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ABSTRACT. We consider non-convex stochastic optimization problems where the objective functions
have super-linearly growing and discontinuous stochastic gradients. In such a setting, we provide a non-
asymptotic analysis for the tamed unadjusted stochastic Langevin algorithm (TUSLA) introduced in Lovas et
al. (2020). In particular, we establish non-asymptotic error bounds for the TUSLA algorithm in Wasserstein-
1 and Wasserstein-2 distances. The latter result enables us to further derive non-asymptotic estimates for the
expected excess risk. To illustrate the applicability of the main results, we consider an example from transfer
learning with ReLU neural networks, which represents a key paradigm in machine learning. Numerical
experiments are presented for the aforementioned example which support our theoretical findings. Hence,
in this setting, we demonstrate both theoretically and numerically that the TUSLA algorithm can solve
the optimization problem involving neural networks with ReLU activation function. Besides, we provide
simulation results for synthetic examples where popular algorithms, e.g. ADAM, AMSGrad, RMSProp,
and (vanilla) stochastic gradient descent (SGD) algorithm, may fail to find the minimizer of the objective
functions due to the super-linear growth and the discontinuity of the corresponding stochastic gradient,
while the TUSLA algorithm converges rapidly to the optimal solution. Moreover, we provide an empirical
comparison of the performance of TUSLA with popular stochastic optimizers on real-world datasets, as
well as investigate the effect of the key hyperparameters of TUSLA on its performance.

1. INTRODUCTION

In this paper, we focus on non-convex stochastic optimization problems. More precisely, for positive
integers d and m, let U : Rd × Rm → R be a measurable function and let X be a given Rm-valued
random variable. We assume that E[|U(θ,X)|] < ∞ for all θ ∈ Rd, and define u : Rd → R by
u(θ) := E[U(θ,X)], θ ∈ Rd. We then consider the following optimization problem:

minimize Rd 3 θ 7→ u(θ) := E[U(θ,X)]. (1)

Our aim is to generate an estimator θ̂ such that the expected excess risk given by

E[u(θ̂)]− inf
θ∈Rd

u(θ) (2)

is minimized. The optimization problem (1) is closely linked to the problem of sampling from a target
distribution πβ(dθ) � exp(−βu(θ))dθ with β > 0, see [11], [12]. This is due to the fact that πβ
concentrates around the minimizers of u for sufficiently large β, see [26]. It is well-known that, under
mild conditions, the (overdamped) Langevin stochastic differential equation (SDE) given by

Z0 = θ0, dZt = −h (Zt) dt+
√

2β−1dBt, t ≥ 0, (3)

where θ0 is an Rd-valued random variable, h := ∇u, β > 0 is the so-called inverse temperature parameter,
and (Bt)t≥0 is a d-dimensional Brownian motion, admits πβ as its unique invariant measure. To sample
from the target distribution πβ , one approach is to consider the stochastic gradient Langevin dynamics
(SGLD) algorithm introduced in [38], which is given by

θSGLD
0 := θ0, θSGLD

n+1 = θSGLD
n − λH(θSGLD

n , Xn+1) +
√

2λβ−1ξn+1, n ∈ N0,
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where λ > 0 is the stepsize, (Xn)n∈N0 is an i.i.d. sequence of random variables, H : Rd×Rm → Rd is a
measurable function satisfying h(θ) = E[H(θ,X0)] for each θ ∈ Rd, β > 0, and {ξn}n≥1 is a sequence
of independent standard d-dimensional Gaussian random variables.

The SGLD algorithm, which can be viewed as the Euler discretization of (3) with inexact gradient,
has been extensively studied in literature. Under the conditions that the objective function u is strongly
convex and the (stochastic) gradient of u is Lipschitz continuous, i.e., there exist positive constants M ,
LLip such that for all θ, θ′ ∈ Rd, x, x′ ∈ Rm,{

〈H(θ, x)−H(θ′, x), θ − θ′〉 ≥M |θ − θ′|2 (Strong convexity),
|H(θ, x)−H(θ′, x′)| ≤ LLip(|θ − θ′|+ |x− x′|) (Lipschitz continuity),

or similarly (but slightly weaker conditions) that there exist positive constants M , LLip such that for all
θ, θ′ ∈ Rd, {

〈h(θ)− h(θ′), θ − θ′〉 ≥M |θ − θ′|2 (Strong convexity),
|h(θ)− h(θ′)| ≤ LLip|θ − θ′| (Lipschitz continuity),

[2], [4], and [13] provide non-asymptotic error bounds in Wasserstein-2 distance between the SGLD
algorithm and the target distribution πβ . In particular, the results in [2] are obtained in the case of
dependent data stream (Xn)n∈N0 . Recent research focuses on the relaxation of the strong convexity
condition of u. In [34] and [41], a dissipativity condition is considered under which non-asymptotic
estimates are obtained for the SGLD algorithm in Wasserstein-2 distance. By using a contraction result
developed in [19], [7] improves significantly the aforementioned convergence results in [34] and [41]
even without assuming the independence of the data stream. Moreover, in [43], a local dissipativity
condition is proposed, and non-asymptotic bounds are obtained in Wasserstein distances following a
similar approach as in [7]. Furthermore, [9] provide convergence results by assuming a convexity at
infinity condition of u based on the contraction property established in [18].

The aforementioned results in both convex and non-convex case are obtained under a global Lipschitz
continuity condition (in θ) of the stochastic gradient H . However, popular applications in machine
learning, especially those with the use of artificial neural networks (ANNs), typically have highly
nonlinear objective functions, which results in super-linearly1 growing stochastic gradients. It has been
shown in [24] that the Euler scheme with super-linearly growing coefficients is unstable in the sense
that the absolute moments of the Euler approximations could diverge to infinity at finite time point. As
many (stochastic) gradient descent methods can be viewed as Euler discretizations of SDE (3), their
application to super-linearly growing stochastic gradient is problematic, which is confirmed by the
numerical experiments in [30] for the SGLD algorithm. To cope with this problem, [30] considers the
use of a taming technique, see, e.g., [25], [35], [36], [5], and a tamed unadjusted stochastic Langevin
algorithm (TUSLA) is proposed, which is given by

θλ0 := θ0, θλn+1 = θλn − λHλ(θλn, Xn+1) +
√

2λβ−1ξn+1, n ∈ N0,

where for all θ ∈ Rd, x ∈ Rm,

Hλ(θ, x) :=
H(θ, x)

1 +
√
λ|θ|2r

with λ > 0 and r > 0. Non-asymptotic analysis of the TUSLA algorithm is provided in [30] in the
case of locally Lipschitz continuous H , and non-asymptotic results are obtained in Wasserstein-1 and
Wasserstein-2 distances with the rate of convergence equal to 1/2 and 1/4, respectively. However, in the
case of super-linearly growing and discontinuous H , theoretical guarantees for the TUSLA algorithm
have not been established in the existing literature. Hence, the results established in [30] cannot be
applied to optimization problems involving neural networks with ReLU activation function.

To address the issue of H being discontinuous, one line of research considers certain continuity in
average conditions. Under such a type of condition, [20] and [6] provide an almost sure convergence result
and a strong L1 convergence result, respectively, for the stochastic gradient descent (SGD) algorithm.
Another line of research focuses on the application of proximal operators. In [16], the Stochastic Proximal
Gradient Langevin Dynamics (SPGLD) algorithm is proposed, and a non-asymptotic error bound between
the Kullback-Leibler divergence from the target distribution to the averaged distribution associated with

1We refer to functions f : Rk → Rj , for k, j ∈ N, to be super-linearly growing if supθ∈Rk
|f(θ)|
1+|θ| = ∞.



NON-ASYMPTOTIC ESTIMATES FOR TUSLA WITH APPLICATIONS TO RELU NEURAL NETWORKS 3

the SPGLD algorithm is obtained under the condition that the potential of the target distribution is convex
(but no strong convexity condition is imposed). Furthermore, proximal operators can also be used for
the design of algorithms involving discontinuous gradient h. In [15], the Moreau-Yosida Unadjusted
Langevin Algorithm (MYULA) is proposed by using proximal operators and Moreau-Yosida envelopes,
and a non-asymptotic error bound in total variation distance is obtained under a convexity condition. In
addition, [31] proposes proximal type algorithms to sample from distributions that are not necessarily
smooth nor log-concave, which can be applied to regression problems with non-smooth penalties. There,
by using Moreau-Yosida envelopes, a convergence result in mean square of the proposed algorithm to the
smoothed target distribution is obtained, but without specifying relevant constants. It is worth noting that
the aforementioned results in [20], [6], [16], and [15] are established in the case where the (stochastic)
gradients are growing (at most) linearly, and hence cannot be applied to optimization problems involving
ReLU neural networks.

As an application of (1), we are interested in optimization problems in transfer learning with ReLU
neural networks, see, e.g. [23] and references therein. One concrete example2 would be to obtain the best
nonlinear mean-square estimator by solving the (regularized) minimization problem:

min
θ∈R2

u(θ) := min
θ∈R2

(
E[(Y −N(θ, Z))2] +

η

2(r + 1)
|θ|2(r+1)

)
, (4)

where θ ∈ R2 is the parameter to be optimized, Z is the R-valued input random variable, Y is the
R-valued target random variable, η, r > 0, and N : R2 × R→ R takes the form:

N(θ, z) := W1σ1 (cz + b0) (5)

with z ∈ R the input data, c ∈ R the fixed (pre-trained) input weight, b0 ∈ R the bias parameter,
W1 ∈ R the weight parameter, σ1 the ReLU activation function given by σ1(ν) = max{0, ν}, ν ∈ R,
and θ = (W1, b0). One observes that the stochastic gradient H of the problem (4)-(5) is super-linearly
growing and discontinuous. Thus, the theoretical results for the TUSLA algorithm obtained in [30]
cannot be applied. To extend the applicability of the TUSLA algorithm to, e.g., optimization problems
involving neural networks with ReLU activation function, we consider the case where H is super-linearly
growing and discontinuous. More precisely, we assume that H takes the form H := F + G, where
G : Rd × Rm → Rd and F : Rd × Rm → Rd. The function F is assumed to be locally Lipschitz
continuous, and satisfy a certain convexity at infinity condition, whileG is assumed to satisfy a “continuity
in average” condition. The precise formulations of the assumptions are provided in Assumption 1-4
in Section 2.1. For further discussions on the assumptions, we refer to the corresponding remarks in
Section 2.1. Under these conditions, non-asymptotic estimates in Wasserstein distances are established in
Theorem 2.9 and Corollary 2.10, while a non-asymptotic error bound for the expected excess risk (2) is
established in Theorem 2.11, which provides a theoretical guarantee for the TUSLA algorithm to converge
to a global minimizer. Detailed proofs are presented in Section 4. To illustrate the applicability of the
main results, we consider an example in transfer learning with the use of ReLU neural networks in Section
3.1, which can be viewed as a multidimensional version of (4)-(5). It is shown that the stochastic gradient
of the problem satisfies Assumption 1- 4, and numerical experiments support our theoretical findings.
Hence, in this setting, we show both theoretically and numerically that the TUSLA algorithm can solve
the optimization problem involving neural networks with ReLU activation function. Moreover, we present
synthetic examples in Section 3.2 to demonstrate that widely-used machine learning algorithms, e.g.
ADAM, AMSGrad, RMSProp, and (vanilla) SGD, may fail to find the minimizer of the corresponding
objective function, which is due to the super-linear growth of the stochastic gradient. In contrast, the
TUSLA algorithm converges rapidly to the optimal solution. Furthermore, we provide in Section 3.3 an
empirical comparison of the performance of TUSLA with popular stochastic optimizers on real-world
datasets, whereas in Section 3.4, we investigate the effect of the key hyperparameters of TUSLA on its
performance. The proofs of the results in Section 3, i.e. Proposition 3.1, Corollary 3.2, and Proposition
3.3, are provided in Section 5.

We conclude this section by introducing some notation. Let (Ω,F , P ) be a probability space. We
denote by E[Z] the expectation of a random variable Z. For 1 ≤ p <∞, Lp is used to denote the usual
space of p-integrable real-valued random variables. Fix integers d,m ≥ 1. For an Rd-valued random

2The following example is presented in dimension one for the illustrative purpose. We refer to Section 3.1 for the
multidimensional setting.
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variable Z, its law on B(Rd), i.e. the Borel sigma-algebra of Rd, is denoted by L(Z). For a positive
real number a, we denote by bac its integer part, and define dae := bac + 1. The Euclidean scalar
product is denoted by 〈·, ·〉, with | · | standing for the corresponding Euclidean norm (where the dimension
of the space may vary depending on the context). For any integer q ≥ 1, let P(Rq) denote the set of
probability measures on B(Rq). For µ ∈ P(Rd) and for a µ-integrable function f : Rd → R, the notation
µ(f) :=

∫
Rd f(θ)µ(dθ) is used. For µ, ν ∈ P(Rd), let C(µ, ν) denote the set of probability measures

ζ on B(R2d) such that its respective marginals are µ, ν. For two Borel probability measures µ and ν
defined on Rd with finite p-th moments, the Wasserstein distance of order p ≥ 1 is defined as

Wp(µ, ν) :=

(
inf

ζ∈C(µ,ν)

∫
Rd

∫
Rd
|θ − θ′|pζ(dθdθ′)

)1/p

. (6)

2. ASSUMPTIONS AND MAIN RESULTS

Let U : Rd × Rm → R be a measurable function. We assume that E[|U(θ,X)|] <∞ for all θ ∈ Rd,
where X is a given Rm-valued random variable with probability law L(X). Assume that u : Rd → R
defined by u(θ) := E[U(θ,X)], θ ∈ Rd, is a continuously differentiable function, and denote by h := ∇u
its gradient. Furthermore, define

πβ(A) :=

∫
A e
−βu(θ) dθ∫

Rd e
−βu(θ) dθ

, A ∈ B(Rd), (7)

where we assume
∫
Rd e

−βu(θ) dθ <∞.
Denote by (Gn)n∈N0 a given filtration representing the flow of past information, and denote by

G∞ := σ(
⋃
n∈N0

Gn). Moreover, let (Xn)n∈N0 be a (Gn)-adapted process such that (Xn)n∈N0 is a
sequence of i.i.d. Rm-valued random variables with probability law L(X). Let (ξn)n∈N0 be a sequence
of independent standard d-dimensional Gaussian random variables. It is assumed throughout the paper
that the Rd-valued random variable θ0 (initial condition), G∞, and (ξn)n∈N0 are independent.

The tamed unadjusted stochastic Langevin algorithm (TUSLA) is given by

θλ0 := θ0, θλn+1 = θλn − λHλ(θλn, Xn+1) +
√

2λβ−1ξn+1, n ∈ N0, (8)

where λ > 0 is the stepsize, and β > 0 is the inverse temperature parameter. In addition, for all
θ ∈ Rd, x ∈ Rm, let

Hλ(θ, x) :=
H(θ, x)

1 +
√
λ|θ|2r

, (9)

where H : Rd × Rm → Rd takes the following form: for all θ ∈ Rd, x ∈ Rm,

H(θ, x) := G(θ, x) + F (θ, x), (10)

where G : Rd × Rm → Rd and F : Rd × Rm → Rd are measurable functions.

2.1. Assumptions. In this section, we present the conditions required to obtain the main results. Let
q ∈ [1,∞), r ∈ [q/2,∞) ∩ N, ρ ∈ [1,∞) be fixed. The following assumptions are stated.

We first impose conditions on the initial value θ0 and the data process (Xn)n∈N0 . In addition, it is
assumed that H(θ, x) is an unbiased estimate of h(θ) for all θ ∈ Rd, x ∈ Rm.

Assumption 1. The initial condition θ0 has a finite 4(2r + 1)-th moment, i.e., E[|θ0|4(2r+1)] <∞. The
process (Xn)n∈N0 has a finite 4(2r + 1)ρ-th moment, i.e. E[|X0|4(2r+1)ρ] <∞. Furthermore, we have
that h(θ) = E[H(θ,X0)], for all θ ∈ Rd.

Recall the expression of H presented in (10). In the second assumption below, we impose a “continuity
in average” condition on G, which is weaker than a (locally) Lipschitz continuity condition. This concept
is proposed in [6, Eqn. (6)], and a similar continuity condition can be found in [20, H4]. Moreover, we
assume the function G satisfies a polynomial growth condition.

Assumption 2. There exists a constant LG > 0 such that, for all θ, θ′ ∈ Rd,

E[|G(θ,X0)−G(θ′, X0)|] ≤ LG(1 + |θ|+ |θ′|)q−1|θ − θ′|.
In addition, there exists a constant KG > 1, such that for all θ ∈ Rd, x ∈ Rm,

|G(θ, x)| ≤ KG(1 + |x|)ρ(1 + |θ|)q.
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Remark 2.1. One observes that Assumption 2 is slightly weaker than the conditional Lipschitz continuity
(CLC) property in [6, Eqn. (6)], as we consider i.i.d. data stream while [6] considers dependent data
stream. In addition, one may refer to [6, Remark 2.4] for the comments on the differences between [6,
Eqn. (6)] and its similar condition [20, H4].

Furthermore, consider G = (G1, . . . , Gd) : Rd × Rm → Rd with Gl, l = 1, . . . , d, taking the
following form:

Gl(θ, x) :=
N∑
j=1

glj(θ, x)1{〈cl(θ),x〉∈Ilj(θ)}
, θ ∈ Rd, x ∈ Rm, (11)

where N ∈ N, cl = (cl1, . . . , c
l
m) : Rd → Rm with clk : Rd → R being Lipschitz continuous, where

glj : Rd × Rm → R are jointly local Lipschitz continuous functions, and where the intervals I lj(θ) take
the form (−∞, īlj(θ)), (ilj(θ),∞), or (ilj(θ), ī

l
j(θ)) with ilj , ī

l
j : Rd → R being Lipschitz continuous

functions. LetX = (X1, . . . , Xm) be an Rm-valued continuous random variable. For any k = 1, . . . ,m,
denote by fXk|X−k : R→ [0,∞) the density function of Xk given X1, . . . , Xk−1, Xk+1, . . . , Xm. Let
fXk|X−k , k = 1, . . . ,m, be continuous and bounded, and let |xk|2fXk|X−k(xk|x−k) be bounded for any
x = (x1, . . . , xm) ∈ Rm, k = 1, . . . ,m. Then, Assumption 2 is satisfied in the following cases:

(i) The functions glj : Rd × Rm → R are jointly Lipschitz continuous, and for each x ∈ Rm, the
functions glj(·, x) are bounded. Moreover, clk(θ) = 1, or clk(θ) ∈ (0, 1), for all θ ∈ Rd, k =
1, . . . ,m. Real-world applications satisfying the aforementioned form include quantile estimation,
vector quantization (Kohonen algorithm), and CVaR minimization, see [6, Section 5] and [37,
Section 5.2] for detailed proofs.

(ii) The functions glj : Rd × Rm → R are locally Lipschitz continuous, and cl(θ) = c∗ ∈ Rm \ {0},
for all θ ∈ Rd. We also refer to the optimization problem involving ReLU neural networks
introduced in Section 3.1.

Similarly, in the following assumption, we assume that the function F satisfies a (joint) local Lipschitz
condition and a certain growth condition.

Assumption 3. There exists a constant LF > 0 such that, for all θ, θ′ ∈ Rd, x, x′ ∈ Rm,

|F (θ, x)− F (θ′, x′)| ≤ LF (1 + |x|+ |x′|)ρ−1(1 + |θ|+ |θ′|)2r(|θ − θ′|+ |x− x′|).
Furthermore, there exists a constant KF > 0 such that for all θ ∈ Rd, x ∈ Rm,

|F (θ, x)| ≤ KF (1 + |x|)ρ(1 + |θ|2r+1).

Remark 2.2. One notes that, in Assumption 3, we assume separately a growth condition of F , even
though a similar condition can be deduced from the local Lipschitzness of F . The reason is that we aim
to optimise the restriction on the stepsize, i.e. λp,max with p ∈ N given in (16), which is proportional to
the reciprocal of (a power of) KF . For example, consider F (θ, x) = cθ|θ|2l + x for all θ ∈ Rd, x ∈ Rm,
where c > 0, l ≥ q/2. For any θ, θ′ ∈ Rd, x, x′ ∈ Rm, by using∣∣∣|θ|2l − |θ′|2l∣∣∣ ≤ 2l(|θ|+ |θ′|)2l−1|θ − θ′|,

one obtains the following:

|F (θ, x)− F (θ′, x′)| ≤ (1 + c)(1 + 2l)(1 + |θ|+ |θ′|)2l(|θ − θ′|+ |x− x′|).
Here we see that Assumption 3 is satisfied with LF = (1 + c)(1 + 2l), ρ = 1, r = l, and moreover, it
further implies

|F (θ, x)| ≤ KF (1 + |x|)(1 + |θ|2l+1),

where KF = 22l(1 + c)(1 + 2l) + |F (0, 0)|. However, by using directly the expression of F , one obtains

|F (θ, x)| ≤ KF (1 + |x|)(1 + |θ|2l+1),

where KF = 1 + c.

Remark 2.3. By Assumption 1, 2 and 3, one notes that E[G(θ,X0)], and E[F (θ,X0)] are well defined.
Moreover, one obtains for all, θ ∈ Rd, x ∈ Rm,

|H(θ, x)| ≤ KH(1 + |x|)ρ(1 + |θ|2r+1),
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where KH := 22rKG +KF . Furthermore, by Assumption 1, 2 and 3, it follows that h is locally Lipschitz
continuous, i.e. there exists a constant Lh > 0 such that for all θ, θ′ ∈ Rd,

|h(θ)− h(θ′)| ≤ Lh(1 + |θ|+ |θ′|)2r|θ − θ′|,
where Lh := LG + LF E[(1 + 2|X0|)ρ−1] + 1.

In the next assumption, a (local) convexity at infinity condition is imposed on F .

Assumption 4. There exist measurable functions A : Rm → Rd×d, B : Rm → Rd×d, and 0 ≤ r̄ < 2r
such that the following holds:

(i) For any x ∈ Rm, y ∈ Rd,

〈y,A(x)y〉 ≥ 0, 〈y,B(x)y〉 ≥ 0.

(ii) For all θ, θ′ ∈ Rd and x ∈ Rm,

〈θ − θ′, F (θ, x)− F (θ′, x)〉 ≥ 〈θ − θ′, A(x)(θ − θ′)〉(|θ|2r + |θ′|2r)
− 〈θ − θ′, B(x)(θ − θ′)〉(|θ|r̄ + |θ′|r̄).

(12)

(iii) The smallest eigenvalue of E[A(X0)] is a positive real number a, and the largest eigenvalue of
E[B(X0)] is a nonnegative real number b.

Remark 2.4. To understand Assumption 4, we first consider the following condition:

〈θ − θ′, F (θ, x)− F (θ′, x)〉 ≥ 〈θ − θ′, A(x)(θ − θ′)〉(|θ|2r + |θ′|2r). (13)

In the case that r = 0, the function F is globally Lipschitz continuous according to Assumption 3, and
the condition (13) becomes a local convexity condition which is the same as [2, Assumption 3.9]. It is a

“local” condition in the sense that (13) depends on the data stream x. One may refer to [43, Assumption 3]
and [37, Assumption 4] for local dissipativity conditions. When r > 0 (in particular, r ≥ 1/2 considered
in our setting), the function F is locally Lipschitz continuous and the condition (13) is nothing else than
an equivalent (local) convexity condition for a super-linearly growing function F .

The condition (12) presented in Assumption 4 is weaker than (13) since, for any r ≥ 0, 0 ≤ r̄ < 2r,
(13) implies (12). For the illustrative purpose, consider a simple example F (θ, x) = θ3 − θ for all
θ ∈ R, x ∈ R. Here, it is clear that F (θ, x) does not satisfy the condition (13), however, Assumption 4
holds with A(x) = 1/2, B(x) = 1, r = 1, r̄ = 0, i.e.

(θ − θ′)(F (θ, x)− F (θ′, x)) ≥ (|θ|2 + |θ′|2)|θ − θ′|2/2− |θ − θ′|2.
Moreover, for θ, θ′ ≥

√
2, it follows that

(θ − θ′)(F (θ, x)− F (θ′, x)) ≥ |θ − θ′|2.
We note that Assumption 4 can be satisfied for a wide class of functions, for example, the regularization

term in (regularized) optimization problems. The proof of the following statement can be found in
Appendix A.1.

Remark 2.5. One example of F satisfying Assumption 4 is given by F (θ, x) = ηθ|θ|2l, θ ∈ Rd, x ∈ Rm,
with η ∈ (0, 1), l ≥ q/2, which can be viewed as the gradient of the regularization term in regularized
optimization problems, see (18) in Section 3.1. More precisely, in this case, A(x) = ηId/2, B(x) =
0, r = l, r̄ = 0, a = η/2, b = 0.

Under Assumption 1, 2, 3, 4, one can obtain dissipativity conditions for F and h. The explicit statement
is presented in the following remark with the proof given in Appendix A.1.

Remark 2.6. By Assumption 1, 2, 3, 4 and the expression of H given in (10), one obtains, for all θ ∈ Rd,

〈θ,E[F (θ,X0)]〉 ≥ aF |θ|2r+2 − bF , (14)

where aF := a/2 and bF := (a/2 + b)Rr̄+2
F +K2

F E[(1 + |X0|)2ρ]/2a with

RF := max{(4b/a)1/(2r−r̄), 21/(2r)}.
Moreover, it follows that h satisfies the following inequality: for all θ ∈ Rd,

〈θ, h(θ)〉 ≥ ah|θ|2 − bh, (15)

where ah := 2qKG E[(1 + |X0|)ρ], bh := 3(2q+1KG E[(1 + |X0|)ρ]/min {1, aF })q+2 + bF . One notes
that by (15), u has a minimum θ∗ ∈ Rd due to [27, Eqn. (25), (26)] and [3, Theorem 2.32].
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We can further obtain an one-sided Lipschitz continuity condition on h, which is stated in the remark
below. The proof of the statement is provided in Appendix A.1.

Remark 2.7. By Assumption 1, 2, 3, and 4 and the expression of H given in (10), we have, for all
θ, θ′ ∈ Rd, that

〈θ − θ′, h(θ)− h(θ′)〉 ≥ −LR|θ − θ′|2,
where LR := Lh(1 + 2R)2r > 0 with R := max{1, (3q−1LG/a)1/(2r−q+1), (2b/a)1/(2r−r̄)}.

2.2. Main results. For any p ∈ N, we denote

λp,max := min

{
1, min{(aF /KF )2,(aF /KF )2/(2p−1)}

9(2p
p )

2
K2
F (E[(1+|X0|)2pρ])2

, 1
aF
, 1

4a2
F

}
, λmax := λ4r+2,max. (16)

Remark 2.8. One notes that λp,max given in (16) decreases as p increases.

One may refer to Appendix A.1 for the detailed proof of the above statement. Then, under the
assumptions presented in Section 2.1, the following non-asymptotic upper bound in Wasserstein-1
distance can be obtained.

Theorem 2.9. Let Assumption 1, 2, 3, and 4 hold. Then, for any β > 0, there exist constantsC0, C1, C2 >
0 such that, for any 0 < λ ≤ λmax with λmax given in (16) and n ∈ N0,

W1(L(θλn), πβ) ≤ C1e
−C0λn(E[|θ0|4(2r+1)] + 1) + C2

√
λ,

where C0, C1, C2 are given explicitly in (47).

The result below provides a non-asymptotic estimate in Wasserstein-2 distance between the law of the
algorithm (8) and πβ .

Corollary 2.10. Let Assumption 1, 2, 3, and 4 hold. Then, for any β > 0, there exist constants
C3, C4, C5 > 0 such that, for any 0 < λ ≤ λmax with λmax given in (16) and n ∈ N0,

W2(L(θλn), πβ) ≤ C4e
−C3λn(E[|θ0|4(2r+1)] + 1)1/2 + C5λ

1/4,

where C3, C4, C5 are given explicitly in (51).

Let θ̂ = θλn, where θλn is the n-th iteration of the TUSLA algorithm given in (8). Then, by using
Corollary 2.10 and by applying a similar splitting approach as suggested in [34, Eqn. (1.5)], one
can obtain an upper estimate for the expected excess risk of the minimization problem (1) given by
E[u(θλn)]− infθ∈Rd u(θ). The statement is provided below.

Theorem 2.11. Let Assumption 1, 2, 3, and 4 hold. Then, for any β > 0, there exist constants
C6, C7, C8, C9 > 0 such that, for any 0 < λ ≤ λmax with λmax given in (16) and n ∈ N0,

E[u(θλn)]− u∗ ≤ C7e
−C6λn + C8λ

1/4 + C9/β,

where u∗ := infθ∈Rd u(θ), C6, C7, C8 are given explicitly in (178) while C9 is given in (183).

The proofs of the main results can be found in Section 4.3.

Remark 2.12. One notes that the constants C1, C2, C4, C5, C7, C8 have exponential dependence on the
dimension (as shown in Table 6 and 7) only due to the contraction result [19, Theorem 2.2] (see also
Proposition 4.6). In particular, if one could improve the aforementioned result and remove the exponential
dependence on the dimension of its constants, then all our constants would have at most polynomial
dependence on the dimension. Moreover, it has been shown in the simulation results in Section 3 that the
TUSLA algorithm converges rapidly to the corresponding optimal solutions. The explicit expressions of
all constants in the main theorems are also provided in Table 6 and 7.

3. APPLICATIONS

In this section, we apply our theoretical results to various settings. First, in Section 3.1, we present
an example with the use of ANNs. In particular, we consider a single-hidden-layer feed-forward neural
network (1LFN) with ReLU activation function where its input weight matrix is fixed which could be
either obtained from a pre-trained model or randomly generated. Then, in Section 3.2, we consider a
synthetic example where the TUSLA algorithm (8) outperforms state of the art optimizers when the
stochastic gradient fails to be Lipschitz continuous. We show in Proposition 3.1 and 3.3 that both
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examples satisfy Assumption 1-4, hence Theorem 2.11 provides theoretical guarantees for the TUSLA
algorithm to find the optimal solutions. Simulation results are provided for both examples which support
our theoretical findings. Section 3.3 provides an empirical comparison of the performance of TUSLA
with popular stochastic optimizers on real-world datasets such as the concrete compressive strength
dataset [42] for regression and Fashion MNIST [40] for image classification. Lastly, in Section 3.4, we
investigate the effect of key hyperparameters β, r, λ, as well as η (for, e.g., regularized optimization
problems with target functions of the form (18)), on the performance of TUSLA. Python code for all the
experiments in this paper is avilable at https://github.com/DongyoungLim/TUSLA_RELU.

3.1. Feed-forward neural network with fixed input weights. ANNs with fixed (pre-trained) pa-
rameters in the first layer are used in transfer learning and multi-task learning to reduce the com-
putational cost, see, e.g. [23] and references therein. In this section, we consider a 1LFN with
fixed input weights in the context of transfer learning. More precisely, let d1,m1,m2 ∈ N, and let
N = (N1, . . . ,Nm2) : Rd × Rm1 → Rm2 be the 1LFN with its i-th element given by

Ni(θ, z) :=

d1∑
j=1

W ij
1 σ1

(
〈cj·, z〉+ bj0

)
, (17)

where z = (z1, . . . , zm1) ∈ Rm1 is the input vector, c = (cjk) ∈ Rd1×m1 is the fixed weight matrix,
b0 = (b10, . . . , b

d1
0 ) ∈ Rd1 is the bias parameter, W1 = (W ij

1 ) ∈ Rm2×d1 is the weight parameter, and
σ1 : R→ R is the ReLU activation function, i.e., σ1(ν) := max{0, ν}. Denote by [W1] the vector of all
elements in W1, then

θ = ([W1], b0) ∈ Rd

with d := d1(1 + m2). Moreover, denote by cF the Frobenius norm of the fixed weight matrix c. We
assume that at least one element in each row of c ∈ Rd1×m1 is nonzero, i.e., for each J = 1, . . . , d1,
there exists K = 1, . . . ,m1 such that cJK 6= 0.
Optimization problem. We consider an m-dimensional random variable X = (Y,Z) with Y =
(Y 1, . . . , Y m2) ∈ Rm2 and Z = (Z1, . . . , Zm1) ∈ Rm1 , where m := m1 + m2. We aim to obtain the
best nonlinear mean-square estimator by solving the following (regularized) minimization problem:

minimize Rd 3 θ 7→ u(θ) := E[(Y −N(θ, Z))2] +
η

2(r + 1)
|θ|2(r+1), (18)

where η > 0, r ∈ [q/2,∞) ∩ N with q ≥ 1 are given explicitly in Proposition 3.1.

Proposition 3.1. Let u be defined in (18). Let X = (Y,Z) be a continuously distributed random variable
with probability law L(X). For any I = 1, . . . ,m2,K = 1, . . . ,m1, let

fZK |Z1,...,ZK−1,ZK+1,...,Zm1 ,Y I : R→ [0,∞)

be the density function of ZK given Z1, . . . , ZK−1, ZK+1, . . . , Zm1 , Y I . For any I = 1, . . . ,m2,
K = 1, . . . ,m1, assume that there exist constantsCZK , C̄ZK > 0, such that for any z = (z1, . . . , zm1) ∈
Rm1 , yI ∈ R,

fZK |Z1,...,ZK−1,ZK+1,...,Zm1 ,Y I (z
K |z1, . . . , zK−1, zK+1, . . . , zm1 , yI) ≤ CZK ,

|zK |2fZK |Z1,...,ZK−1,ZK+1,...,Zm1 ,Y I (z
K |z1, . . . , zK−1, zK+1, . . . , zm1 , yI) ≤ C̄ZK .

(19)

Moreover, let (Xn)n∈N0 = (Yn, Zn)n∈N0 be a sequence of i.i.d. random variables with probability
law L(X), and assume that E[|θ0|20 + |X0|40] < ∞. Furthermore, let H : Rd × Rm → Rd be the
stochastic gradient of u which satisfies H(θ, x) := G(θ, x) + F (θ, x) for all θ ∈ Rd and all x ∈ Rm
with x = (y, z), y = (y1, . . . , ym2) ∈ Rm2 , z ∈ Rm1 , where the functions F and G are given by

F (θ, x) := ηθ|θ|2r, G(θ, x) :=
(
GW 11

1
(θ, x), . . . , G

W
m2d1
1

(θ, x), Gb10(θ, x), . . . , G
b
d1
0

(θ, x)
)
, (20)

where for I = 1, . . . ,m2, J = 1, . . . , d1,

GW IJ
1

(θ, x) := −2(yI −NI(θ, z))σ1

(
〈cJ ·, z〉+ bJ0

)
,

GbJ0
(θ, x) := −2

m2∑
i=1

(yi −Ni(θ, z))W iJ
1 1AJ (z)

(21)

https://github.com/DongyoungLim/TUSLA_RELU
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with
AJ := {z ∈ Rm1 |〈cJ ·, z〉+ bJ0 ≥ 0}.

Fix q = 4, r = 2, ρ = 2. Then, the following hold:
(i) The function u is continuously differentiable, and Assumption 1 holds.

(ii) Assumption 2 is satisfied with

LG = 55m2d
2
1(1 + cF )2

(
1 + CZ,max + C̄Z,max

)
E
[
(1 + |X0|)2

]
,

KG = 8m2d
2
1(1 + cF )2,

where

CZ,max := max
J∈{1,...,d1}

{CZνJ /cJνJ}, C̄Z,max := max
J∈{1,...,d1}

{C̄ZνJ /cJνJ},

with νJ := min{K ∈ {1, . . . ,m1}|cJK 6= 0} for each J = 1, . . . , d1.
(iii) Assumption 3 is satisfied with LF = 5η,KF = η.
(iv) Assumption 4 holds with A(x) = ηId/2, B(x) = 0, r̄ = 0, a = η/2, b = 0.

Proof. See Section 5. �

Corollary 3.2. Let y : Rm1 → Rm2 be a Borel measurable function such that, for any z ∈ Rm1 , |y(z)| ≤
cy(1 + |z|qy) with cy ≥ 0, qy ≥ 1. Moreover, let Z be an m1-dimensional continuously distributed
random variable with probability law L(Z), let Y be an m2-dimensional random variable defined by
Y = y(Z), and let X = (Y, Z). Furthermore, for any K = 1, . . . ,m1, let fZK |Z1,...,ZK−1,ZK+1,...,Zm1

be the density function of ZK given Z1, . . . , ZK−1, ZK+1, . . . , Zm1 . For any K = 1, . . . ,m1, assume
that there exist constants CZK , C̄ZK > 0, such that for any z = (z1, . . . , zm1) ∈ Rm1 ,

fZK |Z1,...,ZK−1,ZK+1,...,Zm1 (zK |z1, . . . , zK−1, zK+1, . . . , zm1) ≤ CZK ,

|zK |2qyfZK |Z1,...,ZK−1,ZK+1,...,Zm1 (zK |z1, . . . , zK−1, zK+1, . . . , zm1) ≤ C̄ZK .
(22)

In addition, let (Xn)n∈N0 = (Yn, Zn)n∈N0 be a sequence of i.i.d. random variables with probability law
L(X). Assume that E[|X0|40qy ] <∞. Then, the results in Proposition 3.1 hold for u defined in (18) and
for H given in (20) and (21) but with ρ = 2qy and

CZ,max := max
J∈{1,...,d1}

{
c2
y

(
2CZνJ + 2qy C̄ZνJ + 2qyCZνJ

)
/cJνJ

}
.

Proof. See Section 5. �

Simulation result. Denote by z = (z1, z2) ∈ R2 with z1, z2 ∈ R. We aim to approximate the function
y(z) = |2z1 + 2z2− 1.5|3 on [0, 1]× [0, 1] using the 1LFN given in (17) with d1 = 15,m1 = 2,m2 = 1.
In order to obtain the fixed input weight matrix c ∈ Rd1×m1 in (17), we consider the following two
methods:

(i) In this approach, we obtain c using transfer learning. More precisely, we first train a two-hidden-
layer feed-forward neural network (2LFN) to approximate a function ỹ that is similar to the target
function y. Once the aforementioned 2LFN is fully trained, we obtain the trained parameters in-
volved in the 2LFN. Denote by W̃ ∗0 the trained input matrix of the 2LFN. Then, when approximating
the target function y using 1LFN (17), we set c := W̃ ∗0 .

To illustrate the aforementioned procedures of transfer learning, we provide below a concrete
example. Consider the 2LFN Ñ : Rd̃ × Rm1 → R given by

Ñ(θ̃, z̃) =

d2∑
j=1

W̃ 1j
2 σ2

(
d1∑
k=1

[
W̃ jk

1 σ1

(
〈W̃ k·

0 , z̃〉+ b̃k0

)]
+ b̃j1

)
(23)

where z̃ = (z̃1, z̃2) ∈ Rm1 , W̃0 ∈ Rd1×m1 , b̃0 ∈ Rd1 , b̃1 ∈ Rd2 , W̃1 ∈ Rd2×d1 , W̃2 ∈ R1×d2 with
d2 = 15, σ1 is the ReLU activation function, σ2 is the tanh activation function, and where the
parameter θ̃ = ([W̃0], [W̃1], [W̃2], b̃0, b̃1) ∈ Rd̃ with d̃ = d1(m1 + 1) + d2(d1 + 2). We aim to
use the 2LFN (23) to approximate the function ỹ(z̃) = −|z̃1 + 2z̃2 − 1|2 on [0, 1]× [0, 1], and to
obtain the best nonlinear mean-square estimator by solving the optimization problem:

minimize Rd̃ 3 θ̃ 7→ ũ(θ̃) := E
[(
Ỹ − Ñ(θ̃, Z̃)

)2
]

+
η

8

∣∣∣θ̃∣∣∣8 .
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FIGURE 1. Training loss curve for
the 2LFN

FIGURE 2. True and estimated
value from the 2LFN

Let Z̃ = (Z̃1, Z̃2) ∈ R2. For the simulation, let Z̃1, Z̃2 ∼ Uni(0, 1) be independent, and we
generate 10000 independent samples (ỹn, z̃n)10000

n=1 with z̃n = (z̃1
n, z̃

2
n) and ỹn = ỹ(z̃n) for each n.

Moreover, we set
λ = 0.5, η = 10−6, β = 1010 (24)

with initial value θ̃0 obtained using Xavier initialization [21], which is the default setting in Pytorch.
Figure 1 shows the training error for the 2LFN (23) with TUSLA. Figure 2 plots the true function
and the fitted curve. After training the 2LFN (23), we obtain the trained parameters denoted
by θ̃∗ = ([W̃ ∗0 ], [W̃ ∗1 ], [W̃ ∗2 ], b̃∗0, b̃

∗
1). Then, we set c := W̃ ∗0 when approximating y using the

1LFN (17).
(ii) Alternatively, one may consider using a randomly generated input weight matrix c. For example,

we generate each element in c by using a standard uniform distribution. One notes that it has
been proved in [22, Corollary 3], [10, Theorem 5.1 and Corollary 5.4], and [33, Proposition 4.8]
that 1LFNs with randomly generated input weight matrix c and input bias vector b0 possess a
certain form of universal approximation property. One may refer to [22], [10], and [33] for detailed
discussions on neural networks with randomly generated input weights.

Here, we aim to present the simulation results for the optimization problem (18) with 1LFN (17)
in the context of transfer learning described in (i), thus, we set the fixed input matrix c := W̃ ∗0 . Let
X = (Y, Z) ∈ R3 with Y ∈ R and Z = (Z1, Z2) ∈ R2, and let Z1, Z2 ∼ Uni(0, 1) be independent.
We generate 10,000 independent samples (xn)10000

n=1 = (yn, zn)10000
n=1 with zn = (z1

n, z
2
n) and yn = y(zn)

for each n. Furthermore, we set the hyperparameters to be the same as in (24) with θ0 obtained using
Xavier initialization. One notes that Assumption 1-4 for our main results hold in this setting due to
Corollary 3.2. Figure 3 shows the training loss curve for the 1LFN (17). Also, Figure 4 displays the true
function and the estimated values computed from the 1LFN (17). These results indicate that TUSLA can
be successfully used for solving minimization problems involving neural networks with discontinuous
activation functions like ReLU.

3.2. Artificial example.
Optimization problem. In this example, we set d = m = 1. Consider the following optimization
problem:

minimize R 3 θ 7→ u(θ) := E[U(θ,X)], (25)

where U : R× R→ R is defined by

U(θ, x) =

{
a1θ

2
1{x≤θ} + a2θ

2
1{x>θ} + θ30, |θ| ≤ 1,

(a3|θ|+ a4)1{x≤θ} + (a5|θ|+ a6)1{x>θ} + θ30, |θ| > 1
(26)

with a3, a4, a5, a6 ∈ R satisfying

a3 = 2a1, a4 = −a1, a5 = 2a2, a6 = −a2 (27)

for any fixed a1, a2 ∈ R.
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FIGURE 3. Training loss curve for
the 1LFN

FIGURE 4. True and estimated
value from the 1LFN

Proposition 3.3. Let u be defined in (25) - (27). Let X be a continuously distributed random variable
with probability law L(X), and denote by fX its density function. Assume fX is Lipschitz continuous with
Lipschitz constant LX , and let fX be upper bounded by the constant cX . Moreover, let (Xn)n∈N0 be a
sequence of i.i.d. random variables with probability lawL(X), and assume that E[|θ0|116+|X0|116] <∞.
Furthermore, let H : R × R → R be the stochastic gradient of u that satisfies H(θ, x) := F (θ, x) +
G(θ, x) for all θ, x ∈ R, where

F (θ, x) = 30θ29, G(θ, x) =


2a2θ + 2(a1 − a2)θ1{x≤θ} + (a1 − a2)θ2fX(θ), |θ| ≤ 1,

2(a2 + (a1 − a2)1{x≤θ})(1{θ>1} − 1{θ<−1})

+(a1 − a2)(2|θ| − 1)fX(θ), |θ| > 1.

(28)

Fix q = 3, r = 14, ρ = 1. Then, the following hold:

(i) The function u is continuously differentiable. Moreover, Assumption 1 holds.
(ii) Assumption 2 is satisfied with

LG = (4 + 5cX + 2LX)(1 + |a1|+ |a2|), KG = (4 + 2cX)(1 + |a1|+ |a2|).

(iii) Assumption 3 is satisfied with LF = 870,KF = 30.
(iv) Assumption 4 holds with A(x) = 15Id, B(x) = 0, r̄ = 0, a = 15, b = 0.

Proof. See Section 5. �

Simulation results. We provide two examples which demonstrate the non-convergence issue of the
existing stochastic optimization methods including ADAM, AMSGrad, RMSProp, and (vanilla) SGD
when the stochastic gradientH fails to satisfy the global Lipschitz condition, which is commonly assumed
in the literature. For illustrative purposes, we consider the optimization problem with super-linearly
growing gradients. Our numerical results show that TUSLA can successfully deal with these synthetic
examples for both input distributions with bounded and unbounded support, respectively.
Simulation 1. Set a1 = 2, a2 = 1. Then, one observes that by using (25) - (27), the optimal solution of u
is attained at θ = 0 since U(θ, x) ≥ 0 for all θ, x ∈ R and U(0, x) = 0 for all x ∈ R. We first present the
simulation results for the optimization problem (25) - (27) with input data X ∼ Beta(2, 2) and θ0 = 4.
We solve the optimization problem using TUSLA, ADAM, AMSGrad, RMSProp, and (vanilla) SGD.
For ADAM and AMSGrad, we set ε = 10−8, β1 = 0.9, β2 = 0.999, and 0.001 as the stepsize, which
are suggested in their papers [8] and [28]. For RMSProp, we use the default settings in Pytorch, which
are 0.01 for the stepsize, and α = 0.99. We run TUSLA with λ = 0.001 and β = 1010. Figure 5 shows
that TUSLA finds the optimal solution after about 500 iterations whereas the other algorithms fail to
converge to the true solution even after 1,000 iterations. We also highlight that the vanilla SGD instantly
blows up in the presence of higher-order gradients. In addition, Figure 6 shows that the same problematic
behaviors are consistently observed with larger step sizes for ADAM, AMSGrad and RMSprop, implying
that the non-convergence issue cannot be simply resolved by adjusting the learning rate.
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FIGURE 5. Initial value θ0 = 4.0

FIGURE 6. Different learning
rates for ADAM, AMSGrad and
RMSprop

FIGURE 7. Initial value θ0 = 5.0

FIGURE 8. Different learning
rates for ADAM, AMSGrad and
RMSprop

Simulation 2. Set a1 = 2, a2 = 1. We then present the simulation results for the optimization problem
(25) - (27) with X ∼ N(0, 1) and θ0 = 5. In this setting, we employ TUSLA, ADAM, AMSGrad,
RMSProp, and (vanilla) SGD to find the optimal solution θ = 0. Hyper-parameters for these algorithms
are the same as in Simulation 1. Figure 7 depicts that TUSLA reaches the optimal point already after
about 200 iterations. On the contrary, ADAM, AMSGrad and RMSprop do not effectively work. Figure 8
further illustrates the non-convergence issue of ADAM, AMSGrad and RMSprop with different learning
rates. Moreover, it is worth noting that TUSLA is convergent to the true solution even with larger step
sizes, implying that the stability of TUSLA is superior to the existing adaptive optimization methods in
the presence of super-linearly growing gradients.

3.3. Real-world applications. This subsection presents two real-world applications, image classification
on Fashion MNIST [40] and (nonlinear) regression on the concrete compressive strength dataset [42],
to demonstrate the empirical performance of TUSLA in comparison with other popular stochastic
optimization algorithms. For the experiments, we solve the following (regularized) optimization problem:

minimize Rd 3 θ 7→ u(θ) := E[`(Y,N(θ, Z))] +
η

2(r + 1)
|θ|2(r+1), (29)

where ` : Rm2 × Rm2 → R is a loss function with m2 ∈ N, θ ∈ Rd is the parameter to be optimized, Z
is the Rm1-valued input random variable with m1 ∈ N, Y is the Rm2-valued target random variable, and
N : Rd × Rm1 → Rm2 is a neural network which will be specified later. Note that d and ` depends on
the structure of the neural network and the task of interest.
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3.3.1. UCI regression data. We test the performance of TUSLA on the concrete compressive strength
dataset of [42], which is publicly available at the UCI machine learning repository 3. The dataset consists
of 1,030 samples where each sample has 9 different attributes, e.g., age, and one target variable: the
concrete compressive strength. We aim to find the best estimator that predicts the concrete compressive
strength Y ∈ R given the input variable Z ∈ R9 by solving the optimization problem (29) with the
squared loss function `(u, v) = |u− v|2 for u, v ∈ R, m1 = 9, m2 = 1, and η = 0.

In this example, we consider a 1LFN, which is defined as

N(θ, z) := W2σ1(W1z + b1) + b2, (1LFN) (30)

where W1 ∈ Rd1×m1 , b1 ∈ Rd1 , W2 ∈ Rm2×d1 , b2 ∈ Rm2 , θ = (W1,W2, b1, b2) ∈ Rd with d =
d1(m1 +m2 + 1) +m2, σ1 is the ReLU activation function and d1 is the number of neurons. Here, d1 is
set to be 50 so that d is 551.

We randomly select 10% of samples as test set for the evaluation of the trained models and employ
TUSLA, RMSprop, ADAM, and AMSGrad to solve the regression problem. For ADAM and AMSGrad,
we search the optimal learning rate between {0.01, 0.001} and set ε = 10−8, β1 = 0.9, β2 = 0.999. For
RMSprop, the learning rate is chosen from {0.01, 0.001} where β = 0.99 and ε = 10−8 are fixed. For
TUSLA, we use λ = 0.5, r = 0.5, and β = 1012 throughout the experiment. We train the models for
5, 000 epochs with 256 batch size. Each experiment is performed three times to compute the mean and
standard deviation of test loss generated by each optimizer. As shown in Table 1, TUSLA achieves the
lowest mean-squared error (MSE) in comparison with ADAM, AMSGrad, and RMSprop.

3.3.2. Fashion MNIST. We conduct image classification on Fashion MNIST dataset [40] consisting
of a training set of 60,000 images and a test set of 10,000 images 4. Each sample of the dataset
(zi)

60,000
i=1 is a 28 × 28 pixel image, i.e., zi ∈ R784, and is assigned to one of 10 different labels

li ∈ {0, 1, . . . , 9} describing T-shirt (0), Trouser (1), Pullover (2), Dress (3), Coat (4), Sandal (5), Shirt
(6), Sneaker (7), Bag (8), and Ankle boot (9). Then, the label variables are converted to vectors such that
yi = [yi,0, yi,1, . . . , yi,9]> ∈ R10 with yi,j = 1j=li , j = 0, 1, · · · , 9, i = 1, . . . , 60, 000. 5

For image classification, we consider both the 1LFN (30) with 50 neurons as well as a 2LFN with 50
neurons on each hidden layer, which is defined by

N(θ, z) := W5σ1

(
W4σ1(W3z + b3) + b4

)
+ b5, (2LFN) (31)

where θ = (W3,W4,W5, b3, b4, b5), W3 ∈ R50×784, W4 ∈ R50×50, W5 ∈ R10×50, b3 ∈ R50, b4 ∈ R50,
b5 ∈ R10 and σ1 is the ReLU activation function. Therefore, we have d = 39, 760 for the 1LFN (30)
and d = 42, 310 for the 2LFN (31). Furthermore, the cross entropy loss is used, which is given by
`(u, v) = −

∑10
i=1 ui log vi for u = [u1, u2, · · · , u10]> ∈ R10, v = [v1, v2, · · · , v10]> ∈ R10. η is fixed

to 10−5 for all experiments. The models are trained for 200 epochs with 128 batch size.
The hyperparameters for TUSLA are set as follows: λ = 0.5, r = 0.5, and β = 1012. We apply the

same hyperparameters used in Subsection 3.3.1 to tune ADAM, AMSgrad, and RMSprop optimizers.
Also, we decay the initial learning rate by 10 after 150 epochs.

Table 1 shows that the performance of TUSLA is slightly better than that of ADAM, AMSgrad, and
RMSprop in terms of test accuracy. Also, it is worth noting that TUSLA produces a very stable learning
curve compared to other optimizers as shown in Figure 9 and 10, confirming the effectiveness of the
taming technique.

3.4. Effect of β, r, λ, and η on the performance of TUSLA. In this subsection, we perform a sensitivity
analysis to investigate the effect of the hyperparameters, β, r, η, and λ on the performance of TUSLA.
We test experiments with the 1LFN on the Fashion MNIST dataset. We train the models for 200 epochs
with a batch size of 128 under different hyperparameter settings for the experiment with β, r, and η,
while we train the models for 2,000 epochs with a batch size of 128 for the experiment with λ.

The inverse temperature β > 0 is a key feature of Langevin based algorithms, which helps the
algorithm to escape from local minima or saddle points. There is a trade-off between a large and small

3https://archive.ics.uci.edu/ml/datasets.php
4The Fashion MNIST data set can be downloaded at “ https://github.com/zalandoresearch/fashion-mnist” .
5For example, the target variables for Trouser and Bag are [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]> and [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]>,

respectively.
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FIGURE 9. Test accuracy curve
for 1LFN

t

FIGURE 10. Test accuracy curve
for 2LFN

TABLE 1. Best metric score evaluated on the test set for concrete compressive strength
(Concrete) and Fashion MNIST datasets. We report average and standard deviation of the
best metric score on the test set from three repetitive experiments with different random
seeds. The numbers in parenthesises indicate the standard deviations.

Dataset Concrete Fashion MNIST Fashion MNIST
Model 1LFN 1LFN 2LFN
Metric MSE Accuracy Accuracy

TUSLA 0.3386 (0.0467) 88.22 (0.09) 88.19 (0.13)
ADAM 0.3861 (0.0315) 87.03 (0.03) 87.32 (0.23)

AMSgrad 0.4165 (0.0010) 87.13 (0.22) 87.40 (0.09)
RMSprop 0.3850 (0.0397) 87.70 (0.22) 87.99 (0.07)

inverse temperature β. Intuitively, a large inverse temperature generates the solutions that explore the
local geometry, so called the exploitation. On the other hand, a small inverse temperature allows for the
solutions to jump drastically, leading to the exploration. To leverage the effects of β, simulated annealing
methods for β is widely applied in sampling and optimization. In our experiments, we fix β as a constant
during the training. Table 2 shows that, for fixed other parameters λ = 0.5, r = 0.5, and η = 10−5,
TUSLA achieves the highest accuracy when β is large, namely 108 ∼ 1012. This is consistent with the
cold posterior effect in Bayesian deep learning which states that the model performance is improved
when a large inverse temperature β is chosen, see [1] and [39].

TABLE 2. Test accuracy for Fashion MNIST datasets with different β. Other hyperpa-
rameters are λ = 0.5, r = 0.5, and η = 10−5.

β 104 106 108 1010 1012

test accuracy 68.32 86.71 88.48 88.63 88.33

The hyperparameter r ≥ 0.5 controls the intensity of the taming function of TUSLA. We conduct
experiments with λ = 0.5, β = 1012, and different r ∈ {0.5, 1, 2, 3} and summarize the results in Table 3.
It turns out that the choice of an appropriate r is a crucial factor for the performance of TUSLA. It is
encouraged to gradually increase r, as a large r can excessively suppress the gradient part in the formula
of TUSLA.

TABLE 3. Test accuracy for Fashion MNIST datasets with different r. Other hyperpa-
rameters are λ = 0.5, β = 1012, and η = 10−5.

r 0.5 1 2 3
test accuracy 88.33 87.27 82.72 79.28
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Next, we report the performance of TUSLA with different λ ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001}
where r = 0.5, β = 1012, and η = 10−5 are fixed. For the experiment, we use 2,000 epochs to ensure
all the models are fully trained. Then, we report the best test accuracy and the epoch at which the best
performance is attained. As shown in Table 4, it is observed that while the highest test accuracy is attained
with λ = 0.1, the model with λ = 0.5 reaches its best accuracy the fastest.

TABLE 4. Test accuracy for Fashion MNIST datasets with different λ. Other hyperpa-
rameters are r = 0.5, β = 1012, and η = 10−5.

λ 0.5 0.1 0.05 0.01 0.005 0.001
test accuracy 88.69 88.81 88.66 88.24 87.96 86.83
best epoch 584 906 614 621 1153 1481

Lastly, we investigate the impact of η, which controls the magnitude of the regularization term |θ|2(r+1),
on test accuracy. When the regularized term is incorporated in optimization problems, i.e., η > 0 in (29),
overfitting can be reduced by forcing the neural network to have smaller values of its parameters which
leads to a simpler model. On the other hand, the deviation between the regularized and original objective
functions could lead to degrading the performance of the model. To balance this trade-off, one needs to
find an appropriate η numerically. Table 5 shows the test accuracy of TUSLA with different values of η
varying from 10−5 to 10−1. The other parameters are fixed as follows: λ = 0.5, r = 0.5, and β = 1012.
We observe that TUSLA generates the highest test accuracy when η is 10−4.

TABLE 5. Test accuracy for Fashion MNIST datasets with different η. Other hyperpa-
rameters are λ = 0.5, r = 0.5, and β = 1012.

η 10−5 10−4 10−3 10−2 10−1

test accuracy 88.33 88.51 86.04 80.84 71.84

4. PROOF OVERVIEW OF THE MAIN RESULTS

In this section, we present the main ideas of establishing Theorem 2.9, Corollary 2.10, and Theorem
2.11. We first introduce several auxiliary processes which are key for the analysis of the convergence
results. Then, suitable Lyapunov functions are defined, and explicit moment bounds are obtained for the
auxiliary processes. Finally, we provide detailed explanations of the proofs of the main results. All proofs
of the intermediate results are postponed to Appendix A.2.

4.1. Auxiliary processes. Consider the Rd-valued Langevin SDE (Zt)t≥0 given by

dZt = −h (Zt) dt+
√

2β−1dBt, (32)

with Z0 := θ0, where (Bt)t≥0 is a standard d-dimensional Brownian motion on (Ω,F , P ). Denote by
(Ft)t≥0 the completed natural filtration of (Bt)t≥0, which is assumed to be independent of G∞ ∨ σ(θ0).

For each λ > 0, denote by Zλt := Zλt, t ≥ 0, the time-changed Langevin SDE given by

dZλt = −λh(Zλt ) dt+
√

2λβ−1 dBλ
t , (33)

with the initial condition Zλ0 := θ0, where Bλ
t := Bλt/

√
λ, t ≥ 0. Note that (Bλ

t )t≥0 is a d-dimensional
standard Brownian motion. For each λ > 0, denote by (Fλt )t≥0 the completed natural filtration of
(Bλ

t )t≥0 with Fλt := Fλt for each t ≥ 0, which is also independent of G∞ ∨ σ(θ0).
Then, define the continuous-time interpolation of the TUSLA algorithm (8), denoted by (θ̄λt )t≥0, as

dθ̄λt = −λHλ(θ̄λbtc, Xdte) dt+
√

2λβ−1dBλ
t (34)

with the initial condition θ̄λ0 := θ0. One notes that the law of the interpolated process coincides with the
law of the TUSLA algorithm (8) at grid-points, i.e. L(θ̄λn) = L(θλn), for each n ∈ N0.

Moreover, denote by ζs,v,λt , t ≥ s, a continuous-time process defined by the SDE:

ζs,v,λs := v ∈ Rd, dζs,v,λt = −λh(ζs,v,λt ) dt+
√

2λβ−1 dBλ
t .

Definition 4.1. For each fixed λ > 0 and n ∈ N0, define ζ̄λ,nt := ζ
nT,θ̄λnT ,λ
t , t ≥ nT , where T ≡

T (λ) := b1/λc .
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4.2. Preliminary estimates. For each p ∈ [2,∞) ∩ N, define the Lyapunov function Vp(θ) := (1 +

|θ|2)p/2, for all θ ∈ Rd, and similarly, define vp(w) := (1 + w2)p/2 for any real w ≥ 0. Denote by
PVp(Rd) the set of probability measures µ ∈ P(Rd) satisfying

∫
Rd Vp(θ)µ(dθ) < ∞. Note that Vp is

twice continuously differentiable, and

sup
θ∈Rd

|∇Vp(θ)|
Vp(θ)

<∞, lim
|θ|→∞

∇Vp(θ)
Vp(θ)

= 0. (35)

It is well-known that, under Assumption 1, 2, 3, and 4, and by Remark 2.6, 2.7, the Langevin SDE
(33) has a unique solution adapted to Ft ∨ σ(θ0), t ≥ 0, see, e.g. [29, Theorem 1]. In addition, for each
p ∈ N, the 2p-th moment of SDE (33) is finite, see Lemma A.1. Moreover, by using the same arguments
as in the proof of [14, Proposition 1-(ii)] together with Lemma A.1, it follows that the 2p-th moment of
πβ is finite.

In the following lemma, we provide moment estimates for (θ̄λt )t≥0 defined in (34). Moreover, by
considering a special case of F , a more practical stepsize restriction λ̃max is provided in (37).

Lemma 4.2. Let Assumption 1, 2, 3, and 4 hold. Then, one obtains the following:
(i) For any 0 < λ ≤ λ1,max with λ1,max given in (16), n ∈ N0, and t ∈ (n, n+ 1],

E
[
|θ̄λt |2

]
≤ (1− λ(t− n)aFκ)(1− aFκλ)n E

[
|θ0|2

]
+ c0(1 + 1/(aFκ)),

where the constants c0, κ are given explicitly in (132). In particular, the above inequality implies
supt≥0 E

[
|θ̄λt |2

]
≤ E

[
|θ0|2

]
+ c0(1 + 1/(aFκ)) <∞.

(ii) For any p ∈ [2,∞) ∩ N, 0 < λ ≤ λp,max with λp,max given in (16), n ∈ N0, and t ∈ (n, n+ 1],

E
[
|θ̄λt |2p

]
≤ (1− λ(t− n)aFκ

]
2/2)(1− λaFκ]2/2)n E

[
|θ0|2p

]
+ c]p(1 + 2/(aFκ

]
p)), (36)

where κ]p := min{κ̄(p), κ̃(p)}, c]p := max{c̄0(p), c̃0(p)} with the constants c̄0(p), κ̄(p) and
c̃0(p), κ̃(p) given explicitly in (149) and (163), respectively. In particular, the above estimate
implies supt≥0 E

[
|θ̄λt |2p

]
≤ E

[
|θ0|2p

]
+ c]p(1 + 2/(aFκ

]
p)) <∞.

(iii) If F is a function only of θ, i.e. for any θ ∈ Rd, F (θ, x) = F (θ) for all x ∈ Rm, then for any
p ∈ [2,∞) ∩ N, n ∈ N0, and t ∈ (n, n+ 1], (36) holds with 0 < λ ≤ λ̃max where

λ̃max := min

{
1,

a2
F

16K4
F

,
1

aF
,

1

4a2
F

}
. (37)

Proof. See Appendix A.2. �

A drift condition is obtained for the Lyapunov function Vp, which is one of the key assumptions in [19,
Theorem 2.2]. The statement is provided below.

Lemma 4.3. Let Assumption 1, 2, 3, and 4 hold. Then, for any p ∈ [2,∞) ∩ N, θ ∈ Rd, one obtains

∆Vp(θ)/β − 〈∇Vp(θ), h(θ)〉 ≤ −cV,1(p)Vp(θ) + cV,2(p),

where cV,1(p) := ahp/4, cV,2(p) := (3/4)ahpvp(MV (p)) with MV (p) := (1/3 + 4bh/(3ah) +

4d/(3ahβ) + 4(p− 2)/(3ahβ))1/2.

Proof. See [7, Lemma 3.5]. �

By using Lemma 4.2 and Lemma 4.3, one can obtain the moment estimates for the process (ζ̄λ,nt )t≥nT
defined in Definition 4.1. The following lemma provides the second and the fourth moment bound of the
aforementioned process.

Lemma 4.4. Let Assumption 1, 2, 3, and 4 hold. Then, one obtains the following:
(i) For any 0 < λ ≤ λ1,max with λ1,max given in (16), n ∈ N0, and t ≥ nT ,

E[V2(ζ̄λ,nt )] ≤ e−min{aF κ,ah/2}λt E[V2(θ0)] + c0(1 + 1/(aFκ)) + 3v2(MV (2)) + 1,

where c0, κ are given in (132) (see also Lemma 4.2) and MV (2) is given in Lemma 4.3.
(ii) For any 0 < λ ≤ λ2,max with λ2,max given in (16), n ∈ N0, and t ≥ nT ,

E[V4(ζ̄λ,nt )] ≤ 2e−min{aF κ]2/2,ah}λt E[V4(θ0)] + 2c]2(1 + 2/(aFκ
]
2)) + 3v4(MV (4)) + 2,

where c]2, κ
]
2 are given in Lemma 4.2 and MV (4) is given in Lemma 4.3.
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Proof. See Appendix A.2. �

4.3. Proof of the main theorems. We first present the key steps and results in proving Theorem 2.9.
To obtain a non-asymptotic estimate in Wasserstein-1 distance between L(θλn) and πβ , we consider the
following splitting using the continuous-time interpolation of the TUSLA algorithm (8) given in (34): for
any n ∈ N0, and t ∈ (nT, (n+ 1)T ],

W1(L(θ̄λt ), πβ) ≤W1(L(θ̄λt ),L(Zλt )) +W1(L(Zλt ), πβ). (38)

Moreover, the first term on the RHS of the above inequality can be further split as follows by using the
auxiliary process ζ̄λ,nt given in Definition 4.1: for any n ∈ N0, and t ∈ (nT, (n+ 1)T ],

W1(L(θ̄λt ),L(Zλt )) ≤W1(L(θ̄λt ),L(ζ̄λ,nt )) +W1(L(ζ̄λ,nt ),L(Zλt )). (39)

In the following lemma, we provide an upper estimate for the first term on the RHS of (39).

Lemma 4.5. Let Assumption 1, 2, 3, and 4 hold. Then, for any 0 < λ ≤ λmax with λmax given in (16),
n ∈ N0, and t ∈ (nT, (n+ 1)T ], one obtains

W2(L(θ̄λt ),L(ζ̄λ,nt )) ≤
√
λ
(
e−aF κ

]
2n/4C̄0 E

[
V4(2r+1)(θ0)

]
+ C̄1

)1/2
,

where κ]2, C̄0, C̄1 are given explicitly in (173).

Proof. See Appendix A.2. �

To obtain an upper bound for the second term on the RHS of (39), we consider the following functional:
for any p ≥ 1, µ, ν ∈ PVp(Rd), let

w1,p(µ, ν) := inf
ζ∈C(µ,ν)

∫
Rd

∫
Rd

[1 ∧ |θ − θ′|](1 + Vp(θ) + Vp(θ
′))ζ(dθdθ′). (40)

The case p = 2, i.e. w1,2, is used throughout the paper. For any µ, ν ∈ PV2(Rd), the following inequalities
hold:

W1(µ, ν) ≤ w1,2(µ, ν), W2(µ, ν) ≤
√

2w1,2(µ, ν).

One may refer to Lemma A.3 for the proof of these inequalities.
By using [19, Theorem 2.2], one can derive a contraction property in w1,2 with explicit constants as

presented below.

Proposition 4.6. Let Assumption 1, 2, 3, and 4 hold. Let Z ′t, t ≥ 0, be the solution of (32) with initial
condition Z ′0 := θ′0 which is independent of F∞ and satisfies θ′0 ∈ L2. Then,

w1,2(L(Zt),L(Z ′t)) ≤ ĉe−ċtw1,2(L(θ0),L(θ′0)), (41)

where the explicit expressions for ċ, ĉ are given below.
The contraction constant ċ is given by:

ċ := min{φ̄, cV,1(2), 4cV,2(2)εcV,1(2)}/2, (42)

where cV,1(2) := ah/2 and cV,2(2) := (3/2)ahv2(MV (2)) withMV (2) given in Lemma 4.3, the constant
φ̄ is given by

φ̄ :=

(√
8βπ/LRċ0 exp

((
ċ0

√
βLR/8 +

√
8/(βLR)

)2
))−1

, (43)

and ε > 0 is chosen such that the following inequality is satisfied

ε ≤ 1 ∧
(

4cV,2(2)
√

2βπ/LR

∫ ċ1

0
exp

((
s
√
βLR/8 +

√
8/(βLR)

)2
)

ds

)−1

(44)

with ċ0 := 2(4cV,2(2)(1 + cV,1(2))/cV,1(2)− 1)1/2 and ċ1 := 2(2cV,2(2)/cV,1(2)− 1)1/2.
Moreover, the constant ĉ is given by:

ĉ := 2(1 + ċ0) exp(βLRċ
2
0/8 + 2ċ0)/ε. (45)

Proof. See Appendix A.2. �

The following result provides an upper estimate for the second term on the RHS of (39) based on the
contraction property in w1,2.
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Lemma 4.7. Let Assumption 1, 2, 3, and 4 hold. Then, for any 0 < λ ≤ λmax with λmax given in (16),
n ∈ N0, and t ∈ (nT, (n+ 1)T ], one obtains

W1(L(ζ̄λ,nt ),L(Zλt )) ≤
√
λ
(
e−min{ċ,aF κ]2/2,ah}n/4C̄2 E

[
V4(2r+1)(θ0)

]
+ C̄3

)
,

where κ]2, C̄2, C̄3 are given explicitly in (176).

Proof. See Appendix A.2. �

Finally, observe that by Proposition 4.6 and Lemma A.3,

W1(L(Zλt ), πβ) ≤ ĉe−ċλtw1,2(θ0, πβ), (46)

where the above inequality holds due to the fact that πβ is the invariant measure of SDE (33), and where
ċ and ĉ are defined in (42)-(44) and (45), respectively. Combining (38), (39) together with the Lemma
4.5, 4.7 and (46) yields the desired upper bound in Theorem 2.9.

Proof of Theorem 2.9. Recall the definition of w1,p(µ, ν) with p ≥ 1, µ, ν ∈ PVp(Rd) given in (40).
By applying Proposition 4.6, and by using the results in Lemma 4.5 and Lemma 4.7, for any t ∈
(nT, (n+ 1)T ], n ∈ N0, 0 < λ ≤ λmax with λmax given in (16), one obtains

W1(L(θ̄λt ), πβ) ≤W1(L(θ̄λt ),L(Zλt )) +W1(L(Zλt ), πβ)

≤W2(L(θ̄λt ),L(ζ̄λ,nt )) +W1(L(ζ̄λ,nt ),L(Zλt )) + ĉe−ċλtw1,2(θ0, πβ)

≤
√
λ
(
e−aF κ

]
2n/4C̄0 E

[
V4(2r+1)(θ0)

]
+ C̄1

)1/2

+
√
λ
(
e−min{ċ,aF κ]2/2,ah}n/4C̄2 E

[
V4(2r+1)(θ0)

]
+ C̄3

)
+ ĉe−ċλt

[
1 + E[V2(θ0)] +

∫
Rd
V2(θ)πβ(dθ)

]
≤ C1e

−C0(n+1)(E[|θ0|4(2r+1)] + 1) + C2

√
λ,

where

C0 := min{ċ, aFκ]2/2, ah}/4,

C1 := 22(2r+1)−1emin{ċ,aF κ]2/2,ah}/4
[
C̄

1/2
0 + C̄2 + ĉ

(
2 +

∫
Rd
V2(θ)πβ(dθ)

)]
,

C2 := C̄
1/2
1 + C̄3

(47)

with ċ, ĉ given in Proposition 4.6, κ]2 given in Lemma 4.2, C̄0, C̄1 given in (173) (Lemma 4.5), and C̄2, C̄3

given in (176) (Lemma 4.7). The above result implies that for any n ∈ N0,

W1(L(θ̄λnT ), πβ) ≤ C1e
−C0n(E[|θ0|4(2r+1)] + 1) + C2

√
λ.

However, we aim to obtain a non-asymptotic upper bound for the TUSLA algorithm (θλn)n∈N0 . To achieve
this, we set nT to n on the LHS of the above inequality, while n on the RHS of the above inequality is
set to n/T with T ≡ T (λ) := b1/λc. Finally, for any n ∈ N0, 0 < λ ≤ λmax with λmax given in (16),
by noticing that nλ ≤ n/T , one obtains

W1(L(θλn), πβ) ≤ C1e
−C0λn(E[|θ0|4(2r+1)] + 1) + C2

√
λ,

which completes the proof. �

Next, one can apply similar arguments to obtain the non-asymptotic error bound in Corollary 2.10.

Proof of Corollary 2.10. We consider the following splitting: for any t ∈ (nT, (n+ 1)T ], n ∈ N0

W2(L(θ̄λt ), πβ) ≤W2(L(θ̄λt ),L(ζ̄λ,nt )) +W2(L(ζ̄λ,nt ),L(Zλt )) +W2(L(Zλt ), πβ). (48)

An upper estimate for the first term on the RHS of (48) is provided in Lemma 4.5. Moreover, by using
that W2 ≤

√
2w1,2 as presented in Lemma A.3, one can obtain non-asymptotic upper bounds for the last

two terms in the above inequality. In particular, for any t ∈ (nT, (n+ 1)T ], n ∈ N0, an upper bound with
explicit constants for the second term on the RHS of (48), i.e., W2(L(ζ̄λ,nt ),L(Zλt )), is given as follows:

W2(L(ζ̄λ,nt ),L(Zλt )) ≤ λ1/4
(
e−min{ċ,aF κ]2/2,ah}n/8C̄4(E

[
V4(2r+1)(θ0)

]
)1/2 + C̄5

)
, (49)
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where

κ]2 := min{κ̄(2), κ̃(2)},

C̄4 := emin{ċ,aF κ]2/2,ah}/8
√
ĉ

(
1 +

8

min{ċ, aFκ]2/2, ah}

)
(C̄

1/2
0 + 2

√
2),

C̄5 := 4(
√
ĉ/ċ)eċ/4(C̄

1/2
1 + 2

√
2(c]2(1 + 2/(aFκ

]
2)))1/2 + (3v4(MV (4)))1/2 + 3

√
2)

(50)

with ċ, ĉ given in Proposition 4.6, κ̄(2), κ̃(2) given in (149) (Lemma 4.2), C̄0, C̄1 given in (173) (Lemma
4.5), c]2 given in Lemma 4.2 and MV (4) given in Lemma 4.4. The details of the proof of (49) are omitted
here as the arguments follow the same lines as in the proof of Lemma 4.7.

Recall the definition of w1,2(µ, ν), µ, ν ∈ PV2(Rd) given in (40). By using (48), (49), Lemma 4.5,
Lemma A.3, and Proposition 4.6, one obtains, for any t ∈ (nT, (n+ 1)T ], n ∈ N0,

W2(L(θ̄λt ), πβ) ≤
√
λ
(
e−aF κ

]
2n/4C̄0 E

[
V4(2r+1)(θ0)

]
+ C̄1

)1/2

+ λ1/4
(
e−min{ċ,aF κ]2/2,ah}n/8C̄4(E

[
V4(2r+1)(θ0)

]
)1/2 + C̄5

)
+
√

2ĉe−ċλt/2(w1,2(θ0, πβ))1/2

≤
√
λ
(
e−aF κ

]
2n/4C̄0 E

[
V4(2r+1)(θ0)

]
+ C̄1

)1/2

+ λ1/4
(
e−min{ċ,aF κ]2/2,ah}n/8C̄4(E

[
V4(2r+1)(θ0)

]
)1/2 + C̄5

)
+
√

2ĉe−ċλt/2
[
1 + E[V2(θ0)] +

∫
Rd
V2(θ)πβ(dθ)

]1/2

≤ C4e
−C3(n+1)(E[|θ0|4(2r+1)] + 1)1/2 + C5λ

1/4,

where

C3 := min{ċ, aFκ]2/2, ah}/8,

C4 := 22r+1emin{ċ,aF κ]2/2,ah}/8

[
C̄

1/2
0 + C̄4 +

√
ĉ

(
2 +

∫
Rd
V2(θ)πβ(dθ)

)1/2
]
,

C5 := C̄
1/2
1 + C̄5

(51)

with ċ, ĉ given in Proposition 4.6, κ]2 given in Lemma 4.2, C̄0, C̄1 given in (173) (Lemma 4.5), and C̄4, C̄5

given in (50). Finally, for any n ∈ N0, 0 < λ ≤ λmax with λmax given in (16), one notes that nλ ≤ n/T ,
hence, it holds that,

W2(L(θλn), πβ) ≤ C4e
−C3λn(E[|θ0|4(2r+1)] + 1)1/2 + C5λ

1/4,

which completes the proof. �

Recall that πβ is defined in (7). We denote by Z∞ an Rd-valued random variable with L(Z∞) = πβ ,
and denote by u∗ := infθ∈Rd u(θ), where u is defined in (1). Then, to prove Theorem 2.11, we consider
the following splitting for the expected excess risk:

E[u(θλn)]− u∗ = E[u(θλn)]− E[u(Z∞)] + E[u(Z∞)]− u∗. (52)

The result below provides an upper bound for the first term on the RHS of (52).

Lemma 4.8. Let Assumption 1, 2, 3, and 4 hold. Then, for any 0 < λ ≤ λmax with λmax given in (16)
and n ∈ N0, one obtains

E[u(θλn)]− E[u(Z∞)] ≤ C7e
−C6λn + C8λ

1/4,

where C6, C7, C8 are given explicitly in (178).

Proof. See Appendix A.2. �

By applying similar arguments as in [30, Lemma 3.2] and [34, Proposition 3.4], one can obtain an
upper estimate of the second term on the RHS of (52). The result with explicit constants is given below.
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Lemma 4.9. Let Assumption 1, 2, 3, and 4 hold. Then, one obtains

E[u(Z∞)]− u∗ ≤ C9/β,

where C9 is given explicitly in (183).

Proof. See Appendix A.2. �

Proof of Theorem 2.11. Combining the upper bounds in Lemma 4.8 and 4.9 yields the desired result in
Theorem 2.11. �

5. PROOF OF RESULTS IN SECTION 3

Proof of Proposition 3.1. First, we obtain that the objective function defined in (17) - (18) is continuously
differentiable with

∂W IJ
1
u(θ) = −2E

[(
Y I −NI(θ, Z)

)
σ1

(
〈cJ ·, z〉+ bJ0

)]
+ ηW IJ

1 |θ|2r, (53)

∂bJ0
u(θ) = −2E

[
m2∑
i=1

(
Y i −Ni(θ, Z)

)
W iJ

1 1AJ (Z)

]
+ ηbJ0 |θ|2r (54)

for all θ ∈ Rd, and for all I = 1, . . . ,m2, J = 1, . . . , d1. One notes that (53) follows directly by the
definition of u in (17) - (18) and the chain rule. To show that (54) holds, we provide a proof for the
case m1 = m2 = d1 = 1 for the ease of notation (the same arguments can be applied for general
m1,m2, d1 ∈ N). To that end, one observes that by using (18), for any θ ∈ R2,

u(θ) = E[(Y −N(θ, Z))2] +
η

2(r + 1)
|θ|2(r+1)

= E
[
(Y −W1σ1(cZ + b0))2

]
+

η

2(r + 1)
|θ|2(r+1)

= E
[(
Y 2 − 2YW1σ1(cZ + b0) +W 2

1 σ
2
1(cZ + b0)

)]
+

η

2(r + 1)
|θ|2(r+1).

Then, one obtains
∂b0u(θ) = T0,1(θ) + T0,2(θ) + ηb0|θ|2r, (55)

where for any θ ∈ R2,

T0,1(θ) := ∂b0

(
−2W1

∫ ∞
−∞

∫ ∞
− b0

c

y(cz + b0)fY,Z(y, z) dzdy

)
,

T0,2(θ) := ∂b0

(
W 2

1

∫ ∞
− b0

c

(c2z2 + 2czb0 + b20)fZ(z) dz

)
with fY,Z denoting the joint density of Y, Z and fZ denoting the density function of Z. One notes that,
for each y ∈ R,

∂b0

(∫ ∞
− b0c

y(cz + b0)fZ|Y (z|y) dz

)
= yb0fZ|Y

(
− b0

c

∣∣∣ y)− yb0fZ|Y (− b0
c

∣∣∣ y)+

∫ ∞
− b0

c

yfZ|Y (z|y) dz

=

∫ ∞
− b0

c

yfZ|Y (z|y) dz,

where fZ|Y denotes the conditional density of Z given Y . Note that for any b0 ∈ R, it holds that

inf
δ∈(0,∞)

∫ ∞
−∞

sup
γ∈[−δ,δ]

∣∣∣∣∣
∫ ∞
− b0+γ

c

yfZ|Y (z|y) dz

∣∣∣∣∣ fY (y) dy ≤
∫ ∞
−∞
|y|fY (y) dy <∞,

where fY denotes the density function of Y . Therefore, one obtains, by applying [17, Theorem A.5.2.],
that

T0,1(θ) = −2W1

∫ ∞
−∞

∂b0

(∫ ∞
− b0

c

y(cz + b0)fZ|Y (z|y) dz

)
fY (y)dy = −2E

[
W1Y 1{Z≥−b0/c}

]
.

(56)
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Similarly, one obtains

T0,2(θ) = −W 2
1 b

2
0fZ

(
− b0

c

)
+W 2

1

(
2b20fZ

(
− b0

c

)
+

∫ ∞
− b0

c

2czfZ(z) dz

)

+W 2
1

(
−b20fZ

(
− b0

c

)
+ 2b0

∫ ∞
− b0

c

fZ(z) dz

)

= W 2
1

∫ ∞
− b0

c

2(cz + b0)fZ(z) dz

= 2E
[
W 2

1 (cZ + b0)1{Z≥−b0/c}
]

(57)

Substituting (56), (57) into (55) yields

∂b0u(θ) = −2E
[
W1(Y −W1(cZ + b0)1{Z≥−b0/c})1{Z≥−b0/c}

]
+ ηb0|θ|2r

= −2E
[
W1(Y −N(θ, Z))1{Z≥−b0/c}

]
+ ηb0|θ|2r,

which implies (54) holds. Moreover, since (Xn)n∈N0 is a sequence of i.i.d. random variables with
probability law L(X), by the definitions of F,G given in (20), (21) and as H := F +G, we observe that
h(θ) := ∇u(θ) = E[H(θ,X0)], for all θ ∈ R. Thus, Assumption 1 holds.

Recall that we assume at least one element in each row of the fixed input matrix c ∈ Rd1×m1 is
nonzero. For each J = 1, . . . , d1, denote by νJ := min{K ∈ {1, . . . ,m1}|cJK 6= 0}, then cJνJ denotes
the first nonzero element in the J-th row of c. For CZνJ , C̄ZνJ > 0 introduced in (19), we denote
by CZ,max := maxJ{CZνJ /cJνJ}, C̄Z,max := maxJ{C̄ZνJ /cJνJ}. For each I = 1, . . . ,m2,K =

1, . . . ,m1, let fZ1,...,ZK−1,ZK+1,...,Zm1 ,Y I (z
1, . . . , zK−1, zK+1, . . . , zm1 , yI) be the joint density func-

tion of Z1, . . . , ZK−1, ZK+1, . . . , Zm1 , Y I . Then, to shorten the notation, we denote by

fZK |Z−K ,Y I (z
K |z−K , yI) := fZK |Z1,...,ZK−1,ZK+1,...,Zm1 ,Y I (z

K |z1, . . . , zK−1, zK+1, . . . , zm1 , yI),

fZ−K ,Y I (z−K , y
I) := fZ1,...,ZK−1,ZK+1,...,Zm1 ,Y I (z

1, . . . , zK−1, zK+1, . . . , zm1 , yI).

Moreover, for any I = 1, . . . ,m2,K = 1, . . . ,m1, z ∈ Rm1 , y ∈ Rm2 , denote by

z−K := (z1, . . . , zK−1, zK+1, . . . , zm1) ∈ Rm1−1, y−I := (y1, . . . , yI−1, yI+1, . . . , ym2) ∈ Rm2−1.

To show that Assumption 2 holds, consider any θ = ([W1], b0) ∈ Rd, θ̄ = ([W̄1], b̄0) ∈ Rd. For each
J = 1, . . . , d1, denote by

ĀJ := {z ∈ Rm1 |〈cJ ·, z〉+ b̄J0 ≥ 0}. (58)
Assume without loss of generality that cJνJ > 0, and bJ0 ≤ b̄J0 (the other cases can be obtained
analogously). Then, one obtains the following estimates:

(i) For any J = 1, . . . , d1, we have

E
[∣∣1AJ (Z)− 1ĀJ (Z)

∣∣]
= E

[
1{(−b̄J0−

∑
k 6=νJ

cJkZk)/cJνJ≤ZνJ<(−bJ0−
∑
k 6=νJ

cJkZk)/cJνJ }

]
=

∫
R

∫
Rm1−1

∫ −bJ0−
∑
k 6=νJ

cJkzk

cJνJ

−b̄J0−
∑
k 6=νJ

cJkzk

cJνJ

fZνJ |Z−νJ ,Y I
(zνJ |z−νJ , y

I) dzνJfZ−νJ ,Y I
(z−νJ , y

I) dz−νJ dyI .

This implies, by using (19), that

E
[∣∣1AJ (Z)− 1ĀJ (Z)

∣∣] ≤ CZνJ

cJνJ
|b̄J0 − bJ0 | ≤ CZ,max|θ − θ̄|. (59)

(ii) For any I = 1, . . . ,m2, J = 1, . . . , d1, it follows that

E
[
|Y I |2

∣∣1AJ (Z)− 1ĀJ (Z)
∣∣]

= E
[
|Y I |21{(−b̄J0−

∑
k 6=νJ

cJkZk)/cJνJ≤ZνJ<(−bJ0−
∑
k 6=νJ

cJkZk)/cJνJ }

]
=

∫
R

∫
Rm1−1

∫ −bJ0−
∑
k 6=νJ

cJkzk

cJνJ

−b̄J0−
∑
k 6=νJ

cJkzk

cJνJ

fZνJ |Z−νJ ,Y I
(zνJ |z−νJ , y

I) dzνJ
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× |yI |2fZ−νJ ,Y I (z−νJ , y
I) dz−νJ dyI .

By using (19), the above result implies

E
[
|Y I |2

∣∣1AJ (Z)− 1ĀJ (Z)
∣∣]

≤ CZνJ

cJνJ
|b̄J0 − bJ0 |

∫
R

∫
Rm1−1

|yI |2fZ−νJ ,Y I (z−νJ , y
I) dz−νJ dyI

=
CZνJ

cJνJ
E
[
|Y I |2

]
|b̄J0 − bJ0 |

≤ CZ,max E
[
|Y I |2

]
|θ − θ̄|. (60)

(iii) For any J = 1, . . . , d1, one obtains

E
[
|Z|2

∣∣1AJ (Z)− 1ĀJ (Z)
∣∣]

= E
[
(|ZνJ |2 + |Z−νJ |

2)1{(−b̄J0−
∑
k 6=νJ

cJkZk)/cJνJ≤ZνJ<(−bJ0−
∑
k 6=νJ

cJkZk)/cJνJ }

]
=

∫
R

∫
Rm1−1

∫ −bJ0−
∑
k 6=νJ

cJkzk

cJνJ

−b̄J0−
∑
k 6=νJ

cJkzk

cJνJ

|ZνJ |2fZνJ |Z−νJ ,Y I (z
νJ |z−νJ , y

I) dzνJ

× fZ−νJ ,Y I (z−νJ , y
I) dz−νJ dyI

+

∫
R

∫
Rm1−1

∫ −bJ0−
∑
k 6=νJ

cJkzk

cJνJ

−b̄J0−
∑
k 6=νJ

cJkzk

cJνJ

fZνJ |Z−νJ ,Y I
(zνJ |z−νJ , y

I) dzνJ

× |Z−νJ |
2fZ−νJ ,Y I

(z−νJ , y
I) dz−νJ dyI .

This implies, by using (19),

E
[
|Z|2

∣∣1AJ (Z)− 1ĀJ (Z)
∣∣] ≤ C̄ZνJ

cJνJ
|b̄J0 − bJ0 |+

CZνJ

cJνJ
|b̄J0 − bJ0 |E

[
|Z−νJ |

2
]

≤ C̄Z,max|b̄J0 − bJ0 |+ CZ,max|b̄J0 − bJ0 |E
[
|Z−νJ |

2
]

≤
(
CZ,max + C̄Z,max

)
E
[
(1 + |Z|)2

]
|θ − θ̄|. (61)

One further obtains the following estimates for N given in (17):
(i) For any I = 1, . . . ,m2, θ ∈ Rd, z ∈ Rm1 , it holds that

∣∣NI(θ, z)
∣∣ =

∣∣∣∣∣∣
d1∑
j=1

W Ij
1 σ1

(
〈cj·, z〉+ bj0

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
d1∑
j=1

W Ij
1

(
〈cj·, z〉+ bj0

)
1Aj (z)

∣∣∣∣∣∣
≤ d1|θ|(cF |z|+ |θ|)
≤ d1(1 + cF )(1 + |z|)(1 + |θ|)2. (62)

(ii) For any I = 1, . . . ,m2, θ, θ̄ ∈ Rd, one obtains

E
[∣∣NI(θ, Z)−NI(θ̄, Z)

∣∣]
= E

∣∣∣∣∣∣
d1∑
j=1

W Ij
1

(
〈cj·, Z〉+ bj0

)
1Aj (Z)−

d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ b̄j0

)
1Āj

(Z)

∣∣∣∣∣∣


≤ T1(θ, θ̄) + T2(θ, θ̄) + T3(θ, θ̄), (63)

where

T1(θ, θ̄) := E

∣∣∣∣∣∣
d1∑
j=1

W Ij
1

(
〈cj·, Z〉+ bj0

)
1Aj (Z) −

d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ bj0

)
1Aj (Z)

∣∣∣∣∣∣
 ,

T2(θ, θ̄) := E

∣∣∣∣∣∣
d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ bj0

)
1Aj (Z) −

d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ b̄j0

)
1Aj (Z)

∣∣∣∣∣∣
 ,
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T3(θ, θ̄) := E

∣∣∣∣∣∣
d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ b̄j0

)
1Aj (Z) −

d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ b̄j0

)
1Āj

(Z)

∣∣∣∣∣∣
 .

Further calculations yield

T1(θ, θ̄) = E

∣∣∣∣∣∣
d1∑
j=1

W Ij
1

(
〈cj·, Z〉+ bj0

)
1Aj (Z) −

d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ bj0

)
1Aj (Z)

∣∣∣∣∣∣


≤
d1∑
j=1

E
[∣∣∣〈cj·, Z〉+ bj0

∣∣∣] ∣∣∣W Ij
1 − W̄

Ij
1

∣∣∣
≤ d1(1 + cF )E[(1 + |Z|)](1 + |θ|+ |θ̄|)|θ − θ̄|. (64)

Moreover, it follows that

T2(θ, θ̄) = E

∣∣∣∣∣∣
d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ bj0

)
1Aj (Z) −

d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ b̄j0

)
1Aj (Z)

∣∣∣∣∣∣


≤
d1∑
j=1

∣∣∣W̄ Ij
1

∣∣∣ ∣∣∣bj0 − b̄j0∣∣∣
≤ d1(1 + |θ|+ |θ̄|)|θ − θ̄|. (65)

In addition, one obtains

T3(θ, θ̄) = E

∣∣∣∣∣∣
d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ b̄j0

)
1Aj (Z) −

d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ b̄j0

)
1Āj

(Z)

∣∣∣∣∣∣


≤
d1∑
j=1

(1 + cF )
(

1 +
∣∣∣b̄j0∣∣∣) ∣∣∣W̄ Ij

1

∣∣∣E [(1 + |Z|)
∣∣∣1Aj (Z)− 1Āj (Z)

∣∣∣]

≤ 2

d1∑
j=1

(1 + cF )(1 + |θ|+ |θ̄|)2 E
[(

1 + |Z|2
) ∣∣∣1Aj (Z)− 1Āj (Z)

∣∣∣] .
The above inequality implies, by using (59), (61), that

T3(θ, θ̄) ≤ 2

d1∑
j=1

(1 + cF )(1 + |θ|+ |θ̄|)2CZ,max|θ − θ̄|

+ 2

d1∑
j=1

(1 + cF )(1 + |θ|+ |θ̄|)2
(
CZ,max + C̄Z,max

)
E
[
(1 + |Z|)2

]
|θ − θ̄|

≤ 4d1(1 + cF )
(
CZ,max + C̄Z,max

)
E
[
(1 + |Z|)2

]
(1 + |θ|+ |θ̄|)2|θ − θ̄|. (66)

Substituting (64), (65), (66) into (63) yields

E
[∣∣NI(θ, Z)−NI(θ̄, Z)

∣∣]
≤ 6d1(1 + cF )

(
1 + CZ,max + C̄Z,max

)
E
[
(1 + |Z|)2

]
(1 + |θ|+ |θ̄|)2|θ − θ̄|.

(67)

(iii) For any I = 1, . . . ,m2, θ, θ̄ ∈ Rd, one obtains

E
[
(1 + |Z|)

∣∣NI(θ, Z)−NI(θ̄, Z)
∣∣] (68)

= E

(1 + |Z|)

∣∣∣∣∣∣
d1∑
j=1

W Ij
1

(
〈cj·, Z〉+ bj0

)
1Aj (Z) −

d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ b̄j0

)
1Āj

(Z)

∣∣∣∣∣∣


≤ T4(θ, θ̄) + T5(θ, θ̄) + T6(θ, θ̄), (69)
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where

T4(θ, θ̄) := E

(1 + |Z|)

∣∣∣∣∣∣
d1∑
j=1

W Ij
1

(
〈cj·, Z〉+ bj0

)
1Aj (Z)

−
d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ bj0

)
1Aj (Z)

∣∣∣∣∣∣
 ,

T5(θ, θ̄) := E

(1 + |Z|)

∣∣∣∣∣∣
d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ bj0

)
1Aj (Z)

−
d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ b̄j0

)
1Aj (Z)

∣∣∣∣∣∣
 ,

T6(θ, θ̄) := E

(1 + |Z|)

∣∣∣∣∣∣
d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ b̄j0

)
1Aj (Z)

−
d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ b̄j0

)
1Āj

(Z)

∣∣∣∣∣∣
 .

By using similar arguments as in (64), (65), straightforward calculations show that

T4(θ, θ̄) ≤ d1(1 + cF )E[(1 + |Z|)2](1 + |θ|+ |θ̄|)|θ − θ̄|,
T5(θ, θ̄) ≤ d1 E[(1 + |Z|)](1 + |θ|+ |θ̄|)|θ − θ̄|.

(70)

Furthermore, one obtains

T6(θ, θ̄) = E

(1 + |Z|)

∣∣∣∣∣∣
d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ b̄j0

)
1Aj (Z)

−
d1∑
j=1

W̄ Ij
1

(
〈cj·, Z〉+ b̄j0

)
1Āj

(Z)

∣∣∣∣∣∣


≤
d1∑
j=1

(1 + cF )
(

1 +
∣∣∣b̄j0∣∣∣) ∣∣∣W̄ Ij

1

∣∣∣E [(1 + |Z|)2
∣∣∣1Aj (Z)− 1Āj (Z)

∣∣∣]

≤ 2

d1∑
j=1

(1 + cF )(1 + |θ|+ |θ̄|)2 E
[(

1 + |Z|2
) ∣∣∣1Aj (Z)− 1Āj (Z)

∣∣∣] ,
which, following the arguments in (66), implies

T6(θ, θ̄) ≤ 4d1(1 + cF )
(
CZ,max + C̄Z,max

)
E
[
(1 + |Z|)2

]
(1 + |θ|+ |θ̄|)2|θ − θ̄|. (71)

Substituting (70), (71) into (68) yields

E
[
(1 + |Z|)

∣∣NI(θ, Z)−NI(θ̄, Z)
∣∣]

≤ 6d1(1 + cF )
(
1 + CZ,max + C̄Z,max

)
E
[
(1 + |Z|)2

]
(1 + |θ|+ |θ̄|)2|θ − θ̄|.

(72)

For any I = 1, . . . ,m2, J = 1, . . . , d1, one obtains the following estimates for GW IJ
1
, GbJ0

defined in
(21):

(i) For any θ, θ̄ ∈ Rd, by L(X) = L(X0), it holds that

E
[∣∣∣GW IJ

1
(θ,X0)−GW IJ

1
(θ̄, X0)

∣∣∣] = E
[∣∣∣GW IJ

1
(θ,X)−GW IJ

1
(θ̄, X)

∣∣∣]
= E

[∣∣−2(Y I −NI(θ, Z))
(
〈cJ ·, Z〉+ bJ0

)
1AJ (Z)

+2(Y I −NI(θ̄, Z))
(
〈cJ ·, Z〉+ b̄J0

)
1ĀJ

(Z)
∣∣]

≤ T7(θ, θ̄) + T8(θ, θ̄) + T9(θ, θ̄), (73)
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where

T7(θ, θ̄) := E
[∣∣−2(Y I −NI(θ, Z))

(
〈cJ ·, Z〉+ bJ0

)
1AJ (Z)

+2(Y I −NI(θ̄, Z))
(
〈cJ ·, Z〉+ bJ0

)
1AJ (Z)

∣∣] ,
T8(θ, θ̄) := E

[∣∣−2(Y I −NI(θ̄, Z))
(
〈cJ ·, Z〉+ bJ0

)
1AJ (Z)

+2(Y I −NI(θ̄, Z))
(
〈cJ ·, Z〉+ b̄J0

)
1AJ (Z)

∣∣] ,
T9(θ, θ̄) := E

[∣∣−2(Y I −NI(θ̄, Z))
(
〈cJ ·, Z〉+ b̄J0

)
1AJ (Z)

+2(Y I −NI(θ̄, Z))
(
〈cJ ·, Z〉+ b̄J0

)
1ĀJ

(Z)
∣∣] .

By using (72), one obtains

T7(θ, θ̄) = E
[∣∣−2(Y I −NI(θ, Z))

(
〈cJ ·, Z〉+ bJ0

)
1AJ (Z)

+2(Y I −NI(θ̄, Z))
(
〈cJ ·, Z〉+ bJ0

)
1AJ (Z)

∣∣]
≤ 2(1 + cF )

(
1 +

∣∣bJ0 ∣∣)E [(1 + |Z|)
∣∣NI(θ, Z)−NI(θ̄, Z)

∣∣]
≤ 12d1(1 + cF )2

(
1 + CZ,max + C̄Z,max

)
E
[
(1 + |Z|)2

]
(1 + |θ|+ |θ̄|)3|θ − θ̄|. (74)

Moreover, by (62), and the fact that X = (Y,Z), it follows that

T8(θ, θ̄) = E
[∣∣−2(Y I −NI(θ̄, Z))

(
〈cJ ·, Z〉+ bJ0

)
1AJ (Z)

+2(Y I −NI(θ̄, Z))
(
〈cJ ·, Z〉+ b̄J0

)
1AJ (Z)

∣∣] ,
≤ 2E

[(∣∣Y I
∣∣+
∣∣NI(θ̄, Z)

∣∣)] ∣∣b̄J0 − bJ0 ∣∣
≤ 2E

[(
|X|+ d1(1 + cF )(1 + |X|)(1 + |θ̄|)2

)] ∣∣θ − θ̄∣∣
≤ 4d1(1 + cF )E [(1 + |X|)] (1 + |θ|+ |θ̄|)2|θ − θ̄|. (75)

Furthermore, by using (62), and by applying Young’s inequality that 2ab ≤ a2 + b2 for a, b ≥ 0,
one obtains,

T9(θ, θ̄) = E
[∣∣−2(Y I −NI(θ̄, Z))

(
〈cJ ·, Z〉+ b̄J0

)
1AJ (Z)

+2(Y I −NI(θ̄, Z))
(
〈cJ ·, Z〉+ b̄J0

)
1ĀJ

(Z)
∣∣]

≤ 2(1 + cF )
(
1 +

∣∣b̄J0 ∣∣)E [(1 + |Z|)
(∣∣Y I

∣∣+
∣∣NI(θ̄, Z)

∣∣) ∣∣1ĀJ (Z)− 1AJ (Z)
∣∣]

≤ (1 + cF )
(
1 +

∣∣b̄J0 ∣∣)E [(1 + |Z|)2
∣∣1ĀJ (Z)− 1AJ (Z)

∣∣]
+ (1 + cF )

(
1 +

∣∣b̄J0 ∣∣)E [∣∣Y I
∣∣2 ∣∣1ĀJ (Z)− 1AJ (Z)

∣∣]
+ 2(1 + cF )

(
1 +

∣∣b̄J0 ∣∣)E [(1 + |Z|)
∣∣NI(θ̄, Z)

∣∣ ∣∣1ĀJ (Z)− 1AJ (Z)
∣∣]

≤ 2(1 + cF )
(
1 +

∣∣b̄J0 ∣∣)E [∣∣1ĀJ (Z)− 1AJ (Z)
∣∣]

+ 2(1 + cF )
(
1 +

∣∣b̄J0 ∣∣)E [|Z|2 ∣∣1ĀJ (Z)− 1AJ (Z)
∣∣]

+ (1 + cF )
(
1 +

∣∣b̄J0 ∣∣)E [∣∣Y I
∣∣2 ∣∣1ĀJ (Z)− 1AJ (Z)

∣∣]
+ 2d1(1 + cF )2

(
1 +

∣∣b̄J0 ∣∣) (1 + |θ|+ |θ̄|)2 E
[
(1 + |Z|)2

∣∣1ĀJ (Z)− 1AJ (Z)
∣∣] .

Applying (59), (60), (61), and the fact that X = (Y, Z), yields

T9(θ, θ̄) ≤ 2(1 + cF )(1 + |θ̄|)CZ,max|θ − θ̄|
+ 2(1 + cF )(1 + |θ̄|)

(
CZ,max + C̄Z,max

)
E
[
(1 + |Z|)2

]
|θ − θ̄|

+ (1 + cF )(1 + |θ̄|)CZ,max E
[
|Y I |2

]
|θ − θ̄|

+ 4d1(1 + cF )2(1 + |θ|+ |θ̄|)3 E
[∣∣1ĀJ (Z)− 1AJ (Z)

∣∣]
+ 4d1(1 + cF )2(1 + |θ|+ |θ̄|)3 E

[
|Z|2

∣∣1ĀJ (Z)− 1AJ (Z)
∣∣]

≤ 5(1 + cF )(1 + |θ|+ |θ̄|)
(
1 + CZ,max + C̄Z,max

)
E
[
(1 + |X|)2

]
|θ − θ̄|

+ 4d1(1 + cF )2(1 + |θ|+ |θ̄|)3CZ,max|θ − θ̄|
+ 4d1(1 + cF )2(1 + |θ|+ |θ̄|)3

(
CZ,max + C̄Z,max

)
E
[
(1 + |Z|)2

]
|θ − θ̄|
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≤ 13d1(1 + cF )2(1 + |θ|+ |θ̄|)3
(
1 + CZ,max + C̄Z,max

)
E
[
(1 + |X|)2

]
|θ − θ̄|. (76)

Substituting (74), (75), (76) into (73) and using L(X) = L(X0) yield, for any I = 1, . . . ,m2, J =
1, . . . , d1, θ, θ̄ ∈ Rd,

E
[∣∣∣GW IJ

1
(θ,X0)−GW IJ

1
(θ̄, X0)

∣∣∣]
≤ 29d1(1 + cF )2(1 + |θ|+ |θ̄|)3

(
1 + CZ,max + C̄Z,max

)
E
[
(1 + |X0|)2

]
|θ − θ̄|. (77)

(ii) For any θ, θ̄ ∈ Rd, by L(X) = L(X0), it follows that

E
[∣∣∣GbJ0 (θ,X0)−GbJ0 (θ̄, X0)

∣∣∣]
= E

[∣∣∣GbJ0 (θ,X)−GbJ0 (θ̄, X)
∣∣∣]

= E

[∣∣∣∣∣−2

m2∑
i=1

(Y i −Ni(θ, Z))W iJ
1 1AJ (Z) + 2

m2∑
i=1

(Y i −Ni(θ̄, Z))W̄ iJ
1 1ĀJ

(Z)

∣∣∣∣∣
]

≤ T10(θ, θ̄) + T11(θ, θ̄) + T12(θ, θ̄), (78)

where

T10(θ, θ̄) := E

[∣∣∣∣∣−2

m2∑
i=1

(Y i −Ni(θ, Z))W iJ
1 1AJ (Z)

+2

m2∑
i=1

(Y i −Ni(θ̄, Z))W iJ
1 1AJ (Z)

∣∣∣∣∣
]
,

T11(θ, θ̄) := E

[∣∣∣∣∣−2

m2∑
i=1

(Y i −Ni(θ̄, Z))W iJ
1 1AJ (Z)

+2

m2∑
i=1

(Y i −Ni(θ̄, Z))W̄ iJ
1 1AJ (Z)

∣∣∣∣∣
]
,

T12(θ, θ̄) := E

[∣∣∣∣∣−2

m2∑
i=1

(Y i −Ni(θ̄, Z))W̄ iJ
1 1AJ (Z)

+2

m2∑
i=1

(Y i −Ni(θ̄, Z))W̄ iJ
1 1ĀJ

(Z)

∣∣∣∣∣
]
.

By using (67), one obtains

T10(θ, θ̄) = E

[∣∣∣∣∣−2

m2∑
i=1

(Y i −Ni(θ, Z))W iJ
1 1AJ (Z)

+2

m2∑
i=1

(Y i −Ni(θ̄, Z))W iJ
1 1AJ (Z)

∣∣∣∣∣
]

≤ 2

m2∑
i=1

∣∣W iJ
1

∣∣E [∣∣Ni(θ, Z)−Ni(θ̄, Z)
∣∣]

≤ 12m2d1(1 + cF )
(
1 + CZ,max + C̄Z,max

)
E
[
(1 + |Z|)2

]
(1 + |θ|+ |θ̄|)3|θ − θ̄|. (79)

Moreover, by using (62), and that X = (Y, Z), we have

T11(θ, θ̄) = E

[∣∣∣∣∣−2

m2∑
i=1

(Y i −Ni(θ̄, Z))W iJ
1 1AJ (Z)

+2

m2∑
i=1

(Y i −Ni(θ̄, Z))W̄ iJ
1 1AJ (Z)

∣∣∣∣∣
]
,
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≤ 2

m2∑
i=1

E
[(∣∣Y i

∣∣+
∣∣Ni(θ̄, Z)

∣∣)] ∣∣W̄ iJ
1 −W iJ

1

∣∣
≤ 2

m2∑
i=1

E
[(
|X|+ d1(1 + cF )(1 + |X|)(1 + |θ̄|)2

)] ∣∣θ − θ̄∣∣
≤ 4m2d1(1 + cF )E [(1 + |X|)] (1 + |θ|+ |θ̄|)2|θ − θ̄|. (80)

In addition, one obtains, by using (62),

T12(θ, θ̄) = E

[∣∣∣∣∣−2

m2∑
i=1

(Y i −Ni(θ̄, Z))W̄ iJ
1 1AJ (Z)

+2

m2∑
i=1

(Y i −Ni(θ̄, Z))W̄ iJ
1 1ĀJ

(Z)

∣∣∣∣∣
]

≤ 2

m2∑
i=1

∣∣W̄ iJ
1

∣∣E [(∣∣Y i
∣∣+
∣∣Ni(θ̄, Z)

∣∣) ∣∣1ĀJ (Z)− 1AJ (Z)
∣∣]

≤ 2

m2∑
i=1

∣∣W̄ iJ
1

∣∣E [(1 +
∣∣Y i
∣∣2) ∣∣1ĀJ (Z)− 1AJ (Z)

∣∣]
+ 2

m2∑
i=1

∣∣W̄ iJ
1

∣∣E [∣∣Ni(θ̄, Z)
∣∣ ∣∣1ĀJ (Z)− 1AJ (Z)

∣∣]
≤ 2

m2∑
i=1

∣∣W̄ iJ
1

∣∣E [∣∣1ĀJ (Z)− 1AJ (Z)
∣∣]

+ 2

m2∑
i=1

∣∣W̄ iJ
1

∣∣E [∣∣Y i
∣∣2 ∣∣1ĀJ (Z)− 1AJ (Z)

∣∣]
+ 2d1(1 + cF )(1 + |θ̄|)2

m2∑
i=1

∣∣W̄ iJ
1

∣∣E [(1 + |Z|)
∣∣1ĀJ (Z)− 1AJ (Z)

∣∣]
≤ 2

m2∑
i=1

∣∣W̄ iJ
1

∣∣E [∣∣1ĀJ (Z)− 1AJ (Z)
∣∣]

+ 2

m2∑
i=1

∣∣W̄ iJ
1

∣∣E [∣∣Y i
∣∣2 ∣∣1ĀJ (Z)− 1AJ (Z)

∣∣]
+ 4d1(1 + cF )(1 + |θ̄|)2

m2∑
i=1

∣∣W̄ iJ
1

∣∣E [∣∣1ĀJ (Z)− 1AJ (Z)
∣∣]

+ 2d1(1 + cF )(1 + |θ̄|)2
m2∑
i=1

∣∣W̄ iJ
1

∣∣E [|Z|2 ∣∣1ĀJ (Z)− 1AJ (Z)
∣∣] .

This yields, by applying (59), (60), (61),

T12(θ, θ̄) ≤ 2m2(1 + |θ|+ |θ̄|)CZ,max|θ − θ̄|
+ 2m2(1 + |θ|+ |θ̄|)CZ,max E

[
|Y I |2

]
|θ − θ̄|

+ 4m2d1(1 + cF )(1 + |θ|+ |θ̄|)3CZ,max|θ − θ̄|
+ 2m2d1(1 + cF )(1 + |θ|+ |θ̄|)3

(
CZ,max + C̄Z,max

)
E
[
(1 + |Z|)2

]
|θ − θ̄|

≤ 10m2d1(1 + cF )(1 + |θ|+ |θ̄|)3
(
1 + CZ,max + C̄Z,max

)
E
[
(1 + |X|)2

]
|θ − θ̄|. (81)

Substituting (79), (80), (81) into (78) and using L(X) = L(X0) yield, for any J = 1, . . . , d1,

E
[∣∣∣GbJ0 (θ,X0)−GbJ0 (θ̄, X0)

∣∣∣]
≤ 26m2d1(1 + cF )(1 + |θ|+ |θ̄|)3

(
1 + CZ,max + C̄Z,max

)
E
[
(1 + |X0|)2

]
|θ − θ̄|. (82)
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By using (77), (82), one obtains, for any θ, θ̄ ∈ Rd, that

E
[∣∣G(θ,X0)−G(θ̄, X0)

∣∣]
= E

m2∑
i=1

d1∑
j=1

∣∣∣GW ij
1

(θ,X0)−G
W ij

1
(θ̄, X0)

∣∣∣2 +

d1∑
j=1

∣∣∣GbJ0 (θ,X0)−GbJ0 (θ̄, X0)
∣∣∣2
1/2


≤ 29m2d

2
1(1 + cF )2(1 + |θ|+ |θ̄|)3

(
1 + CZ,max + C̄Z,max

)
E
[
(1 + |X0|)2

]
|θ − θ̄|

+ 26m2d
2
1(1 + cF )(1 + |θ|+ |θ̄|)3

(
1 + CZ,max + C̄Z,max

)
E
[
(1 + |X0|)2

]
|θ − θ̄|

≤ 55m2d
2
1(1 + cF )2

(
1 + CZ,max + C̄Z,max

)
E
[
(1 + |X0|)2

]
(1 + |θ|+ |θ̄|)3|θ − θ̄|. (83)

Moreover, for any I = 1, . . . ,m2, J = 1, . . . , d1, the following upper bounds can be obtained by using
the definition of GW IJ

1
, GbJ0

given in (21):

(i) For any θ ∈ Rd, x ∈ Rm, one obtains, by using (62),∣∣∣GW IJ
1

(θ, x)
∣∣∣ =

∣∣−2(yI −NI(θ, z))σ1

(
〈cJ ·, z〉+ bJ0

)∣∣
≤ 2

(∣∣yI ∣∣+
∣∣NI(θ, z))

∣∣) (1 + cF )(1 + |z|)
(
1 +

∣∣bJ0 ∣∣)
≤ 2

(∣∣yI ∣∣+ d1(1 + cF )(1 + |x|)(1 + |θ|)2
)

(1 + cF )(1 + |z|)(1 + |θ|)
≤ 4d1(1 + cF )2(1 + |x|)2(1 + |θ|)3. (84)

(ii) Similarly, for any θ ∈ Rd, x ∈ Rm with x = (y, z) ∈ Rm2 × Rm1 , one obtains, by using (62),∣∣∣GbJ0 (θ, x)
∣∣∣ =

∣∣∣∣∣−2

m2∑
i=1

(yi −Ni(θ, z))W iJ
1 1AJ (z)

∣∣∣∣∣
≤ 2

m2∑
i=1

(∣∣yi∣∣+
∣∣Ni(θ, z))

∣∣) (1 +
∣∣W iJ

1

∣∣)
≤ 2

m2∑
i=1

(∣∣yi∣∣+ d1(1 + cF )(1 + |x|)(1 + |θ|)2
)

(1 + |θ|)

≤ 4m2d1(1 + cF )(1 + |x|)(1 + |θ|)3. (85)

The above results (84), (85) imply that, for any θ ∈ Rd, x ∈ Rm,

|G(θ, x)| =

m2∑
i=1

d1∑
j=1

∣∣∣GW ij
1

(θ, x)
∣∣∣2 +

d1∑
j=1

∣∣∣GbJ0 (θ, x)
∣∣∣2
1/2

≤ 4m2d
2
1(1 + cF )2(1 + |x|)2(1 + |θ|)3 + 4m2d

2
1(1 + cF )(1 + |x|)(1 + |θ|)3

≤ 8m2d
2
1(1 + cF )2(1 + |x|)2(1 + |θ|)3. (86)

Therefore, for fixed q = 4, ρ = 2, by (83), (86), one observes that Assumption 2 holds with

LG = 55m2d
2
1(1 + cF )2

(
1 + CZ,max + C̄Z,max

)
E
[
(1 + |X0|)2

]
, KG = 8m2d

2
1(1 + cF )2.

To show that Assumption 3 is satisfied, we apply the same arguments as in (106) - (108) to obtain, for
any θ, θ̄ ∈ Rd, x, x̄ ∈ Rm,∣∣F (θ, x)− F (θ̄, x̄)

∣∣ =
∣∣ηθ|θ|2r − ηθ̄|θ̄|2r∣∣ ≤ η(1 + 2r)

(
1 + |θ|+ |θ̄|

)2r |θ − θ̄|.
Furthermore, one notes that, for any θ ∈ Rd, x ∈ Rm, |F (θ, x)| ≤ η

(
1 + |θ|2r+1

)
. Thus, for fixed

r = 2, ρ = 2, Assumption 3 holds with LF := 5η,KF := η.
Finally, by using the same proof as in Appendix A.1, one notes that Assumption 4 holds with

A(x) = ηId/2, B(x) = 0, r̄ = 0, a = η/2, b = 0. �

Proof of Corollary 3.2. Let θ = ([W1], b0) ∈ Rd, θ̄ = ([W̄1], b̄0) ∈ Rd, and let ĀJ be defined in (58).
One notes that under the assumptions in Corollary 3.2, the following result can be obtained. For any
I = 1, . . . ,m2, J = 1, . . . , d1, we have

E
[
|Y I |2

∣∣1AJ (Z)− 1ĀJ (Z)
∣∣]
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= E
[
|yI(Z)|21{(−b̄J0−

∑
k 6=νJ

cJkZk)/cJνJ≤ZνJ<(−bJ0−
∑
k 6=νJ

cJkZk)/cJνJ }

]
=

∫
Rm1−1

∫ −bJ0−
∑
k 6=νJ

cJkzk

cJνJ

−b̄J0−
∑
k 6=νJ

cJkzk

cJνJ

|yI(z)|2fZνJ |Z−νJ (zνJ |z−νJ ) dzνJfZ−νJ (z−νJ ) dz−νJ

≤
∫
Rm1−1

∫ −bJ0−
∑
k 6=νJ

cJkzk

cJνJ

−b̄J0−
∑
k 6=νJ

cJkzk

cJνJ

c2
y(1 + |z|qy)2fZνJ |Z−νJ (zνJ |z−νJ ) dzνJfZ−νJ (z−νJ ) dz−νJ

≤ 2c2
y

∫
Rm1−1

∫ −bJ0−
∑
k 6=νJ

cJkzk

cJνJ

−b̄J0−
∑
k 6=νJ

cJkzk

cJνJ

fZνJ |Z−νJ (zνJ |z−νJ ) dzνJfZ−νJ (z−νJ ) dz−νJ

+ 2c2
y

∫
Rm1−1

∫ −bJ0−
∑
k 6=νJ

cJkzk

cJνJ

−b̄J0−
∑
k 6=νJ

cJkzk

cJνJ

|z|2qyfZνJ |Z−νJ (zνJ |z−νJ ) dzνJfZ−νJ (z−νJ ) dz−νJ .

Since X = (Y, Z), by using (22), the above result implies

E
[
|Y I |2

∣∣1AJ (Z)− 1ĀJ (Z)
∣∣]

≤
2c2
yCZνJ

cJνJ
|b̄J0 − bJ0 |

+ 2qyc2
y

∫
Rm1−1

∫ −bJ0−
∑
k 6=νJ

cJkzk

cJνJ

−b̄J0−
∑
k 6=νJ

cJkzk

cJνJ

|zνJ |2qyfZνJ |Z−νJ (zνJ |z−νJ ) dzνJfZ−νJ (z−νJ ) dz−νJ

+ 2qyc2
y

∫
Rm1−1

∫ −bJ0−
∑
k 6=νJ

cJkzk

cJνJ

−b̄J0−
∑
k 6=νJ

cJkzk

cJνJ

fZνJ |Z−νJ (zνJ |z−νJ ) dzνJ |z−νJ |
2qyfZ−νJ (z−νJ ) dz−νJ

≤
2c2
yCZνJ

cJνJ
|b̄J0 − bJ0 |+

2qyc2
yC̄ZνJ

cJνJ
|b̄J0 − bJ0 |+

2qyc2
yCZνJ

cJνJ
E
[
|Z−νJ |

2qy
]
|b̄J0 − bJ0 |

≤

(
2c2
yCZνJ

cJνJ
+

2qyc2
yC̄ZνJ

cJνJ
+

2qyc2
yCZνJ

cJνJ

)
E
[
(1 + |X|)2qy

]
|b̄J0 − bJ0 |

≤ CZ,max E
[
(1 + |X|)2qy

]
|θ − θ̄|,

where
CZ,max := max

J∈{1,...,d1}

{
c2
y

(
2CZνJ + 2qy C̄ZνJ + 2qyCZνJ

)
/cJνJ

}
. (87)

The rest of the proof follows the same lines as in the proof of Proposition 3.1 (see Appendix 5), however,
one notes that, in this case, ρ = 2qy, and CZ,max is given by (87). �

Proof of Proposition 3.3. First, since for any a1, a2 ∈ R,

a3 = 2a1, a4 = −a1, a5 = 2a2, a6 = −a2,

one notes that the objective function u defined in (25) - (27) is given by

u(θ) =

{
θ30 + a2θ

2 + (a1 − a2)θ2 E[1{X≤θ}], |θ| ≤ 1,

θ30 + a5|θ|+ a6 + ((a3 − a5)|θ|+ (a4 − a6))E[1{X≤θ}], |θ| > 1,

which is continuously differentiable with

u′(θ) =


30θ29 + 2a2θ + 2(a1 − a2)θE[1{X≤θ}] + (a1 − a2)θ2fX(θ), |θ| ≤ 1,

30θ29 + (a5 + (a3 − a5)E[1{X≤θ}])(1{θ>1} − 1{θ<−1})

+((a3 − a5)|θ|+ (a4 − a6))fX(θ), |θ| > 1.

Since (Xn)n∈N0 is a sequence of i.i.d. random variables with probability law L(X), by the definitions of
F,G given in (28) and as H := F + G, we observe that h(θ) := u′(θ) := E[H(θ,X0)], for all θ ∈ R.
Thus, Assumption 1 holds.

To show that Assumption 2 holds, one considers the following cases:
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(i) For |θ|, |θ̄| < 1, one obtains

E[|G(θ,X0)−G(θ̄, X0)|] = E[|G(θ,X)−G(θ̄, X)|]
= E

[∣∣2a2θ + 2(a1 − a2)θ1{X≤θ} + (a1 − a2)θ2fX(θ)

−
(

2a2θ̄ + 2(a1 − a2)θ̄1{X≤θ̄} + (a1 − a2)θ̄2fX(θ̄)
)∣∣∣]

≤ 2|a2||θ − θ̄|+ 2|a1 − a2|E
[
|θ1{X≤θ} − θ̄1{X≤θ̄}|

]
+ |a1 − a2||θ2fX(θ)− θ̄2fX(θ̄)|.

(88)

By assuming without loss of generality that θ ≤ θ̄, one obtains

E
[
|θ1{X≤θ} − θ̄1{X≤θ̄}|

]
≤ E

[
|θ1{X≤θ} − θ̄1{X≤θ}|

]
+ E

[
|θ̄1{X≤θ} − θ̄1{X≤θ̄}|

]
≤ |θ − θ̄|+ |θ̄|E[1{θ≤X≤θ̄}]

= |θ − θ̄|+ |θ̄|
∫ θ̄

θ
fX(x) dx

≤ |θ − θ̄|+ cX |θ̄||θ − θ̄|
≤ (1 + cX)(1 + |θ|+ |θ̄|)|θ − θ̄|. (89)

Moreover, it holds that

|θ2fX(θ)− θ̄2fX(θ̄)| ≤ |θ2fX(θ)− θ̄2fX(θ)|+ |θ̄2fX(θ)− θ̄2fX(θ̄)|
≤ cX(|θ|+ |θ̄|)|θ − θ̄|+ LX |θ̄|2|θ − θ̄|
≤ (cX + LX)(1 + |θ|+ |θ̄|)2|θ − θ̄|. (90)

Substituting (89) and (90) into (88) yields

E[|G(θ,X0)−G(θ̄, X0)|] ≤ 2|a2||θ − θ̄|+ 2(|a1|+ |a2|)(1 + cX)(1 + |θ|+ |θ̄|)|θ − θ̄|
+ (|a1|+ |a2|)(cX + LX)(1 + |θ|+ |θ̄|)2|θ − θ̄|
≤ (4 + 3cX + LX)(1 + |a1|+ |a2|)(1 + |θ|+ |θ̄|)2|θ − θ̄|. (91)

(ii) For |θ|, |θ̄| > 1, one obtains

E[|G(θ,X0)−G(θ̄, X0)|]
= E[|G(θ,X)−G(θ̄, X)|]
= E

[∣∣2(a2 + (a1 − a2)1{X≤θ})(1{θ>1} − 1{θ<−1}) + (a1 − a2)(2|θ| − 1)fX(θ)

−
(

2(a2 + (a1 − a2)1{X≤θ̄})(1{θ̄>1} − 1{θ̄<−1}) + (a1 − a2)(2|θ̄| − 1)fX(θ̄)
)∣∣∣]

≤ E
[∣∣2(a2 + (a1 − a2)1{X≤θ})(1{θ>1} − 1{θ<−1})

−2(a2 + (a1 − a2)1{X≤θ̄})(1{θ̄>1} − 1{θ̄<−1})
∣∣∣]

+ E
[∣∣(a1 − a2)(2|θ| − 1)fX(θ)− (a1 − a2)(2|θ̄| − 1)fX(θ̄)

∣∣] .
(92)

One notes that as |θ|, |θ̄| > 1,∣∣∣1{θ>1} − 1{θ<−1} − (1{θ̄>1} − 1{θ̄<−1})
∣∣∣ ≤ |θ − θ̄|. (93)

Then, by using (93), and by assuming without loss of generality that θ ≤ θ̄, one obtains

E
[∣∣2(a2 + (a1 − a2)1{X≤θ})(1{θ>1} − 1{θ<−1})

−2(a2 + (a1 − a2)1{X≤θ̄})(1{θ̄>1} − 1{θ̄<−1})
∣∣∣]

≤ E
[∣∣2(a2 + (a1 − a2)1{X≤θ})(1{θ>1} − 1{θ<−1})

−2(a2 + (a1 − a2)1{X≤θ})(1{θ̄>1} − 1{θ̄<−1})
∣∣∣]

+ E
[∣∣∣2(a2 + (a1 − a2)1{X≤θ})(1{θ̄>1} − 1{θ̄<−1})
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−2(a2 + (a1 − a2)1{X≤θ̄})(1{θ̄>1} − 1{θ̄<−1})
∣∣∣]

≤ 2(|a1|+ 2|a2|)|θ − θ̄|+ 2(|a1|+ |a2|)E[|1{X≤θ} − 1{X≤θ̄}|]
≤ 2(|a1|+ 2|a2|)|θ − θ̄|+ 2(|a1|+ |a2|)E[1{θ≤X≤θ̄}]

= 2(|a1|+ 2|a2|)|θ − θ̄|+ 2(|a1|+ |a2|)
∫ θ̄

θ
fX(x) dx

≤ 4(|a1|+ |a2|)|θ − θ̄|+ 2cX(|a1|+ |a2|)|θ − θ̄|
≤ (4 + 2cX)(1 + |a1|+ |a2|)|θ − θ̄|. (94)

In addition, one has that

E
[∣∣(a1 − a2)(2|θ| − 1)fX(θ)− (a1 − a2)(2|θ̄| − 1)fX(θ̄)

∣∣]
≤ E

[∣∣(a1 − a2)(2|θ| − 1)fX(θ)− (a1 − a2)(2|θ̄| − 1)fX(θ)
∣∣]

+ E
[∣∣(a1 − a2)(2|θ̄| − 1)fX(θ)− (a1 − a2)(2|θ̄| − 1)fX(θ̄)

∣∣]
≤ 2cX(|a1|+ |a2|)|θ − θ̄|+ 2LX(|a1|+ |a2|)(1 + |θ̄|)|θ − θ̄|
≤ 2(cX + LX)(1 + |a1|+ |a2|)(1 + |θ̄|)|θ − θ̄|. (95)

Substituting (94) and (95) into (92) yields

E[|G(θ,X0)−G(θ̄, X0)|]
≤ (4 + 2cX)(1 + |a1|+ |a2|)|θ − θ̄|+ 2(cX + LX)(1 + |a1|+ |a2|)(1 + |θ̄|)|θ − θ̄|
≤ (4 + 4cX + 2LX)(1 + |a1|+ |a2|)(1 + |θ|+ |θ̄|)|θ − θ̄|. (96)

(iii) For |θ| ≤ 1, |θ̄| > 1, one obtains

E[|G(θ,X0)−G(θ̄, X0)|]
= E[|G(θ,X)−G(θ̄, X)|]

= E
[ ∣∣2a2θ + 2(a1 − a2)θ1{X≤θ} + (a1 − a2)θ2fX(θ)

−
(

2(a2 + (a1 − a2)1{X≤θ̄})(1{θ̄>1} − 1{θ̄<−1}) + (a1 − a2)(2|θ̄| − 1)fX(θ̄)
)∣∣∣ ]

≤ E
[∣∣∣2a2θ + 2(a1 − a2)θ1{X≤θ} − 2(a2 + (a1 − a2)1{X≤θ̄})(1{θ̄>1} − 1{θ̄<−1})

∣∣∣]
+ E

[∣∣(a1 − a2)θ2fX(θ)− (a1 − a2)(2|θ̄| − 1)fX(θ̄)
∣∣] . (97)

One observes that as |θ| ≤ 1, |θ̄| > 1,∣∣∣θ − (1{θ̄>1} − 1{θ̄<−1})
∣∣∣ ≤ |θ − θ̄|. (98)

Then, by using (98), and by assuming without loss of generality that θ ≤ θ̄, one obtains

E
[∣∣∣2a2θ + 2(a1 − a2)θ1{X≤θ} − 2(a2 + (a1 − a2)1{X≤θ̄})(1{θ̄>1} − 1{θ̄<−1})

∣∣∣]
≤ E

[∣∣∣2(a2 + (a1 − a2)1{X≤θ})θ − 2(a2 + (a1 − a2)1{X≤θ})(1{θ̄>1} − 1{θ̄<−1})
∣∣∣]

+ E
[∣∣∣2(a2 + (a1 − a2)1{X≤θ})(1{θ̄>1} − 1{θ̄<−1})

−2(a2 + (a1 − a2)1{X≤θ̄})(1{θ̄>1} − 1{θ̄<−1})
∣∣∣]

≤ 2(|a1|+ 2|a2|)|θ − θ̄|+ 2(|a1|+ |a2|)E[1{θ≤X≤θ̄}]

≤ (4 + 2cX)(1 + |a1|+ |a2|)|θ − θ̄|, (99)

where the last inequality follows by using the same arguments as in (94). Furthermore, one notes
that ∣∣θ2 − (2|θ̄| − 1)

∣∣ =
∣∣|θ|2 − 2|θ|+ 1 + 2|θ| − 2|θ̄|

∣∣
≤
∣∣(|θ| − 1)2

∣∣+ 2
∣∣|θ| − |θ̄|∣∣

≤
∣∣(|θ| − 1)2

∣∣+ 2|θ − θ̄|
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≤ ||θ| − 1|+ 2|θ − θ̄|
≤
∣∣|θ| − |θ̄|∣∣+ 2|θ − θ̄|

≤ 3|θ − θ̄|, (100)

where the third inequality holds due to |θ| ≤ 1, while the fourth inequality holds due to |θ̄| > 1.
Thus, by using (100), one obtains

E
[∣∣(a1 − a2)θ2fX(θ)− (a1 − a2)(2|θ̄| − 1)fX(θ̄)

∣∣]
≤ E

[∣∣(a1 − a2)θ2fX(θ)− (a1 − a2)(2|θ̄| − 1)fX(θ)
∣∣]

+ E
[∣∣(a1 − a2)(2|θ̄| − 1)fX(θ)− (a1 − a2)(2|θ̄| − 1)fX(θ̄)

∣∣]
≤ 3cX(|a1|+ |a2|)|θ − θ̄|+ 2LX(|a1|+ |a2|)(1 + |θ̄|)|θ − θ̄|
≤ (3cX + 2LX)(1 + |a1|+ |a2|)(1 + |θ̄|)|θ − θ̄|. (101)

Substituting (99) and (101) into (97) yields

E[|G(θ,X0)−G(θ̄, X0)|]
≤ (4 + 2cX)(1 + |a1|+ |a2|)|θ − θ̄|+ (3cX + 2LX)(1 + |a1|+ |a2|)(1 + |θ̄|)|θ − θ̄|
≤ (4 + 5cX + 2LX)(1 + |a1|+ |a2|)(1 + |θ|+ |θ̄|)|θ − θ̄|. (102)

By (91), (96), and (102), one concludes that, for any θ, θ̄ ∈ R,

E[|G(θ,X0)−G(θ̄, X0)|] ≤ (4 + 5cX + 2LX)(1 + |a1|+ |a2|)(1 + |θ|+ |θ̄|)2|θ − θ̄|.
Moreover, by the definition of G in (28), one can obtain the following estimates:

(i) For |θ| ≤ 1, we have, for any x ∈ R, that

|G(θ, x)| = |2a2θ + 2(a1 − a2)θ1{x≤θ} + (a1 − a2)θ2fX(θ)|
≤ 2(|a1|+ 2|a2|)|θ|+ cX(|a1|+ |a2|)|θ|2

≤ (4 + cX)(1 + |a1|+ |a2|)(1 + |θ|)2. (103)

(ii) For |θ| > 1, we have, for any x ∈ R, that

|G(θ, x)| = |2(a2 + (a1 − a2)1{x≤θ})(1{θ>1} − 1{θ<−1}) + (a1 − a2)(2|θ| − 1)fX(θ)|
≤ 2(|a1|+ 2|a2|) + 2cX(|a1|+ |a2|)(1 + |θ|)
≤ (4 + 2cX)(1 + |a1|+ |a2|)(1 + |θ|). (104)

By (103), (104), we obtain, for every θ, x ∈ R, that

|G(θ, x)| ≤ (4 + 2cX)(1 + |a1|+ |a2|)(1 + |θ|)2.

Thus, since q = 3 and ρ = 1, Assumption 2 is satisfied with

LG = (4 + 5cX + 2LX)(1 + |a1|+ |a2|), KG = (4 + 2cX)(1 + |a1|+ |a2|). (105)

Next, we show that Assumption 3 is satisfied. For any θ, θ̄ ∈ R, define

f(t) := (tθ + (1− t)θ̄)2r+1, t ∈ [0, 1], (106)

which implies that
f ′(t) = (2r + 1)(tθ + (1− t)θ̄)2r(θ − θ̄). (107)

Then, one obtains

|f(1)− f(0)| =
∣∣θ2r+1 − θ̄2r+1

∣∣ =

∣∣∣∣∫ 1

0
(2r + 1)(tθ + (1− t)θ̄)2r(θ − θ̄) dt

∣∣∣∣
≤ (2r + 1)

(
|θ|+ |θ̄|

)2r ∣∣θ − θ̄∣∣ . (108)

One notes that r = 14. Then, by using the above inequality, one obtains the following: for any θ, θ̄ ∈ R,
and any x ∈ R, |F (θ, x)−F (θ̄, x)| = |30θ29− 30θ̄29| ≤ 870(1 + |θ|+ |θ̄|)28|θ− θ̄|. Moreover, it holds
that |F (θ, x)| ≤ 30(1 + |θ|29). Thus, Assumption 3 is satisfied with LF = 870, KF = 30.

Finally, one can show that Assumption 4 is satisfied with A(x) = 15Id, B(x) = 0, r̄ = 0, a = 15, b =
0 by using similar arguments as in the proof of Remark 2.5 (see Appendix A.1). �
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APPENDIX A. PROOF OF AUXILIARY RESULTS

A.1. Proof of auxiliary results in Section 2.1.

Proof of statement in Remark 2.5. For any θ ∈ Rd, x ∈ Rm, consider F (θ, x) := ηθ|θ|2l with η ∈
(0, 1), l ≥ q/2. Then, one obtains,

〈θ − θ′, F (θ, x)− F (θ′, x)〉 =
η

2

(
2

d∑
i=1

(θi − θ′i)(θi|θ|2l − θ′i|θ′|2l)

)

=
η

2

d∑
i=1

(
(θi − θ′i)2|θ|2l + (θi − θ′i)θ′i(|θ|2l − |θ′|2l)

)
+
η

2

d∑
i=1

(
(θi − θ′i)θi(|θ|2l − |θ′|2l) + (θi − θ′i)2|θ′|2l

)
=
η

2

d∑
i=1

(
(θi − θ′i)2(|θ|2l + |θ′|2l) + (|θi|2 − |θ′i|2)(|θ|2l − |θ′|2l)

)
=
η

2
|θ − θ′|2(|θ|2l + |θ′|2l) +

η

2
(|θ|2 − |θ′|2)(|θ|2l − |θ′|2l)

≥ 〈θ − θ′, A(x)(θ − θ′)〉(|θ|2l + |θ′|2l),

where A(x) = ηId/2, B(x) = 0 for all x ∈ Rm, and moreover, r = l, r̄ = 0, a = η/2, b = 0. �

Proof of statement in Remark 2.6. We first prove inequality (14). By Assumption 1 and 4, one obtains,
for any θ ∈ Rd,

〈θ,E[F (θ,X0)]〉 ≥ 〈θ,E[A(X0)]θ〉|θ|2r − 〈θ,E[B(X0)]θ〉|θ|r̄ + 〈θ,E[F (0, X0)]〉
≥ a|θ|2r+2 − b|θ|r̄+2 + 〈θ,E[F (0, X0)]〉.

Therefore, by applying Young’s inequality, Assumption 3, we obtain

〈θ,E[F (θ,X0)]〉 ≥ a|θ|2r+2 − b|θ|r̄+2 − a

2
|θ|2 − 1

2a
K2
F E[(1 + |X0|)2ρ]. (109)

By using 0 ≤ r̄ < 2r, r ≥ q/2 ≥ 1/2, it follows that, for θ ∈ Rd,

a

4
|θ|2r+2 − b|θ|r̄+2 > 0 ⇔ |θ| >

(
4b

a

)1/(2r−r̄)
,

and moreover,
a

4
|θ|2r+2 − a

2
|θ|2 > 0 ⇔ |θ| > 21/(2r).

Denote by RF := max{(4b/a)1/(2r−r̄), 21/(2r)} > 1. For |θ| > RF , (109) hence becomes

〈θ,E[F (θ,X0)]〉 > a

2
|θ|2r+2 − 1

2a
K2
F E[(1 + |X0|)2ρ], (110)

while for |θ| ≤ RF , it follows that

〈θ,E[F (θ,X0)]〉 ≥ −b|θ|r̄+2 − a

2
|θ|2 − 1

2a
K2
F E[(1 + |X0|)2ρ]

≥ −bRr̄+2
F − a

2
R2
F −

1

2a
K2
F E[(1 + |X0|)2ρ]

≥ −
(
b+

a

2

)
Rr̄+2
F − 1

2a
K2
F E[(1 + |X0|)2ρ]. (111)

Finally, by using the estimates in (110) and (111), one obtains

〈θ,E[F (θ,X0)]〉 ≥ aF |θ|2r+2 − bF , (112)

where aF := a/2 and bF := (a/2 + b)Rr̄+2
F +K2

F E[(1 + |X0|)2ρ]/(2a) with

RF := max{(4b/a)1/(2r−r̄), 21/(2r)}.
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Recall the expression of H in (10). Then, Assumption 1, 2, (112) and Cauchy-Schwarz inequality
imply, for any θ ∈ Rd,

〈θ, h(θ)〉 = 〈θ,E[G(θ,X0)]〉+ 〈θ,E[F (θ,X0)]〉
≥ aF |θ|2r+2 − bF − 2qKG E[(1 + |X0|)ρ](1 + |θ|q+1). (113)

To prove (15), it suffices to show that

aF |θ|2r+2 − bF − 2qKG E[(1 + |X0|)ρ](1 + |θ|q+1) ≥ ah|θ|2 − bh

for some ah, bh > 0. Set

ah := 2qKG E[(1 + |X0|)ρ], bh := 3(2q+1KG E[(1 + |X0|)ρ]/min {1, aF })q+2 + bF .

Then, one observes that for |θ| ≥ 2q+1KG E[(1 + |X0|)ρ]/min {1, aF } ≥ 1, r ≥ q/2 ≥ 1/2,

2|θ|2r+2 + 2bh/aF ≥ |θ|3 + |θ|q+2 + 2bh/aF

≥
(
2q+1KG E[(1 + |X0|)ρ]/min {1, aF }

)
|θ|2

+
(
2q+1KG E[(1 + |X0|)ρ]/min {1, aF }

)
|θ|q+1

+ 2
(
3(2q+1KG E[(1 + |X0|)ρ]/min {1, aF })q+2 + bF

)
/aF

≥ 2
(
2qKG E[(1 + |X0|)ρ]

)
|θ|2/aF +

(
2q+1KG E[(1 + |X0|)ρ]

)
|θ|q+1/aF

+ 2q+1KG E[(1 + |X0|)ρ]/aF + 2bF /aF

= 2ah|θ|2/aF + 2q+1KG E[(1 + |X0|)ρ](1 + |θ|q+1)/aF + 2bF /aF . (114)

Similarly, for |θ| ≤ 2q+1KG E[(1 + |X0|)ρ]/min {1, aF }, it follows that

2|θ|2r+2 + 2bh/aF ≥ 2
(

3
(
2q+1KG E[(1 + |X0|)ρ]/min {1, aF }

)q+2
+ bF

)
/aF

≥ 2(2q+1KG E[(1 + |X0|)ρ]/min {1, aF })3/aF

+ (2q+1KG E[(1 + |X0|)ρ]/min {1, aF })q+2/aF + 2bF /aF

≥ (2q+1KG E[(1 + |X0|)ρ]/min {1, aF })|θ|2/aF + 2q+1KG E[(1 + |X0|)ρ]/aF
+ (2q+1KG E[(1 + |X0|)ρ]/min {1, aF })|θ|q+1/aF + 2bF /aF

≥ (2q+1KG E[(1 + |X0|)ρ])|θ|2/aF + 2q+1KG E[(1 + |X0|)ρ]/aF
+ 2q+1KG E[(1 + |X0|)ρ]|θ|q+1/aF + 2bF /aF

= 2ah|θ|2/aF + 2q+1KG E[(1 + |X0|)ρ](1 + |θ|q+1)/aF + 2bF /aF , (115)

where the first inequality holds due to 2|θ|2r+2 ≥ 0, and the second inequality holds as q ≥ 1. Thus, by
using (114) and (115), one concludes that, for any θ ∈ Rd,

2|θ|2r+2 + 2bh/aF ≥ 2ah|θ|2/aF + 2q+1KG E[(1 + |X0|)ρ](1 + |θ|q+1)/aF + 2bF /aF ,

which implies, by multiplying aF /2 on both sides of the inequality, and by rearranging the terms

aF |θ|2r+2 − bF − 2qKG E[(1 + |X0|)ρ](1 + |θ|q+1) ≥ ah|θ|2 − bh.

Finally, combining (113) with the inequality above yields the desired result. �

Proof of statement in Remark 2.7. By using Assumption 1, 2, 4, the expression ofH in (10) and Cauchy-
Schwarz inequality, one obtains, for any θ, θ′ ∈ Rd,

〈θ − θ′, h(θ)− h(θ′)〉
≥ 〈θ − θ′,E[A(X0)](θ − θ′)〉(|θ|2r + |θ′|2r)− 〈θ − θ′,E[B(X0)](θ − θ′)〉(|θ|r̄ + |θ′|r̄)

+ 〈θ − θ′,E[G(θ,X0)−G(θ′, X0)]〉
≥ a(|θ|2r + |θ′|2r)|θ − θ′|2 − b(|θ|r̄ + |θ′|r̄)|θ − θ′|2 − LG(1 + |θ|+ |θ′|)q−1|θ − θ′|2
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≥ a

2
(|θ|2r + |θ′|2r)|θ − θ′|2 − b(|θ|r̄ + |θ′|r̄)|θ − θ′|2

+
a

6
(|θ|2r + |θ′|2r)|θ − θ′|2 − 3q−2LG|θ − θ′|2

+
a

3
(|θ|2r + |θ′|2r)|θ − θ′|2 − 3q−2LG(|θ|q−1 + |θ′|q−1)|θ − θ′|2.

(116)

For θ, θ′ ∈ Rd, 0 ≤ r̄ < 2r, one observes the following:

a

2
|θ|2r|θ − θ′|2 − b|θ|r̄|θ − θ′|2 > 0 ⇔ |θ| >

(
2b

a

)1/(2r−r̄)
,

a

2
|θ′|2r|θ − θ′|2 − b|θ′|r̄|θ − θ′|2 > 0 ⇔ |θ′| >

(
2b

a

)1/(2r−r̄)
,

a

6
|θ|2r|θ − θ′|2 − 3q−2LG

2
|θ − θ′|2 > 0 ⇔ |θ| >

(
3q−1LG

a

)1/(2r)

,

a

6
|θ′|2r|θ − θ′|2 − 3q−2LG

2
|θ − θ′|2 > 0 ⇔ |θ′| >

(
3q−1LG

a

)1/(2r)

,

a

3
|θ|2r|θ − θ′|2 − 3q−2LG|θ|q−1|θ − θ′|2 > 0 ⇔ |θ| >

(
3q−1LG

a

)1/(2r−q+1)

,

a

3
|θ′|2r|θ − θ′|2 − 3q−2LG|θ′|q−1|θ − θ′|2 > 0 ⇔ |θ′| >

(
3q−1LG

a

)1/(2r−q+1)

.

One notes that (3q−1LG/a)1/(2r) ≤ max{1, (3q−1LG/a)1/(2r−q+1)} due to the fact that 2r ≥ q ≥ 1.
Define R := max{1, (3q−1LG/a)1/(2r−q+1), (2b/a)1/(2r−r̄)}, and denote by B̄(0, R) the closed ball
with radius R centred at the zero vector in Rd. Then, for θ, θ′ /∈ B̄(0, R), one obtains, by using (116),

〈θ − θ′, h(θ)− h(θ′)〉 > 0, (117)

while for θ, θ′ ∈ B̄(0, R), it follows, by applying Remark 2.3,

− 〈θ − θ′, h(θ)− h(θ′)〉 ≤ |θ − θ′||h(θ)− h(θ′)| ≤ LR|θ − θ′|2, (118)

where LR := Lh(1 + 2R)2r. For the case θ ∈ B̄(0, R), θ′ /∈ B̄(0, R), i.e. |θ| ≤ R, |θ′| > R,
it is straightforward to see that the inequality (117) holds when |θ| = R, |θ′| > R; moreover, for
|θ| < R, |θ′| > R, there exists a unique θ̄ ∈ Rd which lies at the intersection of the boundary of the ball
B̄(0, R) and the line segment between θ, θ′, such that θ− θ̄ = cθ,θ′(θ−θ′) and θ̄−θ′ = (1−cθ,θ′)(θ−θ′),
where cθ,θ′ ∈ (0, 1). Then, one obtains, for |θ| < R, |θ′| > R

〈θ − θ′, h(θ)− h(θ′)〉
≥ 〈θ − θ̄, h(θ)− h(θ̄)〉+ 〈θ − θ̄, h(θ̄)− h(θ′)〉+ 〈θ̄ − θ′, h(θ)− h(θ̄)〉+ 〈θ̄ − θ′, h(θ̄)− h(θ′)〉

= 〈θ − θ′, h(θ)− h(θ̄)〉+

(
cθ,θ′

1− cθ,θ′
+ 1

)
〈θ̄ − θ′, h(θ̄)− h(θ′)〉, (119)

where the equality above is obtained by using θ− θ̄ = cθ,θ′(θ̄− θ′)/(1− cθ,θ′). One notes that the second
term on the RHS of (119) is greater or equal to zero due to (117). Thus, it follows that

〈θ − θ′, h(θ)− h(θ′)〉 ≥ 〈θ − θ′, h(θ)− h(θ̄)〉

=
1

cθ,θ′
〈θ − θ̄, h(θ)− h(θ̄)〉

≥ − LR
cθ,θ′
|θ − θ̄|2

= −cθ,θ′LR|θ − θ′|2

≥ −LR|θ − θ′|2,

where the second inequality holds due to (118), and the last inequality holds due to cθ,θ′ ∈ (0, 1).
Applying the same arguments to the case θ /∈ B̄(0, R), θ′ ∈ B̄(0, R) completes the proof. �
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Proof of statement in Remark 2.8. For any p ∈ N, recall the definition of λp,max given in (16). It
suffices to show

min{(aF /KF )2, (aF /KF )2/(2p−1)}
9
(

2p
p

)2
K2
F (E [(1 + |X0|)2pρ])2

(120)

decreases as p increases. To this end, one first observes that the denominator of the fraction in (120) is
positive and it increases as p increases. Then, for 0 < aF /KF ≤ 1, one obtains that, for any p ∈ N,

min{(aF /KF )2, (aF /KF )2/(2p−1)} = (aF /KF )2 > 0;

whereas for aF /KF ≥ 1, we have, for any p ∈ N,

min{(aF /KF )2, (aF /KF )2/(2p−1)} = (aF /KF )2/(2p−1) > 0,

which decreases as p increases. Thus, one concludes that (120) decreases as p increases. �

A.2. Proof of auxiliary results in Section 4.

Lemma A.1. Let Assumption 1, 2, 3, and 4 hold. Then, one obtains, for any p ∈ N, t ≥ 0,

E[|Zλt |2p] ≤ e−λpaht E[|θ0|2p] + 2(bh + β−1(d+ 2(p− 1)))M2p−2
5 /ah,

where M5 := (2(bh + β−1(d+ 2(p− 1)))/ah)1/2. In particular, the above result further implies

sup
t≥0

E[|Zλt |2p] ≤ E[|θ0|2p] + 2(bh + β−1(d+ 2(p− 1)))M2p−2
5 /ah.

Proof. Consider the function f(z) := |z|2p, z ∈ Rd, p ∈ N. Denote by ∇f and ∇2f the gradient and
the Hessian of f , respectively. One observes that, for any z ∈ Rd, p ∈ N, ∇f(z) = 2pz|z|2p−2 and
∇2f(z) = 2p|z|2p−2Id + 4p(p− 1)|z|2p−4zzT with Id denoting the identity matrix and zT denoting the
transpose of z. Recall the definition of (Zλt )t≥0 given in (33). For any t ≥ 0, by applying Itô’s formula to
f(Zλt ) = |Zλt |2p, one obtains, almost surely

d|Zλt |2p =

[
−〈∇f(Zt), λh(Zλt )〉+

1

2
Tr
(

(
√

2λβ−1Id)
T∇2f(Zt)(

√
2λβ−1Id)

)]
dt

+ 〈∇f(Zt),
√

2λβ−1 dBλ
t 〉

= −2pλ〈Zλt , h(Zλt )〉|Zλt |2p−2dt+ 2p〈Zλt ,
√

2λβ−1dBλ
t 〉|Zλt |2p−2

+ 2pλβ−1(d+ 2(p− 1))|Zλt |2p−2dt,

where Tr(A) and AT denote the trace and the transpose of a given matrix A, respectively. Then,
integrating both sides and taking expectation yield

E[|Zλt |2p] = E[|θ0|2p]− 2pλ

∫ t

0
E[〈Zλs , h(Zλs )〉|Zλs |2p−2] ds

+ 2pλβ−1(d+ 2(p− 1))

∫ t

0
E[|Zλs |2p−2] ds,

where the expectation of the stochastic integral is zero by applying standard stopping time arguments (see,
e.g., the proof of Lemma 4.4). This further implies by differentiating both sides and by using Remark 2.6,

d

dt
E[|Zλt |2p] = −2pλE[〈Zλt , h(Zλt )〉|Zλt |2p−2] + 2pλβ−1(d+ 2(p− 1))E[|Zλt |2p−2]

≤ −2pahλE[|Zλt |2p] + 2pλ(bh + β−1(d+ 2(p− 1)))E[|Zλt |2p−2]. (121)

For any θ ∈ Rd, one notes that

− pahλ|θ|2p + 2pλ(bh + β−1(d+ 2(p− 1)))|θ|2p−2 < 0

⇔ |θ| >
(

2(bh + β−1(d+ 2(p− 1)))

ah

)1/2

.
(122)

Denote by M5 := (2(bh + β−1(d+ 2(p− 1)))/ah)1/2 and St,M5 := {ω ∈ Ω : |Zλt (ω)| > M5}. Then,
by (121) and (122), it holds that

d

dt
E[|Zλt |2p] ≤ −2pahλE[|Zλt |2p1St,M5

] + 2pλ(bh + β−1(d+ 2(p− 1)))E[|Zλt |2p−2
1St,M5

]
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− 2pahλE[|Zλt |2p1Sct,M5
] + 2pλ(bh + β−1(d+ 2(p− 1)))E[|Zλt |2p−2

1Sct,M5
]

≤ −pahλE[|Zλt |2p1St,M5
]− 2pahλE[|Zλt |2p1Sct,M5

]

+ 2pλ(bh + β−1(d+ 2(p− 1)))M2p−2
5

≤ −pahλE[|Zλt |2p] + 2pλ(bh + β−1(d+ 2(p− 1)))M2p−2
5 .

This implies, by multiplying epahλt and by integrating on both sides of the above inequality, that

E[|Zλt |2p] ≤ e−λpaht E[|θ0|2p] + 2(bh + β−1(d+ 2(p− 1)))M2p−2
5 /ah.

Finally, it follows that

sup
t≥0

E[|Zλt |2p] ≤ E[|θ0|2p] + 2(bh + β−1(d+ 2(p− 1)))M2p−2
5 /ah,

which completes the proof. �

Proof of Lemma 4.2-(i). For any 0 < λ ≤ λ1,max, t ∈ (n, n+ 1], n ∈ N0, define

∆λ
n,t := θ̄λn − λHλ(θ̄λn, Xn+1)(t− n), Ξλn,t :=

√
2λβ−1(Bλ

t −Bλ
n). (123)

By using (34), one obtains,

E
[
|θ̄λt |2

∣∣∣ θ̄λn] = E
[
|∆λ

n,t|2
∣∣∣ θ̄λn]+ 2λ(t− n)d/β. (124)

Moreover, by using Assumption 4 and Remark 2.6, one further calculates, for any 0 < λ < λ1,max,

E
[
|∆λ

n,t|2
∣∣∣ θ̄λn] = |θ̄λn|2 − 2λ(t− n)E

[〈
θ̄λn,

G(θ̄λn, Xn+1) + F (θ̄λn, Xn+1)

1 +
√
λ|θ̄λn|2r

〉∣∣∣∣ θ̄λn]
+ λ2(t− n)2 E

[∣∣∣∣G(θ̄λn, Xn+1) + F (θ̄λn, Xn+1)

1 +
√
λ|θ̄λn|2r

∣∣∣∣2
∣∣∣∣∣ θ̄λn
]

≤ |θ̄λn|2 −
2λ(t− n)(aF |θ̄λn|2r+2 − bF )

1 +
√
λ|θ̄λn|2r

+
2λ(t− n)|θ̄λn|E

[
|G(θ̄λn, Xn+1)|

∣∣ θ̄λn]
1 +
√
λ|θ̄λn|2r

+ 2λ2(t− n)2

(
E
[
|G(θ̄λn, Xn+1)|2

∣∣ θ̄λn]
(1 +

√
λ|θ̄λn|2r)2

+
E
[
|F (θ̄λn, Xn+1)|2

∣∣ θ̄λn]
(1 +

√
λ|θ̄λn|2r)2

)
.

The above estimate further yields, by using Assumption 2, 3, the following bound:

E
[
|∆λ

n,t|2
∣∣∣ θ̄λn] ≤ |θ̄λn|2 − λ(t− n)

2aF |θ̄λn|2r+2

1 +
√
λ|θ̄λn|2r

+ 2λ(t− n)bF

+ λ(t− n)
2q+1KG E [(1 + |X0|)ρ] (1 + |θ̄λn|q+1)

1 +
√
λ|θ̄λn|2r

+ λ2(t− n)2 22qK2
G E

[
(1 + |X0|)2ρ

]
(1 + |θ̄λn|2q)

(1 +
√
λ|θ̄λn|2r)2

+ λ2(t− n)2 4K2
F E

[
(1 + |X0|)2ρ

]
(1 + |θ̄λn|4r+2)

(1 +
√
λ|θ̄λn|2r)2

.

(125)

Moreover, one notes that, the fifth term on the RHS of (125) can be upper bounded using the following
inequality: for any θ ∈ Rd, r ≥ q/2, 0 < λ < λ1,max < 1,

λ(1 + |θ|2q)
(1 +

√
λ|θ|2r)2

≤ λ(1 + |θ|2q)
1 + λ|θ|4r

≤ λ+ λ(1 + |θ|4r)
1 + λ|θ|4r

≤ 2 + λ|θ|4r

1 + λ|θ|4r
≤ 2.

This and (125) imply that

E
[
|∆λ

n,t|2
∣∣∣ θ̄λn] ≤ |θ̄λn|2 − λ(t− n)

2aF |θ̄λn|2r+2

1 +
√
λ|θ̄λn|2r

+ 2λ(t− n)bF

+ λ(t− n)
2q+1KG E [(1 + |X0|)ρ] |θ̄λn|q+1

1 +
√
λ|θ̄λn|2r

+ 2q+1λ(t− n)KG E [(1 + |X0|)ρ]

+ 22q+1λ(t− n)2K2
G E

[
(1 + |X0|)2ρ

]
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+ λ2(t− n)2 4K2
F E

[
(1 + |X0|)2ρ

]
|θ̄λn|4r+2

(1 +
√
λ|θ̄λn|2r)2

+ 4λ2(t− n)2K2
F E

[
(1 + |X0|)2ρ

]
= |θ̄λn|2 − λ(t− n)|θ̄λn|2T λ1 (θ̄λn)− λ(t− n)T λ2 (θ̄λn) (126)

+ 2λ(t− n)bF + 2q+1λ(t− n)KG E [(1 + |X0|)ρ]
+ 22q+1λ(t− n)2K2

G E
[
(1 + |X0|)2ρ

]
+ 4λ2(t− n)2K2

F E
[
(1 + |X0|)2ρ

]
,

where for all θ ∈ Rd \ {(0, . . . , 0)︸ ︷︷ ︸
d

},

T λ1 (θ) :=
1

|θ|2

(
aF |θ|2r+2

1 +
√
λ|θ|2r

− 2q+1KG E [(1 + |X0|)ρ] |θ|q+1

1 +
√
λ|θ|2r

)
, (127)

and moreover, for all θ ∈ Rd

T λ2 (θ) :=
aF |θ|2r+2

1 +
√
λ|θ|2r

−
4λ(t− n)K2

F E
[
(1 + |X0|)2ρ

]
|θ|4r+2

(1 +
√
λ|θ|2r)2

.

Then, for all θ ∈ Rd

aF |θ|2r+2 − 2q+1KG E [(1 + |X0|)ρ] |θ|q+1 >
aF
2
|θ|2r+2

⇔ |θ| >
(

2q+2KG E [(1 + |X0|)ρ]
aF

)1/(2r−q+1)

.

Denote by M0 = (2q+2KG E
[
(1 + |X0|)2ρ

]
/min{1, aF })1/(2r−q+1). Then, for all |θ| > M0, by using

the inequalities above, one obtains

T λ1 (θ) >
aF |θ|2r

2(1 +
√
λ|θ|2r)

≥ aFM
2r
0

2(1 +M2r
0 )

, (128)

where the last inequality holds due to 0 < λ ≤ λ1,max ≤ 1 and the fact that f(s) := s/(1 +
√
λs) is

non-decreasing for all s ≥ 0. Furthermore, one observes that for all θ ∈ Rd and for all λ ≤ λ1,max ≤
a2
F /(16K4

F (E
[
(1 + |X0|)2ρ

]
)2),

T λ2 (θ) =
aF |θ|2r+2 +

√
λaF |θ|4r+2 − 4λ(t− n)K2

F E
[
(1 + |X0|)2ρ

]
|θ|4r+2

(1 +
√
λ|θ|2r)2

≥
√
λaF |θ|4r+2 − 4λK2

F E
[
(1 + |X0|)2ρ

]
|θ|4r+2

(1 +
√
λ|θ|2r)2

≥ 0. (129)

Denote by κ := M2r
0 /(2(1 + M2r

0 )), and Sn,M0 := {ω ∈ Ω : |θ̄λn(ω)| > M0}. Inserting (128), (129)
into (126) yields, for 0 < λ ≤ λ1,max,

E
[
|∆λ

n,t|21Sn,M0

∣∣∣ θ̄λn] ≤ (1− λ(t− n)aFκ)|θ̄λn|21Sn,M0
+ λ(t− n)c11Sn,M0

,

where c1 := 2bF + 2q+1KG E [(1 + |X0|)ρ] + 22q+1K2
G E

[
(1 + |X0|)2ρ

]
+ 4K2

F E
[
(1 + |X0|)2ρ

]
. In

addition, one obtains, by using the definition of T λ1 (θ) given in (127),

E
[
|∆λ

n,t|21Scn,M0

∣∣∣ θ̄λn] ≤ (1− λ(t− n)aFκ)|θ̄λn|21Sc
n,M0

+ λ(t− n)c11Scn,M0

+ λ(t− n)(aFκM
2
0 + 2q+1KG E [(1 + |X0|)ρ]M q+1

0 )1Scn,M0
.

Combining the two cases yields

E
[
|∆λ

n,t|2
∣∣∣ θ̄λn] ≤ (1− λ(t− n)aFκ)|θ̄λn|2 + λ(t− n)c2, (130)

where
c2 := c1 + aFκM

2
0 + 2q+1KG E [(1 + |X0|)ρ]M q+1

0 . (131)
Thus, one can conclude from (124) that, for t ∈ (n, n+ 1], n ∈ N0, 0 < λ ≤ λ1,max,

E
[
|θ̄λt |2

∣∣∣ θ̄λn] = E
[
|∆λ

n,t|2
∣∣∣ θ̄λn]+ 2λ(t− n)d/β ≤ (1− λ(t− n)aFκ)|θ̄λn|2 + λ(t− n)c0,
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where

κ := M2r
0 /(2(1 +M2r

0 )),

M0 := (2q+2KG E
[
(1 + |X0|)2ρ

]
/min{1, aF })1/(2r−q+1),

c0 := 2d/β + aFκM
2
0 + 2q+1KG E [(1 + |X0|)ρ]M q+1

0 + 2bF

+ 2q+1KG E [(1 + |X0|)ρ] + 22q+1K2
G E

[
(1 + |X0|)2ρ

]
+ 4K2

F E
[
(1 + |X0|)2ρ

]
.

(132)

This further implies, for t ∈ (n, n+ 1], n ∈ N0, 0 < λ ≤ λ1,max ≤ 1, that

E
[
|θ̄λt |2

]
≤ (1− λ(t− n)aFκ)E

[
|θ̄λn|2

]
+ λ(t− n)c0

≤ (1− λ(t− n)aFκ)(1− λaFκ)E
[
|θ̄λn−1|2

]
+ λ1,maxc0 + λc0

≤ (1− λ(t− n)aFκ)(1− λaFκ)2 E
[
|θ̄λn−2|2

]
+ c0 + λc0(1 + (1− λaFκ))

≤ . . .
≤ (1− λ(t− n)aFκ)(1− aFκλ)n E

[
|θ0|2

]
+ c0(1 + 1/(aFκ)),

(133)

which completes the proof. �

Proof of Lemma 4.2-(ii). For any p ∈ [2,∞) ∩ N, 0 < λ ≤ λp,max, t ∈ (n, n + 1], n ∈ N0, recall the
definition for ∆λ

n,t and Ξλn,t in (123). To obtain the 2p-th moment estimate (with p ∈ [2,∞) ∩ N) of the
TUSLA algorithm (34), one writes

E
[
|θ̄λt |2p

∣∣∣ θ̄λn] = E
[(
|∆λ

n,t|2 + 2〈∆λ
n,t,Ξ

λ
n,t〉+ |Ξλn,t|2

)p∣∣∣ θ̄λn]
= E

[
|∆λ

n,t|2p
∣∣∣ θ̄λn]+ 2pE

[
|∆λ

n,t|2p−2〈∆λ
n,t,Ξ

λ
n,t〉
∣∣∣ θ̄λn]

+ E


∑

k1+k2+k3=p
{k1 6=p−1}∩{k2 6=1}

{k1 6=p}

p!

k1!k2!k3!
|∆λ

n,t|2k1(2〈∆λ
n,t,Ξ

λ
n,t〉)k2 |Ξλn,t|2k3

∣∣∣∣∣∣∣∣∣∣∣
θ̄λn


≤ E

[
|∆λ

n,t|2p
∣∣∣ θ̄λn]+ 2pE

[
|∆λ

n,t|2p−2〈∆λ
n,t,Ξ

λ
n,t〉
∣∣∣ θ̄λn]

+

2p∑
k=2

(
2p

k

)
E
[
|∆λ

n,t|2p−k|Ξλn,t|k
∣∣∣ θ̄λn]

= E
[
|∆λ

n,t|2p
∣∣∣ θ̄λn]+

2p∑
k=2

(
2p

k

)
E
[
|∆λ

n,t|2p−k|Ξλn,t|k
∣∣∣ θ̄λn] .

where the inequality above holds due to [7, Lemma A.3]. This and the fact that Ξλn,t is independent of
∆λ
n,t, and Ξλn,t is independent of θ̄λn, t ∈ (n, n+ 1], n ∈ N0, yield

E
[
|θ̄λt |2p

∣∣∣ θ̄λn] ≤ E
[
|∆λ

n,t|2p
∣∣∣ θ̄λn]+

2p−2∑
l=0

(
2p

l + 2

)
E
[
|∆λ

n,t|2p−2−l|Ξλn,t|l+2
∣∣∣ θ̄λn]

= E
[
|∆λ

n,t|2p
∣∣∣ θ̄λn]+

2p−2∑
l=0

2p(2p− 1)

(l + 2)(l + 1)

(
2p− 2

l

)
E
[(
|∆λ

n,t|2p−2−l|Ξλn,t|l
)
|Ξλn,t|2

∣∣∣ θ̄λn]
≤ E

[
|∆λ

n,t|2p
∣∣∣ θ̄λn]+ p(2p− 1)E

[(
|∆λ

n,t|+ |Ξλn,t|
)2p−2

|Ξλn,t|2
∣∣∣∣ θ̄λn]

≤ E
[
|∆λ

n,t|2p
∣∣∣ θ̄λn]+ 22p−3p(2p− 1)E

[
|∆λ

n,t|2p−2
∣∣∣ θ̄λn]E [|Ξλn,t|2]

+ 22p−3p(2p− 1)E
[
|Ξλn,t|2p

]
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≤ E
[
|∆λ

n,t|2p
∣∣∣ θ̄λn]+ 22p−2p(2p− 1)λ(t− n)dβ−1 E

[
|∆λ

n,t|2p−2
∣∣∣ θ̄λn]

+ 22p−4(2p(2p− 1))p+1(dβ−1λ(t− n))p,
(134)

where the last inequality holds due to [32, Theorem 7.1]. The first term in (134) can be upper bounded in
the following way:

E
[
|∆λ

n,t|2p
∣∣∣ θ̄λn] = E

[(
|θ̄λn|2 − 2λ(t− n)〈θ̄λn, Hλ(θ̄λn, Xn+1)〉+ |λHλ(θ̄λn, Xn+1)(t− n)|2

)p∣∣∣ θ̄λn]
= |θ̄λn|2p − 2pλ(t− n)|θ̄λn|2p−2 E

[
〈θ̄λn, Hλ(θ̄λn, Xn+1)〉

∣∣∣ θ̄λn]
+

∑
k1+k2+k3=p

{k1 6=p−1}∩{k2 6=1}
{k1 6=p}

p!

k1!k2!k3!
E
[
|θ̄λn|2k1(−2λ(t− n)〈θ̄λn, Hλ(θ̄λn, Xn+1)〉)k2

× |λHλ(θ̄λn, Xn+1)(t− n)|2k3

∣∣∣ θ̄λn]
≤ |θ̄λn|2p − 2pλ(t− n)|θ̄λn|2p−2 E

[
〈θ̄λn, Hλ(θ̄λn, Xn+1)〉

∣∣∣ θ̄λn]
+

2p∑
k=2

(
2p

k

)
E
[
|θ̄λn|2p−k|λHλ(θ̄λn, Xn+1)(t− n)|k

∣∣∣ θ̄λn] ,
where we apply [7, Lemma A.3] to obtain the last inequality above. Moreover, by Assumption 2 and
Remark 2.6, the above estimate further yields

E
[
|∆λ

n,t|2p
∣∣∣ θ̄λn] ≤ |θ̄λn|2p − 2pλ(t− n)|θ̄λn|2p−2 E

[〈
θ̄λn,

G(θ̄λn, Xn+1) + F (θ̄λn, Xn+1)

1 +
√
λ|θ̄λn|2r

〉∣∣∣∣ θ̄λn]

+

2p∑
k=2

(
2p

k

)
E
[
|θ̄λn|2p−k|λHλ(θ̄λn, Xn+1)(t− n)|k

∣∣∣ θ̄λn]
≤ |θ̄λn|2p − 2pλ(t− n)|θ̄λn|2p−2 (aF |θ̄λn|2r+2 − bF )

1 +
√
λ|θ̄λn|2r

+
2q+1pλ(t− n)KG E [(1 + |X0|)ρ] |θ̄λn|2p−2(1 + |θ̄λn|q+1)

1 +
√
λ|θ̄λn|2r

+

2p∑
k=2

(
2p

k

)
E
[
|θ̄λn|2p−k|λHλ(θ̄λn, Xn+1)(t− n)|k

∣∣∣ θ̄λn] . (135)

Next, for any θ ∈ Rd, x ∈ Rm, denote by

Gλ(θ, x) :=
G(θ, x)

1 +
√
λ|θ|2r

, Fλ(θ, x) :=
F (θ, x)

1 +
√
λ|θ|2r

To obtain the optimal stepsize restriction λp,max, we estimate the term in (135) using Assumption 2, 3 as
follows:

2p∑
k=2

(
2p

k

)
E
[
|θ̄λn|2p−k|λHλ(θ̄λn, Xn+1)(t− n)|k

∣∣∣ θ̄λn]

≤
2p∑
k=2

(
2p

k

)
|θ̄λn|2p−kλk(t− n)k E

[
(|Gλ(θ̄λn, Xn+1)|+ |Fλ(θ̄λn, Xn+1)|)k

∣∣∣ θ̄λn]

=

2p∑
k=2

(
2p

k

)
|θ̄λn|2p−kλk(t− n)k E

[
k−1∑
l=0

(
k

l

)
|Gλ(θ̄λn, Xn+1)|k−l|Fλ(θ̄λn, Xn+1)|l

∣∣∣∣∣ θ̄λn
]

+

2p∑
k=2

(
2p

k

)
|θ̄λn|2p−kλk(t− n)k E

[
|Fλ(θ̄λn, Xn+1)|k

∣∣∣ θ̄λn] .
(136)
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By Assumption 2, 3, one notes that for any θ ∈ Rd,m ∈ Rm, 2 ≤ k ≤ 2p,

k−1∑
l=0

(
k

l

)
|Gλ(θ, x)|k−l|Fλ(θ, x)|l

=
k−1∑
l=1

(
k

l

)
|Gλ(θ, x)|k−l|Fλ(θ, x)|l + |Gλ(θ, x)|k

≤
k−1∑
l=1

(
k

l

)
Kk−l
G (1 + |x|)ρ(k−l)(1 + |θ|)q(k−l)

(1 +
√
λ|θ|2r)k−l

×
K l
F (1 + |x|)ρl(1 + |θ|2r+1)l

(1 +
√
λ|θ|2r)l

+
Kk
G(1 + |x|)ρk(1 + |θ|)qk

(1 +
√
λ|θ|2r)k

≤
k−1∑
l=1

(
k

l

)
2qk−ql+l−2Kk−l

G K l
F (1 + |x|)ρk 1 + |θ|q(k−l)

(1 +
√
λ|θ|2r)k−l

× 1 + |θ|(2r+1)l

(1 +
√
λ|θ|2r)l

+ 2qk−1Kk
G(1 + |x|)ρk 1 + |θ|qk

(1 +
√
λ|θ|2r)k

≤
k−1∑
l=1

(
k

l

)
λ−k/22qk−ql+l−2Kk−l

G K l
F (1 + |x|)ρk 1 + λ(k−l)/2|θ|q(k−l)

1 + λ(k−l)/2|θ|2r(k−l)
× 1 + λl/2|θ|(2r+1)l

1 + λl/2|θ|2rl

+ λ−k/22qk−1Kk
G(1 + |x|)ρk 1 + λk/2|θ|qk

1 + λk/2|θ|2rk

≤
k−1∑
l=1

(
k

l

)
λ−k/22qkKk−l

G K l
F (1 + |x|)ρk(1 + |θ|)l + λ−k/22qkKk

G(1 + |x|)ρk

=
k−1∑
l=0

(
k

l

)
λ−k/22qkKk−l

G K l
F (1 + |x|)ρk(1 + |θ|)l, (137)

where the third inequality holds due to (u + v)s ≥ us + vs for u, v ≥ 0, s ≥ 1 and λ ≤ λp,max ≤ 1,
while the last inequality holds due to the following inequalities, for 2r ≥ q ≥ 1,

1 + λ(k−l)/2|θ|q(k−l)

1 + λ(k−l)/2|θ|2r(k−l)
≤ 2,

1 + λl/2|θ|(2r+1)l

1 + λl/2|θ|2rl
≤ 2(1 + |θ|)l.

Inserting (137) into (136) together with Assumption 2, 3 yields

2p∑
k=2

(
2p

k

)
E
[
|θ̄λn|2p−k|λHλ(θ̄λn, Xn+1)(t− n)|k

∣∣∣ θ̄λn]

≤
2p∑
k=2

(
2p

k

)
λk/2(t− n)k

k−1∑
l=0

(
k

l

)
2qkKk−l

G K l
F E

[
(1 + |X0|)ρk

]
(1 + |θ̄λn|)2p−k+l

+

2p∑
k=2

(
2p

k

)
|θ̄λn|2p−kλk(t− n)k

2k−1Kk
F E

[
(1 + |X0|)ρk

]
(1 + |θ̄λn|k(2r+1))

(1 +
√
λ|θ̄λn|2r)k

≤
(

2p

p

)2

22p(q+1)−2p(2p− 1)λ(t− n)K2p
G (1 +KF )2p E

[
(1 + |X0|)2pρ

]
(1 + |θ̄λn|2p−1)

+

(
2p

p

)
22p−1(2p− 1)λ(t− n)(1 +KF )2p E

[
(1 + |X0|)2pρ

]
(1 + |θ̄λn|2p−1)

+

2p∑
k=2

(
2p

k

)
λk(t− n)k

2k−1Kk
F E

[
(1 + |X0|)ρk

]
|θ̄λn|2rk+2p

(1 +
√
λ|θ̄λn|2r)k

≤ c3(p)λ(t− n)|θ̄λn|2p−1 + c3(p)λ(t− n)
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+

2p∑
k=2

(
2p

k

)
λk(t− n)k

2k−1Kk
F E

[
(1 + |X0|)ρk

]
|θ̄λn|2rk+2p

(1 +
√
λ|θ̄λn|2r)k

,

where c3(p) :=
(

2p
p

)2
22p(q+1)p(2p − 1)K2p

G (1 + KF )2p E
[
(1 + |X0|)2pρ

]
. By substituting the above

estimate back into (135) and by applying Young’s inequality, one obtains

E
[
|∆λ

n,t|2p
∣∣∣ θ̄λn] ≤ |θ̄λn|2p − 2pλ(t− n)|θ̄λn|2p−2 aF |θ̄λn|2r+2

1 +
√
λ|θ̄λn|2r

+
2q+1pλ(t− n)KG E [(1 + |X0|)ρ] |θ̄λn|2p+q−1

1 +
√
λ|θ̄λn|2r

+

2p∑
k=2

(
2p

k

)
λk(t− n)k

2k−1Kk
F E

[
(1 + |X0|)ρk

]
|θ̄λn|2rk+2p

(1 +
√
λ|θ̄λn|2r)k

+ λ(t− n)(2pbF + 2q+1pKG E [(1 + |X0|)ρ])(1 + |θ̄λn|2p−1)

+ c3(p)λ(t− n)|θ̄λn|2p−1 + c3(p)λ(t− n)

= |θ̄λn|2p − λ(t− n)|θ̄λn|2pJλ1 (θ̄λn)− λ(t− n)(Jλ2 (θ̄λn) + Jλ3 (θ̄λn))

+ λ(t− n)(2pbF + 2q+1pKG E [(1 + |X0|)ρ] + c3(p)),
(138)

where for all θ ∈ Rd, p ∈ [2,∞) ∩ N,

Jλ1 (θ) :=
aF |θ|2r

1 +
√
λ|θ|2r

− 2q+1pKG E [(1 + |X0|)ρ] |θ|q−1

1 +
√
λ|θ|2r

,

Jλ2 (θ) :=
aF |θ|2p+2r − (1 +

√
λ|θ|2r)(2pbF + 2q+1pKG E [(1 + |X0|)ρ] + c3(p))|θ|2p−1

1 +
√
λ|θ|2r

,

Jλ3 (θ) :=
(2p− 2)aF |θ|2p+2r

1 +
√
λ|θ|2r

−
2p∑
k=2

(
2p

k

)
λk−1(t− n)k−1 2k−1Kk

F E
[
(1 + |X0|)ρk

]
|θ|2rk+2p

(1 +
√
λ|θ|2r)k

.

Next, we aim to choose a large enough constant M1(p) > 0, such that for |θ| > M1(p), Jλ1 (θ) and Jλ2 (θ)
are nonnegative. To obtain an explicit form of such a constant, one notes that, for all θ ∈ Rd,

aF |θ|2r − 2q+1pKG E [(1 + |X0|)ρ] |θ|q−1 >
aF
2
|θ|2r

⇔ |θ| > M1,0(p) :=

(
2q+2pKG E [(1 + |X0|)ρ]

aF

)1/(2r−q+1)

.

(139)

Moreover, one observes that, for all θ ∈ Rd,
aF
2
|θ|2p+2r − (2pbF + 2q+1pKG E [(1 + |X0|)ρ] + c3(p))|θ|2p+2r−1 > 0

⇔ |θ| > M1,1(p) :=
4pbF + 2q+2pKG E [(1 + |X0|)ρ] + 2c3(p)

aF
,

(140)

and
aF
2
|θ|2p+2r − (2pbF + 2q+1pKG E [(1 + |X0|)ρ] + c3(p))|θ|2p−1 > 0

⇔ |θ| > M1,2(p) :=

(
4pbF + 2q+2pKG E [(1 + |X0|)ρ] + 2c3(p)

aF

)1/(2r+1)

.

(141)

Denote byM1(p) := (4pbF+2q+2pKG E [(1 + |X0|)ρ]+2c3(p))/min{1, aF } ≥ 1. It is straightforward
to see that, for 2r ≥ q ≥ 1, p ∈ [2,∞) ∩ N,

M1(p) ≥ max{M1,0(p),M1,1(p),M1,2(p)}. (142)

Thus, for all θ ∈ Rd, |θ| > M1(p), by (139), (142), it holds that

Jλ1 (θ) =
aF |θ|2r − 2q+1pKG E [(1 + |X0|)ρ] |θ|q−1

1 +
√
λ|θ|2r
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>
aF |θ|2r

2(1 +
√
λ|θ|2r)

≥ aF (M1(p))2r

2(1 + (M1(p))2r)

= aF κ̄(p), (143)

where κ̄(p) := (M1(p))2r/(2(1 + (M1(p))2r)), and the last inequality holds due to 0 < λ ≤ λp,max ≤ 1

and the fact that f(s) := s/(1 +
√
λs) is non-decreasing for all s ≥ 0. Similarly, for all |θ| > M1(p),

it follows that Jλ2 (θ) > 0. Indeed, for all θ ∈ Rd, |θ| > M1(p), λ ≤ λp,max ≤ 1, by using (140), (141),
(142), one obtains

Jλ2 (θ) =
aF |θ|2p+2r − (1 +

√
λ|θ|2r)(2pbF + 2q+1pKG E [(1 + |X0|)ρ] + c3(p))|θ|2p−1

1 +
√
λ|θ|2r

≥ aF |θ|2p+2r − (1 + |θ|2r)(2pbF + 2q+1pKG E [(1 + |X0|)ρ] + c3(p))|θ|2p−1

1 +
√
λ|θ|2r

=
aF |θ|2p+2r/2− (2pbF + 2q+1pKG E [(1 + |X0|)ρ] + c3(p))|θ|2p−1

1 +
√
λ|θ|2r

+
aF |θ|2p+2r/2− (2pbF + 2q+1pKG E [(1 + |X0|)ρ] + c3(p))|θ|2p+2r−1

1 +
√
λ|θ|2r

≥ 0. (144)

Furthermore, it follows that, for any θ ∈ Rd,

Jλ3 (θ) =

2p∑
k=2

(
(2p− 2)aF |θ|2p+2r(1 +

√
λ|θ|2r)k−1

(2p− 1)(1 +
√
λ|θ|2r)k

−
(

2p
k

)
λk−1(t− n)k−12k−1Kk

F E
[
(1 + |X0|)ρk

]
|θ|2rk+2p

(1 +
√
λ|θ|2r)k

)

≥
2p∑
k=2

(
(2p− 2)aF |θ|2p+2r(1 + λ(k−1)/2|θ|2r(k−1))

(2p− 1)(1 +
√
λ|θ|2r)k

−
(

2p
k

)
λk−1(t− n)k−12k−1Kk

F E
[
(1 + |X0|)ρk

]
|θ|2rk+2p

(1 +
√
λ|θ|2r)k

)

≥
2p∑
k=2

(
(2p− 2)aFλ

(k−1)/2|θ|2p+2rk

(2p− 1)(1 +
√
λ|θ|2r)k

−
(

2p
k

)
λk−1(t− n)k−12k−1Kk

F E
[
(1 + |X0|)ρk

]
|θ|2rk+2p

(1 +
√
λ|θ|2r)k

)
.

Then, direct calculations yield that Jλ3 (θ) ≥ 0 when

λ ≤ λk(p) :=
(aF /KF )2/(k−1)

9
(

2p
k

)2/(k−1)
K2
F (E [(1 + |X0|)ρk])2/(k−1)

for each 2 ≤ k ≤ 2p. The above inequality further implies, a possible choice of the stepsize restriction
(independent of k) would be:

λ ≤ λp,max ≤ λ(p) :=
min{(aF /KF )2, (aF /KF )2/(2p−1)}

9
(

2p
p

)2
K2
F (E [(1 + |X0|)2pρ])2

,

which is a lower bound of λk(p), i.e. λ(p) ≤ λk(p), for all 2 ≤ k ≤ 2p. Thus, for all θ ∈ Rd,

0 < λ ≤ λp,max ≤ λ(p) =⇒ Jλ3 (θ) ≥ 0. (145)
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Denote by Sn,M1(p) := {ω ∈ Ω : |θ̄λn(ω)| > M1(p)}. Substituting the (143), (144), (145) into (138)
yields, for any 0 < λ ≤ λp,max

E
[
|∆λ

n,t|2p1Sn,M1(p)

∣∣∣ θ̄λn] ≤ (1− λ(t− n)aF κ̄(p))|θ̄λn|2p1Sn,M1(p)

+ λ(t− n)(2pbF + 2q+1pKG E [(1 + |X0|)ρ] + c3(p))1Sn,M1(p)
,

and moreover, by (145), one obtains, for any 0 < λ ≤ λp,max,

E
[
|∆λ

n,t|2p1Scn,M1(p)

∣∣∣ θ̄λn]
≤ (1− λ(t− n)aF κ̄(p))|θ̄λn|2p1Sn,M1(p)

+ λ(t− n)(aF κ̄(p)(M1(p))2p + 2q+1pKG E [(1 + |X0|)ρ] (M1(p))2p+q−1)1Sc
n,M1(p)

+ λ(t− n)(2pbF + 2q+1pKG E [(1 + |X0|)ρ] + c3(p))(1 + (M1(p))2p−1)1Sc
n,M1(p)

.

Thus, one obtains, for p ∈ [2,∞) ∩ N,

E
[
|∆λ

n,t|2p
∣∣∣ θ̄λn] ≤ (1− λ(t− n)aF κ̄(p))|θ̄λn|2p + λ(t− n)c4(p), (146)

where

c4(p) := aF κ̄(p)(M1(p))2p + 2q+1pKG E [(1 + |X0|)ρ] (M1(p))2p+q−1

+ (2pbF + 2q+1pKG E [(1 + |X0|)ρ] + c3(p))(1 + (M1(p))2p−1).

Moreover, one notes that, c2 ≤ c4(1) with c2 given in (131). Thus, by using (146) and (130), it holds
that, for any p ∈ [2,∞) ∩ N,

E
[
|∆λ

n,t|2p−2
∣∣∣ θ̄λn] ≤ |θ̄λn|2p−2 + λ(t− n)c4(p− 1). (147)

Substituting the upper bounds in (146) and (147) into (134) therefore yields

E
[
|θ̄λt |2p

∣∣∣ θ̄λn] ≤ (1− λ(t− n)aF κ̄(p))|θ̄λn|2p + 22p−2p(2p− 1)λ(t− n)dβ−1|θ̄λn|2p−2

+ λ(t− n)c4(p) + 22p−2p(2p− 1)λ2(t− n)2dβ−1c4(p− 1)

+ 22p−4(2p(2p− 1))p+1(dβ−1λ(t− n))p.

One notes that for any θ ∈ Rd

(1− λ(t− n)aF κ̄(p))|θ|2p + 22p−2p(2p− 1)λ(t− n)dβ−1|θ|2p−2 < (1− λ(t− n)aF κ̄(p)/2)|θ|2p

⇔ |θ| >
(

22p−1p(2p− 1)dβ−1

aF κ̄(p)

)1/2

.

(148)

Denote byM2(p) := (22p−1p(2p−1)dβ−1/(aF κ̄(p)))1/2 and Sn,M2(p) := {ω ∈ Ω : |θ̄λn(ω)| > M2(p)}.
Then, by (148), it follows that

E
[
|θ̄λt |2p1Sn,M2(p)

∣∣∣ θ̄λn] ≤ (1− λ(t− n)aF κ̄(p)/2)|θ̄λn|2p1Sn,M2(p)
+ λ(t− n)c5(p)1Sn,M2(p)

,

where c5(p) := c4(p) + 22p−2p(2p− 1)dβ−1c4(p− 1) + 22p−4(2p(2p− 1))p+1(dβ−1)p. Furthermore,

E
[
|θ̄λt |2p1Scn,M2(p)

∣∣∣ θ̄λn] ≤ (1− λ(t− n)aF κ̄(p))|θ̄λn|2p1Scn,M2(p)
+ λ(t− n)c5(p)1Sc

n,M2(p)

+ λ(t− n)22p−2p(2p− 1)dβ−1(M2(p))2p−2
1Sc

n,M2(p)
.

By combining the two cases, one obtains, for t ∈ (n, n+ 1], n ∈ N0, 0 < λ ≤ λp,max,

E
[
|θ̄λt |2p

∣∣∣ θ̄λn] ≤ (1− λ(t− n)aF κ̄(p)/2)|θ̄λn|2p + λ(t− n)c̄0(p),
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where

κ̄(p) := (M1(p))2r/(2(1 + (M1(p))2r)),

M1(p) := (4pbF + 2q+2pKG E [(1 + |X0|)ρ] + 2c3(p))/min{1, aF },
c̄0(p) := c5(p) + 22p−2p(2p− 1)dβ−1(M2(p))2p−2,

M2(p) := (22p−1p(2p− 1)dβ−1/(aF κ̄(p)))1/2,

c5(p) := c4(p) + 22p−2p(2p− 1)dβ−1c4(p− 1) + 22p−4(2p(2p− 1))p+1(dβ−1)p,

c4(p) := aF κ̄(p)(M1(p))2p + 2q+1pKG E [(1 + |X0|)ρ] (M1(p))2p+q−1

+ (2pbF + 2q+1pKG E [(1 + |X0|)ρ] + c3(p))(1 + (M1(p))2p−1),

c3(p) :=

(
2p

p

)2

22p(q+1)p(2p− 1)K2p
G (1 +KF )2p E

[
(1 + |X0|)2pρ

]
.

(149)

Therefore, by noticing κ̄(p) ≥ κ̄(2), for any p ≥ 2, and by using similar arguments as in (133), one can
conclude that, for t ∈ (n, n+ 1], n ∈ N0, 0 < λ ≤ λp,max,

E
[
|θ̄λt |2p

]
≤ (1− λ(t− n)aF κ̄(2)/2) (1− λaF κ̄(2)/2)n E

[
|θ0|2p

]
+ c̄0(p)(1 + 2/(aF κ̄(p))).

(150)

Finally, for any p ∈ [2,∞) ∩ N, denote by κ]p := min{κ̄(p), κ̃(p)} and c]p := max{c̄0(p), c̃0(p)},
where κ̃(p), c̃0(p) are given in (163). The above inequality further implies, for t ∈ (n, n+ 1], n ∈ N0,
0 < λ ≤ λp,max,

E
[
|θ̄λt |2p

]
≤ (1− λ(t− n)aFκ

]
2/2)(1− λaFκ]2/2)n E

[
|θ0|2p

]
+ c]p(1 + 2/(aFκ

]
p)),

which completes the proof. �

Proof of Lemma 4.2-(iii). We have established an upper estimate for the 2p-th moment (with p ∈
[2,∞) ∩ N) of the TUSLA algorithm (8) under the condition that 0 < λ ≤ λp,max with λp,max given
in (16). One may notice that λp,max is quite restrictive for practical implementations when p is large.
Thus, in this subsection, we will show that, in some special case of F , the 2p-th moment of the TUSLA
algorithm (8) can be obtained under a relaxed stepsize restriction.

We assume in this subsection that for any θ ∈ Rd, F (θ, x) = F (θ) for all x ∈ Rm. One notes that for
F satisfying Assumption 3, it further satisfies the following growth condition: for all θ ∈ Rd,

|F (θ)| ≤ KF (1 + |θ|2r+1). (151)

Moreover, for F satisfying Assumption 4, we have that by Remark 2.6, for all θ ∈ Rd,

〈θ, F (θ)〉 ≥ aF |θ|2r+2 − bF . (152)

Denote by

λ̃max := min

{
1,

a2
F

16K4
F

,
1

aF
,

1

4a2
F

}
as presented in (37). To establish the 2p-th moment estimate (with p ∈ [2,∞) ∩ N) under the condition
that 0 < λ < λ̃max, we apply the same arguments as in the proof of Lemma 4.2-(ii) up to (134), then,
we adopt a different method to obtain an upper bound of E

[
|∆λ

n,t|2p
∣∣ θ̄λn]. For any 0 < λ < λ̃max with

λ̃max given in (37), t ∈ (n, n+ 1], n ∈ N0, recall the definition of ∆λ
n,t given in (123). One notes that,

for 0 < λ ≤ λ̃max, by using Assumption 2, (151), (152),

|∆λ
n,t|2 ≤ |θ̄λn|2 − λ(t− n)

2aF |θ̄λn|2r+2

1 +
√
λ|θ̄λn|2r

+ 2λ(t− n)bF

+ λ(t− n)
2q+1KG(1 + |Xn+1|)ρ(1 + |θ̄λn|q+1)

1 +
√
λ|θ̄λn|2r

+ λ2(t− n)2 22qK2
G(1 + |Xn+1|)2ρ(1 + |θ̄λn|2q)

(1 +
√
λ|θ̄λn|2r)2
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+ λ2(t− n)2 4K2
F (1 + |θ̄λn|4r+2)

(1 +
√
λ|θ̄λn|2r)2

≤ |θ̄λn|2 − λ(t− n)
2aF |θ̄λn|2r+2

1 +
√
λ|θ̄λn|2r

+ 2λ(t− n)bF

+ λ(t− n)2q+1KG(1 + |Xn+1|)ρ + λ(t− n)
2q+1KG(1 + |Xn+1|)ρ|θ̄λn|q+1

1 +
√
λ|θ̄λn|2r

+ λ(t− n)22q+1K2
G(1 + |Xn+1|)2ρ + 4λ2(t− n)2K2

F + λ2(t− n)2 4K2
F |θ̄λn|4r+2

(1 +
√
λ|θ̄λn|2r)2

(153)

≤ |θ̄λn|2 − λ(t− n)
aF |θ̄λn|2r+2

1 +
√
λ|θ̄λn|2r

+ λ(t− n)(2bF + 4K2
F )

+ λ(t− n)22q+2K2
G(1 + |Xn+1|)2ρ + λ(t− n)

2q+1KG(1 + |Xn+1|)ρ|θ̄λn|q+1

1 +
√
λ|θ̄λn|2r

(154)

= Jλ4,n,t(θ̄
λ
n) + Jλ5,n,t(θ̄

λ
n, Xn+1), (155)

where for any θ ∈ Rd, x ∈ Rm,

Jλ4,n,t(θ) :=

(
1− λ(t− n)

aF |θ|2r

1 +
√
λ|θ|2r

)
|θ|2

Jλ5,n,t(θ, x) := λ(t− n)(2bF + 4K2
F ) + λ(t− n)22q+2K2

G(1 + |x|)2ρ

+ λ(t− n)
2q+1KG(1 + |x|)ρ|θ|q+1

1 +
√
λ|θ|2r

,

where the inequality (153) holds due to the following: for 0 < λ ≤ λ̃max ≤ 1, 2r ≥ q ≥ 1,

λ2(t− n)2 22qK2
G(1 + |Xn+1|)2ρ(1 + |θ̄λn|2q)

(1 +
√
λ|θ̄λn|2r)2

≤ λ(t− n)
22qK2

G(1 + |Xn+1|)2ρ(1 + λ|θ̄λn|2q)
1 + λ|θ̄λn|4r

≤ λ(t− n)22q+1K2
G(1 + |Xn+1|)2ρ,

while (154) holds due to the fact that for 0 < λ ≤ λ̃max ≤ a2
F /(16K4

F ),

aF |θ|2r+2

1 +
√
λ|θ|2r

−
λ(t− n)4K2

F |θ|4r+2

(1 +
√
λ|θ|2r)2

≥ 0.

Moreover, one notes that for any nonzero θ ∈ Rd, t ∈ (n, n + 1], n ∈ N0, the stepsize restriction
0 < λ ≤ λ̃max ≤ 1/(4a2

F ) is chosen such that the following inequalities hold:

0 < 1− λ(t− n)
2aF |θ|2r

1 +
√
λ|θ|2r

< 1.

Then, for 0 < λ < λ̃max, by using (155), one obtains

E
[
|∆λ

n,t|2p
∣∣∣ θ̄λn] =

p∑
k=0

(
p

k

)
(Jλ4,n,t(θ̄

λ
n))p−k E

[
(Jλ5,n,t(θ̄

λ
n, Xn+1))k

∣∣∣ θ̄λn]
=

(
1− λ(t− n)

aF |θ̄λn|2r

1 +
√
λ|θ̄λn|2r

)p
|θ̄λn|2p

+

p∑
k=1

(
p

k

)
(Jλ4,n,t(θ̄

λ
n))p−k E

[
(Jλ5,n,t(θ̄

λ
n, Xn+1))k

∣∣∣ θ̄λn]
≤
(

1− λ(t− n)
aF |θ̄λn|2r

1 +
√
λ|θ̄λn|2r

)
|θ̄λn|2p

+

p∑
k=1

(
p

k

)
λk(t− n)k3k−1|θ̄λn|2p−2k(2bF + 4K2

F )k
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+

p∑
k=1

(
p

k

)
λk(t− n)k3k−12k(2q+2)K2k

G |θ̄λn|2p−2k E
[
(1 + |X0|)2kρ

]
+

p∑
k=1

(
p

k

)
λk(t− n)k3k−1 2k(q+1)Kk

G E
[
(1 + |X0|)kρ

]
|θ̄λn|k(q−1)+2p

(1 +
√
λ|θ̄λn|2r)k

=

(
1− λ(t− n)

aF |θ̄λn|2r

2(1 +
√
λ|θ̄λn|2r)

)
|θ̄λn|2p − Jλ6,n,t(θ̄λn)− Jλ7,n,t(θ̄λn), (156)

where for any θ ∈ Rd,

Jλ6,n,t(θ) := λ(t− n)
aF |θ|2r+2p

4(1 +
√
λ|θ|2r)

−
p∑

k=1

(
p

k

)
λk(t− n)k3k−1 2k(q+1)Kk

G E
[
(1 + |X0|)kρ

]
|θ|k(q−1)+2p

(1 +
√
λ|θ|2r)k

Jλ7,n,t(θ) := λ(t− n)
aF |θ|2r+2p

4(1 +
√
λ|θ|2r)

−
p∑

k=1

(
p

k

)
λk(t− n)k3k−1(2bF + 4K2

F )k|θ|2(p−k)

−
p∑

k=1

(
p

k

)
λk(t− n)k3k−12k(2q+2)K2k

G E
[
(1 + |X0|)2kρ

]
|θ|2(p−k).

One notes that, for any θ ∈ Rd, 1 ≤ k ≤ p, 2r ≥ q ≥ 1,

(t− n)
aFλ

(k+1)/2|θ|2rk+2p

9p(1 +
√
λ|θ|2r)k

−
(

p

dp/2e

)
(t− n)3p−12p(q+1)Kp

G E [(1 + |X0|)pρ]
λ(k+1)/2|θ|k(q−1)+2p

(1 +
√
λ|θ|2r)k

> 0

⇔ |θ| > M3,0,k(p) :=

(
p
( p
dp/2e

)
3p+12p(q+1)Kp

G E [(1 + |X0|)pρ]
aF

)1/(k(2r−q+1))

.

This implies for all θ ∈ Rd, |θ| > M3,0(p) := max1≤k≤p{M3,0,k(p)},

Jλ6,n,t(θ) ≥ λ(t− n)

p∑
k=1

aF |θ|2r+2p(1 +
√
λ|θ|2r)k−1

4p(1 +
√
λ|θ|2r)k

−
(

p

dp/2e

)
(t− n)3p−12p(q+1)Kp

G E [(1 + |X0|)pρ]
p∑

k=1

λk
|θ|k(q−1)+2p

(1 +
√
λ|θ|2r)k

≥ λ(t− n)

p∑
k=1

aF (1 + λ(k−1)/2|θ|2rk+2p)

4p(1 +
√
λ|θ|2r)k

−
(

p

dp/2e

)
(t− n)3p−12p(q+1)Kp

G E [(1 + |X0|)pρ]
p∑

k=1

λ(k+1)/2|θ|k(q−1)+2p

(1 +
√
λ|θ|2r)k

≥
p∑

k=1

(
(t− n)

aFλ
(k+1)/2|θ|2rk+2p

9p(1 +
√
λ|θ|2r)k

−
(

p

dp/2e

)
(t− n)3p−12p(q+1)Kp

G E [(1 + |X0|)pρ]
λ(k+1)/2|θ|k(q−1)+2p

(1 +
√
λ|θ|2r)k

)
> 0. (157)

In addition, for 1 ≤ k ≤ p, 2r ≥ q ≥ 1, it folllows that

λ(t− n)
aF |θ|2r+2p

27p
−
(

p

dp/2e

)
λ(t− n)3p−1(2bF + 4K2

F )p|θ|2(p−k) > 0
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⇔ |θ| > M3,1,k(p) :=

(
p
( p
dp/2e

)
3p+2(2bF + 4K2

F )p

aF

)1/(2r+2k)

,

λ(t− n)
aF |θ|2r+2p

27p
−
(

p

dp/2e

)
λ(t− n)3p−12p(2q+2)K2p

G E
[
(1 + |X0|)2pρ

]
|θ|2(p−k) > 0

⇔ |θ| > M3,2,k(p) :=

(
p
( p
dp/2e

)
3p+222p(q+1)K2p

G E
[
(1 + |X0|)2pρ

]
aF

)1/(2r+2k)

,

λ(t− n)
aF |θ|2r+2p

27p
−
(

p

dp/2e

)
λ(t− n)3p−1(2bF + 4K2

F )p|θ|2r+2(p−k) > 0

⇔ |θ| > M3,3,k(p) :=

(
p
( p
dp/2e

)
3p+2(2bF + 4K2

F )p

aF

)1/(2k)

,

λ(t− n)
aF |θ|2r+2p

27p
−
(

p

dp/2e

)
λ(t− n)3p−12p(2q+2)K2p

G E
[
(1 + |X0|)2pρ

]
|θ|2r+2(p−k) > 0

⇔ |θ| > M3,4,k(p) :=

(
p
( p
dp/2e

)
3p+222p(q+1)K2p

G E
[
(1 + |X0|)2pρ

]
aF

)1/(2k)

.

For all θ ∈ Rd, |θ| > M3,1(p) with

M3,1(p) := max
1≤k≤p

{M3,1,k(p),M3,2,k(p),M3,3,k(p),M3,4,k(p)},

the above inequalities hence imply,

Jλ7,n,t(θ) ≥ λ(t− n)

p∑
k=1

aF |θ|2r+2p

4p(1 +
√
λ|θ|2r)

−
(

p

dp/2e

)
λ(t− n)3p−1(2bF + 4K2

F )p
p∑

k=1

|θ|2(p−k)(1 +
√
λ|θ|2r)

(1 +
√
λ|θ|2r)

−
(

p

dp/2e

)
λ(t− n)3p−12p(2q+2)K2p

G E
[
(1 + |X0|)2pρ

] p∑
k=1

|θ|2(p−k)(1 +
√
λ|θ|2r)

(1 +
√
λ|θ|2r)

≥
p∑

k=1

(
λ(t− n)

aF |θ|2r+2p

27p(1 +
√
λ|θ|2r)

−
(

p

dp/2e

)
λ(t− n)3p−1(2bF + 4K2

F )p|θ|2(p−k)

1 +
√
λ|θ|2r

)

+

p∑
k=1

(
λ(t− n)

aF |θ|2r+2p

27p(1 +
√
λ|θ|2r)

−
(

p

dp/2e

)
λ(t− n)3p−12p(2q+2)K2p

G E
[
(1 + |X0|)2pρ

]
|θ|2(p−k)

1 +
√
λ|θ|2r

)

+

p∑
k=1

(
λ(t− n)

aF |θ|2r+2p

27p(1 +
√
λ|θ|2r)

−
(

p

dp/2e

)
λ(t− n)3p−1(2bF + 4K2

F )p|θ|2r+2(p−k)

1 +
√
λ|θ|2r

)

+

p∑
k=1

(
λ(t− n)

aF |θ|2r+2p

27p(1 +
√
λ|θ|2r)

−
(

p

dp/2e

)
λ(t− n)3p−12p(2q+2)K2p

G E
[
(1 + |X0|)2pρ

]
|θ|2r+2(p−k)

1 +
√
λ|θ|2r

)
> 0. (158)

Denote by

M3(p) :=

( p
dp/2e

)
3p+2p

(
22p(q+1)K2p

G E
[
(1 + |X0|)2pρ

]
+ (1 + 2bF + 4K2

F )p
)

min{1, aF }
,
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κ̃(p) := (M3(p))2r/(2(1 + (M3(p))2r)) and Sn,M3(p) := {ω ∈ Ω : |θ̄λn(ω)| > M3(p)}. One notes that,
for 2r ≥ q ≥ 1, p ∈ [2,∞) ∩ N,

M3(p) ≥ max{M3,0(p),M3,1(p)}. (159)

Thus, for |θ| > M3(p), by using (159), and by substituting (157), (158) into (156), one obtains,

E
[
|∆λ

n,t|2p1Sn,M3(p)

∣∣∣ θ̄λn] ≤ (1− λ(t− n)
aF |θ̄λn|2r

2(1 +
√
λ|θ̄λn|2r)

)
|θ̄λn|2p1Sn,M3(p)

≤ (1− λ(t− n)aF κ̃(p)) |θ̄λn|2p1Sn,M3(p)
,

where the last inequality holds due to the fact that, for any fixed 0 < λ < λ̃max, the function f(s) :=

s/(1 +
√
λs) is non-decreasing for all s ≥ 0. In addition, one obtains

E
[
|∆λ

n,t|2p1Scn,M3(p)

∣∣∣ θ̄λn] ≤ (1− λ(t− n)aF κ̃(p)) |θ̄λn|2p1Scn,M3(p)
+ λ(t− n)c6(p)1Sc

n,M3(p)
,

where

c6(p) := aF κ̃(p)(M3(p))2p

+

p∑
k=1

(
p

k

)
3k
(

2k(2q+2)K2k
G E

[
(1 + |X0|)2kρ

]
+ (2bF + 4K2

F )k
)

(M3(p))2p+k(q−1).

Thus, it follows that for any p ∈ [2,∞) ∩ N,

E
[
|∆λ

n,t|2p
∣∣∣ θ̄λn] ≤ (1− λ(t− n)aF κ̃(p)) |θ̄λn|2p + λ(t− n)c6(p). (160)

Furthermore, one observes that c2 ≤ c6(1) with c2 given in (131), hence, by using (160) and (130), one
obtains for p ∈ [2,∞) ∩ N,

E
[
|∆λ

n,t|2(p−1)
∣∣∣ θ̄λn] ≤ |θ̄λn|2p−2 + λ(t− n)c6(p− 1). (161)

Substituting (160) and (161) into (134) yields

E
[
|θ̄λt |2p

∣∣∣ θ̄λn] ≤ (1− λ(t− n)aF κ̃(p)) |θ̄λn|2p + 22p−2p(2p− 1)λ(t− n)dβ−1|θ̄λn|2p−2

+ λ(t− n)c6(p) + 22p−2p(2p− 1)λ2(t− n)2dβ−1c6(p− 1)

+ 22p−4(2p(2p− 1))p+1(dβ−1λ(t− n))p.

One notes that for any θ ∈ Rd

aF κ̃(p)|θ|2p − 22p−2p(2p− 1)dβ−1|θ|2p−2 >
aF κ̃(p)

2
|θ|2p

⇔ |θ| >
(

22p−1p(2p− 1)dβ−1

aF κ̃(p)

)1/2

.

(162)

Denote byM4(p) := (22p−1p(2p−1)dβ−1/(aF κ̃(p)))1/2 and Sn,M4(p) := {ω ∈ Ω : |θ̄λn(ω)| > M4(p)}.
Then, by (162), it follows that

E
[
|θ̄λt |2p1Sn,M4(p)

∣∣∣ θ̄λn] ≤ (1− λ(t− n)aF κ̃(p)/2)|θ̄λn|2p1Sn,M4(p)
+ λ(t− n)c7(p)1Sn,M4(p)

,

where c7(p) := c6(p)+22p−2p(2p−1)dβ−1c6(p−1)+22p−4(2p(2p−1))p+1(dβ−1)p, and furthermore,

E
[
|θ̄λt |2p1Scn,M4(p)

∣∣∣ θ̄λn] ≤ (1− λ(t− n)aF κ̃(p))|θ̄λn|2p1Scn,M4(p)
+ λ(t− n)c7(p)1Sc

n,M4(p)

+ λ(t− n)22p−2p(2p− 1)dβ−1(M4(p))2p−2
1Sc

n,M4(p)
.

By combining the two cases, one obtains, for p ∈ [2,∞) ∩ N, 0 < λ ≤ λ̃max,

E
[
|θ̄λt |2p

∣∣∣ θ̄λn] ≤ (1− λ(t− n)aF κ̃(p)/2)|θ̄λn|2p + λ(t− n)c̃0(p),
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where
κ̃(p) := (M3(p))2r/(2(1 + (M3(p))2r)),

M3(p) :=

( p
dp/2e

)
3p+2p

(
22p(q+1)K2p

G E
[
(1 + |X0|)2pρ

]
+ (1 + 2bF + 4K2

F )p
)

min{1, aF }
,

c̃0(p) := c7(p) + 22p−2p(2p− 1)dβ−1(M4(p))2p−2,

M4(p) := (22p−1p(2p− 1)dβ−1/(aF κ̃(p)))1/2,

c7(p) := c6(p) + 22p−2p(2p− 1)dβ−1c6(p− 1) + 22p−4(2p(2p− 1))p+1(dβ−1)p,

c6(p) := aF κ̃(p)(M3(p))2p

+

p∑
k=1

(
p

k

)
3k
(

2k(2q+2)K2k
G E

[
(1 + |X0|)2kρ

]
+ (2bF + 4K2

F )k
)

(M3(p))2p+k(q−1).

(163)

This further implies, by noticing κ̃(p) ≥ κ̃(2), for any p ∈ [2,∞)∩N, and by using similar arguments as
in (133), that

E
[
|θ̄λt |2p

]
≤ (1− λ(t− n)aF κ̃(2)/2)(1− λaF κ̃(2)/2)n E

[
|θ0|2p

]
+ c̃0(p)(1 + 2/(aF κ̃(p))). (164)

For any p ∈ [2,∞) ∩ N, denote by κ]p := min{κ̄(p), κ̃(p)} and c]p := max{c̄0(p), c̃0(p)}. Then, by
using (150), (164), one can conclude that, for t ∈ (n, n+ 1], n ∈ N0, 0 < λ ≤ λ̃max,

E
[
|θ̄λt |2p

]
≤ (1− λ(t− n)aFκ

]
2/2)(1− λaFκ]2/2)n E

[
|θ0|2p

]
+ c]p(1 + 2/(aFκ

]
p)),

which completes the proof. �

Proof of Lemma 4.4. For any p ∈ [2,∞) ∩ N, 0 < λ ≤ λdp/2e,max with λdp/2e,max given in (16),
t ∈ (nT, (n+ 1)T ], n ∈ N0, one obtains, by applying Itô’s formula, that

E[Vp(ζ̄
λ,n
t )] = E[Vp(θ̄

λ
nT )] +

∫ t

nT
E
[
λ∆Vp(ζ̄

λ,n
s )/β − λ〈h(ζ̄λ,ns ),∇Vp(ζ̄λ,ns )〉

]
ds

+ E
[∫ t

nT

〈
∇Vp(ζ̄λ,ns ),

√
2λβ−1 dBλ

s

〉]
= E[Vp(θ̄

λ
nT )] +

∫ t

nT
E
[
λ∆Vp(ζ̄

λ,n
s )/β − λ〈h(ζ̄λ,ns ),∇Vp(ζ̄λ,ns )〉

]
ds. (165)

To see that (165) holds, it suffices to show that E
[∫ t
nT |∇Vp(ζ̄

λ,n
s )|2 ds

]
< ∞. To this end, define

τk := inf{s ≥ nT : |ζ̄λ,ns | > k}. Applying Itô’s formula to the stopped process V2p(ζ̄
λ,n
t∧τk) yields

E[V2p(ζ̄
λ,n
t∧τk)] = E[V2p(θ̄

λ
nT )] +

∫ t

nT
E
[
λ∆V2p(ζ̄

λ,n
s∧τk)/β − λ〈h(ζ̄λ,ns∧τk),∇V2p(ζ̄

λ,n
s∧τk)〉

]
ds

≤ C∗0 +

∫ t

nT

(
−λcV,1(2p)E[V2p(ζ̄

λ,n
s∧τk)] + λcV,2(2p)

)
ds

≤ C∗1 + C∗2

∫ t

nT
E[V2p(ζ̄

λ,n
s∧τk)] ds

≤ C∗1eC
∗
2 (t−nT ) <∞,

for some constants C∗0 , C
∗
1 , C

∗
2 > 0 which are independent of τk, where the first inequality holds due to

Lemma 4.3, while the last inequality holds due to Grönwall’s lemma. By applying Fatou’s lemma, one
obtains, for any t ≥ nT ,

E[V2p(ζ̄
λ,n
t )] ≤ lim inf

k→∞
E[V2p(ζ̄

λ,n
t∧τk)] ≤ C∗1eC

∗
2 (t−nT ) <∞.

Since |∇Vp(θ)|2 ≤ p2|Vp(θ)|2 = p2V2p(θ) for all θ ∈ Rd, we have that

E
[∫ t

nT
|∇Vp(ζ̄λ,ns )|2 ds

]
≤ p2 E

[∫ t

nT
V2p(ζ̄

λ,n
s ) ds

]
<∞
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as desired.
Then, differentiating both sides of (165) and applying Lemma 4.3 yield

d

dt
E[Vp(ζ̄

λ,n
t )] = E

[
λ∆Vp(ζ̄

λ,n
t )/β − λ〈h(ζ̄λ,nt ),∇Vp(ζ̄λ,nt )〉

]
≤ −λcV,1(p)E[Vp(ζ̄

λ,n
t )] + λcV,2(p).

The above inequality further implies

E[Vp(ζ̄
λ,n
t )] ≤ e−λcV,1(p)(t−nT ) E[Vp(θ̄

λ
nT )] +

cV,2(p)

cV,1(p)

(
1− e−λcV,1(p)(t−nT )

)
.

By setting p = 2 and by using Lemma 4.2, one obtains, for any 0 < λ ≤ λ1,max,

E[V2(ζ̄λ,nt )] ≤ e−λcV,1(2)(t−nT )(1− aFκλ)nT E
[
|θ0|2

]
+ c0(1 + 1/(aFκ)) +

cV,2(2)

cV,1(2)
+ 1

≤ e−min{aF κ,ah/2}λt E [V2(θ0)] + c0(1 + 1/(aFκ)) + 3v2(MV (2)) + 1,

where the last inequality holds due to 1 − ν ≤ e−ν for any ν ∈ R, moreover, κ, c0 are given in (132)
(Lemma 4.2), and MV (2) is given in Lemma 4.3. By using the same arguments, one can obtain an upper
bound for E[V4(ζ̄λ,nt )]. �

Lemma A.2. Let Assumption 1, 2, 3, and 4 hold. Then, for any 0 < λ ≤ λmax with λmax given in (16),
t ≥ 0, one obtains

E
[
|θ̄λt − θ̄λbtc|

4
]
≤ λ2

(
e−λaF κ

]
2btc/2C̄0,1 E

[
|θ0|4(2r+1)

]
+ C̄1,1

)
,

where C̄0,1, C̄1,1 are given explicitly in (166).

Proof. For any t ≥ 0, by using the continuous-time interpolation of the TUSLA algorithm given in (34),
one obtains,

E
[
|θ̄λt − θ̄λbtc|

4
]

= E

∣∣∣∣∣−λ
∫ t

btc
Hλ(θ̄λbsc, Xdse) ds+

√
2λ

β

∫ t

btc
dBλ

s

∣∣∣∣∣
4


≤ 8λ4 E
[
|H(θ̄λbtc, Xdte)|

4
]

+ 32d(d+ 2)λ2β−2,

where one notices that for any s ∈ [btc, t], t ≥ 0, it hods that bsc = btc and dse = bsc+ 1 = dte. Then,
applying Remark 2.3 and Lemma 4.2 yield, for 0 < λ ≤ λmax,

E
[
|θ̄λt − θ̄λbtc|

4
]
≤ 64λ4K4

H E
[
(1 + |X0|)4ρ

]
E
[
|θ̄λbtc|

4(2r+1)
]

+ 64λ4K4
H E

[
(1 + |X0|)4ρ

]
+ 32d(d+ 2)λ2β−2

≤ 64λ4K4
H E

[
(1 + |X0|)4ρ

] (
e−λaF κ

]
2btc/2 E

[
|θ0|8r+4

]
+ c]4r+2(1 + 2/(aFκ

]
4r+2))

)
+ 64λ4K4

H E
[
(1 + |X0|)4ρ

]
+ 32d(d+ 2)λ2β−2

≤ λ2
(
e−λaF κ

]
2btc/2C̄0,1 E

[
|θ0|4(2r+1)

]
+ C̄1,1

)
,

where the second inequality holds due to 1− ν ≤ e−ν for any ν ∈ R, and where

C̄0,1 := 64K4
H E

[
(1 + |X0|)4ρ

]
,

C̄1,1 := 64K4
H E

[
(1 + |X0|)4ρ

]
(1 + c]4r+2(1 + 2/(aFκ

]
4r+2))) + 32d(d+ 2)β−2,

(166)

with KH given in Remark 2.3, and c]4r+2, κ
]
4r+2 given in Lemma 4.2. �

Proof of Lemma 4.5. Recall the continuous-time interpolation of the TUSLA algorithm (θ̄λt )t≥0 given
in (34) and the definition of the auxiliary process (ζ̄λ,nt )t≥nT , n ∈ N0, T := b1/λc given in Definition
4.1. By Itô’s formula, one obtains for any t ∈ (nT, (n+ 1)T ], n ∈ N0,

W 2
2 (L(θ̄λt ),L(ζ̄λ,nt )) ≤ E

[
|ζ̄λ,nt − θ̄λt |2

]
= −2λE

[∫ t

nT

〈
ζ̄λ,ns − θ̄λs , h(ζ̄λ,ns )−Hλ(θ̄λbsc, Xdse)

〉
ds

]
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= −2λ

∫ t

nT
E
[〈
ζ̄λ,ns − θ̄λs , h(ζ̄λ,ns )− h(θ̄λs )

〉]
ds

− 2λ

∫ t

nT
E
[〈
ζ̄λ,ns − θ̄λs , h(θ̄λs )− h(θ̄λbsc)

〉]
ds

− 2λ

∫ t

nT
E
[〈
ζ̄λ,ns − θ̄λs , h(θ̄λbsc)−H(θ̄λbsc, Xdse)

〉]
ds

− 2λ

∫ t

nT
E
[〈
ζ̄λ,ns − θ̄λs , H(θ̄λbsc, Xdse)−Hλ(θ̄λbsc, Xdse)

〉]
ds.

(167)

This implies, by applying Remark 2.7 to the first term on the RHS of (167), and by applying Young’s
inequality, i.e., 2uv ≤ εu2 + v2/ε with ε = LR for u, v ≥ 0, to the second and the last term on the RHS
of (167),

E
[
|ζ̄λ,nt − θ̄λt |2

]
≤ 4λLR

∫ t

nT
E
[
|ζ̄λ,ns − θ̄λs |2

]
ds+ λL−1

R

∫ t

nT
E
[
|h(θ̄λs )− h(θ̄λbsc)|

2
]

ds

+ λL−1
R

∫ t

nT
E
[
|H(θ̄λbsc, Xdse)−Hλ(θ̄λbsc, Xdse)|

2
]

ds

− 2λ

∫ t

nT
E
[〈
ζ̄λ,ns − θ̄λbsc, h(θ̄λbsc)−H(θ̄λbsc, Xdse)

〉]
ds

− 2λ

∫ t

nT
E
[〈
θ̄λbsc − θ̄

λ
s , h(θ̄λbsc)−H(θ̄λbsc, Xdse)

〉]
ds.

(168)

By using Remark 2.3 and Cauchy–Schwarz inequality, one obtains, for any s ∈ (nT, (n+ 1)T ], n ∈ N0,

E
[
|h(θ̄λs )− h(θ̄λbsc)|

2
]
≤ L2

h E
[
(1 + |θ̄λs |+ |θ̄λbsc|)

4r|θ̄λs − θ̄λbsc|
2
]

≤ L2
h

(
E
[
(1 + |θ̄λs |+ |θ̄λbsc|)

8r
])1/2 (

E
[
|θ̄λs − θ̄λbsc|

4
])1/2

≤ 34r−(1/2)L2
h

(
E
[
1 + |θ̄λs |8r + |θ̄λbsc|

8r
])1/2 (

E
[
|θ̄λs − θ̄λbsc|

4
])1/2

. (169)

Moreover, for any s ∈ (nT, (n+ 1)T ], n ∈ N0, by using Remark 2.3 and (9), the following estimate can
be obtained:

E
[
|H(θ̄λbsc, Xdse)−Hλ(θ̄λbsc, Xdse)|

2
]

= E

∣∣∣∣∣(1 +
√
λ|θ̄λbsc|

2r)H(θ̄λbsc, Xdse)−H(θ̄λbsc, Xdse)

1 +
√
λ|θ̄λbsc|2r

∣∣∣∣∣
2


≤ λE
[
|θ̄λbsc|

4r|H(θ̄λbsc, Xdse)|
2
]

≤ λ2K2
H E

[
(1 + |Xdse|)2ρ(1 + |θ̄λbsc|

4r+2)|θ̄λbsc|
4r
]

≤ λ2K2
H E

[
(1 + |Xdse|)2ρ(1 + |θ̄λbsc|

4r+2)2
]

≤ λ4K2
H E

[
(1 + |Xdse|)2ρ(1 + |θ̄λbsc|

8r+4)
]
. (170)
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Define a continuous-time filtration (Ht)t≥0 by Ht := Fλ∞ ∨ Gbtc ∨ σ(θ0), t ≥ 0. Substituting (169),
(170) into (168), and using the definition of (θ̄λt )t≥0 given in (34) yield

E
[
|ζ̄λ,nt − θ̄λt |2

]
≤ 4λLR

∫ t

nT
E
[
|ζ̄λ,ns − θ̄λs |2

]
ds

+ 34r−(1/2)λL2
hL
−1
R

∫ t

nT

(
E
[
1 + |θ̄λs |8r + |θ̄λbsc|

8r
])1/2 (

E
[
|θ̄λs − θ̄λbsc|

4
])1/2

ds

+ 4λ2K2
HL
−1
R

∫ t

nT
E
[
(1 + |Xdse|)2ρ(1 + |θ̄λbsc|

8r+4)
]

ds

− 2λ

∫ t

nT
E
[
E
[〈
ζ̄λ,ns − θ̄λbsc, h(θ̄λbsc)−H(θ̄λbsc, Xdse)

〉∣∣∣Hs]] ds

− 2λ2

∫ t

nT
E

[〈∫ s

bsc
Hλ(θ̄λbrc, Xdre) dr, h(θ̄λbsc)−H(θ̄λbsc, Xdse)

〉]
ds

+ 2λ
√

2λβ−1

∫ t

nT
E

[〈∫ s

bsc
dBλ

r , h(θ̄λbsc)−H(θ̄λbsc, Xdse)

〉]
ds.

(171)

For any r ∈ [bsc, s], s ≥ 0, we have brc = bsc, and dre = brc + 1 = dse. By using Remark 2.3 and
Young’s inequality, for any s ∈ (nT, (n + 1)T ], n ∈ N0, the fifth term on the RHS of (171) can be
estimated as follows:

− E

[〈∫ s

bsc
Hλ(θ̄λbrc, Xdre) dr, h(θ̄λbsc)−H(θ̄λbsc, Xdse)

〉]
≤ E

[
|Hλ(θ̄λbsc, Xdse)||h(θ̄λbsc)−H(θ̄λbsc, Xdse)|

]
≤ E

[
|H(θ̄λbsc, Xdse)|

(
|h(θ̄λbsc)|+ |H(θ̄λbsc, Xdse)|

)]
≤ E

[
|h(θ̄λbsc)|

2
]

+ 2E
[
|H(θ̄λbsc, Xdse)|

2
]

≤ E
[(
Lh(1 + |θ̄λbsc|)

2r+1 + |h(0)|
)2
]

+ 4K2
H E

[
(1 + |Xdse|)2ρ(1 + |θ̄λbsc|

4r+2)
]

≤ 2(1 + LF + LG)2 E
[
(1 + 2|X0|)2ρ

]
E
[
(1 + |θ̄λbsc|)

4r+2
]

+ 2|h(0)|2

+ 8K2
H E

[
(1 + |Xdse|)2ρ(1 + |θ̄λbsc|

8r+4)
]

≤ 24r+3+2ρ(1 + LF + LG)2 E
[
(1 + |X0|)2ρ

]
E
[
(1 + |θ̄λbsc|

8r+4)
]

+ 2|h(0)|2

+ 8K2
H E

[
(1 + |Xdse|)2ρ(1 + |θ̄λbsc|

8r+4)
]
.

(172)

Furthermore, one notes that the fourth and the last term on the RHS of (171) is zero, and Xdse is
independent of θ̄λbsc for any s ≥ 0. Therefore, it follows that, by substituting (172) into (171),

E
[
|ζ̄λ,nt − θ̄λt |2

]
≤ 4λLR

∫ t

nT
E
[
|ζ̄λ,ns − θ̄λs |2

]
ds

+ 34r−1/2λL2
hL
−1
R

∫ t

nT

(
E
[
1 + |θ̄λs |8r + |θ̄λbsc|

8r
])1/2 (

E
[
|θ̄λs − θ̄λbsc|

4
])1/2

ds

+ 4λ2K2
HL
−1
R

∫ t

nT
E
[
(1 + |X0|)2ρ

] (
1 + E

[
|θ̄λbsc|

8r+4
])

ds

+ 24r+4+2ρλ2(1 + LF + LG)2

∫ t

nT
E
[
(1 + |X0|)2ρ

] (
1 + E

[
|θ̄λbsc|

8r+4
])

ds+ 4λ|h(0)|2
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+ 16λ2K2
H

∫ t

nT
E
[
(1 + |X0|)2ρ

] (
1 + E

[
|θ̄λbsc|

8r+4
])

ds.

This yields, by applying Lemma 4.2, Lemma A.2, and by using the fact that 1− ν ≤ e−ν for any ν ∈ R,
that

E
[
|ζ̄λ,nt − θ̄λt |2

]
≤ 4λLR

∫ t

nT
E
[
|ζ̄λ,ns − θ̄λs |2

]
ds+ 4λ|h(0)|2

+ 34r−1/2λ2L2
hL
−1
R

∫ t

nT

(
1 + 2e−λaF κ

]
2bsc/2 E

[
|θ0|8r

]
+ 2c]4r(1 + 2/(aFκ

]
4r))

)1/2

×
(
e−λaF κ

]
2bsc/2C̄0,1 E

[
|θ0|4(2r+1)

]
+ C̄1,1

)1/2
ds

+ λ2(16K2
H(1 + L−1

R ) + 24r+4+2ρ(1 + LF + LG)2)E
[
(1 + |X0|)2ρ

]
×
∫ t

nT

(
1 + e−λaF κ

]
2bsc/2 E

[
|θ0|8r+4

]
+ c]4r+2(1 + 2/(aFκ

]
4r+2))

)
ds

≤ 4λLR

∫ t

nT
E
[
|ζ̄λ,ns − θ̄λs |2

]
ds+ 4λ|h(0)|2

+ 34rλ2L2
hL
−1
R

∫ t

nT

(
e−λaF κ

]
2bsc/2C̄0,1 E

[
V4(2r+1)(θ0)

]
+ C̄1,1 + c]4r(1 + 2/(aFκ

]
4r)) + 1

)
ds

+ λ2(16K2
H(1 + L−1

R ) + 24r+4+2ρ(1 + LF + LG)2)E
[
(1 + |X0|)2ρ

]
×
∫ t

nT

(
1 + e−λaF κ

]
2bsc/2 E

[
|θ0|8r+4

]
+ c]4r+2(1 + 2/(aFκ

]
4r+2))

)
ds

≤ 4λLR

∫ t

nT
E
[
|ζ̄λ,ns − θ̄λs |2

]
ds+ 4λ|h(0)|2

+ 34rλL2
hL
−1
R

(
e−aF κ

]
2n/4C̄0,1 E

[
V4(2r+1)(θ0)

]
+ C̄1,1 + c]4r(1 + 2/(aFκ

]
4r)) + 1

)
+ λ(16K2

H(1 + L−1
R ) + 24r+4+2ρ(1 + LF + LG)2)E

[
(1 + |X0|)2ρ

]
×
(
e−aF κ

]
2n/4 E

[
V4(2r+1)(θ0)

]
+ c]4r+2(1 + 2/(aFκ

]
4r+2)) + 1

)
≤ 4λLR

∫ t

nT
E
[
|ζ̄λ,ns − θ̄λs |2

]
ds+ λe−4LR

(
e−aF κ

]
2n/4C̄0 E

[
V4(2r+1)(θ0)

]
+ C̄1

)
,

where the third inequality holds due to 1/2 ≤ λT ≤ 1, and where

κ]2 := min{κ̄(2), κ̃(2)},

C̄0 := e4LR
(

34rL2
hL
−1
R C̄0,1 + (16K2

H(1 + L−1
R ) + 24r+4+2ρ(1 + LF + LG)2)E

[
(1 + |X0|)2ρ

] )
,

C̄1 := e4LR
(

34rL2
hL
−1
R + 16K2

H(1 + L−1
R ) + 24r+4+2ρ(1 + LF + LG)2

)
×
(
C̄1,1 + c]4r(1 + 2/(aFκ

]
4r)) + 1

)
+ 4e4LR |h(0)|2

(173)

with κ̄(2), κ̃(2) given explicitly in (149) and (163) (Lemma 4.2), C̄0,1, C̄1,1 given explicitly in (166)
(Lemma A.2) and c]4r, κ

]
4r given explicitly in Lemma 4.2. Finally, by Grönwall’s lemma, one hence

obtains

E
[
|ζ̄λ,nt − θ̄λt |2

]
≤ λ

(
e−aF κ

]
2n/4C̄0 E

[
V4(2r+1)(θ0)

]
+ C̄1

)
,

which completes the proof. �

Lemma A.3. For any µ, ν ∈ PVp(Rd), the following inequalities hold for w1,2 defined in (40):

W1(µ, ν) ≤ w1,2(µ, ν), W2(µ, ν) ≤
√

2w1,2(µ, ν). (174)
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Proof. Consider two probability measures µ, ν ∈ PVp(Rd). Recall the definition of w1,2(µ, ν) given
in (40), and the definition of Wp(µ, ν) given in (6). We prove the first inequality in (174). For any
ζ ∈ C(µ, ν), one has∫

Rd

∫
Rd
|θ − θ′|ζ(dθdθ′)

=

∫
Rd

∫
Rd
|θ − θ′|1{|θ−θ′|≥1}ζ(dθdθ′) +

∫
Rd

∫
Rd
|θ − θ′|1{|θ−θ′|<1}ζ(dθdθ′)

≤
∫
Rd

∫
Rd

(|θ|+ |θ′|)1{|θ−θ′|≥1}ζ(dθdθ′) +

∫
Rd

∫
Rd
|θ − θ′|(1 + V2(θ) + V2(θ′))1{|θ−θ′|<1}ζ(dθdθ′)

≤
∫
Rd

∫
Rd

(1 + V2(θ) + V2(θ′))1{|θ−θ′|≥1}ζ(dθdθ′)

+

∫
Rd

∫
Rd
|θ − θ′|(1 + V2(θ) + V2(θ′))1{|θ−θ′|<1}ζ(dθdθ′)

=

∫
Rd

∫
Rd

[1 ∧ |θ − θ′|](1 + V2(θ) + V2(θ′))1{|θ−θ′|≥1}ζ(dθdθ′)

+

∫
Rd

∫
Rd

[1 ∧ |θ − θ′|](1 + V2(θ) + V2(θ′))1{|θ−θ′|<1}ζ(dθdθ′)

=

∫
Rd

∫
Rd

[1 ∧ |θ − θ′|](1 + V2(θ) + V2(θ′))ζ(dθdθ′).

By taking infimum over ζ ∈ C(µ, ν), the above inequality yields W1(µ, ν) ≤ w1,2(µ, ν).
Moreover, the second inequality in (174) can be obtained by applying similar arguments. For any

ζ ∈ C(µ, ν), one obtains∫
Rd

∫
Rd
|θ − θ′|2ζ(dθdθ′)

=

∫
Rd

∫
Rd
|θ − θ′|21{|θ−θ′|≥1}ζ(dθdθ′) +

∫
Rd

∫
Rd
|θ − θ′|21{|θ−θ′|<1}ζ(dθdθ′)

≤
∫
Rd

∫
Rd

2(|θ|2 + |θ′|2)1{|θ−θ′|≥1}ζ(dθdθ′) +

∫
Rd

∫
Rd
|θ − θ′|(|θ|+ |θ′|)1{|θ−θ′|<1}ζ(dθdθ′)

≤
∫
Rd

∫
Rd

2(1 + V2(θ) + V2(θ′))1{|θ−θ′|≥1}ζ(dθdθ′)

+

∫
Rd

∫
Rd

2|θ − θ′|(1 + V2(θ) + V2(θ′))1{|θ−θ′|<1}ζ(dθdθ′)

= 2

∫
Rd

∫
Rd

[1 ∧ |θ − θ′|](1 + V2(θ) + V2(θ′))1{|θ−θ′|≥1}ζ(dθdθ′)

+ 2

∫
Rd

∫
Rd

[1 ∧ |θ − θ′|](1 + V2(θ) + V2(θ′))1{|θ−θ′|<1}ζ(dθdθ′)

= 2

∫
Rd

∫
Rd

[1 ∧ |θ − θ′|](1 + V2(θ) + V2(θ′))ζ(dθdθ′).

By taking infimum over ζ ∈ C(µ, ν), the above inequality yields W 2
2 (µ, ν) ≤ 2w1,2(µ, ν). �

Proof of Proposition 4.6. One notes that [19, Assumption 2.1] holds with κ = LR due to Remark 2.7.
[19, Assumption 2.2] holds with V = V2 due to Lemma 4.3. Moreover, [19, Assumption 2.4 and 2.5]
hold due to (35). Thus, [19, Theorem 2.2, Corollary 2.3] hold under Assumption 1, 2, 3, and 4 . Then,
(41) can be obtained by using the same argument as in the proof of [7, Proposition 3.14].

To obtain the explicit expression of the contraction constant ċ for SDE (32), we apply the same
arguments as in the proof of [19, Theorem 2.2] but replace h(r) in [19, Eqn. (5.14)] with

h(r) :=
β

4

∫ r

0
sκds+ 2Q(ε)r, (175)
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where κ = LR as explained above, Q(ε) is given in [19, Eqn. (2.24)], and replace [19, Eqn. (2.25)] with

(4cV,2(2)ε)−1 ≥ β

2

∫ R1

0

∫ s

0
exp

(
β

4

∫ s

r
uκdu+ 2Q(ε)(s− r)

)
dr ds.

Then, one can derive an explicit expression for ċ, which is given by

ċ = min{φ, cV,1(2), 4cV,2(2)εcV,1(2)}/2,
where cV,1(2) := ah/2, cV,2(2) := (3/2)ahv2(MV (2)) with MV (2) given in Lemma 4.3, and where φ
is given by

φ−1 = β

∫ R2

0

∫ s

0
exp

(
β

4

∫ s

r
uκdu+ 2Q(ε)(s− r)

)
dr ds,

where R2 is given in [19, Eqn. (2.29)]. Furthermore, ε ∈ (0, 1] is required to satisfy

ε−1 ≥ 2βcV,2(2)

∫ R1

0

∫ s

0
exp

(
β

4

∫ s

r
uκdu+ 2Q(ε)(s− r)

)
dr ds,

where R1 is given in [19, Eqn. (2.29)]. To simplify the expressions for φ and ε, we follow the proof of [7,
Lemma 3.24], and thus (42), (43), (44) can be obtained.

To obtain an explicit expression for ĉ, one first notes that, by using (175), [19, Eqn. (5.4)] becomes:
for any r ∈ [0, R2],

r exp(−βκR2
2/8− 2Q(ε)R2) ≤ Φ(r) ≤ 2f(r) ≤ 2Φ(r) ≤ 2r.

Then, in view of [7, Eqn. (60)], and by applying the same arguments as in the proof of [7, Lemma 3.24],
one obtains

C9 = C11/C10 ≤ ĉ := 2(1 +R2) exp(βK1R
2
2/8 + 2R2)/ε,

where R2 := ċ0 := 2
√

4cV,2(2)(1 + cV,1(2))/cV,1(2)− 1, K1 = LR, and ε is given in (44). �

Proof of Lemma 4.7. The proof follows the same idea as in the proof of [7, Lemma 3.18], the details are
provided for the explicit constants. By using Definition 4.1, Lemma A.3, Proposition 4.6, one obtains, for
any t ∈ (nT, (n+ 1)T ], n ∈ N0,

W1(L(ζ̄λ,nt ),L(Zλt ))

≤
n∑
k=1

W1(L(ζ̄λ,kt ),L(ζ̄λ,k−1
t ))

≤
n∑
k=1

w1,2(L(ζ
kT,θ̄λkT ,λ
t ),L(ζ

kT,ζ̄λ,k−1
kT ,λ

t ))

≤ ĉ
n∑
k=1

e−ċ(n−k)/2w1,2(L(θ̄λkT ),L(ζ̄λ,k−1
kT ))

≤ ĉ
n∑
k=1

e−ċ(n−k)/2W2(L(θ̄λkT ),L(ζ̄λ,k−1
kT ))

[
1 +

{
E[V4(θ̄λkT )]

}1/2
+
{
E[V4(ζ̄λ,k−1

kT )]
}1/2

]
,

where the last inequality is obtained by using (40), Cauchy-Schwarz inequality, and Minkowski inequality.
This further implies, due to Young’s inequality, Lemma 4.5, 4.2, and 4.4,

W1(L(ζ̄λ,nt ),L(Zλt )) ≤ (
√
λ)−1ĉ

n∑
k=1

e−ċ(n−k)/2W 2
2 (L(θ̄λkT ),L(ζ̄λ,k−1

kT ))

+ 3
√
λĉ

n∑
k=1

e−ċ(n−k)/2
[
1 + E[V4(θ̄λkT )] + E[V4(ζ̄λ,k−1

kT )]
]

≤
√
λĉ

n∑
k=1

e−ċ(n−k)/2e−(k−1) min{aF κ]2/2,ah}/2(C̄0 + 12)E[V4(2r+1)(θ0)]

+
√
λ

ĉ

1− e−ċ/2
(C̄1 + 12c]2(1 + 2/(aFκ

]
2)) + 9v4(MV (4)) + 15)

≤
√
λĉne−(n−1) min{ċ,aF κ]2/2,ah}/2(C̄0 + 12)E[V4(2r+1)(θ0)]
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+ 2
√
λ(ĉ/ċ)eċ/2(C̄1 + 12c]2(1 + 2/(aFκ

]
2)) + 9v4(MV (4)) + 15),

where the last inequality holds due to 1 − e−s ≥ se−s, s ∈ R. Finally, one notes that e−αy(y + 1) ≤
1 + α−1, for any α > 0, y ≥ 0, hence, by using the inequality with α = min{ċ, aFκ]2/2, ah}/4 and
y = n− 1, one obtains

W1(L(ζ̄λ,nt ),L(Zλt )) ≤
√
λ
(
e−min{ċ,aF κ]2/2,ah}n/4C̄2 E

[
V4(2r+1)(θ0)

]
+ C̄3

)
,

where

κ]2 := min{κ̄(2), κ̃(2)},

C̄2 := emin{ċ,aF κ]2/2,ah}/4ĉ

(
1 +

4

min{ċ, aFκ]2/2, ah}

)
(C̄0 + 12),

C̄3 := 2(ĉ/ċ)eċ/2(C̄1 + 12c]2(1 + 2/(aFκ
]
2)) + 9v4(MV (4)) + 15)

(176)

with ċ, ĉ given in Proposition 4.6, κ̄(2), κ̃(2) given in (149) (Lemma 4.2), C̄0, C̄1 given in (173) (Lemma
4.5), c]2 given in Lemma 4.2 and MV (4) given in Lemma 4.4. �

Proof of Lemma 4.8. We follow a similar approach as in [34, Lemma 3.5]. Recall that h := ∇u. By
Remark 2.3, for any θ ∈ Rd, it follows that

|h(θ)| ≤ KH E[(1 + |X0|)ρ](|θ|2r+1 + 1).

Denote by C̄6 := KH E[(1 + |X0|)ρ], then, one obtains, for any θ, θ′ ∈ Rd,

u(θ)− u(θ′) =

∫ 1

0
〈h(tθ + (1− t)θ′), θ − θ′〉 dt

≤
(∫ 1

0
(22rC̄6(t2r+1|θ|2r+1 + (1− t)2r+1|θ′|2r+1) + C̄6) dt

)
|θ − θ′|

≤
(

22rC̄6

2r + 2
|θ|2r+1 +

22rC̄6

2r + 2
|θ′|2r+1 + C̄6

)
|θ − θ′|. (177)

Recall Z∞ ∼ πβ with πβ(θ) ∝ e−βu(θ), θ ∈ Rd. We consider the coupling P ∈ C(L(θλn),L(Z∞)) such
that

W 2
2 (L(θλn),L(Z∞)) = EP[|θλn − Z∞|2].

Then, by using (177) and Cauchy-Schwarz inequality, it follows that

E[u(θλn)]− E[u(Z∞)] = EP[u(θλn)− u(Z∞)]

≤
(

22rC̄6

2r + 2
(E[|θλn|4r+2])1/2 +

22rC̄6

2r + 2
(E[|Z∞|4r+2])1/2 + C̄6

)
W2(L(θλn),L(Z∞)).

Finally, applying Lemma 4.2 and Corollary 2.10 yield

E[u(θλn)]− E[u(Z∞)] ≤
(

22rC̄6

2r + 2

((
E[|θλ0 |4r+2] + c]2r+1(1 + 2/(aFκ

]
2r+1))

)1/2
+ c

1/2
Z∞,4r+2

)
+ C̄6

)
×
[
C4e

−C3λn(E[|θ0|4(2r+1)] + 1)1/2 + C5λ
1/4
]

≤ C7e
−C6λn + C8λ

1/4,

where
C6 := C3,

C7 := C4

(
22rC̄6

2r + 2

(
1 + (c]2r+1(1 + 2/(aFκ

]
2r+1)))1/2 + c

1/2
Z∞,4r+2

)
+ C̄6

)
(E[|θ0|4(2r+1)] + 1),

C8 := C5

(
22rC̄6

2r + 2

(
(E[|θλ0 |4r+2] + c]2r+1(1 + 2/(aFκ

]
2r+1)))1/2 + c

1/2
Z∞,4r+2

)
+ C̄6

)
,

C̄6 := KH E[(1 + |X0|)ρ],
(178)
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with C3, C4, C5 given in (51) (Corollary 2.10), c]2r+1, κ
]
2r+1 given in Lemma 4.2, cZ∞,4r+2 denoting the

(4r + 2)-th moment of πβ . �

Proof of Lemma 4.9. By using [34, Equation (3.18), (3.20)], one obtains

E[u(Z∞)]− u∗ =
1

β

(
−
∫
Rd

e−βu(θ)

C̄πβ
log

e−βu(θ)

C̄πβ
dθ − log C̄πβ

)
− u∗

≤ d

2β
log

(
2πe(bh + d/β)

ahd

)
−

log C̄πβ
β

− u∗, (179)

where C̄πβ :=
∫
Rd e

−βu(θ) dθ is the normalizing constant. Then, to obtain an upper bound for the term
log C̄πβ/β, we follow the arguments in [30, Lemma 3.2]. Denote by θ∗ ∈ Rd a minimizer of u. By
Remark 2.6, we have that

0 = 〈θ∗, h(θ∗)〉 ≥ ah|θ∗|2 − bh,
which implies that |θ∗| ≤

√
bh/ah. Moreover, one observes that, for any θ, θ′ ∈ Rd,

−β(u(θ∗)− u(θ)) ≤ β
∣∣∣∣∫ 1

0
〈h(tθ∗ + (1− t)θ)− h(θ∗), θ∗ − θ〉 dt

∣∣∣∣ ,
which implies, by using Remark 2.3,

−β(u(θ∗)− u(θ)) ≤ β
(∫ 1

0
Lh(1− t)(1 + |tθ∗ + (1− t)θ|+ |θ∗|)2r dt

)
|θ∗ − θ|2

≤ βLh(1 + 2|θ∗ − θ|+ 2|θ∗|)2r|θ∗ − θ|2/2.

Denote by Rθ∗ := max{
√
bh/ah,

√
2d/(βLh)}, and B̄(θ∗, Rθ∗) the closed ball with radius Rθ∗ centred

at θ∗ ∈ Rd. By noticing u∗ = u(θ∗), further calculations hence yield

log C̄πβ
β

= −u∗ +
1

β
log

∫
Rd
eβ(u∗−u(θ)) dθ

≥ −u∗ +
1

β
log

∫
B̄(θ∗,Rθ∗ )

e−βLh(1+4Rθ∗ )2r|θ∗−θ|2/2 dθ

= −u∗ +
1

β
log

((
2π

βC̄7

)d/2 ∫
B̄(θ∗,Rθ∗ )

fΘ(θ) dθ

)
, (180)

where C̄7 := Lh(1 + 4Rθ∗)
2r and fΘ denotes the density function of a Gaussian random variable Θ with

mean θ and covariance (βC̄7)−1Id. Therefore, applying Chebyshev’s inequality yields

P(|Θ− θ∗| > Rθ∗) = P

|Θ− θ∗| >
√
βC̄7R2

θ∗

d

√
d

βC̄7

 ≤ d

βR2
θ∗C̄7

, (181)

which, by substituting (181) into (180), implies,

log C̄πβ
β

≥ −u∗ +
1

β
log

((
2π

βC̄7

)d/2(
1− d

βR2
θ∗C̄7

))
≥ −u∗ +

1

β
log

(
1

2

(
2π

βC̄7

)d/2)
. (182)

Combining the results in (179) and (182), one obtains

E[u(Z∞)]− u∗ ≤ C9/β,

where

C9 ≡ C9(β) :=
d

2
log

(
C̄7e

ah

(
βbh
d

+ 1

))
+ log 2,

C̄7 := Lh(1 + 4Rθ∗)
2r,

Rθ∗ := max{
√
bh/ah,

√
2d/(βLh)}.

(183)

In particular, we have that limβ→∞C9(β)/β = 0. �
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TABLE 6. Analytic expressions of constants

Constant Full expression Dependence on d, β

Lemma 4.3

MV (p)
√

1/3 + 4bh/(3ah) + 4d/(3ahβ) + 4(p− 2)/(3ahβ) O(1 + (d/β)1/2)

cV,1(p) ahp/4 O(1)

cV,2(p) (3/4)ahpvp(MV (p)) O(1 + (d/β)p/2)

Lemma 4.5

C̄0

e4LR
(

34rL2
hL
−1
R 64K4

H E
[
(1 + |X0|)4ρ

]
O(1)

+
(

16K2
H(1 + L−1

R ) + 24r+4+2ρ(1 + LF + LG)2
)
E
[
(1 + |X0|)2ρ

] )

C̄1

e4LR
(

34rL2
hL
−1
R + 16K2

H(1 + L−1
R ) + 24r+4+2ρ(1 + LF + LG)2

)
O(1 + (d/β)4r+2)×

(
64K4

H E
[
(1 + |X0|)4ρ

]
× (1 + c]4r+2(1 + 2/(aF κ

]
4r+2)))

+ 32d(d+ 2)β−2 + c]4r(1 + 2/(aF κ
]
4r)) + 1

)
+ 4e4LR |h(0)|2

Lemma 4.7
C̄2 emin{ċ,aF κ

]
2/2,ah}/4ĉ

(
1 + 4

min{ċ,aF κ
]
2/2,ah}

)
(C̄0 + 12) O

(
e
C(1+β)(1+ d

β
)
)

*

C̄3 2(ĉ/ċ)eċ/2(C̄1 + 12c]2(1 + 2/(aF κ
]
2)) + 9v4(MV (4)) + 15) O

(
e
C(1+β)(1+ d

β
)
)

*

Theorem 2.9

C0 min{ċ, aF κ]2/2, ah}/4 O(1)

C1 24r+1emin{ċ,aF κ
]
2/2,ah}/4

[
C̄

1/2
0 + C̄2 + ĉ

(
2 +

∫
Rd V2(θ)πβ(dθ)

)]
O

(
e
C(1+β)(1+ d

β
)
)

*

C2 C̄
1/2
1 + C̄3 O

(
e
C(1+β)(1+ d

β
)
)

*

Corollary 2.10

C̄4 emin{ċ,aF κ
]
2/2,ah}/8

√
ĉ

(
1 + 8

min{ċ,aF κ
]
2/2,ah}

)
(C̄

1/2
0 + 2

√
2) O

(
e
C(1+β)(1+ d

β
)
)

*

C̄5 4(
√
ĉ/ċ)eċ/4(C̄

1/2
1 + 2

√
2(c]2(1 + 2/(aF κ

]
2)))1/2 + (3v4(MV (4)))1/2 + 3

√
2) O

(
e
C(1+β)(1+ d

β
)
)

*

C3 min{ċ, aF κ]2/2, ah}/8 O(1)

C4 22r+1emin{ċ,aF κ
]
2/2,ah}/8

[
C̄

1/2
0 + C̄4 +

√
ĉ
(
2 +

∫
Rd V2(θ)πβ(dθ)

)1/2]
O

(
e
C(1+β)(1+ d

β
)
)

*

C5 C̄
1/2
1 + C̄5 O

(
e
C(1+β)(1+ d

β
)
)

*

Lemma 4.8

C̄6 KH E[(1 + |X0|)ρ] O(1)

C6 C3 O(1)

C7

C4

(
22rC̄6
2r+2

(
1 + (c]2r+1(1 + 2/(aF κ

]
2r+1)))1/2 + c

1/2
Z∞,4r+2

)
+ C̄6

)
O

(
e
C(1+β)(1+ d

β
)
)

*

×
(
E[|θ0|4(2r+1)] + 1

)
C8 C5

(
22rC̄6
2r+2

(
(E[|θλ0 |4r+2] + c]2r+1(1 + 2/(aF κ

]
2r+1)))1/2 + c

1/2
Z∞,4r+2

)
+ C̄6

)
O

(
e
C(1+β)(1+ d

β
)
)

*

Lemma 4.9
Rθ∗ max{

√
bh/ah,

√
2d/(βLh)} O(1 + (d/β)1/2)

C9
d
2

log

(
Lh(1+4Rθ∗ )2re

ah

(
βbh
d

+ 1
))

+ log 2 O
(

1 + d log
(
C(1 + d

β
)r(β

d
+ 1)

))
*

* C > 0 is a constant that may take different values at different places, but it is always independent of d and β.
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TABLE 7. Constants in Lemma 4.2 and Proposition 4.6, and their dependency on key parameters

Constant
Key parameters

d β Moments of X0

Lemma 4.2

κ ∈ (1/4, 1/2) — — —

c0 O(1 + d/β) O(1 + d/β) O(E[(1 + |X0|)2ρ])

κ]p ∈ (1/4, 1/2) — — —

c]p O(1 + (d/β)p) O(1 + (d/β)p) O((E[(1 + |X0|)2pρ])p(q+1)+1)

Proposition 4.6
ċ

(
32
√
π(1 + a−2)

(
1 + d

β

)3/2√
β
LR

e
8C?(ah,bh)(1+βLR)

(
1+ d

β

)
+ 16
βLR

)−1
†

ĉ O

(√
β
LR

(1 + d
β

)2e
12C?(ah,bh)(1+βLR)

(
1+ d

β

)
+ 16
βLR

)
†

† C?(ah, bh) = (1 + 2/ah)(1 + ah + bh).
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