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SENSITIVITY OF ROBUST OPTIMIZATION PROBLEMS UNDER DRIFT

AND VOLATILITY UNCERTAINTY

DANIEL BARTL, ARIEL NEUFELD, AND KYUNGHYUN PARK

Abstract. We examine optimization problems in which an investor has the opportunity to
trade in d stocks with the goal of maximizing her worst-case cost of cumulative gains and
losses. Here, worst-case refers to taking into account all possible drift and volatility pro-
cesses for the stocks that fall within a ε-neighborhood of predefined fixed baseline processes.
Although solving the worst-case problem for a fixed ε > 0 is known to be very challenging
in general, we show that it can be approximated as ε → 0 by the baseline problem (com-
puted using the baseline processes) in the following sense: Firstly, the value of the worst-case
problem is equal to the value of the baseline problem plus ε times a correction term. This
correction term can be computed explicitly and quantifies how sensitive a given optimization
problem is to model uncertainty. Moreover, approximately optimal trading strategies for the
worst-case problem can be obtained using optimal strategies from the corresponding baseline
problem.

Key words. sensitivity analysis, robust stochastic optimization, model uncertainty, Itô-
semimartingale, backward stochastic differential equations
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1. Introduction

Consider a semimartingale S = (St)t∈[0,T ] representing the evolution of the value of a d-

dimensional (discounted) stock price over time. We assume that a decision maker holds a

financial position of the form h(ST ) and aims to hedge against possible losses. To that end,

she starts with an initial capital x0 ∈ R and has the opportunity to buy and sell the stock S

without transaction costs. If she invests according to the trading strategy H (i.e., a predictable

process), her capital at the terminal time T equals her initial capital x0 plus the cumulated

sums of gains and losses from trading, i.e. the stochastic integral (H · S)T :=
∫ T

0
H⊤

t dSt. The

central objective the decision maker faces is to solve the following optimization problem

inf
H

E

[
f
(
x0 + (H · S)T , h(ST )

)]
,(1.1)

where the infimum is taken over a suitable class of trading strategies H and f : R2 → R is the

individual cost function of the decision maker. Notable examples that fall within this framework

are utility maximization (e.g., [17,18,38,44,48]) in which case f(x, h) = −U(−x−h) for a concave

and increasing utility function U : R → R, and mean-variance hedging (e.g., [25,77,83]) in which

case f(x, h) = (x− L− h)2 for a fixed target level L > 0.
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Arguably, one of the most common models for the underlying S is that it follows the dynamics

dSt := dS
b,σ
t = btdt+ σtdWt, S

b,σ
0 = s0 ∈ Rd,(1.2)

where W is a Brownian motion and the (possibly random and time-dependent) drift and volatil-

ity are given by the predictable processes b and σ, respectively. We refer to [25, 36, 37, 44, 83]

for a handful of the many articles analyzing problems similar to (1.1) in the setting (1.2).

A significant challenge arises when implementing this framework in practice: the true values

of the parameters b and σ used to define S in (1.2) are not perfectly known. Instead, they

are typically estimated using e.g. historical market data and expert insights. Even though

these estimation techniques strive to provide parameter values that closely approximate their

actual counterparts, a margin for potential inaccuracies inherently exists. While this issue has

always been present, it gained particularly prominent attention following the financial crisis in

2008. Since then, a substantial body of research in mathematical finance has been dedicated

to developing methods that can accommodate potential model misspecification.

The most prominent approach can be traced back to the seminal papers [15, 24, 30] and is

widely recognized as the ‘worst-case’ approach, or Knightian approach to model uncertainty.

In our current context, it consists in fixing an entire set U of parameters (b, σ) that one would

consider reasonable candidates for representing the actual drift and volatility. Subsequently,

the objective is to address the worst-case optimization problem given by

inf
H

sup
(b,σ)∈U

E

[
f
(
x0 + (H · Sb,σ)T , h(Sb,σ

T )
)]

.(1.3)

It is evident that (1.3) and (1.1) coincide when the set U is a singleton; however, in general,

there exists a significant degree of latitude in selecting U . One seemingly intuitive approach

consists in starting with parameters (bo, σo) that are derived from some estimation procedure

which one would typically employ in the non-robust problem (1.1), and then defining U by

adding all small perturbations of these parameters, effectively creating a small neighborhood

around (bo, σo).

Before examining that specific choice of U in more details, we note that problems of the

form in (1.3) have conceived a considerable amount of attention in the mathematical finance

community. In fact, most of the fundamental and often technically demanding mathematical

questions therein are understood fairly well by now and genuinely have affirmative answers.

We refer e.g. to [10,22,61,80,82] for the existence of an optimal strategy of (1.3); to [11,27,53,74]

for an analysis of the dynamic programming principle; to [3, 23, 33, 63, 66, 76] for the relation

of the present hedging problem to a dual pricing problem; to [21,59,60,62,69,70] for modeling

uncertainty in semimartingale characteristics; to [5, 7, 8, 67, 68] for extensions of (1.3) with

optimal stopping time; and to [16, 55, 78, 79] for relations to second-order backward stochastic

differential equations.

That being said, it is crucial to highlight that the mere existence of an optimal strategy,

while theoretically intriguing, may not be particularly practical. Indeed, the primary interest

of a decision maker often lies rather in finding methods to compute it. However, this is precisely

where the worst-case approach encounters a notable limitation: The computation of both the

value and the optimal strategy in (1.3) is notoriously difficult and except in a few exceptional

cases (see [10, 27, 53, 61, 66]), explicit solutions are unknown.
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The goal of this article is to overcome this limitation and show that in the setting where U

is a small neighborhood of fixed parameters (bo, σo), the following hold.

· The value of the robust optimization problem (1.3) can be approximated accurately by (1.1).

· An almost optimal strategy for (1.3) can be derived using an optimal strategy for (1.1).

· Each optimization problem (1.1) has an associated number that quantifies how sensitive it

is towards model uncertainty, i.e. by how much larger (1.3) is than (1.1). Moreover, that

number can be computed explicitly.

Roughly put, the notion of sensitivity can be thought of as a robust variant of the so-called

‘Vega’ parameter in the Black-Scholes framework. For example, if the optimal strategy for the

non-robust problem (1.1) computed with parameters (bo, σo) is ‘greedy’, even slight parameter

variations can have a significant impact, leading to substantial differences between (1.1) and

(1.3).

We proceed to describe our results more rigorously. For p ≥ 1, denote by Lp and Hp the

set of all predictable processes Z with values in Rd and Rd×d, respectively. We endow Lp with

the norm ‖Z‖pLp := E[
∫ T

0 |Zt|
p dt] where | · | is the Euclidean norm, and Hp with the norm

‖Z‖pHp := E[(
∫ T

0 ‖Zt‖
2
F dt)p/2] where ‖ · ‖F is the Frobenius / Hilbert-Schmidt norm.

Let p > 3 and set γ, η ≥ 0. Fix baseline parameters bo ∈ Lp and σo ∈ Hp, e.g. the

‘estimators’, and for ε ≥ 0 denote by

Bε :=
{
(b, σ) ∈ Lp ×Hp : ‖b− bo‖Lp ≤ γε and ‖σ − σo‖Hp ≤ ηε

}
(1.4)

the set of all parameters that fall in the ε-neighborhood of the baseline parameters, weighted

by the ‘aversion parameters’ γ, η. We typically think of γ = η = 1 (corresponding to drift and

volatility uncertainty) or η = 0 (drift uncertainty) or γ = 0 (volatility uncertainty).

Consider the robust optimization problem (1.3) with the choice U = Bε, that is,

V (ε) := inf
H

sup
(b,σ)∈Bε

E

[
f
(
x0 + (H · Sb,σ)T , h(Sb,σ

T )
)]

,(1.5)

where the infimum is taken over all predictable trading strategies H taking values in some fixed

convex compact subset of Rd. The latter is a technical condition that is not too restrictive, see

also Remark 2.6. In particular, V (0) is the non-robust optimization problem computed using

the baseline parameters bo and σo.

In Theorem 2.13 we show that if f is strictly convex in its first argument, f, h are twice contin-

uously differentiable, σo is non-degenerate, and f, h, bo, σo satisfy modest growth assumptions,

then the following hold. As ε ↓ 0,

V (ε) = V (0) + ε
(
γ
∥∥Y ∗H∗ + Y∗

∥∥
Lq + η

∥∥Z∗(H∗)⊤ + Z∗
∥∥
Hq

)
+O(ε2),(1.6)

where O denotes the Landau symbol, H∗ is the unique optimizer for V (0), and q = p
p−1 is

the conjugate Hölder exponent to p. Moreover, the processes Y ∗,Y∗, Z∗,Z∗ appearing in (1.6)

take the following form: set So = Sbo,σo

to be stock following the baseline parameters and for
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simplicity here in the introduction let d = 1. Then

Y ∗
t = E

[
∂xf

(
x0 + (H∗ · So)T , h(So

T )
)∣∣Ft

]
,

Y∗
t = E

[
∂yf

(
x0 + (H∗ · So)T , h(So

T )
)
h′(So

T )
∣∣Ft

]
,

Z∗
t =

d

dt
〈Y ∗,W 〉t, and Z∗

t =
d

dt
〈Y∗,W 〉t,

where 〈M,N〉 denotes their predictable covariation between two martingales M and N .

Next, imposing the same assumption made before on f, h, bo, σo, recall that H∗ is the unique

optimizer for the non-robust problem V (0), and set

V ∗(ε) = sup
(b,σ)∈Bε

E

[
f
(
x0 + (H∗ · Sb,σ)T , h(Sb,σ

T )
)]

.

In other words, V ∗(ε) tracks how well the optimal strategy computed for the baseline parameters

(bo, σo) performs in the worst case when nature is allowed to maliciously select parameter

variations (b, σ) ∈ Bε. Hence one might actually argue that the quantity V ∗(ε) is practically

more relevant than V (ε). In Theorem 2.14 we show that as ε ↓ 0,

V ∗(ε) = V (ε) +O(ε2).

In particular, (V ∗)′(0) = V ′(0) and there is no need for the challenging computation of the

robust strategy: up to a second order correction term, the unique optimal strategy H∗ computed

for (bo, σo) will perform just as good as the strategy computed for the robust optimization

problem V (ε).

Related literature. The results that are closest to the present ones were obtained in the

context of Wasserstein distributionally robust optimization, i.e. when Bε consists in all proba-

bility laws (for Sb,σ) which are close in Wasserstein distance to the distribution of So. Starting

with [12,29,56,71], this branch of research has gained a significant amount of attention and in

a one-period framework, a sensitivity analysis similar to ours was obtained in [2,28,58,64]. In a

multi-period framework the classical Wasserstein distance is not a suitable distance because it

neglects the temporal structure of stochastic processes, see e.g. [1, 72, 73]. Instead, an adapted

variant takes its role, and a sensitivity analysis similar to ours (but w.r.t the adapted Wasser-

stein distance) was established in [4, 42] in a discrete-time setting. It is important to highlight

that although certain proof techniques in the present article bear similarities to those in the

above settings, there are significant distinctions. Most notably, our choice of Bε is far more rigid

than its Wasserstein counterpart. Consequently, we cannot directly apply the duality between

Lp and Lq spaces to deduce the value of V ′(0) (e.g. as in [2,4]); instead, a substantial portion of

our efforts revolves around establishing a suitable representation involving BSDE’s which allow

to express V ′(0) as the supremum over certain linear functions.

In a continuous-time time framework, [34,35] analyze the sensitivity of utility maximization

problems to volatility-uncertainty in a somewhat different setting to ours. Roughly put, instead

of taking the supremum only over those processes σ that satisfy ‖σ − σo‖Hp ≤ ε, they allow

for all σ’s and penalize by 1
ε multiplied by ‘far’ σ is from σo. The notion of being far takes a

form similar to a KL-divergence but, crucially, with the specific choice of the utility function

(i.e. f in the present setting) appearing in its definition. In particular, the sensitivity to model

uncertainty (corresponding to V ′(0) in the present setting) obtained in [34,35] does not depend

on the choice of the utility function nor on the optimal trading strategy H∗.
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For completeness, let us also mention that analyzing the (quantitative) continuity of non-

robust optimization problems w.r.t. changes in the model is a classical topic. We refer e.g.

to [13, 14, 51, 81] and the references therein for some general background, and to [6, 26, 52, 57]

for works focusing on problems in mathematical finance.

2. Main results

2.1. Notation and preliminaries. Fix d ∈ N. We endow Rd and Rd×d with the Euclidean

inner product 〈·, ·〉 and the Frobenius inner product 〈·, ·〉F, respectively. Let Sd+ be the set of

all symmetric, positive semi-definite d× d matrices and let Sd++ ⊂ Sd+ be the subset of strictly

positive definite matrices. We denote by Id the identity matrix on Rd×d and for two d × d

matrices A and B, we write A ≤ B if B −A ∈ Sd+.

Next, let us introduce the following function spaces:

· C([0, T ];Rd) (resp. C([0, T ];Rd×d)) is the set of all Rd-valued (resp. Rd×d-valued), contin-

uous functions on [0, T ];

· Ck(Rd) is the set of all real-valued, k-times continuously differentiable functions on Rd.

We denote by ∇g = (∂s1g, . . . , ∂sdg)
⊤ : Rd → Rd the gradient of g and by D2g : Rd → Sd

its Hessian.

Let (Ω,F ,F := (Ft)t∈[0,T ],P) be a filtered probability space that satisfies the usual conditions

of right-continuity and completeness, where T is a fixed finite time horizon. We assume that F0

is trivial. Fix a d-dimensional Brownian motion W = (Wt)t∈[0,T ] on that filtered probability

space. For any probability measure Q on (Ω,F), we write EQ[·] for the expectation under Q

and set E[·] := EP[·]. For sufficiently integrable Rd-valued processes Y and Z, let

〈Y, Z〉Q⊗dt := EQ

[∫ T

0

〈Yt, Zt〉dt

]
.

In a similar manner, 〈Y, Z〉Q⊗dt,F := EQ[
∫ T

0
〈Yt, Zt〉Fdt] for Rd×d-valued processes. We denote

by
Q
−→ the convergence in Q-measure and adopt a similar notation for convergence in Q ⊗ dt-

measure. Finally, for p ≥ 1, denote by CBDG,p ≥ 1 the constant appearing in the (upper)

Burkholder-Davis-Gundy (BDG) inequality with exponent p (see [20, Theorem 92, Chap. VII]).

For any real-valued semimartingales M = (Mt)t∈[0,T ] and N = (N)t∈[0,T ] with locally in-

tegrable quadratic variation, we denote by ([M,N ]t)t∈[0,T ] the quadratic co-variation and by

(〈M,N〉t)t∈[0,T ] the F-predictable quadratic co-variation (i.e., the compensator of ([M,N ]t)t∈[0,T ]).

Note that by [41, Theorem 4.52, p. 55], for any t ∈ [0, T ], we have that [M,M ]t := 〈M c,M c〉t+∑
0≤s≤t|∆Ms|

2 where M c is the continuous martingale part of M and ∆Mt := Mt −Mt−.

Finally, for any p ≥ 1, consider the following spaces.

· Lp(FT ;R
d) is the set of all Rd-valued, FT -measurable random variables X such that

‖X‖pLp := E[|X |p] < ∞;

· S p(R) is the set of all real-valued, F-progressively measurable càdlàg (i.e., right-continuous

with left-limits) processes S = (St)t∈[0,T ] such that ‖S‖p
S p := E[supt∈[0,T ] |St|

p] < ∞;

· H p(Rd) is the set of all Rd-valued, F-predictable processes H = (Ht)t∈[0,T ] such that

‖H‖p
H p := E[(

∫ T

0 |Ht|
2dt)p/2] < ∞;

· M p(R) is the set of all real-valued, càdlàg (F,P)-martingales M = (Mt)t∈[0,T ] such that

‖M‖p
Mp := E[[M,M ]

p/2
T ] < ∞;
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· Lp = Lp(Rd) and Hp = Hp(Rd×d) are defined in the introduction.

2.2. The market model(s). For every (sufficiently integrable) predictable processes b and σ

taking values in Rd and Rd×d respectively, we define the Itô (F,P)-semimartingale Sb,σ by

S
b,σ
t := s0 +

∫ t

0

budu+

∫ t

0

σudWu, t ∈ [0, T ],(2.1)

where s0 ∈ Rd is fixed and does not depend on b and σ, and we recall that W = (Wt)t∈[0,T ] is

a fixed d-dimensional Brownian motion. Moreover, recall that bo and σo are two fixed baseline

processes, that γ, η ≥ 0 are fixed constants, and that

Bε = {(b, σ) ∈ Lp(Rd)×Hp(Rd×d) : ‖b− bo‖Lp ≤ γε, ‖σ − σo‖Hp ≤ ηε}.(2.2)

The exact value of p is specified in Assumption 2.1. For shorthand notation, set So := Sbo,σo

.

Assumption 2.1. The following conditions hold:

(i) bo ∈ Lp(Rd) and σo ∈ Hp(Rd×d) for some p > 3.

(ii) σo is invertible, i.e., there is (σo)−1 such that σo
t (σ

o
t )

−1 = Id P⊗ dt-a.e.. Furthermore,

the process D = (Dt)t∈[0,T ] defined by

Dt := E
(
−
(
(σo)−1bo

)
·W
)
t
= exp

(
−
1

2

∫ t

0

|(σo
u)

−1bou|
2du−

∫ t

0

(
(σo

u)
−1bou

)⊤
dWu

)

is a (F,P)-martingale satisfying DT ∈ Lβ(FT ;R) for every β ≥ 1.

Remark 2.2. Assumption 2.1 (i) implies that for every ε ≥ 0, sup(b,σ)∈Bε E[supt∈[0,T ]|S
b,σ
t |p] <

∞. In addition, Assumption 2.1 (ii) implies that the measure Q defined by

dQ

dP

∣∣∣
FT

:= DT(2.3)

is a probability measure equivalent to P, and that WQ := W +
∫ ·

0(σ
o
u)

−1boudu is a d-dimensional

Brownian motion under Q (by Girsanov’s theorem). These observations will be used later.

Let us provide sufficient conditions for Assumption 2.1 to hold true. The proofs can be found

in Section 4.

Lemma 2.3. Suppose that σo is invertible. Then each of the following conditions is sufficient

for Assumption 2.1 to hold:

(i) bo and σo are uniformly bounded and (σo)⊤σo satisfies a uniform ellipticity condition,

i.e., there are Cb,σ > 0 and c ∈ Sd++ s.t. |bot |+‖σo
t ‖F ≤ Cb,σ and (σo

t )
⊤σo

t ≥ c P⊗dt-a.e.

(ii) bo and σo are of the following form:

· bot = b̃o(t, So
t ), σ

o
t = σ̃o(t, So

t ) P⊗ dt-a.e. (SDE),

· (σo
t )

−1bot = θ(t,W ) P⊗ dt-a.e. (Beneš condition),

where b̃o : [0, T ]× Rd → Rd and σ̃o : [0, T ]× Rd → Rd×d are Borel functions, there is

Cb̃,σ̃ > 0 such that for every t ∈ [0, T ] and x, y ∈ Rd

|̃bo(t, x)− b̃o(t, y)|+‖σ̃o(t, x) − σ̃o(t, y)‖F ≤ Cb̃,σ̃|x− y|,

|̃bo(t, x)|+‖σ̃o(t, x)‖F ≤ Cb̃,σ̃(1 + |x|),
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θ : [0, T ]× C([0, T ];Rd) → Rd is progressively measurable1, and there is Cθ > 0 s.t. for

all t ∈ [0, T ] and x = (xt)t∈[0,T ] ∈ C([0, T ];Rd), |θ(t, x)| ≤ Cθ(1 + sups∈[0,t]|xs|).

Remark 2.4. In Lemma 2.3, the uniform boundedness condition of (bo, σo) and the SDEs

with Lipschitz and linear growth conditions are commonly adopted in continuous-time robust

optimization problems with model uncertainty (see, e.g., [3, 11, 27, 66, 67]). Moreover, the

uniform ellipticity condition of σo and the Beneš condition fit into classical utility maximization

problems with a dual/martingale approach (see, e.g., [43, 46, 50]).

Having completed the description of the underlying processes, we can proceed to describe

the decision maker’s model.

Definition 2.5. Fix a convex, compact set K ⊂ Rd and put K := maxx∈K|x| < ∞. The set of

admissible controls/strategies is given by

A :=
{
H | Rd-valued, F-predictable processes H = (Ht)t∈[0,T ] s.t. Ht ∈ K P⊗ dt-a.e.

}
.

Remark 2.6. The condition that Ht takes its values in K has certain technical advantages in

the proofs of our main results, and it appears in several works studying related topics [4,17,50].

While it is conceivable to relax this assumption (e.g., by relying on boundedness in Lβ for

suitable β), doing so would introduce greater notational and technical complexity and we believe

that the added complexity would not provide a commensurate benefit.

Fix x0 ∈ R, the initial capital of the market participant. For (b, σ) ∈ Bε and H ∈ A,

the market participant’s controlled process XH;b,σ = (XH;b,σ
t )t∈[0,T ] is given by the stochastic

integral

X
H;b,σ
t := x0 + (H · Sb,σ)t = x0 +

∫ t

0

H⊤
u budu +

∫ t

0

H⊤
u σudWu, t ∈ [0, T ].(2.4)

For shorthand notation, given H ∈ A, denote by XH;o the controlled process under the postu-

lated Itô semimartingale So, i.e., XH;o
t := x0 + (H · So)t.

Assume that the decision maker holds a financial position h(Sb,σ
T ) where h : Rd → R is a

given function. Moreover, her cost function (representing her individual preferences) is given

by f : R2 → R, and she aims to solve the robust optimization problem

V (ε) := inf
H∈A

V(H, ε) := inf
H∈A

sup
(b,σ)∈Bε

E

[
f
(
X

H;b,σ
T , h(Sb,σ

T )
)]

.

We impose the following conditions on the functions f and h.

Assumption 2.7. The functionf : R2 ∋ (x, y)⊤ → f(x, y) ∈ R satisfies the following:

(i) f ∈ C2(R2);

(ii) there is 0 < r < min{ p−2
2 , p−3} and Cf > 0 such that ‖D2f(x, y)‖F ≤ Cf (1+|(x, y)⊤|r)

for every (x, y)⊤ ∈ R2, where p > 3 is defined in Assumption 2.1 (i);

(iii) there is Cl,0 ∈ R such that f ≥ Cl,0;

(iv) there is Cl,2 > 0 such that ∂xxf ≥ Cl,2 (i.e. f is uniformly strongly convex in its first

argument).

1The following definition is based on [45, Definition 3.5.15]. Given x ∈ C([0, T ];Rd), define Ht := σ(x(s); s ∈

[0, t]) for t ∈ [0, T ]. A progressively measurable functional on C([0, T ];Rd) is a mapping θ : [0, T ]×C([0, T ];Rd) →

R which has the property that for each t ∈ [0, T ], θ|[0,t]×C([0,T ];Rd) is B([0, t]) ⊗Ht/B(R)-measurable.
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The function h : Rd → R satisfies the following:

(v) h ∈ C2(Rd);

(vi) all first order and second order derivatives of h are Lipschitz continuous and bounded.

Remark 2.8. If Assumption 2.7 is satisfied, a straightforward application of the fundamental

theorem of calculus implies that the following growth conditions hold (which we shall use often

in what follows).

(i) There is C̃f > 0 such that for every (x, y)⊤ ∈ R2,

|f(x, y)| ≤ C̃f (1 + |x|r+2 + |y|r+2) and |∇f(x, y)| ≤ C̃f (1 + |x|r+1 + |y|r+1).

(ii) There is Ch > 0 such that for every s, ŝ ∈ Rd,

|h(s)| ≤ Ch(1 + |s|) and |∇h(s)|+ ‖D2h(s)‖F ≤ Ch,

|h(s)− h(ŝ)|+ |∇h(s)−∇h(ŝ)|+ ‖D2h(s)−D2h(ŝ)‖F ≤ Ch|s− ŝ|.

2.3. Optimization for the baseline parameters and BSDEs. In this section we collect

some preliminary results, including the existence of an optimal strategy H∗ ∈ A. In particular,

it turns out to be convenient to characterize the processes Y,Y, Z,Z that appear in the formula

for V ′(0) (see (1.6)) using an auxiliary BSDE formulation.

Proposition 2.9. Suppose that Assumptions 2.1 and 2.7 are satisfied. Then the following hold.

(i) There exists a unique optimizer H∗ ∈ A satisfying

V (0) = V(H∗, 0) = E

[
f(XH∗;o

T , h(So
T ))
]
.

(ii) There exists a unique solution (Y ∗, Z∗, L∗) ∈ S 2(R)× H 2(Rd)× M 2(R) of

Y ∗
t = ∂xf

(
X

H∗;o
T , h(So

T )
)
−

∫ T

t

(Z∗
u)

⊤dWu − (L∗
T − L∗

t ), t ∈ [0, T ],(2.5)

with L∗
0 = 0, where L∗ and (

∫ t

0
(Z∗

s )
⊤dWs)t∈[0,T ] ∈ M 2(R) are strongly orthogonal2.

(iii) There exists a unique solution (Y∗,Z∗,L∗) ∈ (S 2(R))d × (H 2(Rd))d × (M 2(R))d of

Y∗
t = ∂yf

(
X

H∗;o
T , h(So

T )
)
∇h(So

T )−

∫ T

t

Z∗
udWu − (L∗

T − L∗
t ), t ∈ [0, T ],(2.6)

with L∗
0 = 0, where L∗ and (

∫ t

0 Z
∗
s dWs)t∈[0,T ] are strongly orthogonal.3

Remark 2.10. In the context of solutions to BSDE’s, throughout this article we denote the

solutions to multi-dimensional BSDE’s as in (2.6) by calligraphic letters. In particular, (2.6) is

to be understood in the following sense: Y∗ = (Y∗,1, . . . ,Y∗,d)⊤, Z∗ = (Z∗,1, . . . ,Z∗,d)⊤, and

L∗ = (L∗,1, . . . ,L∗,d)⊤ are vectors consisting of processes, and for every 1 ≤ i ≤ d,

Y∗,i
t = ∂yf

(
X

H∗;o
T , h(So

T )
)
∂sih(S

o
T )−

∫ T

t

(Z∗,i
u )⊤dWu − (L∗,i

T − L∗,i
t ), t ∈ [0, T ].

2We refer to [75, Chapter IV.3, p.148] for the definition of the strong orthogonality and the following equiv-
alences: two martingales M,N ∈ M 2(R) are strongly orthogonal if and only if (MtNt)t∈[0,T ] is a uniformly

integrable (F, P)-martingale if and only if ([M,N ]t)t∈[0,T ] is a uniformly integrable (F, P)-martingale.
3Two d-dimensional martingales M = (M1, . . . ,Md)⊤ and N = (N1, . . . , Nd)⊤ are strongly orthogonal if

M i, N i ∈ M 2(R) are strongly orthogonal for all i = 1, . . . , d.
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Let us note that the proof of Proposition 2.9 is relatively standard: part (i) follows from a

Komlós-type argument and parts (ii) and (iii) follow from employing the Galtchouk-Kunita-

Watanabe (GKW) decomposition. The complete proof can be found in Section 3.3.

Before we proceed to state our main result, let us briefly comment on some properties of the

BSDE-solution in Proposition 2.9.

Lemma 2.11. Suppose that Assumptions 2.1 and 2.7 are satisfied and let (Y ∗, Z∗, L∗) be the

unique solution of (2.5). Then, for every t ∈ [0, T ], P-a.s.,

Y ∗
t = E

[
∂xf

(
X

H∗;o
T , h(So

T )
)∣∣∣Ft

]
,

Z∗
t =

d

dt

(
〈Y ∗,W 1〉t, · · · , 〈Y

∗,W d〉t

)⊤
.

Moreover, if (Y∗,Z∗,L∗) is the unique solution of (2.6), then for every t ∈ [0, T ], P-a.s.,

Y∗
t = E

[
∂yf

(
X

H∗;o
T , h(So

T )
)
∇h(So

T )
∣∣∣Ft

]
,

Z∗,i
t =

d

dt

(
〈Y∗,i,W 1〉t, · · · , 〈Y

∗,i,W d〉t

)⊤
, i = 1, . . . , d.

Under certain (rather strong) conditions on the regularity of Y ∗ and Y∗, Lemma 2.11 and

Itô’s formula ensure that Z∗ and Z∗ can be calculated via a Feynman-Kac representation. To

formulate the result denote by C1,2,2 the set of all continuous functions from [0, T ]×R×Rd to R

which are continuously differentiable on [0, T ) and twice continuously differentiable on R×Rd.

Corollary 2.12. Suppose that Assumptions 2.1 and 2.7 are satisfied. Let H∗ be the unique

optimizer of V (0) defined in Proposition 2.9 (i). Moreover, assume that there are J ∈ C1,2,2

and J = (J 1, . . . ,J d)⊤ ∈ (C1,2,2)d such that for every t ∈ [0, T ], P-a.s.

Y ∗
t = J

(
t,X

H∗;o
t , So

t

)
, Y∗

t = J
(
t,X

H∗;o
t , So

t

)
.(2.7)

Then, for every t ∈ [0, T ), P-a.s.,

Z∗
t = (σo

t )
⊤
[
∂xJ(t,X

H∗;o
t , So

t )H
∗
t +∇sJ(t,X

H∗;o
t , So

t )
]
,

Z∗,i
t = (σo

t )
⊤
[
∂xJ

i(t,XH∗;o
t , So

t )H
∗
t +∇sJ

i(t,XH∗;o
t , So

t )
]
, i = 1, . . . , d,

where ∇sJ
i denotes the gradient of J i(t, x, s) with respect s.

The proofs of Lemma 2.11 and Corollary 2.12 are presented in Section 4, where we also

provide some sufficient conditions for the regularity assumption in Corollary 2.12.

2.4. Main results. With all this notation set in place, we present the main result of this article

pertaining the characterization of the behavior of

V (ε) = inf
H∈A

V(H, ε) = inf
H∈A

sup
(b,σ)∈Bε

E

[
f
(
X

H;b,σ
T , h(Sb,σ

T )
)]

for small ε. Recall that Bε and A are defined in (2.2) and (2.5), respectively.

Theorem 2.13. Suppose that Assumptions 2.1 and 2.7 are satisfied and set q := p
p−1 to be the

conjugate Hölder exponent of p > 3 (given in Assumption 2.1). Let H∗ be the unique optimizer

of V (0) (see Proposition 2.9 (i)) and let (Y ∗, Z∗) and (Y∗,Z∗) be the first two components of

the solutions of (2.5) and (2.6), respectively. Then, as ε ↓ 0,

V (ε) = V (0) + εV ′(0) +O(ε2),
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where

V ′(0) = γ‖Y ∗H∗ + Y∗‖Lq + η‖Z∗(H∗)⊤ + Z∗‖Hq

= γE

[∫ T

0

|Y ∗
t H

∗
t + Y∗

t |
q dt

]1/q
+ ηE



(∫ T

0

‖Z∗
t (H

∗
t )

⊤ + Z∗
t ‖

2
F dt

)q/2


1/q

.

We emphasize that Y ∗, Z∗,Y∗,Z∗ are given explicitly in Lemma 2.11. In particular, the

statements made in the introduction on the form of V ′(0) follow from a combination of Theorem

2.13 and Lemma 2.11.

Next, recall that H∗ is the unique optimizer for V (0) (given in Proposition 2.9 (i)) and for

any ε ≥ 0, consider

V ∗(ε) := V(H∗, ε) = sup
(b,σ)∈Bε

E

[
f
(
X

H∗;b,σ
T , h(Sb,σ

T )
)]

.(2.8)

Therefore, V ∗(ε) represents the worst-case value when the market participant sticks to the

optimal strategy H∗ calculated based on bo and σo while the actual parameters lie within Bε.

As it happens, the values of V ∗(ε) and V (ε) are equal up to a second-order correction term.

Theorem 2.14. Suppose that Assumptions 2.1 and 2.7 are satisfied. Then, as ε ↓ 0,

V ∗(ε) = V (ε) +O(ε2).

In particular, (V ∗)′(0) = V ′(0).

3. Proof of Proposition 2.9 and Theorem 2.13

We start by highlighting the main ideas used in the proof of Theorem 2.13. For simplicity

we focus on the notationally lighter case when h = 0.

The first step involves a second-order Taylor expansion, showing that for every H ∈ A and

(b, σ) ∈ Bε,

E

[
f
(
X

H;b,σ
T , 0

)]
− E

[
f
(
X

H;o
T , 0

)]
= E

[
∂xf

(
X

H;o
T , 0

)(
X

H;b,σ
T −X

H;o
T

)]
+O(ε2).(3.1)

Subsequently, a crucial observation is that the expectation appearing in the right-hand side

of (3.1) can be expressed as a linear form involving b− bo and σ − σo: If (Y H , ZH , LH) solves

the following BSDE

Y H
t = ∂xf

(
X

H;o
T , 0

)
−

∫ T

t

(ZH
u )⊤dWu − (LH

T − LH
t ),

with LH
0 = 0, then

E

[
∂xf

(
X

H;o
T , 0

)(
X

H;b,σ
T −X

H;o
T

)]
= 〈Y HH, b− bo〉P⊗dt + 〈ZHH⊤, σ − σo〉P⊗dt,F.(3.2)

Next, setting q := p
p−1 to be the conjugate Hölder conjugate of p and relying on the duality

within the pairings 〈Lp(Rd),Lq(Rd), 〈·, ·〉P⊗dt〉 and 〈Hp(Rd×d),Hq(Rd×d), 〈·, ·〉P⊗dt,F〉, it follows

that

sup
(b,σ)∈Bε

(
〈Y HH, b− bo〉P⊗dt + 〈ZHH⊤, σ − σo〉P⊗dt,F

)
= ε

(
γ‖Y HH‖Lq + η‖ZHH⊤‖Hq

)
.
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The final ingredient in the proof lies in showing that if (Hε)ε>0 are (almost) optimizers for

the robust optimization problems V (ε), then the Hε’s converge to the unique optimizer H∗ of

V (0) as ε ↓ 0.

In the subsequent sections, we will establish the technical details required to rigorously prove

these arguments. Since our results are concerned with the behavior as ε ↓ 0, we can and do

assume without loss of generality that γ, η ≤ 1.

3.1. Preliminary estimates and GKW decomposition. Let us provide some simple ob-

servations that play an instrumental role in the proof of Proposition 2.9 and Theorem 2.13. In

what follows, we often make use of the following elementary inequality: for every β ≥ 0 and

m ∈ N,

∣∣∣
m∑

i=1

ai

∣∣∣
β

≤ mβ ·

m∑

i=1

|ai|
β , for every {ai}

m
i=1 ⊂ R.(3.3)

We call (3.3) the ‘power triangle inequality’.

Let us begin with a priori estimates on X
H;b,σ
T (given in (2.4)) and S

b,σ
T (given in (2.1)).

Lemma 3.1. Suppose that Assumption 2.1 is satisfied. Then the following hold:

(i) For every ε ≥ 0,

sup
(b,σ)∈Bε

sup
H∈A

∥∥XH;b,σ
T −X

H;o
T

∥∥p
Lp ≤ C1ε

p, sup
(b,σ)∈Bε

∥∥Sb,σ
T − So

T

∥∥p
Lp ≤ C2ε

p,

where C1 := 2pKp(T p−1 + CBDG,p), C2 := 2p(T p−1 + CBDG,p), and CBDG,p ≥ 1 is the

BDG constant (in Section 2.1) with the exponent p > 3.

(ii) The constants C3, C4 defined by

C3 := sup
(b,σ)∈B1

sup
H∈A

∥∥XH;b,σ
T

∥∥p
Lp , C4 := sup

(b,σ)∈B1

∥∥h(Sb,σ
T )
∥∥p
Lp ,

satisfy C3, C4 < ∞.

Proof. We start by proving (i). An application of the power triangle inequality (see (3.3)) and

the BDG inequality shows that for every ε ≥ 0, (b, σ) ∈ Bε and H ∈ A,

∥∥XH;b,σ
T −X

H;o
T

∥∥p
Lp ≤ 2p

(
E

[∣∣∣
∫ T

0

H⊤
t (bt − bot )dt

∣∣∣
p
]
+CBDG,pE

[( ∫ T

0

∣∣H⊤
t (σt − σo

t )
∣∣2dt

) p
2

])
.

Moreover, since the function x → |x|p with p > 3 is convex and |Ht| ≤ K P⊗ dt-a.e. for every

H ∈ A (see Definition 2.5), Jensen’s inequality ensures that

E

[∣∣∣
∫ T

0

H⊤
t (bt − bot )dt

∣∣∣
p
]
≤ T p−1E

[∫ T

0

|H⊤
t (bt − bot )|

pdt

]
≤ T p−1Kp‖b− bo‖pLp .

Finally, since |(σt − σo
t )

⊤Ht|≤ K‖σt − σo
t ‖F P⊗ dt-a.e. for every H ∈ A, we conclude that

sup
(b,σ)∈Bε

sup
H∈A

∥∥XH;b,σ
T −X

H;o
T

∥∥p
Lp

≤ 2pKp sup
(b,σ)∈Bε

(
T p−1‖b− bo‖pLp + CBDG,p‖σ − σo‖pHp

)
≤ C1ε

p.
(3.4)

In a similar manner, it follows that

sup
(b,σ)∈Bε

‖Sb,σ
T − So

T ‖
p
Lp ≤ 2p sup

(b,σ)∈Bε

(
T p−1‖b− bo‖pLp + CBDG,p‖σ − σo‖pHp

)
≤ C2ε

p.
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Now let us prove (ii). Using Assumption 2.1 (i), the same arguments as presented for the proof

of (i) can be used to show that

sup
H∈A

∥∥XH;o
T

∥∥p
Lp ≤ 3p

(
|x0|

p +Kp
(
T p−1‖bo‖pLp + CBDG,p‖σ

o‖pHp

))
< ∞.

Hence, the claim that C3 < ∞ follows from the triangle inequality and (3.4).

Similarly, since sup(b,σ)∈B1‖S
b,σ
T ‖pLp < ∞ (see Remark 2.2) and |h(s)| ≤ Ch(1+ |s|) for every

s ∈ Rd (see Remark 2.8 (ii)), the triangle inequality and the estimate given in (i) ensure that

C4 < ∞. �

The following a priori estimate is based on the Galtchouk-Kunita-Watanabe decomposition

(see, e.g., [49] or [40, Theorem 4.27, p.126]).

Lemma 3.2. For every real-valued random variable X ∈ L2(FT ;R), the BSDE given by

Yt = X −

∫ T

t

(Zu)
⊤dWu − (LT − Lt), t ∈ [0, T ], with L0 = 0,(3.5)

has a unique solution (Y, Z, L) ∈ S 2(R) × H 2(Rd) × M 2(R). In particular, L is strongly

orthogonal to (
∫ t

0 (Zu)
⊤dWu)t∈[0,T ] ∈ M 2(R). Furthermore, setting Cap := 20, the solution

satisfies the a priori estimate

‖Y ‖2S 2 + ‖Z‖2H 2 + ‖L‖2M2 ≤ Cap‖X‖2L2.(3.6)

Proof. Set Yt := E[X |Ft] for t ∈ [0, T ]. An application of Doob’s inequality shows that

‖Y ‖2S 2 = E

[
sup

t∈[0,T ]

Y 2
t

]
≤ 22‖X‖2L2 < ∞,(3.7)

which ensures that Y = (Yt)t∈[0,T ] ∈ S 2(R). Moreover, since W 1, . . . ,W d ∈ M 2(R), we

can apply the Galtchouk-Kunita-Watanabe decomposition in [40, Theorem 4.27, p.126] to

represent the càdlàg process Y in terms of the orthogonal decomposition with respect to

W = (W 1, . . . ,W d)⊤, i.e.,

Yt = E[X |Ft] = Y0 +

∫ t

0

(Zs)
⊤dWs + Lt, t ∈ [0, T ],

where Z = (Zt)t∈[0,T ] ∈ H 2(Rd) and L = (Lt)t∈[0,T ] ∈ M 2(R) satisfies L0 = 0 and is

strongly orthogonal to W i for every i = 1, . . . , d. This shows the existence of (Y, Z, L) ∈

S 2(R)× H 2(Rd)× M 2(R) satisfying the BSDE (3.5).

Furthermore, by the strong orthogonality between L and W i, i = 1, . . . , d, and since Z ∈

H 2(Rd) is F-predictable, an application of [75, Lemma 2 & Theorem 35, p.149] shows that

the two square integrable martingales L and (
∫ t

0
Z⊤
s dWs)t∈[0,T ] are strongly orthogonal, i.e.,

(Lt

∫ t

0
Z⊤
u dWu)t∈[0,T ] is a uniformly integrable (F,P)-martingale. Therefore, it follows from the

Itô-isometry that

‖Z‖2H 2 + ‖L‖2M2 = E

[∫ T

0

|Zs|
2ds+ [L,L]T

]
= E

[
|YT − Y0|

2
]

≤ 22E
[
max{|YT |

2, |Y0|
2}
]
≤ 22E

[
sup

t∈[0,T ]

|Yt|
2

]
= 22‖Y ‖2

S 2 .

(3.8)
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Hence, the a priori estimate (3.6) follows from combining (3.7) and (3.8). The uniqueness

immediately follows from (3.6). Indeed, if there are two solutions to (3.5), then their difference

solves (3.5) with X = 0. This completes the proof. �

Proposition 3.3. Suppose that Assumptions 2.1 and 2.7 are satisfied. Let H ∈ A and set

AH := ∂xf
(
X

H;o
T , h(So

T )
)
, BH := ∂yf

(
X

H;o
T , h(So

T )
)
∇h(So

T ).(3.9)

Then the following hold.

(i) AH ∈ L2(FT ;R) and BH ∈ L2(FT ;R
d).

(ii) There exists a unique solution (Y H , ZH , LH) ∈ S 2(R)× H 2(Rd)× M 2(R) of

Y H
t = AH −

∫ T

t

(ZH
s )⊤dWs − (LH

T − LH
t ), t ∈ [0, T ],(3.10)

with LH
0 = 0, where LH and (

∫ t

0 (Z
H
s )⊤dWs)t∈[0,T ] ∈ M 2(R) are strongly orthogonal.

(iii) Similarly, there exists a unique solution (YH ,ZH ,LH) ∈ (S 2(R))d × (H 2(Rd))d ×

(M 2(R))d of

YH
t = BH −

∫ T

t

ZH
u dWu − (LH

T − LH
t ), t ∈ [0, T ],(3.11)

with LH
0 = 0, where LH and (

∫ t

0 Z
H
s dWs)t∈[0,T ] are strongly orthogonal.

Proof. We start by proving (i). Let 0 < r < min{ p−2
2 , p − 3} be as in Assumption 2.7 (ii). It

follows from Remark 2.8 (i) and the power triangle inequality that

|∂xf(x, y)|
2 + |∂yf(x, y)|

2 ≤ (3C̃f )
2
(
1 + |x|2(r+1) + |y|2(r+1)

)
(3.12)

for every (x, y)⊤ ∈ R2. Therefore, by Lemma 3.1 (ii) and Hölder’s inequality (with exponent
p

2(r+1) > 1), we obtain that

sup
H∈A

∥∥AH
∥∥2
L2 ≤ (3C̃f )

2 sup
H∈A

E

[
1 + |XH;o

T |2(r+1) + |h(So
T )|

2(r+1)
]

≤ (3C̃f )
2
(
1 + sup

H∈A
‖XH;o

T ‖
2(r+1)
Lp + ‖h(So

T )‖
2(r+1)
Lp

)
< ∞.

Next, since |∇h(·)| ≤ Ch (see Remark 2.8 (ii)), the same arguments devoted for showing that

supH∈A ‖AH‖L2 < ∞ ensure that supH∈A ‖BH‖L2 < ∞, as claimed.

The statements (ii) and (iii) follow directly from Lemma 3.2. �

3.2. Stability results. This section is devoted to showing stability results of the forward pro-

cess XH;o and the backward triplets (Y H , ZH , LH) and (YH ,ZH ,LH) (introduced in Proposi-

tion 3.3 (ii)) with respect to H ∈ A, which will play an essential role in the proof of Theorem

2.13. We begin with a priori estimates of the forward process.

Lemma 3.4. Suppose that Assumption 2.1 is satisfied, let β ∈ (1, p), and set α(β) = pβ
p−β > 1.

Then, for any G,H ∈ A,

∥∥XG;o
T −X

H;o
T

∥∥β
Lβ ≤ C(β)

(
‖G−H‖β

Lα(β)‖b
o
t‖

β
Lp + E

[(∫ T

0

∣∣(σo
t )

⊤(Gt −Ht)
∣∣2dt

) β
2
])

,

where C(β) := 2β max{CBDG,β, T
β−1} > 0.
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Proof. Set ∆ := G −H and write α = α(β). First note that by the power triangle inequality

and the BDG inequality,

∥∥XG;o
T −X

H;o
T

∥∥β
Lβ ≤ 2β


E



∣∣∣∣∣

∫ T

0

∆⊤
t b

o
tdt

∣∣∣∣∣

β

+ CBDG,βE



(∫ T

0

∣∣(σo
t )

⊤∆t

∣∣2dt
) β

2




 .

Moreover, a twofold application of Hölder’s inequality (first with exponent p > 3 followed by

exponent p
β > 1) shows that

E




∣∣∣∣∣

∫ T

0

∆⊤
t b

o
tdt

∣∣∣∣∣

β


 ≤ E




(∫ T

0

|∆t|
qdt

) β
q (∫ T

0

|bot |
pdt

) β

p


 ≤ E




(∫ T

0

|∆t|
qdt

)α
q





β

α

‖bo‖βLp .

Finally, since x → |x|
α
q is convex (noting that α

q = βp
q(p−β) > 1), Jensen’s inequality ensures

that E[(
∫ T

0 |∆t|
qdt)

α
q ]

β
α ≤ T β−1‖∆‖βLα , as claimed. �

Lemma 3.5. Suppose that Assumption 2.1 is satisfied and let (Hn)n∈N ⊆ A and H⋆ ∈ A such

that |XHn;o
T −X

H⋆;o
T |

P
−→ 0 as n → ∞. Then, for every β ≥ 1,

‖Hn −H⋆‖Lβ→ 0 as n → 0.

Moreover,
∫ T

0

∣∣(σo
t )

⊤(Hn
t −H⋆

t )
∣∣2dt P

−→ 0 as n → ∞.

Proof. Recall that the measure Q ∼ P is defined in (2.3) and that WQ = W +
∫ ·

0(σ
o
s )

−1bosds

is a (F,Q)-Brownian motion. In particular, So is an (F,Q)-local martingale since So = So
0 +∫ ·

0
σo
sdW

Q
s . Furthermore, for each n ∈ N, ((Hn · So)t)t∈[0,T ] is an (F,Q)-local martingale since

(Hn · So)t =

∫ t

0

(Hn
s )

⊤σo
rdW

Q
r , t ∈ [0, T ].

Next note that by the assumption on (Hn)n∈N,
∣∣XHn;o

T −X
H⋆;o
T

∣∣2 Q
−→ 0 as n → ∞.(3.13)

Moreover, as |H⋆
t |, |H

n
t | ≤ K Q ⊗ dt-a.e. (by Definition 2.5 and the equivalence Q ∼ P), the

power triangle inequality, and Hölder’s inequality (with exponent p
2v > 1), it follows for every

1 < v < p
2 that

sup
n∈N

EQ
[∣∣XHn;o

T −X
H⋆;o
T

∣∣2v
]
= sup

n∈N

E

[
DT

∣∣XHn;o
T −X

H⋆;o
T

∣∣2v
]

≤ 22v
(
sup
n∈N

E

[
DT

∣∣XHn;o
T

∣∣2v
]
+ E

[
DT

∣∣XH⋆;o
T

∣∣2v
])

≤ 22v‖DT ‖
L

p
p−2v

(
sup
n∈N

∥∥XHn;o
T

∥∥2v
Lp +

∥∥XH⋆;o
T

∥∥2v
Lp

)
.

Hence, using the Lβ-boundedness of the exponential martingale DT (see Assumption 2.1 (ii)),

and Lemma 3.1 (ii) with the fact that (Hn)n∈N ⊆ A and H⋆ ∈ A, it follows that

sup
n∈N

EQ
[∣∣XHn;o

T −X
H⋆;o
T

∣∣2v
]
< ∞.

In particular, since v > 1, the de la Vallée Poussin theorem [47, Theorem 6.19] ensures the uni-

form integrability of (|XHn;o
T −X

H⋆;o
T |2)n∈N with respect to Q; thus EQ[

∣∣XHn;o

T −X
H⋆;o
T

∣∣2] → 0
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as n → ∞ by (3.13) and Vitali’s convergence theorem [47, Theorem 6.25]. Using that So
· =

So
0 +

∫ ·

0 σ
o
sdW

Q
s under Q, the Itô-isometry implies that

0 = lim
n→∞

EQ
[∣∣XHn;o

T −X
H⋆;o
T

∣∣2
]
= lim

n→∞
EQ

[∫ T

0

∣∣(σo
t )

⊤(Hn
t −H⋆

t )
∣∣2dt

]
(3.14)

and in particular that
∫ T

0

∣∣(σo
t )

⊤(Hn
t −H⋆

t )
∣∣2dt P

−→ 0 as n → ∞ since Q ∼ P.

Moreover, combining (3.14) with the fact that σo is invertible (see Assumption 2.1 (ii)) shows

that

Hn
t

P⊗dt
−−−→ H⋆

t as n → ∞.(3.15)

Finally, since |H⋆
t |, |H

n
t | ≤ K P⊗ dt-a.e., the dominated convergence theorem guarantees that

(3.15) implies that for every β ≥ 1, ‖Hn−H⋆‖Lβ→ 0 as n → ∞. This completes the proof. �

Lemma 3.6. Suppose that Assumptions 2.1 and 2.7 are satisfied and let (Hn)n∈N ⊆ A and

H⋆ ∈ A such that |XHn;o
T −X

H⋆;o
T |

P
−→ 0 as n → ∞.

(i) Denote by (Y n, Zn, Ln) and (Y ⋆, Z⋆, L⋆) the unique solutions of (3.10) (ensured by

Proposition 3.3) under the terminal conditions

AHn

= ∂xf(X
Hn;o
T , h(So

T )), AH⋆

= ∂xf(X
H⋆;o
T , h(So

T )),

respectively. Then, as n → ∞,

‖Y n − Y ⋆‖S 2 + ‖Zn − Z⋆‖H 2 + ‖Ln − L⋆‖M2 → 0.(3.16)

(ii) Denote by (Yn,Zn,Ln) and (Y⋆,Z⋆,L⋆) the unique solutions of (3.11) under the ter-

minal conditions

BHn

= ∂yf(X
Hn;o
T , h(So

T ))∇h(So
T ), BH⋆

= ∂yf(X
H⋆;o
T , h(So

T ))∇h(So
T ),

respectively. Then, for every i = 1, . . . , d, as n → ∞,

‖Yn,i − Y⋆,i‖S 2 + ‖Zn,i −Z⋆,i‖H 2 + ‖Ln,i − L⋆,i‖M2 → 0.(3.17)

Proof. We start by proving (i). It follows from Proposition 3.3 that (Y n−Y ⋆, Zn−Z⋆, Ln−L⋆)

is the unique solution to the BSDE (3.5) with the terminal condition AHn

− AH⋆

. Therefore,

using the a priori estimate given in Lemma 3.2,

‖Y n − Y ⋆‖2S 2 + ‖Zn − Z⋆‖2H 2 + ‖Ln − L⋆‖2M2 ≤ CapE

[∣∣AHn

−AH⋆ ∣∣2
]
.

Moreover, by Assumption 2.7 (ii) we have that |∂xxf(x, y)| ≤ Cf (1 + |(x, y)⊤|r) for every

(x, y)⊤ ∈ R2, hence an application of the fundamental theorem of calculus (and the power

triangle inequality) shows that for every x, x∗, y ∈ R,
∣∣∂xf(x, y)− ∂xf(x

∗, y)
∣∣2 ≤ C2

f2
r+4(1+|x|2r + |x∗|2r + |y|2r)

∣∣x− x∗
∣∣2.

In particular, by the definition of AHn

and AH⋆

,

E

[∣∣AHn

−AH⋆ ∣∣2
]
≤ C2

f2
r+4E

[(
1+|XHn;o

T |2r + |XH⋆;o
T |2r + |h(So

T )|
2r
)∣∣XHn;o

T −X
H⋆;o
T

∣∣2
]
.

In order to estimate the last term, set p̃ := 2p
p−2r , where we recall that p > 3 and 0 <

r < min{ p−2
2 , p − 3} (see Assumptions 2.1 and 2.7 (ii)), and note that 1 < p̃ < p. It follows
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from Hölder’s inequality (with exponent p
2r > 1 and conjugate exponent p̃

2 > 1) and the power

triangle inequality that

E

[∣∣AHn

−AH⋆ ∣∣2
]

≤ C2
f2

r+44
p
2r

(
1 + ‖XHn;o

T ‖2rLp + ‖XH∗;o
T ‖2rLp + ‖h(So

T )‖
2r
Lp

)∥∥XHn;o
T −X

H⋆;o
T

∥∥2
Lp̃ .

Moreover, by Lemma 3.1 (ii),

sup
n∈N

(
1 + ‖XHn;o

T ‖2rLp + ‖XH∗;o
T ‖2rLp + ‖h(So

T )‖
2r
Lp

)
< ∞,(3.18)

thus, it remains to show that ‖XHn;o
T −X

H⋆;o
T ‖Lp̃ → 0 as n → ∞.

To that end, since 1 < p̃ < p, an application of Lemma 3.4 (with β = p̃ ∈ (1, p) and

α = α(p̃) = p̃p
p−p̃ > 1) ensures that

∥∥XHn;o
T −X

H⋆;o
T

∥∥p̃
Lp̃ ≤ C(p̃)



‖Hn −H⋆‖p̃Lα‖b
o
t‖

p̃
Lp + E




(∫ T

0

∣∣(σo
t )

⊤(Hn
t −H⋆

t )
∣∣2dt

) p̃

2







 ,

where C(p̃) = 2p̃max{CBDG,β, T
p̃−1}. Moreover, since bo ∈ Lp(Rd), it follows from Lemma 3.5

that as n → ∞,

‖Hn −H⋆‖p̃Lα · ‖bo‖p̃Lp → 0.

Next we note that |H⋆
t −Hn

t | ≤ 2K P⊗ dt-a.e. and σo ∈ Hp(Rd×d). Therefore, since p̃ < p

and
∫ T

0

∣∣(σo
t )

⊤(Hn
t − H⋆

t )
∣∣2dt P

−→ 0 as n → ∞ (by Lemma 3.5), the dominated convergence

theorem shows that

E




(∫ T

0

∣∣(σo
t )

⊤(Hn
t −H⋆

t )
∣∣2dt

) p̃

2



→ 0

as n → ∞. We conclude that indeed ‖XHn;o
T −X

H⋆;o
T ‖Lp̃ → 0 as n → ∞, which completes the

proof of part (i).

The proof of part (ii) follows from the same arguments as those used in the proof of (i), and

we only sketch it. Note that by Lemma 3.2, for every i = 1, . . . , d,

‖Yn,i − Y⋆,i‖S 2 + ‖Zn,i −Z⋆,i‖H 2 + ‖Ln,i − L⋆,i‖M2 ≤ CapE

[∣∣BHn,i −BH⋆,i
∣∣2
]

and that for every x, x∗, y ∈ R,

∣∣∂yf(x, y)− ∂yf(x
∗, y)

∣∣2 ≤ C2
f2

r+4(1+|x|2r + |x∗|2r + |y|2r)
∣∣x− x∗

∣∣2.

Moreover, since |∂sih(·)| ≤ Ch for every i = 1, . . . , d, Hölder’s inequality shows that

E

[∣∣BHn,i −BH⋆,i
∣∣2
]

≤ C2
hC

2
f2

r+44
p

2r

(
1 + ‖XHn;o

T ‖2rLp + ‖XH∗;o
T ‖2rLp + ‖h(So

T )‖
2r
Lp

)∥∥XHn;o
T −X

H⋆;o
T

∥∥2
Lp̃ ,

where p̃ = 2p
p−2r > 1. The claim follows from (3.18) and since limn→∞ ‖XHn;o

T −X
H⋆;o
T ‖Lp̃ = 0,

as was shown in part (i). �
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3.3. Proof of Proposition 2.9 & first order optimality.

Proof of Proposition 2.9. We start by proving the statement (i). Let (Hn)n∈N ⊆ A be a se-

quence such that

V (0) = lim
n→∞

E

[
f
(
X

Hn;o
T , h(So

T )
)]
.

Note that H 2(Rd) defined in Section 2.1 is a reflexive Banach space. Furthermore, since

the sequence (Hn)n∈N ⊆ A is F-predictable and K-valued P ⊗ dt-a.e. (by Definition 2.5), it is

bounded in H 2(Rd). Hence, [19, Theorem 15.1.2, p.320] asserts that there are H∗ ∈ H 2(Rd)

and

H̃n ∈ conv(Hn, Hn+1, . . . ), n ∈ N,(3.19)

which satisfy

‖H̃n −H∗‖H 2 → 0 as n → ∞.(3.20)

Note that as (H̃n)n∈N is K-valued P⊗ dt-a.e. by (3.19), H∗ is also K-valued P⊗ dt-a.e. as well,

thus H∗ ∈ A.

It remains to show that H∗ is an optimizer. To that end, since So is an Itô (F,P)-

semimartingale satisfying (2.1) and (H̃n)n∈M is K-valued P⊗ dt-a.e. and satisfies (3.20), there

is a subsequence (H̃n)n∈N of the one in (3.19) (for notational simplicity, we do not relabel that

sequence) for which

(H̃n · So)T → (H∗ · So)T P-a.s. as n → ∞.(3.21)

Furthermore, by convexity of f in the first coordinate, (H̃n)n∈N is still a minimizing sequence,

i.e., V (0) = limn→∞ E[f(XH̃n;o
T , h(So

T ))].

Finally, since f is continuous and bounded from below (see Assumption 2.7), an application

of Fatou’s lemma shows that

E

[
f
(
X

H∗;o
T , h(So

T )
)]

= E

[
lim
n→∞

f
(
X

H̃n;o
T , h(So

T )
)]

≤ lim
n→∞

E

[
f
(
X

H̃n;o
T , h(So

T )
)]

= V (0),

ensuring the optimality of H∗ ∈ A.

The uniqueness of an optimizer follows immediately from the strict convexity of f in the

first coordinate (see Assumption 2.7 (iv)).

The claims made in part (ii) and (iii) follow immediately from Proposition 3.3. �

We wrap up this section by establishing a first order optimality condition for the unique

optimizer H∗ ∈ A, which is employed in the proof of Theorem 2.13.

Lemma 3.7. Suppose that Assumptions 2.1 and 2.7 are satisfied. Then the unique optimizer

H∗ of V (0) = V(H∗, 0) (in Proposition 2.9 (i)) satisfies the first-order optimality condition

E

[
∂xf

(
X

H∗;o
T , h(So

T )
)(
X

H;o
T −X

H∗;o
T

)]
≥ 0, for every H ∈ A.

Proof. Fix H ∈ A. Clearly H∗ + θ(H −H∗) ∈ A for any 0 < θ < 1, hence it follows from the

optimality of H∗ that

E

[1
θ

(
f
(
X

H∗;o
T + θ(XH;o

T −X
H∗;o
T ), h(So

T )
)
− f

(
X

H∗;o
T , h(So

T )
))]

≥ 0.(3.22)
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We claim that

ΨH := sup
θ∈(0,1)

∣∣∣
1

θ

(
f
(
X

H∗;o
T + θ(XH;o

T −X
H∗;o
T ), h(So

T )
)
− f

(
X

H∗;o
T , h(So

T )
))∣∣∣

is in L1(FT ;R). If that is the case, then the proof follows from (3.22) and the dominated

convergence theorem.

To show that E[ΨH ] < ∞, first note that by Assumption 2.7 (ii) and Remark 2.8 (i) (and

the power triangle inequality),

|∂xxf(x+ x∗, y)| ≤ Cf2
3r
2 (1 + |x|r + |x∗|r + |y|r) , |∂xf(x, y)| ≤ C̃f

(
1 + |x|r+1 + |y|r+1

)

for every x, x∗, y ∈ R2. Hence, a second-order Taylor expansion of f implies that for any H ∈ A,

E[ΨH ] ≤ C̃fE

[(
1 + |XH∗;o

T |r+1 + |h(So
T )|

r+1
)∣∣XH;o

T −X
H∗;o
T

∣∣
]

+ Cf2
3r
2 E

[(
1 + |XH;o

T |r + |XH∗;o
T |r + |h(So

T )|
r
)∣∣XH;o

T −X
H∗;o
T

∣∣2
]

=: E[Ψ1
H ] + E[Ψ2

H ].

Since 0 < r < min{ p−2
2 , p− 3} (see Assumptions 2.1 (i) and 2.7 (ii)), Hölder’s inequality (with

exponent p
r+1 > 1 and conjugate exponent p−(r+1)

p = 1) ensures that

E[Ψ1
H ] ≤ C̃f

∥∥∥1 + |XH∗;o
T |r+1 + |h(So

T )|
r+1
∥∥∥
L

p
r+1

∥∥∥XH;o
T −X

H∗;o
T

∥∥∥
L

p
p−(r+1)

.

Furthermore, by Jensen’s inequality (noting that x → |x|p−(r+1) is convex since p > r + 2),

‖XH;o
T −X

H∗;o
T ‖

L
p

p−(r+1)
≤ ‖XH;o

T −X
H∗;o
T ‖Lp and by the power triangle inequality,

E

[(
1 + |XH∗;o

T |r+1 + |h(So
T )|

r+1
) p

r+1

]
≤ 3

p

r+1

(
1 + E

[∣∣XH∗;o
T

∣∣p
]
+ E

[∣∣h(So
T )
∣∣p
])

.

Hence, the a priori estimates on XH;b,σ and h(Sb,σ
T ) (for any (b, σ) ∈ B1) detailed in Lemma

3.1 (ii) ensures that E[Ψ1
H ] < ∞.

Similarly, we can deduce that

E[Ψ2
H ] ≤ Cf2

3r
2 4
(
1 + E

[∣∣XH;o
T

∣∣p
]
+ E

[∣∣XH∗;o
T

∣∣p
]
+ E

[∣∣h(So
T )
∣∣p
]) r

p ∥∥XH;o
T −X

H∗;o
T

∥∥2
Lp < ∞,

thus ΨH ∈ L1(FT ;R), as claimed. �

3.4. Proof of Theorem 2.13. Following the outline of the proof at the beginning of this

section, we first establish the crucial observation that the expectation of the first order derivative

can be expressed in a way that is linear in b− bo and σ− σo, i.e. (3.2). To that end, recall that

〈X,Y 〉P⊗dt = E[
∫ T

0 〈Xt, Yt〉dt] and similarly for 〈·, ·〉P⊗dt,F, see Section 2.1.

Lemma 3.8. Suppose that Assumptions 2.1 and 2.7 are satisfied. Let H ∈ A, let AH and

BH be given in (3.9), and let (Y H , ZH , LH) and (YH ,ZH ,LH) be the unique solution of the

BSDEs given in (3.10) and (3.11), respectively. Then the following holds: for every ε ∈ [0, 1]

and (b, σ) ∈ Bε,

E

[
AH
(
X

H;b,σ
T −X

H;o
T

)
+ (BH)⊤

(
S
b,σ
T − So

T

)]

= 〈Y HH + YH , b− bo〉P⊗dt + 〈ZHH⊤ + ZH , σ − σo〉P⊗dt,F.
(3.23)
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Proof. Step 1. We start by focusing on the first term in (3.23) and show that

E

[
AH
(
X

H;b,σ
T −X

H;o
T

)]
= 〈Y HH, b− bo〉P⊗dt + 〈ZHH⊤, σ − σo〉P⊗dt,F.(3.24)

To that end, denote by

Ξb := AH

∫ T

0

H⊤
t (bt − bot )dt, Ξσ := AH

∫ T

0

H⊤
t (σt − σo

t )dWt,

so that E[∂xf(X
H;o
T , h(So

T ))(X
H;b,σ
T −X

H;o
T )] = E[Ξb + Ξσ].

We claim that E[Ξb] = 〈Y HH, b − bo〉P⊗dt, and first note that E[|Ξb|] < ∞. Indeed, by

Hölder’s inequality (with exponent p > 3) and the fact that |Ht| ≤ K P⊗ dt-a.e.,

E
[
|Ξb|

]
≤
∥∥AH

∥∥
Lq

∥∥∥
∫ T

0

H⊤
t (bt − bot )dt

∥∥∥
Lp

≤ K
∥∥AH

∥∥
Lq

∥∥∥
∫ T

0

|bt − bot |dt
∥∥∥
Lp

≤ K
∥∥AH

∥∥
LqT

1− 1
p ‖b− bo‖Lp .

Furthermore, since |∂xf(x, y)| ≤ C̃f (1+ |x|r+1+ |y|r+1) for every x, y ∈ R (see Remark 2.8 (i)),

Hölder’s inequality with exponent p−1
(r+1) > 1 (and the power triangle inequality) ensures that

E
[∣∣AH

∣∣q] ≤ 3qC̃q
f

(
1 + E

[
|XH;o

T |q(r+1)
]
+ E

[
|h(So

T )|
q(r+1)

] )

≤ 3qC̃q
f

(
1 + E

[
|XH;o

T |p
] r+1

p−1

+ E

[
|h(So

T )|
p
] r+1

p−1
)
.

Combining this with Lemma 3.1 (ii) and ‖b− bo‖Lp ≤ γε ≤ 1, we conclude that E[|Ξb|] < ∞.

Therefore, by Fubini’s theorem and since Y H
t = E[AH |Ft], t ∈ [0, T ] (see Proposition 3.3),

E [Ξb] =

∫ T

0

E

[
E
[
AH
∣∣Ft

]
H⊤

t (bt − bot )
]
dt = 〈Y HH, b − bo〉P⊗dt.(3.25)

Next, we claim that E[Ξσ] = 〈ZHH⊤, σ − σo〉P⊗dt,F. Note that by Proposition 3.3 (ii),

E [Ξσ] = E

[∫ T

0

(ZH
t )⊤dWt

∫ T

0

H⊤
t (σt − σo

t )dWt + (LH
T − LH

0 )

∫ T

0

H⊤
t (σt − σo

t )dWt

+Y H
0

∫ T

0

H⊤
t (σt − σo

t )dWt

]
=: E [Iσ + IIσ + IIIσ] .

(3.26)

Since (σ − σo)⊤H ∈ H 2(Rd) (because |Ht| ≤ K P ⊗ dt-a.e.) and (Y H , ZH , LH) ∈ S 2(R) ×

H 2(Rd)× M 2(R), it follows that E[|Ξσ|] < ∞.

An application of the Itô-isometry shows that

E [Iσ] = E

[∫ T

0

(ZH
t )⊤(σt − σo

t )
⊤Htdt

]
= E

[ ∫ T

0

〈ZH
t H⊤

t , σt − σo
t 〉Fdt

]

= 〈ZHH⊤, σ − σo〉P⊗dt,F.

Moreover, by [75, Lemma 2 & Theorem 35, p.149], LH and (
∫ t

0 H
⊤
s (σs − σo

s)dWs)t∈[0,T ] are

strongly orthogonal, thus E[IIσ] = 0. Finally, since F0 is trivial (see Section 2.1), E[IIIσ] = 0.

We conclude that

E [Ξσ] = E [Iσ] = 〈ZHH⊤, σ − σo〉P⊗dt,F(3.27)

and combined with (3.25), this shows (3.24).
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Step 2. We proceed to analyze the second term in (3.23) and show that

E

[(
BH
)⊤(

S
b,σ
T − So

T

)]
= 〈YH , b− bo〉P⊗dt + 〈ZH , σ − σo〉P⊗dt,F.(3.28)

To that end, we first note that

(
BH
)⊤

(Sb,σ
T − So

T ) =

d∑

i=1

∂yf
(
X

H;o
T , h(So

T )
)
∂sih(S

o
T )

(∫ T

0

(bit − b
o,i
t )dt+

∫ T

0

(σi
t − σ

o,i
t )dWt

)
,

where for i = 1, . . . , d, (bit−b
o,i
t )t∈[0,T ] denotes the i-th component of b−bo and (σi

t−σ
o,i
t )t∈[0,T ]

denotes the i-th row of σ − σo.

For i = 1, . . . , d, set BH,i := ∂yf(X
H;o
T , h(So

T ))∂sih(S
o
T ) and denote by

Ξi
b := BH,i

∫ T

0

(bit − b
o,i
t )dt, Ξi

σ := BH,i

∫ T

0

(σi
t − σ

o,i
t )dWt,

so that

E

[(
BH
)⊤

(Sb,σ
T − So

T )
]
= E

[
d∑

i=1

(
Ξi
b + Ξi

σ

)
]
.(3.29)

First note that for every i = 1, . . . , d, (YH,i,ZH,i,LH,i)) ∈ S 2(R)×H 2(Rd)×M 2(R) is the

unique solution of BSDE with terminal condition BH,i. It follows from the same arguments as

given for the proof of (3.25) and the fact that |∂sih(·)| ≤ Ch (see Remark 2.8 (ii)) that

E[Ξi
b] = E

[ ∫ T

0

YH,i
t (bit − b

o,i
t )dt

]
.(3.30)

Similarly, it follows from the same argument as given for the proofs of (3.26) and (3.27) (by

replacing ZH and H⊤(σ − σo) with ZH,i and σi − σo,i, respectively) that

E[Ξi
σ] = 〈ZH,i, (σi − σo,i)⊤〉P⊗dt.(3.31)

Combining (3.29), (3.30), and (3.31), we obtain that indeed

E

[(
BH
)⊤

(Sb,σ
T − So

T )
]
=

d∑

i=1

(
E

[ ∫ T

0

YH,i
t (bit − b

o,i
t )dt

]
+ 〈ZH,i, (σi − σo,i)⊤〉P⊗dt

)

= 〈YH , b− bo〉P⊗dt + 〈ZH , σ − σo〉P⊗dt,F.

The proof of the lemma now follows from (3.24) and (3.28). �

Lemma 3.9. Suppose that Assumptions 2.1 and 2.7 are satisfied. Moreover, let H∗ be the

unique optimizer for V (0) (given in Proposition 2.9 (i)) and let (Y ∗, Z∗, L∗) and (Y∗,Z∗,L∗)

be the unique solution of (2.5) and (2.6), respectively. Then there exists a constant C > 0 such

that for any ε ∈ [0, 1],

0 ≤ V (ε)− V (0) ≤ ε
(
γ‖Y ∗H∗ + Y∗‖Lq + η‖Z∗(H∗)⊤ + Z∗‖Hq

)
+ Cε2.

In particular, limε↓0 V (ε) = V (0).

Proof. Step 1. Set

A∗ := AH∗

= ∂xf
(
X

H∗;o
T , h(So

T )
)
, B∗ := BH∗

= ∂yf
(
X

H∗;o
T , h(So

T )
)
∇h(So

T ).
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A second-order Taylor expansion of f and h around (XH∗;o
T , h(So

T )) and So
T , respectively, implies

that for every ε ≥ 0 and (b, σ) ∈ Bε,

f
(
X

H∗;b,σ
T , h(Sb,σ

T )
)
− f

(
X

H∗;o
T , h(So

T )
)

= A∗
(
X

H∗;b,σ
T −X

H∗;o
T

)
+
(
B∗
)⊤(

S
b,σ
T − So

T

)
+ Ib,σ + IIb,σ,

(3.32)

where Ib,σ and IIb,σ are given by

Ib,σ := ∂yf
(
X

H∗;o
T , h(So

T )
)(
S
b,σ
T − So

T

)⊤
∫ 1

0

(1− θ)D2h
(
So
T + θ(Sb,σ

T − So
T )
)
dθ
(
S
b,σ
T − So

T

)
,

IIb,σ :=
(
X

H∗;b,σ
T −X

H∗;o
T , h(Sb,σ

T )− h(So
T )
) ∫ 1

0

(1− θ)D2f
(
X̃b,σ;θ, h̃b,σ;θ

)
dθ

(
X

H∗;b,σ
T −X

H∗;o
T

h(Sb,σ
T )− h(So

T )

)
,

and, for θ ∈ [0, 1], X̃b,σ;θ and h̃b,σ;θ are given by

X̃b,σ;θ := X
H∗;o
T + θ(XH∗;b,σ

T −X
H∗;o
T ),

h̃b,σ;θ := h(So
T ) + θ(h(Sb,σ

T )− h(So
T )).

Step 2. We claim that there exist CI, CII > 0 such that for every ε ∈ [0, 1],

sup
(b,σ)∈Bε

E

[
|Ib,σ|+ |IIb,σ|

]
≤
(
CI + CII

)
ε2.(3.33)

Step 2, estimates on Ib,σ. Since ‖D2h(·)‖F ≤ Ch and |∂yf(x, y)| ≤ C̃f

(
1 + |x|r+1 + |y|r+1

)
for

every x, y ∈ R (see Remark 2.8), it follows that for every ε ∈ [0, 1] and (b, σ) ∈ Bε,

E

[
|Ib,σ|

]
≤ ChC̃fE

[(
1 + |XH∗;o

T |r+1 + |h(So
T )|

r+1
)∣∣Sb,σ

T − So
T

∣∣2
]

≤ ChC̃f

∥∥∥1 + |XH∗;o
T |r+1 + |h(So

T )|
r+1
∥∥∥
L

p
p−2

∥∥Sb,σ
T − So

T

∥∥2
Lp ,

(3.34)

where the second inequality follows from Hölder’s inequality (with exponent p
2 > 1). By

Lemma 3.1 (i) we have that for every ε ∈ [0, 1] and (b, σ) ∈ Bε, ‖Sb,σ
T − So

T ‖
2
Lp ≤ C

2
p

2 ε2.

Moreover, by the power triangle inequality,

E

[(
1 + |XH∗;o

T |r+1 + |h(So
T )|

r+1
) p

p−2

]

≤ 3
p

p−2

(
1 + E

[
|XH∗;o

T |
(r+1)p
p−2

]
+ E

[
|h(So

T )|
(r+1)p
p−2

])
< ∞,

where the last inequality follows from Lemma 3.1 (ii) (noting that (r+1)p
p−2 ≤ p).

Combined with (3.34), we conclude that there is some CI > 0 such that for every ε ∈ [0, 1],

sup(b,σ)∈Bε E[|Ib,σ|] ≤ CIε
2.

Step 2, estimates on IIb,σ. Set

IIIb,σ := 1 + |XH∗;b,σ
T |r + |XH∗;o

T |r + |h(Sb,σ
T )|r + |h(So

T )|
r.

Then, Hölder’s inequality with exponent p−2
r > 1 (and the power triangle inequality) and the

a priori estimates given in Lemma 3.1 (ii) show that for every ε ∈ [0, 1],

sup
ε∈[0,1]

sup
(b,σ)∈Bε

‖IIIb,σ‖
L

p
p−2

< ∞.(3.35)
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Moreover, by Assumption 2.7 (ii) we have that for every x, x∗, y, y∗ ∈ R,

‖D2f(x+ x∗, y + y∗)‖F ≤ Cf2
3r
2 (1 + |x|r + |x∗|r + |y|r + |y∗|r),

hence it follows that for every (b, σ) ∈ Bε and ε ∈ [0, 1],

E
[
|IIb,σ|

]
≤ Cf2

3
2 r · E

[
IIIb,σ

(∣∣XH∗;b,σ
T −X

H∗;o
T

∣∣2 +
∣∣h(Sb,σ

T )− h(So
T )
∣∣2
)]

≤ Cf2
3
2 r · ‖IIIb,σ‖

L
p

p−2

(∥∥XH∗;b,σ
T −X

H∗;o
T

∥∥2
Lp +

∥∥h(Sb,σ
T )− h(So

T )
∥∥2
Lp

)
,

(3.36)

where we used Hölder’s inequality (with exponent p
2 > 1) in the second step.

Note that by Lemma 3.1 (i), sup(b,σ)∈Bε‖X
H∗;b,σ
T − X

H∗;o
T ‖2Lp ≤ C

2
p

1 ε2. Furthermore, since

|∇h(s) −∇h(ŝ)| ≤ Ch|s− ŝ| for every s, ŝ ∈ Rd (see Remark 2.8 (ii)), it follows that for every

ε ∈ [0, 1],

sup
(b,σ)∈Bε

∥∥h(Sb,σ
T )− h(So

T )
∥∥2
Lp ≤ C2

h sup
(b,σ)∈Bε

∥∥Sb,σ
T − So

T

∥∥2
Lp ≤ C2

hC
2
p

2 ε2.

Combined with (3.35) and (3.36), this ensures that there is CII > 0 such that for every

ε ∈ [0, 1], sup(b,σ)∈Bε E[|IIb,σ||] ≤ CIIε
2.

Step 3. For any ε ∈ [0, 1], set

Φ(ε) := sup
(b,σ)∈Bε

E

[
A∗
(
X

H∗;b,σ
T −X

H∗;o
T

)
+
(
B∗
)⊤(

S
b,σ
T − So

T

)]
.

Then, by (3.32) and (3.33), for every ε ∈ [0, 1],

0 ≤ V (ε)− V (0) ≤ Φ(ε) + (CI + CII)ε
2.(3.37)

It remains to show that for every ε ∈ [0, 1],

Φ(ε) ≤ ε
(
γ‖Y ∗H∗ + Y∗‖Lq + η‖Z∗(H∗)⊤ + Z∗‖Hq

)
.

To that end, we note that by Lemma 3.8,

Φ(ε) = sup
(b,σ)∈Bε

(
〈Y ∗H∗ + Y∗, b− bo〉P⊗dt + 〈Z∗(H∗)⊤ + Z∗, σ − σo〉P⊗dt,F

)
.(3.38)

Set Bε
1 := {b : (b, σ) ∈ Bε} and Bε

2 := {σ : (b, σ) ∈ Bε} so that Bε = Bε
1 × Bε

2 by the definition

of Bε. It follows from the Cauchy-Schwartz inequality and Hölder’s inequality (with exponent

p > 3) that for every ε ∈ [0, 1] and b ∈ Bε
1,

〈Y ∗H∗ + Y∗, b− bo〉P⊗dt ≤ E

[∫ T

0

|bt − bot ||Y
∗
t H

∗
t + Y∗

t |dt

]

≤ ‖b− bo‖Lp‖Y ∗H∗ + Y∗‖Lq .

Hence for every ε ∈ [0, 1] we have that

sup
b∈Bε

1

〈Y ∗H∗ + Y∗, b− bo〉P⊗dt ≤ εγ‖Y ∗H∗ + Y∗‖Lq .(3.39)
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Similarly, using Cauchy-Schwartz inequality for ‖·‖F and Hölder’s inequality (with exponent

2), it follows that for every ε ∈ [0, 1] and σ ∈ Bε
2,

〈Z∗(H∗)⊤ + Z∗, σ − σo〉P⊗dt,F ≤ E

[∫ T

0

‖σt − σo
t ‖F‖Z

∗
t (H

∗
t )

⊤ + Z∗
t ‖Fdt

]

≤ E




(∫ T

0

‖σt − σo
t ‖

2
Fdt

) 1
2
(∫ T

0

‖Z∗
t (H

∗
t )

⊤ + Z∗
t ‖

2
Fdt

) 1
2



 .

Therefore, another application of Hölder’s inequality shows that for every ε ∈ [0, 1],

sup
σ∈Bε

2

〈Z∗(H∗)⊤ + Z∗, σ − σo〉P⊗dt,F ≤ sup
σ∈Bε

2

‖σ − σo‖Hp‖Z∗(H∗)⊤ + Z∗‖Hq

≤ εη‖Z∗(H∗)⊤ + Z∗‖Hq .

(3.40)

Combining (3.39) and (3.40) with (3.37) concludes the proof. �

Remark 3.10. Recall V ∗(ε) defined in (2.8). The proof of Lemma 3.9 actually shows that

under the same assumptions as therein, for any ε ∈ [0, 1],

0 ≤ V ∗(ε)− V ∗(0) ≤ ε
(
γ‖Y ∗H∗ + Y∗‖Lq + η‖Z∗(H∗)⊤ + Z∗‖Hq

)
+ Cε2.

This will be used later in the proof of Theorem 2.14.

From Lemma 3.9, we can deduce the upper bound

V ′(0) ≤ γ‖Y ∗H∗ + Y∗‖Lq + η‖Z∗(H∗)⊤ + Z∗‖Hq ,(3.41)

where H∗ is the unique optimizer for V (0) and (Y ∗, Z∗,Y∗,Z∗) are defined in Proposition 2.9.

To prove the corresponding lower bound in (3.41), let us consider ε2-optimizers Hε ∈ A of

V (ε), i.e.,

V (ε) = inf
H∈A

V(H, ε) > V(Hε, ε)− ε2 = sup
(b,σ)∈Bε

E

[
f
(
X

Hε;b,σ
T , h(Sb,σ

T )
)]

− ε2.(3.42)

The lower bound follows from the following lemma, together with an additional result which

implies that Hε converges to H∗ in a suitable sense.

Lemma 3.11. Suppose that Assumptions 2.1 and 2.7 are satisfied. For any ε ∈ (0, 1], let

Hε ∈ A be an ε2-optimizer of V (ε). Set

Aε := AHε

= ∂xf(X
Hε;o
T , h(So

T )), Bε := BHε

= ∂yf(X
Hε;o
T , h(So

T ))∇h(So
T ),

and let

(Y ε, Zε, Lε) ∈ S
2(R)× H

2(Rd)× M
2(R),(3.43)

(Yε,Zε,Lε) ∈ (S 2(R))d × (H 2(Rd))d × (M 2(R))d(3.44)

be the unique solutions of (3.10) with the terminal condition Aε and (3.11) with the terminal

condition Bε, respectively (ensured by Proposition 3.3). Then,

V (ε)− V (0) ≥ ε
(
γ‖Y εHε + Yε‖Lq + η‖Zε(Hε)⊤ + Zε‖Hq

)
− Cresε

2,

where Cres := CI + CII + 3 and CI, CII > 0 are given in (3.33).
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Proof. It is obvious that

V (ε)− V (0) ≥ V(Hε, ε)− V(Hε, 0)− ε2.(3.45)

Furthermore, from the second-order Taylor expansion of f given in (3.32) and the a priori

estimates given in (3.33) with CI, CII > 0 (replacing H∗ by Hε, see the proof of Lemma 3.9),

it follows that for every ε ∈ (0, 1],

V(Hε, ε)− V(Hε, 0) = sup
(b,σ)∈Bε

E

[
f
(
X

Hε;b,σ
T , h(So

T )
)
− f

(
X

Hε;o
T , h(So

T )
)]

≥ sup
(b,σ)∈Bε

E

[
Aε
(
X

Hε;b,σ
T −X

Hε;o
T

)
+
(
Bε
)⊤(

S
b,σ
T − So

T

)]
− (CI + CII)ε

2.(3.46)

Next, note that for (Y ε, Zε) and (Yε,Zε) given in (3.43) and (3.44), Lemma 3.8 implies that

sup
(b,σ)∈Bε

E

[
Aε
(
X

Hε;b,σ
T −X

Hε;o
T

)
+ (Bε)⊤

(
S
b,σ
T − So

T

)]

= sup
(b,σ)∈Bε

(
〈Y εHε + Yε, b− bo〉P⊗dt + 〈Zε(Hε)⊤ + Zε, σ − σo〉P⊗dt,F

)
.

(3.47)

By [32, Remark 5.3, p.137], the left limit process Y ε
− := (Y ε

t−)t∈[0,T ] defined by Y ε
t− := lims↑t Y

ε
s ,

t ∈ (0, T ] and Y ε
0− := Y ε

0 , is the F-predictable projection of Y ε. Moreover, as Y ε is càdlàg,

Y ε
t = Y ε

t− P⊗ dt-a.e.. Using the same notation and arguments, it follows that Yε
t = Yε

t− P⊗ dt-

a.e.. Therefore, we can invoke the duality between F-predictable spaces Lq(Rd) and Lp(Rd) to

obtain some b̃ε ∈ Lp(Rd) that satisfies ‖b̃ε‖Lp = 1 and

‖Y εHε + Yε‖Lq = ‖Y ε
−H

ε + Yε
−‖Lq

= sup
‖b̃‖Lp=1

〈Y ε
−H

ε + Yε
−, b̃〉P⊗dt

≤ 〈Y ε
−H

ε + Yε
−, b̃

ε〉P⊗dt + ε = 〈Y εHε + Yε, b̃ε〉P⊗dt + ε.

(3.48)

In a similar manner, since Zε(Hε)⊤ + Zε is F-predictable (because Hε ∈ A, Zε ∈ H 2(R)

and {Zε,i}i=1,...,d ⊆ H 2(R)), we may invoke the duality between Hq(Rd×d) and Hp(Rd×d)

(see [39, Theorems 1.3.10 & 1.3.21]) to obtain some σ̃ε ∈ Hp(Rd×d) that satisfies ‖σ̃ε‖Hp = 1

and

‖Zε(Hε)⊤ + Zε‖Hq = sup
‖σ̃‖Hp=1

〈Zε(Hε)⊤ + Zε, σ̃〉P⊗dt,F

≤ 〈Zε(Hε)⊤ + Zε, σ̃ε〉P⊗dt,F + ε.

(3.49)

Finally, define (b⋆,ε, σ⋆,ε) ∈ Bε by

b
⋆,ε
t := bot + εγb̃εt , σ

⋆,ε
t := σo

t + εησ̃ε
t , t ∈ [0, T ],

and set Cres,1 := CI + CII + 1. Then (3.45)-(3.49) imply that

V (ε)− V (0) ≥
(
〈Y εHε + Yε, b⋆,ε − bo〉P⊗dt + 〈Zε(Hε)⊤ + Zε, σ⋆,ε − σo〉P⊗dt,F

)
− Cres,1ε

2

= ε
(
γ〈Y εHε + Yε, b̃ε〉P⊗dt + η〈Zε(Hε)⊤ + Zε, σ̃ε〉P⊗dt,F

)
− Cres,1ε

2

≥ ε
(
γ‖Y εHε + Yε‖Lq + η‖Zε(Hε)⊤ + Zε‖Hq

)
− (Cres,1 + γ + η)ε2.

This completes the proof. �

The final ingredient in the proof of Theorem 2.13 is the following stability result.



25

Lemma 3.12. Suppose that Assumptions 2.1 and 2.7 are satisfied. Let (εn)n∈N ⊆ (0, 1] with

limn εn = 0 be such that limn
V (εn)−V (0)

εn
= lim infε↓0

V (ε)−V (0)
ε . Moreover, let H∗ be the

optimizer for V (0) (see Proposition 2.9 (i)). Then for any sequence of ε2n-optimizers Hεn , the

following hold:

(i) For every β ≥ 1,

‖Hεn
t −H∗

t ‖Lβ → 0 as n → ∞.

(ii) Denote for each n ∈ N by (Y εn , Zεn , Lεn) the unique solution of (3.10) with the termi-

nal condition AHεn

= ∂xf(X
Hεn ;o
T , h(So

T )), and by (Y ∗, Z∗, L∗) the unique solution of

(2.5). Then, as n → ∞,

‖Y εn − Y ∗‖S 2 + ‖Zεn − Z∗‖H 2 + ‖Lεn − L∗‖M2 → 0.

(iii) Denote for each n ∈ N by (Yεn ,Zεn ,Lεn) the unique solution of (3.11) with the terminal

condition BHεn

= ∂yf(X
Hεn ;o
T , h(So

T ))∇h(So
T ), and by (Y∗,Z∗,L∗) the unique solution

of (2.6). Then, for every i = 1, . . . , d, as n → ∞,

‖Yεn,i − Y∗,i‖S 2 + ‖Zεn,i −Z∗,i‖H 2 + ‖Lεn,i − L∗,i‖M2 → 0.

Proof. We start by proving (i). Since H∗ is optimal for V (0) and Hεn is ε2n-optimal for V (εn)

(see (3.42)), a second-order Taylor expansion of f around (XH∗;o
T , h(So

T )) shows that

V (εn)− V (0) ≥ E

[
f(XHεn;o

T , h(So
T ))
]
− ε2n − E

[
f(XH∗;o

T , h(So
T ))
]

= E

[
∂xf

(
X

H∗;o
T , h(So

T )
)(
XHεn;o

T −X
H∗;o
T

)
+ IV

∣∣XHεn;o

T −X
H∗;o
T

∣∣2
]
− ε2n,

where by the strong convexity of f (see Assumption 2.7 (iv)),

IV :=

∫ 1

0

(1− θ)∂xxf
(
θX

Hεn ;o
T + (1− θ)XH∗;o

T , h(So
T )
)
dθ ≥

1

2
Cl,2.

Hence, using the first-order optimality of H∗ (see Lemma 3.7),

V (εn)− V (0) ≥
1

2
Cl,2E

[
|XHεn;o

T −X
H∗;o
T |2

]
− ε2n.

Moreover, since V (εn) → V (0) as n → ∞ (by Lemma 3.9), we have that E[|XHεn;o

T −

X
H∗;o
T |2] → 0 as n → ∞; in particular

∣∣XHεn ;o
T −X

H∗;o
T

∣∣ P
−→ 0 as n → ∞.

Thus, an application of Lemma 3.5 implies (i).

Finally, Lemma 3.6 ensures that (ii) and (iii) hold, which completes the proof. �

Proof of Theorem 2.13. First note that Lemma 3.9 immediately implies the upper bound

lim sup
ε↓0

V (ε)− V (0)

ε
≤ γ‖Y ∗H∗ + Y∗‖Lq + η‖Z∗(H∗)⊤ + Z∗‖Hq .

Thus, all that is left to do is to prove the corresponding lower bound. That will be achieved in

three steps.
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Step 1: Let (εn)n∈N ⊆ (0, 1] satisfy that limn εn = 0 and limn
V (εn)−V (0)

εn
= lim infε↓0

V (ε)−V (0)
ε .

Moreover, for each n ∈ N, let Hεn be an ε2n-optimizer of V (εn). Let (Y εn , Zεn , Lεn) and

(Yεn ,Zεn ,Lεn) be the unique solutions of (3.10) and (3.11), respectively, with

AHεn

= ∂xf(X
Hεn ;o
T , h(So

T )), BHεn

= ∂yf(X
Hεn ;o
T , h(So

T ))∇h(So
T ).

Then, by Lemma 3.11,

lim
n→∞

V (εn)− V (0)

εn
≥ lim inf

n→∞

(
γ‖Y εnHεn + Yεn‖Lq + η‖Zεn(Hεn)⊤ + Zεn‖Hq

)

≥ γ‖Y ∗H∗ + Y∗‖Lq + η‖Z∗(H∗)⊤ + Z∗‖Hq

− lim sup
n→∞

(
γ‖Y εnHεn − Y ∗H∗‖Lq + η‖Zεn(Hεn)⊤ − Z∗(H∗)⊤‖Hq

+ γ‖Yεn − Y∗‖Lq + η‖Zεn −Z∗‖Hq

)
.

Therefore, it remains to show that

lim sup
n→∞

(
γ‖Y εnHεn − Y ∗H∗‖Lq + η‖Zεn(Hεn)⊤ − Z∗(H∗)⊤‖Hq

)
= 0,(3.50)

lim sup
n→∞

(γ‖Yεn − Y∗‖Lq + η‖Zεn −Z∗‖Hq ) = 0.(3.51)

Step 2: proof of (3.50). Recall that |H∗
t |, |H

εn
t | ≤ K P⊗dt-a.e.. Hence, by the triangle inequality

(and using that γ, η ≤ 1),

γ‖Y εnHεn − Y ∗H∗‖Lq + η‖Zεn(Hεn)⊤ − Z∗(H∗)⊤‖Hq

≤ ‖(Y εn − Y ∗)H∗‖Lq + ‖Y εn(Hεn −H∗)‖Lq + ‖(Zεn − Z∗)(H∗)⊤‖Hq + ‖Zεn(Hεn −H∗)⊤‖Hq

≤ K
(
‖Y εn − Y ∗‖S q + ‖Zεn − Z∗‖H q

)
+ E

[
sup

t∈[0,T ]

|Y εn
t |q

∫ T

0

|Hεn
t −H∗

t |
qdt

] 1
q

+

+ ‖Zεn(Hεn −H∗)⊤‖Hq

=: In + IIn + IIIn.

We will show that In, IIn, IIIn vanish as n → ∞.

Step 2, limit of In : Note that 1 < q = p
p−1 < 2 since p > 3. Hence Lemma 3.12 (ii) implies

that In → 0 as n → ∞, as claimed.

Step 2, limit of IIn : Let v > 1 satisfy 1 < vq < 2. Then by Hölder’s inequality (with exponent

v > 1) and Jensen’s inequality (noting that x → |x|
v

v−1 is convex),

IIn ≤ ‖Y εn‖
S vq E

[(∫ T

0

|Hεn
t −H∗

t |
qdt
) v

v−1

] v−1
qv

≤ ‖Y εn‖
S vq T

1
qv ‖Hεn −H∗‖

L
qv

v−1
.

Lemma 3.12 (i) ensures that ‖Hεn − H∗‖
L

qv
v−1

→ 0 as n → ∞. Furthermore, by the triangle

inequality, for every n ∈ N,

‖Y εn‖
S vq ≤ ‖Y εn − Y ∗‖

S vq + ‖Y ∗‖
S vq .
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Note that ‖Y ∗‖
S vq < ∞ since Y ∗ ∈ S 2(R) and vq < 2. Moreover, by Lemma 3.12 (ii) and

Hölder’s inequality (with exponent 2
vq > 1), we have that

0 ≤ lim
n→∞

‖Y εn − Y ∗‖
S vq ≤ lim

n→∞
‖Y εn − Y ∗‖S 2 = 0.

Therefore, we conclude that IIn → 0 as n → ∞.

Step 2, limit of IIIn : By the triangle inequality and Jensen’s inequality (noting that x → |x|
2
q

is convex),

IIIn ≤ ‖(Zεn − Z∗)(Hεn −H∗)⊤‖Hq + ‖Z∗(Hεn −H∗)⊤‖Hq

≤ E

[ ∫ T

0

|Zεn
t − Z∗

t |
2|Hεn

t −H∗
t |

2dt

] 1
2

+ E

[∫ T

0

|Z∗
t |

2|Hεn
t −H∗

t |
2dt

] 1
2

.
(3.52)

Moreover, since |H∗
t |, |H

εn
t | ≤ K P⊗ dt-a.e., it follows that

E

[∫ T

0

|Zεn
t − Z∗

t |
2|Hεn

t −H∗
t |

2dt

] 1
2

≤ 2K‖Zεn − Z∗‖H 2 → 0,

as n → ∞, where we used Lemma 3.12 (ii) in the last step. Therefore, it remains to show that

the last term in (3.52) vanishes when n → ∞. To that end, we note that since ‖Hεn−H∗‖L2 → 0

as n → ∞ (by Lemma 3.12 (i)), the continuous mapping theorem implies that

|Z∗
t |

2|Hεn
t −H∗

t |
2 P⊗dt
−−−→ 0 as n → ∞.

Finally since Z∗ ∈ H 2(Rd) and |Hεn
t − H∗

t | ≤ 2K P ⊗ dt-a.e., the dominated convergence

theorem guarantees that E[
∫ T

0
|Z∗

t |
2|Hεn

t −H∗
t |

2dt]
1
2 → 0 as n → ∞.

Step 3: proof of (3.51). By Hölder’s inequality (with exponent 2
q > 1),

‖Yεn − Y∗‖Lq + ‖Zεn −Z∗‖Hq

= E

[∫ T

0

( d∑

i=1

(
Yεn,i
t − Y∗,i

t

)2) q
2

dt

] 1
q

+ E

[(∫ T

0

d∑

i=1

∣∣Zεn,i
t −Z∗,i

t

∣∣2dt
) q

2

] 1
q

≤ T
1
q
− 1

2E

[
d∑

i=1

∫ T

0

(
Yεn,i
t − Y∗,i

t

)2
dt

] 1
2

+ E

[
d∑

i=1

∫ T

0

∣∣Zεn,i
t −Z∗,i

t

∣∣2dt
] 1

2

=: IVn.

Moreover, it follows from the power triangle inequality that

IVn ≤ T
1
q
− 1

2 d
1
2

d∑

i=1

(
E

[ ∫ T

0

(
Yεn,i
t − Y∗,i

t

)2
dt

] 1
2

+ ‖Zεn,i −Z∗,i‖H 2

)

≤ T
1
q
− 1

2 d
1
2

d∑

i=1

(
T

1
2 ‖Yεn,i − Y∗,i‖S 2 + ‖Zεn,i −Z∗,i‖H 2

)
.

Combined with Lemma 3.12 (iii), this estimate ensures that (3.51) holds. The proof is complete.

�
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4. Remaining proofs

Proof of Lemma 2.3. We start by proving (i). Since |bot |+ ‖σo
t ‖F ≤ Cb,σ P⊗ dt-a.e.,

‖bo‖pLp = E

[∫ T

0

|bot |
pdt

]
≤ (Cb,σ)

pT, ‖σo‖pHp = E

[(∫ T

0

‖σo
t ‖

2
Fdt

) p

2
]
≤ (Cb,σ)

pT
p

2 .

This ensures that Assumption 2.1 (i) holds.

Next, we claim that Assumption 2.1 (ii) holds. Note that from the uniform ellipticity con-

dition on (σo)⊤σo, it follows that there exists some constant Cc > 0 such that y⊤(σo
t )

⊤σo
t y ≥

1
Cc

|y|2 P⊗ dt-a.e. for every y ∈ Rd, hence

|(σo
t )

−1y| ≤
√
Cc|y| P⊗ dt-a.e., for every y ∈ Rd.

In particular, using the uniform boundedness of bo, it follows that

1

2

∫ T

0

|(σo
u)

−1bou|
2du ≤

1

2

∫ T

0

Cc|b
o
u|

2du ≤
T

2
C2

b,σCc < ∞ P-a.s..(4.1)

Thus,
∫ ·

0
((σo

u)
−1bou)

⊤dWu is well-defined and D satisfies D· = 1−
∫ ·

0
Du((σ

o
u)

−1bou)
⊤dWu showing

that D is a continuous, (F,P)-local martingale.

Moreover, (4.1) clearly implies that E[exp(12
∫ T

0 |(σo
u)

−1bou|
2du)] < ∞. Hence, Novikov’s con-

dition in [45, Proposition 3.5.12, p.198] ensures that D is a strictly positive (F,P)-martingale.

We proceed to show that DT ∈ Lβ(FT ;R) for every β ≥ 1. Indeed, using (4.1), we have that

for every β ≥ 1,

E[Dβ
T ] = E

[
E
(
−β
(
(σo)−1bo

)
·W

)
T
exp

((
β2

2
−

β

2

)∫ T

0

|(σo
t )

−1bot |
2dt

)]

≤ E

[
E
(
−β
(
(σo)−1bo

)
·W

)
T

]
exp

((
β2

2
−

β

2

)
TC2

b,σCc

)
.

(4.2)

Since E(−β((σo)−1bo) ·W )T is a nonnegative continuous (F,P)-local martingale, it is an (F,P)-

supermartingale and hence integrable. This together with (4.2) ensures that DT ∈ Lβ(FT ;R),

for every β ≥ 1.

Now let us prove (ii). Since bot = b̃o(t, So
t ), σ

o
t = σ̃o(t, So

t ) P ⊗ dt-a.e., So given in (2.1) is

driven by the following stochastic differential equation (SDE):

So
t = s0 +

∫ t

0

b̃o(u, So
u)du +

∫ t

0

σ̃o(u, So
u)dWu P-a.s., t ∈ [0, T ].(4.3)

Using the Lipschitz and linear growth conditions on (̃bo, σ̃o), an application of [54, Theo-

rem 2.3.1] shows that the SDE (4.3) has a unique solution.

Furthermore, since So
0 = s0 ∈ R, an application of [54, Theorem 2.4.1] shows that there is

some C > 0 (depending on s0 ∈ R, p > 3 and T > 0) which satisfies

E [|So
t |

p] ≤ C, for every t ∈ [0, T ].

Therefore, the linear growth condition on b̃o (with the constant Cb̃,σ̃ > 0), and the power

triangle inequality implies

‖bo‖pLp ≤ (Cb̃,σ̃2)
pE

[∫ T

0

(1 + |So
t |

p)dt

]
≤ (Cb̃,σ̃2)

pT (1 + C) < ∞.
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Furthermore, using the same arguments as above and Jensen’s inequality (noting that x →

|x|
p
2 is convex), we have

‖σo‖pHp ≤ (Cb̃,σ̃2)
pE

[(∫ T

0

(1 + |So
t |

2)dt

) p

2
]

≤ (Cb̃,σ̃2)
pT

p

2−12
p

2 E

[∫ T

0

(1 + |So
t |

p)dt

]
< ∞.

Hence Assumption 2.1 (i) holds.

Assumption 2.1 (ii) follows from the Beneš condition [9], i.e., (σo
t )

−1bot = θ(t,W ) P ⊗ dt-

a.e.. Indeed, by [45, Corollary 3.5.16], D is a strictly positive (F,P)-martingale. Moreover, the

condition that DT ∈ Lβ(FT ;R), for every β ≥ 1 follows from [31, Corollary 2]. This completes

the proof. �

Proof of Lemma 2.11. The expressions for Y ∗ and Y∗ follow from the definition of the Galtchouk-

Kunita-Watanabe decompositions given in (2.5) and (2.6) by taking conditional expectations.

As for the expressions of Z∗, recall that L∗ ∈ M 2(R) is strongly orthogonal with W i for

every i = 1, . . . , d, see Proposition 2.9 (ii) and Lemma 3.2. Hence, for every t ∈ [0, T ], P-a.s.,

d(〈Y ∗,W 1〉t, . . . , 〈Y
∗,W d〉t)

⊤ = Z∗
t dt+ d(〈L∗,W1〉t, . . . , 〈L

∗,Wd〉t)
⊤ = Z∗

t dt,

proving the claimed expression of Z∗.

The proof for the expression of Z∗,i follows from the same arguments (replacing Z∗ with

Z∗,i and Y ∗ with Y∗,i). �

Proof of Corollary 2.12. By the regularity assumption on J , i.e., J ∈ C1,2,2, an application of

Itô’s formula ensures that for every t ∈ [0, T ],

J(t,XH∗;o
t , So

t ) = ∂xf
(
X

H∗;o
T , h(So

T )
)
−

∫ T

t

(
L1
r + L2

r + L3
r

)
dr

−

∫ T

t

[
∂xJ(r,X

H∗;o
r , So

r )(H
∗
r )

⊤ + (∇sJ)
⊤(r,XH∗;o

r , So
r )
]
σo
rdWr ,

where

L1
r := ∂tJ(r,X

H∗;o
r , So

r ) +
1
2∂xxJ(r,X

H∗;o
r , So

r )|(σ
o
r )

⊤H∗
r |

2 + ∂xJ(r,X
H∗;o
r , So

r )(H
∗
r )

⊤bor;

L2
r :=

∑d
i=1 ∂x,siJ(r,X

H∗;o
r , So

r )((H
∗
r )

⊤σo
r )(σ

o,i
r )⊤;

L3
r := 1

2 tr
(
(σo

r)(σ
o
r )

⊤D2
sJ(r,X

H∗;o
r , So

r )
)
+ (∇sJ)

⊤(r,XH∗;o
r , So

r )b
o
r;

with (σo,i
t )t∈[0,T ], i = 1, . . . , d, denoting the i-th row vector process of σo, D2

sJ denoting the

Hessian of J with respect to s.

Hence, since Y ∗
t = J

(
t,X

H∗;o
t , So

t

)
holds for every t ∈ [0, T ], P-a.s. (see (2.7)), by Lemma 2.11

and the regularity on J , we have that for every t ∈ [0, T ), P-a.s.,

Z∗
t =

d

dt

(
〈J( · , XH∗;o, So),W 1〉t, · · · , 〈J( · , X

H∗;o, So),W d〉t

)⊤

= (σo
t )

⊤[∂xJ(t,X
H∗;o
t , So

t )H
∗
t +∇sJ(t,X

H∗;o
t , So

t )].

We can use the same arguments (replacing Y ∗ = J(·, XH∗;o, So) with Y ∗,i = J i( · , XH∗;o, So)

and using the regularity assumption on J i) to show that the property for Z∗,i holds for every

i = 1, . . . , d. �
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Remark 4.1. The regularity assumptions in Corollary 2.12 (see (2.7)) are satisfied if, e.g., the

following sufficient conditions (i),(ii),(iii) or (i),(iv) hold (see [65, Theorem 3.2] and [45, Theorem

5.7.6 and Remark 5.7.8]):

(i) F is the completion of the filtration generated by the Brownian motion W ;

(ii) ∂xf(·, h(·)) and ∂yf(·, h(·))∂sih(·), i = 1, . . . , d, are three times continuously differen-

tiable and their derivatives of order less than or equal to 3 grow at most like a polynomial

function of the variable at infinity;

(iii) Let b̂o : Rd → Rd and σ̂o : Rd → Rd×d be three times continuously differentiable

with bounded first, second, and third derivatives. Assume that H∗ given in Proposi-

tion 2.9 (i) is constant, and bo and σo given in (2.1) satisfy P⊗ dt-a.e.,

bot = b̂o(So
t ), σo

t = σ̂o(So
t );

(iv) Let b̄o : [0, T ] × Rd → Rd be bounded, Hölder-continuous. Moreover, let σ̄o : [0, T ]×

Rd → Rd×d be bounded and satisfy that σ̄o(σ̄o)⊤ : [0, T ] × Rd → Rd×d is Hölder-

continuous and satisfies a uniform ellipticity condition, i.e., there is Cσ > 0 such that

for every v ∈ Rd and (t, x) ∈ [0, T ]× Rd, v⊤σ̄o(σ̄o)⊤(t, x)v ≥ Cσ|v|
2. Assume that H∗

is deterministic, Hölder-continuous in [0, T ], and satisfy |H∗
t | > 0 for every t ∈ [0, T ],

and bo and σo satisfy P⊗ dt-a.e.,

bot = b̄o(t, So
t ), σo

t = σ̄o(t, So
t ).

Proof of Theorem 2.14. Since V ∗(0) = V (0) and

V ′(0) = γ‖Y ∗H∗ + Y∗‖Lq + η‖Z∗(H∗)⊤ + Z∗‖Hq

(see Theorem 2.13), the inequality

V ∗(ε) ≤ V (0) + εV ′(0) +O(ε2) = V (ε) +O(ε2)

as ε ↓ 0, follows directly from Remark 3.10. The reverse inequality follows by using the same

arguments as for the proof of Lemma 3.11, but replacing Hε by H∗. �
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