,8q, the following functions ρ P Ckb pRq
γ

are non-polynomial,
where its Fourier transform xTρ P S 1pR;Cq coincides on Rzt0u with the function f

xTρ
P L1

locpRzt0u;Cq:

ρ P Ckb pRq
γ

k P N0 γ P p0,8q f
xTρ

P L1
locpRzt0u;Cq

(i) Sigmoid function ρpsq :“ 1
1`e´s k P N0 γ ą 0 f

xTρ
pξq “ ´iπ

sinhpπξq

(ii) Tangens hyperbolicus ρpsq :“ tanhpsq k P N0 γ ą 0 f
xTρ

pξq “ ´iπ
sinhpπξ{2q

(iii) Softplus function ρpsq :“ ln p1 ` esq k P N0 γ ą 1 f
xTρ

pξq “ ´π
ξ sinhpπξq

(iv) ReLU function ρpsq :“ maxps, 0q k “ 0 γ ą 1 f
xTρ

pξq “ ´ 1
ξ2

1Note that ρ P Ckb pRq
γ

induces the tempered distribution
`

g ÞÑ Tρpgq :“
ş

R ρpsqgpsqds
˘

P S 1
pR;Cq as ρ P Ckb pRq

γ
is

of polynomial growth (see [Folland, 1992, Equation 9.26]).
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3. RANDOM NEURAL NETWORKS

In order to induce randomness in a neural network, we assume throughout this paper the existence of a
probability space pΩ,F ,Pq which supports an independent and identically distributed (i.i.d.) sequence of
Rm-valued random variables pAnqnPN : Ω Ñ Rm and an i.i.d. sequence of R-valued random variables
pBnqnPN : Ω Ñ R. Then, we define the σ-algebra generated by pAnqnPN and pBnqnPN as

FA,B :“ σ ptAn, Bn : n P Nuq . (5)

Moreover, we impose the following condition on the distribution of pAnqnPN and pBnqnPN.

Assumption 3.1. The random vector pA1, B1q : Ω Ñ Rm ˆ R satisfies for every a P Rm, b P R, and
r ą 0 that P rtω P Ω : }pA1pωq, B1pωqq ´ pa, bq} ă rus ą 0.

Moreover, for k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q, let pX, } ¨ }Xq be an pk, U, γq-
approximable function space (see Definition 2.3). Then, any FA,B-strongly measurable random variable
F : Ω Ñ X can be seen as random function

`

U Q u ÞÑ F pωqpuq P Rd
˘

P X for ω P Ω (see Section 8.1).
Now, we introduce random neural networks as random functions, where the weight vectors and biases

inside the activation function are obtained from pAnqnPN and pBnqnPN, respectively. Hereby, the linear
readout is also a random variable, but which is observable with respect to pAnqnPN and pBnqnPN.

Definition 3.2. Let k P N0, U Ď Rm, γ P p0,8q, and ρ P Ckb pRq
γ
. Then, we call a map Φ : Ω Ñ

Ckb pU ;Rdq
γ

a random neural network if it is of the form2

Ω Q ω ÞÑ Φpωq “

N
ÿ

n“1

Wnpωqρ
`

AnpωqJ ¨ ´Bnpωq
˘

P Ckb pU ;Rdq
γ

(6)

for some N P N denoting the number of neurons. Moreover, A1, ..., AN : Ω Ñ Rm and B1, ..., BN :
Ω Ñ R are the random weight vectors and random bias, respectively, while the FA,B{BpRdq-measurable
random variables W1, ...,WN : Ω Ñ Rd represent the linear readouts.

Definition 3.3. We denote by RN ρ
U,d the set of all random neural networks of the form (6) with corre-

sponding activation function ρ P Ckb pRq
γ
, for some k P N0 and γ P p0,8q.

Let us briefly explain how a random neural network can be trained on a computer (see also Section 4.2).

Remark 3.4. For the random initializtion of pAn, Bnqn“1,...,N , we draw some ω P Ω and fix the values
of A1pωq, ..., AN pωq P Rm and B1pωq, ..., BN pωq P R. Thus, by using that W1, ...,WN : Ω Ñ Rd
are FA,B{BpRdq-measurable, the training of some Φ P RN ρ

U,d consists of finding the optimal vectors
W1pωq, ...,Wnpωq P Rd given A1pωq, ..., AN pωq P Rm and B1pωq, ..., BN pωq P R (see Algorithm 1).

In the following, we now lift the universal approximation property of deterministic neural networks in
Theorem 2.6 to this setting involving randomness. The proof can be found in Section 8.3.

Theorem 3.5 (Universal Approximation). For k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q, let
pX, } ¨ }Xq be an pk, U, γq-approximable function space and assume that ρ P Ckb pRq

γ
is non-polynomial.

Moreover, let pA1, B1q satisfy Assumption 3.1 and let F P LrpΩ,FA,B,P;Xq for some r P r1,8q. Then,
the following holds true:

(i) For every ε ą 0 there exists some Φ P RN ρ
U,d X LrpΩ,FA,B,P;Xq such that

}F ´ Φ}LrpΩ,F ,P;Xq :“ E r}F ´ Φ}rXs
1
r ă ε.

(ii) For every δ, ε ą 0 there exists some Φ P RN ρ
U,d X LrpΩ,FA,B,P;Xq such that

P rtω P Ω : }F pωq ´ Φpωq}X ě εus ď δ.

Remark 3.6. Note that every deterministic function f P X is a constant random function pω ÞÑ fq P

LrpΩ,FA,B,P;Xq and can therefore be approximated by a random neural network Φ P RN ρ
U,d.

Theorem 3.5 generalizes the universal approximation results in [Rahimi and Recht, 2008, Theo-
rem 3.1], [Hart et al., 2020, Theorem 2.4.3], [Gonon et al., 2023a, Corollary 3], and [Gonon, 2023,
Corollary 6] from deterministic functions to random functions, from particular activation functions
(such as the ReLU function) to more general non-polynomial activation functions, as well as from
particular Banach spaces (e.g. L2-spaces) to more general pk, U, γq-approximable function spaces.

2The notation Wnpωqρ
`

Anpωq
J

¨ ´Bnpωq
˘

refers to the function U Q u ÞÑ Wnpωqρ
`

Anpωq
Ju ´ Bnpωq

˘

P Rd.
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4. APPROXIMATION RATES FOR LEARNING A DETERMINISTIC FUNCTION

In this section, we provide approximation rates for learning a deterministic function by a random neural
network. For this purpose, we assume the following for the random initialization pA1, B1q : Ω Ñ RmˆR.

Assumption 4.1. A1 : Ω Ñ Rm and B1 : Ω Ñ R are independent. Moreover, A1 admits a probability
density function θA : Rm Ñ p0,8q which is strictly positive. In addition,B1 : Ω Ñ R follows a Student’s
t-distribution3, i.e. B1 „ t1pνq for some ν P p0,8q. In this case, we write pA1, B1q „ θA b t1pνq.

To derive the approximation rates, we apply the reconstruction formula in [Sonoda and Murata, 2017,
Theorem 5.6] to obtain an integral representation of the function to be approximated (see also Section 9.2).
To this end, we consider the following pairs pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq consisting of a ridgelet
function ψ P S0pR;Cq (see Notation (ix)) and an activation function ρ P Ckpol,γpRq (see Notation (iv)),
which is a special case of [Sonoda and Murata, 2017, Definition 5.1] (see also [Candès, 1998]).

Definition 4.2. For k P N0, γ P r0,8q, and m P N, a pair pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq is called

m-admissible if xTρ P S 1pR;Cq coincides on Rzt0u with a function f
xTρ

P L1
locpRzt0u;Cq such that

Cpψ,ρq
m :“ p2πqm´1

ż

Rzt0u

pψpξqf
xTρ

pξq

|ξ|m
dξ P Czt0u. (7)

Remark 4.3. If pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq is m-admissible, then ρ P Ckpol,γpRq has to be non-

polynomial. Indeed, otherwise the support of xTρ P S 1pR;Cq is contained in t0u Ă R (see e.g. [Rudin, 1991,
Examples 7.16]), which implies that (7) vanishes for any choice of ψ P S0pR;Cq.

4.1. Approximation Rates. In this section, we now provide the approximation rates for learning a
deterministic function by a random neural network. The proof can be found in Section 9.3.

Theorem 4.4 (Approximation Rates). For k P N0, p, r P p1,8q, U Ď Rm (open, if k ě 1), and
γ P r0,8q, let w : U Ñ r0,8q be a weight such that

C
pγ,pq

U,w :“

ˆ
ż

U
p1 ` }u}qγpwpuqdu

˙
1
p

ă 8. (8)

Moreover, for ν P p0,8q, let pA1, B1q „ θA b t1pνq satisfy Assumption 4.1, and let pψ, ρq P S0pR;Cq ˆ

Ckpol,γpRq be m-admissible. Then, there exists C1 ą 0 (independent of m, d P N) such that for every
f P L1pRm,LpRmq, du;Rdq with prγs`rνs`1q-times weakly differentiable Fourier transform satisfying

Cf :“ max
jPN0Xr0,rγs`rνs`1s,

βPNm
0,rγs`rνs`1

ż

R

ˇ

ˇ

ˇ

pψpjqpζq

ˇ

ˇ

ˇ

|ζ|
m
r

˜

ż

Rm
}Bβ

pfpξq}r
p1 ` }ξ{ζ}qpk`2rγs`rνs`2qr

θApξ{ζqr´1
dξ

¸
1
r

dζ ă 8, (9)

the following holds true:
(i) It holds that f P W k,ppU,LpUq, w;Rdq.

(ii) For every N P N there exists some ΦN P RN ρ
U,d X LrpΩ,FA,B,P;W k,ppU,LpUq, w;Rdqq

having N neurons such that

E
”

}f ´ ΦN}rWk,ppU,LpUq,w;Rdq

ı
1
r

ď C1

C
pγ,pq

U,w Cf
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

m
k
p

`rγs`rνs`1

N
1´ 1

minp2,p,rq

, (10)

(iii) For every δ, ε ą 0 there exists some ΦN P RN ρ
U,d X LrpΩ,FA,B,P;W k,ppU,LpUq, w;Rdqq

having N P N neurons, with

N ě

¨

˝C1

C
pγ,pq

U,w Cf
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

m
k
p

`rγs`rνs`1

δ1{rε

˛

‚

minp2,p,rq

minp2,p,rq´1

, (11)

such that P
”!

ω P Ω : }f ´ ΦN pωq}Wk,ppU,LpUq,w;Rdq ě ε
)ı

ď δ.

3B1 „ t1pνq has probability density function R Q b ÞÑ θBpbq “
Γpp1`νq{2q

Γpν{2q
?
πν

`

1 ` b2{ν
˘´p1`νq{2

P p0,8q, where Γ

denotes the Gamma function (see [Abramowitz and Stegun, 1970, Section 6.1])
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Theorem 4.4 relates the number of neurons N P N needed for a random neural network to approximate
a deterministic function with pre-given error tolerance ε ą 0 (and probability threshold δ ą 0 for (iii)).

Remark 4.5. Theorem 4.4 is related to the following approximation rates in the literature:
(i) Theorem 4.4 extends the approximation rates for random neural networks in [Gonon et al., 2023a,

Section 4.2] and [Gonon, 2023, Theorem 1] from the ReLU activation function and Bochner
space L2pΩ,F ,P;Xq, with X :“ L2pRm,BpRmq, µ;Rdq for some probability measure µ :
BpRmq Ñ r0, 1s or X :“ C0pr´M,M sq for some M ą 0, to more general activation functions
and more general Lr-Bochner spaces with weighted Sobolev space X :“ W k,ppU,LpUq, w;Rdq.

(ii) Theorem 4.4 provides analogous approximation rates as the ones for deterministic neural net-
works in [Barron, 1993], [Darken et al., 1993], [Siegel and Xu, 2020], and the references therein.

Moreover, for r “ 2, we use the equivalent characterization of Sobolev spaces via Fourier transform
(see [Grubb, 2009, Lemma 6.8]) to provide sufficient conditions for f P L1pRm,LpRmq, du;Rdq to have
a weakly differentiable Fourier transform such that the constant Cf ě 0 defined in (9) is finite.

Example 4.6. Let k P N0, r “ 2, γ P r0,8q, and ν P p0,8q. Moreover, let4 pA1, B1q „ tmpνq b t1pνq

and let ψ P S0pR;Cq such that suppp pψq “ rξ1, ξ2s for some 0 ă ξ1 ă ξ2 ă 8 (see Example 4.7 (b)
below). If f P L1pRm,LpRmq, p1` }u}qrγs`rνs`1du;Rdq XWm`2k`4rγs`3rνs`4,2pRm,LpRmq, p1` } ¨

}q2prγs`rνs`1q;Rdq, then the Fourier transform pf : Rm Ñ Rd is prγs`rνs`1q-times weakly differentiable
and the constant Cf ě 0 defined in (9) is finite.

Finally, we estimate the constants Cpγ,pq

U,w ,
ˇ

ˇC
pψ,ρq
m

ˇ

ˇ, and Cf to give some sufficient conditions when
learning a deterministic function by a random neural network overcomes the curse of dimensionality.

Example 4.7. Let k P N0, p P p1,8q, U Ď Rm (open, if k ě 1), γ P r0,8q. Then, the following holds:

(a) For Cpγ,pq

U,w : Let w : U Ñ r0,8q be a weight of separable form wpuq :“ w0pu1q ¨ ¨ ¨w0pumq for

all u :“ pu1, ..., umqJ P U , wherew0 : R Ñ r0,8q is another weight satisfying
ş

Rw0psqds “ 1,

and Cpγ,pq

R,w0
:“

` ş

Rp1 ` |s|qγpw0psqds
˘1{p

ă 8. Then, it holds that Cpγ,pq

U,w ď C
pγ,pq

R,w0
mγ`1{p.

(b) For Cpψ,ρq
m : Let ψ P S0pR;Cq be such that pψ P C8

c pRq is non-negative with suppp pψq “ rξ1, ξ2s

for some 0 ă ξ1 ă ξ2 ă 8. Then, for every standard activation function ρ P Ckpol,γpRq in
Example 2.9 and every m P N the pair pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq is m-admissible.

ρ P Ckpol,γpRq k P N0 γ P r0,8q f
xTρ

P L1
locpRzt0u;Cq

(i) Sigmoid function ρpsq :“ 1
1`e´s k P N0 γ “ 0 f

xTρ
pξq “ ´iπ

sinhpπξq

(ii) Tangens hyperb. ρpsq :“ tanhpsq k P N0 γ “ 0 f
xTρ

pξq “ ´iπ
sinhpπξ{2q

(iii) Softplus function ρpsq :“ ln p1 ` esq k P N0 γ “ 1 f
xTρ

pξq “ ´π
ξ sinhpπξq

(iv) ReLU function ρpsq :“ maxps, 0q k “ 0 γ “ 1 f
xTρ

pξq “ ´ 1
ξ2

Moreover, there exists Cψ,ρ ą 0 (independent of m, d P N) such that
ˇ

ˇC
pψ,ρq
m

ˇ

ˇ ě Cψ,ρp2π{ξ2qm.

Remark 4.8. Assume the setting of Example 4.6+4.7, where we choose without loss of generality
ξ1 P p0, ν´1{2s. Then, there exists some C2 ą 0 (independent of m, d P N and f : Rm Ñ Rd) such that

C
pγ,pq

U,w Cf
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

ď C2
mγ`1{pξm2 π

m
4

p2πξ1qmΓ
`

m`ν
2

˘
1
2

max
βPNm

0,rγs`rνs`1

ˆ
ż

Rm
}Bβ

pfpξq}2
`

1 ` }ξ}2
˘

m`2k`4rγs`3rνs`4
2 dξ

˙
1
2

.

(12)
Hence, if the right-hand side of (12) grows at most polynomially inm, d P N, we conclude from (10)+(11)
that f : Rm Ñ Rd can be learned by a random neural network without the curse of dimensionality.

Note that the integral on the right-hand side of (12) with β “ 0 P Nm0,rγs`rνs`1 also appears as
Barron norm in the approximation rates of deterministic neural networks (see [Barron, 1993, Equation 3],
[Klusowski and Barron, 2016, Theorem 6], [Siegel and Xu, 2020, Equation 5], and [E et al., 2022, Sec-
tion 2.1]). However, in our case of random neural networks, we also have to include the weak derivatives.

4A1 „ tmpνq has probability density function Rm Q a ÞÑ θApaq “
Γppm`νq{2q

Γpν{2qpπνqm{2

`

1 ` }a}
2
{ν
˘´pm`νq{2

P p0,8q.
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4.2. Algorithm and Complexity. In this section, we provide an explicit algorithm to learn a deterministic
function by a random neural network. For some fixed k P N0, U Ď Rm (open, if k ě 1), and a weight
w : U Ñ r0,8q, which is normalized, i.e.

ş

U wpuqdu “ 1, let the training data pVjqjPN „ w be an
i.i.d. sequence of U -valued random variables, which is independent of pAn, BnqnPN. Moreover, we define

FA,B Ď FA,B,V :“ σptAn, Bn, Vn : n P Nuq Ď F .
Next, we fix some N P N and define WN as the vector space of all RdˆN -valued random variables
W :“ pWi,nq

n“1,...,N
i“1,...,d , which are FA,B,V {BpRdˆN q-measurable. Then, for an activation function

ρ P Ckpol,γpRq and every W P WN , we define the corresponding random neural network as

Ω Q ω ÞÑ ΦWN pωq :“

˜

N
ÿ

n“1

Wi,npωqρ
`

AnpωqJ ¨ ´Bnpωq
˘

¸J

i“1,...,d

P Ckpol,γpU ;Rdq. (13)

Note that (13) slightly differs from Definition 3.2, as the linear readout W P WN is now measurable with
respect to FA,B,V (instead of FA,B) and can therefore only be trained after the training data has been
drawn. Moreover, we denote by RN ρ,V

U,d the set of all random neural networks of the form (13).
Now, we fix some J P N and approximate a given deterministic function f : U Ñ Rd. To this end, we

use the least squares method to find the linear readout W pJq :“
´

W
pJq

i,n

¯n“1,...,N

i“1,...,d
P WN of the random

neural network ΦW
pJq

N P RN ρ,V
U,d which minimizes the empirical weighted mean squared error (MSE), i.e.

W pJq “ argmin
ĂWPWN

¨

˝

1

J

J
ÿ

j“1

ÿ

αPNm0,k

c2α

›

›

›
BαfpVjq ´ BαΦ

ĂW
N p¨qpVjq

›

›

›

2

˛

‚. (14)

Hereby, the constants pcαqαPNm0,k Ă p0,8q control the contribution of the derivatives, e.g., cα :“ m´|α|,

α P Nm0,k, means equal contribution of each order. Moreover, we define κ
´

pcαqαPNm0,k

¯

:“
maxαPNm

0,k
cα

minαPNm
0,k

cα
.

Algorithm 1: Learning a random neural network
Input: k P N0, U Ď Rm (open, if k ě 1), γ P r0,8q, normalized weight w : U Ñ r0,8q,

ρ P Ck
pol,γpRq, pcαqαPNm

0,k
Ă p0,8q, pA1, B1q „ θA b t1pνq satisfying Assumption 4.1,

and k-times weakly differentiable function f “ pf1, ..., fdqJ : U Ñ Rd.

Output: ΦW pJq

N P RN ρ,V
U,d with linear readout W pJq :“

´

W
pJq

i,n

¯n“1,...,N

i“1,...,d
P WN solving (14).

1 Generate i.i.d. random variables pAn, Bnqn“1,...,N „ θA b t1pνq (see Assumption 4.1).
2 Generate i.i.d. random variables pVjqj“1,...,J „ w, which are independent of pAn, Bnqn“1,...,N .
3 Define the RpJ¨|Nm

0,k|qˆN -valued random variable R “ pRpj,αq,nq
n“1,...,N
pj,αqPt1,...,JuˆNm

0,k
with components

Rpj,αq,n :“ cαρ
p|α|q

`

AJ
nVj ´Bn

˘

Aα
n , for pj, αq P t1, ..., Ju ˆ Nm

0,k and n “ 1, ..., N .
4 for i “ 1, ..., d do
5 Define the RJ¨|Nm

0,k|-valued random variable Yi :“ pcαBαfipVjqqpj,αqPt1,...,JuˆNm
0,k

.

6 Solve the least squares problem RJRW
pJq

i “ RJYi for W pJq

i via Cholesky decomposition and

forward/backward substitution (see [Björck, 1996, Section 2.2.2]), where W pJq

i :“
´

W
pJq

i,n

¯J

n“1,...,N
.

7 Return Ω Q ω ÞÑ ΦW pJq

N pωq :“
´

řN
n“1W

pJq

i,n pωqρ
`

AnpωqJ ¨ ´Bnpωq
˘

¯J

i“1,...,d
P Ck

pol,γpU ;Rdq.

To analyze the complexity of Algorithm 1, we count every elementary operation, function evaluation,
and generation of one-dimensional random variable as one unit and define Cm,d,kpJ,Nq as this number.

Proposition 4.9. For k P N0, U Ď Rm (open, if k ě 1), γ P r0,8q, let w : U Ñ r0,8q be a
normalized weight. Moreover, let ρ P Ckpol,γpRq, pcαqαPNm0,k Ă p0,8q, let pA1, B1q „ θA b t1pνq satisfy
Assumption 4.1, and let f : U Ñ Rd be k-times weakly differentiable. Then, the following holds true:

(i) Algorithm 1 terminates and is correct, i.e. returns ΦW
pJq

N P RN ρ,V
U,d with W pJq solving (14).

(ii) The complexity of Algorithm 1 is of order5 Cm,d,kpJ,Nq “ O
`

pk ` 1qdJmk`1N2 ` dN3
˘

.

5We use the Landau notation, i.e. aJ,N “ OpbJ,N q (as J,N Ñ 8) if lim supJ,NÑ8

|aJ,N |

|bJ,N |
ă 8.
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For fixed k P N, this shows that the computational costs for learning a deterministic function by a
random neural network including the derivatives up to order k scales polynomially in J,N,m, d P N.

4.3. Generalization Error. In this section, we bound the generalization error for learning a deterministic
function f : Rm Ñ Rd by the random neural network ΦW

pJq

N P RN ρ,V
U,d obtained from Algorithm 1.

Since the linear readout W pJq minimizes the empirical MSE in (14), ΦW
pJq

N P RN ρ,V
U,d is the best choice

on the training data pVjqj“1,...,J . In the following, we bound the error beyond pVjqj“1,...,J .
To this end, we combine the approximation rate in Theorem 4.4 (ii) with a result on non-parametric

function regression (see [Györfi et al., 2002, Theorem 11.3]). Moreover, we define for every L ą 0 the
truncation of a vector by Rd Q y :“ py1, ..., ydqJ ÞÑ TLpyq :“ pmaxpminpyi, Lq,´Lqq

J
i“1,...,d P Rd.

The proof of the following result can be found in Section 9.4.

Theorem 4.10 (Generalization Error). For k P N0, U Ď Rm (open, if k ě 1), γ P r0,8q, let w : U Ñ

r0,8q be a normalized weight such that the constant Cpγ,2q

U,w ą 0 defined in (8) is finite. Moreover, for
ν P p0,8q, let pA1, B1q „ θA b t1pνq satisfy Assumption 4.1, and let pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq

be m-admissible. Then, there exists a constant C3 ą 0 (independent of m, d P N) such that for every
J,N P N, L ą 0, and f :“ pf1, ..., fdqJ P L1pRm,LpRmq, du;Rdq with |Bαfipuq| ď L for all α P Nm0,k,
i “ 1, ..., d, and u P U , and with prγs ` rνs ` 1q-times weakly differentiable Fourier transform satisfying

Cf :“ max
jPN0Xr0,rγs`rνs`1s,

βPNm
0,rγs`rνs`1

ż

R

ˇ

ˇ

ˇ

pψpjqpζq

ˇ

ˇ

ˇ

|ζ|
m
2

˜

ż

Rm
}Bβ

pfpξq}2
p1 ` }ξ{ζ}q2pk`2rγs`rνs`2q

θApξ{ζq
dξ

¸
1
2

dζ ă 8 (15)

we obtain from Algorithm 1 some ΦW
pJq

N P RN ρ,V
U,d with N neurons, which is an FA,B,V -strongly

measurable map ΦW
pJq

N : Ω Ñ W k,2pU,LpUq, w;Rdq such that

E

»

–

ÿ

αPNm0,k

ż

U

›

›

›
Bαfpuq ´ TL

´

BαΦ
W pJq

N p¨qpuq

¯›

›

›

2
wpuqdu

fi

fl

1
2

ď C3L

?
mkd

a

lnpJq ` 1
?
N

?
J

` C3κ
´

pcαqαPNm0,k

¯ C
pγ,2q

U,w Cf
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

m
k
2

`2rγs`rνs`1

?
N

.

Theorem 4.10 shows together with Proposition 4.9 that learning a deterministic function by a random
neural network overcomes the curse of dimensionality under some conditions (see Remark 4.8).

Remark 4.11. Theorem 4.10 is related to the following results in the existing literature:
(i) Theorem 4.10 extends the generalization error in [Gonon, 2023, Theorem 4.1] for random neural

networks with ReLU activation function to more general activation functions and by including
the approximation of the weak derivatives.

(ii) The approximation rate in Theorem 4.10 coincides up to constants with the approximation rate for
deterministic neural networks obtained in the seminal work of [Barron, 1994]. There, the neural
network parameters (including the weight vectors and biases inside the activation function) are
estimated via empirical risk minimization over a constrained parameter set.

4.4. Conclusion. Finally, we summarize the advantages of using random neural networks to learn a
deterministic function instead of fully trained deterministic neural networks:

(i) Convexity: The least squares method in (14) forms a convex optimization problem and thus has a
minimizer. This is not the case for deterministic neural networks, where the optimization problem
is non-convex due to the training of the parameters inside the non-linear activation function.

(ii) Efficiency: Algorithm 1 with the least squares method is more efficient than the training of
deterministic neural network as it does not require the iterative backpropagation procedure and
the amount of trainable parameters (i.e. the parameter space) is much smaller.

(iii) No optimization error: Since the least squares method in (14) directly returns a minimizer, we do
not have to consider an additional optimization error. This is not the case for deterministic neural
networks, which are trained, e.g., via stochastic gradient descent. For example, this additional
optimization error has not been addressed in [Barron, 1994] (see Remark 4.11 (ii)).
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5. NUMERICAL EXAMPLES

In this section, we illustrate in two numerical examples6 how random neural networks can be applied
in empirical tasks and how they numerically outperform fully trained deterministic neural networks.

5.1. Mathematical Physics: Learning the solution of the heat equation. In the first example, we
follow [Evans, 2010, Section 2.3] and consider the heat equation, which describes the evolution of a
given quantity throughout time. More precisely, we consider the partial differential equation (PDE)

Bf

Bt
pt, uq ´ λ

m
ÿ

l“1

B2f

Bu2l
pt, uq “ 0, pt, uq P p0,8q ˆ Rm, (16)

where we assume that the quantity is initially described by a function g : Rm Ñ R, i.e. we impose the
initial condition fp0, uq :“ limtÑ0 fpt, uq “ gpuq for a.e. u P Rm.

The first part of the following result is a slight generalization of [Evans, 2010, Theorem 2.3.1] to
a.e. continuous functions, where we define Brp0q :“ tu P Rm : }u} ď ru, r ě 0, for the last part.

Lemma 5.1. Let λ, ν P p0,8q, γ P r0,8q, and g : Rm Ñ R be a.e. bounded and a.e. continuous. Then:
(i) The function

p0,8q ˆ Rm Q pt, uq ÞÑ fpt, uq “
1

p4πλtq
m
2

ż

Rm
e´

}u´v}2

4λt gpvqdv P R (17)

is the unique solution of the PDE (16) with initial condition g : Rm Ñ R.
(ii) Let p P p1,8q and assume also that g P L1pRm,LpRmq, p1 ` }u}qrγs`rνs`1duq with

Cg :“ }g}L1pRm,LpRmq,p1`}u}qrγs`rνs`1duq ă 8.

Moreover, let pA1, B1q „ tmpνq b t1pνq and w : Rm Ñ r0,8q be a weight of separable form
as in Example 4.7 (a). In addition, let pψ, ρq P S0pR;Cq ˆ C0

pol,γpRq be m-adimissible as in

Example 4.7 (b) with suppp pψq “ rξ1, ξ2s for some 0 ă ξ1 ă ξ2 ă 8. Then, there exist some
constants C4, C5 ą 0 (independent of m P N) such that for every N P N there exists some
ΦN P RN ρ

Rm,1 X L2pΩ,FA,B,P;LppRm,LpRmq, wpuqduqq with N neurons satisfying

E
”

}fpt, ¨q ´ ΦN}
2
LppRm,LpRmq,wpuqduq

ı
1
2

ď

C4m
C5

ˆ

1 `

´

3prγs`rνs`2qξ22
2π

?
λtξ21

¯
m
2

˙

Cg

N
1´ 1

minp2,pq

. (18)

(iii) ForR ą 0 and κ P r0, 1{2q, the function g :“ 1BmκRp0q
P L1pRm,LpRmq, p1`}u}qrγs`rνs`1duq

is a.e. bounded, a.e. continuous, and the right-hand side of (18) grows polynomially in m P N.

Now, we learn the solution fp1, ¨q of the heat equation (16) by deterministic neural networks and
random neural networks, where we choose λ “ 4 and the initial condition gpuq :“ 1BmκRp0q

puq, with
R “ 4 and κ “ 0.4. Moreover, we generate J “ 2 ¨ 105 i.i.d. data pVjqj“1,...,J „ Nmp0, Imq which are
split up into 80% for training and 20% for testing. Then, we minimize the empirical L2-error
˜

1

J

J
ÿ

j“1

|fp1, Vjq ´ NN pVjq|
2

¸

1
2

with NN pVjq “

#

φN pVjq, φN P NN ρ
Rm,1 having N neurons,

ΦN p¨qpVjq, ΦN P RN ρ
Rm,1 having N neurons,

(19)
over the training data, where R Q s ÞÑ ρpsq “ tanhpsq P R. Hereby, we use the Adam algorithm
(see [Kingma and Ba, 2015]) for the deterministic neural networks (over 3000 epochs with learning rate
γ “ 10´5 and batchsize 500), whereas for the random neural networks, we let pA1, B1q „ tmpνq b t1pνq,
with ν “ 20, and apply a batch normalization before the activation function.

Figure 2 shows that random neural networks are indeed able to learn the solution of the heat equation
(16). Note that in order to achieve a similar approximation quality as for deterministic neural networks,
the number of neurons in the hidden layer of the random neural networks should be about three times
larger than in the hidden layer of the deterministic neural networks. However, in terms of computational
efficiency, random neural networks outperform deterministic neural networks by far (see also Section 4.4).

6The numerical experiments have been implemented in Python on an average laptop (Lenovo ThinkPad X13 Gen2a with
Processor AMD Ryzen 7 PRO 5850U and Radeon Graphics, 1901 Mhz, 8 Cores, 16 Logical Processors). The code can be
found under the following link: https://github.com/psc25/RandomNeuralNetworks

https://github.com/psc25/RandomNeuralNetworks
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(a) Learning performance

(b) Approximation of R Q u1 ÞÑ fp1, pu1, 0.5, ..., 0.5qq P R

m “ 10 m “ 20 m “ 30

NN ρ
Rm,1 RN ρ

Rm,1 NN ρ
Rm,1 RN ρ

Rm,1 NN ρ
Rm,1 RN ρ

Rm,1

N “ 10
985.93 0.08 994.53 0.11 1056.62 0.12

6.96 ¨ 1010 1.65 ¨ 107 1.32 ¨ 1011 2.13 ¨ 107 1.94 ¨ 1011 2.61 ¨ 107

N “ 50
1028.83 0.47 1078.05 0.54 1045.09 0.58

2.81 ¨ 1011 2.21 ¨ 108 5.35 ¨ 1011 2.26 ¨ 108 7.90 ¨ 1011 2.31 ¨ 108

N “ 100
1105.79 1.07 1110.50 1.13 1179.85 1.12

5.45 ¨ 1011 8.37 ¨ 108 1.04 ¨ 1012 8.42 ¨ 108 1.53 ¨ 1012 8.47 ¨ 108

N “ 200
1164.95 2.63 1194.23 2.79 1268.09 2.87

1.07 ¨ 1012 3.27 ¨ 109 2.05 ¨ 1012 3.28 ¨ 109 3.02 ¨ 1012 3.28 ¨ 109

N “ 300
4.93 4.91 5.03

7.31 ¨ 109 7.31 ¨ 109 7.32 ¨ 109

N “ 400
7.58 7.57 7.59

1.29 ¨ 1010 1.29 ¨ 1010 1.30 ¨ 1010

(c) Computational time (in seconds, italic font) and complexity Cm,1,0pJ,Nq (in scientific format)

Figure 2. Learning the solution of the heat equation (16) with deterministic neural
networks (label NN ρ

Rm,1) and random neural networks (label RN ρ
Rm,1). In (a), the

learning performance is displayed in terms of the empirical L2-error (19) on the test set.
In (b), the learned networks (with N “ 200 for NN ρ

Rm,1 and N “ 400 for RN ρ
Rm,1)

are compared to the true solution u1 ÞÑ fp1, pu1, 0.5, ..., 0.5qq. In (c), the computational
time and the complexity Cm,1,0pJ,Nq (see also Proposition 4.9 (ii)) are shown.
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5.2. Mathematical Finance: Basket option pricing in Black-Scholes model. In the second exam-
ple, we consider the problem of pricing a financial derivative written on multiple assets in the multi-
dimensional Black scholes model. More precisely, for T ą 0 and m P N, we assume that the stock prices
processes pXtqtPr0,T s :“ pX1

t , ..., X
d
t qJ
tPr0,T s

are for every l “ 1, ...,m and t P r0, T s given by

X l
t “ X l

0 exp

ˆˆ

r ´
σ2

2

˙

t` σW l
t

˙

. (20)

where X l
0 P p0,8qm is the initial price, where r ą 0 is the interest rate, and where pWtqtPr0,T s :“

pW 1
t , ...,W

m
t qJ

tPr0,T s
is an m-dimensional Brownian motion. Then, for a given strike price K ą 0, we

learn the pricing function of the geometric Basket call option gpXT q whose payoff function is given by

p0,8qm Q x :“ px1, ..., xmqJ ÞÑ gpxq :“ max

¨

˝

˜

m
ź

l“1

xl

¸
1
m

´K, 0

˛

‚P R. (21)

Hence, by using the Feynman-Kac formula, the pricing function is given by the conditional expectation
vpt, xq :“ e´rpT´tqE

“

gpXT q
ˇ

ˇXt “ x
‰

which is the unique viscosity solution of the PDE

Bv

Bt
pt, xq`

σ2

2

m
ÿ

l1,l2“1

xl1xl2
B2v

Bxl1Bxl2
pt, uq`r

m
ÿ

l“1

xl
Bv

Bxl
pt, xq´rvpt, xq “ 0, pt, xq P p0, T qˆp0,8qm,

with terminal condition vpT, xq “ gpxq for all x P p0,8qm (see [Grohs et al., 2023, Proposition 2.23]).
Thus, by using log-prices ul :“ lnpxlq, l “ 1, ...,m, the new pricing function

fpt, uq :“ e´rpT´tqE
”

gpXT q

ˇ

ˇ

ˇ
Xt “ pexppulqq

J
l“1,...,m

ı

(22)

is the unique viscosity solution of the transformed partial differential equation

Bf

Bt
pt, uq `

σ2

2

m
ÿ

l1,l2“1

B2f

Bul1Bul2
pt, uq ` r

m
ÿ

l“1

Bf

Bul
pt, uq ´ rfpt, uq “ 0, pt, uq P p0, T q ˆ Rm,

with terminal condition fpT, uq “ gpuq for all u P Rm (see [Grohs et al., 2023, Corollary 2.24]).
Moreover, by using that

`
śm
l“1X

l
T

˘1{m
“
`
śm
l“1X

l
0

˘1{m
exp

``

r ´ σ2{2
˘

T ` σ
m

řm
l“1W

l
T

˘

, where
the sum of Brownian motions satisfies σ

m

řm
l“1W

l
T „ N p0, σ

2T
m q, it follows that

˜

m
ź

l“1

X l
T

¸
1
m

„

˜

m
ź

l“1

X l
0

¸
1
m

exp

˜

ˆ

r ´
σ2

2

˙

T `
σ

?
T

?
m
Z

¸

is log-normally distributed, with Z „ N p0, 1q. Hence, the option price vpt, xq can be computed via the
classical Black-Scholes formula in [Black and Scholes, 1973] for a one-dimensional put option, i.e.

vpt, uq “ e´rpT´tqE
“

gpXT q
ˇ

ˇXt “ x
‰

“ Ke´rpT´tqΘN p0,1qpd2q ´

˜

m
ź

l“1

xl

¸
1
m

ΘN p0,1qpd1q,

where d1 :“
?
m

σ
?
T

´

1
lnpKqm

řm
l“1 lnpxlq `

`

r ` σ2{2
˘

T
¯

and d2 :“ d1 ´
?
T

σ
?
m

, and where ΘN p0,1q :

R Ñ r0, 1s denotes the cumulative distribution function of the standard normal distribution N p0, 1q.
Now, we learn fp0, ¨q by deterministic and random neural networks, with r “ 0.01, σ “ 0.5, K “ 82,

and T “ 1. Moreover, we generate J “ 2 ¨105 i.i.d. uniformly distributed data pVjqj“1,...,J „ Upr4, 5smq

split up into 80% for training and 20% for testing. Then, we minimize the empirical L2-error
˜

1

J

J
ÿ

j“1

|fp0, Vjq ´ NN pVjq|
2

¸

1
2

with NN pVjq “

#

φN pVjq, φN P NN ρ
Rm,1 having N neurons,

ΦN p¨qpVjq, ΦN P RN ρ
Rm,1 having N neurons,

(23)
over the training data, where we use the same setting as in Section 5.1 except the learning rate γ “ 0.001.
Figure 3 shows that the the pricing function (22) can indeed be learned by random neural networks.
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(a) Learning performance

(b) Approximation of R Q u1 ÞÑ fp0, pu1, lnp82q, ..., lnp82qqq P R

m “ 10 m “ 20 m “ 30

NN ρ
Rm,1 RN ρ

Rm,1 NN ρ
Rm,1 RN ρ

Rm,1 NN ρ
Rm,1 RN ρ

Rm,1

N “ 10
1055.14 0.08 1048.98 0.10 998.91 0.09

6.96 ¨ 1010 1.65 ¨ 107 1.32 ¨ 1011 2.13 ¨ 107 1.94 ¨ 1011 2.61 ¨ 107

N “ 50
1001.17 0.44 1020.82 0.51 1037.85 0.51

2.81 ¨ 1011 2.21 ¨ 108 5.35 ¨ 1011 2.26 ¨ 108 7.90 ¨ 1011 2.31 ¨ 108

N “ 100
1059.16 1.00 1104.42 1.05 1181.24 1.07

5.45 ¨ 1011 8.37 ¨ 108 1.04 ¨ 1012 8.42 ¨ 108 1.53 ¨ 1012 8.47 ¨ 108

N “ 200
1174.53 2.88 1242.82 2.65 1262.51 2.61

1.07 ¨ 1012 3.27 ¨ 109 2.05 ¨ 1012 3.28 ¨ 109 3.02 ¨ 1012 3.28 ¨ 109

N “ 300
5.82 4.65 4.63

7.31 ¨ 109 7.31 ¨ 109 7.32 ¨ 109

N “ 400
11.03 7.70 7.46

1.29 ¨ 1010 1.29 ¨ 1010 1.30 ¨ 1010

(c) Computational time (in seconds, italic font) and complexity Cm,1,0pJ,Nq (in scientific format)

Figure 3. Learning the pricing function (22) of the Basket option (21) written on the
geometric Brownian motions (20) with deterministic neural networks (label NN ρ

Rm,1)
and random neural networks (label RN ρ

Rm,1). In (a), the learning performance is
displayed in terms of the empirical L2-error (23) on the test set. In (b), the learned
networks (with N “ 200 for NN ρ

Rm,1 and N “ 400 for RN ρ
Rm,1) are compared to the

true solution u1 ÞÑ fp0, pu1, lnp82q, ..., lnp82qqq. In (c), the computational time and the
complexity Cm,1,0pJ,Nq (see also Proposition 4.9 (ii)) are shown.
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6. PROOFS OF RESULTS IN SECTION 1.

In this section, we show an equivalent characterization for functions in the Banach space pCkb pU ;Rdq
γ
, }¨

}Ckpol,γpU ;Rdqq introduced in Notation (v), where k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q.
This generalizes the results in [Dörsek and Teichmann, 2010, Theorem 2.7] and [Cuchiero et al., 2023,
Lemma 2.7] to differentiable functions defined on an open subset of an Euclidean space.

In the following, we denote the factorial of a multi-index α :“ pα1, ..., αmq P Nm0 by α! :“
śm
l“1 αl!.

Moreover, we denote by Brpu0q :“ tu P Rm : }u´ u0} ă ru and Brpu0q :“ tu P Rm : }u´ u0} ď ru

the open and closed ball with radius r ě 0 around u0 P Rm, respectively.

Lemma 6.1. Let k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q. Then, the following holds true:

(i) If U Ď Rm is bounded, then Ckb pU ;Rdq
γ

“ Ckb pU ;Rdq.
(ii) If U Ď Rm is unbounded, then f P Ckb pU ;Rdq

γ
if and only if f P CkpU ;Rdq and

lim
rÑ8

max
αPNm0,k

sup
uPUzBrp0q

}Bαfpuq}

p1 ` }u}qγ
“ 0. (24)

Proof. The conclusion in (i) follows from the definition of pCkb pU ;Rdq
γ
, } ¨ }Ckpol,γpU ;Rdqq. Now, for

sufficiency in (ii), fix some f P Ckb pU ;Rdq
γ
. Then, by definition of Ckb pU ;Rdq

γ
, there exists a sequence

pgnqnPN Ď Ckb pU ;Rdq with limnÑ8 }f ´ gn}Ckpol,γpU ;Rdq “ 0, which implies for every fixed r ą 0 that

lim
nÑ8

max
αPNm0,k

sup
uPUXBrp0q

}Bαfpuq ´ Bαgnpuq} ď p1 ` rqγ lim
nÑ8

max
αPNm0,k

sup
uPUXBrp0q

}Bαfpuq ´ Bαgnpuq}

p1 ` }u}qγ

“ p1 ` rqγ lim
nÑ8

}f ´ gn}Ckpol,γpU ;Rdq “ 0.

This together with the Fundamental Theorem of Calculus shows that f |UXBrp0q : U X Brp0q Ñ Rd is
k-times differentiable since for every fixed α P Nm0,k the partial derivative Bαf |

UXBrp0q
: UXBrp0q Ñ Rd

is continuous as uniform limit of continuous functions. Hence, by using that U is locally compact, it
follows from [Munkres, 2014, Lemma 46.3+46.4] that Bαf : U Ñ Rd is continuous everywhere on
U . Since this holds true for every α P Nm0,k, we apply again the Fundamental Theorem of Calculus to
conclude that f P CkpU ;Rdq. Moreover, in order to show (24), we fix some ε ą 0 and choose some
n P N large enough such that }f ´ gn}Ckpol,γpU ;Rdq ă ε{2. Moreover, we choose r ą 0 sufficiently large

such that p1 ` rqγ ą 2ε´1}gn}Ckb pU ;Rdq holds true, which implies that

max
αPNm0,k

sup
uPUzBrp0q

}Bαfpuq}

p1 ` }u}qγ
ď max

αPNm0,k
sup
uPU

}Bαfpuq ´ Bαgpuq}

p1 ` }u}qγ
` max
αPNm0,k

sup
uPUzBrp0q

}Bαgpuq}

p1 ` }u}qγ

ă
ε

2
`

}g}Ckb pU ;Rdq

p1 ` rqγ
ă
ε

2
`
ε

2
“ ε.

Since ε ą 0 was chosen arbitrarily, we obtain (24).
For necessity in (ii), let f P CkpU ;Rdq such that (24) holds true and fix some ε ą 0. Moreover, we

choose some h P C8
c pRmq such that hpuq “ 1 for all u P B1p0q, hpuq “ 0 for all u P RmzB2p0q, and

that there exists a constant Ch ą 0 such that for every α P Nm0,k and u P Rm it holds that |Bαhpuq| ď Ch.
In addition, by using (24), there exists some r ą 1 such that

max
αPNm0,k

sup
uPUzBrp0q

}Bαfpuq}

p1 ` }u}qγ
ă

ε

1 ` 2kCh
. (25)

From this, we define the functions Rm Q u ÞÑ hrpuq :“ hpu{rq P R and U Q u ÞÑ gpuq :“ hrpuqfpuq P

Rd, which both have bounded support. Furthermore, we use the binomial theorem to conclude for every
α P Nm0 that

ÿ

β1,β2PNm0
β1`β2“α

α!

β1!β2!
“

ÿ

βPNm0
@l:βlďαl

m
ź

l“1

αl!

βl!pαl ´ βlq!
ď

m
ź

l“1

αl
ÿ

βl“0

αl!

βl!pαl ´ βlq!
“

m
ź

l“1

2αl ď 2|α|. (26)
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Then, by using the Leibniz product rule together with the triangle inequality, the inequality (26), that
|Bαhrpuq| “ |Bαhpu{rq| r´|α| ď Ch for any α P Nm0,k and u P Rm, and the inequality (26), it follows for
every α P Nm0,k and u P U that

}Bαgpuq} ď
ÿ

β1,β2PNm0
β1`β2“α

α!

β1!β2!
|Bβ1hrpuq| }Bβ2fpuq} ď 2kCh max

β2PNm0,k
}Bβ2fpuq} . (27)

Hence, by using that Bαgpuq “ Bαphrpuqfpuqq “ Bαfpuq for any α P Nm0,k and u P U X Brp0q (as
hrpuq “ 1 for any u P Brp0q), and the inequalities (27) and (25), the function g P Ckb pU ;Rdq satisfies

}f ´ g}Ckpol,γpU ;Rdq “ max
αPNm0,k

sup
uPU

}Bαfpuq ´ Bαgpuq}

p1 ` }u}qγ

ď max
αPNm0,k

sup
uPUXBrp0q

}Bαfpuq ´ Bαgpuq}

p1 ` }u}qγ
` max
αPNm0,k

sup
uPUzBrp0q

}Bαfpuq}

p1 ` }u}qγ

` max
αPNm0,k

sup
uPUzBrp0q

}Bαgpuq}

p1 ` }u}qγ

ď max
αPNm0,k

sup
uPUzBrp0q

}Bαfpuq}

p1 ` }u}qγ
` 2kCh max

αPNm0,k
sup

uPUzBrp0q

}Bαfpuq}

p1 ` }u}qγ

ă
ε

1 ` 2kCh
` 2kCh

ε

1 ` 2kCh
“ ε.

Since ε ą 0 was chosen arbitrarily, it follows that f P CkpU ;Rdq
γ
. □

7. PROOFS OF RESULTS IN SECTION 2.

In this section, we provide the proofs of the results Section 2. In Section 7.1, we prove Lemma 2.5,
whereas the main result of Section 2, i.e. the universal approximation property of deterministic neural
networks in Theorem 2.6, is proven in Section 7.2. Finally, we verify Example 2.8+2.9 in Section 7.3.

7.1. Proof of Lemma 2.5.

Proof of Lemma 2.5. For k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q, let pX, } ¨ }Xq be an
pk, U, γq-approximable function space. Then, in order to show (i), we define the subset

A :“

$

&

%

U Q u ÞÑ

N
ÿ

n“1

`

yn,1 cos
`

aJ
n,1u

˘

` yn,2 sin
`

aJ
n,2u

˘˘

P R :
N P N

yn,1, yn,2 P Q
an,1, an,2 P Qm

,

.

-

Ď Ckb pRmq (28)

and the vector subspace W :“
␣

U Q u ÞÑ pa1puq, ..., adpuqqJ P Rd : a1, ..., ad P A
(

Ď Ckb pRm;Rdq.
In addition, we define the weight Rm Q u ÞÑ ψpuq :“ p1 ` }u}qc P p0,8q, which is admissible in the
sense of [Cuchiero et al., 2023, Definition 2.1] and [Schmocker, 2022, Definition 3.1].

First, if k “ 0, we observe that A is a point separating subalgebra of C0
b pRmq Ď C0

b pRmq
γ
, which

vanishes nowhere and consists only of bounded functions, thus by [Cuchiero et al., 2023, Remark 3.5]
point separating of ψ-moderate growth in the sense of [Cuchiero et al., 2023, Definition 3.4]. Hence, by
applying the weighted Stone-Weierstrass theorem in [Cuchiero et al., 2023, Theorem 3.6] componentwise,
it follows that W is dense in C0

b pRm;Rdq
γ

with respect to } ¨ }C0
pol,γpRm;Rdq.

On the other hand, if k ě 1, we observe that A is a point separating subalgebra of Ckb pRmq Ď

Ckb pRmq
γ

which vanishes nowhere and for every v P Rmzt0u there exists some a P A such that
vJ pBe1apuq, ..., Bemapuqq ‰ 0. Moreover, since A consists only of bounded functions and the function

Rm Q u ÞÑ
`

cos
`

eJ
l u

˘

, sin
`

eJ
l u

˘

, cos
`

πeJ
l u

˘

, sin
`

πeJ
l u

˘˘J

l“1,...,m
P R4m,

with el P Rm being the l-th unit vector of Rm, is a continuous embedding with components from A, we
conclude that A is locally point separating of order k in the sense of [Schmocker, 2022, Remark 3.22].
Hence, by applying the weighted Nachbin theorem in [Schmocker, 2022, Theorem 3.40] componentwise,
it follows that W is dense in Ckb pRm;Rdq

γ
with respect to } ¨ }Ckpol,γpRm;Rdq.
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Finally, in both cases k “ 0 and k ě 1, we use that pX, } ¨ }Xq is pk, U, γq-approximable function
space, i.e. that the restriction map pCkb pRm;Rdq

γ
, } ¨ }Ckpol,γpRm;Rdqq Q f ÞÑ f |U P pX, } ¨ }Xq is by

Remark 2.4 a continuous dense embedding, to conclude that W is dense in X with respect to } ¨ }X .
Therefore, since the set W is by definition countable, it follows that pX, } ¨ }Xq is separable.

For (ii), we fix some ρ P Ckb pRq
γ
, y P Rd, a P Rm, and b P R, and define the constant Cy,a,b :“

1 ` maxαPNm0,k }yaα} p1 ` }a} ` |b|qγ ą 0, where aα :“
śm
l“1 a

αl
l for a :“ pa1, ..., amqJ P Rm and

α :“ pα1, ..., αmq P Nm0,k. Then, by definition of Ckb pRq
γ
, there exists some rρ P Ckb pRq such that

}ρ´ rρ}Ckpol,γpRq :“ max
j“0,...,k

sup
sPR

ˇ

ˇρpjqpsq ´ rρpjqpsq
ˇ

ˇ

p1 ` |s|qγ
ă

ε

Cy,a,b
.

Hence, by using the inequality 1 `
ˇ

ˇaJu´ b
ˇ

ˇ ď 1 ` }a}}u} ` |b| ď p1 ` }a} ` |b|qp1 ` }u}q, it follows
for the function yrρ

`

aJ ¨ ´b
˘

:“
`

u ÞÑ yrρ
`

aJu´ b
˘˘

P Ckb pRm;Rdq that

›

›yρ
`

aJ ¨ ´b
˘

´ yrρ
`

aJ ¨ ´b
˘›

›

Ckpol,γpRm;Rdq
“ max

αPNm0,k
sup
uPRm

›

›yρp|α|q
`

aJu´ b
˘

aα ´ yrρp|α|q
`

aJu´ b
˘

aα
›

›

p1 ` }u}qγ

ď

˜

max
αPNm0,k

}yaα} p1 ` }a} ` |b|q

¸

max
αPNm0,k

sup
uPRm

›

›yρ
`

aJu´ b
˘

´ yrρ
`

aJu´ b
˘›

›

p1 ` |aJu´ b|q
γ

ď Cy,a,b max
j“0,...,k

sup
sPR

ˇ

ˇρpjqpsq ´ rρpjqpsq
ˇ

ˇ

p1 ` |s|qγ

ă Cy,a,b
ε

Cy,a,b
“ ε.

Since ε ą 0 was chosen arbitrarily and yrρ
`

aJ ¨ ´b
˘

P Ckb pRm;Rdq, it follows that yρ
`

aJ ¨ ´b
˘

P

Ckb pRm;Rdq
γ
. Thus, by using that NN ρ

Rm,d is defined as vector space consisting of functions of the
form Rm Q u ÞÑ yρ

`

aJu´ b
˘

P Rd, with y P Rd, a P Rm, and b P R, the triangle inequality implies

that NN ρ
Rm,d Ď Ckb pRm;Rdq

γ
. Finally, by using that pX, } ¨ }Xq is pk, U, γq-approximable function

space, i.e. that the restriction map in (4) is a continuous embedding, it follows that NN ρ
U,d Ď X □

7.2. Proof of Theorem 2.6. In this section, we provide the proof of Theorem 2.6, i.e. the universal
approximation property of deterministic neural networks NN ρ

U,d in any pk, U, γq-approximable function

space pX, } ¨ }Xq, where k P N0, U Ď Rm (open, if k ě 1), γ P p0,8q, and ρ P Ckb pRq
γ
.

The idea of the proof is the following. By contradiction, we assume that NN ρ
U,d Ď X is not dense

in X with respect to } ¨ }X . Then, by applying the classical Hahn-Banach separation argument (as in
[Cybenko, 1989, Theorem 1]), we obtain a non-zero continuous linear functional l : X Ñ R which
vanishes on the vector subspace NN ρ

U,d Ď X . Moreover, by using the continuous embedding in (4), we

can express l : X Ñ R on the dense subspace Ckb pRm;Rdq
γ

with finite signed Radon measures. This
relies on the Riesz representation theorem in [Dörsek and Teichmann, 2010, Theorem 2.4].

Subsequently, we use the distributional extension of Wiener’s Tauberian theorem in [Korevaar, 1965],
which generalizes the classical Wiener Tauberian theorem, i.e. that span tR Q s ÞÑ ρps` bq P R : b P Ru

is dense in L1pR,LpRq, duq if and only if the Fourier transform pρ (in the classical sense) does not have
any zeros (see [Wiener, 1932]). Then, by using this and that ρ P Ckb pRq

γ
is non-polynomial, we conclude

that l : X Ñ R vanishes everywhere on X , which contradicts the initial assumption that l : X Ñ R is
non-zero. Hence, NN ρ

U,d must be dense in X with respect to } ¨ }X .
To be able to prove Theorem 2.6 as outlined above, we now first generalize the Riesz representation

theorem in [Dörsek and Teichmann, 2010, Theorem 2.7] to this vector-valued case with derivatives.
Hereby, we define MγpRmq as the vector space of finite signed Radon measures η : BpRmq Ñ R with
ş

Rmp1 ` }u}qγ |η|pduq ă 8, where |η| : BpRmq Ñ r0,8q denotes the corresponding total variation
measure. Moreover, we denote by Z˚ the dual space of a Banach space pZ, } ¨ }Zq which consists of
continuous linear functionals l : Z Ñ R and is equipped with the norm }l}Z˚ :“ supzPZ, }z}Zď1 |lpzq|.
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Proposition 7.1 (Riesz representation). For k P N0 and γ P p0,8q, let l : Ckb pRm;Rdq
γ

Ñ R be a
continuous linear functional. Then, there exist some signed Radon measures pηα,iqαPNm0,k, i“1,...,d Ď

MγpRmq such that for every f “ pf1, ..., fdqJ P Ckb pRm;Rdq
γ

it holds that

lpfq “
ÿ

αPNm0,k

d
ÿ

i“1

ż

Rm
Bαfipuqηα,ipduq.

Proof. First, we show the conclusion for k “ 0 and d “ 1. Indeed, by defining Rm Q u ÞÑ ψpuq :“
p1` }u}qγ P p0,8q, the tuple pRm, ψq is a weighted space in the sense of [Dörsek and Teichmann, 2010,
p. 5]. Hence, the conclusion follows from [Dörsek and Teichmann, 2010, Theorem 2.4].

Now, for the general case of k ě 1 and d ě 2, we fix a continuous linear functional l : Ckb pRm;Rdq
γ

Ñ

R and define the number M :“ |Nm0,k| ¨ d and the map

Ckb pRm;Rdq
γ

Q f ÞÑ Ξpfq :“ pBαfiq
J
αPNm0,k, i“1,...,d P C0

b pRm;RM q
γ
.

Moreover, we denote by ImgpΞq :“
!

Ξpfq : f P Ckb pRm;Rdq
γ)

Ď C0
b pRm;RM q

γ
the image vector

subspace. Then, by using that Ξ : Ckb pRm;Rdq
γ

Ñ ImgpΞq is by definition bijective, there exists an
inverse map Ξ´1 : ImgpΞq Ñ Ckb pRm;Rdq

γ
. Moreover, we conclude for every f P Ckb pRm;Rdq

γ
that

›

›

›
Ξ´1ppBαfiqαPNm0,k, i“1,...,dq

›

›

›

Ckpol,γpRm;Rdq
“ }f}Ckpol,γpRm;Rdq “ max

αPNm0,k
sup
uPRm

}Bαfpuq}

p1 ` }u}qγ

“ sup
uPRm

max
αPNm0,k

}Bαfpuq}

p1 ` }u}qγ
ď sup

uPRm

}pBαfiqαPNm0,k, i“1,...,d}

p1 ` }u}qγ

“ }f}Ckpol,γpRm;RM q,

which shows that Ξ´1 : ImgpΞq Ñ Ckb pRm;Rdq
γ

is continuous. Hence, the concatenation l ˝ Ξ´1 :
ImgpΞq Ñ R is a continuous linear functional on ImgpΞq, which can be extended by using the Hahn-
Banach theorem to a continuous linear functional l0 : C0

b pRm;RM q
γ

Ñ R such that for every f P

Ckb pRm;Rdq
γ

it holds that

l0ppBαfiqαPNm0,k, i“1,...,dq “
`

l ˝ Ξ´1
˘

ppBαfiqαPNm0,k, i“1,...,dq “ lpfq. (29)

Now, for every fixed α P Nm0,k and i “ 1, ..., d, we define the linear map C0
b pRmq

γ
Q g ÞÑ lα,ipgq :“

l0pgeα,iq P R, where eα,i P RM :“ R|Nm0,k|¨d
– R|Nm0,k|

ˆ Rd denotes the pα, iq-th unit vector of
RM :“ R|Nm0,k|¨d

– R|Nm0,k|
ˆ Rd. Then, for every g P C0

b pRmq
γ
, it follows with Z :“ C0

b pRm;RM q
γ

that
|lα,ipgq| “ |l0pgeα,iq| ď }l0}Z˚}geα,i}C0

pol,γpRm;RM q “ }l0}Z˚}g}C0
pol,γpRmq,

which shows that lα,i : C0
b pRmq

γ
Ñ R is a continuous linear functional. Hence, by using (29) and by

applying for every α P Nm0,k and i “ 1, ..., d the case with k “ 0 and d “ 1, there exist some Radon

measures pηα,iqαPNm0,k,i“1,...,d P MγpRmq such that for every f P Ckb pRm;Rdq
γ

it holds that

lpfq “
`

l ˝ Ξ´1
˘

ppBαfiqαPNm0,k, i“1,...,dq

“ l0ppBαfiqαPNm0,k, i“1,...,dq

“
ÿ

αPNm0,k

d
ÿ

i“1

lα,ipBαfieα,iq

“
ÿ

αPNm0,k

d
ÿ

i“1

ż

Rm
Bαfipuqηα,ipduq,

which completes the proof. □
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Next, we show that every non-polynomial activation function ρ P Ckb pRq
γ

is discriminatory in the
sense of [Cybenko, 1989, p. 306]. For this purpose, we generalize the proof of [Chen and Chen, 1995,
Theorem 1] from compactly supported signed Radon measures to measures in MγpRmq. Hereby, we
follow the distributional extension of Wiener’s Tauberian theorem in [Korevaar, 1965, Theorem A].

Proposition 7.2. For γ P p0,8q, let η P MγpRmq be a signed Radon measure and assume that
ρ P C0

b pRq
γ

is non-polynomial. If for every a P Rm and b P R it holds that
ż

Rm
ρ
`

aJu´ b
˘

ηpduq “ 0, (30)

then it follows that η “ 0 P MγpRmq.

Proof. We follow the proof of [Cuchiero et al., 2023, Proposition 4.4 (A3)] and assume that ρ P C0
b pRq

γ

is non-polynomial. Then, by using e.g. [Rudin, 1991, Examples 7.16], there exists a non-zero point
t0 P Rzt0u which belongs to the support of xTρ P S 1pR;Cq. Moreover, let η P MγpRmq satisfy (30) and
assume by contradiction that η P MγpRmq is non-zero.

Now, for every a P Rm, we define the push-forward measure ηa :“ η ˝
`

aJ¨
˘´1

: BpRq Ñ R by
ηapBq :“ η

`␣

u P Rm : aJu P B
(˘

, for B P BpRq. Moreover, for every fixed λ P Rzt0u, we define the
function R Q s ÞÑ ρλpsq :“ ρpλsq P R. Then, by applying [Bogachev, 2007, Theorem 3.6.1] (to the
positive and negative part of η P MγpRmq) and by using the assumption (30) (with λa P Rm and λb P R
instead of a P Rm and b P R, respectively), it follows for every a P Rm and b P R that

ż

R
ρλps´ bqηapdsq “

ż

Rm
ρ
`

λaJu´ λb
˘

ηpduq “ 0. (31)

Since η P MγpRmq is non-zero, there exists some a P Rm such that ηa : BpRq Ñ R is non-zero.
Hence, there exists some h P SpR;Cq such that

`

z ÞÑ fpzq :“ ph ˚ ηaqp´zq :“
ş

R hp´z ´ sqηapdsq
˘

P

L1pR,LpRq, du;Cq is also non-zero. Then, by using that the Fourier transform is injective, pf : R Ñ C
is non-zero, too, i.e. there exists some t1 P Rzt0u such that pfpt1q ‰ 0. Hence, by using [Folland, 1992,
Table 7.2.2], the function

`

z ÞÑ f0pzq :“ fpzqe´it1z
˘

P L1pR,LpRq, du;Cq satisfies pf0p0q “ pfpt1q ‰ 0.
Moreover, we choose λ :“ t1

t0
P Rzt0u and define the function R Q z ÞÑ ρ0pzq :“ ρλpzqe´it1z P C.

Next, we use [Bogachev, 2007, Theorem 3.6.1] (applied to |η| : BpRmq Ñ r0,8q), the inequality
1 `

ˇ

ˇλaJu´ b
ˇ

ˇ ď 1 ` |λ|}a}}u} ` |λ||b| ď maxp1, |λ|qp1 ` }a}qp1 ` |b|qp1 ` }u}q for any a, u P Rm

and b, y P R, the inequality p1 ` |b|qγ ď 2γ
`

1 ` |b|2
˘γ{2

ď 2γ
`

1 ` |b|2
˘rγ{2s for any b P R, and that

for every y P R the reflected translation R Q b ÞÑ rhypbq :“ hp´y ´ bq P R of the Schwartz function
h P SpR;Cq is again a Schwartz function (see [Folland, 1992, p. 331]) to conclude for every y P R that
ż

R

ż

R
|hp´y ´ bq||ρλps´ bq||ηa|pdsqdb “

ż

Rm
|hp´y ´ bq|

ż

R

ˇ

ˇρ
`

λaJu´ λb
˘ˇ

ˇ |η|pduqdb

ď

ż

R
|hp´y ´ bq|

˜

sup
uPRm

ˇ

ˇρ
`

λaJu´ λb
˘ˇ

ˇ

p1 ` |λaJu´ λb|q
γ

¸

ż

R

`

1 `
ˇ

ˇλaJu´ λb
ˇ

ˇ

˘γ
|η|pduqdb

ď maxp1, |λ|qγp1 ` }a}qγ
ˆ

sup
sPR

|ρpsq|

p1 ` |s|qγ

˙ˆ
ż

R
|hp´y ´ bq|p1 ` |b|qγdb

˙
ż

R
p1 ` }u}qγ |η|pduq

ď maxp1, |λ|qγp1 ` }a}qγ}ρ}C0
pol,γpRq

˜

sup
yPR

ˇ

ˇ

ˇ

rhypbq
ˇ

ˇ

ˇ

`

1 ` |b|2
˘rγ{2s`1

¸

¨

ˆ
ż

R

1

1 ` b2
db

˙
ż

R
p1 ` }u}qγ |η|pduq ă 8.

(32)
Then, by using the substitution z ÞÑ s´ b and the identity (31), it follows for every y P R that

pf0 ˚ ρ0qpyq “

ż

R
fpy ´ zqeit1py´zqρλpzqe´it1zdz “ eit1y

ż

R
ph ˚ ηaqpz ´ yqρλpzqdz

“ eit1y
ż

R

ż

R
hpz ´ y ´ sqρλpzqηapdsqdz “ eit1y

ż

R
hp´y ´ bq

ż

R
ρλps´ bqηapdsqdb “ 0,

(33)
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where (32) ensures that the convolution f0 ˚ ρ0 : R Ñ R is well-defined.
Moreover, let ϕ P SpR;Cq such that pϕpξq “ 1, for all ξ P r´1, 1s, and pϕpξq “ 0, for all ξ P Rzr´2, 2s.

In addition, for every n P N, we define
`

s ÞÑ ϕnpsq :“ 1
nϕ

`

1
n

˘˘

P SpR;Cq. Then, by following the
proof of [Korevaar, 1965, Theorem A], there exists some large enough n P N and w P L1pR,LpRq, duq

such that w ˚ f0 “ ϕ2n P SpR;Cq, Hence, by using (32), we conclude for every g P SpR;Cq that

pTρ0 ˚ ϕ2nq pgq :“ Tρ0 pϕ2np´ ¨q ˚ gq “ pg ˚ ϕ2n ˚ ρ0qp0q “ pg ˚ w ˚ f0 ˚ ρ0qp0q “ 0, (34)

where ϕ2np´ ¨q denotes the function R Q s ÞÑ ϕ2np´sq P R. Thus, by using [Folland, 1992, Equa-
tion 9.32] together with (34), i.e. that yϕ2nxTρ0 “ Tρ0 ˚ ϕ2n̂ “ 0 P S 1pR;Cq, and that yϕ2npξq “ pϕp2nξq “

1 for any ξ P r´ 1
2n ,

1
2n s, it follows that xTρ0 P S 1pR;Cq vanishes on p´ 1

2n ,
1
2nq.

Finally, for some fixed g P C8ppt0 ´ 1
2n|λ|

, t0 ` 1
2n|λ|

q;Cq, we define
`

z ÞÑ g0pzq :“ g
`

z
λ ` t0

˘˘

P

C8
c pp´ 1

2n ,
1
2nq;Cq. Hence, by using the definition of xTρ P S 1pR;Cq, the substitution ζ ÞÑ ξ{λ,

[Folland, 1992, Table 9.2.2], and that xTρ0 P S 1pR;Cq vanishes on p´ 1
2n ,

1
2nq, we conclude that

xTρpgq “ Tρppgq “

ż

R
ρpξqpgpξqdξ “ λ

ż

R
ρpλζqpgpλζqdζ “

ż

R
ρ0pζqeit1ζ {gp¨ {λqpζqdz

“

ż

R
ρ0pζq pg0pζqdζ “ Tρ0p pg0q “ xTρ0pg0q “ 0,

(35)

where {gp¨ {λq denotes the Fourier transform of the function ps ÞÑ gps{λqq P SpR;Cq. Since the function
g P C8

c ppt0 ´ 1
2n|λ|

, t0 ` 1
2n|λ|

q;Cq was chosen arbitrary, (35) shows that xTρ P S 1pR;Cq vanishes on

the set
´

t0 ´ 1
2n|λ|

, t0 ` 1
2n|λ|

¯

. This however contradicts the assumption that t0 P Rzt0u belongs to the

support of xTρ P S 1pR;Cq and shows that η “ 0 P MγpRq. □

Next, we show some properties of measures η P MγpRmq, γ P p0,8q, whenever they are convoluted
with a bump function. For this purpose, we introduce the smooth bump function ϕ : Rm Ñ R defined by

ϕpuq :“

#

Ce
´ 1

1´}u}2 , u P B1p0q,

0, u P RmzB1p0q,

where C ą 0 is a normalizing constant such that }ϕ}L1pRm,LpRmq,duq “ 1. From this, we define for
every fixed δ ą 0 the mollifier Rm Q u ÞÑ ϕδpuq :“ 1

δmϕ
`

u
δ

˘

P R. Moreover, for any γ P p0,8q and
η P MγpRmq, we define the function Rm Q u ÞÑ pϕδ ˚ ηqpuq :“

ş

Rm ϕδpu´ vqηpdvq P R.

Lemma 7.3. For γ P p0,8q, let η P MγpRmq and f P C0
b pRmq

γ
. Then, the following holds true:

(i) For every δ ą 0 the function ϕδ ˚ η : Rm Ñ R is smooth with Bαpϕδ ˚ ηqpuq “ pBαϕδ ˚ ηqpuq

for all α P Nm0 and u P Rm.
(ii) For every δ ą 0 and α P Nm0 it holds that

lim
rÑ8

sup
uPRmzBrp0q

|fpuqBαpϕδ ˚ ηqpuq| “ 0.

(iii) For every δ ą 0 and α P Nm0 it holds that Bαpϕδ ˚ ηqpuqdu
ˇ

ˇ

BpRmq
P MγpRmq.

(iv) For every δ ą 0 and α P Nm0 the map

pC0
b pRmq

γ
, } ¨ }C0

pol,γpRmqq Q f ÞÑ

ż

Rm
fpuqBαpϕδ ˚ ηqpuqdu P R

is a continuous linear functional.
(v) For every δ ą 0 it holds that

ż

Rm
fpuqpϕδ ˚ ηqpuqdu “

ż

Rm

ż

Rm
fpu` yqηpduqϕδpyqdy.

(vi) It holds that

lim
δÑ0

ż

Rm
fpuqpϕδ ˚ ηqpuqdu “

ż

Rm
fpuqηpduq.
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Proof. Fix some γ P p0,8q, η P MγpRmq, f P C0
b pRmq

γ
, δ ą 0, and α P Nm0 . For (i), we first show

that Bαϕδ ˚ η : Rm Ñ R is continuous. Indeed, we observe that for every u, u0, v P Rm, it holds that

max p|Bαϕδpu´ vq| , |Bαϕδpu0 ´ vq|q ď C11 :“ sup
u1PRm

|Bαϕδpu1q| ă 8. (36)

Then, the dominated convergence theorem (with (36) and that η P MγpRmq is finite) implies that

lim
uÑu0

pBαϕδ ˚ ηqpuq “ lim
uÑu0

ż

Rm
Bαϕδpu´ vqηpdvq “

ż

Rm
Bαϕδpu0 ´ vqηpdvq “ pBαϕδ ˚ ηqpu0q,

which shows that Bαϕδ ˚ η : Rm Ñ R is continuous. Moreover, for every fixed β P Nm0 and l “ 1, ...,m
(with el P Rm denoting the l-th unit vector of Rm), we use the mean-value theorem to conclude for every
u, v P Rm and h P R that

max

ˆˇ

ˇ

ˇ

ˇ

Bβϕδpu` hel ´ vq ´ Bβϕδpu´ vq

h

ˇ

ˇ

ˇ

ˇ

, |Bβ`elϕδpu´ vq|

˙

ď C12 :“ sup
u1PRm

|Bβ`elϕδpu1q| ă 8.
(37)

Then, the dominated convergence theorem (with (37) and that η P MγpRmq is finite) implies that

BelpBαϕδ ˚ ηqpuq “ lim
hÑ0

pBβϕδ ˚ ηqpu` helq ´ pBβϕδ ˚ ηqpuq

h

“ lim
hÑ0

ż

Rm

Bβϕδpu` hel ´ vq ´ Bβϕδpu´ vq

h
ηpdvq

“

ż

Rm
Bβ`elϕδpu´ vqηpdvq “ pBβ`elϕδ ˚ ηqpuq.

Hence, by induction on β P Nm0 , it follows that Bαpϕδ ˚ ηqpuq “ pBαϕδ ˚ ηqpuq for any u P Rm. This
together with the previous step shows (i).

For (ii), we use (i), that supppϕδq “ Bδp0q implies supppBαϕδq Ď Bδp0q, the inequality 1 ` x` y ď

p1 ` xqp1 ` yq for any x, y ě 0, that the constant C13 :“ supyPRm |Bαϕδpyq| ą 0 is finite, and that
η P MγpRmq to conclude that

C14 :“ sup
uPRm

`

p1 ` }u}qγ |pϕδ ˚ ηqpuq|
˘

ď sup
uPRm

ż

Rm
p1 ` }u}qγ |Bαϕδpu´ vq| |η|pdvqdu

ď sup
uPRm

ż

Rm
p1 ` }u´ v}

loomoon

ďδ

`}v}qγ |Bαϕδpu´ vq| |η|pdvq ď C13p1 ` δqγ
ż

Rm
p1 ` }v}qγ |η|pdvq ă 8.

Hence, by using this and that f P C0
b pRmq

γ
together with Lemma 6.1, it follows that

lim
rÑ8

sup
uPRmzBrp0q

|fpuqBαpϕδ ˚ ηqpuq| “ lim
rÑ8

sup
uPRmzBrp0q

ˆ

|fpuq|

p1 ` }u}qγ
p1 ` }u}qγ |Bαpϕδ ˚ ηqpuq|

˙

“ C14 lim
rÑ8

sup
uPRmzBrp0q

|fpuq|

p1 ` }u}qγ
“ 0,

which shows (ii).
For (iii), we first prove that Bαpϕδ ˚ ηqpuqdu

ˇ

ˇ

BpRmq
: BpRmq Ñ R is a signed Radon measure. For this

purpose, we denote its positive and negative part by ηδ,˘ :“ ˘ pBαpϕδ ˚ ηqpuqq˘ du
ˇ

ˇ

BpRmq
: BpRmq Ñ

r0,8s satisfying ηδ,` ´ ηδ,´ “ Bαpϕδ ˚ ηqpuqdu
ˇ

ˇ

BpRmq
, where s` :“ maxps, 0q and s´ :“ ´minps, 0q,

for any s P R. Moreover, we define the finite constant C15 :“ supuPRm |Bαϕδpuq| ą 0. Then, for every
u P Rm, we choose a compact subset K Ă Rm with u P K and use that η P MγpRmq is finite to
conclude that

ηδ,˘pKq “ ˘

ż

K
pBαpϕδ ˚ ηqpuqq˘ du ď

ˆ
ż

K
du

loomoon

“:|K|

˙

sup
uPK

|pBαϕδ ˚ ηqpuq|

ď |K| sup
uPK

ż

Rm
|Bαϕδpu´ vq| |η|pdvq ď C15|K||η|pRmq ă 8.
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This shows that both measures ηδ,˘ : BpRmq Ñ r0,8s are locally finite. In addition, it holds for every
B P BpRmq that

ηδ,˘pBq “ ˘

ż

B
pBαpϕδ ˚ ηqpuqq˘ du

“ inf

"

˘

ż

U
pBαpϕδ ˚ ηqpuqq˘ du : U Ď Rm open with B Ď U

*

“ inf tηδ,˘pUq : U Ď Rm open with B Ď Uu ,

which shows that both measures ηδ,˘ : BpRmq Ñ r0,8s are outer regular. Moreover, it holds for every
B P BpRmq that

ηδ,˘pBq “ ˘

ż

B
pBαpϕδ ˚ ηqpuqq˘ du

“ sup

"

˘

ż

K
pBαpϕδ ˚ ηqpuqq˘ du : K Ă B relatively compact

*

“ sup tηδ,˘pKq : K Ă B relatively compactu ,

which shows that both measures ηδ,˘ : BpRmq Ñ r0,8s are inner regular. Hence, both measures ηδ,˘ :
BpRmq Ñ r0,8s are Radon measures and Bαpϕδ ˚ ηqpuqdu

ˇ

ˇ

BpRmq
“ ηδ,` ´ ηδ,´ : BpRmq Ñ r0,8s

is thus a signed Radon measure. Furthermore, by using the triangle inequality, that supppϕδq “ Bδp0q

implies supppBαϕδq Ď Bδp0q, the inequality 1`x`y ď p1`xqp1`yq for any x, y ě 0, the substitution
y ÞÑ u´ v together with }Bαϕδ}L1pRm,LpRmq,duq ă 8, and that η P MγpRmq, we have

ż

Rm
p1 ` }u}qγ |Bαpϕδ ˚ ηqpuq| du ď

ż

Rm

ż

Rm
p1 ` }u}qγ |Bαϕδpu´ vq|du|η|pdvq

ď

ż

Rm

ż

Rm
p1 ` }u´ v}

loomoon

ďδ

`}v}qγ |Bαϕδpu´ vq| du|η|pdvq

ď p1 ` δqγ
ˆ

sup
vPRm

ż

Rm
|Bαϕδpu´ vq| du

˙ˆ
ż

Rm
p1 ` }v}qγ |η|pdvq

˙

ď p1 ` δqγ}Bαϕδ}L1pRm,LpRmq,duq

ˆ
ż

Rm
p1 ` }v}qγ |η|pdvq

˙

ă 8.

This shows that Bαpϕδ ˚ ηqpuqdu
ˇ

ˇ

BpRmq
P MγpRmq is a finite signed Radon measure.

For (iv), we use (iii) to conclude that the constant C16 :“
ş

Rmp1` }u}qγ |pϕδ ˚ ηqpuq| du ą 0 is finite.
Then, it follows for every f P C0

b pRmq
γ

that
ˇ

ˇ

ˇ

ˇ

ż

Rm
fpuqBαpϕδ ˚ ηqpuqdu

ˇ

ˇ

ˇ

ˇ

ď

ˆ

sup
uPRm

|fpuq|

p1 ` }u}qγ

˙
ż

Rm
p1 ` }u}qγ |Bαpϕδ ˚ ηqpuq| du

“ C16}f}C0
pol,γpRmq,

which shows that C0
b pRmq

γ
Q f ÞÑ

ş

Rm fpuqBαpϕδ ˚ ηqpuqdu P R is a continuous linear functional.
For (v), we use the substitution u ÞÑ v ` y to conclude that

ż

Rm
fpuqpϕδ ˚ ηqpuqdu “

ż

Rm

ż

Rm
fpuqϕδpu´ vqηpdvqdu

“

ż

Rm

ż

Rm
fpv ` yqηpdvqϕδpyqdy.

For (vi), we define for every δ P p0, 1q the function Rm Q u ÞÑ pϕδ ˚fqpuq :“
ş

Rm ϕδpu´vqfpvqdv P

R. Then, by using the triangle inequality, that supppϕδq “ Bδp0q, the substitution y ÞÑ u´ v together
with

ş

Rm |ϕδpyq|dy “ }ϕδ}L1pRm,LpRmq,duq “ }ϕ}L1pRm,LpRmq,duq “ 1, the inequality 1 ` x ` y ď
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p1 ` xqp1 ` yq for any x, y ě 0, and that f P C0
b pRmq

γ
, it follows for every u P Rm that

|pϕδ ˚ fqpuq| ď

ż

Rm
|ϕδpu´ vq|

|fpvq|

p1 ` }v}qγ
p1 ` }v}qγdv

ď

ż

Rm
|ϕδpu´ vq|

|fpvq|

p1 ` }v}qγ
p1 ` }u} ` }u´ v}

loomoon

ďδ

qγdv

ď

ˆ
ż

Rm
|ϕδpu´ vq|dv

˙ˆ

sup
vPRm

|fpvq|

p1 ` }v}qγ

˙

p1 ` }u} ` δqγ

ď

ˆ
ż

Rm
|ϕδpyq|dy

˙

}f}C0
pol,γpRmqp1 ` δqγp1 ` }u}qγ

ď 2γ}f}C0
pol,γpRmqp1 ` }u}qγ .

(38)

Moreover, by using that f P C0
b pRmq

γ
, we conclude for every u P Rm that

|fpuq| ď

ˆ

sup
uPRm

|fpuq|

p1 ` }u}qγ

˙

p1 ` }u}qγ ď }f}C0
pol,γpRmqp1 ` }u}qγ . (39)

Hence, by using (v), Fubini’s theorem, the substitution u ÞÑ v`y, and the dominated convergence theorem
(with (38), (39), p1 ` }u}qγ P L1pRm,BpRmq, |η|q as η P MγpRmq, and [Evans, 2010, Theorem C.7],
i.e. that ϕδ ˚ f : Rm Ñ R converges a.e. to f : Rm Ñ R, as δ Ñ 0), it follows that

lim
δÑ0

ż

Rm
fpuqpϕδ ˚ ηqpuqdu “ lim

δÑ0

ż

Rm

ż

Rm
fpv ` yqηpdvqϕδpyqdy

“ lim
δÑ0

ż

Rm

ˆ
ż

Rm
fpv ` yqϕδpyqdy

˙

ηpdvq

“ lim
δÑ0

ż

Rm

ˆ
ż

Rm
ϕpv ´ uqfpuqdu

˙

ηpdvq

“ lim
δÑ0

ż

Rm
pϕδ ˚ fqpvqηpdvq

“

ż

Rm
fpvqηpdvq,

which completes the proof. □

Finally, we provide the proof of Theorem 2.6, i.e. the universal approximation property of deterministic
neural networks NN ρ

U,d in any pk, U, γq-approximable function space pX, }¨}Xq, where k P N0, U Ď Rm

(open, if k ě 1), γ P p0,8q, and ρ P Ckb pRq
γ

is the activation function.

Proof of Theorem 2.6. First, we use that pX, } ¨ }Xq is an pk, U, γq-approximable function space together
with Lemma 2.5 (ii) to conclude that NN ρ

Rm,d Ď Ckb pRm;Rdq
γ

and that NN ρ
U,d Ď X .

Now, we assume by contradiction that NN ρ
U,d is not dense in X with respect to } ¨ }X . Then, by

using that pX, } ¨ }Xq is pk, U, γq-approximable, i.e. that the restriction map in (4) is a continuous dense
embedding, it follows from Remark 2.4 that NN ρ

Rm,d cannot be dense in Ckb pRm;Rdq
γ

with respect
to } ¨ }Ckpol,γpRm;Rdq. Hence, by applying the Hahn-Banach theorem, there exists a non-zero continuous

linear functional l : Ckb pRm;Rdq
γ

Ñ R such that for every φ P NN ρ
Rm,d it holds that lpφq “ 0.

Next, we use the Riesz representation result in Proposition 7.1 to conclude that there exist some signed
Radon measures pηα,iqαPNm0,k, i“1,...,d P MγpRmq such that for every f P Ckb pRm;Rdq

γ
it holds that

lpfq “
ÿ

αPNm0,k

d
ÿ

i“1

ż

Rm
Bαfipuqηα,ipduq.

Since lpφq “ 0 for any φ P NN ρ
Rm,d, it follows for every a P Rm, b P R, and i “ 1, ..., d that

l
`

eiρ
`

λaJ ¨ ´b
˘˘

“
ÿ

αPNm0,k

ż

Rm
ρp|α|q

`

aJu´ b
˘

aαηα,ipduq “ 0, (40)
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where eiρ
`

λaJ ¨ ´b
˘

denotes the function Rm Q u ÞÑ eiρ
`

λaJu´ b
˘

P Rd with ei P Rd being the i-th
unit vector of Rd, and where aα :“

śm
l“1 a

αl
l for a :“ pa1, ..., amq P Rm and α :“ pα1, ..., αmq P Nm0,k.

Now, we define for every fixed δ ą 0 the linear map lδ : Ckb pRm;Rdq
γ

Ñ R by

lδpfq :“
ÿ

αPNm0,k

d
ÿ

i“1

ż

Rm
Bαfipuqpϕδ ˚ ηqpuqdu,

for f P Ckb pRm;Rdq
γ
. Then, Lemma 7.3 (iv) shows that lδ : Ckb pRm;Rdq

γ
Ñ R is a continuous linear

functional as it is a finite sum of the continuous linear functionals Ckb pRm;Rdq
γ

Q f ÞÑ
ş

Rm Bαfipuqpϕδ ˚

ηqpuqdu P R taken over α P Nm0,k and i “ 1, ..., d. Moreover, for every fixed i “ 1, ..., d, we define

Rm Q u ÞÑ hδ,ipuq :“
ÿ

αPNm0,k

p´1q|α|Bα pϕδ ˚ ηα,iq puq P R,

which satisfies hδ,ipuqdu P MγpRmq as it is a finite linear combination of finite signed Radon measures
Bα pϕδ ˚ ηα,iq puqdu P MγpRmq taken over α P Nm0,k (see Lemma 7.3 (iii)). Hence, integration by parts
together with Lemma 7.3 (ii) shows that

lδpfq “
ÿ

αPNm0,k

d
ÿ

i“1

ż

Rm
Bαfipuq pϕδ ˚ ηα,iq puqdu

“
ÿ

αPNm0,k

d
ÿ

i“1

p´1q|α|

ż

Rm
fipuqBα pϕδ ˚ ηα,iq puqdu

“

d
ÿ

i“1

ż

Rm
fipuqhδ,ipuqdu.

Thus, by using this, Lemma 7.3 (v), and (40) (with b´ aJy P R instead of b P R), it follows for every
a P Rm, b P R, and i “ 1, ..., d that

ż

Rm
ρ
`

aJu´ b
˘

hδ,ipuqdu “
ÿ

αPNm0,k

ż

Rm
ρp|α|q

`

aJu´ b
˘

aα pϕδ ˚ ηα,iq puqdu

“
ÿ

αPNm0,k

ż

Rm
ρp|α|q

`

aJpu` yq ´ b
˘

aαηα,ipduqϕδpyqdu

“

ż

Rm
l
`

eiρ
`

aJ ¨ ´
`

b´ aJy
˘˘˘

looooooooooooooomooooooooooooooon

“0

ϕδpyqdy “ 0.

Now, for every i “ 1, ..., d, we apply Proposition 7.2 with hδ,ipuqdu P MγpRmq to conclude that
hδ,ipuqdu “ 0 P MγpRmq, and thus hδ,ipuq “ 0 for a.e. u P Rm. Hence, it follows for every
f P Ckb pRm;Rdq

γ
that

lδpfq “

d
ÿ

i“1

ż

Rm
fipuqhδ,ipuqdu “ 0,

which shows that lδ : Ckb pRm;Rdq Ñ R vanishes everywhere on Ckb pRm;Rdq.
Finally, we use Lemma 7.3 (vi) to conclude for every f P Ckb pRm;Rdq

γ
that

lpfq “
ÿ

αPNm0,k

d
ÿ

i“1

ż

Rm
Bαfipuqηα,ipduq “ lim

δÑ8

ÿ

αPNm0,k

d
ÿ

i“1

ż

Rm
fipuqpϕδ ˚ ηqpuqdu “ lim

δÑ8
lδpfq “ 0,

which shows that l : Ckb pRm;Rdq
γ

Ñ R vanishes everywhere. This however contradicts the assumption
that l : Ckb pRm;Rdq

γ
Ñ R is non-zero. Hence, NN ρ

U,d is dense in X with respect to } ¨ }X . □
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7.3. Proof of Example 2.8+2.9. For the proof of Example 2.8 (v), we first generalize the approximation
result for unweighted Sobolev spaces in [Adams, 1975, Theorem 3.18] to weighted Sobolev spaces
pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq introduced in Notation (xii).

Proposition 7.4 (Approximation in Weighted Sobolev Spaces). For k P N, p P r1,8q, and U Ď Rm
open and having the segment property, let w : U Ñ r0,8q be a bounded weight such that for every
bounded subset B Ď U it holds that infuPB wpuq ą 0. Then,

␣

f |U : U Ñ Rd : f P C8
c pRm;Rdq

(

is
dense in W k,ppU,LpUq, w;Rdq with respect to } ¨ }Wk,ppU,LpUq,w;Rdq.

Proof. First, we follow the proof of [Adams, 1975, Theorem 3.18] to show that every fixed function
f P W k,ppU,LpUq, w;Rdq can be approximated by elements from

␣

f |U : U Ñ Rd : f P C8
c pRm;Rdq

(

with respect to } ¨ }Wk,ppU,LpUq,w;Rdq. For this purpose, we choose some h P C8
c pRmq which satisfies

hpuq “ 1 for all u P B1p0q, hpuq “ 0 for all u P RmzB2p0q, and that there exists a constant Ch ą 0
such that for every α P Nm0,k and u P Rm it holds that |Bαhpuq| ď Ch. In addition, we define for every
fixed r ą 1 the functions Rm Q u ÞÑ hrpuq :“ hpu{rq P R and U Q u ÞÑ frpuq :“ fpuqhrpuq P Rd,
which both have bounded support. Then, by using the Leibniz product rule together with the triangle
inequality, that |Bαhrpuq| “ |Bαhpu{rq| r´|α| ď Ch for any α P Nm0,k and u P Rm, and the inequality
(26), it follows for every α P Nm0,k and u P U that

}Bαfrpuq}p ď

¨

˚

˚

˝

ÿ

β1,β2PNm0
β1`β2“α

α!

β1!β2!
|Bβ1hrpuq|}Bβ2fpuq}

˛

‹

‹

‚

p

ď 2kpCph max
β2PNm0,k

}Bβ2fpuq}p

ď 2kpCph

ÿ

β2PNm0,k

}Bβ2fpuq}p.

Hence, by using this, it follows for every V P LpUq that

}fr}Wk,ppV,LpV q,w;Rdq “

¨

˝

ÿ

αPNm0,k

ż

V
}Bαfrpuq}pwpuqdu

˛

‚

1
p

ď
ˇ

ˇNm0,k
ˇ

ˇ

1
p

˜

max
αPNm0,k

ż

V
}Bαfrpuq}pwpuqdu

¸
1
p

ď 2kCh
ˇ

ˇNm0,k
ˇ

ˇ

1
p

¨

˝

ÿ

β2PNm0,k

ż

V
}Bβ2fpuq}pwpuqdu

˛

‚

1
p

ď 2kCh
ˇ

ˇNm0,k
ˇ

ˇ

1
p }f}Wk,ppV,LpV q,w;Rdq ă 8.

(41)

Thus, by taking V :“ U in (41), we conclude that fr P W k,ppU,LpUq, w;Rdq. Similarly, by using the
triangle inequality, that Bαfrpuq “ Bαpfpuqhrpuqq “ Bαfpuq for any α P Nm0,k and u P U X Brp0q (as
hrpuq “ 1 for any u P Brp0q), and (41) with V :“ UzBrp0q, it follows that

}f ´ fr}Wk,ppU,LpUq,w;Rdq ď }f ´ fr}Wk,ppUXBrp0q,LpUXBrp0qq,w;Rdq
looooooooooooooooooooooomooooooooooooooooooooooon

“0

`}f ´ fr}Wk,ppUzBrp0q,LpUzBrp0qq,w;Rdq

ď }f}
Wk,ppUzBrp0q,LpUzBrp0qq,w;Rdq

` }fr}Wk,ppUzBrp0q,LpUzBrp0qq,w;Rdq

ď

´

1 ` 2kCh
ˇ

ˇNm0,k
ˇ

ˇ

1
p

¯

}f}
Wk,ppUzBrp0q,LpUzBrp0qq,w;Rdq

.

Since the right-hand side tends to zero, as r Ñ 8, this shows that f P W k,ppU,LpUq, w;Rdq can be
approximated by elements of

␣

f P W k,ppU,LpUq, w;Rdq : supppfq Ď U is bounded
(

with respect to
} ¨ }Wk,ppU,LpUq,w;Rdq. Hence, we only need to show the approximation of the latter by elements from
␣

f |U : U Ñ Rd : f P C8
c pRm;Rdq

(

with respect to } ¨ }Wk,ppU,LpUq,w;Rdq.
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Therefore, we now fix some f P W k,ppU,LpUq, w;Rdq with bounded support supppfq Ď U and
some ε ą 0. Moreover, by recalling that w : U Ñ r0,8q is bounded, we can define the finite constant
Cw :“ supuPU wpuq ą 0. Then, by using that fpuq “ 0 for any u P Uz supppfq, thus Bαfpuq “ 0 for
any α P Nm0,k and u P Uz supppfq, and the assumption that Cf,w :“ infuPsupppfq wpuq ą 0, we have

}f}Wk,ppU,LpUq,du;Rdq “

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq}pdu

˛

‚

1
p

“

¨

˝

ÿ

αPNm0,k

ż

supppfq

}Bαfpuq}pdu

˛

‚

1
p

ď C´1
f,w

¨

˝

ÿ

αPNm0,k

ż

supppfq

}Bαfpuq}pwpuqdu

˛

‚

1
p

“ C´1
f,w

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq}pwpuqdu

˛

‚

1
p

“ C´1
f,w}f}Wk,ppU,LpUq,w;Rdq ă 8.

This shows that f P W k,ppU,LpUq, du;Rdq. Hence, by applying [Adams, 1975, Theorem 3.18] (with
U Ď Rm having the segement property) componentwise, there exists some g P C8

c pRm;Rdq such that

}f ´ g}Wk,ppU,LpUq,du,Rdq “

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq ´ Bαgpuq}pdu

˛

‚

1
p

ă
ε

Cw
.

Thus, by using that w : U Ñ r0,8q is bounded with Cw :“ supuPU wpuq ă 8, it follows that

}f ´ g}Wk,ppU,LpUq,du,Rdq “

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq ´ Bαgpuq}pwpuqdu

˛

‚

1
p

ď Cw

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq ´ Bαgpuq}pdu

˛

‚

1
p

ă Cw
ε

Cw
“ ε.

Since f P W k,ppU,LpUq, w;Rdq with bounded support supppfq Ď U and ε ą 0 were chosen ar-
bitrarily, it follows together with the first step that

␣

f |U : U Ñ Rd : f P C8
c pRm;Rdq

(

is dense in
W k,ppU,LpUq, w;Rdq with respect to } ¨ }Wk,ppU,LpUq,w;Rdq. □

Proof of Example 2.8. For (i), we use that U Ă Rm is bounded to define the finite constant C21 :“
supuPU p1 ` }u}qγ . Then, it follows for every f P C0

b pRm;Rdq that

}f |U}Ckb pU ;Rdq “ max
αPNm0,k

sup
uPU

}Bαfpuq}

ď

ˆ

sup
uPU

p1 ` }u}qγ
˙

max
αPNm0,k

sup
uPU

}Bαfpuq}

p1 ` }u}qγ

ď C21}f}Ckpol,γpRm;Rdq.

Moreover, by using that
␣

f |U : f P Ckb pRm;Rdq
(

“ Ckb pU ;Rdq, the image
␣

f |U : f P Ckb pRm;Rdq
(

of
the continuous embedding (4) is dense in Ckb pU ;Rdq with respect to } ¨ }Ckb pU ;Rdq.

For (ii), the restriction map in (4) is by definition continuous. Moreover, by using that Ckb pU ;Rdq
γ

is
defined as the closure ofCkb pU ;Rdq with respect to }¨}Ckpol,γpU ;Rdq, the image

␣

g|U : g P Ckb pRm;Rdq
(

“

Ckb pU ;Rdq of the continuous embedding (4) is dense in Ckb pU ;Rdq
γ

with respect to } ¨ }Ckpol,γpU ;Rdq.

For (iii), we first recall that k “ 0. Then, we use that f P C0
b pRm;Rdq is continuous to conclude

that its restriction f |U : U Ñ Rd is BpUq{BpRdq-measurable. Moreover, we define the finite constant
C22 :“

ş

U p1`}u}qγpµpduq ą 0, which implies that µ : BpUq Ñ r0,8q is finite as µpUq “
ş

U µpduq ď
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C22 ă 8. Then, it follows for every f P C0
b pRm;Rdq that

}f |U}LppU,BpUq,µ;Rdq “

ˆ
ż

U
}fpuq}pµpduq

˙
1
p

ď

ˆ
ż

U
p1 ` }u}qγpµpduq

˙
1
p

sup
uPU

}fpuq}

p1 ` }u}qγ

ď C
1
p

22}f}C0
pol,γpRm;Rdq,

which shows that the restriction map in (4) is continuous. In order to show that its image is dense, we fix
some f P LppU,BpUq, µ;Rdq and ε ą 0. Then, we extend f : U Ñ Rd to the function

Rm Q u ÞÑ fpuq :“

#

fpuq, u P U,

0, u P RmzU.

Moreover, we extend µ : BpUq Ñ r0,8q to the Borel measure BpRmq Q E ÞÑ µpEq :“ µpU X

Eq P r0,8q, which implies that f P LppRm,BpRmq, µ;Rdq. Hence, by applying [Bogachev, 2007,
Corollary 2.2.2] componentwise (with µpBq “ µpU X Bq ď µpUq ď C22 ă 8 for any bounded
B P BpRmq), there exists some g P C8

c pRm;Rdq Ď C0
b pRm;Rdq with }f ´ g}LppRm,BpRmq,µ;Rdq ă ε,

which implies
}f ´ g|U}LppU,BpUq,µ;Rdq “ }f ´ g}LppRm,BpRmq,µ;Rdq ă ε.

Since f P C0pU ;Rdq and ε ą 0 were chosen arbitrarily, the image
␣

f |U : f P C0
b pRm;Rdq

(

of the
continuous embedding (4) is dense in LppU,BpUq, µ;Rdq with respect to } ¨ }LppU,BpUq,µ;Rdq.

For (iv), we first use that f P Ckb pRm;Rdq is k-times differentiable to conclude for every α P Nm0,k that
Bαf |U : U Ñ Rd is LpUq{BpRdq-measurable. Moreover, we use that U Ă Rm is bounded to define the
finite constant C23 :“

ş

U p1 ` }u}qγpdu ą 0. Then, it follows for every f P Ckb pRm;Rdq that

}f}Wk,ppU,LpUq,du;Rdq “

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq}pdu

˛

‚

1
p

ď

ˆ

ˇ

ˇNm0,k
ˇ

ˇ

ż

U
p1 ` }u}qγpdu

˙
1
p

max
αPNm0,k

sup
uPU

}Bαfpuq}

p1 ` }u}qγp

ď
`

C23

ˇ

ˇNm0,k
ˇ

ˇ

˘
1
p }f}Ckpol,γpRm;Rdq,

which shows that the restriction map in (4) is continuous. In addition, by applying [Adams, 1975, Theo-
rem 3.18] componentwise,

␣

g|U : g P C8
c pRm;Rdq

(

is dense in W k,ppU,LpUq, du;Rdq with respect to
} ¨ }Wk,ppU,LpUq,du;Rdq. Since C8

c pRm;Rdq Ď Ckb pRm;Rdq, the image
␣

g|U : g P Ckb pRm;Rdq
(

of the
continuous embedding (4) is dense in W k,ppU,LpUq, du;Rdq with respect to } ¨ }Wk,ppU,LpUq,du;Rdq.

For (v), we use that f P Ckb pRm;Rdq is k-times differentiable to conclude for every α P Nm0,k
that Bαf |U : U Ñ Rd is LpUq{BpRdq-measurable. Moreover, by using the finite constant C24 :“
ş

U p1 ` }u}qγpwpuqdu ą 0, it follows for every f P Ckb pRm;Rdq that

}f}Wk,ppU,LpUq,w;Rdq “

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfpuq}pwpuqdu

˛

‚

1
p

ď

ˆ

ˇ

ˇNm0,k
ˇ

ˇ

ż

U
p1 ` }u}qγpwpuqdu

˙
1
p

max
αPNm0,k

sup
uPU

}Bαfpuq}

p1 ` }u}qγ

ď
`

C24

ˇ

ˇNm0,k
ˇ

ˇ

˘
1
p }f}Ckpol,γpRm;Rdq.

which shows that the restriction map in (4) is continuous. In addition, we apply Proposition 7.4 to conclude
that

␣

g|U : g P C8
c pRm;Rdq

(

is dense in W k,ppU,LpUq, w;Rdq with respect to } ¨ }Wk,ppU,LpUq,w;Rdq.
Since C8

c pRm;Rdq Ď Ckb pRm;Rdq, it follows that the image
␣

g|U : g P Ckb pRm;Rdq
(

of the continuous
embedding (4) is dense in W k,ppU,LpUq, w;Rdq with respect to } ¨ }Wk,ppU,LpUq,w;Rdq. □
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Proof of Example 2.9. First, since ρ P Ckb pRq
γ

is of polynomial growth, in each case (i)-(iv), it induces
the tempered distribution

`

g ÞÑ Tρpgq :“
ş

R ρpsqgpsqds
˘

P S 1pR;Cq (see [Folland, 1992, p. 332]).
For (ii), we recall that tanh1pξq “ coshpξq´2 holds true for all ξ P R. Moreover, the Fourier transform

of the function
´

s ÞÑ hpsq :“ πs
sinhpπs{2q

¯

P L1pR,LpRq, duq is for every ξ P R given by

phpξq “
2π

coshpξq2
“ 2π tanh1pξq. (42)

Then, by using
´

g ÞÑ

´

p1 ¨ zTtanh

¯

pgq :“ zTtanhpp1 ¨ gq

¯

P S 1pR;Cq, [Folland, 1992, Equation 9.31]

with R Q s ÞÑ p1psq :“ s P R, the definition of zTtanh P S 1pR;Cq, the identity (42), and the Plancherel
theorem in [Folland, 1992, p. 222], it follows for every g P C8

c pRzt0u;Cq that

zTtanhpp1 ¨ gq “

´

p1 ¨ zTtanh

¯

pgq “
1

i
{Ttanh1pgq “ p´iqTtanh1 ppgq

“ p´iq

ż

R
tanh1pξqpgpξqdξ “

´i

2π

ż

R
phpξqpgpξqdξ

“ p´iq

ż

R
hpξqgpξqdξ “

ż

R

´iπ

sinh pπξ{2q
pp1 ¨ gqpξqdξ.

(43)

Hence, zTtanh P S 1pR;Cq coincides on Rzt0u with
´

ξ ÞÑ f
{Ttanh

pξq :“ iπ
sinhpπξ{2q

¯

P L1
locpRzt0u;Cq.

For (i), we denote by
´

s ÞÑ σpsq :“ 1
1`expp´sq

¯

P Ckb pRq
γ

the sigmoid function and observe that

σpsq “ 1
2

`

tanh
`

s
2

˘

` 1
˘

for all s P R. Then, by using the linearity of the Fourier transform on S 1pR;Cq,
[Folland, 1992, Equation 9.30], that xT1pgq “ 2πδpgq :“ 2πgp0q for any g P SpR;Cq (see [Folland, 1992,
Equation 9.35]), the identity (43), and the substitution ξ ÞÑ rξ{2, it follows for every g P C8

c pRzt0u;Cq

that
xTσpgq “

1

2
Ttanhp ¨

2
q̂pgq `

1

2
xT1pgq “

1

2
zTtanh

´

g
´

¨

2

¯¯

`
2π

2
gp0q

“
1

2

ż

R

´iπ

sinh
´

πrξ{2
¯g

´

rξ{2
¯

drξ “

ż

R

´iπ

sinhpπξq
gpξqdξ.

(44)

Hence, xTσ P S 1pR;Cq coincides on Rzt0u with
´

ξ ÞÑ f
xTσ

pξq :“ ´iπ
sinhpπξq

¯

P L1
locpRzt0u;Cq.

For (iii), we denote by
`

s ÞÑ σp´1qpsq :“ ln p1 ` esq
˘

P Ckb pRq
γ

the softplus function and observe
that d

dsσ
p´1qpsq “ σpsq for all s P R. Then, by using [Folland, 1992, Equation 9.31] with R Q s ÞÑ

p1psq :“ s P R and the identity (44), it follows for every g P C8
c pRzt0u;Cq that

{Tσp´1qpp1 ¨ gq “

´

p1 ¨ {Tσp´1q

¯

pgq “
1

i
xTσpgq “

1

i

ż

R

´iπ

sinhpπξq
gpξqdξ “

ż

R

´π

ξ sinhpπξq
pp1 ¨ gqpξqdξ.

Hence, {Tσp´1q P S 1pR;Cq coincides on Rzt0u with
´

ξ ÞÑ f
{T
σp´1q

pξq :“ ´π
ξ sinhpπξq

¯

P L1
locpRzt0u;Cq.

For (iv), we denote by ps ÞÑ ReLUpsq :“ maxps, 0qq P C0
b pRq

γ
the ReLU function and observe that

ReLUpsq “ maxps, 0q “
s`|s|

2 for all s P R. Moreover, the absolute value R Q s ÞÑ |s| P R is
weakly differentiable with d

ds |s| “ sgnpsq for all s P R, where sgnpsq :“ 1 if s ą 0, sgnp0q :“ 0,
and sgnpsq :“ ´1 if s ă 0. Then, by using the linearity of the Fourier transform on S 1pR;Cq,
that xTp1pgq “ 2πiδ1pgq :“ 2πig1p0q for any g P SpR;Cq with R Q s ÞÑ p1psq :“ s P R (see
[Folland, 1992, Equation 9.35]), [Folland, 1992, Equation 9.31], and [Folland, 1992, Example 9.4.4],
i.e. that yTsgnpgq “ ´2i

ş

R
gpξq

ξ dξ for any g P C8
c pRzt0u;Cq, it follows for every g P C8

c pRzt0u;Cq that

{TReLUpp1 ¨ gq “
1

2
xTp1pp1 ¨ gq `

1

2
xT|¨|pp1 ¨ gq “

2πi

2
pp1 ¨ gq1p0q `

1

2

´

p1 ¨ xT|¨|

¯

pgq

“
1

2i
yTsgnpgq “

´2i

2i

ż

R

gpξq

ξ
dξ “

ż

R

´1

ξ2
pp1 ¨ gqpξqdξ.

Hence, {TReLU P S 1pR;Cq coincides on Rzt0u with
´

ξ ÞÑ f
{TReLU

pξq :“ ´ 1
ξ2

¯

P L1
locpRzt0u;Cq. □
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8. PROOFS OF RESULTS IN SECTION 3.

In this section, we provide the proofs of the results in Section 3. First, we give a short introduction into
the notion of Bochner spaces in Section 8.1. Subsequently, we show in Section 8.2 that every random
neural network is a strongly measurable map. Finally, in Section 8.3, we prove the main result of Section 3,
i.e. the universal approximation property of random neural networks formulated in Theorem 3.5.

8.1. Introduction to Bochner Spaces. In this section, we give a short introduction into the notion
of Bochner spaces over a probability space, which allows us to consider random functions as Banach
space-valued random variables. To this end, we follow the textbook [Hytönen et al., 2016]. Readers who
are familiar with this topic may skip this section.

Throughout this paper, we fix a probability space pΩ,F ,Pq and assume that pX, } ¨ }Xq is a separable
Banach space. Moreover, for a sub-σ-algebra F0 Ď F , we define the set of F0-simple functions as

IF0 bX :“

#

Ω Q ω ÞÑ

I
ÿ

i“1

1Eipωqfi P X : I P N, Ei P F0, fi P X

+

.

Using this, a map F : Ω Ñ X is called F0-strongly measurable if there exists a sequence of simple
functions pSM qMPN Ď IF0 b X converging P-a.s. to F : Ω Ñ X , i.e. there exists some A P F0 with
PrAs “ 1 such that for every ω P A it holds that

lim
MÑ8

}F pωq ´ SM pωq}X “ 0.

Now, for any F0-simple function S “
řI
i“1 1Eifi P IF0 bX , we define the Bochner integral of S as

ErSs :“

ż

Ω
SpωqP rdωs :“

I
ÿ

i“1

PrEisfi.

Then, one can introduce the Bochner space LrpΩ,F0,P;Xq, for r P r1,8q.

Definition 8.1. For r P r1,8q and F0 Ď F , the Bochner space LrpΩ,F0,P;Xq is defined as the vector
space of all (equivalence classes of) F0-strongly measurable maps F : Ω Ñ X such that

E r}F }rXs :“

ż

Ω
}F pωq}rXP rdωs ă 8.

Moreover, we equip LrpΩ,F0,P;Xq with the Lr-norm given by }F }LrpΩ,F ,P;Xq :“ E r}F }rXs
1
r .

One can show that the expectation (i.e. the Bochner integral) of every F P LrpΩ,F0,P;Xq exists as a
limit of F0-simple functions. Moreover, for every r P r1,8q, it follows analogously to the real-valued
case that pLrpΩ,F0,P;Xq, } ¨ }LrpΩ,F ,P;Xqq is a Banach space. In addition, the usual properties of
Lp-spaces are satisfied, e.g., Jensen’s inequality, Minkowski’s inequality, and Fubini’s theorem (see
[Hytönen et al., 2016, Section 1.2]). Furthermore, we set LrpΩ,F ,Pq :“ LrpΩ,F ,P;Rq.

8.2. Preliminary Results: Strong Measurability of Random Neural Networks. In this section, we
show that every random neural network Φ P RN ρ

U,d is FA,B-strongly measurable with values in an
pk, U, γq-approximable function space pX, } ¨ }Xq, where k P N0, U Ď Rm (open, if k ě 1), and
γ P p0,8q. For this purpose, we first show that the convergence of weight vectors, bias, and linear
readouts implies the convergence of the corresponding neurons as functions in pX, } ¨ }Xq.

Lemma 8.2. For k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q, let pX, } ¨ }Xq be an pk, U, γq-
approximable function space and let ρ P Ckb pRq

γ
. Then, for every sequence pyM , aM , bM qMPN Ď

Rd ˆ Rm ˆ R converging to py, a, bq P Rd ˆ Rm ˆ R, we have that

lim
MÑ8

›

›yρ
`

aJ ¨ ´b
˘

´ yMρ
`

aJ
M ¨ ´bM

˘›

›

X
“ 0, (45)

where yρ
`

aJ ¨ ´b
˘

denotes the function U Q u ÞÑ yρ
`

aJu´ b
˘

P Rd.

Proof. Let pyM , aM , bM qMPN Ď Rd ˆ Rm ˆ R be a sequence converging to py, a, bq P Rd ˆ Rm ˆ R
and fix some ε ą 0. Then, by using that yMaαM converges uniformly in α P Nm0,k to yaα, the constant
Cy,a :“ 1 ` maxαPNm0,k }yaα} ` supMPNmaxαPNm0,k }yMa

α
M} ą 0 is finite, where aα :“

śm
l“1 a

αl
l for

a :“ pa1, ..., amqJ P Rm and pα1, ..., αmq P Nm0,k. Moreover, by using that paM , bM qJ
MPN Ď Rm ˆ R
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converges to pa, bq P Rm ˆ R, the constant Ca,b :“ 1 ` }pa, bq} ` supMPN }paM , bM q} ą 0 is finite. In
addition, by using that ρ P Ckb pRq

γ
, there exists by definition of Ckb pRq

γ
some rρ P Ckb pRq with

}ρ´ rρ}Ckpol,γpRq :“ max
αPNm0,k

sup
sPR

ˇ

ˇρp|α|qpsq ´ rρp|α|qpsq
ˇ

ˇ

p1 ` |s|qγ
ă

ε

6Cy,aCa,b
. (46)

Now, we choose r ą 0 large enough such that p1 ` rqγ ě 6ε´1Cy,a}rρ}Ckb pRq. Then, the inequality
1`

ˇ

ˇaJ
Mu´ bM

ˇ

ˇ ď 1` }aM}}u} ` |bM | ď p1` }aM} ` |bM |qp1` }u}q for any u P Rm and (46) imply

max
αPNm0,k

sup
uPRmzBrp0q

›

›yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM
›

›

p1 ` }u}qγ
ď Cy,a max

αPNm0,k
sup

uPRmzBrp0q

ˇ

ˇρp|α|q
`

aJ
Mu´ bM

˘
ˇ

ˇ

p1 ` }u}qγ

ď Cy,a max
αPNm0,k

sup
uPRmzBrp0q

ˇ

ˇρp|α|q
`

aJ
Mu´ bM

˘

´ rρp|α|q
`

aJ
Mu´ bM

˘ˇ

ˇ

p1 ` }u}qγ

` Cy,a max
αPNm0,k

sup
uPRmzBrp0q

ˇ

ˇ

rρp|α|q
`

aJ
Mu´ bM

˘ˇ

ˇ

p1 ` }u}qγ

ď Cy,ap1 ` }aM} ` }bM}qγ max
αPNm0,k

sup
uPRm

ˇ

ˇρp|α|q
`

aJ
Mu´ bM

˘

´ rρp|α|q
`

aJ
Mu´ bM

˘
ˇ

ˇ

`

1 `
ˇ

ˇaJ
Mu´ bM

ˇ

ˇ

˘γ

` Cy,a
}rρ}Ckb pRq

p1 ` rqγ

ď Cy,aCa,b max
j“0,...,k

sup
sPR

ˇ

ˇρpjqpsq ´ rρpjqpsq
ˇ

ˇ

p1 ` |s|qγ
` Cy,a

ε

6Cy,aCa,b

ă Cy,aCa,b
ε

6Cy,aCa,b
`
ε

6
“
ε

3
.

(47)

Analogously, we conclude that

max
αPNm0,k

sup
uPRmzBrp0q

›

›yρp|α|q
`

aJu´ b
˘

aα
›

›

p1 ` }u}qγ
ă
ε

3
. (48)

Moreover, we define the compact subset K :“
!

xJu´ y : u P Brp0q, }x} ` }y} ď Ca,b

)

Ď R. Then,

by using that ρ, ρ1, ..., ρpkq P Ckb pRq
γ

are by Lemma 6.1 continuous, thus uniformly continuous on K,
there exists some δ ą 0 such that for every j “ 0, ..., k and s1, s2 P K with |s1 ´ s2| ă δ it holds that

ˇ

ˇ

ˇ
ρpjqps1q ´ ρpjqps2q

ˇ

ˇ

ˇ
ă

ε

6Cy,a
. (49)

Now, we define the constant Cr,ρ :“ 1 ` maxj“0,...,k supuPBrp0q

ˇ

ˇρpjq
`

aJu´ b
˘
ˇ

ˇ ą 0. Moreover, we
choose some M0 P N such that for every M P NX rM0,8q it holds that }pa´aM , b´ bM q} ă δ{p1`rq

and that

max
αPNm0,k

}yaα ´ yMa
α
M} ă

ε

6Cr,ρ
. (50)

Then, it follows for every M ě M0 that

ˇ

ˇ

`

aJu´ b
˘

´
`

aJ
Mu´ bM

˘
ˇ

ˇ ď
ˇ

ˇpa´ aM qJu´ pb´ bM q
ˇ

ˇ

ď }a´ aM}}u} ` |b´ bM |

ď p}a´ aM} ` |b´ bM |q p1 ` rq

ď }pa´ aM , b´ bM q}p1 ` rq ă δ.

(51)
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Hence, by using (50) and by combining (49) with (51), it follows for every M P N X rM0,8q that

max
αPNm0,k

sup
uPBrp0q

›

›

›
yρp|α|q

`

aJu´ b
˘

aα ´ yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM

›

›

›

ď max
αPNm0,k

sup
uPBrp0q

›

›

›
yρp|α|q

`

aJu´ b
˘

aα ´ yMρ
p|α|q

`

aJu´ b
˘

aαM

›

›

›

` max
αPNm0,k

sup
uPBrp0q

›

›

›
yMρ

p|α|q
`

aJu´ b
˘

aαM ´ yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM

›

›

›

ď max
αPNm0,k

}yaα ´ yMa
α
M} max

j“0,...,k
sup

uPBrp0q

ˇ

ˇ

ˇ
ρpjq

`

aJu´ b
˘

ˇ

ˇ

ˇ

` max
αPNm0,k

}yMa
α
M} max

j“0,...,k
sup

uPBrp0q

ˇ

ˇ

ˇ
ρpjq

`

aJ
Mu´ bM

˘

´ ρpjq
`

aJu´ b
˘

ˇ

ˇ

ˇ

ď
ε

6Cr,ρ
Cr,ρ ` Cy,a

ε

6Cy,a
“
ε

3
.

(52)

Thus, by combining (47) and (48) with (52), we conclude that
›

›yρ
`

aJ ¨ ´b
˘

´ yMρ
`

aJ
M ¨ ´bM

˘›

›

Ckpol,γpRm;Rdq

“ max
αPNm0,k

sup
uPRm

›

›yρp|α|q
`

aJu´ b
˘

aα ´ yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM
›

›

p1 ` }u}qγ

ď max
αPNm0,k

sup
uPBrp0q

›

›

›
yρp|α|q

`

aJu´ b
˘

aα ´ yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM

›

›

›

` max
αPNm0,k

sup
uPRmzBrp0q

›

›yρp|α|q
`

aJu´ b
˘

aα
›

›

p1 ` }u}qγ

` max
αPNm0,k

sup
uPRmzBrp0q

›

›yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM
›

›

p1 ` }u}qγ

ă
ε

3
`
ε

3
`
ε

3
“ ε.

Since ε ą 0 was chosen arbitrarily, we obtain (45) with respect to } ¨ }Ckpol,γpRm;Rdq instead of } ¨ }X .

Finally, by using that pX, } ¨ }Xq is pk, U, γq-approximable, i.e. that the restriction map pCkb pRm;Rdq
γ
, } ¨

}Ckpol,γpRm;Rdqq Q f ÞÑ f |U P pX, } ¨ }Xq is by Remark 2.4 continuous, the convergence in (45) follows
also with respect to } ¨ }X . □

Now, we can use Lemma 8.2 to show that every random neural networks Φ P RN ρ
U,d is well-defined

as FA,B-strongly measurable map with values in an pk, U, γq-approximable function space pX, } ¨ }Xq.

Proposition 8.3. For k P N0, U Ď Rm (open, if k ě 1), γ P p0,8q, and ρ P Ckb pRq
γ
, let pX, }¨}Xq be an

pk, U, γq-approximable function space. Then, every random neural network Φ P RN ρ
U,d is well-defined

as FA,B-strongly measurable map Φ : Ω Ñ X with values in the separable Banach space pX, } ¨ }Xq.

Proof. First, we show that every Φ P RN ρ
U,d takes values in the separable Banach space pX, } ¨ }Xq.

Indeed, since pX, } ¨ }Xq is an pk, U, γq-approximable function space, Lemma 2.5 (ii) implies that
Φpωq P NN ρ

U,d Ď X for all ω P Ω. Moreover, Lemma 2.5 (i) shows that pX, } ¨ }Xq is separable.
Now, by using that RN ρ

U,d is defined as vector space of maps of the form Ω Q ω ÞÑ Rnpωq :“

Wnpωqρ
`

AnpωqJ ¨ ´Bnpωq
˘

P X , with n P N and FA,B{BpRdq-measurable Wn : Ω Ñ Rd, it suffices
to show that Rn : Ω Ñ X is FA,B-strongly measurable. To this end, we use that Wn : Ω Ñ Rd
is FA,B{BpRdq-measurable and that Rd is finite dimensional to conclude that there exists a sequence
pWM,nqMPN of FA,B-simple functions WM,n : Ω Ñ Rd converging pointwise to Wn : Ω Ñ Rd in Rd.
Then, for every M P N, we define the map

Ω Q ω ÞÑ RM,npωq :“ WM,npωq
ÿ

pα,βqPpr´M2,M2sXZq
m`1

1EM,n,pα,βq
pωqρ

ˆ

αJ¨

M
´

β

M

˙

P X,
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where

EM,n,pα,βq :“

#

ω P Ω : Anpωq P

m
ą

l“1

„

αl
M
,
αl ` 1

M

˙

and Bnpωq P

„

β

M
,
β ` 1

M

˙

+

P FA,B

and where pα, βq :“ pα1, ..., αm, βqJ P Zm`1. Since WM,n : Ω Ñ Rd is an FA,B-simple function, the
product of WM,npAnpωq, Bnpωqq with the indicators 1EM,n,pα,βq

, for pα, βq P
`

r´M2,M2s X Z
˘m`1,

is again an indicator function, which implies that pRM,nqMPN Ď IFA,B b NN ρ
U,d.

Next, for any a :“ pa1, ..., amqJ P Rm, we use the notation tau :“ pta1u, ..., tamuq
J

P Zm. Then, for
every ω P Ω, u P U , and M P N X rM0,ω,8q with M0,ω :“ max p}Anpωq}, |Bnpωq|q, it follows that

RM,npωqpuq “ WM,npωqρ

ˆ

tMAnpωquJu

M
´

tMBnpωqu

M

˙

. (53)

This provides us with an expilict expression for RM,npωq P NN ρ
U,d once ω P Ω is fixed.

Finally, we show that pRM,nqMPN : Ω Ñ X converges pointwise toRn : Ω Ñ X with respect to }¨}X .

For every fixed ω P Ω, we use Lemma 8.2 with
´

WM,npAnpωq, Bnpωqq, tMAnpωqu

M , tMBnpωqu

M

¯

MPN
Ď

Rd ˆ Rm ˆ R converging to pWnpAnpωq, Bnpωqq, Anpωq, Bnpωqq P Rd ˆ Rm ˆ R to conclude that

lim
MÑ8

}RM,npωq ´Rnpωq}X

“ lim
MÑ8

›

›

›

›

WM,npωqρ

ˆ

tMAnpωquJ¨

M
´

tMBnpωqu

M

˙

´Wnpωqρ
`

AnpωqJ ¨ ´Bnpωq
˘

›

›

›

›

X

“ 0.

This shows that the map Rn : Ω Ñ X is strongly measurable as pointwise limit of the FA,B-simple
functions pRM,nqMPN : Ω Ñ X . □

8.3. Proof of Theorem 3.5. In this section, we provide the proof of the main result of Section 3, i.e. the
universal approximation property of random neural networks. For this purpose, we assume that pX, } ¨}Xq

is an pk, U, γq-approximable function space, where k P N0, U Ď Rm (open, if k ě 1), and γ P p0,8q.
Let us first briefly sketch the main idea of the proof. Fix some r P r0,8q and F P LrpΩ,FA,B,P;Xq.

Then, we first apply [Hytönen et al., 2016, Lemma 1.2.19 (i)] to approximate F P LrpΩ,FA,B,P;Xq by
an FA,B-simple function of the form

řI
i“1 1Eifi, with I P N, E1, ..., EI P FA,B , and f1, ..., fI P X , i.e.

F «

I
ÿ

i“1

1Eifi in LrpΩ,FA,B,P;Xq. (54)

Now, for every fixed i “ 1, ..., I , we use that ρ P Ckb pRq
γ

is non-polynomial to conclude from the
universal approximation result for deterministic neural networks in Theorem 2.6 that there exists some
φi “

řJi
j“1 yi,jρ

´

aJ
i,j ¨ ´bi,j

¯

P NN ρ
U,d, with Ji P N, ai,j P Rm, bi,j P R, and yi,j P Rd, such that

1Eifi « 1Eiφi “

Ji
ÿ

j“1

1Eiyi,jρ
`

aJ
i,j ¨ ´bi,j

˘

in LrpΩ,FA,B,P;Xq. (55)

Next, for every fixed j “ 1, ..., Ji, we use that ρ P Ckb pRq
γ

is by Lemma 6.1 k-times differentiable to
conclude for every n P N and small enough δ ą 0 that

1Eiyi,jρ
`

aJ
i,j ¨ ´bi,j

˘

« 1EiE
“

Wn,i,jρ
`

AJ
n ¨ ´Bn

˘‰

in LrpΩ,FA,B,P;Xq, (56)

where Ω Q ω ÞÑ Wn,i,jpωq :“ C´1
δ yi,j1t}pAn,Bnq´pai,j ,bi,jq}ăδu P Rd is FA,B{BpRdq-measurable, with

Cδ :“ P rtω P Ω : }pA1, B1q ´ pai,j , bi,jq} ă δus ą 0. Finally, we apply the strong law of large numbers
for Banach space-valued random variables in [Hytönen et al., 2016, Theorem 3.3.10] to conclude that

1EiE
“

Wn,i,jρ
`

AJ
1 ¨ ´B1

˘‰

« Φi,j :“
1

N

N
ÿ

n“1

1EiWn,i,jρ
`

AJ
n ¨ ´Bn

˘

in LrpΩ,FA,B,P;Xq,

(57)
where Φi,j P RN ρ

U,d is a random neural network. Hence, for Theorem 3.5 (i), we combine (54)-(57)

to approximate F P LrpΩ,FA,B,P;Xq by the random neural network Φ :“
řI
i“1

řJi
j“1Φi,j P RN ρ

U,d.
Moreover, Theorem 3.5 (ii) follows from Theorem 3.5 (i) and Chebyshev’s inequality.
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Now, let us first prove the approximation steps in (56)+(57) together in the following proposition.

Proposition 8.4. For k P N0, U Ď Rm (open, if k ě 1), γ P p0,8q, let pX, } ¨ }Xq be pk, U, γq-
approximable function space and let ρ P Ckb pRq

γ
. Moreover, let r P r1,8q and let pA1, B1q satisfy

Assumption 3.1. Then, for every ε ą 0, E P FA,B , y P Rd, a P Rm, and b P R there exists some
Φ P RN ρ

U,d X LrpΩ,FA,B,P;Xq such that

›

›1Eyρ
`

aJ ¨ ´b
˘

´ Φ
›

›

LrpΩ,F ,P;Xq
:“ E

”

›

›1Eyρ
`

aJ ¨ ´b
˘

´ Φ
›

›

r
ı

1
r

ă ε.

Proof. Fix some r P r1,8q, ε ą 0, E P FA,B , y P Rd, a P Rm, and b P R. Then, for every M,n P N,
we define the map

Ω Q ω ÞÑ RM,npωq :“ WM pωqρ
`

AnpωqJ ¨ ´Bnpωq
˘

P X

with FA,B{BpRdq-measurable random variable

Ω Q ω ÞÑ WM pωq :“
1

CM
y1Epωq1GM pAnpωq, Bnpωqq P Rd

where

GM :“ tpx, yq P Rm ˆ R : }px, yq ´ pa, bq} ď 1{Mu P BpRm ˆ Rq

and CM :“ P rtω P Ω : pA1pωq, B1pωqq P GMus ą 0 due to Assumption 3.1. Hereby, we recall that
pAn, BnqnPN is an i.i.d. sequence, which implies that pAn, Bnq „ pA1, B1q is identically distributed.
Moreover, since WM : Ω Ñ Rd is by definition FA,B{BpRdq-measurable, it follows that RM,n P

RN ρ
U,d. Hence, by using that pX, } ¨ }Xq is an pk, U, γq-approximable function space, it follows from

Proposition 8.3 that RM,n : Ω Ñ X is FA,B-strongly measurable for all M,n P N.
Now, we show that the sequence

`

1GM pAnpωq, Bnpωqqyρ
`

aJ ¨ ´b
˘

´ CMRM,npωq
˘

MPN converges
uniformly in ω P Ω and n P N to 0 P X with respect to } ¨ }X . For this purpose, we use Lemma 8.2 to
conclude that the map

Rm ˆ R Q px, yq ÞÑ yρ
`

aJ ¨ ´b
˘

´ yρ
`

xJ ¨ ´y
˘

P pX, } ¨ }Xq

is continuous. Hence, by using that the norm X Q f ÞÑ }f}X P R is continuous, it follows that

Rm ˆ R Q px, yq ÞÑ
›

›yρ
`

aJ ¨ ´b
˘

´ yρ
`

xJ ¨ ´y
˘›

›

X
P R

is continuous as concatenation of continuous maps. Thus, for every M P N, we use that GM Ď Rm ˆ R
is compact to conclude from the extreme value theorem that there exists some paM , bM q P GM such that

sup
px,yqPGM

›

›yρ
`

aJ ¨ ´b
˘

´ yρ
`

xJ ¨ ´y
˘›

›

X
“
›

›yρ
`

aJ ¨ ´b
˘

´ yρ
`

aJ
M ¨ ´bM

˘›

›

X
.

Moreover, by using that GM`1 Ă GM for all M P N and that
Ş

MPNGM “ tpa, bqu, the sequence
py, aM , bM qJ

MPN Ď Rd ˆ Rm ˆ R converges to py, a, bq P Rd ˆ Rm ˆ R. Hence, by using Lemma 8.2,
it follows that

lim
MÑ8

sup
ωPΩ

sup
nPN

›

›1GM pAnpωq, Bnpωqqyρ
`

aJ ¨ ´b
˘

´ CMRM,npωq
›

›

X

“ lim
MÑ8

sup
ωPΩ

sup
nPN

›

›1GM pAnpωq, Bnpωqq
`

yρ
`

aJ ¨ ´b
˘

´ yρ
`

AnpωqJ ¨ ´Bnpωq
˘˘›

›

X

“ lim
MÑ8

sup
px,yqPGM

›

›yρ
`

aJ ¨ ´b
˘

´ yρ
`

xJ ¨ ´y
˘
›

›

X

“ lim
MÑ8

›

›yρ
`

aJ ¨ ´b
˘

´ yρ
`

aJ
M ¨ ´bM

˘
›

›

X
“ 0.

This shows that
`

1GM pAnpωq, Bnpωqqyρ
`

aJ ¨ ´b
˘

´ CMRM,npωq
˘

MPN converges uniformly in ω P Ω
and n P N to 0 P X with respect to } ¨ }X .
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Next, we show that RM,n P LrpΩ,FA,B,P;Xq for all M,n P N. For this purpose, we recall that
RM,n : Ω Ñ X is FA,B-strongly measurable as shown above. Moreover, we use the previous step
to conclude that the sequence

`

1GM pAnpωq, Bnpωqqyρ
`

aJ ¨ ´b
˘

´ CMRM,npωq
˘

MPN is uniformly
bounded in ω P Ω and n P N, i.e. that

C :“ sup
nPN

sup
ωPΩ

›

›1GM pAnpωq, Bnpωqqyρ
`

aJ ¨ ´b
˘

´ CMRM,npωq
›

›

X
ă 8.

Hence, by using this and Minkowski’s inequality, it follows for every M,n P N that

E r}RM,n}rXs
1
r “

1

CM
E r}CMRM,n}rXs

1
r

ď
1

CM
E
“

}1GM pAn, Bnqyρ
`

aJ ¨ ´b
˘

}rX

‰

1
r

`
1

CM
E
”

›

›1GM pAn, Bnqyρ
`

aJ ¨ ´b
˘

´ CMRM,n

›

›

r

X

ı
1
r

ď
1

CM
}yρ

`

aJ ¨ ´b
˘

}X `
1

CM
sup
ωPΩ

›

›1GM pAnpωq, Bnpωqqyρ
`

aJ ¨ ´b
˘

´ CMRM,npωq
›

›

X

ď
1

CM

›

›yρ
`

aJ ¨ ´b
˘
›

›

X
`

C

CM
ă 8,

which shows that RM,n P LrpΩ,FA,B,P;Xq for all M,n P N.
Now, we show that there exists some M3 P N such that the constant maps

`

ω ÞÑ yρ
`

aJ ¨ ´b
˘˘

P

LrpΩ,F ,P;Xq and pω ÞÑ ErRM3,1sq P LrpΩ,F ,P;Xq are ε
2 -close with respect to } ¨ }LrpΩ,F ,P;Xq.

Indeed, by using the previous step, i.e. that
`

1GM pAnpωq, Bnpωqqyρ
`

aJ ¨ ´b
˘

´ CMRM,npωq
˘

MPN
converges uniformly in ω P Ω and n P N to 0 P X with respect to } ¨ }X , it follows that there exists some
M3 P N such that

sup
nPN

sup
ωPΩ

›

›

›
1EM3

pAnpωq, Bnpωqqyρ
`

aJ ¨ ´b
˘

´ CM3RM3,npωq

›

›

›

X
ă
ε

2
. (58)

Hence, by using that Ω Q ω ÞÑ Spωq ´ ErRM3,1s P X is constant, the identities Er1GM3
pA1, B1qs “

P rtω P Ω : pA1pωq, B1pωqq P GM3us “ CM3 , and [Hytönen et al., 2016, Proposition 1.2.2], we have

›

›yρ
`

aJ ¨ ´b
˘

´ ErRM3,1s
›

›

LrpΩ,F ,P;Xq
“ E

”

›

›yρ
`

aJ ¨ ´b
˘

´ ErRM3,1s
›

›

r

X

ı
1
r

“
›

›yρ
`

aJ ¨ ´b
˘

´ ErRM3,1s
›

›

X

“

›

›

›

›

E
„

1

CM3

1GM3
pA1, B1qyρ

`

aJ ¨ ´b
˘

´RM3,1

ȷ›

›

›

›

X

ď E
„

1GM3
pA1, B1q

›

›

›

›

1

CM3

1GM3,1
yρ

`

aJ ¨ ´b
˘

´RM3,1

›

›

›

›

X

ȷ

ď
E
”

1GM3
pA1, B1q

ı

CM3
loooooooooomoooooooooon

“1

sup
ωPΩ

›

›

›
1GM3

pA1pωq, B1pωqqyρ
`

aJ ¨ ´b
˘

´ CM3RM3,1pωq

›

›

›

X
ă
ε

2
.

(59)

This shows that the constant maps
`

ω ÞÑ yρ
`

aJ ¨ ´b
˘˘

P LrpΩ,F ,P;Xq and pω ÞÑ ErRM3,1sq P

LrpΩ,F ,P;Xq are ε
2 -close with respect to } ¨ }LrpΩ,F ,P;Xq.
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Finally, we approximate the constant random variable pω ÞÑ E rRM3,1sq P L1pΩ,F ,P;Xq by the
average of the i.i.d. sequence pRM3,nqnPN Ď L1pΩ,FA,B,P;Xq. Indeed, by applying the strong law of
large numbers for Banach space-valued random variables in [Hytönen et al., 2016, Theorem 3.3.10] with
Banach space pX, } ¨ }Xq, we conclude that

1

N

N
ÿ

n“1

RM3,n
NÑ8
ÝÑ E rRM3,1s in L1pΩ,F ,P;Xq and P-a.s. with respet to } ¨ }X . (60)

Moreover, if r ą 1, we generalize in (60) the convergence to LrpΩ,F ,P;Xq. To this end, we define the

sequence of random variables pZN qNPN by ZN pωq :“
›

›

›
E rRM3,1s ´ 1

N

řN
n“1RM3,n

›

›

›

r

X
, for ω P Ω and

N P N. Then, [Hytönen et al., 2016, Proposition 1.2.2] and (58) imply for every N P N that

sup
ωPΩ

ZN pωq ď sup
ωPΩ

˜

}E rRM3,1s}X `
1

N

N
ÿ

n“1

}RM3,npωq}X

¸r

ď sup
nPN

sup
ωPΩ

`

E
“

}RM3,1}X

‰

` }RM3,npωq}X

˘r

ď
2r

CrM3

sup
nPN

sup
ωPΩ

}CM3RM3,npωq}
r
X

ď
2r

CrM3

sup
nPN

sup
ωPΩ

ˆ

›

›

›
1GM3

pAnpωq, Bnpωqqyρ
`

aJ ¨ ´b
˘

›

›

›

X
`

` }1GM3
pAnpωq, Bnpωqqyρ

`

aJ ¨ ´b
˘

´ CM3RM3,npωq}X

˙r

ă
2r

CrM3

´

›

›yρ
`

aJ ¨ ´b
˘
›

›

X
`
ε

2

¯r
“: CZ ă 8.

From this, we observe that supNPN E
“

|ZN |1t|ZN |ąCZu

‰

“ 0, which shows that the family of random
variables pZN qNPN is uniformly integrable (see [Hytönen et al., 2016, Definition A.3.1]). Thus, by
using (60), i.e. that ZN Ñ 0, P-a.s., as N Ñ 8, together with Vitali’s convergence theorem in
[Hytönen et al., 2016, Proposition A.3.5], it follows that

lim
NÑ8

E

«
›

›

›

›

›

E rRM3,1s ´
1

N

N
ÿ

n“1

RM3,n

›

›

›

›

›

r

X

ff

“ lim
NÑ8

ErZN s “ 0. (61)

Hence, either by (60) (if r “ 1) or (61) (if r P p1,8q) there exists some N0 P N such that

E

«›

›

›

›

›

E rRM3,1s ´
1

N0

N0
ÿ

n“1

RM3,n

›

›

›

›

›

r

X

ff

1
r

ă
ε

2
. (62)

Thus, by defining Φ :“
´

ω ÞÑ 1
N0

řN0
n“1 1EpωqRM3,npωq

¯

P RN ρ
U,d X LrpΩ,FA,B,P;Xq and by

combining (59) and (62) with Minkowski’s inequality, it follows that
›

›1Eyρ
`

aJ ¨ ´b
˘

´ Φ
›

›

LrpΩ,F ,P;Xq
“ E

”

›

›1Eyρ
`

aJ ¨ ´b
˘

´ Φ
›

›

r
ı

1
r

“ E

«

1E
loomoon

ď1

›

›

›

›

›

yρ
`

aJ ¨ ´b
˘

´
1

N0

N0
ÿ

n“1

RM3,n

›

›

›

›

›

r ff 1
r

ď E

«›

›

›

›

›

yρ
`

aJ ¨ ´b
˘

´
1

N0

N0
ÿ

n“1

RM3,n

›

›

›

›

›

rff 1
r

ď
›

›yρ
`

aJ ¨ ´b
˘

´ E rRM3,ns
›

›

X
` E

«
›

›

›

›

›

E rRM3,ns ´
1

N0

N0
ÿ

n“1

RM3,n

›

›

›

›

›

rff 1
r

ă
ε

2
`
ε

2
“ ε,

which completes the proof. □
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Proof of Theorem 3.5. In order to show (i), we fix some F P LrpΩ,FA,B,P;Xq and ε ą 0. Then, by
using [Hytönen et al., 2016, Lemma 1.2.19 (i)], i.e. that the set of FA,B-simple functions IFA,B bX :“
!

řI
i“1 1Eifi : I P N, Ei P FA,B, fi P X

)

is dense inLrpΩ,FA,B,P;Xq with respect to }¨}LrpΩ,F ,P;Xq,
there exists some I P N, E1, ..., EI P FA,B , and f1, ..., fI P X such that

›

›

›

›

›

F ´

I
ÿ

i“1

1Eifi

›

›

›

›

›

LrpΩ,F ,P;Xq

:“ E

«
›

›

›

›

›

F ´

I
ÿ

i“1

1Eifi

›

›

›

›

›

r

X

ff

1
r

ă
ε

3
. (63)

Now, for every i “ 1, ..., I , we use that ρ P Ckb pRq
γ

is non-polynomial to conclude from Theorem 2.6

that there exists a deterministic neural network φ “
řJi
j“1 yi,jρ

´

aJ
i,j ¨ ´bi,j

¯

P NN ρ
U,d, with Ji P N,

ai,1, ..., ai,Ji P Rm, bi,1, ..., bi,Ji P R, and yi,1, ..., yi,Ji P Rd, such that

}fi ´ φi}X ă
ε

3I
. (64)

Moreover, for every i “ 1, ..., I and j “ 1, ..., Ji, we apply Proposition 8.4 to conclude that there exists
some Φi,j P RN ρ

U,d such that

E
”

›

›1Eiyi,jρ
`

aJ
i,j ¨ ´bi,j

˘

´ Φi,j
›

›

r

X

ı
1
r

ă
ε

3 pJ1 ` ...` JIq
. (65)

Hence, by defining the random neural network Φ :“
řI
i“1

řJi
j“1Φi,j P RN ρ

U,d X LrpΩ,FA,B,P;Xq

and by combining (63), (64), and (65) with Minkowski’s inequality, it follows that

}F ´ Φ}LrpΩ,F ,P;Xq :“ E r}F ´ Φ}rXs
1
r

ď E

«›

›

›

›

›

F ´

I
ÿ

i“1

1Eifi

›

›

›

›

›

r

X

ff

1
r

` E

«›

›

›

›

›

I
ÿ

i“1

1Eifi ´

I
ÿ

i“1

1Eiφi

›

›

›

›

›

r

X

ff

1
r

` E

»

–

›

›

›

›

›

I
ÿ

i“1

1Eiφi ´

I
ÿ

i“1

Ji
ÿ

j“1

Φi,j

›

›

›

›

›

r

X

fi

fl

1
r

ď E

«›

›

›

›

›

F ´

I
ÿ

i“1

1Eifi

›

›

›

›

›

r

X

ff

1
r

`

I
ÿ

i“1

E
“

1Ei
loomoon

ď1

}fi ´ φi}
r
X

‰
1
r

`

I
ÿ

i“1

Ji
ÿ

j“1

E
”

›

›1Eiyi,jρ
`

aJ
i,j ¨ ´bi,j

˘

´ Φi,j
›

›

r

X

ı
1
r

ď E

«›

›

›

›

›

F ´

I
ÿ

i“1

1Eifi

›

›

›

›

›

r

X

ff

1
r

`

I
ÿ

i“1

}fi ´ φi}X

`

I
ÿ

i“1

Ji
ÿ

j“1

E
”

›

›1Eiyi,jρ
`

aJ
i,j ¨ ´bi,j

˘

´ Φi,j
›

›

r

X

ı
1
r

ă
ε

3
` I

ε

3I
` pJ1 ` ...` JIq

ε

3 pJ1 ` ...` JIq
ď ε,

which proves the inequality (i).
In order to show (ii), we fix some F P LrpΩ,FA,B,P;Xq and δ, ε ą 0. Then, by using (i) with

δεr ą 0 on the right-hand side instead of ε ą 0, there exists some Φ P RN ρ
U,d X LrpΩ,FA,B,P;Xq

such that
E r}F ´ Φ}rXs ă δεr.

Hence, by using this and Chebyshev’s inequality, it follows that

P rtω P Ω : }F ´ Φpωq}X ě εus ď
1

εr
E r}F ´ Φ}rXs ď

1

εr
δεr “ δ,

which completes the proof. □
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9. PROOFS OF RESULTS IN SECTION 4.

In this section, we provide the proofs of the results in Section 4. First, we recall the Radon transform
(see [Helgason, 1999]) and the ridgelet transform (see [Candès, 1998] and [Sonoda and Murata, 2017])
in Section 9.1. Then, we use the reconstruction formula of [Sonoda and Murata, 2017] in Section 9.2
to derive an integral representation of the function to be approximated. This is used in Section 9.3 to
show the main result of Section 4, i.e. the approximation rates in Theorem 4.4 for learning a deterministic
function. Finally, in Section 9.4, we prove the generalization error formulated in Theorem 4.10.

9.1. Preliminary Results: Radon Transform and Ridgelet Transform. In the following, we denote
by Sm´1 :“ tv P Rm : }v} “ 1u the unit sphere in Rm and define for every pv, hq P Sm´1 ˆ R the
hyperplane Hm

v,h :“
␣

u P Rm : uJv “ h
(

. Then, we follow [Sonoda and Murata, 2017, Section 2.5] and
recall that the Radon transform of any function f P L1pRm,LpRmq, du;Rdq is defined by

Sm´1 ˆ R Q pv, hq ÞÑ pRfqpv, hq “

ż

Hmv,h
fpuqdu P Rd. (66)

Now, we denote byL8,1pSm´1ˆR,LpSm´1ˆRq, dvbdh;Rdq the vector space of LpSm´1ˆRq{BpRdq-
measurable functions Q : Sm´1 ˆ R Ñ Rd such that

}Q}L8,1pSm´1ˆR,LpSm´1ˆRq,dvbdh;Rdq :“ sup
vPSm´1

ż

R
}Qpv, hq}dh ă 8.

For completeness, we show the following simple generalizations of the Radon transform’s properties
(including the Fourier slice theorem in [Helgason, 1999, Equation 4]) from the original one-dimensional
setting to this multi-dimensional setting.

Lemma 9.1. The following holds true:
(i) The Radon transform R : L1pRm,LpRmq, du;Rdq Ñ L8,1pSm´1 ˆ R,LpSm´1 ˆ Rq, dv b

dh;Rdq defined in (66) is a continuous linear operator.

(ii) For every f P L1pRm,LpRmq, du;Rdq, v P Sm´1, and ξ P R, we have pRfqpv, ¨q̂pξq “ pfpξvq.

Proof. Fix some f P L1pRm,LpRmq, du;Rdq. For (i), we use that the function Sm´1 ˆ R ˆ Rm Q

pv, h, uq ÞÑ 1Hmv,hpuqfpuq P Rd is LpSm´1 ˆ R ˆ Rmq{BpRdq-measurable to conclude that

Sm´1 ˆ R Q pv, hq ÞÑ

ż

Hmv,h
fpuqdu “

ż

Rm
1Hmv,hpuqfpuqdu P Rd

is LpSm´1 ˆ Rq{BpRdq-measurable. Moreover, by using the definition of the Radon transform in (66)
and that

Ť

hPRHm
v,h “ Rm, we conclude that

}Rf}L8,1pSm´1ˆR,LpSm´1ˆRq,dvbdh;Rdq “ sup
vPSm´1

ż

R
}pRfqpv, hq} dh ď sup

vPSm´1

ż

R

ż

Hmv,h
}fpuq}dudh

“

ż

Rm
}fpuq} du “ }f}L1pRm,LpRmq,du;Rdq.

(67)
This shows thatR : L1pRm,LpRmq, du;Rdq Ñ L8,1pSm´1ˆR,LpSm´1ˆRq, dvbdh;Rdq is bounded.
Since the Radon transform is by definition linear, it follows that R : L1pRm,LpRmq, du;Rdq Ñ

L8,1pSm´1 ˆ R,LpSm´1 ˆ Rq, dv b dh;Rdq is continuous.
In order to show (ii), we use the definition of the Fourier transform in (1), the definition of the Radon

transform in (66), that h “ vJu for any u P Hm
v,h, and that

Ť

hPRHm
v,h “ Rm for any v P Sm´1 to

conclude for every v P Sm´1 and ξ P R that

pRfqpv, ¨q̂pξq “

ż

R
pRfqpv, hqe´iξhdh “

ż

R

ż

Hmv,h
fpuqe´iξvJududh

“

ż

Rm
fpuqe´ipξvqJudu “ pfpξvq,

which completes the proof. □
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Next, we define the space Ym`1 :“ Sm´1 ˆ p0,8q ˆR. Then, for any fixed ψ P S0pR;Cq, we follow
[Candès, 1998] and [Sonoda and Murata, 2017, Section 3.2] and recall that the ridgelet transform (in
polar coordinates) of any function f P L1pRm,LpRmq, du;Rdq is defined by

Ym`1 Q pv, s, tq ÞÑ pRψfqpv, s, tq :“

ż

R
pRfqpv, hqψ

ˆ

h´ t

s

˙

1

s
dh P Cd, (68)

For completeness, we show the following simple generalizations of the Ridgelet transform’s properties
from the original one-dimensional setting to this multi-dimensional setting (see also [Kostadinova et al., 2014]
for continuity results between (Lizorkin) Schwartz spaces and distributions).

Lemma 9.2. Let ψ P S0pR;Cq and Ym`1 Q pv, s, tq ÞÑ wRpv, s, tq :“ s P r0,8q be a weight. Then,
the following holds true:

(i) The ridgelet transform Rψ : L1pRm,LpRmq, du;Rdq Ñ L8pYm`1,LpYm`1q, wR;Cdq defined
in (68) is a continuous linear operator.

(ii) For every f P L1pRm,LpRmq, du;Rdq and pv, s, tq P Ym`1 it holds that

pRψfqpv, s, tq “
1

2π

ż

R
pfpξvq pψpξsqeiξtdξ.

Proof. Fix some f P L1pRm,LpRmq, du;Rdq. Then, by using Lemma 9.1 (i), i.e. that Ym`1 ˆ R Q

pv, s, t, hq ÞÑ pRfqpv, hqψ
`

h´t
s

˘

1
s P Cd is LpYm`1 ˆ Rq{BpCdq-measurable, it follows that

Ym`1 Q pv, s, tq ÞÑ pRψfqpv, s, tq “

ż

R
pRfqpv, hqψ

ˆ

h´ t

s

˙

1

s
dh P Cd

is LpYm`1q{BpCdq-measurable. Moreover, by using the definition of the Ridgelet transform (see (68)),
the inequality (67), and that }ψ}C0pR;Cq :“ supzPR |ψpzq| ă 8, we conclude that

}Rψf}L8pYm`1,LpYm`1q,wR;Cdq
“ sup

pv,s,tqPYm`1

s

›

›

›

›

›

ż

R
pRfqpv, hqψ

ˆ

h´ t

s

˙

1

s
dh

›

›

›

›

›

ď sup
pv,s,tqPYm`1

ż

R
}pRfqpv, hq}

ˇ

ˇ

ˇ

ˇ

ψ

ˆ

h´ t

s

˙ˇ

ˇ

ˇ

ˇ

dh

ď }ψ}C0pR;Cq sup
vPSm´1

ż

R
}pRfqpv, hq} dh

“ }ψ}C0pR;Cq}Rf}L8,1pSm´1bR,LpSm´1bRq,1b1;Rdq

ď }ψ}C0pR;Cq}f}L1pRm,LpRmq,du;Rdq.

(69)

This shows that Rψ : L1pRm,LpRmq, du;Rdq Ñ L8pYm`1,LpYm`1q, wR;Cdq is bounded. Hence,
by using that the ridgelet transform in polar coordinates is by definition linear, we conclude that Rψ :

L1pRm,LpRmq, du;Rdq Ñ L8pYm`1,LpYm`1q, wR;Cdq is continuous.
In order to show (ii), we use the definition of the Ridgelet transform (see (68)), the Plancherel theorem

in [Folland, 1992, p. 222], Lemma 9.1 (ii), [Folland, 1992, Table 7.2.2], and [Folland, 1992, Table 7.2.4]
to conclude for every pv, s, tq P Ym`1 that

pRψfqpv, s, tq “

ż

R
pRfqpv, hqψ

ˆ

h´ t

s

˙

1

s
dh

“
1

2π

ż

R
pRfqpv, ¨q̂pξq1sψ

`

¨´t
s

˘̂pξqdξ

“
1

2π

ż

R
pfpξvq1sψ

`

¨
s

˘̂pξqe´iξtdξ

“
1

2π

ż

R
pfpξvq pψpξsqeiξtdξ,

which shows (ii) and completes the proof. □
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9.2. Preliminary Results: Integral Representation and Bochner Norm. In order to obtain the approx-
imation rates in Theorem 4.4, we discretize an integral representation of the function to be approximated.
This is a standard technique in approximation theory and has been also used for deterministic neu-
ral networks (see e.g. [Carroll and Dickinson, 1989], [Ito, 1991], [Barron, 1993], [Darken et al., 1993],
[Kůrková, 2012], [Kainen et al., 2007], and [Sonoda and Murata, 2017]). In our context of random neu-
ral networks, we express the function to be approximated as expectation of a random neuron.

For this purpose, we use the reconstruction formula in [Sonoda and Murata, 2017, Theorem 5.6] to
express any sufficiently regular and integrable function as the expectation of a random neuron. Hereby, we
define the real part of a vector z :“ pz1, ..., zmqJ P Cm as Repzq :“ pRepz1q, ...,RepzmqqJ P Cm. More-
over, we follow [Sonoda and Murata, 2017, Definition 4.4] and recall that the dual ridgelet transform R:

ρ

of any functionQ : Sm´1ˆp0,8qˆR Ñ C satisfyingQ
`

v, s, vJu´ s ¨
˘

:“
`

z ÞÑ Q
`

v, s, vJu´ sz
˘˘

P

SpR;Cq for all v P Sm´1, s P p0,8q, and u P Rm is defined by

Rm Q u ÞÑ pR:
ρQqpuq :“ lim

δ1Ñ0
δ2Ñ8

ż

Sm´1

ż δ2

δ1

Tρ
`

Q
`

v, s, vJu´ s ¨
˘˘ 1

sm
dsdv P Rd.

Proposition 9.3 (Integral Representation). For ν P p0,8q, let pA1, B1q „ θA b t1pνq satisfy Assump-
tion 4.1, and let pψ, ρq P S0pR;CqˆL1

locpR;Cq bem-admissible. Moreover, let f P L1pRm,LpRmq, du;Rdq

with pf P L1pRm,LpRmq, du;Cdq and define for every u P Rm the map

Ω Q ω ÞÑ Rfnpωq :“ W f
n pωqρ

`

AnpωqJu´Bnpωq
˘

P Rd, (70)

where

Ω Q ω ÞÑ W f
n pωq :“

$

&

%

Re

ˆ

pRψfqp
Anpωq

}Anpωq}
, 1

}Anpωq}
, Bnpωq

}Anpωq}
q

C
pψ,ρq
m θApAnpωqqθBpBnpωqq

˙

, if Anpωq ‰ 0,

0, if Anpωq “ 0.

(71)

Then, for a.e. u P Rm, it holds that E
“

Rfnpuq
‰

“ fpuq.

Proof. Fix n P N and f “ pf1, ..., fdqJ P L1pRm,LpRmq, du;Rdq with pf P L1pRm,LpRmq, du;Cdq.
Moreover, we define the map Rfn : Ω Ñ W k,ppU,LpUq, w;Rdq as in (70) with W f

n : Ω Ñ Rd as in (71).
Then, by using that pf P L1pRm,LpRmq, du;Cdq, it follows for every i “ 1, ..., d that

} pfi}L1pRm,LpRmq,duq “

ż

Rm

ˇ

ˇ

ˇ

pfipξq

ˇ

ˇ

ˇ
dξ ď

ż

Rm
} pfpξq}dξ “ } pf}L1pRm,LpRmq,du;Cdq ă 8. (72)

Hence, by using that pAn, Bnq „ pA1, B1q is identically distributed with probability density functions
θA : Rm Ñ p0,8q and θB : R Ñ p0,8q, respectively, that the left-hand side is real-valued, the
substitution pRmzt0uq ˆ R Q pa, bq ÞÑ pv, s, zq :“

´

a
}a}
, 1

}a}
, aJu´ b

¯

P Sm´1 ˆ p0,8q ˆ R with

Jacobi determinante dbda “ s´mdzdsdv, and [Sonoda and Murata, 2017, Theorem 5.6] applied to
fi P L1pRm,LpRmq, duq with pfi P L1pRm,LpRmq, du;Cq by (72), it follows for a.e. u P Rm that

E
”

Rfnpuq

ı

“

ż

Rmzt0u

ż

R
Re

¨

˝

pRψfq

´

a
}a}
, 1

}a}
, b

}a}

¯

C
pψ,ρq
m θApaqθBpbq

˛

‚ρ
`

aJu´ b
˘

θApaqθBpbqdbda

“
1

C
pψ,ρq
m

ż

Rmzt0u

ż

R
pRψfq

ˆ

a

}a}
,
1

}a}
,
b

}a}

˙

ρ
`

aJu´ b
˘

dbda

“
1

C
pψ,ρq
m

ˆ
ż

Sm´1

ż 8

0

ż

R
pRψfiq

`

v, s, vJu´ sz
˘

ρpzq
1

sm
dzdsdv

˙J

i“1,...,d

“
1

C
pψ,ρq
m

¨

˝ lim
δ1Ñ0
δ2Ñ8

ż

Sm´1

ż δ2

δ1

Tρ
`

pRψfiq
`

v, s, vJu´ s ¨
˘˘ 1

sm
dsdv

˛

‚

J

i“1,...,d

“
1

C
pψ,ρq
m

``

R:
ρRψfiq

˘

puq
˘J

i“1,...,d
“ pfipuqq

J
i“1,...,d “ fpuq.

This proves that E
“

Rfnpuq
‰

“ fpuq for a.e. u P Rm. □
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Note that Proposition 9.3 is not concerned about any measurability properties of the random neuron Rfn
in (70). To this end, we follow Proposition 8.3 to show that such random neurons are strongly measurable
with values in a weighted Sobolev space W k,ppU,LpUq, w;Rdq introduced in Notation (xii)+(xiii).

For this purpose, we first show that pW k,ppU,LpUq, w,Rdq, } ¨ }Wk,ppU,LpUq,w,Rdqq is separable.

Lemma 9.4. Let k P N0, p P r1,8q, U Ď Rm (open, if k ě 1), and w : U Ñ r0,8q be a weight. Then,
the Banach space pW k,ppU,LpUq, w,Rdq, } ¨ }Wk,ppU,LpUq,w,Rdqq in Notation (xii)+(xiii) is separable.

Proof. First, we show the conclusion for k “ 0, i.e. that the Banach space pW 0,ppU,LpUq, w;Rdq, } ¨

}W 0,ppU,LpUq,w;Rdqq :“ pLppU,LpUq, wpuqdu;Rdq, } ¨ }LppU,LpUq,wpuqdu;Rdqq defined in Notation (xiii) is
separable. For this purpose, we observe that BpUq is generated by sets of the form U X

Śm
l“1rrl,1, rl,2q,

with rl,1, rl,2 P Q, l “ 1, ...,m. Moreover, by using that LpUq and BpUq coincide up to Lebesgue nullsets
and that w : U Ñ r0,8q is a weight, i.e. that the measure spaces pU,LpUq, wpuqduq and pU,LpUq, duq

share the same null sets, we conclude that pU,LpUq, wpuqduq is countably generated up to wpuqdu-null
sets. Hence, by applying [Doob, 1994, p. 92] componentwise, it follows that pW 0,ppU,LpUq, w;Rdq, } ¨

}W 0,ppU,LpUq,w;Rdqq :“ pLppU,LpUq, wpuqdu;Rdq, } ¨ }LppU,LpUq,wpuqdu;Rdqq is separable.
Now, for the general case of k ě 1, we consider the Banach space pW k,ppU,LpUq, w,Rdq, } ¨

}Wk,ppU,LpUq,w,Rdqq introduced in Notation (xii). Then, we define the map

W k,ppU,LpUq, w,Rdq Q f ÞÑ Ξpfq :“ pBαfqαPNm0,k P
ą

αPNm0,k

LppU,LpUq, wpuqdu,Rdq “: Z,

where Z is equipped with the norm }g}Z :“
ř

αPNm0,k
}gα}LppU,LpUq,du,Rdq, for g :“ pgαqαPNm0,k P Z.

Then, by using the previous step, we conclude that the Banach space pZ, }¨}Zq is separable as finite product
of separable Banach spaces. Hence, by using that W k,ppU,LpUq, w,Rdq is by definition isometrically
isomorphic to the closed vector subspace ImgpΞq :“

␣

Ξpfq : f P W k,ppU,LpUq, w,Rdq
(

Ď Z, it
follows that pW k,ppU,LpUq, w,Rdq, } ¨ }Wk,ppU,LpUq,w,Rdqq is separable. □

Next, we apple the same arguments as in the proof of Proposition 8.3 to obtain strong measurability.

Lemma 9.5. For k P N0, p P p1,8q, U Ď Rm (open, if k ě 1), γ P r0,8q, and ρ P Ckpol,γpRq, let

w : U Ñ r0,8q be a weight such that the constant Cpγ,pq

U,w ą 0 defined in (8) is finite. Moreover, for a
sub-σ-algebra FA,B Ď F0 Ď F , let W : Ω Ñ Rd be an F0{Rd-measurable random vector and define

Ω Q ω ÞÑ Rnpωq :“ W pωqρ
`

AnpωqJ ¨ ´Bnpωq
˘

P W k,ppU,LpUq, w,Rdq.

Then, the map Rn : Ω Ñ W k,ppU,LpUq, w,Rdq is F0-strongly measurable with values in the separable
Banach space pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq.

Proof. First, we show that the map Rn : Ω Ñ W k,ppU,LpUq, w,Rdq takes values in the Banach space
pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq, where the latter is by Lemma 9.5 separable. Indeed,
since ρ P Ckpol,γpRq is k-times differentiable, it follows for every fixed ω P Ω and α P Nm0,k that U Q u ÞÑ

BαRnpωq “ W f
n pωqρp|α|q

`

AnpωqJu´Bnpωq
˘

Anpωqα P Rd is LpUq{BpRdq-measurable. Moreover,
by using that ρ P Ckpol,γpRq, i.e. that

ˇ

ˇρpjqpsq
ˇ

ˇ ď }ρ}Ckpol,γpRqp1` |s|qγ for any j “ 0, ..., k and s P R, the

inequality 1`
ˇ

ˇAnpωqJu´Bnpωq
ˇ

ˇ ď 1` }Anpωq}}u} ` |Bnpωq| ď p1` }Anpωq} ` |Bnpωq|qp1` }u}q

for any u P Rm, and that Cpγ,pq

U,w :“
`ş

U p1 ` }u}qγpwpuqdu
˘1{p

ą 0 is finite, we conclude that

}Rnpωq}
p
Wk,ppU,LpUq,w;Rdq

“
ÿ

αPNm0,k

ż

U

›

›

›
W f
n pωqρp|α|q

`

AnpωqJu´Bnpωq
˘

Anpωqα
›

›

›

p
wpuqdu

ď

¨

˝

ÿ

αPNm0,k

›

›

›
W f
n pωqAnpωqα

›

›

›

p

˛

‚

ż

U

`

1 `
ˇ

ˇAnpωqJu´Bnpωq
ˇ

ˇ

˘γp
wpuqdu

ď

¨

˝

ÿ

αPNm0,k

›

›

›
W f
n pωqAnpωqα

›

›

›

p

˛

‚p1 ` }Anpωq} ` |Bnpωq|qγp
ż

U
p1 ` }u}qγpwpuqdu ă 8.

This shows that Rnpωq P W k,ppU,LpUq, w;Rdq for all ω P Ω.
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Now, in order to show that Rn : Ω Ñ W k,ppU,LpUq, w,Rdq is F0-strongly measurable, we aim to
apply the same arguments as in Proposition 8.3. For this purpose, we first show that for every sequence
pyM , aM , bM qMPN Ď Rd ˆ Rm ˆ R converging to py, a, bq P Rd ˆ Rm ˆ R, it holds that

lim
MÑ8

›

›yρ
`

aJ ¨ ´b
˘

´ yMρ
`

aJ
M ¨ ´bM

˘›

›

Wk,ppU,LpUq,w;Rdq
“ 0, (73)

where yρ
`

aJ ¨ ´b
˘

denotes the function U Q u ÞÑ yρ
`

aJu´ b
˘

P Rd. Indeed, fix a sequence
pyM , aM , bM qMPN Ď Rd ˆ Rm ˆ R converging to py, a, bq P Rd ˆ Rm ˆ R. Then, by using that
yMa

α
M p1` }aM} ` |bM |q converges uniformly in α P Nm0,k to yaαp1` }a} ` |b|q, the constant Cy,a,b :“

maxαPNm0,k }yaα} p1 ` }a} ` |b|q ` supMPN

´

maxαPNm0,k }yMa
α
M} p1 ` }aM} ` |bM |q

¯

ě 0 is finite,

where aα :“
śm
l“1 a

αl
l for a :“ pa1, ..., amqJ P Rm and α P Nm0,k. Hence, by using that ρ P Ckpol,γpRq,

i.e. that
ˇ

ˇρpjqpsq
ˇ

ˇ ď }ρ}Ckpol,γpRqp1`|s|qγ for any j “ 0, ..., k and s P R, the inequality 1`
ˇ

ˇaJ
Mu´ bM

ˇ

ˇ ď

1 ` }aM}}u} ` |bM | ď p1 ` }aM} ` |bM |qp1 ` }u}q for any M P N and u P Rm, it follows for every
α P Nm0,k, u P U , and M P N that

›

›

›
yMρ

p|α|q
`

aJ
Mu´ bM

˘

aαM

›

›

›
ď }yMa

α
M}

ˇ

ˇ

ˇ
ρp|α|q

`

aJ
Mu´ bM

˘

ˇ

ˇ

ˇ

ď }yMa
α
M} }ρ}Ckpol,γpRq

`

1 `
ˇ

ˇaJ
Mu´ bM

ˇ

ˇ

˘γ

ď }yMa
α
M} p1 ` }aM} ` |bM |qγ}ρ}Ckpol,γpRqp1 ` }u}qγ

ď Cy,a,b}ρ}Ckpol,γpRqp1 ` }u}qγ .

(74)

Analogously, we conclude for every α P Nm0,k and u P U that

›

›

›
yMρ

p|α|q
`

aJ
Mu´ bM

˘

aαM

›

›

›
ď Cy,a,b}ρ}Ckpol,γpRqp1 ` }u}qγ . (75)

Hence, by using the triangle inequality together with the inequality px` yqp ď 2p´1 pxp ` ypq for any
x, y ě 0 as well as the inequalities (74) and (75), it follows for every α P Nm0,k, u P U , and M P N that

›

›

›
yρp|α|q

`

aJu´ b
˘

aα ´ yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM

›

›

›

p

ď 2p´1
´
›

›

›
yρp|α|q

`

aJu´ b
˘

aα
›

›

›

p
`

›

›

›
yMρ

p|α|q
`

aJ
Mu´ bM

˘

aαM

›

›

›

p¯

ď 2pCpy,a,b}ρ}
p

Ckpol,γpRq
p1 ` }u}qγp.

(76)

Thus, by applying the Rd-valued dominated convergence theorem in [Hytönen et al., 2016, Proposi-
tion 1.2.5] (with (76) and

ş

U p1 ` }u}q
γpwpuqdu “

´

C
pγ,pq

U,w

¯p
ă 8 by assumption), we have

lim
MÑ8

›

›yρ
`

aJ ¨ ´b
˘

´ yMρ
`

aJ
M ¨ ´bM

˘›

›

Wk,ppU,LpUq,w;Rdq

“

¨

˝

ÿ

αPNm0,k

lim
MÑ8

ż

U

›

›

›
yρp|α|q

`

aJu´ b
˘

aα ´ yMρ
p|α|q

`

aJ
Mu´ bM

˘

aαM

›

›

›

p
wpuqdu

˛

‚

1
p

“ 0.

This shows the desired convergence in (73). Hence, by applying the same arguments as in the proof
of Proposition 8.3 (with (73) instead of Lemma 8.2 and with F0{BpRdq-measurable W : Ω Ñ Rd
instead of an FA,B{BpRdq-measurable W : Ω Ñ Rd, where it holds that FA,B Ď F0), it follows that
Rn : Ω Ñ W k,ppU,LpUq, w,Rdq is F0-strongly measurable. □
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Finally, for the approximation rates in Theorem 4.4, we compute the Bochner norm of the random
neuron Rfn : Ω Ñ W k,ppU,LpUq, w;Rdq with linear W f

n : Ω Ñ Rd also used in Proposition 9.3.

Proposition 9.6. For k P N0, p P r1,8q, U Ď Rm (open, if k ě 1), γ P p0,8q, let w : U Ñ r0,8q

be a weight such that the constant Cpγ,pq

U,w ą 0 defined in (8) is finite. Moreover, for ν P p0,8q,
let pA1, B1q „ θA b t1pνq satisfy Assumption 4.1, and let pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq be m-
admissible. Then, there exists a constant C31 ą 0 (independent of m, d P N) such that for every
f P L1pRm,LpRmq, du;Rdq with prγs`rνs`1q-times weakly differentiable Fourier transform satisfying

Cf :“ max
jPN0Xr0,rγs`rνs`1s,

βPNm
0,rγs`rνs`1

ż

R

ˇ

ˇ

ˇ

pψpjqpζq

ˇ

ˇ

ˇ

|ζ|
m
r

˜

ż

Rm
}Bβ

pfpξq}r
p1 ` }ξ{ζ}qpk`2rγs`rνs`2qr

θApξ{ζqr´1
dξ

¸
1
r

dζ ă 8, (77)

the map

Ω Q ω ÞÑ Rfnpωq :“ W f
n pωqρ

`

AnpωqJ ¨ ´Bnpωq
˘

P W k,ppU,LpUq, w;Rdq (78)

with

Ω Q ω ÞÑ W f
n pωq :“

$

&

%

Re

ˆ

pRψfqp
Anpωq

}Anpωq}
, 1

}Anpωq}
, Bnpωq

}Anpωq}
q

C
pψ,ρq
m θApAnpωqqθBpBnpωqq

˙

, if Anpωq ‰ 0,

0, if Anpωq “ 0,

(79)

satisfies Rfn P RN ρ
U,d X LrpΩ,FA,B,P;W k,ppU,LpUq, w;Rdqq with

›

›

›
Rfn

›

›

›

LrpΩ,F ,P;Wk,ppU,LpUq,w;Rdqq
ď C31

C
pγ,pq

U,w Cf
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

m
k
p

`rγs`rνs`1
. (80)

Proof. Fix some f P L1pRm,LpRmq, du;Rdq with prγs ` rνs ` 1q-times weakly differentiable Fourier
transform and finite constant Cf ě 0 defined in (77). Then, we define Rfn : Ω Ñ W k,ppU,LpUq, w;Rdq

as in (78) with linear readout W f
n : Ω Ñ Rd as in (79). Hence, by using that W f

n : Ω Ñ Rd is by
definition FA,B{BpRdq-measurable and Lemma 9.5 (with F0 :“ FA,B), it follows that Rfn : Ω Ñ

W k,ppU,LpUq, w;Rdq is well-defined as FA,B-strongly measurable map in RN ρ
U,d with values in the

separable Banach space pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq.
In order to show the inequality (80), we fix some c P t0, rγs ` rνs `1u. Then, by using Lemma 9.2 (ii),

c-times integration by parts, the Leibniz product rule together with the chain rule, the substitution ζ ÞÑ ξs,
and the inequality

ˇ

ˇpv{sqβ
ˇ

ˇ ď
śβ
l“1 |vl|

βl{sβl ď
śβ
l“1 }v}βl{sβl “ p1 ` 1{sq|β| ď p1 ` 1{sqc for any

v P Sm´1, s P p0,8q, and β P Nm0,c, it follows for every pv, s, tq P Ym`1 that

|t|c

sc
}pRψfqpv, s, tq} “

1

2π

1

sc

›

›

›

›

ż

R
pfpξvq pψpξsq

Bc

Bξc

´

eiξt
¯

dξ

›

›

›

›

“
1

2π

1

sc

›

›

›

›

ż

R

Bc

Bξc

´

pfpξvq pψpξsq
¯

eiξtdξ

›

›

›

›

“
1

2π

1

sc

›

›

›

›

›

›

ÿ

βPNm0,c

c!

|β|!pc´ |β|q!

ż

R
vβBβ

pfpξvq pψpc´|β|qpξsqsc´|β|eiξtdξ

›

›

›

›

›

›

ď
1

2π

ÿ

βPNm0,c

c!

|β|!pc´ |β|q!

ż

R

ˇ

ˇ

ˇ

ˇ

´v

s

¯β
ˇ

ˇ

ˇ

ˇ

›

›

›
Bβ

pfpξvq

›

›

›

ˇ

ˇ

ˇ

pψpc´|β|qpξsq
ˇ

ˇ

ˇ
dξ

“
1

2π

ÿ

βPNm0,c

c!

|β|!pc´ |β|q!

ż

R

ˇ

ˇ

ˇ

ˇ

´v

s

¯β
ˇ

ˇ

ˇ

ˇ

›

›

›

›

Bβ
pf

ˆ

ζv

s

˙
›

›

›

›

ˇ

ˇ

ˇ

pψpc´|β|qpζq

ˇ

ˇ

ˇ

1

s
dζ

ď
c!

2π

ˆ

1 `
1

s

˙c`1
ÿ

βPNm0,c

ż

R

›

›

›

›

Bβ
pf

ˆ

ζv

s

˙›

›

›

›

ˇ

ˇ

ˇ

pψpc´|β|qpζq

ˇ

ˇ

ˇ
dζ.

Hence, by using this, Minkowski’s integral inequality (with measure spaces pRmzt0u,LpRmzt0uq, daq

and pNm0,k ˆ R,PpNm0,kq b BpRq, µ b dζq, where PpNm0,kq denotes the power set of Nm0,k, and where
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PpNm0,kq Q E ÞÑ µpEq :“
ř

αPNm0,k
1Epαq P r0,8q is the counting measure), the substitution ξ ÞÑ ζa

with Jacobi determinant dξ “ |ζ|mda, and the constant Cf ě 0 in (77), it follows for every b P R that

˜

ż

Rmzt0u

p1 ` }a}q
pγ`kqr

θApaqr´1

ˆ

|b|c
›

›

›

›

pRψfq

ˆ

a

}a}
,
1

}a}
,
b

}a}

˙›

›

›

›

˙r

da

¸
1
r

ď
c!

2π

¨

˝

ż

Rmzt0u

p1 ` }a}q
pγ`k`c`1qr

θApaqr´1

¨

˝

ÿ

βPNm0,c

ż

R

›

›

›
Bβ

pfpζaq

›

›

›

ˇ

ˇ

ˇ

pψpc´|β|qpζq

ˇ

ˇ

ˇ
dζ

˛

‚

r

da

˛

‚

1
r

ď
c!

2π

ÿ

βPNm0,c

ż

R

ˇ

ˇ

ˇ

pψpc´|β|qpζq

ˇ

ˇ

ˇ

˜

ż

Rmzt0u

p1 ` }a}q
prγs`k`c`1qr

θApaqr´1
}Bβ

pfpζaq}rda

¸
1
r

dζ

“
c!

2π

ÿ

βPNm0,c

ż

R

ˇ

ˇ

ˇ

pψpc´|β|qpζq

ˇ

ˇ

ˇ

|ζ|
m
r

˜

ż

Rmzt0u

}Bβ
pfpξq}r

p1 ` }ξ{ζ}q
prγs`k`c`1qr

θApξ{ζqr´1
dξ

¸
1
r

dζ

ď
c!

2π

ˇ

ˇNm0,c
ˇ

ˇCf .

(81)

Thus, by using the inequality px ` yqrγs`rνs`1 ď 2rγ`νs
`

xrγs`rνs`1 ` yrγs`rνs`1
˘

for any x, y ě 0,
Minkowski’s inequality, the inequality (81) with c “ 0 and c “ rγs ` rνs ` 1, that |Nm0,0| “ 1, and that

|Nm0,rγs`rνs`1| “
řrγs`rνs`1
j“0 mj ď 2mrγs`rνs`1, we conclude for every b P R that

¨

˝

ż

Rmzt0u

p1 ` }a}qpγ`kqrp1 ` |b|qpγ`ν`1qr
›

›

›
pRψfq

´

a
}a}
, 1

}a}
, b

}a}

¯
›

›

›

r

θApaqr´1
da

˛

‚

1
r

ď

¨

˝

ż

Rmzt0u

p1 ` }a}qprγs`kqrp1 ` |b|qprγs`rνs`1qr
›

›

›
pRψfq

´

a
}a}
, 1

}a}
, b

}a}

¯
›

›

›

r

θApaqr´1
da

˛

‚

1
r

ď 2rγ`νs

¨

˝

ż

Rmzt0u

p1 ` }a}qpγ`kqr
`

1 ` |b|rγs`rνs`1
˘r
›

›

›
pRψfq

´

a
}a}
, 1

}a}
, b

}a}

¯
›

›

›

r

θApaqr´1
da

˛

‚

1
r

ď 2rγ`νs

˜˜

ż

Rmzt0u

p1 ` }a}qpγ`kqr

θApaqr´1

›

›

›

›

pRψfq

ˆ

a

}a}
,
1

}a}
,
b

}a}

˙
›

›

›

›

r

da

¸
1
r

`

˜

ż

Rmzt0u

p1 ` }a}qpγ`kqr

θApaqr´1

ˆ

|b|rγs`rνs`1

›

›

›

›

pRψfq

ˆ

a

}a}
,
1

}a}
,
b

}a}

˙›

›

›

›

˙r

da

¸
1
r
¸

ď 2rγ`νs

ˆ

0!

2π

ˇ

ˇNm0,0
ˇ

ˇCf `
prγs ` rνs ` 1q!

2π

ˇ

ˇ

ˇ
Nm0,rγs`rνs`1

ˇ

ˇ

ˇ
Cf

˙

ď 2rγ`νs

ˆ

1

2π
Cf `

prγs ` rνs ` 1q!

2π
2mrγs`rνs`1Cf

˙

ď
2rγ`νs`2

2π
prγs ` rνs ` 1q!mrγs`rνs`1Cf .

(82)
Moreover, we use that ρ P Ckpol,γpRq, i.e. that

ˇ

ˇρpjqpsq
ˇ

ˇ ď }ρ}Ckpol,γpRqp1 ` |s|qγ for any j “ 0, ..., k and

s P R, the inequality 1 `
ˇ

ˇaJu´ b
ˇ

ˇ ď 1 ` }a}}u} ` |b| ď p1 ` }a} ` |b|qp1 ` }u}q for any a, u P Rm
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and b P R, and the finite constant Cpγ,pq

U,w ą 0 to conclude for every a P Rm, b P R, and j “ 0, ..., k that
ˆ
ż

U

ˇ

ˇ

ˇ
ρpjq

`

aJu´ b
˘

ˇ

ˇ

ˇ

p
wpuqdu

˙
1
p

ď }ρ}Ckpol,γpRq

ˆ
ż

U

`

1 `
ˇ

ˇaJu´ b
ˇ

ˇ

˘γp
wpuqdu

˙
1
p

ď }ρ}Ckpol,γpRqp1 ` }a} ` |b|qγ
ˆ
ż

U
p1 ` }u}q

γpwpuqdu

˙
1
p

“ }ρ}Ckpol,γpRqp1 ` }a} ` |b|qγC
pγ,pq

U,w .

(83)

In addition, by using the constant Cν :“ Γpp1`νq{2q

Γpν{2q
?
πν

ą 0 and the inequality
?
x` y ď

?
x`

?
y for any

x, y ě 0, it follows for every b P R that

1

θBpbq
“ C´1

ν

ˆ

1 `
|b|2

ν

˙

1`ν
2

ď C´1
ν

ˆ

1 `
|b|
?
ν

˙1`ν

ď C´1
ν min

`

1,
?
ν
˘´1

p1 ` |b|q1`ν . (84)

Hence, by using that pAn, Bnq „ pA1, B1q „ θA b t1pνq is identically distributed with probability
density functions θA : Rm Ñ p0,8q and θB : R Ñ p0,8q (see Assumption 4.1), the inequality
(83), that |aα| “

śm
l“1 |al|

αl ď
śm
l“1 p1 ` }a}q

αl ď p1 ` }a}qk for any α P Nm0,k and a P Rm,
that |Nm0,k| “

řk
j“0m

j ď 2mk, the inequality (84), the inequality (82), and the constant C31 :“
21{p

Cν minp1,
?
νq

}ρ}Ckpol,γpRq
2rγ`νs`2

2π prγs ` rνs ` 1q! ą 0 (independent of m, d P N), we have

›

›

›
Rfn

›

›

›

LrpΩ,F ,P;Wk,ppU,LpUq,w;Rdqq
“ E

„

›

›

›
W f
n ρ

`

AJ
n ¨ ´Bn

˘

›

›

›

r

Wk,ppU,LpUq,w;Rdq

ȷ
1
r

“

¨

˚

˝

ż

R

ż

Rmzt0u

¨

˝

ÿ

αPNm0,k

ż

U

›

›

›

›

›

›

pRψfq

´

a
}a}
, 1

}a}
, b

}a}

¯

C
pψ,ρq
m θApaqθBpbq

ρp|α|q
`

aJu´ b
˘

aα

›

›

›

›

›

›

p

wpuqdu

˛

‚

r
p

θApaqθBpbqdadb

˛

‹

‚

1
r

ď

¨

˚

˝

ż

R

ż

Rmzt0u

¨

˝

ÿ

αPNm0,k

|aα|
p
›

›

›
pRψfq

´

a
}a}
, 1

}a}
, b

}a}

¯›

›

›

p

ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

p
θApaqpθBpbqp

ż

U

ˇ

ˇ

ˇ
ρp|α|q

`

aJu´ b
˘

ˇ

ˇ

ˇ

p
wpuqdu

˛

‚

r
p

θApaqθBpbqdadb

˛

‹

‚

1
r

ď

}ρ}Ckpol,γpRqC
pγ,pq

U,w
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

¨

˚

˝

ż

R

ż

Rmzt0u

¨

˝

ÿ

αPNm0,k

|aα|
p

p1 ` }a} ` |b|qγp
›

›

›
pRψfq

´

a
}a}
, 1

}a}
, b

}a}

¯›

›

›

p

θApaqp1´1{rqpθBpbqp

˛

‚

r
p

θBpbqdadb

˛

‹

‚

1
r

ď

ˇ

ˇ

ˇ
Nm0,k

ˇ

ˇ

ˇ

1
p

}ρ}Ckpol,γpRqC
pγ,pq

U,w
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

¨

˝sup
bPR

ż

Rmzt0u

p1 ` }a}qpγ`kqrp1 ` |b|qγr
›

›

›
pRψfq

´

a
}a}
, 1

}a}
, b

}a}

¯
›

›

›

r

θApaqr´1θBpbqr
da

˛

‚

1
r

¨

ˆ
ż

R
θBpbqdb

looooomooooon

“1

˙
1
r

ď

2
1
pm

k
p }ρ}Ckpol,γpRqC

pγ,pq

U,w
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ
Cν min p1,

?
νq

sup
bPR

¨

˝

ż

Rmzt0u

p1 ` }a}qpγ`kqrp1 ` |b|qpγ`ν`1qr
›

›

›
pRψfq

´

a
}a}
, 1

}a}
, b

}a}

¯
›

›

›

r

θApaqr´1
da

˛

‚

1
r

ď

2
1
pm

k
p }ρ}Ckpol,γpRqC

pγ,pq

U,w
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ
Cν min p1,

?
νq

2rγ`νs`2

2π
prγs ` rνs ` 1q!mrγs`rνs`1Cf

ď C31m
k
p

`rγs`rνs`1 C
pγ,pq

U,w
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

Cf ,

which completes the proof. □
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9.3. Proof of Theorem 4.4. In this section, we prove the approximation rates in Theorem 4.4. Let
us first sketch the main ideas of the proof. To this end, we fix some f P L1pRm,LpRmq, duq with
prγs ` rνs ` 1q-times weakly differentiable Fourier transform and finite constant Cf ě 0 defined in (8).
Then, we define the random neural network ΦN :“ 1

N

řN
n“1R

f
n P RN ρ

U,d as average of the random

neurons Ω Q ω ÞÑ Rfnpωq :“ W f
n pωqρ

`

AnpωqJ ¨ ´Bnpωq
˘

P W k,ppU,LpUq, w;Rdq defined in (78),
where k P N0, p P r1,8q, U Ď Rm (open, if k ě 1), and w : U Ñ r0,8q is a weight. Then, by using
the integral representation in Proposition 9.3, i.e. that f “ E

“

Rfn
‰

, a symmetrization argument with
Rademacher averages, and the Banach space type of W k,ppU,LpUq, w,Rdq, we obtain the inequality

E
”

}f ´ ΦN}
r
Wk,ppU,LpUq,w,Rdq

ı
1
r

“
1

N
E

»

–

›

›

›

›

›

N
ÿ

n“1

´

E
”

Rfn

ı

´Rfn

¯

›

›

›

›

›

r

Wk,ppU,LpUq,w,Rdq

fi

fl

1
r

ď C

›

›

›
Rfn

›

›

›

LrpΩ,F ,P;Wk,ppU,LpUq,w;Rdqq

N
1´ 1

minp2,p,rq

,

where C ą 0 is a constant and where
›

›Rfn
›

›

LrpΩ,F ,P;Wk,ppU,LpUq,w;Rdqq
is given in Proposition 9.3.

First, we recall the notion of Banach space types and refer to [Albiac and Kalton, 2006, Section 6.2],
[Ledoux and Talagrand, 1991, Chapter 9], and [Hytönen et al., 2016, Section 4.3.b] for more details.

Definition 9.7 ([Hytönen et al., 2016, Definition 4.3.12 (1)]). A Banach space pX, } ¨ }Xq is called of
type t P r1, 2s if there exists a constant CX ą 0 such that for every N P N, pfnqn“1,...,N Ď X , and
Rademacher sequence pϵnqn“1,...,N (i.e. i.i.d. random variables pϵnqn“1,...,N defined on a probability
space prΩ, rF , rPq with rPrϵn “ ˘1s “ 1{2), it holds that

rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

t

X

fi

fl

1
t

ď CX

˜

N
ÿ

n“1

}fn}tX

¸

1
t

.

Then, by [Albiac and Kalton, 2006, Remark 6.2.11 (b)+(c)], every Banach space pX, } ¨ }Xq is of
type t “ 1 with constant CX “ 1, whereas only some Banach spaces have non-trivial type t P p1, 2s,
e.g., every Hilbert space pX, } ¨ }Xq is of type t “ 2 with constant CX “ 1.

Lemma 9.8. Let pX, } ¨ }Xq be a Banach space of type t P r1, 2s with constant CX ą 0, and let t1 P r1, ts.
Then, pX, } ¨ }Xq is a Banach space of type t1 with constant CX ą 0.

Proof. Let pX, } ¨ }Xq be a Banach space of type t P r1, 2s with constant CX ą 0, and let t1 P r1, ts.
Moreover, we fix some N P N, pfnqn“1,...,N Ď X , and an i.i.d. sequence pϵnqn“1,...,N defined on a
probability space prΩ, rF , rPq such that rPrϵn “ ˘1s “ 1{2. Then, by applying Jensen’s inequality and the

inequality
´

řN
n“1 xn

¯t1{t
ď
řN
n“1 x

t1{t
n for any x1, ..., xN ě 0, it follows that

rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

t1

X

fi

fl

1
t1

ď rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

t

X

fi

fl

1
t

ď CX

˜

N
ÿ

n“1

}fn}tX

¸

1
t

ď CX

˜

N
ÿ

n“1

}fn}t
1

X

¸

1
t1

.

This shows that pX, } ¨ }Xq is also a Banach space of type t1 P r1, ts with the same constant CX ą 0. □

Moreover, [Albiac and Kalton, 2006, Theorem 6.2.14] shows that pLppU,Σ, µ;Rdq, } ¨ }LppU,Σ,µ;Rdqq

introduced in Notation (x) is a Banach space of type t “ minp2, pq with constant CLppU,Σ,µ;Rdq ą 0

depending only on p P r1,8q. Now, we show that this still holds true for the weighted Sobolev space
pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq introduced in Notation (xii)+(xiii).

Lemma 9.9. Let k P N0, p P r1,8q, U Ď Rm (open, if k ě 1), and w : U Ñ r0,8q be a weight. Then,
the Banach space pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq introduced in Notation (xii)+(xiii) is
of type t “ minp2, pq with constant CWk,ppU,LpUq,w;Rdq ą 0 depending only on p P r1,8q.

Proof. First, we recall that pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq is a Banach space. Indeed,
this follows from [Rudin, 1987, p. 96] (for k “ 0) and [Adams, 1975, Theorem 3.2] (for k ě 1).
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Now, we fix some N P N, pfnqn“1,...,N Ď W k,ppU,LpUq, w;Rdq, and an i.i.d. sequence pϵnqn“1,...,N

defined on a probability space prΩ, rF , rPq such that rPrϵn “ ˘1s “ 1{2. Then, by using Fubini’s theorem
and the classical Khintchine inequality in [Ledoux and Talagrand, 1991, Lemma 4.1] with constant
Cp ą 0 depending only on p P r1,8q, it follows that

rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

p

Wk,ppU,LpUq,w;Rdq

fi

fl

1
p

“ rE

»

–

ÿ

αPNm0,k

ż

U

›

›

›

›

›

N
ÿ

n“1

ϵnBαfnpuq

›

›

›

›

›

p

wpuqdu

fi

fl

1
p

“

¨

˝

ÿ

αPNm0,k

ż

U

rE

«›

›

›

›

›

N
ÿ

n“1

ϵnBαfnpuq

›

›

›

›

›

pff

wpuqdu

˛

‚

1
p

ď Cp

¨

˝

ÿ

αPNm0,k

ż

U

˜

N
ÿ

n“1

}Bαfnpuq}
2

¸

p
2

wpuqdu

˛

‚

1
p

.

(85)

If p P r1, 2s, we use (85) and the inequality
´

řN
n“1 xn

¯p{2
ď

řN
n“1 x

p{2
n for any x1, ..., xN ě 0 to

conclude that

rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

minp2,pq

Wk,ppU,LpUq,w;Rdq

fi

fl

1
minp2,pq

“ rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

p

Wk,ppU,LpUq,w;Rdq

fi

fl

1
p

ď Cp

¨

˝

ÿ

αPNm0,k

ż

U

˜

N
ÿ

n“1

}Bαfnpuq}
2

¸

p
2

wpuqdu

˛

‚

1
p

ď Cp

¨

˝

N
ÿ

n“1

ÿ

αPNm0,k

ż

U
}Bαfnpuq}

pwpuqdu

˛

‚

1
p

“ Cp

˜

N
ÿ

n“1

}fn}
minp2,pq

Wk,ppU,LpUq,w;Rdq

¸

1
minp2,pq

.

This shows for p P r1, 2s that the Banach space pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq is of type
t “ minp2, pq, where the constant Cp ą 0 depends only on p P r1,8q.

Otherwise, if p P p2,8q, we consider the measure spaces pt1, ..., Nu,Ppt1, ..., Nuq, ηq and pNm0,k ˆ

U,PpNm0,kq b LpUq, µb wq, where Ppt1, ..., Nuq and PpNm0,kq denote the power sets of t1, ..., Nu and
Nm0,k, respectively, and where Ppt1, ..., Nuq Q A ÞÑ ηpAq :“

řN
n“1 1Apnq P r0,8q and PpNm0,kq b

LpUq Q pA,Bq ÞÑ pµb wqpA,Bq :“
´

ř

αPNm0,k
1Apαq

¯

ş

B wpuqdu P r0,8s are both measures. Then,
by using the Minkowski inequality in [Hytönen et al., 2016, Proposition 1.2.22] with p ě 2, it follows
for every f P L2pt1, ..., Nu,Ppt1, ..., Nuq, η;LppNm0,k ˆ U,PpNm0,kq b LpUq, µb w;Rdqq that

}f}LppNm0,kˆU,PpNm0,kqbLpUq,µbw;L2pt1,...,Nu,Ppt1,...,Nuq,η;Rdqq

ď }f}L2pt1,...,Nu,Ppt1,...,Nuq,η;LppNm0,kˆU,PpNm0,kqbLpUq,µbw;Rdqq.
(86)

Now, we define the map t1, ..., Nu ˆ pNm0,k ˆ Uq Q pn;α, uq ÞÑ fpn;α, uq :“ Bαfnpuq P Rd satisfying

}f}L2pt1,...,Nu,Ppt1,...,Nuq,η;LppNm0,kˆU,PpNm0,kqbLpUq,µbw;Rdqq “

¨

˚

˝

N
ÿ

n“1

¨

˝

ÿ

αPNm0,k

ż

U
}Bαfnpuq}pwpuqdu

˛

‚

2
p

˛

‹

‚

1
2

“

˜

N
ÿ

n“1

}fn}2Wk,ppU,LpUq,w;Rdq

¸

1
2

ă 8,

(87)
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which shows that f P L2pt1, ..., Nu,Ppt1, ..., Nuq, η;LppNm0,kˆU,PpNm0,kqbLpUq, µbw;Rdqq. Hence,
by using first Jensen’s inequality and then by combining (85) and (86) with (87), we conclude that

rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

minp2,pq

Wk,ppU,LpUq,w;Rdq

fi

fl

1
minp2,pq

“ rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

2

Wk,ppU,LpUq,w;Rdq

fi

fl

1
2

ď rE

»

–

›

›

›

›

›

N
ÿ

n“1

ϵnfn

›

›

›

›

›

p

Wk,ppU,LpUq,w;Rdq

fi

fl

1
p

ď Cp

¨

˝

ÿ

αPNm0,k

ż

U

˜

N
ÿ

n“1

}Bαfnpuq}
2

¸

p
2

wpuqdu

˛

‚

1
p

“ Cp}f}LppNm0,kˆU,PpNm0,kqbLpUq,µbw;L2pt1,...,Nu,Ppt1,...,Nuq,η;Rdqq

ď Cp}f}L2pt1,...,Nu,Ppt1,...,Nuq,η;LppNm0,kˆU,PpNm0,kqbLpUq,µbw;Rdqq

“ Cp

˜

N
ÿ

n“1

}f}
minp2,pq

Wk,ppU,LpUq,w;Rdq

¸

1
minp2,pq

.

This shows for p P p2,8q that the Banach space pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq is of
type t “ minp2, pq, where the constant Cp ą 0 depends only on p P r1,8q. □

Proof of Theorem 4.4. Fix some f P L1pRm,LpRmq, du;Rdq with prγs ` rνs ` 1q-times weakly differ-
entiable Fourier transform and finite constant Cf ě 0 defined in (9). Then, for every fixed n P N, we
define the map Rfn : Ω Ñ W k,ppU,LpUq, w;Rdq as in (78). Hence, by using Proposition 9.6, it follows
that Rfn P RN ρ

U,d X LrpΩ,FA,B,P;W k,ppU,LpUq, w;Rdqq with Bochner norm bounded by (80).
In order to show (i), we use that ψ P S0pR;Cq is necessarily non-zero (otherwise pψ, ρq P S0pR;Cq ˆ

Ckpol,γpRq cannot be m-admissible), implying that pψ P S0pR;Cq is also non-zero (by the injectivity of
the Fourier transform) to conclude from Cf ă 8 that there exists some ζ P Rzt0u such that

˜

ż

Rm

›

›

›

pfpξq

›

›

›

r p1 ` }ξ{ζ}qpk`2rγs`rνs`2qr

θApξ{ζqr´1
dξ

¸
1
r

ă 8. (88)

Thus, by using Hölder’s inequality, the substitution a ÞÑ ξ{ζ, and (88), it follows that

} pf}L1pRm,LpRmq,du;Cdq “

ż

Rm

›

›

›

pfpξq

›

›

›
dξ ď

¨

˝

ż

Rm

›

›

›

pfpξq

›

›

›

r

θApξ{zqr´1
dξ

˛

‚

1
r
ˆ
ż

Rm
θApξ{ζqdξ

˙
r´1
r

ď

˜

ż

Rm

›

›

›

pfpξq

›

›

›

r p1 ` }ξ{ζ}qpk`2rγs`rνs`2qr

θApξ{ζqr´1
dξ

¸
1
r
˜

|ζ|

ż

Rm
θApaqda

loooooomoooooon

“1

¸
r´1
r

ă 8.

(89)
Hence, by using that pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq is m-admissible together with (89), we can apply

Proposition 9.3 to conclude for a.e. u P Rm that E
“

Rfn
‰

puq “ E
“

Rfnpuq
‰

“ fpuq. Moreover, if k ě 1, we
use this, that E

“

Rfn
‰

P W k,ppU,LpUq, du;Rdq by Proposition 9.6, and integration by parts to conclude
for every α P Nm0,k and g P C8

c pUq that
ż

U
BαE

”

Rfn

ı

puqgpuqdu “ p´1q|α|

ż

U
E
”

Rfn

ı

puqBαgpuqdu “ p´1q|α|

ż

U
fpuqBαgpuqdu

“

ż

U
Bαfpuqgpuqdu

This shows for every α P Nm0,k and a.e. u P U that BαE
“

Rfn
‰

puq “ BαE
“

Rfnpuq
‰

“ Bαfpuq, which

implies that f “ E
“

Rfn
‰

P W k,ppU,LpUq, w;Rdq.
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In order to show (ii), we fix some N P N, Then, by using that f “ E
“

Rfn
‰

P W k,ppU,LpUq, w;Rdq,
the right-hand side of [Ledoux and Talagrand, 1991, Lemma 6.3] for the independent mean-zero ran-
dom variables

´

E
”

Rfn

ı

´Rfn

¯

n“1,...,N
(with i.i.d. pϵnqn“1,...,N satisfying Prϵn “ ˘1s “ 1{2 being

independent of
´

E
”

Rfn

ı

´Rfn

¯

n“1,...,N
), the Kahane-Khintchine inequality in [Hytönen et al., 2016,

Theorem 3.2.23] with constant κp,r :“ κr,minpr,minp2,pqq ą 0 only depending on r P p1,8q and
minpr,minp2, pqq P p1, 2s, that pW k,ppU,LpUq, w;Rdq, } ¨ }Wk,ppU,LpUq,w;Rdqq is by Lemma 9.9 a Ba-
nach space of type minp2, pq P p1, 2s (with constant Cp :“ CWk,ppU,LpUq,w;Rdq ą 0 depending only on
p P p1, 2s), thus by Lemma 9.8 of type minp2, p, rq P r0,minp2, pqs (with the same constant Cp ą 0),
Jensen’s inequality, Minkowski’s inequality, [Hytönen et al., 2016, Proposition 1.2.2], the inequality (80),
and the constant C1 :“ 4Cpκp,rC31 ą 0 (independent of m, d P N and f : Rm Ñ Rd), it follows that

E
”

}f ´ ΦN}
r
Wk,ppU,LpUq,w;Rdq

ı
1
r

“
1

N
E

»

–

›

›

›

›

›

N
ÿ

n“1

´

E
”

Rfn

ı

´Rfn

¯

›

›

›

›

›

r

Wk,ppU,LpUq,w;Rdq

fi

fl

1
r

ď
2

N
E

»

–

›

›

›

›

›

N
ÿ

n“1

ϵn

´

E
”

Rfn

ı

´Rfn

¯

›

›

›

›

›

r

Wk,ppU,LpUq,w;Rdq

fi

fl

1
r

ď
2κp,r
N

E

»

–

›

›

›

›

›

N
ÿ

n“1

ϵn

´

E
”

Rfn

ı

´Rfn

¯

›

›

›

›

›

minpr,minp2,pqq

Wk,ppU,LpUq,w;Rdq

fi

fl

1
minpr,minp2,pqq

ď
2Cpκp,r
N

˜

N
ÿ

n“1

E
„

›

›

›
E
”

Rfn

ı

´Rfn

›

›

›

minp2,p,rq

Wk,ppU,LpUq,w;Rdq

ȷ

¸

1
minp2,p,rq

“
2Cpκp,r

N
1´ 1

minp2,p,rq

E
„

›

›

›
E
”

Rfn

ı

´Rfn

›

›

›

minp2,p,rq

Wk,ppU,LpUq,w;Rdq

ȷ
1

minp2,p,rq

ď
2Cpκp,r

N
1´ 1

minp2,p,rq

E
„

›

›

›
E
”

Rfn

ı

´Rfn

›

›

›

r

Wk,ppU,LpUq,w;Rdq

ȷ
1
r

ď
2Cpκp,r

N
1´ 1

minp2,p,rq

˜

›

›

›
E
”

Rfn

ı›

›

›

Wk,ppU,LpUq,w;Rdq
` E

„

›

›

›
Rfn

›

›

›

r

Wk,ppU,LpUq,w;Rdq

ȷ
1
r

¸

ď
4Cpκp,r

N
1´ 1

minp2,p,rq

›

›

›
Rfn

›

›

›

LrpΩ,F ,P;Wk,ppU,LpUq,w;Rdqq

ď
4Cpκp,r

N
1´ 1

minp2,p,rq

C31

C
pγ,pq

U,w Cf
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

m
k
p

`rγs`rνs`1

ď C1

C
pγ,pq

U,w Cf
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

m
k
p

`rγs`rνs`1

N
1´ 1

minp2,p,rq

.

This shows the approximation rate in (ii).
Finally, in order to show (iii), we fix some δ, ε ą 0. Then, for every N P N satisfying the inequality in

(iii) there exists by (ii) some ΦN P RN ρ
U,d X LrpΩ,F ,P;W k,ppU,LpUq, w;Rdqq with N P N neurons

such that

E
”

}f ´ ΦN}rWk,ppU,LpUq,w;Rdq

ı
1
r

ď C1

C
pγ,pq

U,w Cf
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

m
k
p

`rγs`rνs`1

N
1´ 1

minp2,p,rq

ď δ
1
r ε.

Hence, by applying Chebyshev’s inequality, it follows that

P
”!

ω P Ω : }f ´ ΦN pωq}Wk,ppU,LpUq,w;Rdq ě ε
)ı

ď
1

εr
E
”

}f ´ ΦN}rWk,ppU,LpUq,w;Rdq

ı

ď
δεr

εr
“ δ,

which completes the proof. □
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In the following, we also provide the proof of Example 4.6+4.7 and Remark 4.8.

Proof of Example 4.6. Fix some f :“ pf1, ..., fdqJ P L1pRm,LpRmq, p1 ` }u}qrγs`rνs`1du;Rdq X

Wm`2k`4rγs`3rνs`4,2pRm,LpRmq, p1` } ¨ }q2prγs`rνs`1q;Rdq. Now, we first show that pf : Rm Ñ Cd is
prγs ` rνs ` 1q-times weakly differentiable. Indeed, for every fixed i “ 1, ..., d, we use the polynomial
Rm Q u ÞÑ uβ :“

śm
l“1 u

βl
l P R for β P Nm0,rγs`rνs`1, that

ˇ

ˇuβ
ˇ

ˇ “
śm
l“1 |ul|

βl ď
śm
l“1p1 ` }u}qβl ď

p1 ` }u}qrγs`rνs`1 for any u P Rm and β P Nm0,rγs`rνs`1 to conclude for every β P Nm0,rγs`rνs`1 that

}pβ ¨ fi}L1pRm,LpRmq,duq “

ż

Rm

ˇ

ˇ

ˇ
uβfipuq

ˇ

ˇ

ˇ
du

ď

ż

Rm
|fipuq|p1 ` }u}qrγs`rνs`1du

ď }f}L1pRm,LpRmq,p1`}u}qrγs`rνs`1du;Rdq ă 8.

Hence, by iteratively applying [Folland, 1992, Theorem 7.8. (c)] to every component fi : Rm Ñ C,
i “ 1, ..., d, the partial derivative Bβ

pf “ pBβ
pf1, ..., Bβ pfdqJ : Rm Ñ Cd exists for all β P Nm0,rγs`rνs`1.

Next, we show that the constant Cf ě 0 defined in (9) is finite. To this end, we fix some β P

Nm0,rγs`rνs`1 and i “ 1, ..., d, and define s :“ m`2k`4rγs`3rνs`4 P N0. Then, we observe that Rm Q

u ÞÑ ppβ ¨ fiqpuq :“ uβfipuq P R is k-times weakly differentiable, where uβ :“
śm
l“1 u

βl
l . Moreover,

by using the inequality
´

řd
i“1 xi

¯1{2
ď

řd
i“1 x

1{2 for all x1, ..., xd ě 0, the multivariate Leibniz

product rule, the finite constant C0 :“
ř

αPNm0,s

ř

λ1,λ2PNm0,s, λ1`λ2“α
α!

λ1!λ2!
ą 0, and the inequality

ˇ

ˇuλ
ˇ

ˇ “
śm
l“1 |ul|

βl ď
śm
l“1p1 ` }u}qβl ď p1 ` }u}qs for any u P Rm, it follows that

}pβ ¨ fi}W s,2pRm,LpRmq,duq ď

¨

˝

ÿ

αPNm0,s

ż

Rm

ˇ

ˇ

ˇ
Bα

´

uβfipuq

¯
ˇ

ˇ

ˇ

2
du

˛

‚

1
2

ď
ÿ

αPNm0,s

¨

˚

˚

˝

ż

Rm

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

λ1,λ2PNm0
λ1`λ2“α

α!

λ1!λ2!
Bλ1

´

uβ
¯

Bλ2fipuq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

du

˛

‹

‹

‚

1
2

ď
ÿ

αPNm0,s

ÿ

λ1,λ2PNm0,s
λ1`λ2“α

α!

λ1!λ2!

˜

ż

Rm

ˇ

ˇ

ˇ

ˇ

β!

pβ ´ λ1q!
uβ´λ1Bλ2fipuq

ˇ

ˇ

ˇ

ˇ

2

du

¸
1
2

ď C0β! max
λ2PNm0,s

ˆ
ż

Rm
|Bλ2fipuq|

2
p1 ` }u}q2prγs`rνs`1qdu

˙
1
2

ď C0β!

¨

˝

ÿ

λ2PNm0,s

ż

Rm
}Bλ2fpuq}2p1 ` }u}q2prγs`rνs`1qdu

˛

‚

1
2

“ C0β!}f}Wm`2k`4rγs`3rνs`4,2pRm,LpRmq,p1`}¨}q2prγs`rνs`1q;Rdq ă 8,

which shows that pβ ¨ fi P W s,2pRm,LpRmq, duq. Hence, by using [Folland, 1992, Theorem 7.8. (c)],

the inequality
´

řd
i“1 xi

¯1{2
ď

řd
i“1 x

1{2 for all x1, ..., xd ě 0 and [Grubb, 2009, Lemma 6.8], i.e. that

pβ ¨ fi P W s,2pRm,LpRmq, duq implies
ş

Rm
ˇ

ˇ
{ppβ ¨ fiqpξq

ˇ

ˇ

`

1 ` }ξ}2
˘s{2

dξ ă 8, we conclude that

ˆ
ż

Rm
}Bβ

pfpξq}2
`

1 ` }ξ}2
˘
s
2 dξ

˙
1
2

“

˜

d
ÿ

i“1

ż

Rm

ˇ

ˇ

ˇ

{ppβ ¨ fqipξq

ˇ

ˇ

ˇ

2
`

1 ` }ξ}2
˘
s
2 dξ

¸

1
2

“

d
ÿ

i“1

ˆ
ż

Rm

ˇ

ˇ

ˇ

{ppβ ¨ fiqpξq

ˇ

ˇ

ˇ

2
`

1 ` }ξ}2
˘
s
2 dξ

˙
1
2

ă 8.

(90)
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Finally, by using that suppp pψq “ rξ1, ξ2s for some 0 ă ξ1 ă ξ2 ă 8, that px ` yq2 ď 2
`

x2 ` y2
˘

for any x, y ě 0, the constant C41 :“ maxjPN0Xr0,rγs`rνs`1s

ş8

ξ1

ˇ

ˇ

ˇ

pψpjqpζq

ˇ

ˇ

ˇ
dζ ą 0 (independent of

m, d P N and f : Rm Ñ Rd), that A1 „ tmpνq with θApaq´1 “
Γpν{2qpπνqm{2

Γppm`νq{2q

`

1 ` }a}2{ν
˘pm`νq{2

ď

Γpν{2qpπνqm{2

Γppm`νq{2q

`

1 ` }a}2{ν
˘pm`rνsq{2 for any a P Rm, the constantC42 :“ C41

`

νξ21
˘p2k`4rγs`3rνs`4q{2

ą

0 (independent of m, d P N and f : Rm Ñ Rd), and (90), it follows that

Cf “ max
jPN0Xr0,rγs`rνs`1s,

βPNm
0,rγs`rνs`1

ż

R

ˇ

ˇ

ˇ

pψpjqpζq

ˇ

ˇ

ˇ

|ζ|
m
2

˜

ż

Rm
}Bβ

pfpξq}2
p1 ` }ξ{ζ}q2pk`2rγs`rνs`2q

θApξ{ζq
dξ

¸
1
2

dζ

ď max
jPN0Xr0,rγs`rνs`1s,

βPNm
0,rγs`rνs`1

ż ξ2

ξ1

ˇ

ˇ

ˇ

pψpjqpζq

ˇ

ˇ

ˇ

|ζ|
m
2

˜

ż

Rm
}Bβ

pfpξq}2
ˆ

1 `
}ξ}2

ζ2

˙k`2rγs`rνs`2

θA

ˆ

ξ

ζ

˙´1

dξ

¸
1
2

dζ

ď
C41

ξ
m
2
1

max
βPNm

0,rγs`rνs`1

¨

˝

ż

Rm
}Bβ

pfpξq}2
ˆ

1 `
}ξ}2

ξ21

˙

2k`4rγs`2rνs`4
2 Γ

`

ν
2

˘

pπνq
m
2

Γ
`

m`ν
2

˘

ˆ

1 `
}ξ}2

νξ21

˙

m`ν
2

dξ

˛

‚

1
2

ď
C42π

m
4 max p1{ξ1,

?
νq
m

Γ
`

m`ν
2

˘
1
2

max
βPNm

0,rγs`rνs`1

ˆ
ż

Rm
}Bβ

pfpξq}2
`

1 ` }ξ}2
˘

m`2k`4rγs`3rνs`4
2 dξ

˙
1
2

ă 8,

(91)
which completes the proof. □

Proof of Example 4.7. In order to show (a), let w : U Ñ r0,8q be a weight of separable form wpuq :“
w0pu1q ¨ ¨ ¨w0pumq for all u :“ pu1, ..., umqJ P U , where w0 : R Ñ r0,8q is another weight satisfying
ş

Rw0psqds “ 1 and Cpγ,pq

R,w0
:“

` ş

Rp1 ` |s|qγpw0psqds
˘1{p

ă 8. Then, by using that 1 ` }u} ď

1 `
řm
l“1 |ul| ď

řm
l“1p1 ` |ul|q for any u :“ pu1, ..., umqJ P Rm, the inequality px1 ` ... ` xmqγp ď

mγp pxγp1 ...` xγpm q for any x1, ..., xm ě 0, and Fubini’s theorem, it follows that

C
pγ,pq

U,w “

ˆ
ż

U
p1 ` }u}qγpwpuqdu

˙
1
p

ď

˜

ż

U

˜

m
ÿ

l“1

p1 ` |ul|q

¸γp

wpuqdu

¸
1
p

ď mγ

˜

m
ÿ

l“1

ż

Rm
p1 ` |ul|q

γpw0pu1q ¨ ¨ ¨w0pumqdu

¸
1
p

ď mγ

˜

m
ÿ

l“1

ˆ
ż

R
p1 ` |ul|q

γpw0pulqdul
loooooooooooooomoooooooooooooon

“

´

C
pγ,pq

R,w0

¯p

˙ m
ź

i“1
i‰l

ż

Rm
w0puiqdui

looooooomooooooon

“1

¸
1
p

ď C
pγ,pq

R,w0
m
γ` 1

p ,

which shows the inequality in (a).
In order to show (b), we first observe in each case (i)-(iv) that ρ P Ckpol,γpRq is of polynomial

growth and thus induces the tempered distribution
`

g ÞÑ Tρpgq :“
ş

R ρpsqgpsqds
˘

P S 1pR;Cq (see
[Folland, 1992, p. 332]). Now, we fix some m P N and ψ P S0pR;Cq with non-negative pψ P C8

c pRq

such that suppp pψq “ rξ1, ξ2s for some 0 ă ξ1 ă ξ2 ă 8. Then, by using Example 2.9, the Fourier
transform xTρ P S 1pR;Cq coincides on Rzt0u with the function f

xTρ
P L1

locpRzt0u;Cq given in the last

column of (i)-(iv). Hence, in each case (i)-(iv), we use that pψ P C8
c pRq is non-negative to conclude that

Cpψ,ρq
m “ p2πqm´1

ż

Rzt0u

pψpξqf
xTρ

pξq

|ξ|m
dξ “ p2πqm´1

ż ξ2

ξ1

pψpξqf
xTρ

pξq

|ξ|m
dξ ‰ 0.
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This shows that pψ, ρq P S0pR;Cq ˆ Ckpol,γpRq is m-admissible. Moreover, in each case (i)-(iv), we

define the constant Cψ,ρ :“ p2πq´1
ˇ

ˇ

şξ2
ξ1

pψpξqf
xTρ

pξqdξ
ˇ

ˇ (independent of m P N) to conclude that

ˇ

ˇ

ˇ
Cpψ,ρq
m

ˇ

ˇ

ˇ
“ p2πqm´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż ξ2

ξ1

pψpξqf
xTρ

pξq

|ξ|m
dξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż ξ2

ξ1

pψpξqf
xTρ

pξq

2π
dξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

2π

ξ2

˙m

“ Cψ,ρ

ˆ

2π

ξ2

˙m

,

which completes the proof. □

Proof of Remark 4.8. Assume the setting of Example 4.6+4.7 with a function f P L1pRm,LpRmq, p1 `

}u}qrγs`rνs`1du;Rdq X Wm`2k`4rγs`3rνs`4,2pRm,LpRmq, p1 ` } ¨ }q2prγs`rνs`1q;Rdq and some ψ P

S0pR;Cq such that suppp pψq “ rξ1, ξ2s, where 0 ă ξ1 ă ξ2 ă 8. Then, by using Example 4.7 (a),
i.e. that there exists a constant Cpγ,pq

R,w0
ą 0 (independent of m, d P N and f : Rm Ñ Rd) such that

C
pγ,pq

U,w ď C
pγ,pq

R,w0
mγ`1{p, Example 4.7 (b), i.e. that there exists a constant Cψ,ρ ą 0 (independent of

m, d P N and f : Rm Ñ Rd) such that
ˇ

ˇC
pψ,ρq
m

ˇ

ˇ ě Cψ,ρp2π{ξ2qm, the inequality (91) (with constant

C42 ą 0, independent of m, d P N and f : Rm Ñ Rd), the constant C2 :“ C
pγ,pq

R,w0
Cψ,ρC42 ą 0

(independent of m, d P N and f : Rm Ñ Rd), and that ξ1 P p0, ν´1{2s, i.e. that
?
ν ď 1{ξ1, we have

C
pγ,pq

U,w Cf
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

ď C
pγ,pq

R,w0
mγ`1{pCψ,ρ

ξm2
p2πqm

C42π
m
4 max p1{ξ1,

?
νq
m

Γ
`

m`ν
2

˘
1
2

¨ max
βPNm

0,rγs`rνs`1

ˆ
ż

Rm
}Bβ

pfpξq}2
`

1 ` }ξ}2
˘

m`2k`4rγs`3rνs`4
2 dξ

˙
1
2

“ C2
mγ`1{pξm2 π

m
4

p2πξ1qmΓ
`

m`ν
2

˘
1
2

max
βPNm

0,rγs`rνs`1

ˆ
ż

Rm
}Bβ

pfpξq}2
`

1 ` }ξ}2
˘

m`2k`4rγs`3rνs`4
2 dξ

˙
1
2

,

which completes the proof. □

9.4. Proof of Proposition 4.9 and Theorem 4.10. In this section, we first prove the properties of
Algorithm 1 stated in Proposition 4.9. Subsequently, we prove Theorem 4.10 which provides us with the
generalization error of learning a deterministic function by a random neural network.

Proof of Proposition 4.9. Fix a k-times weakly differentiable function f : U Ñ Rd and some J,N P N.

For (i), we first observe that an RdˆN -valued random variable W pJq “

´

W
pJq

i,n

¯n“1,...,N

i“1,...,d
satisfies (14) if

and only if for every i “ 1, ..., d the RN -valued random variable W pJq

i :“
´

W
pJq

i,n

¯J

n“1,...,N
satisfies

W
pJq

i “ argmin
ĂWPWN,1

¨

˝

1

J

J
ÿ

j“1

ÿ

αPNm0,k

c2α

ˇ

ˇ

ˇ

ˇ

ˇ

BαfipVjq ´

N
ÿ

n“1

ĂWnρ
p|α|q

`

AJ
nVj ´Bn

˘

Aαn

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

“ argmin
ĂWPWN,1

›

›

›
Yi ´RĂW

›

›

›

2
,

(92)

where WN,1 consists of all RN -valued FA,B,V {BpRN q-measurable random variables ĂW “

´

ĂWn

¯J

n“1,...,N
.

Then, by using [Björck, 1996, Theorem 1.1.2], (92) forms for every fixed ω P Ω the least squares prob-
lem RpωqJRpωqW

pJq

i pωq “ RpωqJYipωq. Hence, the least squares problem in Step 6 admits by
[Björck, 1996, Theorem 1.2.10] a solution W pJq

i pωq P RN , which shows that Algorithm 1 terminates.
Next, we show that Algorithm 1 is correct. Indeed, by using the first step, (92) is equivalent to

the condition RJRW
pJq

i “ RJYi stated in Step 6 of Algorithm 1. Hence, the RdˆN -valued random

variable W pJq “

´

W
pJq

i,n

¯n“1,...,N

i“1,...,d
indeed solves (14). In the following, we now show that W pJq is

FA,B,V {BpRNˆdq-measurable. For this purpose, we define M :“ J ¨ |Nm0,k| and the set-valued function

RMˆN ˆ RM Q pr, yq ÞÑ Ξpr, yq :“
␣

w P RN : w “ argmin
rwPRN }y ´ r rw}2

(

. (93)
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Then, by using [Björck, 1996, Theorem 1.1.2], we have w P Ξpr, yq if and only if rJrw “ rJy. Hence,
it follows for every open subset U Ď RdˆN that the set

␣

pr, yq P RMˆN ˆ RM : Ξpr, yq X U ‰ H
(

“
␣

pr, yq P RMˆN ˆ RM :
␣

w P RN : rJrw “ rJy
(

X U ‰ H
(

is BpRMˆN ˆ RM q-measurable. Thus, by using the Kuratowski-Ryll-Nardzewski measurable selec-
tion theorem in [Kuratowski and Ryll-Nardzewski, 1965], there exists an BpRMˆN ˆ RM q{BpRN q-
measurable selection of (93), i.e. an BpRMˆN ˆRM q{BpRN q-measurable function χ : RMˆN ˆRM Ñ

RN such that χpr, yq “ argmin
rwPRN }y ´ r rw}2 for all pr, yq P RMˆN ˆ RM . Since the RMˆN -valued

random variable R in Step 3 is by definition FA,B,V {BpRMˆN q-measurable and the RJˆ|Nm0,k|-valued
random variable Yi in Step 5 is by definition FA,B,V {BpRM q-measurable, we conclude that

Ω Q ω ÞÑ W
pJq

i pωq “ argmin
ĂWPWN,1

›

›

›
Yipωq ´RpωqĂW pωq

›

›

›

2
“ χpRpωq, Y pωqq P RN

is FA,B,V {BpRN q-measurable. This implies that the RdˆN -valued random W pJq “

´

W
pJq

i

¯

i“1,...,d
is

FA,B,V {BpRdˆN q-measurable, which shows that W P WN and that the algorithm is correct.
In order to show (ii), we compute the complexity Cm,d,kpJ,Nq of Algorithm 1. In Step 1, we

generate the random variables pAn, Bnqn“1,...,N „ θA b t1pνq, which needs Npm ` 1q units. In
Step 2, we generate the random variables pVjqj“1,...,J „ w, which requires Jm units. In Step 1, we
compute the RpJ ¨|Nm0,k|qˆN -valued random variable R “ pRpj,αq,nq

n“1,...,N
pj,αqPt1,...,JuˆNm0,k

with components

Rpj,αq,n :“ cαρ
p|α|q

`

AJ
nVj ´Bn

˘

Aαn, for pj, αq P t1, ..., Ju ˆ Nm0,k and n “ 1, ..., N , which needs

J
ˇ

ˇNm0,k
ˇ

ˇN

ˆ

m` pm´ 1q
loooooomoooooon

AJ
nVj

` 1
loomoon

`Bn

` 1
loomoon

ρp|α|qp¨q

` |α| ` 1
loomoon

¨Aαn

` 1
loomoon

cα¨

˙

ď J
ˇ

ˇNm0,k
ˇ

ˇNp2m` k ` 3q

units. In Step 5 (inside the for-loop), we compute for fixed i “ 1, ..., d the RJˆ|Nm0,k|-valued random
variable Yi :“ pcαBαfipVjqqpj,αqPt1,...,JuˆNm0,k , which requires 2J |Nm0,k| units. In Step 6 (inside the
for-loop), we solve for fixed i “ 1, ..., d the least squares problem via Cholesky decomposition and for-
ward/backward substitution, which needs 1

2J |Nm0,k|N2 ` 1
6N

3 `O
´

J |Nm0,k|N
¯

units (see [Björck, 1996,
p. 45]). Hence, the complete for-loop in Step 4 executing d-times Step 5+6 requires

d

ˆ

2J
ˇ

ˇNm0,k
ˇ

ˇ `
1

2
J
ˇ

ˇNm0,k
ˇ

ˇN2 `
1

6
N3 ` O

`

J
ˇ

ˇNm0,k
ˇ

ˇN
˘

˙

“ O
`

dJ
ˇ

ˇNm0,k
ˇ

ˇN2 ` dN3
˘

units. Thus, by combining these results and using that |Nm0,k| “
řk
j“0m

j ď 2mk, it follows that

Cm,d,kpJ,Nq “ Npm` 1q ` Jm` J
ˇ

ˇNm0,k
ˇ

ˇNp2m` k ` 3q ` O
`

dJ
ˇ

ˇNm0,k
ˇ

ˇN2 ` dN3
˘

“ O
´

pk ` 1qdJmk`1N2 ` dN3
¯

,

which completes the proof. □

Next, we provide the proof of Theorem 4.10. Let us briefly outline the main ideas of the proof, where
we here in the outline assume for simplicity that k “ 0 and d “ 1. Moreover, we fix some J,N P N
and a function f P L1pRm,LpRmq, duq with |fpuq| ď L for all u P U and prγs ` rνs ` 1q-times weakly
differentiable Fourier transform such that the constant Cf ě 0 defined in (15) is finite. Then, we obtain
from Algorithm 1 a random neural network ΦW

pJq

N P RN ρ,V
U,d with linear readout W pJq P WN solving

(14). From this, we define the L2pU,LpUq, wq-valued random variable

Ω Q ω ÞÑ ∆W pJq

L pωq :“
´

u ÞÑ fpuq ´ TL

´

ΦW
pJq

N pωqpuq

¯¯

P L2pU,LpUq, wq.
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In addition, we define the empirical version Ω Q ω ÞÑ
›

›∆W pJq

L

›

›

J
:“

`

1
J

řJ
j“1

›

›∆W pJq

L p¨qpVjq
›

›

2˘1{2
P R

of
›

›∆W pJq

L

›

›

L2pU,LpUq,wq
. Then, by using the inequality px` yq2 ď 2

`

x2 ` y2
˘

for any x, y ě 0, we have

E
„
ż

U

ˇ

ˇ

ˇ
fpuq ´ TL

´

ΦW
pJq

p¨qpuq

¯
ˇ

ˇ

ˇ

2
wpuqdu

ȷ

“ E
„

›

›

›
∆W pJq

L

›

›

›

2

L2pU,LpUq,wq

ȷ

“ E

«

ˆ

›

›

›
∆W pJq

L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆W pJq

L

›

›

›

J
` 2

›

›

›
∆W pJq

L

›

›

›

J

˙2
ff

ď 2E

«

max

ˆ

›

›

›
∆W pJq

L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆W pJq

L

›

›

›

J
, 0

˙2
ff

` 8E
„

›

›

›
∆W pJq

L

›

›

›

2

J

ȷ

.

(94)

Now, for the first term on the right hand-side of (94), we follow the results on non-parametric function
regression in [Györfi et al., 2002, Section 11.3] to derive an upper bound for the difference between
›

›∆W pJq

L

›

›

L2pU,LpUq,wq
and its empirical version

›

›∆W pJq

L

›

›

J
. Hereby, we use in particular that W pJq P WN

is the least squares solution of (14) and that pVjqj“1,...,J „ w is i.i.d.
Moreover, for the second term on the right-hand side of (94), we use that the mean squared error

(MSE) is minimized by W pJq P WN and is thus smaller than the MSE of the random neural network
ΦW

f
P RN ρ

U,d used in Theorem 4.4, and that pVjqjPN are independent of pAn, BnqnPN to conclude that

E
„

›

›

›
∆W pJq

L

›

›

›

2

J

ȷ

“ E

«

1

J

J
ÿ

j“1

ˇ

ˇ

ˇ
fpVjq ´ ΦW

pJq

N pωqpVjq
ˇ

ˇ

ˇ

2
ff

ď E

«

1

J

J
ÿ

j“1

ˇ

ˇ

ˇ
fpVjq ´ ΦW

f

N pωqpVjq
ˇ

ˇ

ˇ

2
ff

“ E
„

›

›

›
fpuq ´ ΦW

f
›

›

›

2

Wk,2pU,LpUq,du;Rdq

ȷ

.

Hence, we can upper bound the second term on the right-hand side of (94) with Theorem 4.4 (ii).

Proof of Theorem 4.10. Fix some J,N P N, L ą 0, and f P L1pRm,LpRmq, du;Rdq with |Bαfipuq| ď

L for all α P Nm0,k, i “ 1, ..., d, and u P U , and prγs ` rνs ` 1q-times weakly differentiable Fourier trans-
form such that the constant Cf ě 0 defined in (15) is finite. Then, we apply Algorithm 1 to obtain some

ΦW
pJq

N P RN ρ,V
U,d with RdˆN -valued random variable W pJq “

´

W
pJq
n

¯J

n“1,...,N
“

´

W
pJq

i,n

¯n“1,...,N

i“1,...,d
P

WN solving (14). Moreover, by using Lemma 9.5 (with F0 :“ FA,B,V satisfying FA,B Ď FA,B,V Ď F ),
it follows that ΦW

pJq

N : Ω Ñ W k,2pU,LpUq, w;Rdq is an FA,B,V -strongly measurable map with values
in the separable Banach space pW k,2pU,LpUq, du;Rdq, } ¨ }Wk,2pU,LpUq,du;Rdqq.

In order to show (15), we adapt the proof of [Györfi et al., 2002, Theorem 11.3]. To this end, we define
for every α P Nm0,k and i “ 1, ..., d the L2pU,LpUq, wq-valued random variable

Ω Q ω ÞÑ ∆W pJq

α,i,L pωq :“
´

u ÞÑ Bαfipuq ´ TL

´

BαΦ
W pJq

N,i pωqpuq

¯¯

P L2pU,LpUq, wq.

Moreover, we define for every fixed α P Nm0,k, i “ 1, ..., d, a :“ pa1, ..., aN qJ P RNˆm, and b :“

pb1, ..., bN qJ P RN the L2pU,LpUq, wq-valued random variable

Ω Q ω ÞÑ ∆
pa,bq,W pJq

α,i,L pωq :“
´

u ÞÑ Bαfipuq ´ TL

´

BαΦ
pa,bq,W pJq

N,i pωqpuq

¯¯

P L2pU,LpUq, wq,

where Ω Q ω ÞÑ Φ
pa,bq,W pJq

N,i pωq :“
řN
n“1W

pJq

i,n pωqρp|α|q
`

aJ
n ¨ ´bn

˘

aαn P Ckpol,γpUq, where aαn :“
śm
l“1 a

αl
l P R. In addition, we define the (random) empirical mean squared error } ¨ }J of such an

L2pU,LpUq, wq-valued random variable as

Ω Q ω ÞÑ

›

›

›
∆W pJq

α,i,L

›

›

›

J
:“

˜

1

J

J
ÿ

j“1

›

›

›
∆W pJq

α,i,L p¨qpVjq
›

›

›

2
¸

1
2

P R,
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and analogously for
›

›

›
∆

pa,bq,W pJq

α,i,L

›

›

›

J
. Then, by using the inequality px ` yq2 ď 2

`

x2 ` y2
˘

for any

x, y ě 0, conditioning on FA,B , that |Nm0,k| “
řk
j“0m

j ď 2mk, that the random variables pVjqjPN are
independent of pAn, BnqnPN, and the notation pA,Bq :“ pAn, Bnqn“1,...,N it follows that

E

»

–

ÿ

αPNm0,k

ż

U

›

›

›
Bαfpuq ´ TL

´

BαΦ
W pJq

N p¨qpuq

¯›

›

›

2
wpuqdu

fi

fl

ď E

»

–

ÿ

αPNm0,k

d
ÿ

i“1

ż

U

ˇ

ˇ

ˇ
Bαfipuq ´ TL

´

BαΦ
W pJq

N,i p¨qpuq

¯ˇ

ˇ

ˇ

2
wpuqdu

fi

fl

ď
ÿ

αPNm0,k

d
ÿ

i“1

E
„

´

›

›∆W
α,i,L

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆W pJq

α,i,L

›

›

›

J
` 2

›

›

›
∆W pJq

α,i,L

›

›

›

J

¯2
ȷ

ď
ÿ

αPNm0,k

d
ÿ

i“1

E

«

ˆ

max

ˆ

›

›

›
∆W pJq

α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆W pJq

α,i,L

›

›

›

J
, 0

˙

` 2
›

›

›
∆W pJq

α,i,L

›

›

›

J

˙2
ff

ď 2
ÿ

αPNm0,k

d
ÿ

i“1

E

«

max

ˆ

›

›

›
∆W pJq

α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆W pJq

α,i,L

›

›

›

J
, 0

˙2

` 4
›

›

›
∆W pJq

α,i,L

›

›

›

2

J

ff

ď 2
ˇ

ˇNm0,k
ˇ

ˇ d max
αPNm0,k

max
i“1,...,d

E

«

E

«

max

ˆ

›

›

›
∆W pJq

α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆W pJq

α,i,L

›

›

›

J
, 0

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

FA,B

ffff

` 8E

»

–

ÿ

αPNm0,k

d
ÿ

i“1

1

J

J
ÿ

j“1

›

›

›
∆W pJq

α,i,L p¨qpVjq
›

›

›

2

fi

fl

ď 4mkd max
αPNm0,k

max
i“1,...,d

E

»

–E

«

max

ˆ

›

›

›
∆

pa,bq,W pJq

α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆

pa,bq,W pJq

α,i,L

›

›

›

J
, 0

˙2
ff ˇ

ˇ

ˇ

ˇ

ˇ

pa,bq“pA,Bq

fi

fl

` 8E

»

–

ÿ

αPNm0,k

d
ÿ

i“1

1

J

J
ÿ

j“1

›

›

›
∆W pJq

α,i,L p¨qpVjq
›

›

›

2

fi

fl .

(95)
Moreover, we define for every fixed α P Nm0,k, i “ 1, ..., d, a :“ pa1, ..., aN qJ P RNˆm, and b :“

pb1, ..., bN qJ P RN the vector space of random functions

Gpa,bq
α,i :“

#

Ω Q ω ÞÑ

N
ÿ

n“1

ĂWi,nρ
p|α|q

`

aJ
n ¨ ´bn

˘

aαn P C0
pol,γpUq : ĂW “

´

ĂWi,n

¯n“1,...,N

i“1,...,d
P WN

+

.

Then, by following [Györfi et al., 2002, p. 193], i.e. by using [Györfi et al., 2002, Theorem 11.2] (with
the set TLGpa,bq

α,i :“
!

Ω Q ω ÞÑ pu ÞÑ TLpΦpωqpuqqq P C0
pol,γpUq : Φ P Gpa,bq

α,i

)

and where Gpa,bq
α,i has for

fixed a P RNˆm, b P RN , α P Nm0,k, and i “ 1, ..., d the vector space dimension N in the sense of
[Györfi et al., 2002, Theorem 11.1]) together with [Györfi et al., 2002, Lemma 9.2], [Györfi et al., 2002,
Lemma 9.4], and [Györfi et al., 2002, Theorem 9.5], it follows for every u ą 576L2{J that

P

«

max

ˆ

›

›

›
∆

pa,bq,W pJq

α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆

pa,bq,W pJq

α,i,L

›

›

›

J
, 0

˙2

ą u

ff

ď P
„

Dg P TLGpa,bq
α,i : }g}L2pU,LpUq,wq ´ 2}g}J ą

?
u

2

ȷ

ď 9p12eJq2pN`1qe´ Ju
2304L2 .

(96)
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Hence, by using the constant v :“ 2304L2

J ln
`

9p12eJq2pN`1q
˘

ą 576L2{J , the inequality (96), and that
lnp108eq ě 1 together with 2304 ď 9216 lnp108eq, we conclude that

E

«

max

ˆ

›

›

›
∆

pa,bq,W pJq

α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆

pa,bq,W
α,i,L

›

›

›

J
, 0

˙2
ff

“

ż 8

0
P

«

max

ˆ

›

›

›
∆

pa,bq,W pJq

α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆

pa,bq,W
α,i,L

›

›

›

J
, 0

˙2

ą u

ff

du

ď v `

ż 8

v
P

«

max

ˆ

›

›

›
∆

pa,bq,W pJq

α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆

pa,bq,W pJq

α,i,L

›

›

›

J
, 0

˙2

ą u

ff

du

ď v ` 9p12eJq2pN`1q

ż 8

v
e´ Ju

2304L2 du

“
2304L2

J
ln
´

9p12eJq2pN`1q
¯

looooooooooomooooooooooon

ď4N lnp108eJq

2304L2

J
e´ Jv

2304L2

“
2304L2

J
4N plnp108eq ` lnpJqq `

2304L2

J

ď 9216 lnp108eqL2 plnpJq ` 1qN

J
.

(97)

On the other hand, for the second term on the right-hand side of (95), we use that |Bαfipuq| ď L for any
α P Nm0,k, i “ 1, ..., d, and u P U , that }TLpyq} ď }y} for any y P Rd, that the RdˆN -valued random

variable W pJq “

´

W
pJq

i,n

¯n“1,...,N

i“1,...,d
solves (14), and Theorem 4.4 together with FA,B Ď FA,B,V (with

constantC1 ą 0 independent ofm, d P N, where ΦfN P RN ρ
U,dXL2pΩ,FA,B,P;W k,2pU,LpUq, w;Rdq

has FA,B{BpRdˆN q-measurable linear readout contained in WN as FA,B Ď FA,B,V ) to conclude that

E

»

–

ÿ

αPNm0,k

d
ÿ

i“1

1

J

J
ÿ

j“1

›

›

›
∆W pJq

α,i,L p¨qpVjq
›

›

›

2

fi

fl

1
2

“ E

»

–

1

J

J
ÿ

j“1

ÿ

αPNm0,k

›

›

›
TL

´

BαfpVjq ´ BαΦ
W pJq

N p¨qpVjq
¯›

›

›

2

fi

fl

1
2

ď
1

minαPNm0,k cα
E

»

–

1

J

J
ÿ

j“1

ÿ

αPNm0,k

c2α

›

›

›
BαfpVjq ´ BαΦ

W pJq

N p¨qpVjq
›

›

›

2

fi

fl

1
2

“
1

minαPNm0,k cα
E

»

– min
ĂWPWN

¨

˝

1

J

J
ÿ

j“1

ÿ

αPNm0,k

c2α

›

›

›
BαfpVjq ´ BαΦ

ĂW
N p¨qpVjq

›

›

›

2

˛

‚

fi

fl

1
2

ď
1

minαPNm0,k cα
inf

ĂWPWN

E

»

–

1

J

J
ÿ

j“1

ÿ

αPNm0,k

c2α

›

›

›
BαfpVjq ´ BαΦ

ĂW
N p¨qpVjq

›

›

›

2

fi

fl

1
2

ď
maxαPNm0,k cα

minαPNm0,k cα
inf

ĂWPWN

E

»

–

ÿ

αPNm0,k

ż

U

›

›

›
Bαfpuq ´ BαΦ

ĂW
N p¨qpuq

›

›

›

2
wpuqdu

fi

fl

1
2

ď κ
´

pcαqαPNm0,k

¯

E
„

›

›

›
f ´ ΦfN

›

›

›

2

Wk,2pU,LpUq,w,Rdq

ȷ
1
2

ď κ
´

pcαqαPNm0,k

¯

C1

C
pγ,2q

U,w Cf
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

m
k
2

`rγs`rνs`1

?
N

.

(98)
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Hence, by inserting (97) and (98) into (95) with the inequality
?
x` y ď

?
x`

?
y for any x, y ě 0, and

by using the constant C3 :“ max
´

2
a

9216 lnp108eq,
?
8C1

¯

ą 0 (independent of m, d P N), we have

E

»

–

ÿ

αPNm0,k

ż

U

›

›

›
Bαfpuq ´ TL

´

BαΦ
W pJq

N p¨qpuq

¯›

›

›

2
wpuqdu

fi

fl

1
2

ď 2m
k
2

?
d max
αPNm0,k

max
i“1,...,d

E

»

–E

«

max

ˆ

›

›

›
∆

pa,bq,W pJq

α,i,L

›

›

›

L2pU,LpUq,wq
´ 2

›

›

›
∆

pa,bq,W pJq

α,i,L

›

›

›

J
, 0

˙2
ff ˇ

ˇ

ˇ

ˇ

ˇ

pa,bq“pA,Bq

fi

fl

1
2

`
?
8E

»

–

ÿ

αPNm0,k

d
ÿ

i“1

1

J

J
ÿ

j“1

›

›

›
∆W pJq

α,i,L p¨qpVjq
›

›

›

2

fi

fl

1
2

ď 2m
k
2

?
d
a

9216 lnp108eqL

a

lnpJq ` 1
?
N

?
J

`
?
8κ

´

pcαqαPNm0,k

¯

C1

C
pγ,2q

U,w Cf
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

m
k
2

`rγs`rνs`1

?
N

ď C3L

?
mkd

a

lnpJq ` 1
?
N

?
J

` C3κ
´

pcαqαPNm0,k

¯ C
pγ,2q

U,w Cf
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

m
k
2

`rγs`rνs`1

?
N

,

which completes the proof. □

10. PROOFS OF RESULTS IN SECTION 5.

In this section, we provide the proof of Lemma 5.1 in the numerical examples in Section 5.1.

Proof of Lemma 5.1. In order to show (i), we fix some λ ą 0 and an initial condition g : Rm Ñ R that is
a.e. continuous and a.e. bounded. Then, we first observe that (17) can be expressed as convolution of the
kernel p0,8q ˆ Rm Q pt, yq ÞÑ ϕλ,tpt, yq :“ p4πλtq´m{2 exp

´

´
}y}2

4λt

¯

P R with the initial condition
g : Rm Ñ R. Moreover, for every pt, yq P p0,8q ˆ Rm, it holds that that

Bϕλ,t
Bt

pt, yq ´ λ
m
ÿ

l“1

B2ϕλ,t
By2l

pt, yq “

ˆ

}y}2

4λt2
´
m

2t

˙

e´
}y}2

4λt

p4πλtq
m
2

´ λ
m
ÿ

l“1

ˆ

4y2l
p4λtq2

´
2

4λt

˙

e´
}y}2

4λt

p4πλtq
m
2

“ 0.

(99)
Hence, by using [Hörmander, 1990, Theorem 1.3.1], i.e. that Bf

Bt pt, uq “

´

Bϕλ,t
Bt ˚ g

¯

puq and B2f
Bu2l

pt, uq “
´

B2ϕλ,t
B2yl

˚ g
¯

puq for any pt, uq P p0,8q ˆ Rm and l “ 1, ...,m, and the identity (99), it follows for every
pt, uq P p0,8q ˆ Rm that

Bf

Bt
pt, uq ´ λ

m
ÿ

l“1

B2f

Bu2l
pt, uq “

Bpϕλ,t ˚ gq

Bt
pt, uq ´ λ

m
ÿ

l“1

B2pϕλ,t ˚ gq

Bu2l
pt, uq

“

ż

Rm

˜

Bϕλ,t
Bt

pt, u´ vq ´ λ
m
ÿ

l“1

B2ϕλ,t
By2l

pt, u´ vq

¸

gpvqdv “ 0.

Moreover, by using the substitution y ÞÑ u´v
2

?
λt

and the dominated convergence theorem (with the fact

that g : Rm Ñ R is a.e. continuous, i.e. that limtÑ0 g
´

u` 2
?
λty

¯

“ gpuq for a.e. u, y P Rm, and that
g : Rm Ñ R is a.e. bounded, i.e. that there exists some Cg ą 0 such that for a.e. u, y P Rm it holds that

max
´ˇ

ˇ

ˇ
g
´

u` 2
?
λty

¯ˇ

ˇ

ˇ
, |gpuq|

¯

ď Cg), we conclude for a.e. u P Rm that

lim
tÑ0

fpt, uq “ lim
tÑ0

1

p4πλtq
m
2

ż

Rm
e´

}u´v}2

4λt gpvqdv “ lim
tÑ0

1

p2πq
m
2

ż

Rm
e´

}y}2

2 g
´

u` 2
?
λty

¯

dy

“

ˆ

1

p2πq
m
2

ż

Rm
e´

}y}2

2 dy

˙

gpuq “ gpuq.

This shows that the function f : p0,8q ˆ Rm Ñ R defined in (17) indeed solves the PDE (16).
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In order to prove (ii), we fix some γ P r0,8q, p P r1,8q, λ, t, ν P p0,8q, and N P N, and let
g P L1pRm,LpRmq, p1`}u}qrγs`rνs`1duq be a.e. continuous and a.e. bounded. Moreover, letw : Rm Ñ

r0,8q be as in Example 2.8 (a), and let pψ, ρq P S0pR;Cq ˆ C0
pol,γpRq be as in Example 2.8 (b) with

suppp pψq “ rξ1, ξ2s for some 0 ă ξ1 ă ξ2 ă 8. Now, we first show that fpt, ¨q P L1pRm,LpRmq, duq.
Indeed, by using (i), i.e. that fpt, uq “ pϕλ,t ˚ gqpuq :“

ş

Rm ϕλ,tpu ´ yqgpyqdy for any u P Rm (with
ϕλ,t : Rm Ñ R defined above), and Young’s convolutional inequality, it follows that

}fpt, ¨q}L1pRm,LpRmq,duq “ }ϕλ,t ˚ g}L1pRm,LpRmq,duq ď }ϕλ,t}L1pRm,LpRmq,duq}g}L1pRm,LpRmq,duq

“

˜

1

p4πλtq
m
2

ż

Rm
e´

}y}2

4λt dy
looooooooooooomooooooooooooon

“1

¸

}g}L1pRm,LpRmq,p1`}u}qrγs`rνs`1duq ă 8,

which shows that fpt, ¨q P L1pRm,LpRmq, duq.
Next, we show that the Fourier transform {fpt, ¨q : Rm Ñ C is prγs ` rνs ` 1q-weakly differentiable.

To this end, we use Fubini’s theorem, [Folland, 1992, Table 7.2.9], the substitution ζl ÞÑ
?
2λtξl, and

the Hermite polynomials phnqnPN in [Abramowitz and Stegun, 1970, Equation 22.2.15], to conclude for
every β P Nm0,rγs`rνs`1 and ξ P Rm that

Bβ
yϕλ,tpξq “ Bβ

¨

˝

m
ź

l“1

ż

R
e´iξlul

e´
u2l
4λt

?
4πλt

dul

˛

‚“ Bβ

˜

m
ź

l“1

e´λtξ2l

¸

“

m
ź

l“1

Bβl

Bξβll

´

e´λtξ2l

¯

“ p2λtq
|β|

2

m
ź

l“1

Bβl

Bζβll

ˆ

e´
ζ2l
2

˙ ˇ

ˇ

ˇ

ˇ

ζl“
?
2λtξl

“ p2λtq
|β|

2

m
ź

l“1

p´1qβlhβlpζlqe
´
ζ2l
2

ˇ

ˇ

ˇ

ζl“
?
2λtξl

“ p´1q|β|p2λtq
|β|

2

˜

m
ź

l“1

hβl

´?
2λtξl

¯

¸

e´λt}ξ}2 .

(100)

Moreover, we use the polynomial Rm Q u ÞÑ uβ :“
śm
l“1 u

βl
l P R, the inequality

ˇ

ˇuβ
ˇ

ˇ “
śm
l“1 |ul|

βl ď
śm
l“1p1 ` }u}qβl “ p1 ` }u}q|β| ď p1 ` }u}qrγs`rνs`1 for any β P Nm0,rγs`rνs`1 and u P Rm to obtain

for every β P Nm0,rγs`rνs`1 that

}pβ ¨ g}L1pRm,LpRmq,duq “

ż

Rm

ˇ

ˇ

ˇ
uβgpuq

ˇ

ˇ

ˇ
du ď

ż

Rm
|gpuq|p1 ` }u}qrγs`rνs`1du

“ }g}L1pRm,LpRmq,p1`}u}qrγs`rνs`1duq ă 8.
(101)

Hence, by iteratively applying [Folland, 1992, Theorem 7.8. (c)], we conclude that the partial derivative
Bβpg : Rm Ñ C exists, for all β P Nm0,rγs`rνs`1. Thus, by using [Folland, 1992, Theorem 7.8. (d)] and the
Leibniz product rule, we conclude for every β P Nm0,rγs`rνs`1 and ξ P Rm that

Bβ
{fpt, ¨qpξq “ Bβ

´

yϕλ,tpξqpgpξq

¯

“
ÿ

β1,β2PNm0
β1`β2“β

β!

β1!β2!
Bβ1

yϕλ,tpξqBβ2pgpξq, (102)

which shows that {fpt, ¨q : Rm Ñ C is prγs ` rνs ` 1q-weakly differentiable.
Now, we compute the constant Cfpt,¨q ě 0 defined in (9). To this end, we define the constant

c :“ 1 ` rγs ` rνs P N (independent of m P N). Then, by using the explicit expression of the Hermite
polynomials in [Abramowitz and Stegun, 1970, Equation 22.3.11] together with the triangle inequality,
that |ζl|

βl´2jl ď p1 ` }ζ}qβl´2jl ď p1 ` }ζ}qβl for any l “ 1, ...,m, β P Nm0 , jl “ 0, ..., tβl{2u, and ζ P

Rm, that
řtβl{2u

jl“1
βl!

2jljl!pβl´2jlq!
ď maxjl“1,...,tβl{2u

p2jlq!
jl!

řtβl{2u

jl“1
βl!

p2jlq!pβl´2jlq!
ď βl!

řβl
kl“1

βl!
kl!pβl´klq!

“

2βlβl! for any l “ 1, ...,m and β P Nm0 , the inequality
śm
l“1 βl! “ β! ď |β|! ď c! for any β P Nm0,c, and
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the inequality px` yq2 ď 2
`

x2 ` y2
˘

for any x, y ě 0, it follows for every β P Nm0,c and ζ P Rm that

m
ź

l“1

|hβlpζlq| ď

m
ź

l“1

¨

˝

tβl{2u
ÿ

jl“1

βl!|ζl|
βl´2jl

2jljl!pβl ´ 2jlq!

˛

‚ď

m
ź

l“1

¨

˝p1 ` }ζ}q
βl

tβl{2u
ÿ

jl“1

βl!

2jljl!pβl ´ 2jlq!

˛

‚

ď p1 ` }ζ}q|β|

m
ź

l“1

2βlβl! ď 2cc!p1 ` }ζ}qc ď 2c`1c!
`

1 ` }ζ}2
˘
c
2 .

(103)

Hence, by inserting (103) into (100) and by using the constant C51 :“ 2cc! maxp1, 2λtqc ą 0, we
conclude for every β P Nm0,c and ξ P Rm that

ˇ

ˇ

ˇ
Bβ

yϕλ,tpξq

ˇ

ˇ

ˇ
ď p2λtq

|β|

2 2cc!

ˆ

1 `

›

›

›

?
2λtξ

›

›

›

2
˙
c
2

e´λt}ξ}2 ď C51

`

1 ` }ξ}2
˘
c
2 e´λt}ξ}2 . (104)

Moreover, for every b P N0, we use that Y :“ }Z}2 of Z „ Nmp0, Imq follows a χ2pmq-distribution
with probability density function r0,8q Q y ÞÑ

ym{2´1e´y{2

2m{2Γpm{2q
P r0,8q, the substitution x ÞÑ y{2, and the

definition of the Gamma function in [Abramowitz and Stegun, 1970, Equation 6.1.1] to obtain that

ż

Rm
}z}b

e´
}z}2

2

p2πq
m
2

dz “ E
”

}Z}b
ı

“ E
”

Y
b
2

ı

“

ż 8

0
y
b
2
y
m
2

´1e´
y
2

2
m
2 Γ

`

m
2

˘ dy

“
2
b`m
2

2
m
2 Γ

`

m
2

˘

ż 8

0
x
b`m
2

´1e´xdx “ 2
b
2
Γ
`

m`b
2

˘

Γ
`

m
2

˘ .

(105)

Now, in order to ease notation, we define sm :“ m` s0 P N0 (depending on m P N) with s0 :“ 4rγs `

3rνs ` 4 P N0 (independent of m P N). Then, by using the inequality (104) together with the constant
C52 :“ C51max

`

1{ν, ξ21
˘

ą 0 (independent ofm P N), that px`yqsm{2`c ď 2sm{2`c
`

xsm{2`c ` ysm{2`c
˘

for any x, y ě 0, the substitution z ÞÑ
?
4λtξ, the identity (105) with b :“ 0 P N0 and b :“ m` t P N0,

and the constants C53 :“ C522
c
´

2ξ42ν

16ξ21π
3

¯s0{2
ą 0, C54 :“ C52p2λtq´c

´

ξ42
32ξ41π

3λt

¯s0{2
ą 0, and

c0 :“ s0{2 ` c P r0,8q (independent of m P N) to conclude that
ż

Rm

ˇ

ˇ

ˇ
Bβ

yϕλ,tpξq

ˇ

ˇ

ˇ

2
ˆ

ξ42
16ξ21π

3

ˆ

ν `
}ξ}2

ξ21

˙˙

sm
2

dξ ď C52

ˆ

ξ42
16ξ21π

3

˙

sm
2
ż

Rm

ˆ

ν `
}ξ}2

ξ21

˙

sm
2

`c

e´2λt}ξ}2dξ

ď C522
sm
2

`c

ˆ

ξ42
16ξ21π

3

˙

sm
2
ˆ

ν
sm
2

ż

Rm
e´2λt}ξ}2dξ `

1

ξsm1

ż

Rm
}ξ}sm`2ce´2λt}ξ}2dξ

˙

ď C522
sm
2

`c

ˆ

ξ42
16ξ21π

3

˙

sm
2

¨

˝ν
sm
2 p2πq

m
2

ż

Rm

e´
}z}2

2

p2πq
m
2

dz `
p2πq

m
2

ξsm1 p4λtq
sm
2

`c

ż

Rm
}z}sm`2c e

´
}z}2

2

p2πq
m
2

dξ

˛

‚

ď C522
sm
2

`c

ˆ

ξ42
16ξ21π

3

˙

sm
2

ν
sm
2 p2πq

m
2 ` C52

ˆ

ξ42
16ξ21π

3

˙

sm
2 p2πq

m
2

ξsm1 p4λtq
sm
2

`c
2
sm`2c

2
Γ
`

m`sm`2c
2

˘

Γ
`

m
2

˘

“ C53

ˆ

ξ22
?
ν

2πξ21

˙m

` C54

˜

ξ22
4π

?
λtξ21

¸m
Γ pm` c0q

Γ
`

m
2

˘ .

(106)
Moreover, for the second term on the right-hand side of (106), we use [Gonon et al., 2021, Lemma 2.4],
i.e. that

a

2π{xpx{eqx ď Γpxq ď
a

2π{xpx{eqxe1{p12xq ď
a

4π{xpx{eqx for any x P r1{2,8q, and the
constant C55 :“ 2ν{2p1 ` c0qc0 ą 0 (independent of m P N) to obtain that

Γ pm` c0q

Γ
`

m
2

˘

Γ
`

m`ν
2

˘ ď

b

8π
m`c0

pm` c0qm`c0e´m´c0

b

4π
m

`

m
2

˘
m
2 e´m

2

b

4π
m`ν

`

m`ν
2

˘
m`ν

2 e´m`ν
2

ď
?
m2m` ν

2
mm`c0p1 ` c0qm`c0

m
m
2 m

m`ν
2

ď mc0` 1
2 p2 ` 2c0qm.

(107)
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Hence, by using the inequalities (106)+(107), the finite constantC55 :“ C53 supmPN

´

ξ22
?
ν

2πξ21

¯m
{Γ

`

m`ν
2

˘

ą

0 (independent of m P N), and the inequality
?
x` y ď

?
x`

?
y for any x, y ě 0, it follows that

¨

˚

˝

ż

Rm

ˇ

ˇ

ˇ
Bβ1

yϕλ,tpξq

ˇ

ˇ

ˇ

2
`

1 ` }ξ}2
˘
sm
2

Γ
`

m`ν
2

˘ dξ

˛

‹

‚

1
2

ď

¨

˝C53

´

ξ22
?
ν

2πξ21

¯m

Γ
`

m`ν
2

˘ ` C54

˜

ξ22
4π

?
λtξ21

¸m
Γ pm` c0q

Γ
`

m
2

˘

Γ
`

m`ν
2

˘

˛

‚

1
2

ď

˜

C55 ` C54

˜

ξ22
4π

?
λtξ21

¸m

mc0` 1
2 p2 ` 2c0qm

¸
1
2

ď
a

C53 `
a

C54

˜

p1 ` c0qξ22
2π

?
λtξ21

¸
m
2

m
2c0`1

4 .

(108)
Now, we use that suppp pψq “ rξ1, ξ2s, the identity (102), Minkowski’s inequality, the inequality px `

yq2 ď 2
`

x2 ` y2
˘

for any x, y ě 0, the constant C56 :“ maxjPN0Xr0,rγs`rνs`1s

ş8

ξ1

ˇ

ˇ

ˇ

pψpjqpζq

ˇ

ˇ

ˇ
dζ ą 0

(independent ofm P N), the inequality (26) for the sum of multinomial coefficients, thatA1 „ tmpνq with
θApaq´1 “

Γpν{2qpπνqm{2

Γppm`νq{2q

`

1 ` }a}2{ν
˘pm`νq{2

ď
Γpν{2qpπνqm{2

Γppm`νq{2q

`

1 ` }a}2{ν
˘pm`rνsq{2 for any a P Rm,

the constant C57 :“ 2cC56

´

ξ42ν

16ξ21π
3

¯p4rγs`3rνs`4q{2
maxp1, 1{νqrνs{2 ą 0 (independent of m P N),

[Folland, 1992, Theorem 7.8. (c)] componentwise, the inequality (108), that c0 ď 3rγs ` 3rνs ` 3,
the inequality (2), the inequality (101), and the constants C58 :“ C57max pC53, C54q

1{2 and C59 :“
p2c0 ` 1q{4 ą 0 (independent of m P N) to conclude that

Cfpt,¨q “ max
jPN0Xr0,rγs`rνs`1s,

βPNm
0,rγs`rνs`1

ż

R

ˇ

ˇ

ˇ

pψpjqpζq

ˇ

ˇ

ˇ

|ζ|
m
2

˜

ż

Rm

ˇ

ˇ

ˇ
Bβ

{fpt, ¨qpξq

ˇ

ˇ

ˇ

2 p1 ` }ξ{ζ}q4rγs`2rνs`4

θApξ{ζq
dξ

¸
1
2

dζ

“ max
jPN0Xr0,cs,

βPNm0,c

ż ξ2

ξ1

ˇ

ˇ

ˇ

pψpjqpζq

ˇ

ˇ

ˇ

|ζ|
m
2

¨

˚

˚

˝

ż

Rm

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

β1,β2PNm0
β1`β2“β

β!

β1!β2!
Bβ1

yϕλ,tpξqBβ2pgpξq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

p1 ` }ξ{ζ}q4rγs`2rνs`4

θApξ{ζq
dξ

˛

‹

‹

‚

1
2

dζ

ď C56 max
βPNm0,c

ÿ

β1,β2PNm0,c
β1`β2“β

β!

β1!β2!

¨

˚

˝

ż

Rm

ˇ

ˇ

ˇ
Bβ1

yϕλ,tpξqBβ2pgpξq

ˇ

ˇ

ˇ

2

ξm1

´

1 `
}ξ}2

ξ21

¯4rγs`2rνs`4

θA

´

ξ
ξ1

¯ dξ

˛

‹

‚

1
2

ď 2cC56 max
β1,β2PNm0,c

¨

˚

˝

ż

Rm

ˇ

ˇ

ˇ
Bβ1

yϕλ,tpξqBβ2pgpξq

ˇ

ˇ

ˇ

2

ξm1

ˆ

1 `
}ξ}2

ξ21

˙

4rγs`2rνs`4
2 Γ

`

ν
2

˘

pπνq
m
2

Γ
`

m`ν
2

˘

ˆ

1 `
}ξ}2

νξ21

˙

m`rνs

2

dξ

˛

‹

‚

1
2

ď C57
p2πqm

ξm2
max
βPNm0,c

¨

˚

˚

˝

ż

Rm

ˇ

ˇ

ˇ
Bβ1

yϕλ,tpξq

ˇ

ˇ

ˇ

2 ´ ξ42
16ξ21π

3

´

ν `
}ξ}2

ξ21

¯¯

m`4rγs`3rνs`4
2

Γ
`

m`ν
2

˘ dξ

˛

‹

‹

‚

1
2

max
β2PNm0,c

sup
ξPRm

ˇ

ˇ

ˇ

{ppβ2 ¨ gqpξq

ˇ

ˇ

ˇ

ď C57
p2πqm

ξm2

¨

˝

a

C53 `
a

C54

˜

p1 ` c0qξ22
2π

?
λtξ21

¸
m
2

m
2c0`1

4

˛

‚}pβ2 ¨ g}L1pRm,LpRmq,duq

ď C58m
C59

p2πqm

ξm2

¨

˝1 `

˜

p3rγs ` 3rνs ` 4qξ22
2π

?
λtξ21

¸
m
2

˛

‚}g}L1pRm,LpRmq,p1`}u}qrγs`rνs`1duq ă 8.

(109)
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Since Cf ě 0 is finite, we can apply Theorem 4.4 (ii) (with constant C1 ą 0, independent of m P N) to
conclude that there exists some ΦN P RN ρ

Rm,1 X L2pΩ,FA,B,P;LppRm,LpRmq, wpuqduqq such that

E
”

}fpt, ¨q ´ ΦN}2LppRm,LpRmq,wpuqduq

ı
1
2

ď C1

C
pγ,pq

Rm,wCf
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

mrγs`rνs`1

N
1´ 1

minp2,pq

.

Hence, by using that the weight w : Rm Ñ r0,8q is as in Example 4.7 (a), i.e. that there exists a constant
C

pγ,pq

R,w0
ą 0 (independent ofm P N) such thatCpγ,pq

Rm,w ď C
pγ,pq

R,w0
mγ`1{p, that pψ, ρq P S0pR;CqˆC0

pol,γpRq

is as in Example 4.7 (b), i.e. that there exists a constant Cψ,ρ ą 0 (independent of m P N) such that
ˇ

ˇC
pψ,ρq
m

ˇ

ˇ ě Cψ,ρp2π{ξ2qm, the inequality (109), and the constants C4 :“ C1C
pγ,pq

R,w0
C58{Cψ,ρ ą 0 and

C5 :“ γ ` 1{p` rγs ` rνs ` 1 ą 0 (independent of m P N), it follows that

E
”

}fpt, ¨q ´ ΦN}2LppRm,LpRmq,wpuqduq

ı
1
2

ď C1

C
pγ,pq

Rm,wCf
ˇ

ˇ

ˇ
C

pψ,ρq
m

ˇ

ˇ

ˇ

mrγs`rνs`1

N
1´ 1

minp2,pq

ď C1

C
pγ,pq

R,w0
m
γ` 1

p ξm2

Cψ,ρp2πqm

mrγs`rνs`1

N
1´ 1

minp2,pq

C58m
C59

p2πqm

ξm2

¨

˝1 `

˜

p3rγs ` 3rνs ` 3qξ22
2π

?
λtξ21

¸
m
2

˛

‚

¨ }g}L1pRm,LpRmq,p1`}u}qrγs`rνs`1duq

ď

C4m
C5

ˆ

1 `

´

p3rγs`3rνs`3qξ22
2π

?
λtξ21

¯
m
2

˙

}g}L1pRm,LpRmq,p1`}u}qrγs`rνs`1duq

N
1´ 1

minp2,pq

,

which proves the inequality (18) in (ii).
Finally, in order to show (iii), we fix some R ą 0 and κ P r0, 1{2q. Then, the function Rm Q u ÞÑ

gpuq :“ 1BmκRp0q
puq P R is a.e. bounded and a.e. continuous. Moreover, by using the inequality

}u}2 “
řm
l“1 u

2
l ď mR2m2κ “ m2κ`1R2 for any u P BmκRp0q, that the volume of the ball Brp0q is

equal to πm{2rm

Γpm{2`1q
for any r ě 0, and [Gonon et al., 2021, Lemma 2.4], i.e. that Γpxq ě

a

2π{xpx{eqx

for any x P p0,8q, it follows that

Cg :“ }g}L1pRm,LpRmq,p1`}u}qrγs`rνs`1duq “

ż

Rm
|gpuq|p1 ` }u}qrγs`rνs`1du

ď

´

1 `mκ` 1
2R

¯rγs`rνs`1
ż

BmκRp0q

du “

´

1 `mκ` 1
2R

¯rγs`rνs`1 π
m
2 pmκRq

m

Γ
`

m
2 ` 1

˘

ď 2e
´

1 `mκ` 1
2R

¯rγs`rνs`1 p2eπq
m
2 Rmmκm

b

4π
m`2pm` 2q

m
2

`1
ď

2e
´

1 `mκ` 1
2R

¯rγs`rνs`1
p2eπq

m
2 Rm

mmp1{2´κq
ă 8.

Hence, by inserting this into the right-hand side of (18) and by using the constant

C60 :“ sup
mPN

¨

˚

˝

C4m
C5

¨

˝1 `

˜

3prγs ` rνs ` 2qξ22
2π

?
λtξ21

¸
m
2

˛

‚

2e
´

1 `mκ` 1
2R

¯rγs`rνs`1
p2eπq

m
2 Rm

mmp1{2´κq

˛

‹

‚

ă 8,

which is finite as κ P r0, 1{2q, we conclude that

C4m
C5

ˆ

1 `

´

3prγs`rνs`2qξ22
2π

?
λtξ21

¯
m
2

˙

Cg

N
1´ 1

minp2,pq

ď

C4m
C5

ˆ

1 `

´

3prγs`rνs`2qξ22
2π

?
λtξ21

¯
m
2

˙

2e
´

1`mκ` 1
2R

¯rγs`rνs`1
p2eπq

m
2 Rm

mmp1{2´κq

N
1´ 1

minp2,pq

ď
C60

N
1´ 1

minp2,pq

.

This shows that the right-hand side of (18) grows polynomially in m P N. □
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