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Introduction

A stochastic∗ process is a mathematical tool used for the modeling of time-dependent random phenomena. Here, the term “stochastic”
means random and “process” refers to the time-evolving status of a given system. Stochastic processes have applications to multiple
fields, and can be useful anytime one recognizes the role of randomness and unpredictability of events that can occur at random times
in an e.g. physical, biological, or financial system.

For example, in applications to physics one can mention phase transitions, atomic emission phenomena, etc. In biology the time behavior
of live beings is often subject to randomness, at least when the observer has only access to partial information. This latter point is of
importance, as it links that the notion of randomness to the concept of information: what appears random to an observer may not be
random to another observer equipped with more information. Think, for example, of the observation of the apparent random behavior
of cars turning at a crossroad versus the point of view of car drivers, each of whom are acting according to their own decisions. In
finance the importance of modeling time-dependent random phenomena is quite clear, as no one can make definite predictions for the
future moves of risky assets. The concrete outcome of random modeling lies in the computation of expectations or expected values, which
often turn out to be more useful than the probability values themselves. An average or expected lifetime, for example, can be easier to
interpret than a (small) probability of default. The long term statistical behavior of random systems, which also involves the estimation
of expectations, is a related issue of interest.

Basically, a stochastic process is a time-dependent family (Xt)t∈T of random variables, where t is a time index belonging to a parameter
set or time scale T . In other words, instead of considering a single random variable X, one considers a whole family of random variables
(Xt)t∈T , with the addition of another level of technical difficulty. The time scale T can be finite (e.g. T = {1, 2, . . . ,N}) or countably
infinite (e.g. T = N = {0, 1, 2, . . .}) or even uncountable (e.g. T = [0, 1], T = R+). The case of uncountable T corresponds
to continuous-time stochastic processes, and this setting is the most theoretically difficult. A serious treatment of continuous-time

∗From the Greek “στ óχoς” (stokhos), meaning “guess”, or “conjecture”. MH3512 AY19-20



"13processes would actually require additional background in measure theory, which is outside of the scope of this text. Measure theory is
the general study of measures on abstract spaces, including probability measures as a particular case, and allows for a rigorous treatment
of integrals via integration in the Lebesgue sense. The Lebesgue integral is a powerful tool that allows one to integrate functions and
random variables under minimal technical conditions. Here we mainly work in a discrete-time framework that mostly does not require
the use of measure theory.

That being said, the definition of a stochastic process (Xt)t∈T remains vague at this stage since virtually any family of random variables
could be called a stochastic process. In addition, working at such a level of generality without imposing any structure or properties on
the processes under consideration could be of little practical use. As we will see later on, stochastic processes can be classified into two
main families:

Stochastic Processes

Markov ProcessesMartingales

- Markov (1856-1922) Processes.

Roughly speaking, a stochastic process is Markov when its statistical behavior after time t can be recovered from the value Xt of
the process at time t. In particular, the values Xs of the process at times s ∈ [0, t) have no influence on this behavior as long as
the value of Xt is known.

- Martingales.
MH3512 AY19-20



"14Originally, a martingale is a strategy designed to win repeatedly in a game of chance. In mathematics, a stochastic process
(Xt)t∈R+ is a martingale if the best possible estimate at time s of its future value Xt at time t > s is simply given by Xs.
This requires the careful definition of a “best possible estimate”, and for this we need the tool of conditional expectation which
relies on estimation in the mean square sense. Martingale are useful in physics and finance, where they are linked to the notion of
equilibrium.

Time series of order greater than one form another class of stochastic processes that may have neither the Markov property nor the
martingale property in general.

The outline of this text is as follows. After reviewing in Chapter 1 the probabilistic tools required in the analysis of Markov chains,
we consider simple gambling problems in Chapter 2, due to their practical usefulness and to the fact that they only require a minimal
theoretical background. Next, in Chapter 3 we turn to the study of discrete-time random walks with infinite state space, which can be
defined as stochastic processes with independent increments, without requiring much abstract formalism. In Chapter 4 we introduce the
general framework of Markov chains in discrete time, which includes the gambling process and the simple random walk of Chapters 2 and
3 as particular cases. In the subsequent Chapters 5, 6 and 7, Markov chains are considered from the point of view of first step analysis,
which is introduced in detail in Chapter 5. The classification of states is reviewed in Chapter 6, with application to the long-run behavior
of Markov chains in Chapter 7, which also includes a short introduction to the Markov chain Monte Carlo method. Branching processes
are other examples of discrete-time Markov processes which have important applications in life sciences, e.g. for population dynamics
or the control of disease outbreak, and they are considered in Chapter 8. Then in Chapter 9, we deal with Markov chains in continuous
time, including Poisson and birth and death processes. Martingales are considered in Chapter 10, where they are used to recover in a
simple and elegant way the main results of Chapter 2 on ruin probabilities and mean exit times for gambling processes. Spatial Poisson
processes, which can be defined on an abstract space without requiring an ordered time index, are presented in Chapter 11. The end
of that chapter also includes some recent results on moments and deviation inequalities for Poisson stochastic integrals, whose proofs
should be accessible to advanced undergraduates. Reliability theory is an important engineering application of Markov chains, and it
is reviewed in Chapter 12. All stochastic processes considered in this text have a discrete state space and discontinuous trajectories.
Brownian motion, which is the first main example of a stochastic process having continuous trajectories in continuous time, remains
outside the scope of this book.

We close this introduction with examples of simulations for the random paths of some stochastic processes with independent increments,
that belong to the class of Lévy processes which are processes with independent and stationary increments. The graphs shown below areMH3512 AY19-20



"15for illustration purposes only. Indeed, apart from the Poisson process of Figure 0.4, most of these processes are however not within the
scope of this text, and they are presented as an incentive to delve deeper into the field of stochastic processes.

Examples

i) Standard Brownian motion, d = 1.

0

t

Figure 0.1: Sample trajectories of Brownian motion.

ii) Standard Brownian motion, d = 3.

Figure 0.2: Sample trajectory of 3-dimensional Brownian motion. MH3512 AY19-20



"16iii) Drifted Brownian motion, d = 1.

0

t

Figure 0.3: Twenty paths of a drifted Brownian motion, d = 1.

iv) The Poisson process, d = 1.

0

t

Figure 0.4: Sample trajectories of a Poisson process. MH3512 AY19-20



"17v) Compound Poisson process, d = 1.

0

t

Figure 0.5: Sample trajectories of a compound Poisson process.

vi) Gamma process, d = 1.

0

t

Figure 0.6: Sample trajectories of a gamma process. MH3512 AY19-20



"18vii) Stable process, d = 1.

0

t

Figure 0.7: Sample trajectories of a stable process.

viii) Cauchy process, d = 1.

0

t

Figure 0.8: Sample trajectories of a Cauchy process. MH3512 AY19-20



"19ix) Variance gamma process, d = 1.

0

t

Figure 0.9: Sample trajectories of a variance gamma process.

x) Inverse Gaussian process, d = 1.

0

t

Figure 0.10: Sample trajectories of an inverse Gaussian process. MH3512 AY19-20



"20xi) Negative Inverse Gaussian process, d = 1.

0

t

Figure 0.11: Sample trajectories of a negative inverse Gaussian process.
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1 Probability Background

In this chapter we review a number of basic probabilistic tools that will needed for the study of stochastic processes in the subsequent
chapters. We refer the reader to e.g. [Dev03], [JP00], [Pit99] for additional background on probability theory.

1.1 Probability Spaces and Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Probability Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3 Conditional Probabilities and Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6 Expectation of Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.7 Moment and Probability Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.1 Probability Spaces and Events
We will need the following notation coming from set theory. Given A and B to abstract sets, “A ⊂ B” means that A is contained in
B, and in this case, B \A denotes the set of elements of B which do not belong to A. The property that the element ω belongs to the
set A is denoted by “ω ∈ A”, and given two sets A and Ω such that A ⊂ Ω, we let Ac = Ω \A denote the complement of A in Ω.
The finite set made of n elements ω1, . . . ,ωn is denoted by {ω1, . . . ,ωn}, and we will usually distinguish between the element ω and
its associated singleton set {ω}.

A probability space is an abstract set Ω that contains the possible outcomes of a random experiment.
MH3512 AY19-20



"22Examples

i) Coin tossing: Ω = {H, T}.

ii) Rolling one die: Ω = {1, 2, 3, 4, 5, 6}.

iii) Picking one card at random in a pack of 52: Ω = {1, 2, 3, . . . , 52}.

iv) An integer-valued random outcome: Ω = N = {0, 1, 2, . . .}.

In this case the outcome ω ∈ N can be the random number of trials needed until some event occurs.

v) A nonnegative, real-valued outcome: Ω = R+.

In this case the outcome ω ∈ R+ may represent the (nonnegative) value of a continuous random time.

vi) A random continuous parameter (such as time, weather, price or wealth, temperature, ...): Ω = R.

vii) Random choice of a continuous path in the space Ω = C(R+) of all continuous functions on R+.

In this case, ω ∈ Ω is a function ω : R+ −→ R and a typical example is the graph t 7−→ ω(t) of a stock price over time.

Product spaces:

Probability spaces can be built as product spaces and used for the modeling of repeated random experiments.
MH3512 AY19-20



"23i) Rolling two dice: Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}.

In this case a typical element of Ω is written as ω = (k, l) with k, l ∈ {1, 2, 3, 4, 5, 6}.

ii) A finite number n of real-valued samples: Ω = Rn.

In this case the outcome ω is a vector ω = (x1, . . . ,xn) ∈ Rn with n components.

Note that to some extent, the more complex Ω is, the better it fits a practical and useful situation, e.g. Ω = {H, T} corresponds to
a simple coin tossing experiment while Ω = C(R+) the space of continuous functions on R+ can be applied to the modeling of stock
markets. On the other hand, in many cases and especially in the most complex situations, we will not attempt to specify Ω explicitly.

Events

An event is a collection of outcomes, which is represented by a subset of Ω.

The collections G of events that we will consider are called σ-algebras, and assumed to satisfy the following conditions.

(i) ∅ ∈ G,

(ii) For all countable sequences (An)n>1 such that An ∈ G, n > 1, we have
⋃
n>1

An ∈ G,

(iii) A ∈ G =⇒ (Ω \A) ∈ G,

where Ω \A := {ω ∈ Ω : ω /∈ A}.

Note that Properties (ii) and (iii) above also imply

⋂
n>1

An =

 ⋃
n>1

Ac
n

c ∈ G, (1.1.1)
MH3512 AY19-20



"24for all countable sequences An ∈ G, n > 1.

The collection of all events in Ω will often be denoted by F . The empty set ∅ and the full space Ω are considered as events but they are
of less importance because Ω corresponds to “any outcome may occur” while ∅ corresponds to an absence of outcome, or no experiment.

In the context of stochastic processes, two σ-algebras F and G such that F ⊂ G will refer to two different amounts of information, the
amount of information associated to F being here lower than the one associated to G.

The formalism of σ-algebras helps in describing events in a short and precise way.

Examples

i) Ω = {1, 2, 3, 4, 5, 6}.

The event A = {2, 4, 6} corresponds to

“the result of the experiment is an even number”.

ii) Taking again Ω = {1, 2, 3, 4, 5, 6},
F := {Ω, ∅, {2, 4, 6}, {1, 3, 5}}

defines a σ-algebra on Ω which corresponds to the knowledge of parity of an integer picked at random from 1 to 6.

Note that in the set-theoretic notation, an event A is a subset of Ω, i.e. A ⊂ Ω, while it is an element of F , i.e. A ∈ F . For
example, we have Ω ⊃ {2, 4, 6} ∈ F , while {{2, 4, 6}, {1, 3, 5}} ⊂ F .

iii) Taking
G := {Ω, ∅, {2, 4, 6}, {2, 4}, {6}, {1, 2, 3, 4, 5}, {1, 3, 5, 6}, {1, 3, 5}} ⊃ F , MH3512 AY19-20



"25defines a σ-algebra on Ω which is bigger than F , and corresponds to the parity information contained in F , completed by the
knowledge of whether the outcome is equal to 6 or not.

iv) Take
Ω = {H, T} × {H, T} = {(H,H), (H.T ), (T ,H), (T , T )}.

In this case, the collection F of all possible events is given by

F = {∅, {(H,H)}, {(T , T )}, {(H, T )}, {(T ,H)}, (1.1.2)
{(T , T ), (H,H)}, {(H, T ), (T ,H)}, {(H, T ), (T , T )},
{(T ,H), (T , T )}, {(H, T ), (H,H)}, {(T ,H), (H,H)},
{(H,H), (T , T ), (T ,H)}, {(H,H), (T , T ), (H, T )},
{(H, T ), (T ,H), (H,H)}, {(H, T ), (T ,H), (T , T )}, Ω} .

Note that the set F of all events considered in (1.1.2) above has altogether

1 =

n
0

 event of cardinality 0,

4 =

n
1

 events of cardinality 1,

6 =

n
2

 events of cardinality 2,

4 =

n
3

 events of cardinality 3,

1 =

n
4

 event of cardinality 4,

with n = 4, for a total of

16 = 2n =
4∑

k=0

4
k

 = 1 + 4 + 6 + 4 + 1
MH3512 AY19-20



"26events. The collection of events
G := {∅, {(T , T ), (H,H)}, {(H, T ), (T ,H)}, Ω}

defines a sub σ-algebra of F , associated to the information “the results of two coin tossings are different”.

Exercise: Write down the set of all events on Ω = {H, T}.

Note also that (H, T ) is different from (T ,H), whereas {(H, T ), (T ,H)} is equal to {(T ,H), (H, T )}.

In addition, we will distinguish between the outcome ω ∈ Ω and its associated event {ω} ∈ F , which satisfies {ω} ⊂ Ω.

1.2 Probability Measures
A probability measure is a mapping P : F −→ [0, 1] that assigns a probability P(A) ∈ [0, 1] to any event A ∈ F , with the properties

a) P(Ω) = 1, and

b) P

 ⋃
n>1

An

 =
∑
n>1

P(An), whenever Ak ∩Al = ∅, k 6= l.

Property (b) above is named the law of total probability. It states in particular that we have

P(A1 ∪ · · · ∪An) = P(A1) + · · ·+ P(An)

when the subsets A1, . . . ,An of Ω are disjoints, and

P(A∪B) = P(A) + P(B) (1.2.1)

if A∩B = ∅. We also have the complement rule

P(Ac) = P(Ω \A) = P(Ω)−P(A) = 1−P(A). MH3512 AY19-20



"27When A and B are not necessarily disjoint we can write

P(A∪B) = P(A) + P(B)−P(A∩B).

The triple
(Ω,F , P) (1.2.2)

was introduced by A.N. Kolmogorov (1903-1987), and is generally referred to as the Kolmogorov framework.

A property or event is said to hold P-almost surely (also written P-a.s.) if it holds with probability equal to one.

Example

Take
Ω =

{
(T , T ), (H,H), (H, T ), (T ,H)

}
and

F = {∅, {(T , T ), (H,H)}, {(H, T ), (T ,H)}, Ω} .

The uniform probability measure P on (Ω,F) is given by setting

P({(T , T ), (H,H)}) :=
1
2

and P({(H, T ), (T ,H)}) :=
1
2

.

In addition, we have the following convergence properties.

1. Let (An)n∈N be a non-decreasing sequence of events, i.e. An ⊂ An+1, n ∈ N. Then we have

P

 ⋃
n∈N

An

 = lim
n→∞P(An). (1.2.3)

MH3512 AY19-20
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"282. Let (An)n∈N be a non-increasing sequence of events, i.e. An+1 ⊂ An, n ∈ N. Then we have

P

 ⋂
n∈N

An

 = lim
n→∞P(An). (1.2.4)

1.3 Conditional Probabilities and Independence
We start with an example.

Consider a population Ω = M ∪W made of a set M of men and a set W of women. Here the σ-algebra F = {Ω, ∅,W ,M}
corresponds to the information given by gender. After polling the population, e.g. for a market survey, it turns out that a proportion
p ∈ [0, 1] of the population declares to like apples, while a proportion 1− p declares to dislike apples. Let A ⊂ Ω denote the subset
of individuals who like apples, while Ac ⊂ Ω denotes the subset individuals who dislike apples, with

p = P(A) and 1− p = P(Ac),

e.g. p = 60% of the population likes apples. It may be interesting to get a more precise information and to determine

- the relative proportion
P(A∩W )

P(W )
of women who like apples, and

- the relative proportion
P(A∩M)

P(M)
of men who like apples.

Here, P(A∩W )/P(W ) represents the probability that a randomly chosen woman in W likes apples, and P(A∩M)/P(M) repre-
sents the probability that a randomly chosen man in M likes apples. Those two ratios are interpreted as conditional probabilities, for
example P(A∩M)/P(M) denotes the probability that an individual likes apples given that he is a man.

For another example, suppose that the population Ω is split as Ω = Y ∪O into a set Y of “young” people and another set O of “old”
people, and denote by A ⊂ Ω the set of people who voted for candidate A in an election. Here it can be of interest to find out the
relative proportion

P(A | Y ) =
P(Y ∩A)

P(Y ) MH3512 AY19-20
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More generally, given any two events A,B ⊂ Ω with P(B) 6= 0, we call

P(A | B) :=
P(A∩B)

P(B)

the probability of A given B, or conditionally to B.
Remark 1.1

We note that if P(B) = 1 we have P(A∩Bc) 6 P(Bc) = 0, hence P(A∩Bc) = 0, which implies

P(A) = P(A∩B) + P(A∩Bc) = P(A∩B),

and P(A | B) = P(A).

We also recall the following property:

P

B ∩ ⋃
n>1

An

 =
∑
n>1

P(B ∩An)

=
∑
n>1

P(B | An)P(An)

=
∑
n>1

P(An | B)P(B),

for any family of disjoint events (An)n>1 with Ai ∩Aj = ∅, i 6= j, and P(B) > 0, n > 1. This also shows that conditional
probability measures are probability measures, in the sense that whenever P(B) > 0 we have

a) P(Ω | B) = 1, and

b) P

 ⋃
n>1

An

∣∣∣∣∣B
 =

∑
n>1

P(An | B), whenever Ak ∩Al = ∅, k 6= l.
MH3512 AY19-20
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⋃
n>1

An = Ω, (An)n>1 becomes a partition of Ω and we get the law of total probability

P(B) =
∑
n>1

P(B ∩An) =
∑
n>1

P(An | B)P(B) =
∑
n>1

P(B | An)P(An), (1.3.1)

provided that Ai ∩Aj = ∅, i 6= j, and P(B) > 0, n > 1. However, in general we have

P

A ∣∣∣∣∣ ⋃
n>1

Bn

 6= ∑
n>1

P(A | Bn),

even when Bk ∩Bl = ∅, k 6= l. Indeed, taking for example A = Ω = B1 ∪B2 with B1 ∩B2 = ∅ and P(B1) = P(B2) = 1/2,
we have

1 = P(Ω | B1 ∪B2) 6= P(Ω | B1) + P(Ω | B2) = 2.

Independent events

Two events A and B such that P(A), P(B) > 0 are said to be independent if

P(A | B) = P(A),

which is equivalent to
P(A∩B) = P(A)P(B).

In this case we find
P(A | B) = P(A).

1.4 Random Variables

A real-valued random variable is a mapping

X : Ω −→ R

ω 7−→ X(ω) MH3512 AY19-20
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X : Ω −→ R

a random variable and A a (measurable)∗ subset of R, we denote by {X ∈ A} the event

{X ∈ A} := {ω ∈ Ω : X(ω) ∈ A}.

Given G a σ-algebra on Ω, the mapping X : Ω −→ R is said to be G-measurable if

{X 6 x} := {ω ∈ Ω : X(ω) 6 x} ∈ G,

for all x ∈ R. In this case we will also say that the knowledge of X depends only on the information contained in G.

Examples

i) Let Ω := {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}, and consider the mapping

X : Ω −→ R

(k, l) 7−→ k+ l.

Then X is a random variable giving the sum of the two numbers appearing on each die.

ii) the time needed everyday to travel from home to work or school is a random variable, as the precise value of this time may change
from day to day under unexpected circumstances.

iii) the price of a risky asset is a random variable.

In the sequel we will often use the notion of indicator function 1A of an event A. The indicator function 1A is the random variable

1A : Ω −→ {0, 1}
∗Measurability of subsets of R refers to Borel measurability, a concept which will not be defined in this text. MH3512 AY19-20
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defined by

1A(ω) =

 1 if ω ∈ A,
0 if ω /∈ A,

with the property
1A∩B(ω) = 1A(ω)1B(ω), (1.4.1)

since

ω ∈ A∩B ⇐⇒ {ω ∈ A and ω ∈ B}
⇐⇒ {1A(ω) = 1 and 1B(ω) = 1}
⇐⇒ 1A(ω)1B(ω) = 1.

We also have
1A∪B = 1A + 1B − 1A∩B = 1A + 1B − 1A1B,

and
1A∪B = 1A + 1B, (1.4.2)

if A∩B = ∅.

For example, if Ω = N and A = {k}, for all l ∈ N we have

1{k}(l) =


1 if k = l,

0 if k 6= l.

Given X a random variable, we also let

1{X=n} =


1 if X = n,

0 if X 6= n, MH3512 AY19-20
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1{X<n} =


1 if X < n,

0 if X > n.

1.5 Probability Distributions

The probability distribution of a random variable X : Ω −→ R is the collection

{P(X ∈ A) : A is a measurable subset of R}.

As the collection of measurable subsets of R coincides with the σ-algebra generated by the intervals in R, the distribution of X can be
reduced to the knowledge of either

{P(a < X 6 b) = P(X 6 b)−P(X 6 a) : a < b ∈ R},

or
{P(X 6 a) : a ∈ R}, or {P(X > a) : a ∈ R},

see e.g. Corollary 3.8 in [Çın11].

Two random variables X and Y are said to be independent under the probability P if their probability distributions satisfy

P(X ∈ A , Y ∈ B) = P(X ∈ A)P(Y ∈ B)

for all (measurable) subsets A and B of R.

Distributions admitting a density

We say that the distribution of X admits a probability density distribution function fX : R −→ R+ if, for all a 6 b, the probability
P(a 6 X 6 b) can be written as

P(a 6 X 6 b) =
w b

a
fX(x)dx. MH3512 AY19-20
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does not imply that the density function fX : R −→ R+ is continuous.

In particular, we always have w ∞
−∞

fX(x)dx = P(−∞ 6 X 6∞) = 1

for all probability density functions fX : R −→ R+.

Remark 1.2

Note that if the distribution of X admits a density then for all a ∈ R, we have

P(X = a) =
w a

a
f(x)dx = 0, (1.5.1)

and this is not a contradiction.

In particular, Remark 1.2 shows that

P(a 6 X 6 b) = P(X = a) + P(a < X 6 b) = P(a < X 6 b) = P(a < X < b),

for a 6 b. Property (1.5.1) appears for example in the framework of lottery games with a large number of participants, in which a given
number “a” selected in advance has a very low (almost zero) probability to be chosen.

The density fX can be recovered from the cumulative distribution functions

x 7−→ FX(x) := P(X 6 x) =
w x

−∞
fX(s)ds,

and
x 7−→ 1− FX(x) = P(X > x) =

w ∞
x
fX(s)ds,

as
fX(x) = FX(s) =

∂

∂x

w x

−∞
fX(s)ds = −

∂

∂x

w ∞
x
fX(s)ds, x ∈ R. MH3512 AY19-20



"35Examples

i) The uniform distribution on an interval.

The probability density function of the uniform distribution on the interval [a, b], a < b, is given by

f(x) =
1

b− a
1[a,b](x), x ∈ R.

ii) The Gaussian distribution.

The probability density function of the standard normal distribution is given by

f(x) =
1
√

2π
e−x2/2, x ∈ R.

More generally, the probability density function of the Gaussian distribution with mean µ ∈ R and variance σ2 > 0 is given by

f(x) :=
1

√
2πσ2

e−(x−µ)2/(2σ2), x ∈ R.

In this case, we write X ' N (µ,σ2).

iii) The exponential distribution.

The probability density function of the exponential distribution with parameter λ > 0 is given by

f(x) := λ1[0,∞)(x)e−λx =


λe−λx, x > 0

0, x < 0.
(1.5.2)

We also have
P(X > t) = e−λt, t ∈ R+. (1.5.3)MH3512 AY19-20
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iv) The gamma distribution.

The probability density function of the gamma distribution is given by

f(x) :=
aλ

Γ(λ)
1[0,∞)(x)x

λ−1e−ax =



aλ

Γ(λ)
xλ−1e−ax, x > 0

0, x < 0,

where a > 0 and λ > 0 are parameters, and

Γ(λ) :=
w ∞

0
xλ−1e−xdx, λ > 0,

is the gamma function.

v) The Cauchy distribution.

The probability density function of the Cauchy distribution is given by

f(x) :=
1

π(1 + x2)
, x ∈ R.

vi) The lognormal distribution.
MH3512 AY19-20
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f(x) := 1[0,∞)(x)
1

xσ
√

2π
e−

(µ−log x)2

2σ2 =



1
xσ
√

2π
e−

(µ−log x)2

2σ2 , x > 0

0, x < 0.

Exercise: For each of the above probability density functions, check that the condition
w ∞
−∞

f(x)dx = 1

is satisfied.

Joint densities

Given two absolutely continuous random variables X : Ω −→ R and Y : Ω −→ R we can form the R2-valued random variable
(X,Y ) defined by

(X,Y ) : Ω −→ R2

ω 7−→ (X(ω),Y (ω)).

We say that (X,Y ) admits a joint probability density

f(X,Y ) : R2 −→ R+

when
P((X,Y ) ∈ A×B) =

w

B

w

A
f(X,Y )(x, y)dxdy

for all measurable subsets A, B of R, cf. Figure 1.1.
The density f(X,Y ) can be recovered from the joint cumulative distribution function

(x, y) 7−→ F(X,Y )(x, y) := P(X 6 x and Y 6 y) =
w x

−∞

w y

−∞
f(X,Y )(s, t)dsdt, MH3512 AY19-20
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Figure 1.1: Probability P((X,Y ) ∈ [−0.5, 1]× [−0.5, 1]) computed as a volume integral.

and
(x, y) 7−→ P(X > x and Y > y) =

w ∞
x

w ∞
y
f(X,Y )(s, t)dsdt,

as

f(X,Y )(x, y) =
∂2

∂x∂y
F(X,Y )(x, y) (1.5.4)

=
∂2

∂x∂y

w x

−∞

w y

−∞
f(X,Y )(s, t)dsdt (1.5.5)

=
∂2

∂x∂y

w ∞
x

w ∞
y
f(X,Y )(s, t)dsdt,

x, y ∈ R.

The probability densities fX : R −→ R+ and fY : R −→ R+ of X : Ω −→ R and Y : Ω −→ R are called the marginal densities
of (X,Y ) and are given by

fX(x) =
w ∞
−∞

f(X,Y )(x, y)dy, x ∈ R, (1.5.6)MH3512 AY19-20



"39and
fY (y) =

w ∞
−∞

f(X,Y )(x, y)dx, y ∈ R.

The conditional density fX|Y=y : R −→ R+ of X given Y = y is defined by

fX|Y=y(x) :=
f(X,Y )(x, y)
fY (y)

, x, y ∈ R, (1.5.7)

provided that fY (y) > 0. In particular, X and Y are independent if and only if fX|Y=y(x) = fX(x), x, y ∈ R, i.e.,

f(X,Y )(x, y) = fX(x)fY (y), x, y ∈ R.

Example

If X1, . . . ,Xn are independent exponentially distributed random variables with parameters λ1, . . . ,λn we have

P(min(X1, . . . ,Xn) > t) = P(X1 > t, . . . ,Xn > t)

= P(X1 > t) · · ·P(Xn > t)

= e−(λ1+···+λn)t, t ∈ R+, (1.5.8)

hence min(X1, . . . ,Xn) is an exponentially distributed random variable with parameter λ1 + · · ·+ λn.

Given the joint density of (X1,X2) given by

f(X1,X2)(x, y) = fX1(x)fX2(y) = λ1λ2e−λ1x−λ2y, x, y > 0,

we can write

P(X1 < X2) = P(X1 6 X2)

=
w ∞

0

w y

0
f(X1,X2)(x, y)dxdy

= λ1λ2

w ∞
0

w y

0
e−λ1x−λ2ydxdy MH3512 AY19-20
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=

λ1

λ1 + λ2
, (1.5.9)

and we note that
P(X1 = X2) = λ1λ2

w

{(x,y)∈R2
+ : x=y}

e−λ1x−λ2ydxdy = 0.

Discrete distributions

We only consider integer-valued random variables, i.e. the distribution of X is given by the values of P(X = k), k ∈ N.

Examples

i) The Bernoulli distribution.

We have
P(X = 1) = p and P(X = 0) = 1− p, (1.5.10)

where p ∈ [0, 1] is a parameter.

Note that any Bernoulli random variable X : Ω −→ {0, 1} can be written as the indicator function

X = 1A

on Ω with A = {X = 1} = {ω ∈ Ω : X(ω) = 1}.

ii) The binomial distribution.

We have
P(X = k) =

n
k

pk(1− p)n−k, k = 0, 1, . . . ,n,
MH3512 AY19-20
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iii) The geometric distribution.

In this case, we have
P(X = k) = (1− p)pk, k ∈ N, (1.5.11)

where p ∈ (0, 1) is a parameter. For example, if (Xk)k∈N is a sequence of independent Bernoulli random variables with distribution
(1.5.10), then the random variable,∗

T0 := inf{k ∈ N : Xk = 0}

can denote the duration of a game until the time that the wealth Xk of a player reaches 0. The random variable T0 has the
geometric distribution (1.5.11) with parameter p ∈ (0, 1).

iv) The negative binomial (or Pascal) distribution.

We have
P(X = k) =

k+ r− 1
r− 1

(1− p)rpk, k ∈ N, (1.5.12)

where p ∈ (0, 1) and r > 1 are parameters. Note that the sum of r > 1 independent geometric random variables with parameter p
has a negative binomial distribution with parameter (r, p). In particular, the negative binomial distribution recovers the geometric
distribution when r = 1.

v) The Poisson distribution.

We have
P(X = k) =

λk

k!
e−λ, k ∈ N,

∗The notation “inf” stands for “infimum”, meaning the smallest n > 0 such that Xn = 0, if such an n exists. MH3512 AY19-20
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The probability that a discrete nonnegative random variable X : Ω −→ N∪ {+∞} is finite is given by

P(X <∞) =
∑
k>0

P(X = k), (1.5.13)

and we have
1 = P(X =∞) + P(X <∞) = P(X =∞) +

∑
k>0

P(X = k).

Remark 1.3

The distribution of a discrete random variable cannot admit a density. If this were the case, by Remark 1.2 we would have
P(X = k) = 0 for all k ∈ N and

1 = P(X ∈ R) = P(X ∈ N) =
∑
k>0

P(X = k) = 0,

which is a contradiction.

Given two discrete random variables X and Y , the conditional distribution of X given Y = k is given by

P(X = n | Y = k) =
P(X = n and Y = k)

P(Y = k)
, n ∈ N,

provided that P(Y = k) > 0, k ∈ N.

1.6 Expectation of Random Variables
The expectation, or expected value, of a random variable X is the mean, or average value, of X. In practice, expectations can be even
more useful than probabilities. For example, knowing that a given equipment (such as a bridge) has a failure probability of 1.78493
out of a billion can be of less practical use than knowing the expected lifetime (e.g. 200000 years) of that equipment.

MH3512 AY19-20



"43For example, the time T (ω) to travel from home to work/school can be a random variable with a new outcome and value every day,
however we usually refer to its expectation IE[T ] rather than to its sample values that may change from day to day.

Expected value of a Bernoulli random variable

Any Bernoulli random variable X : Ω −→ {0, 1} can be written as the indicator function X := 1A where A is the event A = {X =

1}, and the parameter p ∈ [0, 1] of X is given by

p = P(X = 1) = P(A) = IE[1A] = IE[X].

The expectation of a Bernoulli random variable with parameter p is defined as

IE[1A] := 1×P(A) + 0×P(Ac) = P(A). (1.6.1)

Expected value of a discrete random variable

Next, let X : Ω −→ N be a discrete random variable. The expectation IE[X] of X is defined as the sum

IE[X] =
∑
k>0

kP(X = k), (1.6.2)

in which the possible values k ∈ N of X are weighted by their probabilities. More generally we have

IE[φ(X)] =
∑
k>0

φ(k)P(X = k),

for all sufficiently summable functions φ : N −→ R.

The expectation of the indicator function X = 1A = 1{X=1} can be recovered from (1.6.2) as

IE[X] = IE[1A] = 0×P(Ω \A) + 1×P(A) = 0×P(Ω \A) + 1×P(A) = P(A). MH3512 AY19-20
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IE[aX + bY ] = a IE[X] + b IE[Y ], a, b ∈ R, (1.6.3)

provided that
IE[|X|] + IE[|Y |] <∞.

Examples

i) Expected value of a Poisson random variable with parameter λ > 0:

IE[X] =
∑
k>0

kP(X = k) = e−λ
∑
k>1

k
λk

k!
= λe−λ

∑
k>0

λk

k!
= λ, (1.6.4)

where we used the exponential series (A.1).

ii) Estimating the expected value of a Poisson random variable using R:

Taking λ := 2, we can use the following R code:
poisson_samples <- rpois(100000, lambda = 2)
poisson_samples
mean(poisson_samples)

Given X : Ω −→ N∪ {+∞} a discrete nonnegative random variable X, we have

P(X <∞) =
∑
k>0

P(X = k),

and
1 = P(X =∞) + P(X <∞) = P(X =∞) +

∑
k>0

P(X = k),

and in general
IE[X] = +∞×P(X =∞) +

∑
k>0

kP(X = k).
MH3512 AY19-20
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converse is not true.

Examples

a) Assume that X has the geometric distribution

P(X = k) :=
1

2k+1 , k > 0, (1.6.5)

with parameter p = 1/2, and
IE[X] =

∑
k>0

k

2k+1 =
1
4
∑
k>1

k

2k−1 =
1
4

1
(1− 1/2)2 = 1 <∞,

by (A.4). Letting φ(X) := 2X , we have

P(φ(X) <∞) = P(X <∞) =
∑
k>0

1
2k+1 = 1,

and
IE[φ(X)] =

∑
k>0

φ(k)P(X = k) =
∑
k>0

2k

2k+1 =
∑
k>0

1
2
= +∞,

hence the expectation IE[φ(X)] is infinite although φ(X) is finite with probability one.∗

b) The uniform random variable U on [0, 1] satisfies IE[U ] = 1/2 <∞ and

P(1/U <∞) = P(U > 0) = P(U ∈ (0, 1]) = 1,

however we have
IE[1/U ] =

w 1

0

dx

x
= +∞,

and P(1/U = +∞) = P(U = 0) = 0.
∗This is the St. Petersburg paradox. MH3512 AY19-20
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c) If the random variable X has an exponential distribution with parameter µ > 0 we have

IE
[
eλX

]
= µ

w ∞
0

eλxe−µxdx =



1
µ− λ

<∞ if µ > λ,

+∞, if µ 6 λ.

Conditional expectation
The notion of expectation takes its full meaning under conditioning. For example, the expected return of a random asset usually depends
on information such as economic data, location, etc. In this case, replacing the expectation by a conditional expectation will provide a
better estimate of the expected value.

For instance, life expectancy is a natural example of a conditional expectation since it typically depends on location, gender, and other
parameters.

The conditional expectation of X : Ω −→ N a finite random variable given an event A is defined by

IE[X | A] =
∑
k>0

kP(X = k | A) =
∑
k>0

k
P(X = k and A)

P(A)
.

Lemma 1.4

Given an event A such that P(A) > 0, we have

IE[X | A] =
1

P(A)
IE [X1A] . (1.6.6)

MH3512 AY19-20
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"47Proof

The proof is done only forX : Ω −→ N a discrete random variable, however (1.6.6) is valid for general real-valued random variables.
By Relation (1.4.1) we have

IE[X | A] =
1

P(A)

∑
k>0

kP(X = k | A)

=
1

P(A)

∑
k>0

kP({X = k} ∩A) =
1

P(A)

∑
k>0

k IE
[
1{X=k}∩A

]

=
1

P(A)

∑
k>0

k IE
[
1{X=k}1A

]
=

1
P(A)

IE
1A ∑

k>0
k1{X=k}


=

1
P(A)

IE [1AX] ,

where we used the relation
X =

∑
k>0

k1{X=k}

which holds since X takes only integer values. �

Example

i) Consider Ω = {1, 3,−1,−2, 5, 7} with the uniform probability measure given by

P({k}) = 1/6, k = 1, 3,−1,−2, 5, 7,

and the random variable
X : Ω −→ Z

given by
X(k) = k, k = 1, 3,−1,−2, 5, 7.

Then IE[X | X > 0] denotes the expected value of X given

{X > 0} = {1, 3, 5, 7} ⊂ Ω, MH3512 AY19-20
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IE[X | X > 0] =
1 + 3 + 5 + 7

4
=

1 + 3 + 5 + 7
6

1
4/6

=
1

P(X > 0)
IE[X1{X>0}],

where P(X > 0) = 4/6 and the truncated expectation IE[X1{X>0}] is given by IE[X1{X>0}] = (1 + 3 + 5 + 7)/6.

ii) Estimating a conditional expectation using R:
geo_samples <- rgeom(100000, prob = 1/4)
mean(geo_samples)
mean(geo_samples[geo_samples<10])

Taking p := 3/4, by (A.4) we have
IE[X] = (1− p)

∑
k>1

kpk =
p

1− p
= 3,

and

IE[X | X < 10] =
1

P(X < 10)
IE
[
X1{X<10}

]

=
1

P(X < 10)

9∑
k=0

kP(X = k)

=
1

9∑
k=0

pk

9∑
k=1

kpk

=
p(1− p)
1− p10

∂

∂p

9∑
k=0

pk

=
p(1− p)
1− p10

∂

∂p

1− p10

1− p
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=

p(1− p10− 10(1− p)p9)

(1− p)(1− p10)
' 2.4032603455.

If the random variable X : Ω −→ N is independent of the event A∗ we have

IE[X1A] = IE[X] IE[1A] = IE[X]P(A),

and we naturally find
IE[X | A] = IE[X]. (1.6.7)

Taking X = 1A with
1A : Ω −→ {0, 1}

ω 7−→ 1A :=
 1 if ω ∈ A,

0 if ω /∈ A,
shows that, in particular,

IE[1A | A] = 0×P(X = 0 | A) + 1×P(X = 1 | A)

= P(X = 1 | A)

= P(A | A)

= 1.

One can also define the conditional expectation of X given A = {Y = k}, as

IE[X | Y = k] =
∑
n>0

nP(X = n | Y = k),

where Y : Ω −→ N is a discrete random variable.
Proposition 1.5

∗i.e., P({X = k} ∩A) = P({X = k})P(A) for all k ∈ N. MH3512 AY19-20
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Given X a discrete random variable such that IE[|X|] <∞, we have the relation

IE[X] = IE[IE[X | Y ]], (1.6.8)

which is sometimes referred to as the tower property.

Proof

We have

IE[IE[X | Y ]] =
∑
k>0

IE[X | Y = k]P(Y = k)

=
∑
k>0

∑
n>0

nP(X = n | Y = k)P(Y = k)

=
∑
n>0

n
∑
k>0

P(X = n and Y = k)

=
∑
n>0

nP(X = n) = IE[X],

where we used the marginal distribution

P(X = n) =
∑
k>0

P(X = n and Y = k), n ∈ N,

that follows from the law of total probability (1.3.1) with Ak = {Y = k}, k > 0. �

Taking
Y =

∑
k>0

k1Ak,

with Ak := {Y = k}, k ∈ N, from (1.6.8) we also get the law of total expectation

IE[X] = IE[IE[X | Y ]] (1.6.9)
=

∑
k>0

IE[X | Y = k]P(Y = k)
MH3512 AY19-20
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∑
k>0

IE[X | Ak]P(Ak).

Example

Life expectancy in Singapore is IE[T ] = 80 years overall, where T denotes the lifetime of a given individual chosen at random. Let
G ∈ {m,w} denote the gender of that individual. The statistics show that

IE[T | G = m] = 78 and IE[T | G = w] = 81.9,

and we have

80 = IE[T ]
= IE[IE[T |G]]

= P(G = w) IE[T | G = w] + P(G = m) IE[T | G = m]

= 81.9×P(G = w) + 78×P(G = m)

= 81.9× (1−P(G = m)) + 78×P(G = m),

showing that
80 = 81.9× (1−P(G = m)) + 78×P(G = m),

i.e.
P(G = m) =

81.9− 80
81.9− 78

=
1.9
3.9

= 0.487.

Variance

The variance of a random variable X is defined in general by

Var[X] := IE[X2]− (IE[X])2, MH3512 AY19-20
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"52provided that IE[|X|2] <∞. If (Xk)k∈N is a sequence of independent random variables we have

Var
 n∑
k=1

Xk

 = IE

 n∑
k=1

Xk

2−
IE

 n∑
k=1

Xk

2

= IE
 n∑
k=1

Xk

n∑
l=1
Xl

− IE
 n∑
k=1

Xk

 IE
 n∑
l=1
Xl


= IE

 n∑
k=1

n∑
l=1
XkXl

− n∑
k=1

n∑
l=1

IE[Xk] IE[Xl]

=
n∑
k=1

IE[X2
k ] +

∑
16k 6=l6n

IE[XkXl]−
n∑
k=1

(IE[Xk])
2−

∑
16k 6=l6n

IE[Xk] IE[Xl]

=
n∑
k=1

(IE[X2
k ]− (IE[Xk])

2)

=
n∑
k=1

Var[Xk]. (1.6.10)

Random sums

In the sequel we consider Y : Ω −→ N an a.s. finite, integer-valued random variable, i.e. we have P(Y < ∞) = 1 and
P(Y =∞) = 0.

Based on the tower property or ordinary conditioning, the expectation of a random sum
Y∑
k=1

Xk, where (Xk)k∈N is a sequence of random

variables, can be computed from the tower property (1.6.8) or from the law of total expectation (1.6.9) as

IE
 Y∑
k=1

Xk

 = IE
IE

 Y∑
k=1

Xk

∣∣∣∣∣Y


=
∑
n>0

IE
 Y∑
k=1

Xk

∣∣∣∣∣Y = n

P(Y = n)

=
∑
n>0

IE
 n∑
k=1

Xk

∣∣∣∣∣Y = n

P(Y = n),
MH3512 AY19-20
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IE
 Y∑
k=1

Xk

 =
∑
n>0

IE
 n∑
k=1

Xk

P(Y = n)

=
∑
n>0

P(Y = n)
n∑
k=1

IE [Xk] .

Similarly, for a random product we will have, using the independence of Y with (Xk)k∈N,

IE
 Y∏
k=1

Xk

 =
∑
n>0

IE
 n∏
k=1

Xk

P(Y = n) (1.6.11)

=
∑
n>0

P(Y = n)
n∏
k=1

IE [Xk] ,

where the last equality requires the (mutual) independence of the random variables in the sequence (Xk)k>1.

Distributions admitting a density

Given a random variable X whose distribution admits a density fX : R −→ R+ we have

IE[X] =
w ∞
−∞

xfX(x)dx,

and more generally,
IE[φ(X)] =

w ∞
−∞

φ(x)fX(x)dx, (1.6.12)

for all sufficiently integrable function φ on R. For example, if X has a standard normal distribution we have

IE[φ(X)] =
w ∞
−∞

φ(x)e−x2/2 dx
√

2π
.

In case X has a Gaussian distribution with mean µ ∈ R and variance σ2 > 0 we get

IE[φ(X)] =
1

√
2πσ2

w ∞
−∞

φ(x)e−(x−µ)2/(2σ2)dx. (1.6.13)
MH3512 AY19-20
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Exercise: In case X ' N (µ,σ2) has a Gaussian distribution with mean µ ∈ R and variance σ2 > 0, check that

µ = IE[X] and σ2 = IE[X2]− (IE[X])2.

When (X,Y ) : Ω −→ R2 is a R2-valued couple of random variables whose distribution admits a density fX,Y : R2 −→ R+ we have

IE[φ(X,Y )] =
w ∞
−∞

w ∞
−∞

φ(x, y)fX,Y (x, y)dxdy,

for all sufficiently integrable function φ on R2.

The expectation of an absolutely continuous random variable satisfies the same linearity property (1.6.3) as in the discrete case.

The conditional expectation of an absolutely continuous random variable can be defined as

IE[X | Y = y] =
w ∞
−∞

xfX|Y=y(x)dx

where the conditional density fX|Y=y(x) is defined in (1.5.7), with the relation

IE[X] = IE[IE[X | Y ]] (1.6.14)

which is called the tower property and holds as in the discrete case, since

IE[IE[X | Y ]] =
w ∞
−∞

IE[X | Y = y]fY (y)dy

=
w ∞
−∞

w ∞
−∞

xfX|Y=y(x)fY (y)dxdy

=
w ∞
−∞

x
w ∞
−∞

f(X,Y )(x, y)dydx

=
w ∞
−∞

xfX(x)dx = IE[X],

where we used Relation (1.5.6) between the density of (X,Y ) and its marginal X. MH3512 AY19-20
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For example, an exponentially distributed random variable X with probability density function (1.5.2) has the expected value

IE[X] = λ
w ∞

0
xe−λxdx =

1
λ

.

1.7 Moment and Probability Generating Functions

Moment generating functions

The moment generating function of a random variable X is the function ΦX : R −→ R defined by

ΦX(t) = IE
[
etX

]
, t ∈ R,

provided that the expectation is finite. In particular, we have

IE[Xn] =
∂n

∂t
ΦX(0), n > 1,

provided that IE[|X|n] <∞, and
ΦX(t) = IE

[
etX

]
=

∑
n>0

tn

n!
IE[Xn],

provided that IE
[
et|X|

]
< ∞, t ∈ R, and for this reason the moment generating function GX characterizes the moments IE[Xn] of

X : Ω −→ N, n > 0.

The moment generating function ΦX of a random variable X with density f : R −→ R+ satisfies

ΦX(t) =
w ∞
−∞

extf(x)dx, t ∈ R.

Note that in probability we are using the bilateral moment generating function transform for which the integral is from −∞ to +∞.MH3512 AY19-20
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Consider
X : Ω −→ N∪ {+∞}

a discrete random variable possibly taking infinite values. The probability generating function of X is the function

GX :[−1, 1] −→ R

s 7−→ GX(s)

defined by
GX(s) := IE

[
sX1{X<∞}

]
=

∑
n>0

snP(X = n), −1 6 s 6 1. (1.7.1)

Note that the series summation in (1.7.1) is over the finite integers, which explains the presence of the truncating indicator 1{X<∞}
inside the expectation in (1.7.1). If the random variable X : Ω −→ N is almost surely finite, i.e. P(X <∞) = 1, we simply have

GX(s) = IE
[
sX

]
=

∑
n>0

snP(X = n), −1 6 s 6 1,

and for this reason the probability generating function GX characterizes the probability distribution P(X = n), n > 0, of X : Ω −→
N.

Examples

i) Poisson distribution. Consider a random variable X with probability generating function

GX(s) = eλ(s−1), −1 6 s 6 1,

for some λ > 0. What is the distribution of X?

Using the exponential series (A.1) we have

GX(s) = eλ(s−1) = e−λ
∑
n>0

sn
λn

n!
, −1 6 s 6 1, (1.7.2)

MH3512 AY19-20
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"57hence by identification with (1.7.1) we find

P(X = n) = e−λ
λn

n!
, n ∈ N,

i.e. X has the Poisson distribution with parameter λ.

ii) Geometric distribution. Given X a random variable with geometric distribution P(X = n) = (1− p)pn, n ∈ N, we have

GX(s) =
∑
n>0

snP(X = n) = (1− p)
∑
n>0

snpn =
1− p
1− ps

, −1 < s < 1,

where we applied the geometric series (A.3).

We note that from (1.7.1) we can write
GX(s) = IE[sX ], −1 < s < 1,

since sX = sX1{X<∞} when −1 < s < 1.

Properties of probability generating functions

i) Taking s = 1, we have
GX(1) =

∑
n>0

P(X = n) = P(X <∞) = IE
[
1{X<∞}

]
,

hence

GX(1) = P(X <∞).

ii) Taking s = 0, we have
GX(0) = IE[0X ] = IE[1{X=0}] = P(X = 0),

since 00 = 1 and 0X = 1{X=0}, hence

GX(0) = P(X = 0). (1.7.3)
MH3512 AY19-20
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G′X(s) =
∑
n>1

nsn−1P(X = n), −1 < s < 1,

hence we have∗

G′X(1
−) = IE[X] =

∑
k>0

kP(X = k),

provided that IE[X] <∞.

iv) By computing the second derivative

G′′X(s) =
∑
k>2

k(k− 1)sk−2P(X = k)

=
∑
k>0

k(k− 1)sk−2P(X = k)

=
∑
k>0

k2sk−2P(X = k)−
∑
k>0

ksk−2P(X = k), −1 < s < 1,

we similarly find

G′′X(1
−) =

∑
k>0

k(k− 1)P(X = k)

=
∑
k>0

k2P(X = k)−
∑
k>0

kP(X = k)

= IE[X2]− IE[X]

= IE[X(X − 1)],

provided that IE[X2] <∞.

∗Here G′X(1−) denotes the derivative on the left at the point s = 1. MH3512 AY19-20
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G
(k)
X (1−) = IE[X(X − 1) · · · (X − k+ 1)], k > 1, (1.7.4)

provided that IE[|Xk|] <∞. In particular, we have

Var[X] = G′′X(1
−) +G′X(1

−)(1−G′X(1
−)), (1.7.5)

provided that IE[X2] <∞.

v) When X : Ω −→ N and Y : Ω −→ N are two finite independent random variables we have

GX+Y (s) = IE
[
sX+Y

]
= IE

[
sXsY

]
= IE

[
sX

]
IE
[
sY

]
= GX(s)GY (s), (1.7.6)

−1 6 s 6 1.

vi) The probability generating function can also be used from (1.7.1) to recover the distribution of the discrete random variable X as

P(X = n) =
1
n!
∂n

∂sn
GX(s)|s=0, n ∈ N, (1.7.7)

extending (1.7.3) to all n > 0. MH3512 AY19-20
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GX(s) = eλ(s−1), −1 6 s 6 1.

From the generating function we also recover the mean

IE[X] = G′X(1
−) = λeλ(s−1)

|s=1 = λ,

of the Poisson random variable X with parameter λ, and its variance

Var[X] = G′′X(1
−) +G′X(1

−)− (G′X(1
−))2

= λ2eλ(s−1)
|s=1 + λseλ(s−1)

|s=1 − λ2

= λ2 + λ− λ2 = λ,

by (1.7.5).

Moments and cumulants

The cumulants of a random variable X are the sequence (κXn )n∈N of numbers defined by the logarithmic generating function

log
(
IE
[
etX

])
=

∑
n>1

κXn
tn

n!
, t ∈ R.

The n-th moment of a random variable X can be written in terms of its cumulants as

IE[Xn] =
n∑
k=0

1
k!

∑
d1+···+dk=n

n!
d1! · · · dk!

κXd1
· · ·κXdk (1.7.8)

=
n∑
k=1

∑
B1,...,Bk

κX|B1| · · ·κ
X
|Bk|,

where the sum runs over the partitions B1, . . . ,Ba of {1, . . . ,n} with cardinality |Bi| (Faà di Bruno formula). This also shows that

IE[Xn] = An(κ
X
1 ,κX2 , . . . ,κXn ), MH3512 AY19-20
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An(x1, . . . ,xn) = n!

∑
r1+2r2+···+nrn=n

r1,...,rn>0

n∏
l=1

( 1
rl!

(
xl

l!

)rl)

is the Bell polynomial of degree n. These relations follow from the Faà di Bruno formula, cf. e.g. § 2.4 and Relation (2.4.4) page 27 of
[Luk70]. Indeed we have

∑
n>0

tn

n!
IE[Xn] = IE

[
etX

]

= exp
(

log
(
IE
[
etX

]))
=

∑
k>0

1
k!

(
log

(
IE
[
etX

]))k

=
∑
k>0

1
k!

∑
n>1

κXn
tn

n!

k

=
∑
k>0

1
k!

∑
n>1

tn
∑

d1+···+dk=n
d1>1,...,dk>1

κXd1

d1!
· · ·

κXd1

dk!

=
∑
n>0

tn

n!

n∑
k=0

1
k!

∑
d1+···+dk=n
d1>1,...,dk>1

n!
d1! · · · dk!

κXd1

d1!
· · ·

κXd1

dk!
,

which shows (1.7.8).

Exercises

Exercise 1.1 Consider a random variable X : Ω −→ N∪ {∞} with distribution

P(X = k) = qpk, k ∈ N = {0, 1, 2, . . .},

where q ∈ [0, 1− p] and 0 6 p < 1.

a) Compute P(X <∞) and P(X =∞) by considering two cases, and give the value of IE[X] when 0 6 q < 1− p.

b) Assume that q = 1− p and consider the random variable Y := rX for some r > 0. Explain why P(Y <∞) = 1 and computeMH3512 AY19-20
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Exercise 1.2 Let N ∈ {1, 2, 3, 4, 5, 6} denote the integer random variable obtained by tossing a six faced die and by noting the
number on the upper side of the die. Given the value of N , an independent, unbiased coin is thrown N times. We denote by Z the
total number of heads that appear in the process of throwing the coin N times.

a) Using conditioning on the value of N ∈ {1, 2, 3, 4, 5, 6}, compute the mean and the variance of the random variable Z.

b) Determine the probability distribution of Z.

c) Recover the result of Question (a) from the data of the probability distribution computed in Question (b).

Exercise 1.3 Thinning of Poisson random variables. Given a random sample N of a Poisson random variable with parameter λ, we
perform a number N of independent {0, 1}-valued Bernoulli experiments independent of N , each of them with parameter p ∈ (0, 1).
We let Z denote the total number of +1 outcomes occuring in the N Bernoulli trials.

a) Express Z as a random sum, and use this expression to compute the mean and variance of Z.

b) Compute the probability distribution of Z.

c) Recover the result of Question (a) from the data of the probability distribution computed in Question (b).

Exercise 1.4 Given X and Y two independent exponentially distributed random variables with parameters λ and µ, show the relation

IE[min(X,Y ) | X < Y ] =
1

λ+ µ
= IE[min(X,Y )]. (1.7.9)

Exercise 1.5 Given a random sample L of a gamma random variable with density

fL(x) = 1[0,∞)xe−x,

consider U a uniform random variable taking values in the interval [0,L] and let V = L−U .
MH3512 AY19-20



"63Compute the joint probability density function of the couple (U ,V ) of random variables.

Exercise 1.6 Let X and Y denote two independent Poisson random variables with parameters λ and µ.

a) Show that the random variable X + Y has the Poisson distribution with parameter λ+ µ.

b) Compute the conditional distribution P(X = k | X + Y = n) given that X + Y = n, for all k,n ∈ N.

c) Assume that respective parameters of the distributions ofX and Y are random, independent, and chosen according to an exponential
distribution with parameter θ > 0.

Give the probability distributions of X and Y , and compute the conditional distribution P(X = k | X + Y = n) given that
X + Y = n, for all k,n ∈ N.

d) Assume now that X and Y have same random parameter represented by a single exponentially distributed random variable Λ with
parameter θ > 0, independent of X and Y .

Compute the conditional distribution P(X = k | X + Y = n) given that X + Y = n, for all k,n ∈ N.

Exercise 1.7 A red pen and a green pen are put in a hat. A pen is chosen at random in the hat, and replaced inside after it color has
been noted.

- In case the pen is of red color, then a supplementary red pen is placed in the hat.

- On the other hand if the pen color is green, then another green pen is added.

After this first part of the experiment is completed, a second pen is chosen at random.
MH3512 AY19-20



"64Determine the probability that the first drawn pen was red, given that the color of the second pen chosen was red.

Exercise 1.8 A machine relies on the functioning of three parts, each of which having a probability 1− p of being under failure, and
a probability p of functioning correctly. All three parts are functioning independently of the others, and the machine is working if and
only if two at least of the parts are operating.

a) Compute the probability that the machine is functioning.

b) Suppose that the machine itself is set in a random environment in which the value of the probability p becomes random. Precisely
we assume that p is a uniform random variable taking real values between 0 and 1, independently of the state of the system.

Compute the probability that the machine operates in this random environment.

MH3512 AY19-20
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2 Gambling Problems

This chapter consists in a detailed study of a fundamental example of random walk that can only evolve by going up of down by one
unit within the finite state space {0, 1, . . . ,S}. This allows us in particular to have a first look at the technique of first step analysis
that will be repeatedly used in the general framework of Markov chains, particularly in Chapter 5.

2.1 Constrained Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2 Ruin Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3 Mean Game Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.1 Constrained Random Walk
To begin, let us repeat that this chapter on “gambling problems” is not primarily designed to help a reader dealing with problem
gambling, although some comments on this topic are made of the end of Section 2.3.

We consider an amount $S of S dollars which is to be shared between two players A and B. At each round,
Player A may earn $1 with probability p ∈ (0, 1), and in this case Player B loses $1. Conversely, Player A
may lose $1 with probability q := 1− p, in which case Player B gains $1, and the successive rounds are indepen-
dent.

We let Xn represent the wealth of Player A at time n ∈ N, while S −Xn represents the wealth of Player B at time n ∈ N.
MH3512 AY19-20
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"66The initial wealth X0 of Player A could be negative,∗ but for simplicity we will assume that it is comprised between 0 and S. Assuming
that the value of Xn, n > 0, belongs to {1, 2, . . . ,S − 1} at the time step n, at the next step n+ 1 we will have

Xn+1 =


Xn + 1 if Player A wins round n+ 1,

Xn− 1 if Player B wins round n+ 1.

Moreover, as soon as Xn hits one of the boundary points {0,S}, the process remains frozen at that state over time, i.e.

(Xn = 0) =⇒ (Xn+1 = 0) and (Xn = S) =⇒ (Xn+1 = S),

or
P(Xn+1 = 0 | Xn = 0) = 1 and P(Xn+1 = S | Xn = S) = 1, n ∈ N.

In other words, the game ends whenever the wealth of any of the two players reaches $0, in which case the other player’s account contains
$S, see Figure 2.1.

∗Daily entry levy: Singaporeans and permanent residents may have to start with X0 = −$100. MH3512 AY19-20
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n

Xn

S =

X0 =

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2.1: Sample path of a gambling process (Xn)n∈N.

Among the main issues of interest are:

- the probability that Player A (or B) gets eventually ruined,

- the mean duration of the game.

We will also be interested in the probability distribution of the random game duration T , i.e. in the knowledge of P(T = n), n > 0.

According to the above problem description, for all n ∈ N we have

P(Xn+1 = k+ 1 | Xn = k) = p and P(Xn+1 = k− 1 | Xn = k) = q, MH3512 AY19-20



"68k = 1, 2, . . . ,S − 1, and in this case the chain is said to be time homogeneous since the transition probabilities do not depend on the
time index n.

Since we do not focus on the behavior of the chain after it hits states 0 or S, the probability distribution of Xn+1 given {Xn = 0} or
{Xn = S} can be left unspecified.

The probability space Ω corresponding to this experiment could be taken as the (uncountable) set

Ω := {−1, +1}N =
{
ω = (ω0,ω1, . . .) : ωi = ±1, n ∈ N

}
,

with any element ω ∈ Ω represented by a countable sequence of +1 or −1, depending whether the process goes up or down at each
time step. However, in the sequel we will not focus on this particular expression of Ω.

2.2 Ruin Probabilities

We are interested in the event

RA = “Player A loses all his capital at some time” =
⋃
n∈N

{Xn = 0}, (2.2.1)

and in computing the conditional probability

fS(k) := P(RA | X0 = k), k = 0, 1, . . . ,S. (2.2.2)

Pathwise analysis

First, let us note that the problem is easy to solve in the case S = 1, S = 2 and S = 3.

i) S = 1.
MH3512 AY19-20



"69In this case the boundary {0, 1} is reached from time 0 and we find

f1(0) = P(RA | X0 = 0) = 1,

f1(1) = P(RA | X0 = 1) = 0.
(2.2.3)

ii) S = 2.

In this case we find 

f2(0) = P(RA | X0 = 0) = 1,

f2(1) = P(RA | X0 = 1) = q,

f2(2) = P(RA | X0 = 2) = 0.

(2.2.4)

iii) S = 3.

The value of f2(1) = P(RA | X0 = 1) is computed by noting that starting from state 1 , one can reach state 0 only by an
odd number 2n+ 1 of step, n ∈ N, and that every such path decomposes into n+ 1 independent downwards steps, each of
them having probability q, and n upwards steps, each of them with probability p. By summation over n using the geometric series
identity (A.3), this yields 

f3(0) = P(RA | X0 = 0) = 1,

f3(1) = P(RA | X0 = 1) = q
∑
n>0

(pq)n =
q

1− pq
,

f3(2) = P(RA | X0 = 2) = q2 ∑
n>0

(pq)n =
q2

1− pq
,

f3(3) = P(RA | X0 = 3) = 0.

(2.2.5)

The value of f3(2) is computed similarly by considering n+ 2 independent downwards steps, each of them with probability q, and n
upwards steps, each of them with probability p. Clearly, things become quite complicated for S > 4, and increasingly difficult as SMH3512 AY19-20



"70gets larger.

First step analysis

The general case will be solved by the method of first step analysis, which will be repeatedly applied to other Markov processes in
Chapters 3 and 5 and elsewhere.

Lemma 2.1

For all k = 1, 2, . . . ,S − 1 we have

P(RA | X0 = k) = pP(RA | X0 = k+ 1) + qP(RA | X0 = k− 1).

Proof

The idea is to apply conditioning given the first transition from X0 to X1. For all k = 1, 2, . . . ,S − 1, by (1.2.1) we have

P(RA | X0 = k)

= P(RA and X1 = k+ 1 | X0 = k) + P(RA and X1 = k− 1 | X0 = k)

=
P(RA and X1 = k+ 1 and X0 = k)

P(X0 = k)
+

P(RA and X1 = k− 1 and X0 = k)

P(X0 = k)

=
P(RA and X1 = k+ 1 and X0 = k)

P(X1 = k+ 1 and X0 = k)
×

P(X1 = k+ 1 and X0 = k)

P(X0 = k)

+
P(RA and X1 = k− 1 and X0 = k)

P(X1 = k− 1 and X0 = k)
×

P(X1 = k− 1 and X0 = k)

P(X0 = k)

= P(RA | X1 = k+ 1 and X0 = k)P(X1 = k+ 1 | X0 = k)

+P(RA | X1 = k− 1 and X0 = k)P(X1 = k− 1 | X0 = k)

= pP(RA | X1 = k+ 1 and X0 = k) + qP(RA | X1 = k− 1 and X0 = k)

= pP(RA | X0 = k+ 1) + qP(RA | X0 = k− 1),

where we used Lemma 2.2 below on the last step. �
MH3512 AY19-20



"71In the case S = 3, Lemma 2.1 shows that


f3(0) = P(RA | X0 = 0) = 1,

f3(1) = pf3(2) + qf3(0) = pf3(2) + q = pqf3(1) + q,

f3(2) = pf3(3) + qf3(1) = qf3(1) = pqf3(2) + q2,

f3(3) = P(RA | X0 = 3) = 0,

whose solution can be checked to be given by (2.2.5).

More generally, Lemma 2.1 shows that the function

fS : {0, 1, . . . ,S} −→ [0, 1]

defined by (2.2.2) satisfies the linear equation∗

f(k) = pf(k+ 1) + qf(k− 1), k = 1, 2, . . . ,S − 1, (2.2.6)

subject to the boundary conditions

fS(0) = P(RA | X0 = 0) = 1, (2.2.7)

and

fS(S) = P(RA | X0 = S) = 0, (2.2.8)

for k ∈ {0,S}. It can be easily checked that the expressions (2.2.3), (2.2.4) and (2.2.5) do satisfy the above Equation (2.2.6) and the
boundary conditions (2.2.7) and (2.2.8).

∗Due to the relation (f + g)(k) = f(k) + g(k) we can check that if f and g are two solutions of (2.2.6) then f + g is also a solution of (2.2.6), hence the equation is linear.MH3512 AY19-20
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Note that Lemma 2.1 is frequently stated without proof. The last step of the proof stated above rely on the following lemma, which
shows that the data ofX1 entirely determines the probability of the ruin event RA. In other words, the probability of ruin depends only
on the initial amount k owned by the gambler when he enters the casino. Whether he enters the casino at time 1 with X1 = k± 1 or
at time 0 with X0 = k± 1 makes no difference on the ruin probability.

Lemma 2.2

For all k = 1, 2, . . . ,S − 1 we have

P(RA | X1 = k± 1 and X0 = k) = P(RA | X1 = k± 1) = P(RA | X0 = k± 1).

In other words, the ruin probability depends on the data of the starting point and not on the starting time.

Proof

This relation can be shown in various ways:

1. Descriptive proof (preferred): we note that given X1 = k+ 1, the transition from X0 to X1 has no influence on the future
of the process after time 1, and the probability of ruin starting at time 1 is the same as if the process is started at time 0.

2. Algebraic proof: first for 1 6 k 6 S − 1 and k± 1 > 1, letting X̃0 := X1−Z where Z ' X1−X0 has same distribution
as X1−X0 and is independent of X1, by (2.2.1) we have

P(RA | X1 = k± 1 and X0 = k)

= P

 ⋃
n>0
{Xn = 0}

∣∣∣∣∣ X1 = k± 1, X0 = k



=

P

 ⋃
n>0
{Xn = 0}

∩ {X1 = k± 1} ∩ {X0 = k}


P ({X1 = k± 1} ∩ {X0 = k})

MH3512 AY19-20
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=

P

 ⋃
n>0

({Xn = 0} ∩ {X1 = k± 1} ∩ {X0 = k})


P ({X1 = k± 1} ∩ {X0 = k})

=

P

 ⋃
n>2

({Xn = 0} ∩ {X1 = k± 1} ∩ {X0 = k})


P ({X1 = k± 1} ∩ {X0 = k})

=

P

 ⋃
n>2
{Xn = 0}

∩ {X1 = k± 1} ∩ {X0 = k}


P ({X1 = k± 1} ∩ {X0 = k})

=

P

 ⋃
n>2
{Xn = 0}

∩ {X1 = k± 1} ∩ {X1− X̃0 = ±1}


P
(
{X1 = k± 1} ∩ {X1− X̃0 = ±1}

) (2.2.9)

=

P

 ⋃
n>2
{Xn = 0}

∩ {X1 = k± 1}
P

(
{X1− X̃0 = ±1}

)
P ({X1 = k± 1}) P

(
{X1− X̃0 = ±1}

) (2.2.10)

= P

 ⋃
n>2
{Xn = 0}

∣∣∣∣∣ {X1 = k± 1}


= P

 ⋃
n>1
{Xn = 0}

∣∣∣∣∣ {X0 = k± 1}


= P(RA | X0 = k± 1),

otherwise if k = 1 we easily find that

P(RA | X1 = 0 and X0 = 1) = 1 = P(RA | X0 = 0),

since {X1 = 0} ⊂ RA =
⋃
n∈N

{Xn = 0}. Note that when switching from (2.2.9) to (2.2.10), using X̃0 := X1 − Z we

regard the process increment starting from X1 as run backward in time.

�

MH3512 AY19-20



"74In the remaining of this section we will prove that in the non-symmetric case p 6= q the solution of (2.2.6) is given∗ by

fS(k) = P(RA | X0 = k) =
(q/p)k − (q/p)S

1− (q/p)S
=

1− (p/q)S−k

1− (p/q)S
, (2.2.11)

k = 0, 1, . . . ,S, and that in the symmetric case p = q = 1/2 the solution of (2.2.6) is given by

fS(k) = P(RA | X0 = k) =
S − k
S

= 1−
k

S
, (2.2.12)

k = 0, 1, . . . ,S, cf. also Exercise 2.3 for a different derivation.

Remark that (2.2.11) and (2.2.12) do satisfy both boundary conditions (2.2.7) and (2.2.8). When the number S of states becomes large
we find that, for all k > 0,

f∞(k) := lim
S→∞

P(RA | X0 = k) =



1 if q > p,

q
p

k if p > q,
(2.2.13)

which represents the probability of hitting the origin starting from state k , cf. also (3.4.16) below and Exercise 3.2-(c) for a different
derivation of this statement.

Exercise: Check that (2.2.11) agrees with (2.2.4) and (2.2.5) when S = 2 and S = 3.

In the graph of Figure 2.2 the ruin probability (2.2.11) is plotted as a function of k for p = 0.45 and q = 0.55.

∗The techniques used to solve (2.2.6) can be found in MH1301 Discrete Mathematics. MH3512 AY19-20
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Figure 2.2: Ruin probability f20(k) function of X0 = k ∈ [0, 20] for S = 20 and p = 0.45.

We now turn to the solution of (2.2.6), for which we develop two different approaches (called here the “standard solution” and the
“direct solution”) that both recover (2.2.11) and (2.2.12).

Standard solution method

We decide to look for a solution of (2.2.6) of the form ∗

k 7−→ f(k) = Cak, (2.2.14)

where C and a are constants which will be determined from the boundary conditions and from the equation (2.2.6), respectively.

Substituting (2.2.14) into (2.2.6) when C is non-zero yields the characteristic equation

pa2− a+ q = p(a− 1)(a− q/p) = 0, (2.2.15)

∗Where did we get this idea? From intuition, experience, or empirically by multiple trials and errors. MH3512 AY19-20



"76of degree 2 in the unknown a, and this equation admits in general two solutions a1 and a2 given by

{a1, a2} =
1 +

√
1− 4pq
2p

,
1−
√

1− 4pq
2p

 =

1,
q

p

 = (1, r),

for all p ∈ (0, 1], with
a1 = 1 and a2 = r =

q

p
.

Note that we have a1 = a2 = 1 in case p = q = 1/2.

Non-symmetric case: p 6= q - Proof of (2.2.11)

In this case we have p 6= q, i.e.∗ r 6= 1, and

f(k) = C1a
k
1 = C1 and f(k) = C2r

k

are both solutions of (2.2.6). Since (2.2.6) is linear, the sum of two solutions remains a solution, hence the general solution of
(2.2.6) is given by

fS(k) = C1a
k
1 +C2a

k
2 = C1 +C2r

k, k = 0, 1, . . . ,S, (2.2.16)

where r = q/p andC1,C2 are two constants to be determined from the boundary conditions, see also the command RSolve[f[k]=pf[k+1]+(1-
p)f[k-1],f[k],k].

From (2.2.7), (2.2.8) and (2.2.16) we have 
fS(0) = 1 = C1 +C2,

fS(S) = 0 = C1 +C2r
S,

(2.2.17)

and solving the system (2.2.17) of two equations we find

C1 = −
rS

1− rS
and C2 =

1
1− rS

,

∗From the Latin “id est” meaning “that is”. MH3512 AY19-20
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"77which yields (2.2.11) as by (2.2.16) we have

fS(k) = C1 +C2r
k =

rk − rS

1− rS
=

(q/p)k − (q/p)S

1− (q/p)S
, k = 0, 1, . . . ,S.

Symmetric case: p = q = 1/2 - Proof of (2.2.12)

In this case, Equation (2.2.6) rewrites as

f(k) =
1
2
f(k+ 1) +

1
2
f(k− 1), k = 1, 2, . . . ,S − 1, (2.2.18)

and we have r = 1 (fair game) and (2.2.15) reads

a2− 2a+ 1 = (a− 1)2 = 0,

which has the unique solution a = 1, since the constant function f(k) = C is solution of (2.2.6).

However this is not enough and we need to combine f(k) = C1 with a second solution. Noting that g(k) = C2k is also solution
of (2.2.6), the general solution is found to have the form

fS(k) = f(k) + g(k) = C1 +C2k, (2.2.19)

see also the command RSolve[f[k]=(1/2)f[k+1]+(1/2)f[k-1],f[k],k]. From (2.2.7), (2.2.8) and (2.2.19) we have

fS(0) = 1 = C1,

fS(S) = 0 = C1 +C2S,
(2.2.20)

and solving the system (2.2.20) of two equations we find

C1 = 1 and C2 = −1/S, MH3512 AY19-20
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"78which yields the quite intuitive solution

fS(k) = P(RA | X0 = k) =
S − k
S

= 1−
k

S
, k = 0, 1, . . . ,S. (2.2.21)

Direct solution method

Noting that p+ q = 1 and due to its special form, we can rewrite (2.2.6) as

(p+ q)fS(k) = pfS(k+ 1) + qfS(k− 1),

k = 1, 2, . . . ,S − 1, i.e. as the difference equation

p(fS(k+ 1)− fS(k))− q(fS(k)− fS(k− 1)) = 0, (2.2.22)

k = 1, 2, . . . ,S − 1, which rewrites as

fS(k+ 1)− fS(k) =
q

p
(fS(k)− fS(k− 1)), k = 1, 2, . . . ,S − 1,

hence for k = 1 we have
fS(2)− fS(1) =

q

p
(fS(1)− fS(0)),

and for k = 2 we find
fS(3)− fS(2) =

q

p
(fS(2)− fS(1)) =

q
p

2

(fS(1)− fS(0)).

Following by induction on k > 2, we can show that

fS(k+ 1)− fS(k) =

q
p

k (fS(1)− fS(0)), (2.2.23)
MH3512 AY19-20



"79k = 0, 1, . . . ,S − 1. Next, by the telescoping sum

fS(n) = fS(0) +
n−1∑
k=0

(fS(k+ 1)− fS(k)),

Relation (2.2.23) implies

fS(n) = fS(0) + (fS(1)− fS(0))
n−1∑
k=0

q
p

k , (2.2.24)

n = 1, 2, . . . ,S − 1. The remaining question is how to find fS(1)− fS(0), knowing that fS(0) = 1 by (2.2.7).

Non-symmetric case: p 6= q

In this case we have r = q/p 6= 1 and we get

fS(n) = fS(0) + (fS(1)− fS(0))
n−1∑
k=0

rk

= fS(0) +
1− rn

1− r
(fS(1)− fS(0)), (2.2.25)

n = 1, 2, . . . ,S − 1, where we used (A.2).

Conditions (2.2.7) and (2.2.8) show that

0 = fS(S) = 1 +
1− rS

1− r
(fS(1)− fS(0)),

hence
fS(1)− fS(0) = −

1− r
1− rS

,

and combining this relation with (2.2.25) yields

fS(n) = fS(0)−
1− rn

1− rS
= 1−

1− rn

1− rS
=
rn− rS

1− rS
,

MH3512 AY19-20
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"80n = 0, 1, . . . ,S, which recovers (2.2.11).

Symmetric case: p = q = 1/2

In this case we have r = 1 and in order to solve (2.2.18) we note that (2.2.22) simply becomes

fS(k+ 1)− fS(k) = fS(1)− fS(0), k = 0, 1, . . . ,S − 1,

and (2.2.24) reads
fS(n) = fS(0) + n(fS(1)− fS(0)), n = 1, 2, . . . ,S − 1,

which has the form (2.2.19). Then the conditions fS(0) = 1 and fS(S) = 0, cf. (2.2.7) and (2.2.8), yield

0 = fS(S) = 1 + S(fS(1)− fS(0)), hence fS(1)− fS(0) = −
1
S

,

and
fS(n) = fS(0)−

n

S
= 1−

n

S
=
S − n
S

,

n = 0, 1, . . . ,S, which coincides with (2.2.21).

Remark 2.3

Note that when p = q = 1/2, (2.2.22) can be read as a discretization of a continuous Laplace equation as

∂2f

∂x2 (x) '
∂f

∂x
(x+ 1/2)−

∂f

∂x
(x− 1/2)

' (f(x+ 1)− f(x)− (f(x)− f(x− 1)))
= 0, x ∈ R, (2.2.26)

which admits a solution of the form

f(x) = f(0) + xf ′(0) = f(0) + x(f(1)− f(0)), x ∈ R,
MH3512 AY19-20



"81showing the intuition behind the linear form of (2.2.19).

In order to compute the probability of ruin of Player B given that X0 = k we only need to swap k to S − k and to exchange p and
q in (2.2.11). In other words, when X0 = k then Player B starts with an initial amount S − k and a probability q of winning each
round, which by (2.2.11) yields

P(RB | X0 = k) =
(p/q)S−k − (p/q)S

1− (p/q)S
=

1− (q/p)k

1− (q/p)S
if p 6= q, (2.2.27)

where
RB := “Player B loses all his capital at some time” =

⋃
n∈N

{Xn = S}.

In the symmetric case p = q = 1/2 we similarly find

P(RB | X0 = k) =
k

S
, k = 0, 1, . . . ,S, if p = q =

1
2

, (2.2.28)

see also Exercise 2.3 below.

Note that (2.2.27) and (2.2.28) satisfy the expected boundary conditions

P(RB | X0 = 0) = 0 and P(RB | X0 = S) = 1,

since X0 represents the wealth of Player A at time 0.

By (2.2.11) and (2.2.27) we can check that∗

P(RA ∪RB | X0 = k) = P(RA | X0 = k) + P(RB | X0 = k)

∗ Exercise: check by hand computation that the equality to 1 holds as stated. MH3512 AY19-20
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=

(q/p)k − (q/p)S

1− (q/p)S
+

1− (q/p)k

1− (q/p)S

= 1, k = 0, 1, . . . ,S, (2.2.29)

which means that eventually one of the two players has to lose the game. This means in particular that, with probability one, the game
cannot continue endlessly.

In other words, we have
P(Rc

A ∩R
c
B | X0 = k) = 0, k = 0, 1, . . . ,S.

In the particular case S = 3 we can indeed check by (1.2.4) that, taking

An :=
n⋂
k=1

{
X2k−1 = 1 and X2k = 2

}
, n > 1,

the sequence (An)n>1 is non-increasing, hence

P

 ⋂
n>1

{
X2n−1 = 1 and X2n = 2

} ∣∣∣∣∣ X0 = 2


= P

 ⋂
n>1

n⋂
k=1

{
X2k−1 = 1 and X2k = 2

} ∣∣∣∣∣ X0 = 2


= lim
n→∞P

 n⋂
k=1

{
X2k−1 = 1 and X2k = 2

} ∣∣∣∣∣ X0 = 2


= p lim
n→∞(pq)

n = 0,

since we always have 0 6 pq < 1, and where we used (1.2.4). However, this is a priori not completely obvious when S > 4.
MH3512 AY19-20



"83The expected terminal wealth of Player A starting from state k is given by

0×P(RA | X0 = k) + S ×P(RB | X0 = k) =



S
1− (q/p)k

1− (q/p)S
if p 6= q,

k if p = q =
1
2

.
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Figure 2.3: Expected terminal wealth of Player A starting from state k = 1.

When the number S of states becomes large, (2.2.27) also shows that for all k > 0 we have

lim
S→∞

P(RB | X0 = k) =



0 if p 6 q,

1−
q
p

k if p > q,

which represents the complement of the probability (2.2.13) of hitting the origin starting from state k , and is the probability that the
process (Xn)n∈N “escapes to infinity”. MH3512 AY19-20
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In Figure 2.4 below the ruin probability (2.2.11) is plotted as a function of p for S = 20 and k = 10.
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Figure 2.4: Ruin probability as a function of p ∈ [0, 1] for S = 20 and k = 10.

Gambling machines in casinos are computer controlled and most countries permit by law a certain degree of “unfairness” (see the notions
of “payout percentage” or “return to player”) by taking p < 1/2 in order to allow the house to make an income.∗ Interestingly, we can
note that taking e.g. p = 0.45 < 1/2 gives a ruin probability

P(RA | X0 = 10) = 0.8815,

almost equal to 90%, which means that the slightly unfair probability p = 0.45 at the level of each round translates into a probability
of only 0.1185 ' %12 of finally winning the game, i.e. a division by 4 from 0.45, although the average proportion of winning rounds
is still 45%.

Hence a “slightly unfair” game on each round can become devastatingly unfair in the long run. Most (but not all) gamblers are aware
that gambling machines are slightly unfair, however most people would intuitively believe that a small degree of unfairness on each

∗In this game, the payout is $2 and the payout percentage is 2p. MH3512 AY19-20

http://en.wikipedia.org/wiki/Slot_machine#Payout_percentage


"85round should only translate into a reasonably low degree of unfairness in the long run.

2.3 Mean Game Duration

Let now
T0,S = inf{n > 0 : Xn = 0 or Xn = S}

denote the time∗ until any of the states 0 or S is reached by (Xn)n∈N, with T0,S = +∞ in case neither states are ever reached, i.e.
when there exists no integer n > 0 such that Xn = 0 or Xn = S, see Figure 2.5.

n

Xn

S =

X0 =

T0,6T0,6

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2.5: Sample paths of a gambling process (Xn)n∈N.

∗The notation “inf” stands for “infimum”, meaning the smallest n > 0 such that Xn = 0 or Xn = S, if such an n exists. MH3512 AY19-20



"86Note that by (2.2.29) we have

P(T0,S <∞ | X0 = k) = P(RA ∪RB | X0 = k) = 1, k = 0, 1, . . . ,S.

and therefore
P(T0,S =∞ | X0 = k) = 0, k = 0, 1, . . . ,S.

We are now interested in computing the expected duration

hS(k) := IE[T0,S | X0 = k]

of the game given that Player A starts with a wealth equal to X0 = k ∈ {0, 1, . . . ,S}. Clearly, we have the boundary conditions

hS(0) = IE[T0,S | X0 = 0] = 0,

hS(S) = IE[T0,S | X0 = S] = 0.

(2.3.1a)

(2.3.1b)

We start by considering the particular cases S = 2 and S = 3.

i) S = 2.

We have

T0,2 =



0 if X0 = 0,

1 if X0 = 1,

0 if X0 = 2,

thus T0,2 is deterministic given the value of X0 and we simply have h2(1) = T0,2 = 1 when X0 = 1.

ii) S = 3.
MH3512 AY19-20



"87In this case the probability distribution of T0,3 given X0 ∈ {0, 1, 2, 3} can be determined explicitly and we find, when X0 = 1,


P(T0,3 = 2k | X0 = 1) = p2(pq)k−1, k > 1,

P(T0,3 = 2k+ 1 | X0 = 1) = q(pq)k, k > 0,

since in an even number 2k of steps we can only exit through state 3 after starting from 1 , while in an odd number 2k+ 1 of
steps we can only exit through state 0 . By exchanging p with q in the above formulas we get, when X0 = 2,


P(T0,3 = 2k | X0 = 2) = q2(pq)k−1, k > 1,

P(T0,3 = 2k+ 1 | X0 = 2) = p(pq)k, k > 0,

whereas T0,3 = 0 whenever X0 = 0 or X0 = 3.

As a consequence, we can directly compute

h3(2) = IE[T0,3 | X0 = 2] = 2
∑
k>1

kP(T0,3 = 2k | X0 = 2)

+
∑
k>0

(2k+ 1)P(T0,3 = 2k+ 1 | X0 = 2)

= 2q2 ∑
k>1

k(pq)k−1 + p
∑
k>0

(2k+ 1)(pq)k

=
2q2

(1− pq)2 +
2p2q

(1− pq)2 +
p

1− pq

=
2q2 + p+ qp2

(1− pq)2

=
2(1− p)q+ 1− q+ q(1− q)p

(1− pq)2

=
1 + q− pq− q2p

(1− pq)2

=
1 + q

1− pq
, (2.3.2)

MH3512 AY19-20



"88where we applied (A.4), and by exchanging p and q we get

h3(1) = IE[T0,3 | X0 = 1] =
2p2 + q+ pq2

(1− pq)2 =
1 + p

1− pq
. (2.3.3)

Again, things can become quite complicated for S > 4, and increasingly difficult when S becomes larger.

In the general case S > 4 we will only compute the conditional expectation of T0,S and not its probability distribution. For this we rely
again on first step analysis, as stated in the following lemma.

Lemma 2.4

For all k = 1, 2, . . . ,S − 1 we have

IE[T0,S | X0 = k] = 1 + p IE[T0,S | X0 = k+ 1] + q IE[T0,S | X0 = k− 1].

Proof

We condition on the first transition from X0 to X1. Using the equality 1A = 1A∩B + 1A∩Bc under the form

1{X0=k} = 1{X1=k+1,X0=k}+ 1{X1=k−1,X0=k},

cf. (1.4.2), and conditional expectations we show, by first step analysis, that for all k = 1, 2, . . . ,S − 1, applying Lemma 1.4 and
(1.6.6) successively to A = {X0 = k}, A = {X0 = k− 1} and A = {X0 = k+ 1}, we have

IE[T0,S | X0 = k] =
1

P(X0 = k)
IE
[
T0,S1{X0=k}

]

=
1

P(X0 = k)

(
IE
[
T0,S1{X1=k+1,X0=k}

]
+ IE

[
T0,S1{X1=k−1,X0=k}

])

=
P(X1 = k+ 1 and X0 = k)

P(X0 = k)
IE[T0,S | X1 = k+ 1,X0 = k]

+
P(X1 = k− 1 and X0 = k)

P(X0 = k)
IE[T0,S | X1 = k− 1,X0 = k]

MH3512 AY19-20



"89= P(X1 = k+ 1 | X0 = k) IE[T0,S | X1 = k+ 1,X0 = k]

+P(X1 = k− 1 | X0 = k) IE[T0,S | X1 = k− 1,X0 = k]

= p IE[T0,S | X1 = k+ 1,X0 = k] + q IE[T0,S | X1 = k− 1,X0 = k]

(2.3.4)
= p IE[T0,S + 1 | X0 = k+ 1,X−1 = k] + q IE[T0,S + 1 | X0 = k− 1,X−1 = k]

(2.3.5)
= p IE[T0,S + 1 | X0 = k+ 1] + q IE[T0,S + 1 | X0 = k− 1]
= p(1 + IE[T0,S | X0 = k+ 1]) + q(1 + IE[T0,S | X0 = k− 1])
= p+ q+ p IE[T0,S | X0 = k+ 1] + q IE[T0,S | X0 = k− 1]
= 1 + p IE[T0,S | X0 = k+ 1] + q IE[T0,S | X0 = k− 1].

From (2.3.4) to (2.3.5) we relabelled X1 as X0, which amounts to changing T0,S − 1 into T0,S, or equivalently changing T0,S into
T0,S + 1. �

In the case S = 3, Lemma 2.4 shows that


h3(0) = IE[T0,S | X0 = 0] = 0,

h3(1) = 1 + ph3(2) + qh3(0) = 1 + ph3(2) = 1 + p(1 + qh3(1)) = 1 + p+ pqh3(1),

h3(2) = 1 + ph3(3) + qh3(1) = 1 + qh3(1) = 1 + q(1 + ph3(2)) = 1 + q+ pqh3(2),

h3(3) = IE[T0,S | X0 = 3] = 0,

whose solution can be checked to be given by (2.3.2)-(2.3.3).

More generally, defining the function hS : {0, 1, . . . ,S} −→ R+ by

hS(k) := IE[T0,S | X0 = k], k = 0, 1, . . . ,S,

Lemma 2.4 shows that

hS(k) = p(1 + hS(k+ 1)) + q(1 + hS(k− 1)) = 1 + phS(k+ 1) + qhS(k− 1), MH3512 AY19-20



"90k = 1, 2, . . . ,S − 1, i.e. we have to solve the equation


h(k) = 1 + ph(k+ 1) + qh(k− 1), k = 1, 2, . . . ,S − 1,

h(0) = h(S) = 0,
(2.3.6)

for the function h(k). Using the fact that p+ q = 1, we can rewrite (2.3.6) as

(p+ q)h(k) = 1 + ph(k+ 1) + qh(k− 1), k = 1, 2, . . . ,S − 1,

or as the difference equation

p(h(k+ 1)− h(k))− q(h(k)− h(k− 1)) = −1, k = 1, 2, . . . ,S − 1, (2.3.7)

under the boundary conditions∗ (2.3.1a) and (2.3.1b).

The equation
p(f(k+ 1)− f(k))− q(f(k)− f(k− 1)) = 0, k = 1, 2, . . . ,S − 1, (2.3.8)

cf. (2.2.22), is called the homogeneous equation associated to (2.3.7).

We will use the following fact:

The general solution to (2.3.7) can be written as the sum of a homogeneous solution of (2.3.8) and a particular solution of (2.3.7).

Non-symmetric case: p 6= q

By (2.2.16) we know that the homogeneous solution of (2.3.8) is of the form C1 + C2r
k. Next, searching for a particular solution of

(2.3.7) of the form k 7−→ Ck shows that C has to be equal to C = 1/(q− p). Therefore, when r = q/p 6= 1, the general solution of

∗The techniques used to solve (2.3.6) can be found in MH1301 Discrete Mathematics. MH3512 AY19-20

http://www1.spms.ntu.edu.sg/~maths/Undergraduates/MASUndergradModules.html


"91(2.3.7) has the form
hS(k) = C1 +C2r

k +
1

q− p
k, (2.3.9)

see also the command RSolve[f[k]=1+pf[k+1]+(1-p)f[k-1],f[k],k]. From the boundary conditions (2.3.1a) and (2.3.1b) and from (2.3.9)
we have 

hS(0) = 0 = C1 +C2,

hS(S) = 0 = C1 +C2r
S +

1
q− p

S,
(2.3.10)

and solving the system (2.3.10) of two equations we find

C1 = −
S

(q− p)(1− rS)
and C2 =

S

(q− p)(1− rS)
,

hence from (2.3.9) we get

hS(k) = IE[T0,S | X0 = k] =
1

q− p

k− S 1− (q/p)k

1− (q/p)S

 (2.3.11)

=
1

q− p
(k− SP(RB | X0 = k)) , k = 0, 1, 2, . . . ,S,

which does satisfy the boundary conditions (2.3.1a) and (2.3.1b). Note that changing k to S − k and p to q does not modify (2.3.11),
as it also represents the mean game duration for Player B. In particular, we note that

IE[T0,L | S0 = k] < +∞, k = 0, 1, 2, . . . ,L.

When p = 1, i.e. r = 0, we can check easily that e.g. hS(k) = S − k, k = 0, 1, 2, . . . ,S. On the other hand, when the number SMH3512 AY19-20
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"92of states becomes large, we find that for all k > 1,

h∞(k) := lim
S→∞

hS(k) = lim
S→∞

IE[T0,S | X0 = k] =


∞ if q 6 p,

k

q− p
if q > p,

(2.3.12)

with h∞(0) = 0, cf. also the symmetric case treated in (2.3.17) below when p = q = 1/2. In particular, for k > 1 we have


P(T0 <∞ | X0 = k) < 1 and IE[T0 =∞ | X0 = k] =∞, for p > q,

P(T0 <∞ | X0 = k) = 1 and IE[T0 =∞ | X0 = k] =∞, for p = q =
1
2

,

P(T0 <∞ | X0 = k) = 1 and IE[T0 =∞ | X0 = k] <∞, for p < q.

We note in particular that the mean game duration IE[T0 = ∞ | X0 = k] is infinite in the fair game case p = q = 1/2. When
r = q/p 6 1, this yields an example of a random variable T0 which is (almost surely∗) finite, while its expectation is infinite.† This
situation is similar to that of the St. Petersburg paradox as in (1.6.5). Similarly, one can find sequences (Xn)n∈N of random variables
such that Xn → 0 with probability one, while IE[Xn]→∞ as n tends to infinity.

When S = 2 it is easy to show that (2.3.11) yields h2(1) = 1. When S = 3, (2.3.11) shows that, using the relation p+ q = 1,‡

IE[T0,3 | X0 = 1] =
1

q− p

1− 3
1− q/p

1− (q/p)3

 =
1 + p

1− pq
, (2.3.13)

and
IE[T0,3 | X0 = 2] =

1
q− p

2− 3
1− (q/p)2

1− (q/p)3

 =
1 + q

1− pq
, (2.3.14)

however it takes more time to show that (2.3.13) and (2.3.14) agree respectively with (2.3.2) and (2.3.3), see for example here. In
Figure 2.6 below the mean game duration (2.3.11) is plotted as a function of k for p = 0.45.

∗“Almost surely” means “with probability 1”.
†Recall that an infinite set of finite data values may have an infinite average.
‡This point is left as exercise. MH3512 AY19-20

http://en.wikipedia.org/wiki/St._Petersburg_paradox
http://www.wolframalpha.com/input/?i=x*x^3*(1-2*x)*(x^3-(1-x)^3)*(2*x^2%2b1-x%2bx*(1-x)^2)-(1-x*(1-x))^2*x^3*((x^3-(1-x)^3)*x-3*x^3*(x-(1-x)))&incParTime=true
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Figure 2.6: Mean game duration h20(k) as a function of X0 = k ∈ [0, 20] for p = 0.45.

Symmetric case: p = q = 1/2

In this case (fair game) the homogeneous solution of (2.3.8) is C1 +C2k, given by (2.2.19).

Since r = 1 we see that k 7−→ Ck can no longer be a particular solution of (2.3.7). However we can search for a particular solution of
the form k 7−→ Ck2, in which case we find that C has to be equal to C = −1.

Therefore when r = q/p = 1 the general solution of (2.3.7) has the form

hS(k) = C1 +C2k− k2, k = 0, 1, 2, . . . ,S, (2.3.15)

see also the command RSolve[f[k]=1+(1/2)f[k+1]+(1/2)f[k-1],f[k],k]. From the boundary conditions (2.3.1a) and (2.3.1b) and from
(2.3.15) we have 

hS(0) = 0 = C1,

hS(S) = 0 = C1 +C2S − S2,
(2.3.16)

MH3512 AY19-20
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"94and solving the above system (2.3.16) of two equations yields

C1 = 0 and C2 = S,

hence from (2.3.15) we get

hS(k) = IE[T0,S | X0 = k] = k(S − k), k = 0, 1, 2, . . . ,S,
(2.3.17)

which does satisfy the boundary conditions (2.3.1a) and (2.3.1b) and coincides with (2.3.12) when S goes to infinity. In particular, we
note that

IE[T0,S | S0 = k] < +∞, k = 0, 1, 2, . . . ,S.

We note that for all values of p the expectation IE[T0,S | X0 = k] has a finite value, which shows that the game duration T0,S is finite
with probability one for all k = 0, 1, . . . ,S, i.e. P(T0,S =∞ | X0 = k) = 0 for all k = 0, 1, . . . ,S.

Remark 2.5

When r = 1, by the same argument as in (2.2.26) we find that (2.3.7) is a discretization of the continuous Poisson equation

1
2
∂2f

∂x2 (x) = −1, x ∈ R,

which has for solution
f(x) = f(0) + xf ′(0)− x2, x ∈ R.

Note that (2.3.17) can also be recovered from (2.3.11) by letting p go to 1/2. In the next Figure 2.7 the expected game duration (2.3.11)
is plotted as a function of p for S = 20 and k = 10. MH3512 AY19-20
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Figure 2.7: Mean game duration as a function of p ∈ [0, 1] for S = 20 and k = 10.

As expected, the duration will be maximal in a fair game for p = q = 1/2. On the other hand, it always takes exactly 10 = S− k = k

steps to end the game in case p = 0 or p = 1, in which case there is no randomness. When p = 0.45 the expected duration of the
game becomes 76.3, which represents only a drop of 24% from the “fair” value 100, as opposed to the 73% drop noticed above in terms
of winning probabilities. Thus, a game with p = 0.45 is only slightly shorter than a fair game, whereas the probability of winning the
game drops down to 0.12.

Remark 2.6

In this Chapter 2 we have noticed an interesting connection between analysis and probability. That is, a probabilistic quantity such
as k 7−→ P(RA | X0 = k) or k 7−→ IE[T0,S | X0 = k] can be shown to satisfy a difference equation which is solved by analytic
methods. This fact actually extends beyond the present simple framework, and in continuous time it yields other connections between
probability and partial differential equations.

In the next chapter we will consider a family of simple random walks which can be seen as “unrestricted” gambling processes.MH3512 AY19-20



"96Exercises
Exercise 2.1 We consider a gambling problem with the possibility of a draw,∗ i.e. at time n the gain Xn of Player A can increase by
one unit with probability r ∈ (0, 1/2], decrease by one unit with probability r, or remain stable with probability 1− 2r. We let

f(k) := P(RA | X0 = k)

denote the probability of ruin of Player A, and let

h(k) := IE[T0,S | X0 = k]

denote the expectation of the game duration T0,S starting from X0 = k, k = 0, 1, . . . ,S.

a) Using first step analysis, write down the difference equation satisfied by f(k) and its boundary conditions, k = 0, 1, . . . ,S. We
refer to this equation as the homogeneous equation.

b) Solve the homogeneous equation of Question (a) by your preferred method. Is this solution compatible with your intuition of the
problem? Why?

c) Using first step analysis, write down the difference equation satisfied by h(k) and its boundary conditions, k = 0, 1, . . . ,S.

d) Find a particular solution of the equation of Question (c).

e) Solve the equation of Question (c).

Hint: recall that the general solution of the equation is the sum of a particular solution and a solution of the homogeneous equation.

f) How does the mean duration h(k) behave as r goes to zero? Is this solution compatible with your intuition of the problem? Why?

Exercise 2.2 Recall that for any standard gambling process (Zk)k∈N on a state space {a, a+ 1, . . . , b− 1, b} with absorption at
states a and b and probabilities p 6= q of moving by ±1, the probability of hitting state a before hitting state b after starting

∗Also called “lazy random walk” MH3512 AY19-20



"97from state Z0 = k ∈ {a, a+ 1, . . . , b− 1, b} is given by

1− (p/q)b−k

1− (p/q)b−a
. (2.3.18)

In questions (a)-(b)-(c) below we consider a gambling process (Xk)k∈N on the state space {0, 1, . . . ,S} with absorption at 0 and S

and probabilities p 6= q of moving by ±1.

a) Using Relation (2.3.18), give the probability of coming back in finite time to a given state m ∈ {1, 2, . . . ,S − 1} after starting
from X0 = k ∈ {m+ 1, . . . ,S}.

b) Using Relation (2.3.18), give the probability of coming back in finite time to the given state m ∈ {1, 2, . . . ,S − 1} after starting
from X0 = k ∈ {0, 1, . . . ,m− 1}.

c) Using first step analysis, give the probability of coming back to state m in finite time after starting from X0 = m.

d) Using first step analysis, compute the mean time to either come back to m of reach any of the two boundaries {0,S}, whichever
comes first?

e) Repeat the above questions (c)-(d) with equal probabilities p = q = 1/2, in which case the probability of hitting state a before
hitting state b after starting from state Z0 = k is given by

b− k
b− a

, k = a, a+ 1, . . . , b− 1, b. (2.3.19)

Exercise 2.3 Consider a gambling process (Xn)n∈N on the state space S = {0, 1, . . . ,S}, with probability p, resp. q, of moving up,
resp. down, at each time step. For k = 0, 1, . . . ,S, let τk denote the first hitting time

τk := inf{n > 0 : Xn = k}.

of state k by the process (Xn)n∈N, and let

pk := P(τk+1 < τ0 | X0 = k), k = 0, 1, . . . ,S − 1, MH3512 AY19-20



"98denote the probability of hitting state
�� ��k+ 1 before hitting state 0 .

a) Show that pk = P(τk+1 < τ0 | X0 = k) satisfies the recurrence equation

pk = p+ qpk−1pk, k = 1, 2, . . . ,S − 1, (2.3.20)

i.e.
pk =

p

1− qpk−1
, k = 1, 2, . . . ,S − 1.

b) Check by substitution that the solution of (2.3.20) is given by

pk =
1− (q/p)k

1− (q/p)k+1 , k = 0, 1, . . . ,S − 1. (2.3.21)

c) Compute P(τS < τ0 | X0 = k) by a product formula and recover (2.2.11) and (2.2.27) based on the result of part (2.3.21).

d) Show that (2.2.12) and (2.2.28) can be recovered in a similar way in the symmetric case p = q = 1/2 by trying the solution
pk = k/(k+ 1), k = 0, 1, . . . ,S − 1.

Exercise 2.4 Consider a gambling process (Xn)n∈N on the state space {0, 1, 2}, with transition probabilities given by


P(X1 = 0 | X0 = 0) P(X1 = 1 | X0 = 0) P(X1 = 2 | X0 = 0)
P(X1 = 0 | X0 = 1) P(X1 = 1 | X0 = 1) P(X1 = 2 | X0 = 1)
P(X1 = 0 | X0 = 2) P(X1 = 1 | X0 = 2) P(X1 = 2 | X0 = 2)



=



0 1 2

0 q p 0
1 q 0 p

2 0 0 1

,
MH3512 AY19-20



"99where 0 < p < 1 and q = 1− p. In this game, Player A is allowed to “rebound” from state 0 to state 1 with probability p, and
state 2 is absorbing.

In order to be ruined, Player A has to visit state 0 twice. Let

f(k) := P(RA | X0 = k), k = 0, 1, 2,

denote the probability of ruin of Player A starting from k = 0, 1, 2. Starting from 0 counts as one visit to 0 .

a) Compute the boundary condition f(0) using pathwise analysis.

b) Give the value of the boundary condition f(2), and compute f(1) by first step analysis.

Exercise 2.5

a) Recover (2.3.17) from (2.3.11) by letting p go to 1/2, i.e. when r = q/p goes to 1.

b) Recover (2.2.21) from (2.2.11) by letting p go to 1/2, i.e. when r = q/p goes to 1.

Exercise 2.6 Extend the setting of Exercise 2.1 to a non-symmetric gambling process with draw and respective probabilities α > 0,
β > 0, and 1−α− β > 0 of increase, decrease, and draw. Compute the ruin probability f(k) and the mean game duration h(k) in
this extended framework. Check that when α = β ∈ (0, 1/2) we recover the result of Exercise 2.1.

Problem 2.7 We consider a discrete-time process (Xn)n>0 that models the wealth of a gambler within {0, 1, . . . ,S}, with the transition
probabilities 

P(Xn+1 = k+ 1 | Xn = k) = p, k = 0, 1, . . . ,S − 1,

P(Xn+1 = k− 1 | Xn = k) = q, k = 1, 2, . . . ,S − 1,
with

P(Xn+1 = 0 | Xn = 0) = q and P(Xn+1 = S | Xn = S) = 1, MH3512 AY19-20
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allowed to “rebound” to state 1 after reaching 0 . Let

W =
⋃
n∈N

{Xn = S}

denote the event that the player eventually wins the game.

a) Let
g(k) := P(W | X0 = k)

denote the probability that the player eventually wins after starting from state k ∈ {0, 1, . . . ,S}. Using first step analysis, write
down the difference equations satisfied by g(k), k = 0, 1, . . . ,S − 1, and their boundary condition(s), which may not be given in
explicit form. This question is standard, however one has to pay attention to the special behavior of the process at state 0 .

b) Obtain P(W | X0 = k) for all k = 0, 1, . . . ,S as the unique solution to the system of equations stated in Question (a).

The answer to this question is very simple and can be obtained through intuition. However, a (mathematical) proof is required.

c) Let
TS = inf{n > 0 : Xn = S}

denote the first hitting time of S by the process (Xn)n>0. Let

h(k) := IE[TS | X0 = k]

denote the expected time until the gambler wins after starting from state k ∈ {0, 1, . . . ,S}. Using first step analysis, write down
the difference equations satisfied by h(k) for k = 0, 1, . . . ,S − 1, and state the corresponding boundary condition(s).

Again, one has to pay attention to the special behavior of the process at state 0 , as the equation obtained by first step analysis for
h(0) will take a particular form and can be viewed as a second boundary condition.

d) Compute IE[TS | X0 = k] for all k = 0, 1, . . . ,S by solving the equations of Question (c).
MH3512 AY19-20



"101This question is more difficult than Question (b), and it could be skipped at first reading since its result is not used in the sequel.
One can solve the associated homogeneous equation for k = 1, 2, . . . ,S− 1 using the results of Section 2.3, and a particular solution
can be found by observing that here we consider the time until Player A (not B) wins. As usual, the cases p 6= q and p = q = 1/2
have to be considered separately at some point. The formula obtained for p = 1 should be quite intuitive and may help you check
your result.

e) Let now
T0 = inf{n > 0 : Xn = 0}

denote the first hitting time of 0 by the process (Xn)n>0. Using the results of Section 2.2 for the ruin of Player B, write down the
value of

pk := P(TS < T0 | X0 = k)

as a function of p, S, and k = 0, 1, . . . ,S.

Note that according to the notation of Chapter 2, {TS < T0} denotes the event “Player A wins the game”.

f) Explain why the equality

P(TS < T0 | X1 = k+ 1 and X0 = k) = P(TS < T0 | X1 = k+ 1)
= P(TS < T0 | X0 = k+ 1). (2.3.22)

holds for k ∈ {0, 1, . . . ,S − 1} (an explanation in words will be sufficient here).

g) Using Relation (2.3.22), show that the probability

P(X1 = k+ 1 | X0 = k and TS < T0)

of an upward step given that state S is reached first, is equal to

P(X1 = k+ 1 | X0 = k and TS < T0) = p
P(TS < T0 | X0 = k+ 1)

P(TS < T0 | X0 = k)
= p

pk+1

pk
, (2.3.23)

k = 1, 2, . . . ,S− 1, to be computed explicitly from the result of Question (e). How does this probability compare to the value of p?MH3512 AY19-20
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No particular difficulty here, the proof should be a straightforward application of the definition of conditional probabilities.

h) Compute the probability
P(X1 = k− 1 | X0 = k and T0 < TS), k = 1, 2, . . . ,S,

of a downward step given that state 0 is reached first, using similar arguments to Question (g).

i) Let
h(k) = IE[TS | X0 = k, TS < T0], k = 1, 2, . . . ,S,

denote the expected time until the player wins, given that state 0 is never reached. Using the transition probabilities (2.3.23), state
the finite difference equations satisfied by h(k), k = 1, 2, . . . ,S − 1, and their boundary condition(s).

The derivation of the equation is standard, but you have to make a careful use of conditional transition probabilities given {TS < T0}.
There is an issue on whether and how h(0) should appear in the system of equations, but this point can actually be solved.

j) Solve the equation of Question (i) when p = 1/2 and compute h(k) for k = 1, 2, . . . ,S. What can be said of h(0)?

There is actually a way to transform this equation using an homogeneous equation already solved in Section 2.3.

Problem 2.8 Let S > 1. We consider a discrete-time process (Xn)n>0 that models the wealth of a gambler within {0, 1, . . . ,S},
with the transition probabilities

P(Xn+1 = k+ 2 | Xn = k) = p, P(Xn+1 = k− 1 | Xn = k) = 2p,

and
P(Xn+1 = k | Xn = k) = r, k ∈ Z,

for all n ∈ N = {0, 1, 2, . . .}, where p > 0, r > 0, and 3p+ r = 1. We let

τ := inf{n > 0 : Xn 6 0 or Xn > S}. MH3512 AY19-20
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g(k) := P(Xτ > S | X0 = k)

that the game ends with Player A winning the game, starting from X0 = k. Give the values of g(0), g(S) and g(S + 1).

b) Using first step analysis, write down the difference equation satisfied by g(k), k = 1, 2, . . . ,S − 1, and its boundary conditions,
by taking overshoot into account. We refer to this equation as the homogeneous equation.

c) Solve the equation of Question (b) from its characteristic equation as in (2.2.15).

d) Does the answer to Question (c) depend on p? Why?

e) Consider the expected time
h(k) := IE[τ | X0 = k], k = 0, 1, . . . ,S + 1,

spent until the end of the game. Give the values of h(0), h(S) and h(S + 1).

f) Using first step analysis, write down the difference equation satisfied by h(k), k = 1, 2, . . . ,S − 1, and its boundary conditions.

g) Find a particular solution of the equation of Question (e).

h) Solve the equation of Question (c).

Hint: the general solution of the equation is the sum of a particular solution and a solution of the associated homogeneous equation.

i) How does the mean duration h(k) behave as p goes to zero? Is this compatible with your intuition of the problem? Why?

j) How do the values of g(k) and h(k) behave for fixed k ∈ {1, 2, . . . ,S − 1} as S tends to infinity?

Problem 2.9 ([AH12]). Consider a gambling process (Xn)n>0 on the state space S = {0, 1, . . . ,S}, with transition probabilities

P(Xn+1 = k+ 1 | Xn = k) = p, P(Xn+1 = k− 1 | Xn = k) = q,

k = 1, 2, . . . ,S − 1, with p+ q = 1. Let

τ := inf{n > 0 : Xn = 0 or Xn = S} MH3512 AY19-20
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h(k) := IE
[
τ 2 | X0 = k

]
,

of τ after starting from k = 0, 1, 2, . . . ,S.

a) Give the values of h(0) and h(S).

b) Using first step analysis, find an equation satisfied by h(k) and involving IE[τ | X0 = k + 1] and IE[τ | X0 = k − 1],
k = 1, 2, . . . ,S − 1.

c) From now on we take p = q = 1/2. Recall that in this case we have

IE[τ | X0 = k] = (S − k)k, k = 0, 1, . . . ,S.

Show that the function h(k) satisfies the finite difference equation

h(k) = −1 + 2(S − k)k+
1
2
h(k+ 1) +

1
2
h(k− 1), k = 1, 2, . . . ,S − 1. (2.3.24)

d) Knowing that

k 7−→
2
3
k2−

2S
3
k3 +

k4

3
is a particular solution of the equation (2.3.24) of Question (c), and that the solution of the homogeneous equation

f(k) =
1
2
f(k+ 1) +

1
2
f(k− 1), k = 1, 2, . . . ,S − 1,

takes the form
f(k) = C1 +C2k,

compute the value of the expectation h(k) solution of (2.3.24) for all k = 0, 1, . . . ,S.

e) Compute the variance
v(k) = IE

[
τ 2 | X0 = k

]
−

(
IE[τ | X0 = k]

)2
MH3512 AY19-20



"105of the game duration starting from k = 0, 1, . . . ,S.

f) Compute v(1) when S = 2 and explain why the result makes pathwise sense.

MH3512 AY19-20



"106

3 Random Walks

In this chapter we consider our second important example of discrete-time stochastic process, which is a random walk allowed to evolve
over the set Z of signed integers without any boundary restriction. Of particular importance are the probabilities of return to a given
state in finite time, as well as the corresponding mean return time.

3.1 Unrestricted Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.2 Mean and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.3 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.4 First Return to Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.1 Unrestricted Random Walk

The simple unrestricted random walk (Sn)n>0, also called the Bernoulli random walk, is defined by S0 = 0 and

Sn =
n∑
k=1

Xk = X1 + · · ·+Xn, n > 1,

where the random walk increments (Xk)k>1 form a family of independent, {−1, +1}-valued random variables.

We will assume in addition that the family (Xk)k>1 is i.i.d., i.e. it is made of independent and identically distributed Bernoulli randomMH3512 AY19-20



"107variables, with distribution 
P(Xk = +1) = p,

P(Xk = −1) = q, k > 1,
with p+ q = 1.

3.2 Mean and Variance

In this case the mean and variance of Xn are given by

IE[Xn] = −1× q+ 1× p = 2p− 1 = p− q,

and

Var[Xn] = IE[X2
n]− (IE[Xn])

2

= 1× q+ 1× p− (2p− 1)2

= 4p(1− p) = 4pq.

As a consequence, we find that

IE[Sn | S0 = 0] = IE
 n∑
k=1

Xk

 =
n∑
k=1

IE [Xk] = n(2p− 1) = n(p− q),

and the variance can be computed by (1.6.10) as

Var[Sn | S0 = 0] = Var
 n∑
k=1

Xk

 =
n∑
k=1

Var[Xk] = 4npq,

where we used (1.6.10). MH3512 AY19-20



"1083.3 Distribution

First we note that in an even number of time steps, (Sn)n∈N can only reach an even state in Z starting from 0 . Similarly, in an odd
number of time steps, (Sn)n∈N can only reach an odd state in Z starting from 0 . Indeed, starting from Sn = k the value of Sn+2

after two time steps can only belong to {k− 2, k, k+ 2}. Consequently, we have


P(S2n = 2k+ 1 | S0 = 0) = 0, k ∈ Z, n ∈ N,

P(S2n+1 = 2k | S0 = 0) = 0, k ∈ Z, n ∈ N,

(3.3.1)

and
P(Sn = k | S0 = 0) = 0, for k < −n or k > n, (3.3.2)

since S0 = 0. Next, let l denote the number of upwards steps between time 0 and time 2n, whereas 2n− l will denote the number of
downwards steps. If S2n = 2k we have

2k = l− (2n− l) = 2l− 2n,

hence there are l = n+ k upwards steps and 2n− l = n− k downwards steps, −n 6 k 6 n. The probability of a given paths
having l = n+ k upwards steps and 2n− l = n− k downwards steps is

pn+kqn−k

and in order to find P(S2n = 2k | S0 = 0) we need to multiply this probability by the total number of paths leading from 0 to
�� ��2k

in 2n steps. We find that this number of paths is  2n
n+ k

 =

 2n
n− k


which represents the number of ways to arrange n+ k upwards steps (or n− k downwards steps) within 2n time steps.

Hence we have
MH3512 AY19-20
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P(S2n = 2k | S0 = 0) =

 2n
n+ k

pn+kqn−k, −n 6 k 6 n, (3.3.3)

in addition to (3.3.1) and (3.3.2). In Figure 3.1 we enumerate the 120 =

10
7

 =

10
3

 possible paths corresponding to n = 5 and

k = 2.

Figure 3.1: Graph of 120 =

(
10
7

)
=

(
10
3

)
paths with n = 5 and k = 2.∗

Exercises:

i) Show by a similar analysis that

P(S2n+1 = 2k+ 1 | S0 = 0) =

 2n+ 1
n+ k+ 1

pn+k+1qn−k, −n 6 k 6 n, (3.3.4)

∗Animated figure (works in Acrobat Reader). MH3512 AY19-20



"110i.e. (2n+ 1 + S2n+1)/2 is a binomial random variable with parameter (2n+ 1, p), and

P

2n+ 1 + S2n+1

2
= k

∣∣∣∣∣ S0 = 0
 = P (S2n+1 = 2k− 2n− 1 | S0 = 0)

=

2n+ 1
k

pkq2n+1−k,

k = 0, 1, . . . , 2n+ 1.

ii) Show that n+ S2n/2 is a binomial∗ random variable with parameter (2n, p), i.e., show that

P

n+
S2n

2
= k

∣∣∣∣∣ S0 = 0
 = P (S2n = 2k− 2n | S0 = 0)

=

2n
k

pkq2n−k, k = 0, 1, . . . , 2n.

3.4 First Return to Zero

Let
T r0 := inf{n > 1 : Sn = 0}

denote the time of first return to 0 of the random walk started at 0 , with the convention inf ∅ = +∞.† We are interested in
particular in computing the mean time IE[T r0 | S0 = 0] it takes to return to state 0 after starting from state 0 , see Figure 3.2.

∗Note that S2n is always an even number after we start from S0 = 0.
†Recall that the notation “inf” stands for “infimum”, meaning the smallest n > 0 such that Sn = 0, with T r0 = +∞ if no such n > 0 exists. MH3512 AY19-20
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n

Sn

S0 =
T r0

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 3.2: Sample path of the random walk (Sn)n∈N.

We are interested in computing the distribution

g(n) = P(T r0 = n | S0 = 0), n > 1,

of the first return time T r0 to 0 . It is easy to show by pathwise analysis that T r0 can only be even-valued starting from 0 , hence
g(2k+ 1) = 0 for all k ∈ N, and in particular we have

P(T r0 = 1 | S0 = 0) = 0, P(T r0 = 2 | S0 = 0) = 2pq, (3.4.1)

and
P(T r0 = 4 | S0 = 0) = 2p2q2, (3.4.2)

by considering the two paths leading from 0 to 0 in two steps and the only two paths leading from 0 to 0 in four steps withoutMH3512 AY19-20
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In order to completely solve this problem we will rely on the computation of the probability generating function GT r0 of T r0 , cf. (3.4.9)
below.

This computation will use the following tools:

- convolution equation, see Relation (3.4.3) below,

- Taylor expansions, see Relation (3.4.22) below,

- probability generating functions.

First, we will need the following Lemma 3.1 which will be used in the proof of Lemma 3.4 below.
Lemma 3.1

(Convolution equation). The function

g : {1, 2, 3, . . .} −→ [0, 1]
n 7−→ g(n)

defined by
g(n) := P(T r0 = n | S0 = 0), n > 1,

satisfies the convolution equation

h(n) =
n−2∑
k=0

g(n− k)h(k), n > 1, (3.4.3)

with the initial condition g(1) = 0, where h(n) := P(Sn = 0 | S0 = 0) is given from (3.3.3) by

h(2n) =

2n
n

pnqn, and h(2n+ 1) = 0, n ∈ N. (3.4.4)

MH3512 AY19-20
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We first partition the event {Sn = 0} into

{Sn = 0} =
n−2⋃
k=0

{
Sk = 0, Sk+1 6= 0, . . . ,Sn−1 6= 0, Sn = 0

}
, n > 1,

according to all possible times k = 0, 1, . . . ,n− 2 of last return to state 0 before time n, with {S1 = 0} = ∅ since we are
starting from S0 = 0, see Figure 3.3.

n

Sn

S0 =
n =k =

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.3: Last return to state 0 at time k = 10.

Then we have

h(n) := P(Sn = 0 | S0 = 0)

MH3512 AY19-20
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=

n−2∑
k=0

P
(
Sk = 0, Sk+1 6= 0, . . . ,Sn−1 6= 0, Sn = 0 | S0 = 0

)

=
n−2∑
k=0

P
(
Sk+1 6= 0, . . . ,Sn−1 6= 0, Sn = 0 | Sk = 0, S0 = 0

)
P(Sk = 0 | S0 = 0)

=
n−2∑
k=0

P
(
Sk+1 6= 0, . . . ,Sn−1 6= 0, Sn = 0 | Sk = 0

)
P(Sk = 0 | S0 = 0)

(3.4.5)

=
n−2∑
k=0

P
(
S1 6= 0, . . . ,Sn−k−1 6= 0, Sn−k = 0 | S0 = 0

)
P(Sk = 0 | S0 = 0)

(3.4.6)

=
n−2∑
k=0

P(T r0 = n− k | S0 = 0)P(Sk = 0 | S0 = 0)

=
n−2∑
k=0

h(k)g(n− k), n > 1, (3.4.7)

where from (3.4.5) to (3.4.6) we applied a shift of k steps in time, from time k+ 1 to time 1. �

We now need to solve the convolution equation (3.4.3) for g(n) = P(T r0 = n | S0 = 0), n > 1, knowing that g(1) = 0. For this
we will derive a simple equation for the probability generating function

GT r0 : [−1, 1] −→ R

s 7−→ GT r0 (s)

of the random variable T r0 , defined by

GT r0 (s) := IE
[
sT

r
01{T r0<∞}

∣∣∣S0 = 0
]
=

∑
n>0

snP(T r0 = n | S0 = 0) =
∑
n>0

sng(n),

−1 6 s 6 1, cf. (1.7.1).
MH3512 AY19-20
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"115Recall that the knowledge of GT r0 (s) provides certain information on the distribution of T r0 , such as the probability

P(T r0 <∞ | S0 = 0) = IE
[
1{T r0<∞}

∣∣∣S0 = 0
]
= GT r0 (1)

and the expectation
IE
[
T r01{T r0<∞}

∣∣∣S0 = 0
]
=

∑
n>1

nP(T r0 = n | S0 = 0) = G′T r0
(1−).

In Lemma 3.4 below we will compute GT r0 (s) for all s ∈ [−1, 1]. First, let the function

H : R −→ R

s 7−→ H(s)

be defined by
H(s) :=

∑
k>0

h(k)sk =
∑
k>0

skP(Sk = 0 | S0 = 0), −1 6 s 6 1.

In the following lemma we show that the function H(s) can be computed in closed form.
Proposition 3.2

We have
H(s) = (1− 4pqs2)−1/2, |s| <

1
2√pq

.

Proof

By (3.4.4) and the fact that P(S2k+1 = 0 | S0 = 0) = 0, k ∈ N, we have

H(s) =
∑
k>0

skP(Sk = 0 | S0 = 0) (3.4.8)

=
∑
k>0

s2kP(S2k = 0 | S0 = 0) =
∑
k>0

s2k
2k
k

pkqk

=
∑
k>0

(pq)ks2k (2k)(2k− 1)(2k− 2)(2k− 3)× · · · × 4× 3× 2× 1
(k(k− 1)× · · · × 2× 1)2

MH3512 AY19-20
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=

∑
k>0

(4pq)ks2kk(k− 1/2)(k− 2/2)(k− 3/2)× · · · × (4/2)× (3/2)× (2/2)× (1/2)
(k(k− 1)× · · · × 2× 1)2

=
∑
k>0

(4pq)ks2k (k− 1/2)(k− 3/2)× · · · × (3/2)× (1/2)
k(k− 1)× · · · × 2× 1

=
∑
k>0

(−1)k(4pq)ks2k (−1/2− (k− 1))(3/2− k)× · · · × (−3/2)× (−1/2)
k(k− 1)× · · · × 2× 1

=
∑
k>0

(−4pqs2)k
(−1/2)× (−3/2)× · · · × (3/2− k)(−1/2− (k− 1))

k!
= (1− 4pqs2)−1/2,

|4pqs2| < 1,a see for example here. �

aWe used the formula (1 + x)α =
∑
k>0

xk

k!
α(α− 1)× · · · × (α− (k− 1)), cf. Relation (A.8).

Remark 3.3

We note that, taking s = 1, by (1.6.1) we have

H(1) =
∑
k>0

P(Sk = 0 | S0 = 0)

=
∑
k>0

IE[1{Sk=0} | S0 = 0]

= IE
∑
k>0

1{Sk=0}

∣∣∣∣∣ S0 = 0
 ,

hence H(1) = 1/
√

1− 4pq represents the mean number of visits of the random walk (Sn)n∈N to state 0 .

Next, based on the convolution equation (3.4.3) of Lemma 3.1 we compute GT r0 (s) in the next Lemma 3.4 by deriving and solving an
Equation (3.4.13) for GT r0 (s). This method has some similarities with the z-transform method used in electrical engineering.

MH3512 AY19-20

http://www.wolframalpha.com/input/?i=Sum[(p*q)^k*s^(2*k)*Bin[2*k,k],k=0...Infinity]


"117Lemma 3.4

The probability generating function GT r0 of the first return time T r0 to 0 is given by

GT r0 (s) = 1−
1

H(s)
= 1−

√
1− 4pqs2, 4pqs2 < 1. (3.4.9)

Proof

We have, taking into account the relations g(1) = P(T r0 = 1 | S0 = 0) = 0 and h(0) = 0,

GT r0 (s)H(s) =

∑
n>1

sng(n)

 ∑
k>0

skh(k)


=

∑
n>2

∑
k>0

sn+kg(n)h(k) =
∑
k>0

∑
n>2

sn+kg(n)h(k) (3.4.10)

=
∑
l>2
sl

l−2∑
k=0

g(l− k)h(k) (3.4.11)

=
∑
l>1
slh(l) (3.4.12)

=
∑
l>1
slP(Sl = 0 | S0 = 0)

= −1 +
∑
l>0
slP(Sl = 0 | S0 = 0) = H(s)− 1,

where from line (3.4.10) to line (3.4.11) we have applied the change of variable (k,n) 7−→ (k, l) with l = n+ k, and from line
(3.4.11) to line (3.4.12) we have used the convolution equation (3.4.3) of Lemma 3.1. This shows that GT r0 (s) satisfies the equation

MH3512 AY19-20
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GT r0 (s)H(s) = H(s)− 1, 4pqs2 < 1. (3.4.13)

Solving (3.4.13) yields the value of GT r0 (s) for all s such that 4pqs2 < 1. �

See Exercise 3.4-(e) for another derivation of (3.4.9) based on first step analysis.∗

We will apply our knowledge of GT r0 (s) to the computation of the first return time distribution of T r0 , the probability of return to 0
in finite time, and the mean return time to 0 .

Probability of return to zero in finite time

The probability that the first return to 0 occurs within a finite time is

P(T r0 <∞ | S0 = 0) = IE
[
1{T r0<∞}

∣∣∣S0 = 0
]
= IE

[
1T r01{T r0<∞}

∣∣∣S0 = 0
]

= GT r0 (1) = 1−
√

1− 4pq

= 1− |2p− 1| = 1− |p− q| =


2q, p > 1/2,

2p, p 6 1/2,
= 2 min(p, q), (3.4.14)

hence

P(T r0 =∞ | S0 = 0) = |2p− 1| = |p− q|. (3.4.15)

Note that in (2.2.13) above we have shown that the probability of hitting state 0 in finite time starting from any state k with k > 1

∗“Any good theorem should have several proofs, the more the better. For two reasons: usually, different proofs have different strengths and weaknesses, and they generalise in different
directions - they are not just repetitions of each other. Some of them are good for this application, some are good for that application. They all shed light on the area. If you cannot look
at a problem from different directions, it is probably not very interesting; the more perspectives, the better !” - Sir Michael Atiyah. MH3512 AY19-20
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P(T r0 <∞ | S0 = k) = min
1,

q
p

k
 , k > 1, (3.4.16)

i.e.

P(T r0 =∞ | S0 = k) = max
0, 1−

q
p

k
 , k > 1,

cf. also Exercise 3.2-(c) and Exercise 3.4-(c).

In the non-symmetric case p 6= q, Relation (3.4.14) shows that

P(T r0 <∞ | S0 = 0) < 1 and P(T r0 =∞ | S0 = 0) > 0,

whereas in the symmetric case (or fair game) p = q = 1/2 we find that

P(T r0 <∞ | S0 = 0) = 1 and P(T r0 =∞ | S0 = 0) = 0,

i.e. the random walk returns to 0 with probability one.

See Exercises 3.4-(b) and 5.10-(a) for other derivations of (3.4.16).

Mean return time to zero

i) In the non-symmetric case p 6= q, by (3.4.15), the time T r0 needed to return to state 0 is infinite with probability

P(T r0 =∞ | S0 = 0) = |p− q| > 0,

hence the expected value∗

IE[T r0 | S0 = 0] = ∞×P(T r0 =∞ | S0 = 0) +
∑
k>1

kP(T r0 = k | S0 = 0)

= ∞ (3.4.17)
∗Note that the summation

∑
k>1 =

∑
16k<∞ actually excludes the value k =∞. MH3512 AY19-20
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Note that starting from S0 = k > 1, by (2.3.12) we have found that the mean hitting time of state 0 equals

IE[T r0 | S0 = k] =


∞ if q 6 p,

k

q− p
if q > p.

(3.4.18)

In particular we have P(T r0 <∞ | S0 = k) = 1 when q > p and k > 1, which is consistent with (3.4.16). See Exercise 5.10-(b)
for other derivations of (2.3.12)-(3.4.18) using the probability generating function s 7→ GT r0 (s).

Remark 3.5

By (3.4.9), the truncated expectation IE[T r01{T r0<∞} | S0 = 0] satisfies

IE[T r01{T r0<∞} | S0 = 0] =
∑
n>1

nP(T r0 = n | S0 = 0)

= G′T r0
(1−)

=
4pqs

√
1− 4pqs2

∣∣∣∣∣s=1

=
4pq

√
1− 4pq

=
4pq
|p− q|

, (3.4.19)

when p 6= q, see for example here and in Figure 3.4-a), which shows in particular from Lemma 1.4 that

IE[T r0 | T
r
0 <∞, S0 = 0] =

1
P(T r0 <∞ | S0 = 0)

IE[T r01{T r0<∞} | S0 = 0]

∗We use the convention∞× 0 = 0. MH3512 AY19-20

http://www.wolframalpha.com/input/?i=D[1-(1-4*p*q*s*s)^(1/2),s]
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=

1
min(p, q)

2pq
|p− q|

= 2
max(p, q)
|p− q|

.
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(a) Graph of GT r0 (s) with p = 0.35.
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(b) Graph of GT r0 (s) with p = 0.5.

Figure 3.4: Probability generating functions of T r0 for p = 0.35 and p = 0.5.

ii) In the symmetric case p = q = 1/2 we have P(T r0 <∞ | S0 = 0) = 1 and

IE[T r0 | S0 = 0] = IE
[
T r01{T r0<∞}

∣∣∣S0 = 0
]
= G′T r0

(1−) =∞ (3.4.20)

as the slope of s 7→ GT r0 (s) in Figure 3.4-b) is infinite at s = 1, or by taking the limit as p, q → 1/2 in (3.4.19) or (3.4.18).

When p = q = 1/2 the random walk returns to state 0 with probability one within a finite (random) time, while the average of
this random time is infinite. This yields another example of a random variable T r0 which is almost surely finite, while its expectation
is infinite as in the St. Petersburg paradox.

This shows how even a fair game can be risky when the player’s wealth is negative as it will take on average an infinite time to
recover the losses. MH3512 AY19-20

http://en.wikipedia.org/wiki/St._Petersburg_paradox
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Proposition 3.6 can also be obtained from the path counting result of Exercise 3.8.
Proposition 3.6

The probability distribution P(T r0 = n | S0 = 0) of the first return time T r0 to 0 is given by

P(T r0 = 2k | S0 = 0) =
1

2k− 1

2k
k

(pq)k, k ∈ N, (3.4.21)

with P(T r0 = 2k+ 1 | S0 = 0) = 0, k ∈ N.

Proof

By applying a Taylor expansion to s 7−→ 1− (1− 4pqs2)1/2 in (3.4.9), we get

GT r0 (s) = 1− (1− 4pqs2)1/2

= 1−
∑
k>0

1
k!
(−4pqs2)k

(1
2
− 0

) (1
2
− 1

)
× · · · ×

(1
2
− (k− 1)

)

=
1
2
∑
k>1

s2k (4pq)
k

k!

(
1−

1
2

)
× · · · ×

(
k− 1−

1
2

)
, (3.4.22)

where we used (A.8) for α = 1/2. By identification of (3.4.22) with the expansion

GT r0 (s) =
∑
n>0

snP(T r0 = n | S0 = 0), −1 6 s 6 1,

we obtain

P(T r0 = 2k | S0 = 0) = g(2k)

=
(4pq)k

k!
1
2

(
1−

1
2

)
× · · · ×

(
k− 1−

1
2

)

MH3512 AY19-20
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=

(4pq)k

2k!

k−1∏
m=1

(
m−

1
2

)

=
1

2k− 1

2k
k

(pq)k, k ∈ N,

while P(T r0 = 2k + 1 | S0 = 0) = g(2k + 1) = 0, k ∈ N. This conclusion could also be obtained using (1.7.7) from the
relation

P(T r0 = n | S0 = 0) =
1
n!
∂n

∂sn
GT r0 (s)|s=0, n ∈ N.

�

Exercise: Check that the formula (3.4.21) recovers (3.4.1) and (3.4.2) when k = 0, 1, 2.

Using the independence of increments of the random walk (Sn)n∈N one can also show that the probability generating function of the
first passage time

Tk = inf{n > 0 : Sn = k}

to any level k > 1 is given by

GTk(s) =

1−
√

1− 4pqs2

2qs


k

, 4pqs2 < 1, q 6 p, (3.4.23)

from which the distribution of Tk can be computed given the series expansion of GTk(s), cf. Exercise 3.4 below with k = −i.

The gambling process of Chapter 2 and the standard random walk (Sn)n∈N will later be reconsidered as particular cases in the general
framework of Markov chains of Chapters 4 and 5.

Exercises
Exercise 3.1 We consider the simple random walk (Sn)n∈N of Section 3.1 with independent increments and started at S0 = 0, in
which the probability of advance is p and the probability of retreat is 1− p.

a) Enumerate all possible sample paths that conduct to S4 = 2 starting from S0 = 0. MH3512 AY19-20
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P(S4 = 2 | S0 = 0) =

4
3

p3(1− p) =

4
1

p3(1− p).

c) Show that we have

P(Sn = k | S0 = 0) (3.4.24)

=



 n

(n+ k)/2

p(n+k)/2(1− p)(n−k)/2, n+ k even and |k| 6 n,

P(Sn = k | S0 = 0) = 0, n+ k odd or |k| > n.

d) Show, by a direct argument using a “last step” analysis at time n+ 1 on random walks, that pn,k := P(Sn = k | S0 = 0) satisfies
the difference equation

pn+1,k = ppn,k−1 + qpn,k+1, (3.4.25)

under the boundary conditions p0,0 = 1 and p0,k = 0, k 6= 0.

e) Confirm that pn,k = P(Sn = k | S0 = 0) given by (3.4.24) satisfies the equation (3.4.25) and its boundary conditions.

Exercise 3.2 Consider a random walk (Sn)n∈N on Z with independent increments and probabilities p, resp. q = 1− p of moving up
by one step, resp. down by one step. Let

T0 = inf{n > 0 : Sn = 0}

denote the hitting time of state 0 .

a) Explain why for any k > 1 we have
IE[T0 | S0 = k] = k IE[T0 | S0 = 1],

and compute IE[T0 | S0 = 1] using first step analysis when q > p. What can we conclude when p > q?

b) Explain why, by the Markov property, we have

P(T0 <∞ | S0 = k) = (P(T0 <∞ | S0 = 1))k , k > 1. MH3512 AY19-20
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pα2−α+ q = p(α− q/p)(α− 1) = 0,

and give the values of P(T0 <∞ | S0 = 1) and P(T0 =∞ | S0 = 1) in the cases p < q and p > q respectively.

Exercise 3.3 Consider the random walk
Sn := X1 + · · ·+Xn, n > 1,

with S0 = 0, where (Xk)k>1 is a sequence of Bernoulli random variables with

P(Xk = 1) = p ∈ (0, 1), P(Xk = −1) = q ∈ (0, 1),

and p+ q = 1. Recall that the probability generating function (PGF)

GT r0 (s) =
∑
k>0

skP(T r0 = k), s ∈ [−1, 1], (3.4.26)

of the first return time T r0 := inf{Sn = 0 : n > 1} to state 0 is given by

GT r0 (s) = 1−
√

1− 4pqs2, s ∈ [−1, 1]. (3.4.27)

a) Compute P(T r0 = 0) and P(T r0 <∞) from GT r0 .

b) By differentiation of (3.4.26) and (3.4.27), compute P(T r0 = 1), P(T r0 = 2), P(T r0 = 3) and P(T r0 = 4) using the PGF GT r0 .

c) Compute IE[T r0 | T r0 <∞] using the PGF GT r0 .

Exercise 3.4 Consider a simple random walk (Xn)n>0 on Z with respective probabilities p and q of increment and decrement. Let

T0 := inf{n > 0 : Xn = 0} MH3512 AY19-20
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Gi(s) := IE
[
sT0 | X0 = i

]
, −1 < s < 1, i ∈ Z.

a) By a first step analysis argument, find the finite difference equation satisfied by Gi(s), and its boundary condition(s) at i = 0 and
i = ±∞.

b) Find the value of Gi(s) for all i ∈ Z and s ∈ (0, 1), and recover the result of (3.4.23) on the probability generating function of
the hitting time T0 of 0 starting from state i .

c) Recover Relation (2.2.13)-(3.4.16) using Gi(s).

d) Recover Relation (2.3.12)-(3.4.18) by differentiation of s 7→ Gi(s).

e) Recover the result of (3.4.9) on the probability generating function of the return time T r0 to 0 .

Exercise 3.5 Using the probability distribution (3.4.21) of T r0 , recover the fact that IE[T r01{T r0<∞} | S0 = 0] =∞, when p = q = 1/2.

Exercise 3.6 Consider a sequence (Xk)k>1 of independent Bernoulli random variables with

P(Xk = 1) = p, and P(Xk = −1) = q, k > 1,

where p+ q = 1, and let the process (Mn)n∈N be defined by M0 := 0 and

Mn :=
n∑
k=1

2k−1Xk, n > 1.

a) Compute IE[Mn] for all n > 0.

b) Consider the hitting time τ := inf{n > 1 : Mn = 1} and the stopped process

Mmin(n,τ ) = Mn1{n<τ}+ 1{τ6n}, n ∈ N.

Determine the possible values of Mmin(n,τ ), and the probability distribution of Mmin(n,τ ) at any time n > 1. MH3512 AY19-20
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d) Based on the result of part (b), compute IE[Mmin(n,τ )] for all n > 1.

Exercise 3.7 Winning streaks. Consider a sequence (Xn)n>1 of independent Bernoulli random variables with the distribution

P(Xn = 1) = p, P(Xn = 0) = q, n > 1,

with q := 1− p. For some m > 1, let T (m) denote the time of the first appearance of m consecutive “1” in the sequence (Xn)n>1.
For example, for m = 4 the following sequence

(

1
↓
0,

2
↓
1,

3
↓
1,

4
↓
0,

5
↓
1,

6
↓
1,

7
↓
1,

8
↓
1︸ ︷︷ ︸

4 times

, 0, 1, 1, 0, . . .)

yields T (4) = 8.

a) Compute P(T (m) < m), P(T (m) = m), P(T (m) = m+ 1), and P(T (m) = m+ 2).

b) Show that the probability generating function

GT (m)(s) := IE
[
sT

(m)
1{T (m)<∞}

]
, s ∈ (−1, 1),

satisfies
GT (m)(s) = pmsm +

m−1∑
k=0

pkqsk+1GT (m)(s), s ∈ (−1, 1). (3.4.28)

Hint: Look successively at all possible starting patterns of the form

(1, . . . , 1,
k
↓
1, 0, . . .),

where k = 0, 1, . . . ,m, compute their respective probabilities, and apply a “k-step analysis” argument.

c) From (3.4.28), compute the probability generating function GT (m) of T (m) for all s ∈ (−1, 1). MH3512 AY19-20
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m−1∑
k=0

xk =
1− xm

1− x
, x ∈ (−1, 1).

d) From the probability generating function GT (m)(s), compute IE
[
T (m)

]
for all m > 1.

Hint: It can be simpler to differentiate inside (3.4.28) and to use the relation

(1− x)
m−1∑
k=0

(k+ 1)xk +mxm =
1− xm

1− x
, x ∈ (−1, 1).

Exercise 3.8 Consider a random walk (Sn)n∈N on Z with increments ±1, started at S0 = 0. Recall that the number of paths joining
states 0 and

�� ��2k over 2m time steps is  2m
m+ k

. (3.4.29)

a) Compute the total number of paths joining S1 = 1 to S2n−1 = 1.

Hint: Apply the formula (3.4.29).

b) Compute the total number of paths joining S1 = 1 to S2n−1 = −1.

Hint: Apply the formula (3.4.29).

c) Show that to every one path joining S1 = 1 to S2n−1 = 1 by crossing or hitting 0 we can associate one path joining S1 = 1 to
S2n−1 = −1, in a one-to-one correspondence.

Hint: Draw a sample path joining S1 = 1 to S2n−1 = 1, and reflect it in such a way that the reflected path then joins S1 = 1 to
S2n−1 = −1.

d) Compute the total number of paths joining S1 = 1 to S2n−1 = 1 by crossing or hitting 0 .

Hint: Combine the answers to part (b) and part (c).

e) Compute the total number of paths joining S1 = 1 to S2n−1 = 1 without crossing or hitting 0 .

Hint: Combine the answers to part (a) and (d). MH3512 AY19-20
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Hint: Apply two times the answer to part (e). A drawing is recommended.

Problem 3.9 Time spent above zero by a random walk. Consider a symmetric random walk (Sn)n∈N started at S0 = 0. We let

T+
2n := 2

n∑
r=1

1{S2r−1>1}

denote an even estimate of the time spent strictly above the level 0 by the random walk between time 0 and time 2n. We also let

T0 := inf{n > 1 : Sn = 0}

denote an even estimate of the time of first return of (Sn)n∈N to 0 .

a) Compute P(S2n = 2k) for k = 0, 1, . . . ,n.

b) Show the convolution equation

P(S2n = 0) =
n∑
r=1

P(T0 = 2r)P(S2n−2r = 0), n > 1.

c) By partitioning the event {T+
2n = 2k} according to all possible times 2r = 2, 4, . . . , 2n of first return to state 0 until time 2n,

show the convolution equation

P(T+
2n = 2k) =

n∑
r=1

P
(
T0 = 2r, T+

2n = 2k
)

=
1
2

k∑
r=1

P
(
T0 = 2r

)
P
(
T+

2n−2r = 2k− 2r
)

+
1
2

n−k∑
r=1

P
(
T0 = 2r

)
P
(
T+

2n−2r = 2k
)
, n > 1.

d) Show that
P(T+

2n = 2k) = P(S2k = 0)P(S2n−2k = 0), 0 6 k 6 n, MH3512 AY19-20
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e) Using the Stirling approximation n! ' (n/e)n
√

2πn as n tends to∞, compute the limit

lim
n→∞P

(
T+

2n/(2n) 6 x
)
= lim

n→∞
∑

06k6nx
P
(
T+

2n/(2n) = k/n
)
,

and find the limiting distribution of T+
2n/(2n) as n tends to infinity.

Problem 3.10 Range process. Consider the random walk (Sn)n>0 defined by S0 = 0 and

Sn := X1 + · · ·+Xn, n > 1,

where (Xk)k>1 is an i.i.d. ∗ family of {−1, +1}-valued random variables with distribution


P(Xk = +1) = p,

P(Xk = −1) = q,

k > 1, where p+ q = 1. We let Rn denote the range of (S0,S1, . . . ,Sn), i.e. the (random) number of distinct values appearing in
the sequence (S0,S1, . . . ,Sn).

a) Explain why

Rn = 1 +

 sup
k=0,1,...,n

Sk

− (
inf

k=0,1,...,n
Sk

)
,

and give the value of R0 and R1.

b) Show that for all k > 1, Rk −Rk−1 is a Bernoulli random variable, and that

P(Rk −Rk−1 = 1) = P(Sk − S0 6= 0,Sk − S1 6= 0, . . . ,Sk − Sk−1 6= 0).

∗independent and identically distributed. MH3512 AY19-20

http://en.wikipedia.org/wiki/Stirling%27s_approximation
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P(Rk −Rk−1 = 1) = P(X1 6= 0,X1 +X2 6= 0, . . . ,X1 + · · ·+Xk 6= 0).

d) Show why the telescoping identity Rn = R0 +
n∑
k=1

(Rk −Rk−1) holds for all n ∈ N.

e) Show that P(T r0 =∞) = limk→∞ P(T r0 > k).

f) From the results of Questions (c) and (d), show that

IE[Rn] =
n∑
k=0

P(T r0 > k), n ∈ N,

where T r0 = inf{n > 1 : Sn = 0} is the time of first return to 0 of the random walk.

g) From the results of Questions (e) and (f), show that

P(T r0 =∞) = lim
n→∞

1
n

IE[Rn].

h) Show that
lim
n→∞

1
n

IE[Rn] = 0.

when p = 1/2, and that IE[Rn] 'n→∞ n|p− q|, when p 6= 1/2.∗

Hints and comments on Problem 3.10.

a) No mathematical computation is needed here, a credible explanation (in words) is sufficient. It may be of interest to also compute
IE[R2].

b) Show first that the two events

{Rk −Rk−1 = 1} and {Sk − S0 6= 0,Sk − S1 6= 0, . . . ,Sk − Sk−1 6= 0}
∗The meaning of f(n) 'n→∞ g(n) is limn→∞ f(n)/g(n) = 1, provided that g(n) 6= 0, n > 1. MH3512 AY19-20

http://en.wikipedia.org/wiki/Telescoping_series


"132are the same.

c) Here the events
{Rk −Rk−1 = 1} and {X1 6= 0,X1 +X2 6= 0, . . . ,X1 + · · ·+Xk 6= 0}

are not the same, however we can show the equality between the probabilities.

d) Telescoping identities can be useful in many situations, not restricted to probability or stochastic processes.

e) Use point 2. on page 27, after identifying what the events Ak are.

f) The basic identity IE[1A] = P(A) can be used.

g) A mathematically rigorous proof is asked here. The following definition of limit may be used:

A real number a is said to be the limit of the sequence (xn)n>1, written a = limn→∞ xn, if and only if for every real number
ε > 0, there exists a natural number N such that for every n > N we have |xn− a| < ε.

Alternatively, we may use the notion of Cesàro mean and state and apply the relevant theorem.

h) Use the formula (3.4.15) giving P(T r0 =∞).

MH3512 AY19-20

http://en.wikipedia.org/wiki/Telescoping_series
http://en.wikipedia.org/wiki/Limit_of_a_sequence#Formal_definition
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Figure 3.5: Illustration of the range process.∗

In Figure 3.5 the height at time n of the colored area coincides with Rn− 1.

Problem 3.11 Recurrent random walk in d dimensions. Let {e1, e2, . . . , ed} denote the canonical basis of Rd, i.e.

ek = (0, . . . , 1,
↑
k

0, . . . , 0), k = 1, 2, . . . , d.

Consider the symmetric Zd-valued random walk

Sn = X1 + · · ·+Xn, n ∈ N,

started at S0 = ~0 = (0, 0, . . . , 0), where (Xn)n>1 is a sequence of independent uniformly distributed random variables

Xn ∈ {e1, e2, . . . , ed,−e1,−e2, . . . ,−ed}, n > 1,

∗Animated figure (works in Acrobat Reader). MH3512 AY19-20



"134with distribution
P(Xn = ek) = P(Xn = −ek) =

1
2d

, k = 1, 2, . . . , d.

Let
T r~0 := inf{n > 1 : Sn = ~0}

denote the first return time of (Sn)n∈N to ~0 = (0, 0, . . . , 0). The random walk is said to be recurrent if P(T r~0 <∞) = 1.

a) Show that the probability distribution P
(
T r~0 = n

)
, n > 1, satisfies the equation

P
(
Sn = ~0

)
=

n∑
k=2

P
(
T r~0 = k

)
P
(
Sn−k = ~0

)
, n > 1.

b) Show that
m∑
n=2

P
(
T r~0 = n

)
> 1−

1
m∑
n=0

P
(
Sn = ~0

), m > 1. (3.4.30)

Hint: Start by showing that
m∑
n=1

P
(
Sn = ~0

)
=

m∑
k=2

P
(
T r~0 = k

)m−k∑
l=0

P
(
Sl = ~0

)
.

c) Show that under the condition ∑
n>0

P
(
Sn = ~0

)
=∞,

we have P
(
T r~0 <∞

)
= 1.

d) Show that

m∑
n=2

P
(
T r~0 = n

)
6

2m∑
n=2

P
(
Sn = ~0

)
m∑
n=0

P
(
Sn = ~0

), m > 1. (3.4.31)

Hint: Start by showing that
2m∑
n=1

P
(
Sn = ~0

)
=

2m∑
n=2

P
(
T r~0 = n

) 2m−n∑
l=0

P
(
Sl = ~0

)
.

MH3512 AY19-20



"135e) Show that under the condition ∑
n>0

P
(
Sn = ~0

)
<∞,

we have P
(
T r~0 =∞

)
> 0.

f) When d = 1, compute P(S2n = 0), n > 1, and show that the one-dimensional random walk is recurrent, i.e. we have
P(T r0 <∞) = 1.

Hint: Use Stirling’s approximation n! ' (n/e)n
√

2πn as n tends to∞.

g) When d = 2, show that we have

P
(
S2n = ~0

)
=

(2n)!
42n(n!)2

n∑
k=0

n
k

2

, n > 1, (3.4.32)

and that the two-dimensional random walk is recurrent, i.e. we have P
(
T r~0 <∞

)
= 1.

Hint: Use the combinatorial identity 2n
n

 =
n∑
k=0

n
k

2

and Stirling’s approximation.

h) Given i1, i2, . . . , id ∈ N, count all paths starting from ~0 and returning to ~0 via ik “forward” steps in the direction ek and ik
“backward” steps in the direction −ek, k = 1, 2, . . . , d. Deduce an expression for P

(
S2n = ~0

)
that generalizes (3.4.32) to all

d > 2.

Hint: Use multinomial coefficients.

i) Based on the Euclidean division n = and+ bn where bn ∈ {0, 1, . . . , d− 1}, show that we have

∑
n>1

P
(
S2n = ~0

)
6

∑
n>1

(2n)!
22ndnn!(an!)dabnn MH3512 AY19-20
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"136Hint: Use the bound
i1!i2! · · · id! > (an!)d(an + 1)bn

which is valid for any n = i1 + · · ·+ id, and the identity

dn =
∑

i1+···+id=n
i1,i2,...,id>0

n!
i1! · · · id!

.

j) Applying Stirling’s approximation, to n!, (2n)! and an!, show that there exists a constant C > 0 such that for all n sufficiently
large we have

(2n)!
22ndnn!(an!)d

6
C

nd/2 .

Hint: We have limm→∞(1 + x/m)m = ex for all x ∈ R.

k) Is the random walk recurrent when d > 3?

Problem 3.12 ([AR05], [BW03]). Random walks in a cookie environment, also called excited random walks, can be used to model the
behavior of primitive organisms.

In the absence of cookies the random walk is symmetric, with probabilities 1/2 of going up and down, and it can rebound to 1 with
probability 1/2 after hitting state 0 .

When the random walk encounters a cookie, its behavior becomes modified and it restarts with probabilities p and q = 1− p of moving
up, resp. down, where p ∈ [0, 1]. Every encountered cookie is eaten by the organism, and when the random walk reaches an empty
spot it restarts with equal probabilities 1/2 of moving up or down. In this case the organism wanders without a preferred direction. The
random walk is attracted by the cookies when p > 1/2, and repulsed when p < 1/2. MH3512 AY19-20
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Figure 3.6: Random walk with cookies.∗

a) Does the cookie random walk (Sn)n∈N have the Markov property? Explain your answer.

b) Suppose that at time n > 1 the random walk has just eaten a cookie at state x > 1, after eating all cookies at states 1, 2, . . . ,x− 1.
Show that in this case, the probability of reaching

�� ��x+ 1 before reaching 0 is given by

p+ (1− p)
x− 1
x+ 1

= 1−
2q
x+ 1

, x > 1.

Hint: Use first step analysis together with formula (2.2.12) page 74, see also page 81.

c) For any x > 1, let τx denote the first hitting time

τx := inf{n > 1 : Sn = x}. MH3512 AY19-20



"138Give the value of P(τ1 < τ0 | S0 = 0), and show that for all x > 1 we have∗

P(τx < τ0 | S0 = 0) =
1
2

exp
 x∑
l=2

log
(
1−

2q
l

) , x > 1,

where “log” denotes the natural logarithm “ln”.

d) Show the bound P(τx < τ0 | S0 = 0) 6 (x/2)−2q for x > 2.

Hint: Use comparison arguments between integrals and series.

e) Show that P(τ0 <∞ | S0 = 0) = 1, provided that p < 1.†

Hint: Consider P(τ0 6 τx | S0 = 0) and use Relation (1.2.3) page 27.

f) Starting from state 0 , compute the mean time needed by the random walk to reach state 1 .

Hint: Apply first step analysis, or locate and use the relevant result in Problem 2.7.

g) Suppose that a cookie has just been eaten at state x > 1, after eating all cookies at states 1, 2, . . . ,x− 1. Show that the mean
time to reach the next cookie at state

�� ��x+ 1 is 1 + q(4x+ 2).

Hint: Locate and apply the relevant results in Problem 2.7 together with first step analysis.

h) Show that the mean time to reach state x starting from 0 is given by

IE[τx | S0 = 0] = 1− 2q+ x+ 2qx2, x > 1.

Hint: Perform a summation on the results of Questions (f) and (g).

i) Suppose that a cookie has just been eaten at state x > 1, after eating all cookies at states 1, 2, . . . ,x− 1. Show that, given one

∗We use the convention
1∑
k=2

ak = 0 for any sequence (ak).

†In this case the cookie random walk is said to be recurrent. MH3512 AY19-20
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"139does not hit 0 , the probabilities of moving up to
�� ��x+ 1 , resp. down to

�� ��x− 1 , are

p

1− 2q/(x+ 1)
and

q(x− 1)/(x+ 1)
1− 2q/(x+ 1)

, x > 1.

Hint: Proceed similarly to Question (g) of Problem 2.7.

j) Suppose that a cookie has just been eaten at state x > 1, after eating all cookies at states 1, 2, . . . ,x− 1. Show that the mean
time to reach the next cookie at state

�� ��x+ 1 given one does not hit 0 is

1 +
q− 2q/(x+ 1)
1− 2q/(x+ 1)

4x
3

, x > 1.

Hint: Locate and use the relevant result in Problem 2.7.

Problem 3.13 ([AR05]). A random walk (Sn)n∈N with cookies on {1, 2, 3, . . .} is symmetric in the absence of cookies, and restarts
with probabilities p and q = 1− p of moving up, resp. down, when it encounters a cookie, where p ∈ [0, 1). The random walk starts
at state 0 , which is empty of cookie.

For any x > 1, let τx denote the first hitting time

τx := inf{n > 1 : Sn = x}, x > 1.

Recall that the probability of eating at least x cookies before returning to the origin 0 is given by

P(τx < τ0 | S0 = 0) =
1
2

x∏
l=2

(
1−

2q
l

)
, x > 1, (3.4.33)

and that the random walk is recurrent, i.e. it returns to the origin 0 in finite time whenever p < 1, that means we have P(τ0 <∞ |
S0 = 0) = 1. MH3512 AY19-20



"140a) Let X denote the number of cookies eaten by the random walk before returning to the origin 0 . Show that

P(X = 0) = 1/2, P(X = 1) = q/2,

and, using (3.4.33), that the distribution of satisfies

P(X = x) =
q

x+ 1

x∏
l=2

(
1−

2q
l

)
, x > 2. (3.4.34)

b) Show from (3.4.34) that the average number IE[X] of cookies eaten before returning to the origin 0 is finite, i.e. IE[X] < ∞, if
and only if q > 1/2.

Hint: There exists constants cq,Cq > 0 such that

cq

x2q 6
x∏
l=2

(
1−

2q
l

)
6
Cq

x2q , x > 2.

MH3512 AY19-20
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4 Discrete-Time Markov Chains

In this chapter we start the general study of discrete-time Markov chains by focusing on the Markov property and on the role played
by transition probability matrices. We also include a complete study of the time evolution of the two-state chain, which represents the
simplest example of Markov chain.

4.1 Markov Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.2 Transition matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.3 Examples of Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.4 Higher-Order Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.5 The Two-State Discrete-Time Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.1 Markov Property
We consider a discrete-time stochastic process (Zn)n∈N taking values in a discrete state space S, typically S = Z.

The S-valued process (Zn)n∈N is said to be Markov, or to have the Markov property if, for all n > 1, the probability distribution of
Zn+1 is determined by the state Zn of the process at time n, and does not depend on the past values of Zk for k = 0, 1, . . . ,n− 1.

In other words, for all n > 1 and all i0, i1, . . . , in, j ∈ S we have

P(Zn+1 = j | Zn = in, Zn−1 = in−1, . . . ,Z0 = i0) = P(Zn+1 = j | Zn = in). MH3512 AY19-20
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"142In particular we have
P(Zn+1 = j | Zn = in, Zn−1 = in−1) = P(Zn+1 = j | Zn = in),

and
P(Z2 = j | Z1 = i1,Z0 = i0) = P(Z2 = j | Z1 = i1).

Note that this feature is apparent in the statement of Lemma 2.2. In addition, we have the following facts.

1. The first order transition probabilities can be used for the complete computation of the probability distribution of the process as

P(Zn = in,Zn−1 = in−1, . . . ,Z0 = i0)

= P(Zn = in | Zn−1 = in−1, . . . ,Z0 = i0)P(Zn−1 = in−1, . . . ,Z0 = i0)

= P(Zn = in | Zn−1 = in−1)P(Zn−1 = in−1 | Zn−2 = in−2, . . . ,Z0 = i0)

×P(Zn−2 = in−2, . . . ,Z0 = i0)

= P(Zn = in | Zn−1 = in−1)P(Zn−1 = in−1 | Zn−2 = in−2)

×P(Zn−2 = in−2 | Zn−3 = in−3, . . . ,Z0 = i0)P(Zn−3 = in−3, . . . ,Z0 = i0)

= P(Zn = in | Zn−1 = in−1)P(Zn−1 = in−1 | Zn−2 = in−2)

×P(Zn−2 = in−2 | Zn−3 = in−3)P(Zn−3 = in−3, . . . ,Z0 = i0),

which shows, reasoning by induction, that

P(Zn = in,Zn−1 = in−1, . . . ,Z0 = i0) (4.1.1)
= P(Zn = in | Zn−1 = in−1) · · ·P(Z1 = i1 | Z0 = i0)P(Z0 = i0),

or

P(Zn = in,Zn−1 = in−1, . . . ,Z1 = i1 | Z0 = i0) (4.1.2)
= P(Zn = in | Zn−1 = in−1) · · ·P(Z1 = i1 | Z0 = i0),

i0, i1, . . . , in ∈ S.
MH3512 AY19-20



"1432. By the law of total probability (1.3.1) applied to the events Ak = {Z2 = i2 and Z1 = k}, k ∈ S, under the probability measure
P(· | Z0 = i0) we also have

P(Z2 = i2 | Z0 = i0) =
∑
i1∈S

P(Z2 = i2 and Z1 = i1 | Z0 = i0)

=
∑
i1∈S

P(Z2 = i2 | Z1 = i1)P(Z1 = i1 | Z0 = i0),

i0, i2 ∈ S, and

P(Z1 = i1) =
∑
i0∈S

P(Z1 = i1,Z0 = i0)

=
∑
i0∈S

P(Z1 = i1 | Z0 = i0)P(Z0 = i0), i1 ∈ S. (4.1.3)

Example

The random walk
Sn := X1 +X2 + · · ·+Xn, n ∈ N, (4.1.4)

considered in Chapter 3, where (Xn)n>1 is a sequence of independent Z-valued random increments, is a discrete-time Markov
chain with S = Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

Indeed, the value of Sn+1 depends only on Sn and on the value of the next incrementXn+1. In other words, for all j, in, . . . , i1 ∈ Z

we have (note that S0 = 0 here)

P(Sn+1 = j | Sn = in, Sn−1 = in−1, . . . ,S1 = i1) (4.1.5)

=
P(Sn+1 = j,Sn = in,Sn−1 = in−1, . . . ,S1 = i1)

P(Sn = in, Sn−1 = in−1, . . . ,S1 = i1)

=
P(Sn+1− Sn = j − in,Sn− Sn−1 = in− in−1, . . . ,S2− S1 = i2− i1,S1 = i1)

P(Sn− Sn−1 = in− in−1, . . . ,S2− S1 = i2− i1,S1 = i1)

=
P(Xn+1 = j − in,Xn = in− in−1, . . . ,X2 = i2− i1,X1 = i1)

P(Xn = in− in−1, . . . ,X2 = i2− i1,X1 = i1) MH3512 AY19-20
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=

P(Xn+1 = j − in)P(Xn = in− in−1, . . . ,X2 = i2− i1,X1 = i1)

P(Xn = in− in−1, . . . ,X2 = i2− i1,X1 = i1)

= P(Xn+1 = j − in)

=
P(Xn+1 = j − in)P(Xn + · · ·+X1 = in)

P(X1 + · · ·+Xn = in)

=
P(Xn+1 = j − in,Xn + · · ·+X1 = in)

P(X1 + · · ·+Xn = in)

=
P(Xn+1 = j − in and Sn = in)

P(Sn = in)
=

P(Sn+1 = j and Sn = in)

P(Sn = in)

= P(Sn+1 = j | Sn = in).

In addition, the Markov chain (Sn)n∈N is time homogeneous if the random sequence (Xn)n>1 is identically distributed.

In particular we have
P(Sn+1 = j | Sn = i) = P(Xn+1 = j − i),

hence the transition probability from state i to state j of a random walk with independent increments depends only on the difference
j − i and on the distribution of Xn+1.

More generally, all processes with independent increments are Markov processes. However, not all Markov chains have independent
increments. In fact, the Markov chains of interest in this chapter do not have independent increments.

4.2 Transition matrix

As seen above, the random evolution of a Markov chain (Zn)n∈N is determined by the data of

Pi,j := P(Z1 = j | Z0 = i), i, j ∈ S, (4.2.1)

which coincides with the probability P(Zn+1 = j | Zn = i) which is independent of n ∈ N. In this case the Markov chain (Zn)n∈N

is said to be time homogeneous. This data can be encoded into a matrix indexed by S2 = S× S, called the transition matrix of theMH3512 AY19-20



"145Markov chain:
[ Pi,j ]i,j∈S

= [ P(Z1 = j | Z0 = i) ]i,j∈S ,

also written on S := Z as

P = [ Pi,j ]i,j∈S
=



. . .
...

...
...

...
... . .

.

· · · P−2,−2 P−2,−1 P−2,0 P−2,1 P−2,2 · · ·

· · · P−1,−2 P−1,−1 P−1,0 P−1,1 P−1,2 · · ·

· · · P0,−2 P0,−1 P0,0 P0,1 P0,2 · · ·

· · · P1,−2 P1,−1 P1,0 P1,1 P1,2 · · ·

· · · P2,−2 P2,−1 P2,0 P2,1 P2,2 · · ·

. .
. ...

...
...

...
...

. . .



.

The notion of transition matrix is related to that of (weighted) adjacency matrix in graph theory.

Note the inversion of the order of indices (i, j) between P(Zn+1 = j | Zn = i) and Pi,j. In particular, the initial state i is a row
number in the matrix, while the final state j corresponds to a column number.

By the law of total probability (1.3.1) applied to the probability measure P(· | Z0 = i) we have the relation
∑
j∈S

P(Z1 = j | Z0 = i) = P(∪j∈S{Z1 = j} | Z0 = i) = P(Ω) = 1, i ∈ N, (4.2.2)

i.e. the rows of the transition matrix satisfy the condition
∑
j∈S

Pi,j = 1,

for every row index i ∈ S.
MH3512 AY19-20



"146Using the matrix notation P = (Pi,j)i,j∈S, and Relation (4.1.1) we find

P(Zn = in,Zn−1 = in−1, . . . ,Z0 = i0) = Pin−1,in · · ·Pi0,i1P(Z0 = i0),

i0, i1, . . . , in ∈ S, and we rewrite (4.1.3) as

P(Z1 = i) =
∑
j∈S

P(Z1 = i | Z0 = j)P(Z0 = j) =
∑
j∈S

Pj,iP(Z0 = j), i ∈ S. (4.2.3)

A state k ∈ S is said to be absorbing if Pk,k = 1.

In the sequel we will often consider S = N = {0, 1, 2, . . .} and N-valued Markov chains, in which case the transition matrix
[ P(Zn+1 = j | Zn = i) ]i,j∈N of the chain is written as

[ Pi,j ]i,j∈N
=



P0,0 P0,1 P0,2 · · ·

P1,0 P1,1 P1,2 · · ·

P2,0 P2,1 P2,2 · · ·

...
...

...
. . .


.

From (4.2.2) we have ∑
j>0

Pi,j = 1,

for all i ∈ N.

In case the Markov chain (Zk)k∈N takes values in the finite state space S = {0, 1, . . . ,N} its (N + 1)× (N + 1) transition matrixMH3512 AY19-20
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[ Pi,j ]06i,j6N =



P0,0 P0,1 P0,2 · · · P0,N

P1,0 P1,1 P1,2 · · · P1,N

P2,0 P2,1 P2,2 · · · P2,N

...
...

...
. . .

...

PN ,0 PN ,1 PN ,2 · · · PN ,N



.

Still on the finite state space S = {0, 1, . . . ,N}, Relation (4.2.3) can be restated in the language of matrix and vector products using
the shorthand notation:

η = πP ,
(4.2.4)

where
η := [P(Z1 = 0), . . . , P(Z1 = N)] = [η0, η1, . . . , ηN ] ∈ RN+1

is the row vector “distribution of Z1”,

π := [P(Z0 = 0), . . . , P(Z0 = N)] = [π0, . . . ,πN ] ∈ RN+1
MH3512 AY19-20



"148is the row vector representing the probability distribution of Z0, and

[η0, η1, . . . , ηN ] = [π0, . . . ,πN ]×



P0,0 P0,1 P0,2 · · · P0,N

P1,0 P1,1 P1,2 · · · P1,N

P2,0 P2,1 P2,2 · · · P2,N

...
...

...
. . .

...

PN ,0 PN ,1 PN ,2 · · · PN ,N



. (4.2.5)

Invariant vectors

A row vector π such that π = πP is said to be invariant or stationary by the transition matrix P .

For example, in case the matrix P takes the form

P = [ Pi,j ]06i,j6N =



π0 π1 π2 π3 · · · πN

π0 π1 π2 π3 · · · πN

π0 π1 π2 π3 · · · πN

...
...

...
...
. . .

...

π0 π1 π2 π3 · · · πN



,

with all rows equal and π0 + π1 + · · ·+ πN = 1, then we have π = πP , i.e. π is an invariant (or stationary) distribution for P .MH3512 AY19-20



"1494.3 Examples of Markov Chains

The wide range of applications of Markov chains to engineering, physics and biology has already been mentioned in the introduction.
Here we consider some more specific examples.

i) Random walk.

The transition matrix [ Pi,j ]i,j∈S
of the unrestricted random walk (4.1.4) is given by

[ Pi,j ]i,j∈S
=

i− 2
i− 1
i

i+ 1
i+ 2 [

. . .

· · ·
· · ·
· · ·
· · ·
· · ·

. .
.

...

0
q

0
0
0
...

i− 1
...

p

0
q

0
0
...

i

...

0
p

0
q

0
...

i+ 1
...

0
0
p

0
q

...

...

0
0
0
p

0
...

. .
.

· · ·
· · ·
· · ·
· · ·
· · ·
. . .

] . (4.3.1)

ii) Gambling process.
MH3512 AY19-20



"150The transition matrix [ Pi,j ]06i,j6S of the gambling process on {0, 1, . . . ,S} with absorbing states 0 and S is given by

P = [ Pi,j ]06i,j6S =



1 0 0 0 · · · · · · 0 0 0 0
q 0 p 0 · · · · · · 0 0 0 0
0 q 0 p · · · · · · 0 0 0 0
...
...
...
. . .

. . .
. . .

. . .
...

...
...

...
...
...

...
. . .

. . .
. . .

. . .
...
...

0 0 0 0 · · · · · · q 0 p 0
0 0 0 0 · · · · · · 0 q 0 p
0 0 0 0 · · · · · · 0 0 0 1



.

iii) Credit rating.

[transition probabilities are expressed in %].

Rating at the
start of a year Rating at the end of the year

AAA AA A BBB BB B CCC D N.R. Total
AAA 90.34 5.62 0.39 0.08 0.03 0 0 0 3.5 100
AA 0.64 88.78 6.72 0.47 0.06 0.09 0.02 0.01 3.21 100
A 0.07 2.16 87.94 4.97 0.47 0.19 0.01 0.04 4.16 100

BBB 0.03 0.24 4.56 84.26 4.19 0.76 0.15 0.22 5.59 100
BB 0.03 0.06 0.4 6.09 76.09 6.82 0.96 0.98 8.58 100
B 0 0.09 0.29 0.41 5.11 74.62 3.43 5.3 10.76 100

CCC 0.13 0 0.26 0.77 1.66 8.93 53.19 21.94 13.14 100
D 0 0 0 0 1.0 3.1 9.29 51.29 37.32 100

N.R. 0 0 0 0 0 0.1 8.55 74.06 17.07 100

We note that higher ratings are more stable since the diagonal coefficients of the matrix go decreasing. On the other hand starting
from the rating AA it is easier to be downgraded (probability 6.72%) than to be upgraded (probability 0.64%).

MH3512 AY19-20



"151iv) Ehrenfest chain.

Two volumes of air (left and right), containing a total of N balls, are connected by a pipe.

At each time step, one picks a ball at random and moves it to the other side. Let Zn ∈ {0, 1, . . . ,N} denote the number of balls
in the left side at time n. The transition probabilities P(Zn+1 = j | Zn = i), 0 6 i, j 6 N , are given by

P(Zn+1 = k+ 1 | Zn = k) =
N − k
N

, k = 0, 1, . . . ,N − 1, (4.3.2)

and
P(Zn+1 = k− 1 | Zn = k) =

k

N
, k = 1, 2, . . . ,N , (4.3.3)MH3512 AY19-20
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P =



0 1 0 · · · · · · 0 0
1/N 0 (N − 1)/N · · · · · · 0 0

0 2/N 0 · · · · · · 0 0
0 0 3/N · · · · · · 0 0
...

...
. . .

. . .
...

...
...

0 0 · · ·
. . . 3/N 0 0

0 0 · · ·
. . . 0 2/N 0

0 0 · · · · · · (N − 1)/N 0 1/N
0 0 · · · · · · 0 1 0



,

cf. Exercise 6.7, Exercise 7.3, Problem 7.24 on modified Ehrenfest chains, and Exercise 4.9 on the Bernoulli-Laplace chain.

v) Markov chains in music.

By a statistical analysis of note transitions, every type of music can be encoded into a Markov chain. An example of such an analysis
is presented in the next transition matrix.

A A] B C D E F G G]
A 4/19 0 3/19 0 2/19 1/19 0 6/19 3/19
A] 1 0 0 0 0 0 0 0 0
B 7/15 0 1/15 4/15 0 3/15 0 0 0
C 0 0 6/15 3/15 6/15 0 0 0 0
D 0 0 0 3/11 3/11 5/11 0 0 0
E 4/19 1/19 0 3/19 0 5/19 4/19 1/19 1/19
F 0 0 0 1/5 0 0 1/5 0 3/5
G 1/5 0 1/5 2/5 0 0 0 1/5 0
G] 0 0 3/4 0 0 1/4 0 0 0

MH3512 AY19-20



"153

Figure 4.1: Mozart: variations KV 265 for Piano.∗

The transitions of Mozart’s variations, cf. Figure 4.1 above, on this famous tune have been analyzed to form a transition
matrix.† Then that transition matrix was used for random melody generation.‡ Hear also this arrangement and see here
for details§ [Pas14], and here for recent examples.

vi) Text generation.

Markov chains can be used to generate sentences in a given language, based on a statistical analysis on the transition between
words in a sample text. The state space of the Markov chain can be made of different word sequences as in e.g. Problem 4.14 or
Problem 5.23. See here for an example of the use of Markov chain for random text generation.

∗Click on the figure to play the video (works in Acrobat Reader).
†Try here if it does not work.
‡Try here if it does not work.
§Try here if it does not work. MH3512 AY19-20


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



Twinkle Twinkle Little Star

null

24.032734

XXX - c0
Creative Commons Attribution 3.0 Unported, http://creativecommons.org/licenses/by-sa/3.0/

Transcribed by Alan Sim


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}


MCM1

Carlos Pasquali

Carlos Pasquali's Album

2010

43.075665

eng - iTunNORM
 000005FF 00000575 00006C88 00004659 00008CD0 00008CB6 00007E8F 00007198 00008C9C 00008C9C�

eng - iTunSMPB
 00000000 00000210 00000B04 00000000001CEF6C 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000�


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}


MCM2

Carlos Pasquali

Carlos Pasquali's Album

2010

50.57242

eng - iTunNORM
 000005A6 0000021B 00002C04 000010C4 00005F34 0000118D 00007E17 000076F0 00008C9C 00004358�

eng - iTunSMPB
 00000000 00000210 00000A86 000000000021FB6A 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000�

https://www.youtube.com/watch?v=5rf9GNre158
http://www.youtube.com/watch?v=5rf9GNre158
http://thepasqualian.com/?p=1831
http://www.flow-machines.com/outputs/publications/
https://www.youtube.com/watch?v=LSHZ_b05W7o
http://projects.haykranen.nl/markov/demo/
http://upload.wikimedia.org/wikipedia/commons/b/bd/Twinkle_Twinkle_Little_Star_plain.ogg
http://thepasqualian.cjacobandco.com/wp-content/uploads/2010/05/MCM1.mp3
http://thepasqualian.cjacobandco.com/wp-content/uploads/2010/05/MCM2.mp3


"154Other applications of Markov chains include:

- Memory management in computer science,

- Logistics, supply chain management, and waiting queues,

- Modeling of insurance claims ( Problem 4.13),

- Board games, e.g. Snakes and Ladders,

- Genetics, cf. the Wright-Fisher model ( Problem 5.22).

- Random fields in imaging,

- Artificial intelligence, learning theory and machine learning (Problem 4.14, Problem 5.21, Problem 5.23).

Graph representation

Whenever possible we will represent a Markov chain using a graph, as in the following example with transition matrix

P =



0 0.2 0.8 0 0
0.4 0 0 0.6 0
0.5 0 0 0.5 0
0 0 0 0.4 0.6
0 0.4 0.6 0 0


, (4.3.4)

see Figure 4.2. MH3512 AY19-20
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Figure 4.2: Graph of a five-state Markov chain.∗

4.4 Higher-Order Transition Probabilities

As noted above, the transition matrix P is a convenient way to record P(Zn+1 = j | Zn = i), i, j ∈ S, into an array of data.

However, it is much more than that, as already hinted at in Relation (4.2.4). Suppose for example that we are interested in the two-step
transition probability

P(Zn+2 = j | Zn = i).

This probability does not appear in the transition matrix P , but it can be computed by first step analysis, applying the law of total
probability (1.3.1) to the probability measure P( · | Zn = i) as follows.

i) 2-step transitions. Denoting by S the state space of the process, we have

P(Zn+2 = j | Zn = i) =
∑
l∈S

P(Zn+2 = j and Zn+1 = l | Zn = i)

∗Animated figure (works in Acrobat Reader). MH3512 AY19-20
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=

∑
l∈S

P(Zn+2 = j, Zn+1 = l, Zn = i)

P(Zn = i)

=
∑
l∈S

P(Zn+2 = j, Zn+1 = l, Zn = i)

P(Zn+1 = l and Zn = i)

P(Zn+1 = l and Zn = i)

P(Zn = i)

=
∑
l∈S

P(Zn+2 = j | Zn+1 = l and Zn = i)P(Zn+1 = l | Zn = i)

=
∑
l∈S

P(Zn+2 = j | Zn+1 = l)P(Zn+1 = l | Zn = i)

=
∑
l∈S

Pi,lPl,j

= [P 2]i,j, i, j ∈ S,

where we used (4.2.1). In other words, using matrix product notation, we find

(P(Zn+2 = j | Zn = i))06i,j6N

=



P0,0 P0,1 P0,2 · · · P0,N

P1,0 P1,1 P1,2 · · · P1,N

P2,0 P2,1 P2,2 · · · P2,N

...
...

...
. . .

...

PN ,0 PN ,1 PN ,2 · · · PN ,N



×



P0,0 P0,1 P0,2 · · · P0,N

P1,0 P1,1 P1,2 · · · P1,N

P2,0 P2,1 P2,2 · · · P2,N

...
...

...
. . .

...

PN ,0 PN ,1 PN ,2 · · · PN ,N



.

ii) k-step transitions. More generally we have the following result.
Proposition 4.1

For all k ∈ N we have the relation

[ P(Zn+k = j | Zn = i) ]i,j∈S =
[
[P k]i,j

]
i,j∈S

= P k.

MH3512 AY19-20



"157Proof

For all k ∈ N, we have

P(Zn+k+1 = j | Zn = i) =
∑
l∈S

P(Zn+k+1 = j and Zn+k = l | Zn = i)

=
∑
l∈S

P(Zn+k+1 = j, Zn+k = l, Zn = i)

P(Zn = i)

=
∑
l∈S

P(Zn+k+1 = j, Zn+k = l, Zn = i)

P(Zn+k = l and Zn = i)

P(Zn+k = l and Zn = i)

P(Zn = i)

=
∑
l∈S

P(Zn+k+1 = j | Zn+k = l and Zn = i)P(Zn+k = l | Zn = i)

=
∑
l∈S

P(Zn+k+1 = j | Zn+k = l)P(Zn+k = l | Zn = i)

=
∑
l∈S

P(Zn+k = l | Zn = i)Pl,j.

We have just checked that the family of matrices

[ P(Zn+k = j | Zn = i) ]i,j∈S , k > 1,

satisfies the same induction relation as the matrix power P k, i.e.

[P k+1]i,j =
∑
l∈S

[P k]i,lPl,j,

hence by induction on k > 0 the equality

[ P(Zn+k = j | Zn = i) ]i,j∈S =
[
[P k]i,j

]
i,j∈S

= P k

holds not only for k = 0 and k = 1, but also for all k ∈ N. �

The matrix product relation
Pm+n = PmP n = P nPm, MH3512 AY19-20
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[Pm+n]i,j =

∑
l∈S

[Pm]i,l[P
n]l,j =

∑
l∈S

[P n]i,l[P
m]l,j, i, j ∈ S,

can now be interpreted as

P(Zn+m = j | Z0 = i) =
∑
l∈S

P(Zm = j | Z0 = l)P(Zn = l | Z0 = i)

=
∑
l∈S

P(Zn = j | Z0 = l)P(Zm = l | Z0 = i),

i, j ∈ S, which is called the Chapman-Kolmogorov equation, cf. also the triple (1.2.2).

Example. The gambling process (Zn)n>0.

Taking S = 4 and p = 40%, the transition matrix of the gambling process on S = {0, 1, . . . , 4} of Chapter 2 reads

P = [ Pi,j ]06i,j64 =



1 0 0 0 0

0.6 0 0.4 0 0

0 0.6 0 0.4 0

0 0 0.6 0 0.4

0 0 0 0 1



, (4.4.1)

and we can check by hand that:

P 2 = P × P

MH3512 AY19-20
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=



1 0 0 0 0

0.6 0 0.4 0 0

0 0.6 0 0.4 0

0 0 0.6 0 0.4

0 0 0 0 1


×



1 0 0 0 0

0.6 0 0.4 0 0

0 0.6 0 0.4 0

0 0 0.6 0 0.4

0 0 0 0 1


=



1 0 0 0 0

0.6 0.24 0 0.16 0

0.36 0 0.48 0 0.16

0 0.36 0 0.24 0.4

0 0 0 0 1


.

Exercise: From the above matrix (4.4.1), check that

P(Z2 = 4 | Z0 = 2) = [P 2]2,4 = 0.16,

P(Z2 = 1 | Z0 = 2) = [P 2]2,1 = 0, and

P(Z2 = 2 | Z0 = 2) = [P 2]2,2 = 0.48.

Example. The fifth order transitions of the chain with Markov matrix (4.3.4) can be computed from the fifth matrix power

P 5 =



0.14352 0.09600 0.25920 0.30160 0.19968
0.15840 0.10608 0.24192 0.30400 0.18960
0.17040 0.10920 0.23280 0.30880 0.17880
0.17664 0.11520 0.22800 0.30928 0.17088
0.14904 0.09600 0.25440 0.30520 0.19536


,

MH3512 AY19-20



"160cf. e.g. here. Note that for large transition orders (for example 1000 time steps) we get

P 1000 =



0.16273 0.10613 0.24056 0.30660 0.18396
0.16273 0.10613 0.24056 0.30660 0.18396
0.16273 0.10613 0.24056 0.30660 0.18396
0.16273 0.10613 0.24056 0.30660 0.18396
0.16273 0.10613 0.24056 0.30660 0.18396


,

cf. e.g. here, which suggests a convergence phenomenon in large time for the Markov chain, see Chapter 7 for details.

Example. For the simple random walk of Chapter 3, computing the probability to travel from 0 to
�� ��2k =

�� ��10 in 2n = 20 time steps

involves a summation over
 20

10 + 5

 =

 2n
n+ k

 = 15504 paths, which can be evaluated by computing [P 20]0,10, cf. also Figure 3.1.

4.5 The Two-State Discrete-Time Markov Chain

The above discussion shows that there is some interest in computing the n-th order transition matrix P n. Although this is generally
difficult, this is actually possible when the number of states equals two, i.e. S = {0, 1}.

To close this chapter we provide a complete study of the two-state Markov chain, whose transition matrix has the form

P =


1− a a

b 1− b

 , (4.5.1)

with a ∈ [0, 1] and b ∈ [0, 1].

0 1
a

b

1-a 1-b

We also have
P(Zn+1 = 1 | Zn = 0) = a, P(Zn+1 = 0 | Zn = 0) = 1− a, MH3512 AY19-20

www.wolframalpha.com/input/?i=matrix+power+[[0,0.2,0.8,0,0],[0.4,0,0,0.6,0],[0.5,0,0,0.5,0],[0,0,0,0.4,0.6],[0,0.4,0.6,0,0]]+5
www.wolframalpha.com/input/?i=matrix+power+[[0,0.2,0.8,0,0],[0.4,0,0,0.6,0],[0.5,0,0,0.5,0],[0,0,0,0.4,0.6],[0,0.4,0.6,0,0]]+1000


"161and
P(Zn+1 = 0 | Zn = 1) = b, P(Zn+1 = 1 | Zn = 1) = 1− b.

The power

P n =


1− a a

b 1− b


n

of the transition matrix P is computed for all n > 0 in the next Proposition 4.2. We always exclude the case a = b = 0 since it
corresponds to the trivial case where P = Id is the identity matrix (constant chain).

Proposition 4.2

We have

P n =
1

a+ b


b+ a(1− a− b)n a(1− (1− a− b)n)

b(1− (1− a− b)n) a+ b(1− a− b)n

 , n ∈ N.

Proof

This result will be proved by a diagonalization argument. The matrix P has two eigenvectorsa


1

1

 and


−a

b

 ,

with respective eigenvalues λ1 = 1 and λ2 = 1− a− b, see for example the commands Eigensystem[1-a,a,b,1-b] and Diagonalize[1-
a,a,b,1-b].

Hence P can be written in the diagonal form
P = M ×D×M−1, (4.5.2)

MH3512 AY19-20
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P =


1 −a

1 b

×

λ1 0

0 λ2

×


b

a+ b

a

a+ b

−
1

a+ b

1
a+ b


.

As a consequence of (4.5.2), we have

P n = (M ×D×M−1)n = (M ×D×M−1) · · · (M ×D×M−1)

= M ×D× · · · ×D×M−1 = M ×Dn×M−1,

where
Dn =

 1 0
0 λn2

 , n ∈ N.

hence

P n =


1 −a

1 b

×


1 0

0 λn2

×


b

a+ b

a

a+ b

−
1

a+ b

1
a+ b



=
1

a+ b


b a

b a

+ λn2
a+ b


a −a

−b b



=
1

a+ b


b+ aλn2 a(1− λn2 )

b(1− λn2 ) a+ bλn2

 , (4.5.3)

see also the command MatrixPower[1-a,a,b,1-b,n]. �
aPlease refer to MH1201 - Linear Algebra II for more on “eigenvectors, eigenvalues, diagonalization”.

MH3512 AY19-20
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"163For an alternative proof of Proposition 4.2, see also Exercise 1.4.1 page 5 of [Nor98] in which P n is written as

P n =


1− an −an

bn 1− bn


and the relation P n+1 = P ×P n is used to find induction relations for an and bn, cf. the solution of Exercise 7.18 for a similar analysis.

From the result of Proposition 4.2 we may now compute the probabilities

P(Zn = 0 | Z0 = 0) =
b+ aλn2
a+ b

, P(Zn = 1 | Z0 = 0) =
a(1− λn2 )
a+ b

(4.5.4)

and
P(Zn = 0 | Z0 = 1) =

b(1− λn2 )
a+ b

, P(Zn = 1 | Z0 = 1) =
a+ bλn2
a+ b

. (4.5.5)

As an example, the value of P(Z3 = 0 | Z0 = 0) could also be computed using pathwise analysis as

P(Z3 = 0 | Z0 = 0) = (1− a)3 + ab(1− b) + 2(1− a)ab,

which coincides with (4.5.4), i.e.

P(Z3 = 0 | Z0 = 0) =
b+ a(1− a− b)3

a+ b
,

for n = 3. Under the condition
−1 < λ2 = 1− a− b < 1,

which is equivalent to (a, b) 6= (0, 0) and (a, b) 6= (1, 1), we can let n go to infinity in (4.5.3) to derive the large time behavior, or
limiting distribution, of the Markov chain:

lim
n→∞P

n = lim
n→∞


P(Zn = 0 | Z0 = 0) P(Zn = 1 | Z0 = 0)

P(Zn = 0 | Z0 = 1) P(Zn = 1 | Z0 = 1)

 =
1

a+ b


b a

b a

 .

Note that convergence will be faster when a+ b is closer to 1. MH3512 AY19-20
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Hence we have
lim
n→∞P(Zn = 1 | Z0 = 0) = lim

n→∞P(Zn = 1 | Z0 = 1) =
a

a+ b
(4.5.6)

and
lim
n→∞P(Zn = 0 | Z0 = 0) = lim

n→∞P(Zn = 0 | Z0 = 1) =
b

a+ b
. (4.5.7)

Consequently,

π = [π0,π1] :=
 b

a+ b
,

a

a+ b

 (4.5.8)

is a limiting distribution as n goes to infinity, provided that (a, b) 6= (1, 1). In other words, whatever the initial state Z0, the proba-
bility of being at 1 after a “large” time becomes close to a/(a+ b), while the probability of being at 0 becomes close to b/(a+ b).

In case a = b = 0, we have

P = Id =


1 0

0 1

 ,

the chain is constant and it clearly admits its initial distribution as limiting distribution. In case a = b = 1, we have

P =


0 1

1 0

 ,

and there is no limiting distribution as the chain switches indefinitely between state 0 and 1

The notions of limiting and invariant (or stationary) distributions will be treated in Chapter 7 in the general framework of Markov
chains, see for example Proposition 7.7.

Remarks MH3512 AY19-20



"165i) The limiting distribution π in (4.5.8) is invariant (or stationary) by P in the sense that

πP =
1

a+ b
[b, a]

 1− a a
b 1− b

 =
1

a+ b

 b(1− a) + ab
ab+ a(1− b)

>

=
1

a+ b
[b, a] = π,

i.e. π is invariant (or stationary) with respect to P , and the invariance relation (4.2.4):

π = πP ,

which means that P(Z1 = k) = πk if P(Z0 = k) = πk, k = 0, 1. For example, the distribution π = [1/2, 1/2] is clearly
invariant (or stationary) for the swapping chain with a = b = 1 and transition matrix

P =


0 1

1 0


while π := [1/3, 2/3] will not be invariant (or stationary) for this chain. This is a two-state particular case of the circular chain of
Example (7.2.4).

ii) If a+ b = 1, one sees that

P n =


b a

b a

 = P

for all n ∈ N and we find

P(Zn = 1 | Zk = 0) = P(Zn = 1 | Zk = 1) = P(Zn = 1) = a

and
P(Zn = 0 | Zk = 0) = P(Zn = 0 | Zk = 1) = P(Zn = 0) = b

for all k = 0, 1, . . . ,n− 1, regardless of the initial distribution [P(Z0 = 0), P(Z0 = 1)]. In this case, Zn is independent of ZkMH3512 AY19-20
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P(Zn = 1, Zk = j) = P(Zn = i | Zk = j)P(Zk = j) = P(Zn = i)P(Zk = j),

i, j = 0, 1, 0 6 k < n, and (Zn)n∈N is an i.i.d sequence of random variables with distribution (1− a, a) = (b, a) over {0, 1},
cf. (B.29) in the general case.

iii) A given proportion p = a/(a+ b) ∈ (0, 1) of visits to state 1 in the long run can be reached by any a ∈ (0, p] and b ∈ (0, 1−p]
satisfying a = bp/(1− p). Smaller values of a and b will lead to increased stickiness, see also here. The case (a, b) = (p, 1− p)
satisfies a+ b = 1 and corresponds to minimal stickiness, i.e. to the independence of the sequence (Zn)n∈N.

iv) When a = b = 1 in (4.5.1) the limit limn→∞ P
n does not exist as we have

P n =




1 0

0 1

 , n = 2k,


0 1

1 0

 , n = 2k+ 1,

and the chain is indefinitely switching at each time step from one state to the other.

In Figures 4.3 and 4.4 we consider a simulation of the two-state random walk with transition matrix

P =


0.8 0.2

0.4 0.6

 ,

i.e. a = 0.2 and b = 0.4. Figure 4.3 represents a sample path (xn)n=0,1,...,100 of the chain, while Figure 4.4 represents the sampleMH3512 AY19-20
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yn =

1
n+ 1

(x0 + x1 + · · ·+ xn), n = 0, 1, . . . , 100,

which counts the proportion of values of the chain in the state 1 . This proportion is found to converge to a/(a+ b) = 1/3. This is
actually a consequence of the Ergodic Theorem, cf. Theorem 7.12 in Chapter 7.
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Figure 4.3: Sample path of a two-state chain in continuous time with a = 0.2 and b = 0.4.
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Figure 4.4: The proportion of chain values at state 1 tends to 1/3 = a/(a+ b).

The source code of the above program written in R is given below.∗

∗Download the corresponding or the that can be run here. MH3512 AY19-20


a=0.2; b=0.4;

# Dimension of the transition matrix
dim=2 
 
# Definition of the transition matrix
P=matrix(c(1-a,a,b,1-b),nrow=dim,ncol=dim,byrow=TRUE)

# Number of time steps 
N=100 

Z=array(N+1);

for(ll in seq(1,1000)) {

Z[1]=sample(dim,size=1,prob=P[2,])

# Random simulation of Z[j+1] given Z[j] 
for (j in seq(1,N)) Z[j+1]=sample(dim,size=1,prob=P[Z[j],])

Y=array(N+1);

S=0; 

# Computation of the average over the l first steps 

for(l in seq(1,N+1)) { Z[l]=Z[l]-1;  S=S+Z[l]; Y[l]=S/l; }

X=array(N+1); for(l in seq(1,N+1)) { X[l]=l-1; }

par(mfrow=c(2,1))

plot(X,Y,type="l",yaxt="n",xaxt="n",xlim=c(0,N),xlab="",ylim=c(0,1),ylab="",xaxs="i",col="black",main="",bty="n")

segments( 0 , a/(a+b), N, a/(a+b)) 

axis(2,pos=0,at=c(0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0))

axis(1,pos=0,at=seq(0,N,10),outer=TRUE) 

plot(X,Z,type="o",xlab="",ylab="",xlim=c(0,N),yaxt="n",xaxt="n",xaxs="i",col="black",main="",pch=20,bty="n")

axis(1,pos=1,at=seq(0,N+1,10),outer=TRUE,padj=-4,tcl=0.5) 
axis(1,pos=0,at=seq(0,N+1,10),outer=TRUE) 
axis(2,las=2,at=0:1)
 
readline(prompt = "Pause. Press <Enter> to continue...") 

} 




{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "from IPython.display import HTML\n",
    "\n",
    "HTML('''<script>\n",
    "code_show=true; \n",
    "function code_toggle() {\n",
    " if (code_show){\n",
    " $('div.input').hide();\n",
    " } else {\n",
    " $('div.input').show();\n",
    " }\n",
    " code_show = !code_show\n",
    "} \n",
    "$( document ).ready(code_toggle);\n",
    "</script>\n",
    "<form action=\"javascript:code_toggle()\"><input type=\"submit\" value=\"Click here to toggle on/off the raw code.\"></form>''')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false,
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "from pylab import *\n",
    "import numpy as np\n",
    "import random as rm\n",
    "import matplotlib.pyplot as plt \n",
    "%matplotlib notebook\n",
    "from ipywidgets import Select,interactive,Dropdown\n",
    "from IPython.display import display\n",
    "\n",
    "N=100\n",
    "X = np.empty(N, dtype=int)\n",
    "Y = np.empty(N)\n",
    "\n",
    "ff, axarr = plt.subplots(2, sharex=True,figsize=(12,10))\n",
    "\n",
    "def path(a=0.2,b=0.4):\n",
    "    global X,Y\n",
    "    P = [[1-a,a],[b,1-b]]\n",
    "    X[0] = rm.choice([0,1])\n",
    "    S=X[0]\n",
    "    Y[0]=S\n",
    "    for i in range(1,N):\n",
    "        X[i] = np.random.choice([0,1],p=P[X[i-1]])\n",
    "        S +=X[i]\n",
    "        Y[i]=S/(i+1)\n",
    "        i += 1\n",
    "    axarr[0].clear()\n",
    "    axarr[0].set_xlim([0,N])\n",
    "    axarr[0].set_ylim([0,1])\n",
    "    axarr[0].plot(X,marker='.',markersize = 10)\n",
    "    axarr[0].set_title('Chain samples')\n",
    "    axarr[1].clear()\n",
    "    axarr[1].set_xlim([0,N])\n",
    "    axarr[1].set_ylim([0,1])\n",
    "    axarr[1].set_title('Proportion of samples at state 1')\n",
    "    axarr[1].axhline(y=a/(a+b),xmin=0,xmax=N,c=\"purple\",linewidth=2,zorder=0)\n",
    "    axarr[1].plot(Y)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false,
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "outputs": [],
   "source": [
    "interactive(path, a=(0.0, 1.0, 0.05), b=(0.0, 1.0, 0.05))"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "celltoolbar": "Slideshow",
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.1"
  },
  "widgets": {
   "state": {
    "194c9575da7648eeb3eb50de5f6eac77": {
     "views": []
    },
    "230cd7e3c7694c64855d094710ef120f": {
     "views": []
    },
    "34653b0a89a74a718d93006eead7bfc5": {
     "views": []
    },
    "3b280929354944c484121980f9dccab2": {
     "views": [
      {
       "cell_index": 2
      }
     ]
    },
    "90a55a6236c742738139721eeeaade44": {
     "views": []
    },
    "da88e4c8ba674b7f84258dc7dd8ecafc": {
     "views": []
    }
   },
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}


http://en.wikipedia.org/wiki/R_(programming_language)
http://jupyter.org/try


"168# Dimension of the transition matrix
dim=2
# Parameter definition
a=0.2; b=0.4;
# Definition of the transition matrix
P=matrix(c(1-a,a,b,1-b),nrow=dim,ncol=dim,byrow=TRUE)
# Number of time steps
N=100

# Encoding of chain values
Z=array(N+1);
for(ll in seq(1,N)) {
Z[1]=sample(dim,size=1,prob=P[2,])

# Random simulation of Z[j+1] given Z[j]
for (j in seq(1,N)) Z[j+1]=sample(dim,size=1,prob=P[Z[j],])
Y=array(N+1);
S=0;

# Computation of the average over the l first steps
for(l in seq(1,N+1)) { Z[l]=Z[l]-1; S=S+Z[l]; Y[l]=S/l; }
X=array(N+1); for(l in seq(1,N+1)) { X[l]=l-1; }
par(mfrow=c(2,1))
plot(X,Y,type="l",yaxt="n",xaxt="n",xlim=c(0,N),xlab="",ylim=c(0,1),ylab="",xaxs="i",
col="black",main="",bty="n")

segments(0,a/(a+b),N,a/(a+b))
axis(2,pos=0,at=c(0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0))
axis(1,pos=0,at=seq(0,N,10),outer=TRUE)
plot(X,Z,type="o",xlab="",ylab="",xlim=c(0,N),yaxt="n",xaxt="n",xaxs="i",
col="black",main="",pch=20,bty="n")
axis(1,pos=1,at=seq(0,N+1,10),outer=TRUE,padj=-4,tcl=0.5)
axis(1,pos=0,at=seq(0,N+1,10),outer=TRUE)
axis(2,las=2,at=0:1)

readline(prompt = "Pause. Press <Enter> to continue...")
}

MH3512 AY19-20



"169We close this chapter with two other sample paths of Markov chains in Figures 4.5 and 4.6 (use the controls to see the animations
under Acrobat Reader). In the next Figure 4.5 we check again that the proportion of chain values in the state 1 converges to 1/3 for
a two-state Markov chain.

Figure 4.5: Convergence graph for the two-state Markov chain with a = 0.2 and b = 0.4.∗

MH3512 AY19-20



"170In Figure 4.6 we draw a sample path of a five-state Markov chain.∗

Figure 4.6: Sample path of a five-state Markov chain.†

Exercises

Exercise 4.1 Consider a symmetric random walk (Sn)n∈N on Z with independent increments ±1 chosen with equal probability 1/2,
started at S0 = 0.

a) Is the process Zn := 2Sn + 1 a Markov chain?

b) Is the process Zn := (Sn)2 a Markov chain?

∗Download the corresponding or the that can be run here.
†Animated figure (works in Acrobat Reader). MH3512 AY19-20


library(tcltk) 

a=0.2; b=0.4;

# Dimension of the transition matrix
dim=5 
 
# Definition of the transition matrix
P=matrix(c(
0.0,0.5,0.0,0.5,0.0,
0.2,0.4,0.0,0.3,0.1,
0.3,0.2,0.1,0.3,0.1,
0.2,0.4,0.1,0.2,0.1,
0.2,0.0,0.0,0.1,0.7
),nrow=dim,ncol=dim,byrow=TRUE)

# Number of time steps 
N=100 

Z=array(N+1);

A=array(2);
B=array(2);

for(ll in seq(1,100)) {

Y=array(N+1);

X=array(N+1); for(l in seq(1,N+1)) { X[l]=l-1; Z[l]=Z[l]-1}

B[1]=2
B[2]=2

split.screen(c(1,1)) 
 
for(l in seq(0:1000))
{
A[1]=l-1;
A[2]=A[1]+1;
B[1]=B[2];
B[2]=sample(dim,size=1,prob=P[B[1],])
print(B[1]) 

screen(1,FALSE)

tkbell()

plot(A,B-1,type="o",lwd=2,col="blue",xlim=c(1,100),ylim=c(0,4),xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i", main = "5-state Markov chain",bty="n")

axis(2,pos=1,at=seq(0,4,1)) 

axis(1,pos=0,at=seq(0,100,10),outer=TRUE) 

Sys.sleep(0.4)
 
} 

} 




{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "from IPython.display import HTML\n",
    "\n",
    "HTML('''<script>\n",
    "code_show=true; \n",
    "function code_toggle() {\n",
    " if (code_show){\n",
    " $('div.input').hide();\n",
    " } else {\n",
    " $('div.input').show();\n",
    " }\n",
    " code_show = !code_show\n",
    "} \n",
    "$( document ).ready(code_toggle);\n",
    "</script>\n",
    "<form action=\"javascript:code_toggle()\"><input type=\"submit\" value=\"Click here to toggle on/off the raw code.\"></form>''')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "%matplotlib notebook\n",
    "from pylab import *\n",
    "import time\n",
    "import numpy as np\n",
    "import random as rm\n",
    "import matplotlib \n",
    "import matplotlib.pyplot as plt \n",
    "\n",
    "l=0    \n",
    "P = [[0.0,0.3,0.0,0.7,0.0],\n",
    "    [0.1,0.3,0.2,0.3,0.1],\n",
    "    [0.3,0.2,0.1,0.3,0.1],\n",
    "    [0.2,0.5,0.1,0.1,0.1],\n",
    "    [0.2,0.0,0.1,0.1,0.6]]\n",
    "N=100\n",
    "X = np.empty(N+1, dtype=int)\n",
    "Y = np.empty(N+1, dtype=int)\n",
    "for i in range(0,N):\n",
    "    X[i]=i\n",
    "    Y[i]=0\n",
    "Y[0] = 3\n",
    "\n",
    "def path(axarr):\n",
    "    global l,X,Y\n",
    "    axarr.clear()\n",
    "    matplotlib.pyplot.yticks([0,1,2,3,4])\n",
    "    axarr.plot(X[0:l+1],Y[0:l+1],marker='.',markersize = 14)\n",
    "    matplotlib.pyplot.yticks([0,1,2,3,4])\n",
    "    matplotlib.pyplot.xlim((0,N))\n",
    "    matplotlib.pyplot.ylim((0,4))\n",
    "    l=l+1\n",
    "    Y[l]=np.random.choice([0,1,2,3,4],p=P[Y[l-1]])\n",
    "    ff.canvas.draw()\n",
    "    \n",
    "ff, axarr = plt.subplots(1,figsize=(12,10))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "l=0\n",
    "for f in range(N):\n",
    "    path(axarr)\n",
    "    time.sleep(0.1)"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.1"
  },
  "widgets": {
   "state": {},
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}


http://jupyter.org/try


"171Exercise 4.2 Consider the Markov chain (Zn)n>0 with state space S = {1, 2} and transition matrix

P =


1 2

1 0.4 0.6
2 0.8 0.2

.
a) Compute P(Z7 = 1 and Z5 = 2 | Z4 = 1 and Z3 = 2).

b) Compute IE[Z2 | Z1 = 1].

Exercise 4.3 Consider a transition probability matrix P of the form (B.28), i.e.

P = [ Pi,j ]06i,j6N =



π0 π1 π2 π3 · · · πN

π0 π1 π2 π3 · · · πN

π0 π1 π2 π3 · · · πN

...
...

...
...
. . .

...

π0 π1 π2 π3 · · · πN



,

where π = [π0,π1, . . . ,πN ] ∈ [0, 1]N+1 is a vector such that

π0 + π1 + · · ·+ πN = 1.

a) Compute the matrix power P n for all n > 2.

b) Show that the vector π is an invariant (or stationary) distribution for P .

c) Show that if P(Z0 = i) = πi, i = 0, 1, . . . ,N , then Zn is independent of Zk for all 0 6 k < n, and (Zn)n∈N is an i.i.d sequence
of random variables with distribution π = [π0,π1, . . . ,πN ] over {0, 1, . . . ,N}. MH3512 AY19-20



"172Exercise 4.4 Consider a {0, 1}-valued “hidden” two-state Markov chain (Xn)n∈N with transition probability matrix

P =


P0,0 P0,1

P1,0 P1,1

 =


P(X1 = 0 | X0 = 0) P(X1 = 1 | X0 = 0)

P(X1 = 0 | X0 = 1) P(X1 = 1 | X0 = 1)

 ,

and initial distribution
π = [π0,π1] = [P(X0 = 0), P(X0 = 1)].

We observe a two-state process (Ok)k∈N whose stateOk ∈ {a, b} at every time k ∈ N has a conditional distribution givenXk ∈ {0, 1}
denoted by

M =

 m0,a m0,b
m1,a m1,b

 =

 P(Ok = a | Xk = 0) P(Ok = b | Xk = 0)
P(Ok = a | Xk = 1) P(Ok = b | Xk = 1)

 ,

called the emission probability matrix.

0

Start

1

ba

π0 π1

P0,0

P0,1

P1,0

P1,1

m0,a

m1,am0,b

m1,b

MH3512 AY19-20



"173a) Using elements of π, P and M , compute P(X0 = 1,X1 = 1) and the probability

P((O0,O1) = (a, b) and (X0,X1) = (1, 1))

of observing the sequence (O0,O1) = (a, b) when (X0,X1) = (1, 1).

Hint: By independence, the conditional probability of observing (O0,O1) = (a, b) given that (X0,X1) = (1, 1) splits as

P((O0,O1) = (a, b) | (X0,X1) = (1, 1))
= P(O0 = a | X0 = 1)P(O1 = b | X1 = 1).

b) Find the probability P((O0,O1) = (a, b)) that the observed sequence is (a, b).

Hint: Use the law of total probability based on all possible values of (X0,X1).

c) Compute the probabilities

P(X1 = 1 | (O0,O1) = (a, b)) and P(X1 = 0 | (O0,O1) = (a, b)).

Exercise 4.5 Consider a two-dimensional random walk (Sn)n∈N started at S0 = (0, 0) on Z2, where, starting from a location
Sn = (i, j) the chain can move to any of the points (i + 1, j + 1), (i + 1, j − 1), (i − 1, j + 1), (i − 1, j − 1) with equal
probability 1/4.

a) Suppose in addition that the random walk cannot visit any site more than once, as in a snake game. Is the
resulting system a Markov chain? Justify your answer.

b) Let Sn = (Xn,Yn) denote the coordinates of Sn at time n and let Zn := X2
n + Y 2

n . Is (Zn)n∈N a Markov chain? Justify your
answer.

Hint: Use the fact that a same value of Zn may correspond to different locations of (Xn,Yn) on the circle, for example (Xn,Yn) =

(5, 0) and (Xn,Yn) = (4, 3) when Zn = 25. MH3512 AY19-20



"174Questions (a) and (b) above are independent.

Exercise 4.6 The Elephant Random Walk (Sn)n∈N [ST08] is a discrete-time Z-valued random walk

Sn := X1 + · · ·+Xn, n ∈ N,

whose increments Xk = Sk − Sk−1, k > 1, are recursively defined as follows:

- At time n = 1, X1 is a Bernoulli {−1, +1}-valued random variable with

P(X1 = +1) = p and P(X1 = −1) = q = 1− p ∈ (0, 1).

- At any subsequent time n > 2, one randomly draws an integer time index k ∈ {1, 2, . . . ,n− 1} with uniform probability, and lets
Xn := Xk with probability p, and Xn := −Xk with probability q := 1− p.

Does the Elephant Random Walk (Sn)n∈N have the Markov property?

Exercise 4.7 Consider a two-state Markov chain (Xn)n>0 with state space S = {0, 1} and transition matrix

P =


0 1

0 1− a a

1 b 1− b

,
where a, b ∈ (0, 1), and define a new stochastic process (Zn)n>1 by Zn = (Xn−1,Xn), n > 1. Argue that (Zn)n>1 is a Markov
chain and write down its transition matrix. Start by determining the state space of (Zn)n>1. See Problem 5.23 for the use of this
construction in pattern recognition.

Exercise 4.8 Given p ∈ [0, 1), consider the Markov chain (Xn)n>0 on the state space {0, 1, 2} having the transition matrix

P =



0 1 2
0 p q 0
1 0 p q

2 0 0 1

,
MH3512 AY19-20



"175with q := 1− p.

a) Give the probability distribution of the first hitting time

T2 := inf
{
n > 0 : Xn = 2

}
.

of state 2 starting from X0 = 0 .

Hint: The sum Z = X1 + · · · + Xn of n independent geometric random variables on {1, 2, . . .} has the negative binomial
distribution

P(Z = k | X0 = 1) =

k− 1
k− d

(1− p)dpk−d, k > d.

b) Compute the mean hitting time IE[T2 | X0 = 0] of state 2 starting from X0 = 0.

Hint: We have ∑
k>1

kpk−1 =
1

(1− p)2 and
∑
k>2

k(k− 1)pk−2 =
2

(1− p)3 , 0 6 p < 1.

Exercise 4.9 Bernoulli-Laplace chain. Consider two boxes and a total of 2N balls made of N red balls and N green balls. At time 0,
a number k = X0 of red balls and a number N − k of green balls are placed in the first box, while the remaining N − k red balls and
k green balls are placed in the second box.

MH3512 AY19-20



"176At each unit of time, one ball is chosen randomly out of N in each box, and the two balls are interchanged. Write down the transition
matrix of the Markov chain (Xn)n∈N with state space {0, 1, 2, . . . ,N}, representing the number of red balls in the first box. Start
for example from N = 5.

Exercise 4.10

a) After winning k dollars, a gambler either receives k+ 1 dollars with probability p, or has to quit the game and lose everything with
probability q = 1− p. Starting from one dollar, find a model for the time evolution of the wealth of the player using a Markov
chain whose transition probability matrix P will be described explicitly along with its powers P n of all orders n > 1.

b) (Success runs Markov chain). We modify the model of Question (a) by allowing the gambler to start playing again and win with
probability p after reaching state 0 . Write down the corresponding transition probability matrix P , and compute P n for all n > 2.

Exercise 4.11 Let (Xk)k∈N be the Markov chain with transition matrix

P =


1/4 0 1/2 1/4
0 1/5 0 4/5
0 1 0 0

1/3 1/3 0 1/3

 .

A new process is defined by letting

Zn :=


0 if Xn = 0 or Xn = 1,

Xn if Xn = 2 or Xn = 3,
i.e.

Zn = Xn1{Xn∈{2,3}}, n > 0.

a) Compute
P(Zn+1 = 2 | Zn = 0 and Zn−1 = 2)

and
P(Zn+1 = 2 | Zn = 0 and Zn−1 = 3),

n > 1. MH3512 AY19-20



"177b) Is (Zn)n∈N a Markov chain?

Exercise 4.12 ([OSA+09]). Abeokuta, one of the major towns of the defunct Western Region of Nigeria, has recently seen an astronomic
increase in vehicular activities. The intensity of vehicle traffic at the Lafenwa intersection which consists of Ayetoro, Old Bridge and
Ita-Oshin routes, is modeled according to three states L/M/H = { Low / Moderate / High }.

a) During year 2005, low intensity incoming traffic has been observed at Lafenwa intersection for ηL = 50% of the time, moderate
traffic has been observed for ηM = 40% of the time, while high traffic has been observed during ηH = 10% of the time.

Figure 4.7: Lafenwa intersection.

Given the correspondence table
incoming traffic vehicles per hour
L (low intensity) 360

M (medium intensity) 505
H (high intensity) 640

compute the average incoming traffic per hour in year 2005.

b) The analysis of incoming daily traffic volumes at Lafenwa intersection between years 2004 and 2005 shows that the probability ofMH3512 AY19-20



"178switching states within {L, M, H} is given by the Markov transition probability matrix

P =


2/3 1/6 1/6
1/3 1/2 1/6
1/6 2/3 1/6

 .

Based on the knowledge of P and η = [ηL, ηM , ηH ], give a projection of the respective proportions of traffic in the states L/M/H
for year 2006.

c) Based on the result of Question (b), give a projected estimate for the average incoming traffic per hour in year 2006.

d) By solving the equation π = πP for the invariant (or stationary) probability distribution π = [πL,πM ,πH ], give a long term
projection of steady traffic at Lafenwa intersection. Hint: we have πL = 11/24.

Problem 4.13 Phase-type distributions are used in insurance to model the heavy-tailed random claim sizes appearing in reserve and
surplus processes.

a) Given p ∈ [0, 1], construct the transition matrix of a two-state Markov chain on the state space {0, 1} satisfying the following two
conditions:

i) State 0 is absorbing, i.e. P(Xn+1 = 0 | Xn = 0) = 1, and

ii) The first hitting time
T0 := inf{n > 0 : Xn = 0}

of state 0 starting from state 1 has the geometric distribution p given by

P(T0 = k | X0 = 1) = (1− p)pk−1, k > 1.

b) Given p ∈ [0, 1] and d > 1, construct the transition matrix of a d + 1-state Markov chain on the state space {0, 1, . . . , d}
satisfying the following two conditions:

i) State 0 is absorbing, i.e. P(Xk+1 = 0 | Xk = 0) = 1, and MH3512 AY19-20
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"179ii) The first hitting time T0 of state 0 starting from state d has the negative binomial distribution

P(T0 = k | X0 = d) =

k− 1
k− d

(1− p)dpk−d, k > d.

c) In the sequel we consider a discrete-time Markov chain on {0, 1, . . . , d} having d transient∗ states {1, 2, . . . , d}, and 0 as absorbing
state. Show that its transition matrix P takes the form

P = [ Pi,j ]06i,j6d =



1 0 · · · 0
α1 Q1,1 · · · Q1,d
α2 Q2,1 · · · Q2,d
...

...
. . .

...
αd Qd,1 · · · Qd,d


=

 1 0
α Q

 ,

where α is the column vector α = [α1,α2, . . . ,αd]> and Q is the d× d matrix

Q =


Q1,1 · · · Q1,d
...

. . .
...

Qd,1 · · · Qd,d

 ,

and give the relation between the vector α and the matrix Q using the column vector e := [1, 1, . . . , 1]>.

d) Show by induction on n > 0 that we have

P n =

 1 0
(Id−Qn)e Qn

 , (4.5.9)

∗Here the transience condition implies that P(T0 <∞ | X0 = i) = 1 for all i = 1, 2, . . . , d, it will be ensured by assuming that Id −Q is invertible, cf. § 5.4 and § 6.3 for details.MH3512 AY19-20



"180where Id is the d× d identity matrix

Id :=



1 0 · · · 0 0

0 1
. . . 0 0

...
...

. . .
. . .

...
0 0 · · · 1 0
0 0 · · · 0 1


.

e) Compute the probability distribution of T0 using the vector α and the matrix Qn−1, where T0 is the first hitting time of state 0
starting from state i > 1.

Hint: Partition the event {T0 = n} as

{
T0 = n

}
=

d⋃
k=1

{
Xn = 0 and Xn−1 = k

}
.

f) From now on we assume that the initial distribution of X0 is given by the d-dimensional vector

β =



β1
β2
...
βd

 ,

i.e. βi = P(X0 = i), i = 1, 2, . . . , d, with P(X0 = 0) = 0. Compute the probability distribution of T0 using the vectors α, β,
and the matrix Qn−1.

g) Compute the cumulative distribution function P (T0 6 n) of T0 the vectors β, e, and the matrix Qn.

h) Recover the result of Question (g) by rewriting P(T0 6 n) as the probability of not being in any state i = 1, 2, . . . , d at time n.

i) Compute the probability generating function
GT0(s) :=

∑
k>0

skP(T0 = k)
MH3512 AY19-20



"181of T0, assuming the existence of the matrix inverse (Id− sQ)−1 given by the series

(Id− sQ)−1 =
∑
k>0

skQk, s ∈ (−1, 1].

j) Using the probability generating function s 7→ GT0(s), compute the first and second moments E[T0] and E[T 2
0 ] of T0.

Problem 4.14 Hidden Markov models have applications to speech recognition, face recognition, emotion recognition, genomics and
biological sequence analysis, sentiment analysis, unsupervised learning, climate change studies, etc. Consider a {0, 1}-valued “hidden”

two-state Markov chain (Xn)n∈N with transition probability matrix

P =


P0,0 P0,1

P1,0 P1,1

 =


P(X1 = 0 | X0 = 0) P(X1 = 1 | X0 = 0)

P(X1 = 0 | X0 = 1) P(X1 = 1 | X0 = 1)

 ,

and initial distribution
π = [π0,π1] = [P(X0 = 0), P(X0 = 1)].

We observe a stochastic process (Ok)k∈N whose state Ok ∈ {a, b, c} at every time k ∈ N has a conditional distribution given
Xk ∈ {0, 1} denoted by

M =

 m0,a m0,b m0,c
m1,a m1,b m1,c


MH3512 AY19-20
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=

 P(Ok = a | Xk = 0) P(Ok = b | Xk = 0) P(Ok = c | Xk = 0)
P(Ok = a | Xk = 1) P(Ok = b | Xk = 1) P(Ok = c | Xk = 1)

 ,

called the emission probability matrix.

a) Using elements of π, P and M , compute P(X0 = 1,X1 = 1,X2 = 0) and the probability

P((O0,O1,O2) = (c, a, b) and (X0,X1,X2) = (1, 1, 0))

of observing the sequence (O0,O1,O2) = (c, a, b) when (X0,X1,X2) = (1, 1, 0).

Hint: By independence, the conditional probability of observing (O0,O1,O2) = (c, a, b) given that (X0,X1,X2) = (1, 1, 0)
splits as

P((O0,O1,O2) = (c, a, b) | (X0,X1,X2) = (1, 1, 0))
= P(O0 = c | X0 = 1)P(O1 = a | X1 = 1)P(O2 = b | X2 = 0).

b) Find the probability P((O0,O1,O2) = (c, a, b)) that the observed sequence is (c, a, b).

Hint: Use the law of total probability based on all possible values of (X0,X1,X2).

c) Compute the probabilities

P(X1 = 1 | (O0,O1,O2) = (c, a, b)), and P(X1 = 0 | (O0,O1,O2) = (c, a, b)).

From Question (d) to Question (i) below we take π = [π0,π1] := [0.6, 0.4] and

P :=


0.7 0.3

0.4 0.6

 , M :=
 m0,a m0,b m0,c
m1,a m1,b m1,c

 =

 0.1 0.4 0.5
0.7 0.2 0.1

 . (4.5.10)
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"184d) Compute∗ the eight probabilities

P((X0,X1,X2) = (x, y, z) and (O0,O1,O2) = (c, a, b))

for all x, y, z ∈ {0, 1}, and identify the most likely sample sequence of values for (X0,X1,X2).

e) Compute1 the probability P((O0,O1,O2) = (c, a, b)) that the observed sequence is (c, a, b).

f) Compute1 the six probabilities

P(Xk = 1 | (O0,O1,O2) = (c, a, b)), P(Xk = 0 | (O0,O1,O2) = (c, a, b)),

k = 0, 1, 2. What is the most likely sequence for (X0,X1,X2) according to this computation?

Based on the knowledge of P((X0,X1,X2) = (1, 1, 0) | (O0,O1,O2) = (c, a, b)), one can build an estimator P̂ , π̂, M̂ of the
model parameters P , π and M , as



π̂i := P(X0 = i | (O0,O1,O2) = (c, a, b)),

P̂i,j :=

N−1∑
t=0

P(Xt = i,Xt+1 = j | (O0,O1,O2) = (c, a, b))
N−1∑
t=0

P(Xt = i | (O0,O1,O2) = (c, a, b))

M̂i,k :=

N∑
t=0

1{Ot=k}P(Xt = i | (O0,O1,O2) = (c, a, b))
N∑
t=0

P(Xt = i | (O0,O1,O2) = (c, a, b))
,

(4.5.11a)

(4.5.11b)

(4.5.11c)

with here N = 2. Note that (4.5.11c) averages the number of times the observed state is “k” given that the hidden state is “i”,
which gives an estimate of the conditional probability Mi,k.

∗Give a numerical value with exactly three significant digits. MH3512 AY19-20



"185g) Compute∗ the vector estimate π̂ = [π̂0, π̂1] using (4.5.11a) and the data of Equation (4.5.10).

h) Compute1 the matrix estimate P̂ using (4.5.11b) and the data of Equation (4.5.10).

i) Compute1 the matrix estimate M̂ using (4.5.11c) and the data of Equation (4.5.10).

j) Iterating the estimates (4.5.11a)-(4.5.11c) is computationally intensive, however this procedure admits an efficient recursive imple-
mentation via the Baum-Welch algorithm which is based of the EM algorithm.

Imagine an alien trying to analyse an English manuscript without any prior knowledge of English. Using a simple two-state hidden
chain (Xn)n∈N he will try to uncover some features of the language, starting with a binary classification of the alphabet.

install.packages("HMM")
library (HMM)
library (lattice)
text = readChar("my_own_text_file.txt",nchars=10000)
data <- unlist (strsplit (gsub ("[^a-z]", "_", tolower (text)), ""))
pi=c(0.4,0.6)
P=t(matrix(c(c(0.6177499,0.3822501),c(0.8826096,0.1173904)),nrow=2,ncol=2))
M=t(matrix(c(c(0.037192964,0.009902360,0.032833978,0.044882670,0.057331132,
0.052143890,0.013665015,0.036187536,0.072293323,0.044793972,0.060008388,
0.004256270,0.024770706,0.053520546,0.014232306,0.046981769,0.053733382,
0.066355203,0.046817817,0.006912535,0.016201697,0.013425499,0.024694447,
0.064902148,0.046170421,0.033586536,0.022203489),
c(0.0389931197,0.0697183142,0.0239154174,0.0512772632,0.0404732634,0.0059687348,
0.0211687193,0.0625229746,0.0039632091,0.0567828864,0.0468108656,0.0168355418,
0.0627882213,0.0286478204,0.0389215263,0.0064318198,0.0001698078,0.0493758725,
0.0652709152,0.0069580806,0.0093043072,0.0028807932,0.0521827110,0.0608822385,
0.0645417465,0.0555249876,0.0576888424)),nrow=27,ncol=2))
model <- initHMM (c("0", "1"),c("_", letters), pi, P, M)
system.time (estimate <- baumWelch (model, data, 100)) # 100 iterations
xyplot(estimate$hmm$emissionProbs[1,] ~ c(1:27), scales=list(x=list(at=1:27,
labels=c("_", letters))),type="h", lwd=5, xlab="", ylab="")

∗Give a numerical value with exactly three significant digits. MH3512 AY19-20
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"186Using a text of your choice and a {0, 1}-valued hidden Markov chain (Xn)n∈N, estimate the corresponding emission probability
matrix M by running the above R code which relies on the HMM (Hidden Markov Model) package. A text length of N ' 10, 000
characters can be a minimum. The initial values of π, P and M have been set randomly.

What do you conclude?

Instructions:

Specify your choice of document used.

Attach a graph with a discussion of your output.

Suggestions and possible variations:

Try a language different from English.

Increase the state space of (Xn)n∈N in order to uncover more features of the chosen language.

MH3512 AY19-20
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5 First Step Analysis

Starting with this chapter we introduce the systematic use of the first step analysis technique, in a general framework that covers the
examples of random walks already treated in Chapters 2 and 3. The main applications of first step analysis are the computation of
hitting probabilities, mean hitting and absorption times, mean first return times, and average number of returns to a given state.

5.1 Hitting Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.2 Mean Hitting and Absorption Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.3 First Return Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.4 Mean Number of Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.1 Hitting Probabilities

Let us consider a Markov chain (Zn)n∈N with state space S, and let A ⊂ S denote a subset of S. We are interested in the first time
TA the chain hits the subset A, with

TA := inf{n > 0 : Zn ∈ A}, (5.1.1)

with TA = 0 if Z0 ∈ A and
TA = +∞ if {n > 0 : Zn ∈ A} = ∅,

i.e. if Zn /∈ A for all n ∈ N. In case the transition matrix P satisfies

Pk,l = 1{k=l} MH3512 AY19-20



"188for all k, l ∈ A, the set A is said to be absorbing.

Similarly to the gambling problem of Chapter 2, we would like to compute the probabilities

gl(k) = P(ZTA = l | Z0 = k)

of hitting the set A ⊂ S through state l ∈ A starting from k ∈ S, where ZTA represents the location of the chain (Zn)n∈N at the
hitting time TA.

This computation can be achieved by first step analysis, using the law of total probability (1.3.1) for the probability measure P(· | Z0 =

k) and the Markov property, as follows.
Proposition 5.1

The hitting probabilities
gl(k) := P(ZTA = l | Z0 = k), k ∈ S, l ∈ A,

satisfy the equation

gl(k) =
∑
m∈S

Pk,mgl(m) = Pk,l +
∑

m∈S\A
Pk,mgl(m), (5.1.2)

k ∈ S \A, l ∈ A, under the boundary conditions

gl(k) = P(ZTA = l | Z0 = k) = 1{k=l} =


1 if k = l,

0 if k 6= l,
k ∈ A, l ∈ S,

which hold since TA = 0 whenever one starts from Z0 ∈ A.

Proof

MH3512 AY19-20
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For all k ∈ S \A we have TA > 1 given that Z0 = k, hence we can write

gl(k) = P(ZTA = l | Z0 = k)

=
∑
m∈S

P(ZTA = l | Z1 = m and Z0 = k)P(Z1 = m | Z0 = k)

=
∑
m∈S

P(ZTA = l | Z1 = m)P(Z1 = m | Z0 = k)

=
∑
m∈S

Pk,mP(ZTA = l | Z1 = m)

=
∑
m∈S

Pk,mP(ZTA = l | Z0 = m)

=
∑
m∈S

Pk,mgl(m), k ∈ S \A, l ∈ A,

where the relation
P(ZTA = l | Z1 = m) = P(ZTA = l | Z0 = m)

follows from the fact that the probability of ruin does not depend on the inital time the counter is started. �

Equation (5.1.2) can be rewritten in matrix form as
gl = Pgl, l ∈ A, (5.1.3)

where gl is a column vector, i.e.


gl(0)
...

gl(N)

 =



P0,0 P0,1 P0,2 · · · P0,N

P1,0 P1,1 P1,2 · · · P1,N

P2,0 P2,1 P2,2 · · · P2,N

...
...

...
. . .

...

PN ,0 PN ,1 PN ,2 · · · PN ,N



×


gl(0)
...

gl(N)

 , l ∈ A,

MH3512 AY19-20



"190under the boundary condition

gl(k) = P(ZTA = l | Z0 = k) = 1{l}(k) =


1, k = l,

0, k 6= l,
for all k ∈ A and l ∈ S.

In addition, the hitting probabilities gl(k) = P(ZTA = l | Z0 = k) satisfy the condition

1 = P(TA =∞ | Z0 = k) +
∑
l∈A

P(ZTA = l | Z0 = k)

= P(TA =∞ | Z0 = k) +
∑
l∈A

gl(k), (5.1.4)

for all k ∈ S.

Note that we may have P(TA =∞ | Z0 = k) > 0, for example in the following chain with A = {0} and k = 1 we have

P(T0 =∞ | Z0 = 1) = 0.2.

0 1 21 0.8
0.2 1

More generally, if f : A −→ R is a function on the domain A, letting

gA(k) := IE
[
f(ZTA)

∣∣∣Z0 = k
]
=

∑
l∈A

f(l)P(ZTA = l | Z0 = k), k ∈ S,

by linearity we find the Dirichlet problem
(Id− P )gA = 0,

under the boundary condition
gA(k) = f(k), k ∈ A,

see e.g. Theorem 5.3 in [Pri08] for a continuous-time analog. MH3512 AY19-20
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The next lemma will be used in Chapter 8 on branching Processes.

Lemma 5.2

Assume that state j ∈ S is absorbing. Then for all i ∈ S we have

P(Tj <∞ | Z0 = i) = lim
n→∞P(Zn = j | Z0 = i).

Proof

We have
{Tj <∞} =

⋃
n>1
{Zn = j},

because the finiteness of Tj means that Zn becomes equal to j for some n ∈ N. In addition, since j ∈ S is absorbing it holds
that

{Zn = j} ⊂ {Zn+1 = j}, n ∈ N,
hence given that {Z0 = i}, by (1.2.3) we have we have

α1 = P(Tj <∞ | Z0 = i) = P

 ⋃
n>1
{Zn = j}

∣∣∣∣∣Z0 = i

 (5.1.5)

= P

(
lim
n→∞{Zn = j}

∣∣∣∣∣Z0 = i

)
= lim

n→∞P(Zn = j | Z0 = i).

�

Block triangular transition matrices

Assume now that the state space is S = {0, 1, . . . ,N} and the transition matrix P has the form

P =


Q R

0 Id

 , (5.1.6)
MH3512 AY19-20



"192where Q is a square (r+ 1)× (r+ 1) matrix, R is a (r+ 1)× (N − r) matrix, and

Id =



1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1


is the (N − r)× (N − r) identity matrix, in which case the states in {r+ 1, r+ 2, . . . ,N} are absorbing.

If the set A := {r+ 1, r+ 2, . . . ,N} is made of the absorbing states of the chain, we have the boundary conditions

gl(m) = 1{m=l}, l = 0, 1, . . . ,N , m = r+ 1, r+ 2, . . . ,N , (5.1.7)

hence the equation (5.1.2) can be rewritten as

gl(k) =
N∑
m=0

Pk,mgl(m)

=
r∑

m=0
Pk,mgl(m) +

N∑
m=r+1

Pk,mgl(m)

=
r∑

m=0
Pk,mgl(m) + Pk,l

=
r∑

m=0
Qk,mgl(m) +Rk,l, k = 0, 1, . . . , r, l = r+ 1, . . . ,N ,

from (5.1.7) and since Pk,l = Rk,l, k = 0, 1, . . . , r, l = r+ 1, . . . ,N . Hence we have

gl(k) =
r∑

m=0
Qk,mgl(m) +Rk,l, k = 0, 1, . . . , r, l = r+ 1, . . . ,N .

Remark 5.3

MH3512 AY19-20
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In the case of the two-state Markov chain with transition matrix (4.5.1) and A = {0} we simply find g0(0) = 1 and

g0(1) = b+ (1− b)× g0(1),

hence g0(1) = 1 if b > 0 and g0(1) = 0 if b = 0.

Example

Consider a Markov chain on {0, 1, 2, 3} with transition matrix of the form

P =


1 0 0 0
a b c d
α β γ η
0 0 0 1

 . (5.1.8)

Let A = {0, 3} denote the absorbing states of the chain, and let

T0,3 = inf{n > 0 : Zn = 0 or Zn = 3}

and compute the probabilities
g0(k) = P(ZT0,3 = 0 | Z0 = k)

of hitting state 0 first within {0, 3} starting from k = 0, 1, 2, 3. The chain has the following graph:

0

1

2

3
1

a
b

c

d

α

γ

β

η 1

(5.1.9)MH3512 AY19-20



"194Noting that 0 and 3 are absorbing states, and writing the relevant rows of the first step analysis matrix equation g = Pg, we have

g0(0) = 1
g0(1) = a× 1 + bg0(1) + cg0(2) + d× 0
g0(2) = α× 1 + βg0(1) + γg0(2) + η× 0
g0(3) = 0,

i.e. 
g0(0) = 1
g0(1) = a+ bg0(1) + cg0(2)
g0(2) = α+ βg0(1) + γg0(2)
g0(3) = 0,

which has for solution 

g0(0) = 1

g0(1) =
cα+ a(1− γ)

(1− b)(1− γ)− cβ

g0(2) =
aβ+ α(1− b)

(1− b)(1− γ)− cβ
g0(3) = 0.

(5.1.10)

We have gl(0) = gl(3) = 0 for l = 1, 2, and by a similar analysis, letting

g3(k) := P(ZT0,3 = 3 | Z0 = k), k = 0, 1, 2, 3,

we find 

g3(0) = 0

g3(1) =
cη+ d(1− γ)

(1− b)(1− γ)− cβ

g3(2) =
βd+ η(1− b)

(1− b)(1− γ)− cβ
g3(3) = 1,

and we note that
g0(1) + g3(1) =

cα+ a(1− γ)
(1− b)(1− γ)− cβ

+
cη+ d(1− γ)

(1− b)(1− γ)− cβ
= 1,
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"195since α+ η = 1− γ − β and a+ d = 1− b− c, and similarly

g0(2) + g3(2) =
aβ+ α(1− b)

(1− b)(1− γ)− cβ
+

βd+ η(1− b)
(1− b)(1− γ)− cβ

= 1.

We also check that in case a = d and α = η we have

g0(1) =
cα+ a(β+ 2α)

(c+ 2a)(β+ 2α)− cβ
=

cα+ aβ+ 2aα
2cα+ 2aβ+ 4aα

= g0(2) =
1
2

,

and
g0(1) = g3(1) = g0(2) = g3(2) =

1
2

.

Note that, letting
T0 := inf{n > 0 : Zn = 0} and T3 := inf{n > 0 : Zn = 0},

we also have
g0(k) = P(ZT0,3 = 0 | Z0 = k) = P(T0 <∞ | Z0 = k)

and
g3(k) = P(ZT0,3 = 3 | Z0 = k) = P(T3 <∞ | Z0 = k)

k = 0, 1, 2, 3.

5.2 Mean Hitting and Absorption Times

We are now interested in the mean hitting time
hA(k) := IE[TA | Z0 = k]

it takes for the chain to hit the set A ⊂ S starting from a state k ∈ S. In case the set A is absorbing we refer to hA(k) as the mean
absorption time into A starting from the state k . Clearly, since TA = 0 whenever Z0 = k ∈ A, we have

hA(k) = 0, for all k ∈ A.
MH3512 AY19-20
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The mean hitting times
hA(k) := IE[TA | Z0 = k], k ∈ S,

satisfy the equations

hA(k) = 1 +
∑
l∈S

Pk,lhA(l) = 1 +
∑

l∈S\A
Pk,lhA(l), k ∈ S \A,

under the boundary conditions
hA(k) = IE[TA | Z0 = k] = 0, k ∈ A.

Proof

For all k ∈ S \A, by first step analysis using the law of total expectation applied to the probability measure P(· | Z0 = l), and
the Markov property we have

hA(k) = IE[TA | Z0 = k]

=
∑
l∈S

IE
[
TA1{Z1=l} | Z0 = k

]

=
1

P(Z0 = k)

∑
l∈S

IE
[
TA1{Z1=l}1{Z0=k}

]

=
1

P(Z0 = k)

∑
l∈S

IE
[
TA1{Z1=l and Z0=k}

]

=
∑
l∈S

IE
[
TA | Z1 = l and Z0 = k

]P(Z1 = l and Z0 = k)

P(Z0 = k)

=
∑
l∈S

IE[TA | Z1 = l and Z0 = k]P(Z1 = l | Z0 = k)

=
∑
l∈S

IE[1 + TA | Z0 = l]P(Z1 = l | Z0 = k)
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∑
l∈S

(1 + IE[TA | Z0 = l])P(Z1 = l | Z0 = k)

=
∑
l∈S

P(Z1 = l | Z0 = k) +
∑
l∈S

P(Z1 = l | Z0 = k) IE[TA | Z0 = l]

= 1 +
∑
l∈S

P(Z1 = l | Z0 = k) IE[TA | Z0 = l]

= 1 +
∑
l∈S

Pk,lhA(l), k ∈ S \A,

with the relation
IE[TA | Z1 = l, Z0 = k] = 1 + IE[TA | Z0 = l].

Hence we have

hA(k) = 1 +
∑
l∈S

Pk,lhA(l), k ∈ S \A, (5.2.1)

under the boundary conditions
hA(k) = IE[TA | Z0 = k] = 0, k ∈ A, (5.2.2)

the Condition (5.2.2) implies that (5.2.1) becomes

hA(k) = 1 +
∑

l∈S\A
Pk,lhA(l), k ∈ S \A.

�

The equations (5.2.1) can be rewritten in matrix form as

hA =


1
...
1

+ PhA,

by considering only the rows with index k ∈ Ac = S \A, under the boundary conditions

hA(k) = 0, k ∈ A. MH3512 AY19-20
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When the transition matrix P has the form (5.1.6) and A = {r+ 1, r+ 2, . . . ,N}, Equation (5.2.1) rewrites as

hA(k) = 1 +
N∑
l=0
Pk,lhA(l)

= 1 +
r∑
l=0
Pk,lhA(l) +

N∑
l=r+1

Pk,lhA(l)

= 1 +
r∑
l=0
Pk,lhA(l), 0 6 k 6 r,

since hA(l) = 0, l = r+ 1, r+ 2, . . . ,N , i.e.

hA(k) = 1 +
r∑
l=0
Pk,lhA(l), 0 6 k 6 r,

with hA(k) = 0, k = r+ 1, . . . ,n.

Two-state chain

In the case of the two-state Markov chain with transition matrix (4.5.1) with A = {0} we simply find h{0}(0) = 0 and

h{0}(1) = b× 1 + (1− b)(1 + h{0}(1)) = 1 + (1− b)h{0}(1), (5.2.3)

with solution
h{0}(1) = b

∑
k>1

k(1− b)k =
1
b

,

and similarly we find
h{1}(0) = a

∑
k>1

k(1− a)k =
1
a

,

with h{0}(0) = h{1}(1) = 0, cf. also (5.3.3) below. MH3512 AY19-20
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The above can be generalized to derive an equation for an expectation of the form

hA(k) := IE
 TA∑
i=0

f(Zi)
∣∣∣∣∣ Z0 = k

 , k = 0, 1, . . . ,N ,

where f(·) is a given utility function, as follows:

hA(k) = IE
 TA∑
i=0

f(Zi)
∣∣∣∣∣ Z0 = k


=

N∑
l=0
Pk,l

f(k) + IE
 TA∑
i=1

f(Zi)
∣∣∣∣∣Z1 = l


=

N∑
l=0
Pk,lf(k) +

N∑
l=0
Pk,l IE

 TA∑
i=1

f(Zi)
∣∣∣∣∣Z1 = l


= f(k)

N∑
l=0
Pk,l +

r∑
l=0
Pk,l IE

 TA∑
i=0

f(Zi)
∣∣∣∣∣Z0 = l


= f(k) +

r∑
l=0
Pk,lhA(l), k ∈ Ac := {0, 1, . . . , r},

with A := {r+ 1, . . . ,N}, hence

hA(k) = f(k) +
r∑
l=0
Pk,lhA(l), k ∈ Ac = {0, 1, . . . , r},

MH3512 AY19-20
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hA(0)
...

hA(r)

 =


f(0)
...

f(r)

+



P0,0 P0,1 P0,2 · · · P0,r

P1,0 P1,1 P1,2 · · · P1,r

P2,0 P2,1 P2,2 · · · P2,r

...
...

...
. . .

...

Pr,0 Pr,1 Pr,2 · · · Pr,r



×


hA(0)
...

hA(r)

 ,

with the boundary condition
hA(k) = f(k), k ∈ A = {r+ 1, . . . ,n},

see also Exercise 5.21 and Problem 5.27.

For example:

- When f = 1Ac = 1{0,1,...,r} is the indicator function over the set Ac, i.e.

f(Zi) = 1Ac(Zi) =


1 if Zi /∈ A,

0 if Zi ∈ A,

the quantity hA(k) coincides with the mean hitting time of the set A starting from the state k . In particular, when A = {m} this
recovers the equation

h{m}(k) = 1 +
∑
l∈S
l 6=m

Pk,lh{m}(l), k ∈ S \ {m}, (5.2.4)

with h{m}(m) = 0.
MH3512 AY19-20
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f(Zi) = 1{l}(Zi) =


1 if Zi = l,

0 if Zi 6= l,

with l ∈ Ac, the quantity hA(k) will yield the mean number of visits to state l starting from k before hitting the set A.

- See Exercise 5.20, Exercise 5.21, and also Problem 5.24 for a complete solution in case f(k) := k and (Zk)k>0 is the gambling
process of Chapter 2.

Poisson equation

Taking

hA(k) := IE
TA−1∑
i=0

f(Zi)
∣∣∣∣∣ Z0 = k

 , k = 0, 1, . . . ,N ,

leads to the same first step analysis equation

hA(k) = f(k) +
r∑

m=0
Pk,mhA(m), k ∈ Ac := {0, 1, . . . , r},

or
(Id− [Pk,m]k,m=0,1,...,r)hA = f ,

with the boundary condition
hA(k) = 0, k ∈ A = {r+ 1, . . . ,n},

see e.g. Theorem 5.5 in [Pri08] for a continuous-time analog.

Example MH3512 AY19-20
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P = [ Pi,j ]06i,j63 =


α 0 β 0
α 0 0 β
α β 0 0
0 0 0 1

 ,

where α,β > 0 and α+ β = 1. Taking A := {3}, determine the mean time it takes to reach state 3 starting from state 0 . We
observe that state 3 is absorbing:

0

1

2

3

α

α

β

α
β

β

1

Let
h3(k) := IE[T3 | Z0 = k]

denote the mean (hitting) time needed to reach state 3 , after starting from state k = 0, 1, 2, 3. We get


h3(0) = α(1 + h3(0)) + β(1 + h3(2)) = 1 + αh3(0) + βh3(2)

h3(1) = α(1 + h3(0)) + β(1 + h3(3)) = 1 + αh3(0)

h3(2) = α(1 + h3(0)) + β(1 + h3(1)) = 1 + αh3(0) + βh3(1)

h3(3) = 0,

which, using the relation α = 1− β, yields

h3(3) = 0, h3(1) =
1
β3 , h3(2) =

1 + β

β3 , h3(0) =
1 + β+ β2

β3 .

Since state 3 can only be reached from state 1 with probability β, it is natural that the hitting times go to infinity as β goes to zero.MH3512 AY19-20



"203We also check that h3(3) < h3(1) < h3(2) < h3(0), as can be expected from the above graph. In addition, (h3(1),h3(2),h3(0))
converge to (1, 2, 3) as β goes to 1, as can be expected.

5.3 First Return Times

Consider now the first return time T rj to state j ∈ S, defined by

T rj := inf{n > 1 : Zn = j},

with
T rj = +∞ if Zn 6= j for all n > 1.

Note that in contrast with the definition (5.1.1) of the hitting time Tj, the infimum is taken here for n > 1 as it takes at least one step
out of the initial state in order to return to state j . Nevertheless we have Tj = T rj if the chain is started from a state i different
from j .

Denote by
µj(i) = IE[T rj | Z0 = i] > 1

the mean return time to state j ∈ S after starting from state i ∈ S.

Mean return times can also be computed by first step analysis. We have

µj(i) = IE[T rj | Z0 = i]

= 1×P(Z1 = j | Z0 = i)

+
∑
l∈S
l 6=j

P(Z1 = l | Z0 = i)(1 + IE[T rj | Z0 = l])

= Pi,j +
∑
l∈S
l 6=j

Pi,l(1 + µj(l))

= Pi,j +
∑
l∈S
l 6=j

Pi,l +
∑
l∈S
l 6=j

Pi,lµj(l)

MH3512 AY19-20
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∑
l∈S

Pi,l +
∑
l∈S
l 6=j

Pi,lµj(l)

= 1 +
∑
l∈S
l 6=j

Pi,lµj(l),

hence
µj(i) = 1 +

∑
l∈S
l 6=j

Pi,lµj(l), i, j ∈ S. (5.3.1)

Hitting times vs return times

Note that the mean return time equation in (5.3.1) does not include any boundary condition, in contrast with the mean hitting time
equation (5.2.4) in Section 5.2. In addition, the time T ri to return to state i is always at least one by construction, hence µi(i) > 1
cannot vanish, while we always have hi(i) = 0, i ∈ S. On the other hand, by definition we have

µi(j) = IE[T ri | Z0 = j] = IE[Ti | Z0 = j] = hi(j),

for all i 6= j, and for i = j the mean return time µj(j) can be computed from the hitting times hj(l), l 6= j, by first step analysis as

µj(j) =
∑
l∈S
Pj,l(1 + hj(l))

= Pj,j +
∑
l 6=j
Pj,l(1 + hj(l))

=
∑
l∈S
Pj,l +

∑
l 6=j
Pj,lhj(l)

= 1 +
∑
l 6=j
Pj,lhj(l), j ∈ S, (5.3.2)

which is in agreement with (5.3.1) when i = j.

In practice we may prefer to compute first the hitting times hi(j) = 0 under the boundary conditions hi(i) = 0, and then to recover
the return time µi(i) from (5.3.2), i, j ∈ S.

Examples MH3512 AY19-20
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The mean return time µ0(i) = IE[T r0 | Z0 = i] to state 0 starting from state i ∈ {0, 1} satisfies

µ0(0) = (1− a)× 1 + a(1 + µ0(1)) = 1 + aµ0(1)

µ0(1) = b× 1 + (1− b)(1 + µ0(1)) = 1 + (1− b)µ0(1)

which yields
µ0(0) = 1 +

a

b
and µ0(1) = h0(1) =

1
b

, (5.3.3)

cf. also (5.2.3) above for the computation of µ0(1) = h0(1) = 1/b as a mean hitting time. In the two-state case, the distribution
of T r0 given Z0 = 0 is given by

f
(n)
0,0 := P(T r0 = n | Z0 = 0) =



0 if n = 0,

1− a if n = 1,

ab(1− b)n−2 if n > 2,

(5.3.4)

hence (5.3.3) can be directly recovered as∗

µ0(0) = IE[T r0 | Z0 = 0]
=

∑
n>0

nP(T r0 = n | Z0 = 0)

=
∑
n>0

nf
(n)
0,0

= 1− a+ ab
∑
n>2

n(1− b)n−2

= 1− a+ ab
∑
n>0

(n+ 2)(1− b)n

∗We are using the identities
∑
k>0

rk = (1− r)−1 and
∑
k>1

krk−1 = (1− r)−2, cf. (A.3) and (A.4).
MH3512 AY19-20
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∑
n>0

n(1− b)n−1 + 2ab
∑
n>0

(1− b)n

=
a+ b

b
= 1 +

a

b
, (5.3.5)

where we used the identity (A.4). Similarly we check that

µ1(0) = 1 + (1− a)µ1(0)

µ1(1) = 1 + bµ1(0),

which yields
µ1(0) = h1(0) =

1
a

and µ1(1) = 1 +
b

a
,

and can be directly recovered by

µ1(1) = 1− b+ ab
∑
n>0

(n+ 2)(1− a)n =
a+ b

a
= 1 +

b

a
, (5.3.6)

as in (5.3.3) and (5.3.5) above, by swapping a with b and state 0 with state 1 .

ii) Maze problem.

Mazes provide natural examples of Markovian systems as their users tend rely on their current positions and to forget past infor-
mation. More generally, Markovian systems can be used as an approximation of a non-Markovian reality.
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"207Consider a fish placed in an aquarium with 9 compartments:

.

3

4 5 6

7 8 9

1 2

(5.3.7)

The fish moves randomly: at each time step it changes compartments and if it finds k > 1 exit
doors from one compartment, it will choose one of them with probability 1/k, i.e. the transition
matrix is

P =



0 1 0 0 0 0 0 0 0
1/2 0 1/2 0 0 0 0 0 0
0 1/2 0 0 0 1/2 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1/2 0 1/2 0
0 0 1/2 0 1/2 0 0 0 0
0 0 0 1/2 0 0 0 1/2 0
0 0 0 0 1/3 0 1/3 0 1/3
0 0 0 0 0 0 0 1 0



.
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"208Question: Find the average time to come back to state 1 after starting from state 1 .

Answer: Letting
T rl = inf{n > 1 : Zn = l}

denote the first return time to state l , and defining

µ1(k) := IE[T r1 | Z0 = k] MH3512 AY19-20
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µ1(1) = 1 + µ1(2)

µ1(2) =
1
2
(1 + 0) +

1
2
(1 + µ1(3)) = 1 +

1
2
µ1(3)

µ1(3) =
1
2
(1 + µ1(2)) +

1
2
(1 + µ1(6)) = 1 +

1
2
µ1(2) +

1
2
µ1(6)

µ1(4) = 1 + µ1(7)

µ1(5) =
1
2
(1 + µ1(8)) +

1
2
(1 + µ1(6)) = 1 +

1
2
µ1(8) +

1
2
µ1(6)

µ1(6) =
1
2
(1 + µ1(3)) +

1
2
(1 + µ1(5)) = 1 +

1
2
µ1(3) +

1
2
µ1(5)

µ1(7) = 1 +
1
2
µ1(4) +

1
2
µ1(8) =

1
2
(1 + µ1(4)) +

1
2
(1 + µ1(8))

µ1(8) =
1
3
(1 + µ1(7)) +

1
3
(1 + µ1(5)) +

1
3
(1 + µ1(9))

= 1 +
1
3
(µ1(7) + µ1(5) + µ1(9))

µ1(9) = 1 + µ1(8),

or 

µ1(1) = 1 + µ1(2), µ1(2) = 1 +
1
2
µ1(3), µ1(3) = 2 +

2
3
µ1(6),

µ1(4) = 1 + µ1(7), µ1(5) = 1 +
1
2
µ1(8) +

1
2
µ1(6), 0 = 30 + 3µ1(8)− 5µ1(6),

µ1(7) = 3 + µ1(8), 0 = 80 + 5µ1(6)− 5µ1(8), µ1(9) = 1 + µ1(8), MH3512 AY19-20
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µ1(1) = 16, µ1(2) = 15, µ1(3) = 28, µ1(4) = 59, µ1(5) = 48, (5.3.8)
µ1(6) = 39, µ1(7) = 58, µ1(8) = 55, µ1(9) = 56.

Consequently, it takes on average 16 steps to come back to 1 starting from 1 , and 59 steps to reach 1 starting from 4 . This
data is illustrated in the following picture in which the numbers represent the average time it takes to return to 1 starting from a
given state.

.

µ1(3) = 28

µ1(4) = 59 µ1(5) = 48 µ1(6) = 39

µ1(7) = 58 µ1(8) = 55 µ1(9) = 56

µ1(1) = 16 µ1(2) = 15

The next Figure 5.1 represents the mean return times to state 0 according to the initial state on the maze (5.3.7).
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Figure 5.1: Mean return times to state 0 on the maze (5.3.7).

5.4 Mean Number of Returns
Return probabilities

In the sequel we let
pij = P(T rj <∞ | Z0 = i) = P(Zn = j for some n > 1 | Z0 = i)

denote the probability of return to state j in finite time∗ starting from state i . The probability pii of return to state i within a
finite time starting from state i can be computed as follows:

pii = P(Zn = i for some n > 1 | Z0 = i)

= P

( ⋃
n>1

{
Zn = i}

∣∣∣∣∣ Z0 = i

)

=
∑
n>1

P(Zn = i,Zn−1 6= i, . . . ,Z1 6= i | Z0 = i)

=
∑
n>1

f
(n)
i,i , (5.4.1)

∗When i 6= j , pij is the probability of visiting state j in finite time after starting from state i . MH3512 AY19-20
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f
(n)
i,j := P(T rj = n | Z0 = i) = P(Zn = j,Zn−1 6= j, . . . ,Z1 6= j | Z0 = i),

i, j ∈ S, is the probability distribution of T rj given that Z0 = i, with

f
(0)
i,i = P(T ri = 0 | Z0 = i) = 0.

Note that we have
f
(1)
i,i = P(Z1 = i | Z0 = i) = Pi,i, i ∈ S.

Convolution equation

By conditioning on the first return time k > 1, the return time probability distribution f (k)
i,i = P(T ri = k | Z0 = i) satisfies the

convolution equation

[P n]i,i = P(Zn = i | Z0 = i)

=
n∑
k=1

P(Zk = i,Zk−1 6= i, . . . ,Z1 6= i | Z0 = i)P(Zn = i | Zk = i)

=
n∑
k=1

P(Zk = i,Zk−1 6= i, . . . ,Z1 6= i | Z0 = i)P(Zn−k = i | Z0 = i)

=
n∑
k=1

f
(k)
i,i [P

n−k]i,i,

which extends the convolution equation (3.4.7) from random walks to the more general setting of Markov chains.

The return probabilities pij will be used below to compute the average number of returns to a given state, and the distribution f (k)
i,j ,

k > 1, of T rj given that Z0 = i will be useful in Section 6.4 on positive and null recurrence.

Number of returns

Let
Rj :=

∑
n>1

1{Zn=j} (5.4.2)
MH3512 AY19-20



"213denote the number of returns∗ to state j by the chain (Zn)n∈N. The next proposition shows that, given {Z0 = i}, Rj has a
zero-modified geometric distribution with initial mass 1− pij.

Proposition 5.5

The probability distribution of the number of returns Rj to state j given that {Z0 = i} is given by

P(Rj = m | Z0 = i) =


1− pij, m = 0,

pij × (pjj)m−1× (1− pjj), m > 1,

Proof

When the chain never visits state j starting from Z0 = i we have Rj = 0, and this happens with probability

P(Rj = 0 | Z0 = i) = P(T rj =∞ | Z0 = i)

= 1−P(T rj <∞ | Z0 = i)

= 1− pij.

Next, when the chain (Zn)n∈N makes a number Rj = m > 1 of visits to state j starting from state i , it makes a first visit to
state j with probability pi,j and then makes m− 1 returns to state j , each with probability pjj. After those m visits, it never
returns to state j , and this event occurs with probability 1− pjj. Hence, given that {Z0 = i} we have

P(Rj = m | Z0 = i) =


pij × (pjj)m−1× (1− pjj), m > 1,

1− pij, m = 0,

by the same argument as in (5.3.4) above. �

In case i = j, Ri is simply the number of returns to state i starting from state i , and it has the geometric distribution

P(Ri = m | Z0 = i) = (1− pii)(pii)m, m > 0.
∗Here, Rj is called a number of returns because the time counter is started at n = 1 and excludes the initial state. MH3512 AY19-20
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Proposition 5.6

We have

P(Rj <∞ | Z0 = i) =


1− pij, if pjj = 1,

1, if pjj < 1.

Proof

We note that

P(Rj <∞ | Z0 = i) = P(Rj = 0 | Z0 = i) +
∑
m>1

P(Rj = m | Z0 = i)

= 1− pij + pij(1− pjj)
∑
m>1

(pjj)
m−1

=


1− pij, if pjj = 1,

1, if pjj < 1.

�

We also have

P(Rj =∞ | Z0 = i) =


pij, if pjj = 1,

0, if pjj < 1.

In particular if pjj = 1, i.e. state j is recurrent, we have

P(Rj = m | Z0 = i) = 0, m > 1,

and in this case, 
P(Rj <∞ | Z0 = i) = P(Rj = 0 | Z0 = i) = 1− pij,

P(Rj =∞ | Z0 = i) = 1−P(Rj <∞ | Z0 = i) = pij. MH3512 AY19-20
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P(Ri <∞ | Z0 = i) =
∑
m>0

P(Ri = m | Z0 = i)

= (1− pii)
∑
m>0

(pii)
m

=


0, if pii = 1,

1, if pii < 1,
(5.4.3)

hence

P(Ri =∞ | Z0 = i) =


1, if pii = 1,

0, if pii < 1,
(5.4.4)

i.e. the number of returns to a recurrent state is infinite with probability one.

Mean number of returns

The notion of mean number of returns will be needed for the classification of states of Markov chains in Chapter 6. By (A.4), when
pjj < 1 we have P(Rj <∞ | Z0 = i) = 1 and∗

IE[Rj | Z0 = i] =
∑
m>0

mP(Rj = m | Z0 = i) (5.4.5)

= (1− pjj)pij
∑
m>1

m(pjj)
m−1

=
pij

1− pjj
, (5.4.6)

hence
IE[Rj | Z0 = i] <∞ if pjj < 1.

If pj,j = 1 then IE[Rj | Z0 = i] = ∞ unless pi,j = 0, in which case P(Rj = 0 | Z0 = i) = 1 and IE[Rj | Z0 = i] = 0. In
particular, when i = j we find the next proposition.

∗We are using the identity
∑
k>1

krk−1 = (1− r)−2, cf. (A.4).
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The mean number of returns to state i is given by

IE[Ri | Z0 = i] =
pii

1− pii
,

and it is finite, i.e. IE[Ri | Z0 = i] <∞, if and only if pii < 1.

More generally, by (5.4.2) we can also write

IE[Rj | Z0 = i] = IE
 ∑
n>1

1{Zn=j} | Z0 = i


=

∑
n>1

IE[1{Zn=j} | Z0 = i]

=
∑
n>1

P(Zn = j | Z0 = i)

=
∑
n>1

[P n]i,j . (5.4.7)

The above quantity coincides with
IE[Rj | Z0 = i] = −1{i=j}+

[
(Id− P )−1]

i,j ,

where by analogy with (A.3), the matrix inverse

G :=
∑
n>0

P n = (Id− P )−1

of Id− P is called the potential kernel, or the resolvent of P . Finally, if m is the only absorbing state, we can also write

IE[Tm | Z0 = i] = 1 +
∑
j∈S
j 6=m

IE[Rj | Z0 = i] =
∑
j∈S
j 6=m

[
(Id− P )−1]

i,j , i 6= m.

See [AKS93] for an application of this formula to the Snakes and Ladders game. MH3512 AY19-20
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Exercise 5.1 Consider a Markov chain (Xn)n∈N with state space S = {0, 1, 2, 3} and transition probabilities

P(X1 = 0 | X0 = 0) = 1, P(X1 = 3 | X0 = 3) = 1,
P(X1 = 0 | X0 = 1) = 1/2, P(X1 = 2 | X0 = 1) = 1/2,
P(X1 = 1 | X0 = 2) = 1/3, P(X1 = 3 | X0 = 2) = 2/3.

a) Draw the graph of the chain and write down its transition matrix.

b) Compute α := P(T3 <∞ | X0 = 1) and β := P(T3 <∞ | X0 = 2), where

T3 := inf{n > 0 : Xn = 3}.

c) Letting
T0,3 := inf{n > 0 : Xn = 0 or Xn = 3},

compute IE[T0,3 | X0 = 1] and IE[T0,3 | X0 = 2].

Exercise 5.2 Consider a Markov chain (Xn)n>0 with state space S = {0, 1} and transition matrix

P =


0.4 0.6

0.8 0.2

 .

Compute the mean duration between two visits to state 1 .

Exercise 5.3 Consider the Markov chain (Xn)n>0 on S = {0, 1, 2} whose transition probability matrix P is given by

P =



0 1 2
0 1 0 0
1 1/3 0 2/3
2 0 1 0

.
MH3512 AY19-20



"218a) Draw a graph of the chain and find the probability g0(k) that the chain is absorbed into state 0 given that it started from states
k = 0, 1, 2.

b) Determine the mean time h0(k) it takes until the chain is absorbed into state 0 , after starting from k = 0, 1, 2.

Exercise 5.4 A box contains red balls and green balls. At each time step we pick a ball uniformly at random and without replacement.
If the ball is red we lose $1, and if the ball is green we gain +$1. The game ends when the box becomes empty. We let f(x, y) denote
the value of the game when the game starts with x > 0 red balls and y > 0 green balls in the box.

a) Using first step analysis, derive the finite difference equation satisfied by f(x, y) for x+ y > 1.

b) Find the boundary conditions f(x, 0), x > 1, and f(0, y), y > 1.

c) Solve the equation of Question (a) for f(x, y), x, y = 1, 2, 3.

d) Find f(x, y) for all x, y > 0.

Exercise 5.5 Consider the Markov chain with graph

0

1

2

30.3
0.2

0.8

0.5

0.1 0.6

0.5

1

(5.4.8)

and let
T rk := inf{n > 1 : Xn = k}

denote the return time to state k = 0, 1, 2, 3. MH3512 AY19-20
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pk,2 := P(T r2 <∞ | X0 = k),

for k = 0, 1, 2, 3.

b) Find the probabilities
pk,1 := P(T r1 <∞ | X0 = k), k = 0, 1, 2, 3.

Exercise 5.6 Consider a Markov chain (Xn)n∈N with state space S = {0, 1, 2, 3} and transition probability matrix given by

[ Pi,j ]06i,j63 =


1 0 0 0

0.3 0 0.7 0
0 0.3 0 0.7
0 0 0 1

 .

a) What are the absorbing states of the chain (Xn)n∈N?

b) Given that the chain starts at 1 , find its probability of absorption g0(k) = P(T0 <∞ | X0 = k) into state 0 for k = 0, 1, 2, 3.

c) Find the mean hitting times h1(k) = IE[T1 | X0 = k] of state 1 starting from state k , for k = 0, 1, 2, 3.

Exercise 5.7 Consider a random walk with Markov transition matrix given by

[ Pi,j ]06i,j63 =


0.5 0 0.5 0
0.5 0 0 0.5
0.5 0.5 0 0
0 0 0 1

 .

Compute the average time it takes to reach state 3 given that the chain is started at state 0 .
MH3512 AY19-20



"220Exercise 5.8 Consider the Markov chain (Xn)n>0 on {0, 1, 2, 3} whose transition probability matrix P is given by

P =


1 0 0 0

0.5 0 0.5 0
0 0.5 0 0.5
0 0 0 1

 .

a) Draw the graph of this chain.

b) Find the probability g0(k) that the chain is absorbed into state 0 given that it started from state k = 0, 1, 2, 3.

c) Determine the mean time h(k) it takes until the chain hits an absorbing state, after starting from k = 0, 1, 2, 3.

Exercise 5.9 Consider a discrete-time, time-homogeneous Markov chain (Xn)n∈N on a state space S, and the first hitting time

TA = inf{n > 0 : Zn ∈ A},

of a subset A ⊂ of S. Show that (Xn)n∈N has the strong Markov property with respect to TA, i.e. show that for all n,m > 0, j ∈ S,
and (ik)k∈N ⊂ S we have

P(XTA+n = j | XTA = i0, . . . ,X0 = iTA and TA < +∞) = P(Xn = j | X0 = i0).

Exercise 5.10 We consider the simple random walk (Sn)n∈N of Chapter 3.

a) Using first step analysis, recover the formula (3.4.16) for the probability P(T0 < ∞ | S0 = k) of hitting state 0 in finite time
starting from any state k > 0 when q < p.

b) Using first step analysis, recover the formula (3.4.18) giving the mean hitting time IE[T0 | S0 = k] of state 0 from any state k > 0
when q > p.

MH3512 AY19-20



"221Exercise 5.11 A player tosses a fair six-sided die and records the number appearing on the uppermost face. The die is then tossed again
and the second result is added to the first one. This procedure is repeated until the sum of all results becomes strictly greater than 10.
Compute the probability that the game finishes with a cumulative sum equal to 13.

Exercise 5.12 A fish is put into the linear maze as shown, and its state at time n is denoted by Xn ∈ {0, 1, 2, 3, 4, 5}:

0

shock

1 2 3 4 5

food

Starting from any state k ∈ {1, 2, 3, 4}, the fish moves to the right with probability p and to the left with probability q such that
p+ q = 1 and p ∈ (0, 1). Consider the hitting times

T0 = inf{n > 0 : Xn = 0}, and T5 = inf{n > 0 : Xn = 5},

and g(k) = P(T5 < T0 | X0 = k), k = 0, 1, . . . , 5.

a) Using first step analysis, write down the equation satisfied by g(k), k = 0, 1, . . . , 5, and give the values of g(0) and g(5).

b) Assume that the fish is equally likely to move right or left at each step. Compute the probability that starting from state k it finds
the food before getting shocked, for k = 0, 1, . . . , 5.

MH3512 AY19-20



"222Exercise 5.13 Starting from a state m > 1 at time k, the next state of a random device at time k+ 1 is uniformly distributed among
{0, 1, . . . ,m− 1}, with 0 as an absorbing state.

a) Model the time evolution of this system using a Markov chain whose transition probability matrix will be given explicitly.

b) Let h0(m) denote the mean time until the system reaches the state zero for the first time after starting from state m . Using first
step analysis, write down the equation satisfied by h0(m), m > 1 and give the values of h0(0) and h0(1).

c) Show that h0(m) is given by h0(m) = h0(m− 1) +
1
m

, m > 1, and that

h0(m) =
m∑
k=1

1
k

,

for all m ∈ N.

Exercise 5.14 An individual is placed in a castle tower having three exits. Exit A leads to a tunnel that returns to the tower after three
days of walk. Exit B leads to a tunnel that returns to the tower after one day of walk. Exit C leads to the outside. Since the inside of
the tower is dark, each exit is chosen at random with probability 1/3. The individual decides to remain outside after exiting the tower,
and you may choose the number of steps it takes from Exit C to the outside of the tower, e.g. take it equal to 0 for simplicity.

a) Show that this problem can be modeled using a Markov chain (Xn)n∈N with four states. Draw the graph of the chain (Xn)n∈N.

b) Write down the transition matrix of the chain (Xn)n∈N.

c) Starting from inside the tower, find the average time it takes to exit the tower.

Exercise 5.15 A mouse is trapped in a maze. Initially it has to choose one of two directions. If it goes to the right, then it will wander
around in the maze for three minutes and will then return to its initial position. If it goes to the left, then with probability 1/3 it
will depart the maze after two minutes of travelling, and with probability 2/3 it will return to its initial position after five minutes of
travelling. Assuming that the mouse is at all times equally likely to go to the left or to the right, what is the expected number of minutesMH3512 AY19-20



"223that it will remain trapped in the maze?

Exercise 5.16 This exercise is a particular case of (5.1.8). Consider the Markov chain whose transition probability matrix P is given by

P =


1 0 0 0

0.1 0.6 0.1 0.2
0.2 0.3 0.4 0.1
0 0 0 1

 .

a) Find the probability that the chain finishes at 0 given that it was started at state 1 .

b) Determine the mean time it takes until the chain reaches an absorbing state.

Exercise 5.17 Consider the Markov chain on {0, 1, 2} with transition matrix


1/3 1/3 1/3
1/4 3/4 0
0 0 1

 .

a) Compute the probability P(T2 < ∞ | X0 = 1) of hitting state 2 in finite time starting from state 1 , and the probability
P(T r1 <∞ | X0 = 1) of returning to state 1 in finite time.

b) Compute the mean return time µ1(1) = IE[T r1 | X0 = 1] to state 1 and the mean hitting time h2(1) = IE[T2 | X0 = 1] of state
2 starting from state 1 .

Exercise 5.18 Taking N := {0, 1, 2, . . .}, consider the random walk (Zk)k∈N = (Xk,Yk)k∈N on N ×N with the transition
probabilities

P(Xk+1 = x+ 1, Yk+1 = y | Xk = x, Yk = y)

= P(Xk+1 = x, Yk+1 = y+ 1 | Xk = x, Yk = y)

=
1
2

, k > 0, MH3512 AY19-20



"224and let
A =

{
(x, y) ∈ N×N : x > 2, y > 2

}
.

Let also
TA := inf{n > 0 : Xn > 2 and Yn > 2}

denote the hitting time of the set A by the random walk (Zk)k∈N, and consider the mean hitting times

µA(x, y) := IE[TA | X0 = x, Y0 = y], x, y ∈ N.

a) Give the value of µA(x, y) when x > 2 and y > 2.

b) Show that µA(x, y) solves the equation

µA(x, y) = 1 +
1
2
µA(x+ 1, y) +

1
2
µA(x, y+ 1), x, y ∈ N. (5.4.9)

c) Show that µA(1, 2) = µA(2, 1) = 2 and µA(0, 2) = µA(2, 0) = 4.

d) In each round of a ring toss game, a ring is thrown at two sticks in such a way that each stick has exactly 50%
chance to receive the ring. Compute the mean time it takes until both sticks receive least two rings.

Exercise 5.19 Let N := {0, 1, 2, . . .} and consider a random walk (Zk)k∈N = (Xk,Yk)k∈N on N ×N with the transition
probabilities

P
(
(Xk+1,Yk+1) = (x+ 1, y) | (Xk,Yk) = (x, y)

)
= P

(
(Xk+1,Yk+1) = (x, y+ 1) | (Xk,Yk) = (x, y)

)
=

1
2

, (x, y) ∈ N×N,

k > 0, and let
A :=

{
(x, y) ∈ N×N : x > 3 or y > 3

}
.

Let also
TA := inf

{
n > 0 : (Xn,Yn) ∈ A

}
MH3512 AY19-20



"225denote the first hitting time of the set A by the random walk (Zk)k∈N = (Xk,Yk)k∈N, and consider the mean hitting times

µA(x, y) := IE
[
TA | (X0,Y0) = (x, y)

]
, (x, y) ∈ N×N.

a) Give the values of µA(x, y) when (x, y) ∈ A.

b) By applying first step analysis, find an equation satisfied by µA(x, y) on the domain

Ac =
{
(x, y) ∈ N×N : 0 6 x, y 6 3

}
.

c) Find the values of µA(x, y) for all x, y 6 3 by solving the equation of part (b).

d) Two players compete in a fair game in which only one of the two players will earn $1 at each round. How many rounds does it take
on average until the gain of one of the players reaches $3, given that both of them started from zero?

Exercise 5.20 Let (Xn)n>0 be a Markov chain with state space S and transition probability matrix (Pij)i,j∈S. Our goal is to compute
the expected value of the infinite discounted series

h(i) := IE
 ∑
n>0

βnc(Xn)
∣∣∣∣∣ X0 = i

 , i ∈ S,

where β ∈ (0, 1) is the discount coefficient and c(·) is a utility function, starting from state i . Show, by a first step analysis argument,
that h(i) satisfies the equation

h(i) = c(i) + β
∑
j∈S

Pijh(j)

for every state i ∈ S.

Exercise 5.21 Consider a Markov Decision Process (MDP) on a state space S, with set of actions A and family (P a)a∈A of transition
probability matrices

P : S× S×A→ [0, 1],
(k, l, a) 7−→ P a

k,l. MH3512 AY19-20
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V ∗(k) = max
π

IE
 ∑
n>0

γnR(Xn)
∣∣∣∣∣ X0 = k

 ,

over all policies π : S→ A giving the action chosen at every given state in S, where γ ∈ (0, 1) is a discount factor and R : S→ R is
a reward function.

Problem 5.22 Let (Xn)n∈N be a Markov chain on {0, 1, . . . ,N}, N > 1, with transition matrix P = [ Pi,j ]06i,j6N .

a) Consider the hitting times
T0 = inf{n > 0 : Xn = 0}, TN = inf{n > 0 : Xn = N},

and
g(k) = P(T0 < TN | X0 = k), k = 0, 1, . . . ,N .

What are the values of g(0) and g(N)?

b) Show, using first step analysis, that the function g satisfies the relation

g(k) =
N∑
l=0
Pk,lg(l), k = 1, . . . ,N − 1. (5.4.10)

c) In this question and the following ones we consider the Wright-Fisher stochastic model in population genetics, in which the state Xn

denotes the number of individuals in the population at time n, and

Pk,l = P(Xn+1 = l | Xn = k) =

N
l

  k
N

l 1−
k

N

N−l ,
k, l = 0, 1, . . . ,N . Write down the transition matrix P when N = 3.

d) Show, from Question (b), that given that the solution to (5.4.10) is unique, we have

P(T0 < TN | X0 = k) =
N − k
N

, k = 0, 1, . . . ,N . MH3512 AY19-20



"227e) Let
T0,N = inf{n > 0 : Xn = 0 or Xn = N},

and
h(k) = IE[T0,N | X0 = k], k = 0, 1, . . . ,N .

What are the values of h(0) and h(N)?

f) Show, using first step analysis, that the function h satisfies the relation

h(k) = 1 +
N∑
l=0
Pk,lh(l), k = 1, 2, . . . ,N − 1.

g) Assuming that N = 3, compute
h(k) = IE[T0,3 | X0 = k], k = 0, 1, 2, 3.

Problem 5.23 Pattern recognition (Exercise 4.7 continued). Consider a sequence (Xn)n>0 of i.i.d. Bernoulli random variables taking
values in a two-letter alphabet {a, b}, with

P(Xn = a) = p and P(Xn = b) = q = 1− p, n > 0,

with 0 < p < 1, and the process (Zn)n>1 defined by

Zn := (Xn−1,Xn), n > 1.

a) Argue that (Zn)n>1 is a Markov chain with four possible states (or words) {aa, ab, ba, bb}, and write down its 4× 4 transition
matrix.

b) Let
τab = inf{n > 1 : Zn = (a, b)}

denote the first time of appearance of the pattern “ab” in the sequence (X0,X1,X2, . . .). Give the value of

Gab(s) := IE[sτab | Z1 = (a, b)], −1 < s < 1. MH3512 AY19-20
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Gaa(s) := IE[sτab | Z1 = (a, a)], and Gba(s) := IE[sτab | Z1 = (b, a)],

−1 < s < 1. Using first step analysis, complete the system of equations

Gaa(s) = psGaa(s) + qsGab(s),

Gba(s) = ? + ?
(5.4.11)

d) Compute Gaa(s) and Gba(s) by solving the system (5.4.11).

e) Using probability generating functions, compute the averages

IE[τab | Z1 = (a, a)] and IE[τab | Z1 = (b, a)].

f) Find the average time it takes until we encounter the pattern “ab” in the sequence (X0,X1,X2, . . .) started with X0 = a.

Problem 5.24 Consider a gambling process (Xn)n>0 on the state space {0, 1, . . . ,N}, with transition probabilities

P(Xn+1 = k+ 1 | Xn = k) = p, P(Xn+1 = k− 1 | Xn = k) = q,

k = 1, 2, . . . ,N − 1, with p+ q = 1. Let

τ := inf{n > 0 : Xn = 0 or Xn = N}

denote the time until the process hits either state 0 or state N , and consider the expectation

h(k) := IE
τ−1∑
i=0

Xi

∣∣∣∣∣ X0 = k

 ,

of the random sum
∑

06i<τ
Xi of all chain values visited before the process hits 0 or N after starting from k = 0, 1, 2, . . . ,N .
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"229a) Give the values of h(0) and h(N).∗

b) Show, by first step analysis, that h(k) satisfies the equations

h(k) = k+ ph(k+ 1) + qh(k− 1), k = 1, 2, . . . ,N − 1. (5.4.12)

From now on we take p = q = 1/2.

c) Find a particular solution of Equation (5.4.12).

d) Knowing that the solution of the associated homogeneous equation

f(k) =
1
2
f(k+ 1) +

1
2
f(k− 1), k = 1, 2, . . . ,N − 1,

takes the form
f(k) = C1 +C2k,

show that the expectation h(k) solution of (5.4.12) is given by

h(k) = k
N2− k2

3
, k = 0, 1, . . . ,N .

e) Compute h(1) when N = 2 and explain why this result makes pathwise sense.

f) Suppose that you start a business with initial monthly income of $4K. Every month the income you receive from that business may
increase or decrease by $1K with equal probabilities (1/2, 1/2). You decide to stop that business as soon as your monthly income
hits the levels 0 or $70K, whichever comes first.

i) Compute the expected duration of your business (in number of months).†

ii) Compute your expected accumulated wealth until the month before you stop your business.

∗We apply the convention
−1∑
i=0

=
∑

06i<0
= 0.

†Recall that IE[T0,N | X0 = k] = k(N − k), k = 0, 1, . . . ,N . MH3512 AY19-20
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over the same mean duration as in Question (f-i) above.

iv) Any comment?

Problem 5.25 ([Gus14]). Cellular automata. Given an alphabet Σ = {a, b} made of two letters we denote by Σ∗ the set of all words
over {a, b}, i.e. Σ∗ is made of all finite sequences of symbols in {a, b}.

A language L over {a, b} is a collection of (finite) words in Σ∗.

In computer science, an automaton given by a function

f : {a, b} × {0, 1, . . . ,n} −→ {0, 1, . . . ,n}

is reading words of the form a1a2 · · · am ∈ L by producing a sequence x1,x2, . . . ,xm of integers via the recursion

x1 := f(a1,x0), x2 := f(a2,x1), x3 := f(a3,x2), . . . ,xm := f(am,xm−1).

A word a1a2 · · · am ∈ L, m > 1, is said to synchronize the automaton f to state n if we have xm = n . Here, n is regarded as a
sink state, also called accepting state.

One says that the automaton f recognizes the language L if every word a1a2 · · · am ∈ L synchronizes the automaton f to state n ,
i.e. satisfies xm = n , starting from any initial state x0 .

Synchronizing automata are connected to algebra and combinatorics, and they have applications in many areas including robotics, coding
theory, network security management, chip design, industrial automation, biocomputing, etc.

a) Let n = 5 and consider the automaton given by the function MH3512 AY19-20
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f 0 1 2 3 4 5
a 1 2 3 3 1 5
b 0 0 0 4 5 5

Draw a graph for this automaton and find the smallest integers l,m > 1 such that f can recognize the word albm starting from any
state of the automaton.

b) Determine the language recognized by the automaton and give an example of a five-letter word that cannot synchronize the automa-
ton when it starts from state 4 .

Hint: The set of words recognized by the automaton can be written using the notation Σ∗xxxxxΣ∗ which represents the con-
catenations of a word in Σ∗ followed by a certain word xxxxx (always the same, to be determined), followed by another word in
Σ∗.

c) Let (Xk)k>1 be a sequence of i.i.d. random variables taking values in {a, b}, with P(Xk = a) = p ∈ (0, 1) and P(Xk = b) =

q = 1− p. Consider the random process (Yk)k∈N started at Y0, with

Y1 = f(X1,Y0), Y2 = f(X2,Y1), . . . ,Yk = f(Xk,Yk−1), . . .

Show that the process (Yk)k∈N is a Markov chain on the state space {0, 1, 2, 3, 4, 5} and write down its graph and its transitionMH3512 AY19-20
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d) Find the average time it takes until the automaton f becomes synchronized by the random words generated from (Xk)k>1, starting
from the initial state Y0 = 0 .

Hint: Call h5(k) the average time it takes to reach state 5 starting from state k = 0, 1, 2, 3, 4, 5, and check first that
h5(4) = ph5(0).

e) (10 points) Let now n = 4 and consider the automaton g defined by

g 0 1 2 3 4
a 0 2 2 1 4
b 0 0 3 4 4

Draw a graph for this automaton.

f) Find the unique shortest word that synchronizes the automation to state 0 after starting from all states 1, 2, 3, and the unique
shortest word that synchronizes the automaton to state 4 after starting from all states 1, 2, 3.

g) Consider the random process (Zk)k∈N started at Z0, with

Z1 = g(X1,Z0), Z2 = g(X2,Z1), . . . ,Zk = g(Xk,Zk−1), . . .

Show that the process (Zk)k∈N is a Markov chain on the state space {0, 1, 2, 3, 4}, draw the graph of the chain and write down its
transition matrix.

MH3512 AY19-20
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to Question (f), synchronization may here occur through state 0 or through state 4 .

Exercise 5.26 Consider the cellular automaton g defined by

g 0 1 2 3 4
a 0 2 2 1 4
b 0 0 3 4 4

This automaton has two sink states 0 and 4 , and its graph is given as follows:

0 1 2 3 4

a,b
ab

a
b b

a

a,b

a) Find the shortest word that synchronizes this automaton to state 4 after starting from all states 1, 2, 3.

b) Consider an {a, b}-valued two-state Markov chain (Xn)n∈N with transition probability matrix

P =


1/2 1/2

1/2 1/2


and the Markov chain on (Zk)k∈N the state space {0, 1, 2, 3, 4} started at Z0, with

Z1 = g(X1,Z0), Z2 = g(X2,Z1), . . . ,Zk = g(Xk,Zk−1), . . .

Draw the graph of the chain (Zk)k∈N and write down its transition probability matrix.

c) Find the probability that the first synchronized word is “aabb” when the automaton is started from state 1 . MH3512 AY19-20



"234Problem 5.27 Markov Decision Processes (MDPs) have applications in game theory, robotics, automated control, operations research,
information theory, multi-agent systems, swarm intelligence, genetic algorithms, etc, through their use in reinforcement learning, and
Q-learning, see here for a GridWorld-based algorithmic simulation.

A Markov Decision Process (MDP) with state space S consists in:

- a finite set A of possible actions,

- a family (P (a))a∈A of transition probability matrices (P (a)
i,j )i,j∈S, and

- a policy π : S→ A giving the action π(k) ∈ A taken at every given state in k ∈ S.

When a MDP is in state Xn = k at time n we look up the action π(k) ∈ A given by the policy π, and we generate the new value
Xn+1 using the transition probabilities P (π(k))

k,· = (P
(π(k))
k,l )l∈S.

The Pacman game is a natural application of Markov Decision Processes, see here.

The Tetris game can also be modeled as a Markov decision process whose (random) state consists in a given board configuration together
with one of seven tile shapes. The actions are naturally chosen among the 40 placement choices for the falling tile, and a new tile shapeMH3512 AY19-20

http://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
http://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
http://www.cs.princeton.edu/~andyz/pacmanRL
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is chosen with uniform probability 1/7 at each time step.

. . . .

. .

. .

.

.

The following 10 questions are interdependent, and should be treated in sequence.

a) Consider a Markov chain (Xn)n∈N with state space S and transition matrix P = (Pi,j)i,j∈S. Derive the first step analysis equation
for the value function

V (k) := IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = k

 , k ∈ S, (5.4.13)

defined as the total accumulated reward obtained after starting from state k , where R : S→ R is a reward function.∗

∗We always assume that R(·) and (Xn)n∈N are such that the series in (5.4.13) are convergent. MH3512 AY19-20

http://www.cs.princeton.edu/~andyz/pacmanRL


"236b) In Questions (b1), (b2) and (b3) below we consider the deterministic MDP on the state space S = {1, 2, 3, 4, 5, 6, 7} with
actions A = {↓,→} and transition probability matrices

P (↓) :=



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


, P (→) :=



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


,

and the reward function R : S→ R given by

R(1) = 0, R(2) = −2, R(3) = −1, R(4) = −1, R(5) = −3, R(6) = 5. (5.4.14)

1 R(1) = 0 2 R(2) = −2 3 R(3) = −1

4 R(4) = −1 5 R(5) = −3 6 R(6) = +5

This MDP can be represented by the following graph, in which the  arrows represent the policy choices, while the straight arrows
denote Markov transitions. MH3512 AY19-20
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R(1) = 0

↓

R(4) = −1

↓

→

→ R(2) = −2

↓

→ R(3) = −1

↓

→

R(5) = −3 →

↓

R(6) = 5

↓

→

R(7) = 0

↓

→

1

1

1

1

1

1
1

1

1

1

1
1

1

1

b1) Compute the optimal action-value function∗

Q∗(k, ↓) := max
π : π(k)=↓

IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = k

 (5.4.15)

and
Q∗(k,→) := max

π : π(k)=→
IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = k

 , (5.4.16)

starting from state X0 = k ∈ S, in the following order: Q∗(7, ↓), Q∗(7,→), Q∗(6, ↓), Q∗(6,→), Q∗(3, ↓), Q∗(3,→),
Q∗(5,→), Q∗(5, ↓), Q∗(2, ↓), Q∗(2,→), Q∗(4,→), Q∗(4, ↓), Q∗(1, ↓), Q∗(1,→).

∗In the maxima (5.4.15) the action is taken equal to “↓”, resp. “→” at the first step only. MH3512 AY19-20
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b2) Find the optimal value function

V ∗(k) := max
π

IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = k

 ,

at all states k = 1, 2, . . . , 7.

Remark: The R package MDPtoolbox can be used to check your results, however, explanations are required.

b3) Find the optimal policy π∗ = (π∗(1),π∗(2),π∗(3),π∗(4),π∗(5)) of actions leading to the optimal gain starting from any
state.∗

Remark: The R package MDPtoolbox can be used to check your results, however, explanations are required.

c) Questions (c1), (c2), (c3) below are for a general MDP.

c1) Using first step analysis, show that for a general MDP the optimal action-value function†

Q∗(k, a) := max
π : π(k)=a

IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = k

 , k ∈ S, a ∈ A, (5.4.17)

can be written using the transition probability matrix P (a) and the optimal value function V ∗(·).‡

c2) How can the optimal policy π∗(k) at state k ∈ S be computed from the optimal action-value function Q∗(k, a)?

c3) By applying first step analysis to the optimal value function

V ∗(k) := max
π

IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = k

 , k ∈ S, (5.4.18)

derive the so-called Bellman equation satisfied by V (k) using the optimal action-value function Q∗(k, a).

∗The values of π∗(6) and π∗(7) are not considered because they do not affect the total reward.
†In the maxima (5.4.17) the action is taken equal to a at the first step only. After moving to a new state we maximize the future reward according to the best policy choice.
‡We always assume that R(·) and (Xn)n∈N are such that the series in (5.4.17) and (5.4.18) is convergent. MH3512 AY19-20



"239d) InQuestions (d1), (d2) and (d3) below we let p ∈ [0, 1] and consider the stochastic MDP on the state space S = {1, 2, 3, 4, 5, 6, 7},
with actions A = {↓,→} and transition probability matrices

P (↓) :=



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


P (→) :=



0 1 0 0 0 0 0
0 0 p 0 q 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


,

and the reward function (5.4.14). This MDP can be represented by the following graph, in which the  arrows represent policy
choices, while the straight arrows denote Markov transitions.

R(1) = 0

↓

R(4) = −1

↓

→

→ R(2) = −2

↓

→ R(3) = −1

↓

→

R(5) = −3 →

↓

R(6) = 5

↓

→

R(7) = 0

↓

→

1

1

p

q

1

1

1
1

1

1

1

1
1

1

1

MH3512 AY19-20



"240d1) Using the argument of Question (c1), compute the optimal action-value function∗

Q∗(k, ↓) := max
π : π(k)=↓

IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = k

 (5.4.19)

and
Q∗(k,→) := max

π : π(k)=→
IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = k

 , (5.4.20)

starting from state X0 = k ∈ S, in the following order: Q∗(7, ↓), Q∗(7,→), Q∗(6, ↓), Q∗(6,→), Q∗(3, ↓), Q∗(3,→),
Q∗(5,→), Q∗(5, ↓), Q∗(2, ↓), Q∗(2,→), Q∗(4,→), Q∗(4, ↓), Q∗(1, ↓), Q∗(1,→).

Remark: Some values of Q∗(k, ↓), Q∗(k,→) may now depend on p.

d2) Using the result of Question (d1), find the optimal value function

V ∗(k) := max
π

IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = k

 ,

at all states k = 1, 2, . . . , 7, depending on the value of p ∈ [0, 1].

Remark: The R package MDPtoolbox can be used to check your results, however, explanations are required.

d3) Find the optimal policy π∗ = (π∗(1),π∗(2),π∗(3),π∗(4),π∗(5)) of actions leading to the optimal gain starting from any
state, depending on the value of p ∈ [0, 1].†

Remark: The R package MDPtoolbox can be used to check your results, however, explanations are required.

∗In the maxima (5.4.19) the action is taken equal to “↓”, resp. “→” at the first step only.
†The values of π∗(6) and π∗(7) are not considered because they do not affect the total reward. MH3512 AY19-20



"241install.packages("MDPtoolbox")
library(MDPtoolbox)

P <- array(0,c(7,7,2))
P[,,1] <- matrix(c(
.,...,.,
.,...,.), nrow=7, ncol=7, byrow=TRUE)
P[,,2] <- matrix(c(
.,...,.,
.,...,.), nrow=7, ncol=7, byrow=TRUE)

R <- array(0,c(7,2))
R[,1] <- matrix(c(.,...,.), nrow=1, ncol=7, byrow=TRUE)
R[,2] <- R[,1]

mdp_check(P, R)
mdp_value_iteration(P,R,discount=1)

MH3512 AY19-20
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6 Classification of States

In this chapter we present the notions of communicating, transient and recurrent states, as well as the concept of irreducibility of a
Markov chain. We also examine the notions of positive and null recurrence, periodicity, and aperiodicity of such chains. Those topics
will be important when analysing the long-run behavior of Markov chains in the next chapter.

6.1 Communicating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
6.2 Recurrent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.3 Transient States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
6.4 Positive vs Null Recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
6.5 Periodicity and Aperiodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

6.1 Communicating States
Definition 6.1

A state j ∈ S is to be accessible from another state i ∈ S, and we write i 7−→ j , if there exists a finite integer n > 0 such
that

[P n]i,j = P(Xn = j | X0 = i) > 0.

In other words, it is possible to travel from i to j with non-zero probability in a certain (random) number of steps. We also say that
state i leads to state j , and when i 6= j we have

P(T rj <∞ | X0 = i) > P(T rj 6 n | X0 = i) > P(Xn = j | X0 = i) > 0. MH3512 AY19-20
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Remark 6.2

Since P 0 = Id and [P 0]i,j = P(X0 = j | X0 = i) = 1{i = j} the definition of accessibility states implicitly that any state i
is always accessible from itself (in zero time steps) even if Pi,i = 0.

In case i 7−→ j and j 7−→ i we say that i and j communicate∗ and we write i ←→ j .

The binary relation “←→” is a called an equivalence relation as it satisfies the following properties:†

a) Reflexivity:

For all i ∈ S we have i ←→ i .

b) Symmetry:

For all i, j ∈ S we have that i ←→ j is equivalent to j ←→ i .

c) Transitivity:

For all i, j, k ∈ S such that i ←→ j and j ←→ k , we have i ←→ k .

Proof

It is clear that the relation ←→ is reflexive and symmetric. The proof of transitivity can be stated as follows. If i 7−→ j and

∗In graph theory, one says that i and i are strongly connected.
†Please refer to MH1300 - Foundations of Mathematics for more information on equivalence classes. MH3512 AY19-20

http://en.wikipedia.org/wiki/Equivalence_relation#Definition
http://www1.spms.ntu.edu.sg/~maths/Undergraduates/MASUndergradModules.html


"244j 7−→ k , there exists a > 1 and b > 1 such that

[P a]i,j > 0, [P b]j,k > 0.

Next, by (4.1.2), for all n > a+ b we have

P(Xn = k | X0 = i)

=
∑

l,m∈S

P(Xn = k, Xn−b = l, Xa = m | X0 = i)

=
∑

l,m∈S

P(Xn = k | Xn−b = l)P(Xn−b = l | Xa = m)P(Xa = m | X0 = i)

> P(Xn = k | Xn−b = j)P(Xn−b = j | Xa = j)P(Xa = j | X0 = i)

= [P a]i,j[P
n−a−b]j,j[P

b]j,k (6.1.1)
> 0.

The conclusion follows by taking n = a+ b, in which case we have

P(Xn = k | X0 = i) > [P a]i,j[P
b]j,k > 0.

�

The equivalence relation ‘←→” induces a partition of S into disjoint classes A1,A2, . . . ,Am such that S = A1 ∪ · · · ∪Am, and

a) we have i ←→ j for all i, j ∈ Aq, and

b) we have i 6←→ j whenever i ∈ Ap and j ∈ Aq with p 6= q.

The sets A1,A2, . . . ,Am are called the communicating classes of the chain.

Definition 6.3

A Markov chain whose state space is made of a unique communicating class is said to be irreducible, otherwise the chain is said to
be reducible.

MH3512 AY19-20
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"245The R package “markovchain” can be used to the irreducibility of a given chain.

install.packages("markovchain")
library (markovchain)
statesNames <- c("0", "1")
mcA <- new("markovchain",transitionMatrix = matrix(c(0.7,0.3,0.1,0.9),
byrow = TRUE, nrow = 2,dimnames = list(statesNames, statesNames)))
is.irreducible(mcA)

Clearly, all states in S communicate when (Xn)n∈N is irreducible. In case the i-th column of a transition matrix P vanishes, i.e.
Pk,i = 0, i ∈ S, then state i cannot be reached from any other state and i becomes a communicating class on its own, as is the case
of state 1 in Exercise 4.10 for n > 2, or in Exercise 7.12. The same is true of absorbing states. However, having a returning loop with
probability strictly lower than one is not sufficient to turn a given state into a communicating class on its own. Clearly, the existence of
at least one absorbing state i with Pi,i = 1 makes a chain reducible.

Exercise: Find the communicating classes of the Markov chain with transition matrix (5.4.8) for the equivalence relation “←→”.

0

1

2

30.3
0.2

0.8

0.5

0.1 0.6

0.5

1
P =


0 0.2 0.8 0

0.3 0.1 0 0.6
0.5 0 0 0.5
0 0 0 1



The above state space S = {0, 1, 2, 3} is partitioned into two communicating classes which are {0, 1, 2} and {3}. MH3512 AY19-20



"2466.2 Recurrent States
Definition 6.4

A state i ∈ S is said to be recurrent if, starting from state i , the chain will return to state i within a finite (random) time, with
probability 1, i.e.,

pi,i := P(T ri <∞ | X0 = i) = P(Xn = i for some n > 1 | X0 = i) = 1. (6.2.1)

The next Proposition 6.5 uses the mean number of returns Ri to state i defined in (5.4.2).
Proposition 6.5

For any state i ∈ S, the following statements are equivalent:

i) the state i ∈ S is recurrent, i.e. pi,i = 1,

ii) the number of returns to i ∈ S is a.s.a infinite, i.e.

P(Ri =∞ | X0 = i) = 1, i.e. P(Ri <∞ | X0 = i) = 0, (6.2.2)

iii) the mean number of returns to i ∈ S is infinite, i.e.

IE[Ri | X0 = i] =∞, (6.2.3)

iv) we have ∑
n>1

f
(n)
i,i = 1, (6.2.4)

where f (n)
i,i := P(T ri = n | X0 = i), n > 1, is the distribution of T ri .

aalmost surely

Proof

Part (i) follows by the definition (6.2.1) of recurrent states.
MH3512 AY19-20



"247ii) Relation (6.2.2) is equivalent to (6.2.1) by (5.4.3) and (5.4.4).

iii) Relation (6.2.3) is equivalent to (6.2.1) by (5.4.5).

iv) Relation (6.2.4) is equivalent to (6.2.1) by (5.4.1).

�

For example, state 0 is recurrent for the random walk of Chapter 3 when p = q = 1/2, while it is not recurrent if p 6= q as by (3.4.14)
we have

p0,0 = P(T0 <∞) = 2 min(p, q). (6.2.5)

As a consequence of (6.2.3), we have the following result.
Corollary 6.6

A state i ∈ S is recurrent if and only if ∑
n>1

[P n]i,i =∞,

i.e. the above series diverges.

Proof

For all i, j ∈ S, by (5.4.7) we have

IE[Rj | X0 = i] = IE
 ∑
n>1

1{Xn=j}

∣∣∣∣∣ X0 = i

 =
∑
n>1

IE[1{Xn=j} | X0 = i]

=
∑
n>1

P(Xn = j | X0 = i) =
∑
n>1

[P n]i,j, (6.2.6)

as in (5.4.7). To conclude we let j = i and apply (6.2.3). �

Corollary 6.6 admits the following consequence, which shows that any state communicating with a recurrent state is itself recurrent. In
other words, recurrence is a class property, as all states in a given communicating class are recurrent as soon as one of them is recurrent.

MH3512 AY19-20
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Let j ∈ S be a recurrent state. Then any state i ∈ S that communicates with state j is also recurrent.

Proof

By definition, since i 7−→ j and j 7−→ i , there exists a > 1 and b > 1 such that

[P a]i,j > 0 [P b]j,i > 0,

and from (6.1.1) applied with k = i we find
∑

n>a+b
[P n]i,i =

∑
n>a+b

P(Xn = i | X0 = i)

> [P a]i,j[P
b]j,i

∑
n>a+b

P n−a−b
j,j

= [P a]i,j[P
b]j,i

∑
n>0

[P n]j,j

= ∞,

which shows that state i is recurrent from Corollary 6.6 and the assumption that state j is recurrent. �

A communicating class A ⊂ S is therefore recurrent if any of its states is recurrent.

6.3 Transient States
A state i ∈ S is said to be transient when it is not recurrent, i.e., by (6.2.1),

pi,i = P(T ri <∞ | X0 = i) = P(Xn = i for some n > 1 | X0 = i) < 1, (6.3.1)

or
P(T ri =∞ | X0 = i) > 0.

MH3512 AY19-20



"249Proposition 6.8

For any state i ∈ S, the following statements are equivalent:

i) the state i ∈ S is transient, i.e. pi,i < 1,

ii) the number of returns to i ∈ S is a.s.a finite, i.e.

P(Ri =∞ | X0 = i) = 0, i.e. P(Ri <∞ | X0 = i) = 1, (6.3.2)

iii) the mean number of returns to i ∈ S is finite, i.e.

IE[Ri | X0 = i] <∞, (6.3.3)

iv) we have ∑
n>1

f
(n)
i,i < 1. (6.3.4)

where f (n)
i,i := P(T ri = n | X0 = i), n > 1, is the distribution of T ri .

aalmost surely

Proof

This is a direct consequence of Proposition 6.5 and the definition (6.3.1) of transience. Regarding point (ii) and the Condition (6.3.2)
we also note that the state i ∈ S is transient if and only if

P(Ri =∞ | X0 = i) < 1,

which, by (5.4.4) is equivalent to P(Ri =∞ | X0 = i) = 0. �

In other words, a state i ∈ S is transient if and only if

P(Ri <∞ | X0 = i) > 0, MH3512 AY19-20
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P(Ri <∞ | X0 = i) = 1,

i.e. the number of returns to state i ∈ S is finite with a non-zero probability which is necessarily equal to one. As a consequence of
Corollary 6.6 we also have the following result.

Corollary 6.9

A state i ∈ S is transient if and only if ∑
n>1

[P n]i,i <∞,

i.e. the above series converges.

By Corollary 6.9 and the relation ∑
n>0

[P n]i,j =
[
(Id− P )−1]

i,j , i, j ∈ S,

we find that a chain with finite state space is transient if the matrix Id− P is invertible, cf. Problem 4.13.

Clearly, any absorbing state is recurrent, and any state that leads to an absorbing state is transient.

In addition, if a state i ∈ S communicates with a transient state j then i is also transient (otherwise the state j would be recurrent
by Corollary 6.7). In other words, transience is a class property, as all states in a given communicating class are transient as soon as one
of them is transient.

Example

For the two-state Markov chain of Section 4.5, Relations (4.5.4) and (4.5.5) show that

∑
n>1

[P n]0,0 =
∑
n>1

b+ aλn2
a+ b

=


∞, if b > 0,
∑
n>1

(1− a)n <∞, if b = 0 and a > 0,
MH3512 AY19-20



"251hence state 0 is transient if b = 0 and a > 0, and recurrent otherwise. Similarly we have

∑
n>1

[P n]1,1 =
∑
n>1

a+ bλn2
a+ b

=


∞, if a > 0,
∑
n>1

(1− b)n <∞, if a = 0 and b > 0,

hence state 1 is transient if a = 0 and b > 0, and recurrent otherwise.

The above results can be recovered by a simple first step analysis for gi(j) = P(Ti <∞ | X0 = j), i, j ∈ {0, 1}, i.e.


g0(0) = ag0(1) + 1− a

g0(1) = b+ (1− b)g0(1)

g1(0) = (1− a)g1(0) + a

g1(1) = bg1(0) + 1− b,

which shows that g0(0) = 1 if b > 0 and g1(1) = 1 if a > 0.

We close this section with the following result for Markov chains with finite state space.
Theorem 6.10

Let (Xn)n∈N be a Markov chain with finite state space S. Then (Xn)n∈N has at least one recurrent state.

Proof

Recall that from (5.4.5) we have

IE[Rj | X0 = i] = pi,j(1− pj,j)
∑
n>1

n(pj,j)
n−1 =

pi,j

1− pj,j
,

MH3512 AY19-20



"252for any states i , j ∈ S. Assuming that the state j ∈ S is transient we have pj,j < 1 by (6.3.1), hence

IE[Rj | X0 = i] =
∑
n>1

[P n]i,j <∞,

by (6.3.3) which impliesa that
lim
n→∞[P

n]i,j = 0

for all transient states j ∈ S. In case all states in S were transient, since S is finite, by the law of total probability (4.2.2) we would
have

0 =
∑
j∈S

lim
n→∞[P

n]i,j = lim
n→∞

∑
j∈S

[P n]i,j = lim
n→∞ 1 = 1,

which is a contradiction. Hence not all states can be transient, and there exists at least one recurrent state. �
aFor any sequence (an)n>0 of nonnegative real numbers,

∑
n>0

an <∞ implies limn→∞ an = 0.

Exercises:

i) Find which states are transient and recurrent in the chain (5.4.8).

0

1

2

30.3
0.2

0.8

0.5

0.1 0.6

0.5

1

P =


0 0.2 0.8 0

0.3 0.1 0 0.6
0.5 0 0 0.5
0 0 0 1



MH3512 AY19-20



"253State 3 is clearly recurrent since we have T r3 = 1 with probability one when X0 = 3. State 2 is transient because

1− p2,2 = P(T r2 =∞ | X0 = 2) =
4
7
> P(X1 = 3 | X0 = 2) = 0.5 > 0, (6.3.5)

and state 1 is transient because

P(T r1 =∞ | X0 = 1) = 0.8 > P(X1 = 3 | X0 = 1) = 0.6, (6.3.6)

see the Exercise 5.5 for the computations of

p1,1 = P(T r2 <∞ | X0 = 2) = 0.8

and
p2,2 = P(T r2 <∞ | X0 = 2) =

3
7

.

By Corollary 6.7, the states 0 and 1 are transient because they communicate with state 2 .

ii) Which are the recurrent states in the simple random walk (Sn)n∈N of Chapter 3 on S = Z?

First, we note that this random walk is irreducible as all states communicate when p ∈ (0, 1). The simple random walk (Sn)n∈N

on S = Z has the transition matrix

Pi,i+1 = p, Pi,i−1 = q = 1− p, i ∈ Z.

We have
[P n]i,i = P(Sn = i | S0 = i) = P(Sn = 0 | S0 = 0),

with
P(S2n = 0) =

2n
n

pnqn and P(S2n+1 = 0) = 0, n ∈ N.
MH3512 AY19-20



"254Hence
∑
n>0

[P n]0,0 =
∑
n>0

P(Sn = 0 | S0 = 0) =
∑
n>0

P(S2n = 0 | S0 = 0)

=
∑
n>0

2n
n

pnqn = H(1) =
1

√
1− 4pq

,

and
IE[R0 | S0 = 0] =

∑
n>1

P(Sn = 0 | S0 = 0) =
1

√
1− 4pq

− 1,

where H(s) is defined in (3.4.8), cf. also Problem 3.11-(f).

Consequently, by Corollary 6.6, all states i ∈ Z are recurrent when p = q = 1/2, whereas by Corollary 6.9 they are all transient
when p 6= q, cf. Corollary 6.7.

Alternatively we could reach the same conclusion by directly using (3.4.14) and (6.2.1) which state that

P(T ri <∞ | X0 = i) = 2 min(p, q).

6.4 Positive vs Null Recurrence
The expected time of return (or mean recurrence time) to a state i ∈ S is given by

µi(i) : = IE[T ri | X0 = i]

=
∑
n>1

nP(T ri = n | X0 = i)

=
∑
n>1

nf
(n)
i,i .

Recall that when state i is recurrent we have P(T ri < ∞ | X0 = i) = 1, i.e. the random return time T ri is almost surely finite
starting from state i , nevertheless this yields no information on the finiteness of its expectation µi(i) = IE[T ri | X0 = i], cf. the
example (1.6.5). MH3512 AY19-20
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A recurrent state i ∈ S is said to be:

a) positive recurrent if the mean return time to i is finite, i.e.

µi(i) = IE[T ri | X0 = i] <∞,

b) null recurrent if the mean return time to i is infinite, i.e.

µi(i) = IE[T ri | X0 = i] =∞.

Exercise: Which states are positive/null recurrent in the simple random walk (Sn)n∈N of Chapter 3 on S = Z?

From (3.4.20) and (3.4.17) we know that IE[T ri | S0 = i] =∞ for all values of p ∈ (0, 1), hence all states of the random walk on Z

are null recurrent when p = 1/2, while all states are transient when p 6= 1/2 due to (3.4.14).

The following Theorem 6.12 shows in particular that a Markov chain with finite state space cannot have any null recurrent state, cf.
e.g. Corollary 2.3 in [Kij97], and also Corollary 3.7 in [Asm03].

Theorem 6.12

Assume that the state space S of a Markov chain (Xn)n∈N is finite. Then all recurrent states in S are also positive recurrent.

As a consequence of Definition 6.3, Corollary 6.7, and Theorems 6.10 and 6.12 we have the following corollary.
Corollary 6.13

Let (Xn)n∈N be an irreducible Markov chain with finite state space S. Then all states of (Xn)n∈N are positive recurrent.
MH3512 AY19-20
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Given a state i ∈ S, consider the sequence

{n > 1 : [P n]i,i > 0}

of integers which represent the possible travel times from state i to itself.
Definition 6.14

The period of the state i ∈ S is the greatest common divisora of the sequence

{n > 1 : [P n]i,i > 0}.
aPlease refer to MH1300 - Foundations of Mathematics or MH1301 Discrete Mathematics for more information on greatest common divisors.

A state having period 1 is said to be aperiodic, which is the case in particular if Pi,i > 0, i.e. when a state admits a returning loop
with nonzero probability.

In particular, any absorbing state is both aperiodic and recurrent. A recurrent state i ∈ S is said to be ergodic if it is both positive
recurrent and aperiodic.

If [P n]i,i = 0 for all n > 1 then the set {n > 1 : [P n]i,i > 0} is empty and by convention the period of state i is defined to be 0.
In this case, state i is also transient.

Note also that if
{n > 1 : [P n]i,i > 0}

contains two distinct numbers that are relatively prime to each other (i.e. their greatest common divisor is 1) then state i aperiodic.

Proposition 6.15 shows that periodicity is a class property, as all states in a given communicating class have same periodicity.
Proposition 6.15

All states that belong to a same communicating class have the same period.
MH3512 AY19-20
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"257Proof

(See e.g. here). Assume that state i has period di, that j communicates with i , and let n ∈ {m > 1 : [Pm]j,j > 0}. Since
i and j communicate, there exists k, l > 1 such that [P k]i,j > 0 and [P l]j,i > 0, hence by (6.1.1) we have [P k+l]i,i > 0 hence
k+ l is a multiple of di. Similarly by (6.1.1) we also have [P n+k+l]i,i > 0, hence n+ k+ l and n are multiples of di, which
implies dj > di. Exchanging the roles of i and j we obtain similarly that di > dj. �

A Markov chain is said to be aperiodic when all of its states are aperiodic. Note that any state that communicates with an aperiodic
state becomes itself aperiodic. In particular, if a communicating class contains an aperiodic state then the whole class becomes aperiodic.

Examples

i) The chain

0 1

1

2

1

3

1

1

clearly has periodicity equal to 4.
MH3512 AY19-20
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"258ii) Consider the following chain:

0 1

1

2

1

3

0.5

0.5

1

Here we have

{n > 1 : [P n]0,0 > 0} = {2, 4, 6, 8, 10, . . .},
{n > 1 : [P n]1,1 > 0} = {2, 4, 6, 8, 10, . . .},
{n > 1 : [P n]2,2 > 0} = {4, 6, 8, 10, 12, . . .},
{n > 1 : [P n]3,3 > 0} = {4, 6, 8, 10, 12, . . .},

hence all states have period 2, and this is also consequence of Proposition 6.15.

iii) Consider the following chain:

0 1

1

2

1

3

1

0.5 0.5
(6.5.1)

Here we have

{n > 1 : [P n]0,0 > 0} = {4, 5, 6, 7, . . .}, MH3512 AY19-20



"259{n > 1 : [P n]1,1 > 0} = {4, 5, 6, 7, . . .},
{n > 1 : [P n]2,2 > 0} = {4, 5, 6, 7, . . .},
{n > 1 : [P n]3,3 > 0} = {4, 5, 6, 7, . . .},

hence all states have period 1, see also Proposition 6.15.

iv) Next, consider the modification of (6.5.1):

0 1

1

2

1

3

0.3

0.5
0.2

1

Here the chain is aperiodic since we have

{n > 1 : [P n]0,0 > 0} = {2, 3, 4, 5, 6, 7, . . .},
{n > 1 : [P n]1,1 > 0} = {2, 3, 4, 5, 6, 7, . . .},
{n > 1 : [P n]2,2 > 0} = {3, 4, 5, 6, 7, 8, . . .},
{n > 1 : [P n]3,3 > 0} = {4, 6, 7, 8, 9, 10, . . .},

hence all states have period 1.

Exercises:

i) What is the periodicity of the simple random walk (Sn)n∈N of Chapter 3 on S = Z?

By (3.3.3) We have

[P 2n]i,i =

2n
n

pnqn > 0 and [P 2n+1]i,i = 0, n ∈ N,
MH3512 AY19-20



"260hence
{n > 1 : [P n]i,i > 0} = {2, 4, 6, 8, . . .},

and the chain has period 2.

ii) Find the periodicity of the chain (5.4.8).

0

1

2

30.3
0.2

0.8

0.5

0.1 0.6

0.5

1


0 0.2 0.8 0
0.3 0.1 0 0.6
0.5 0 0 0.5
0 0 0 1



States 0 , 1 , 2 and 3 have period 1, hence the chain is aperiodic.

iii) The chain of Figure 4.2 is aperiodic since it is irreducible and state 3 has a returning loop.

Exercises
Exercise 6.1 Consider a Markov chain (Xn)n>0 on the state space {0, 1, 2, 3}, with transition matrix


1/3 1/3 1/3 0
0 0 0 1
0 1 0 0
0 0 1 0

 .

MH3512 AY19-20



"261a) Draw the graph of this chain and find its communicating classes. Is this Markov chain reducible? Why?

b) Find the periods of states 0 , 1 , 2 , and 3 .

c) Compute P(T0 <∞ | X0 = 0), P(T0 =∞ | X0 = 0), and P(R0 <∞ | X0 = 0).

d) Which state(s) is (are) absorbing, recurrent, and transient?

Exercise 6.2 Consider the Markov chain on {0, 1, 2} with transition matrix


1/3 1/3 1/3
1/4 3/4 0
0 0 1

 .

a) Is the chain irreducible? Give its communicating classes.

b) Which states are absorbing, transient, recurrent, positive recurrent?

c) Find the period of every state.

Exercise 6.3 Consider a Markov chain (Xn)n>0 on the state space {0, 1, 2, 3, 4}, with transition matrix


0 1/4 1/4 1/4 1/4
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1


.

a) Draw the graph of this chain.

b) Find the periods of states 0 , 1 , 2 , and 3 .

c) Which state(s) is (are) absorbing, recurrent, and transient? MH3512 AY19-20
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Exercise 6.4 Consider the Markov chain with transition matrix

[ Pi,j ]06i,j65 =



1/2 0 1/4 0 0 1/4
1/3 1/3 1/3 0 0 0
0 0 0 0 1 0

1/6 1/2 1/6 0 0 1/6
0 0 1 0 0 0
0 0 0 0 0 1


.

a) Is the chain reducible? If yes, find its communicating classes.

b) Determine the transient and recurrent states of the chain.

c) Find the period of each state.

Exercise 6.5 Consider the Markov chain with transition matrix
0.8 0 0.2 0
0 0 1 0
1 0 0 0

0.3 0.4 0 0.3

 .

a) Is the chain irreducible? If not, give its communicating classes.

b) Find the period of each state. Which states are absorbing, transient, recurrent, positive recurrent?

Exercise 6.6 In the following chain, find:

a) the communicating class(es),

b) the transient state(s),

c) the recurrent state(s), MH3512 AY19-20



"263d) the positive recurrent state(s),

e) the period of every state.

0

1

2 3

4

50.3

0.7

0.5

0.6
0.4

0.1 0.2

0.8

0.9

0.5 1

Exercise 6.7 Consider two boxes containing a total of N balls. At each unit of time one ball is chosen randomly among N and moved
to the other box.

a) Write down the transition matrix of the Markov chain (Xn)n∈N with state space {0, 1, 2, . . . ,N}, representing the number of balls
in the first box. MH3512 AY19-20



"264b) Determine the periodicity, transience and recurrence of the Markov chain.

Exercise 6.8

a) Is the Markov chain of Exercise 4.10-(a) recurrent? positive recurrent?

b) Find the periodicity of every state.

c) Same questions for the success runs Markov chain of Exercise 4.10-(b).

Problem 6.9 Let α > 0 and consider the Markov chain with state space N and transition matrix given by

Pi,i−1 =
1

α+ 1
, Pi,i+1 =

α

α+ 1
, i > 1.

and a reflecting barrier at 0, such that P0,1 = 1. Compute the mean return times IE[T rk | X0 = k] for k ∈ N, and show that the
chain is positive recurrent if and only if α < 1.

MH3512 AY19-20
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7 Long-Run Behavior of Markov Chains

This chapter is concerned with the large time behavior of Markov chains, including the computation of their limiting and stationary
distributions. Here the notions of recurrence, transience, and classification of states introduced in the previous chapter play a major
role.

7.1 Limiting Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
7.2 Stationary Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
7.3 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

7.1 Limiting Distributions
Definition 7.1

A Markov chain (Xn)n∈N is said to admit a limiting probability distribution if the following conditions are satisfied:

i) the limits
lim
n→∞P(Xn = j | X0 = i) (7.1.1)

exist for all i, j ∈ S, and

ii) they form a probability distribution on S, i.e.
∑
j∈S

lim
n→∞P(Xn = j | X0 = i) = 1, (7.1.2)

MH3512 AY19-20



"266for all i ∈ S.

Note that Condition (7.1.2) is always satisfied if the limits (7.1.1) exist and the state space S is finite.

As remarked in (4.5.6) and (4.5.7) above, the two-state Markov chain has a limiting distribution given by

[π0,π1] =

 b

a+ b
,

a

a+ b

 , (7.1.3)

provided that (a, b) 6= (0, 0) and (a, b) 6= (1, 1), while the corresponding mean return times are given from (5.3.3) by

(µ0(0),µ1(1)) =

1 +
a

b
, 1 +

b

a

 ,

i.e. the limiting probabilities are given by the inverses

[π0,π1] =

 b

a+ b
,

a

a+ b

 =

 1
µ0(0)

,
1

µ1(1)

 =

 µ1(0)
µ0(1) + µ1(0)

,
µ0(1)

µ0(1) + µ1(0)

 .

This fact is not a simple coincidence, and it is actually a consequence of the following more general result, which shows that the longer
it takes on average to return to a state, the smaller the probability is to find the chain in that state. Recall that a chain (Xn)n∈N is
said to be recurrent, resp. aperiodic, if all its states are recurrent, resp. aperiodic.

Theorem 7.2

(Theorem IV.4.1 in [KT81]) Consider a Markov chain (Xn)n∈N satisfying the following 3 conditions:

i) recurrence,

ii) aperiodicity, and

iii) irreducibility.

Then we have
lim
n→∞P(Xn = j | X0 = i) =

1
µj(j)

, i, j ∈ S, (7.1.4)
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"267independently of the initial state i ∈ S, where

µj(j) = IE[T rj | X0 = j] ∈ [1,∞]

is the mean return time to state j ∈ S.

In Theorem 7.2, Condition (i), resp. Condition (ii), is satisfied from Proposition 6.15, resp. from Proposition 6.7, provided that at
least one state is aperiodic, resp. recurrent, since the chain is irreducible.

The conditions stated in Theorem 7.2 are sufficient, but they are not all necessary. For example, a Markov chain may admit a limiting dis-
tribution when the recurrence and irreducibility Conditions (i) and (iii) above are not satisfied, cf. for example Exercise 7.15-(b) below.

Note that the limiting probability (7.1.4) is independent of the initial state i , and it vanishes whenever the state i is transient or null
recurrent, cf. Proposition 7.4 below. In the case of the two-state Markov chain this result in consistent with (4.5.6), (4.5.7), and (7.1.3).
However it does not apply to e.g. the simple random walk of Chapter 3 which is not recurrent when p 6= q from (6.2.5), and has period 2.

For an aperiodic chain with finite state space, we can show that the limit limn→∞ P(Xn = i | X0 = j) exists for all i, j ∈ S by
breaking the chain into communicating classes, however it may depend on the initial state j . This however does not apply to the
random walk of Chapter 3 which is not aperiodic and has an infinite state space, although it can be turned into an aperiodic chain by
allowing a draw as in Exercise 2.1.

The following sufficient condition is a consequence of Theorem IV.1.1 in [KT81].
Proposition 7.3

Consider a Markov chain (Xn)n∈N with finite state space S = {0, 1, . . . ,N}, whose transition matrix P is regular, i.e. there
exists n > 1 such that all entries of the power matrix P n are non-zero. Then (Xn)n∈N admits a limiting probability distribution
π = (πi)i=0,1,...,N given by

πj = lim
n→∞P(Xn = j | X0 = i), 0 6 i, j 6 N , (7.1.5)

A chain with finite state space is regular if it is aperiodic and irreducible, cf. Proposition 1.7 of [LPW09].
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"268We close this section with the following proposition, whose proof uses an argument similar to that of Theorem 6.10.
Proposition 7.4

Let (Xn)n∈N be a Markov chain with a transient state j ∈ S. Then we have

lim
n→∞P(Xn = j | X0 = i) = 0,

for all i ∈ S.

Proof

Since j is a transient state, the probability pjj of return to j in finite time satisfies pjj < 1 by definition, hence by Relation (5.4.5)
page 215, the expected number of returns to j starting from state i is finite:a

IE[Rj | X0 = i] = IE
 ∑
n>1

1{Xn=j}

∣∣∣∣∣ X0 = i


=

∑
n>1

IE
[
1{Xn=j} | X0 = i

]
=

∑
n>1

P(Xn = j | X0 = i)

=
pij

1− pjj
<∞.

The convergence of the above series implies the convergence to 0 of its general term, i.e.

lim
n→∞P(Xn = j | X0 = i) = 0

for all i ∈ S, which is the expected conclusion. �
aThe exchange of infinite sums and expectation is valid in particular for nonnegative series.

7.2 Stationary Distributions
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"269Definition 7.5

A probability distribution on S is any a family π = (πi)i∈S in [0, 1] such that
∑
i∈S

πi = 1.

Next, we state the definition of stationary distribution.
Definition 7.6

A probability distribution π on S is is said to be stationary if, starting X0 at time 0 with the distribution (πi)i∈S, it turns out that
the distribution of X1 is still (πi)i∈S at time 1.

In other words, (πi)i∈S is stationary for the Markov chain with transition matrix P if, letting

P(X0 = i) := πi, i ∈ S,

at time 0, implies
P(X1 = i) = P(X0 = i) = πi, i ∈ S,

at time 1. This also means that

πj = P(X1 = j) =
∑
i∈S

P(X1 = j | X0 = i)P(X0 = i) =
∑
i∈S

πiPi,j, j ∈ S,

i.e. the distribution π is stationary if and only if the vector π is invariant (or stationary) by the matrix P , that means

π = πP . (7.2.1)

Note that in contrast with (5.1.3), the multiplication by P in (7.2.1) is on the right hand side and not on the left. The relation (7.2.1)
can be rewritten as the balance condition

∑
i∈S

πiPi,k = πk = πk
∑
j∈S

Pk,j =
∑
j∈S

πkPk,j, (7.2.2)
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"270which can be illustrated as follows:

iπi

iπi

iπi

kπk

j

j

j

Pi,k

Pi,k

Pi,k

Pk,j

Pk,j

Pk,j

Figure 7.1: Global balance condition (discrete time).

We also note that the stationarity and limiting properties of distributions are quite different concepts. If the chain is started in the
stationary distribution then it will remain in that distribution at any subsequent time step (which is stronger than saying that the chain
will reach that distribution after an infinite number of time steps). On the other hand, in order to reach the limiting distribution the
chain can be started from any given initial distribution or even from any fixed given state, and it will converge to the limiting distribution
if it exists. Nevertheless, the limiting and stationary distribution may coincide in some situations as in Theorem 7.8 below.

More generally, assuming that Xn has the invariant (or stationary) distribution π at time n, i.e. P(Xn = i) = πi, i ∈ S, we have

P(Xn+1 = j) =
∑
i∈S

P(Xn+1 = j | Xn = i)P(Xn = i)

=
∑
i∈S

Pi,jP(Xn = i) =
∑
i∈S

Pi,jπi

= [πP ]j = πj, j ∈ S,

since the transition matrix of (Xn)n∈N is time homogeneous, hence

P(Xn = j) = πj, j ∈ S, =⇒ P(Xn+1 = j) = πj, j ∈ S.

By induction on n > 0, this yields
P(Xn = j) = πj, j ∈ S, n > 1, MH3512 AY19-20



"271i.e. the chain (Xn)n∈N remains in the same distribution π at all times n > 1, provided that it has been started with the stationary
distribution π at time n = 0.

Proposition 7.7

Assume that S = {0, 1, . . . ,N} is finite and that the limits

π
(i)
j := lim

n→∞P(Xn = j | X0 = i)

exist for all i, j ∈ S, i.e. we have

lim
n→∞P

n =



π
(0)
0 π

(0)
1 · · · π(0)

N

π
(1)
0 π

(1)
1 · · · π(1)

N

...
...

. . .
...

π
(N)
0 π

(N)
1 · · · π(N)

N


.

Then for every i = 0, 1, . . . ,N , the vector π(i) := (π
(i)
j )j∈{0,1,...,N} is a stationary distribution and we have

π(i) = π(i)P , (7.2.3)

i.e. π(i) is invariant (or stationary) by P , i = 0, 1, . . . ,N .

Proof

We have

π
(i)
j : = lim

n→∞P(Xn = j | X0 = i)

= lim
n→∞P(Xn+1 = j | X0 = i)

= lim
n→∞

∑
l∈S

P(Xn+1 = j | Xn = l)P(Xn = l | X0 = i)

= lim
n→∞

∑
l∈S

Pl,jP(Xn = l | X0 = i)

=
∑
l∈S

Pl,j lim
n→∞P(Xn = l | X0 = i)
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∑
l∈S

π
(i)
l Pl,j, i, j ∈ S,

where we exchanged limit and summation because the state space S is assumed to be finite, which shows that

π(i) = π(i)P ,

i.e. (7.2.3) holds and π(i) is a stationary distribution, i = 0, 1, . . . ,N . �

Proposition 7.7 can be applied in particular when the limiting distribution πj := limn→∞ P(Xn = j | X0 = i) does not depend on
the initial state i , i.e.

lim
n→∞P

n =



π0 π1 · · · πN
π0 π1 · · · πN
...

...
. . .

...
π0 π1 · · · πN

 .

For example, the limiting distribution (7.1.3) of the two-state Markov chain is also an invariant distribution, i.e. it satisfies (7.2.1). In
particular we have the following result.

Theorem 7.8

(Theorem IV.4.2 in [KT81]) Assume that the Markov chain (Xn)n∈N satisfies the following 3 conditions:

i) positive recurrence,

ii) aperiodicity, and

iii) irreducibility.

Then the chain (Xn)n∈N admits a limiting distribution

πi := lim
n→∞P(Xn = i | X0 = j) = lim

n→∞[P
n]j,i =

1
µi(i)

, i, j ∈ S,

which also forms a stationary distribution (πi)i∈S = (1/µi(i))i∈S, uniquely determined by the equation

π = πP .
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"273In Theorem 7.8 above, Condition (ii), is satisfied from Proposition 6.15, provided that at least one state is aperiodic, since the chain is
irreducible.

See Exercise 7.22 for an application of Theorem 7.8 on an infinite state space.

In the following trivial example of a finite circular chain, Theorems 7.2 and 7.8 cannot be applied since the chain is not aperiodic, and
it clearly does not admit a limiting distribution. However, Theorem 7.10 below applies and the chain admits a stationary distribution:
one can easily check that µk(k) = n and πk = 1/n = 1/µk(k), k = 1, 2, . . . ,n, with n = 7.

1

2
3

4

5

6
7

P =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0



(7.2.4)

In view of Theorem 6.12, we have the following corollary of Theorem 7.8:
Corollary 7.9

Consider an irreducible aperiodic Markov chain with finite state space. Then the limiting probabilities

πi := lim
n→∞P(Xn = i | X0 = j) =

1
µi(i)

, i, j ∈ S,

exist and form a stationary distribution which is uniquely determined by the equation

π = πP .
MH3512 AY19-20



"274Corollary 7.9 can also be applied separately to derive a stationary distribution on each closed component of a reducible chain.

The convergence of the two-state chain to its stationary distribution has been illustrated in Figure 4.5. Before proceeding further we
make some comments on the assumptions of Theorems 7.2 and 7.8.

Remarks

- Irreducibility.

The irreducibility assumption on the chain in Theorems 7.2 and 7.8 is truly required in general, as a reducible chain may have a
limiting distribution that depends on the initial state as in the following trivial example on the state space {0, 1, 2}:

�

�

�

�
0 1 2

1 0.4 0.6

1

in which the chain is aperiodic and positive recurrent, but not irreducible. Note that the sub-chain {1, 2} admits [π1,π2] =

[1/1.6, 0.6/1.6] as stationary and limiting distribution, however any vector of the form (1− α,απ1,απ2) is also a stationary
distribution on S = {0, 1, 2} for any α ∈ [0, 1], showing the non uniqueness of the stationary distribution.

More generally, in case the chain is not irreducible we can split it into subchains and consider the subproblems separately. For
example, when the state space S is a finite set it admits at least one communicating class A ⊂ S that leads to no other class, and
it admits a stationary distribution πA by Corollary 7.11 since it is irreducible, hence a chain with finite state space S admits at
least one stationary distribution of the form (0, 0, . . . , 0,πA).

Similarly, the constant two-state Markov chain with transition matrix P = Id is reducible, it admits an infinity of stationary
distributions, and a limiting distribution which is dependent on the initial state.

MH3512 AY19-20
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The conclusions of Theorems 7.2, 7.8 and Corollary 7.9 ensure the existence of the limiting distribution by requiring the aperiodicity
of the Markov chain. Indeed, the limiting distribution may not exist when the chain is not aperiodic. For example, the two-state
Markov chain with transition matrix

P =

 0 1
1 0


is not aperiodic (both states have period 2) and it has no limiting distribution because∗

P(X2n = 1 | X0) = 1 and P(X2n+1 = 1 | X0) = 0, n ∈ N.

The chain does have an invariant (or stationary) distribution π solution of π = πP , and given by

π = [π0,π1] =
[ 1

2
,

1
2

]
.

- Positive recurrence.

Theorem 7.8, Theorem 7.10 below, and Corollary 7.9 do not apply to the unrestricted random walk (Sn)n∈N of Chapter 3, because
this chain is not positive recurrent, cf. Relations (3.4.20) and (3.4.17), and admits no stationary distribution.

If a stationary distribution π = (πi)i∈Z existed it would satisfy the equation π = πP which, according to (4.3.1), would read

πi = pπi−1 + qπi+1, i ∈ Z,

i.e.
(p+ q)πi = pπi−1 + qπi+1, i ∈ Z,

or
πi+1− πi =

p

q
(πi− πi−1), i ∈ Z.

∗This two-state chain is a particular case of the circular chain (7.2.4) for n = 2. MH3512 AY19-20



"276As in the direct solution method of page 78, this implies

πi+1− πi =
p
q

i (π1− π0), i ∈ N,

so that by a telescoping summation argument we have

πk = π0 +
k−1∑
i=0

(πi+1− πi)

= π0 + (π1− π0)
k−1∑
i=0

p
q

i

= π0 + (π1− π0)
1− (p/q)k

1− p/q
, k ∈ N,

which cannot satisfy the condition
∑
k∈Z

πk = 1, with p 6= q. When p = q = 1/2 we similarly obtain

πk = π0 +
k−1∑
i=0

(πi+1− πi) = π0 + k(π1− π0), k ∈ Z,

and in this case as well, the sequence (πk)k∈N cannot satisfy the condition
∑
k∈Z

πk = 1, and we conclude that the chain does not

admit a stationary distribution. Hence the stationary distribution of a Markov chain may not exist at all.

In addition, it follows from (3.3.3) and the Stirling approximation formula that

lim
n→∞P(S2n = 2k | S0 = 0) = lim

n→∞
(2n)!

(n+ k)!(n− k)!
pn+kqn−k

6 lim
n→∞

(2n)!
22nn!2

= lim
n→∞

1
√
πn

= 0, k ∈ N,

as in Problem 3.11-(f), so that the limiting distribution does not exist as well. Here, Theorem 7.2 cannot be applied because theMH3512 AY19-20
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"277chain is not aperiodic (it has period 2), however aperiodicity and irreducibility are not sufficient in general when the state space
is infinite, cf. e.g. the model of Exercise 2.1.

The following theorem gives sufficient conditions for the existence of a stationary distribution, without requiring aperiodicity or finiteness
of the state space. As noted above, the limiting distribution may not exist in this case.

Theorem 7.10

([BN96], Theorem 4.1) Consider a Markov chain (Xn)n∈N satisfying the following two conditions:

i) positive recurrence, and

ii) irreducibility.

Then the probabilities
πi =

1
µi(i)

, i ∈ S,

form a stationary distribution which is uniquely determined by the equation π = πP .

Note that the conditions stated in Theorem 7.10 are sufficient, but they are not all necessary. For example, Condition (ii) is not
necessary as the trivial constant chain, whose transition matrix P = Id is reducible, does admit a stationary distribution.

Note that the positive recurrence assumption in Theorem 7.2 is required in general on infinite state spaces. For example, the process in
Exercise 7.22 is positive recurrent for α < 1 only, whereas no stationary distribution exists when α > 1.

As a consequence of Corollary 6.13 we have the following corollary of Theorem 7.10, which does not require aperiodicity for the stationary
distribution to exist.

MH3512 AY19-20
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Let (Xn)n∈N be an irreducible Markov chain with finite state space S. Then the probabilities

πk =
1

µk(k)
, k ∈ S,

form a stationary distribution which is uniquely determined by the equation

π = πP .

According to Corollary 7.11, the limiting distribution and stationary distribution both exist (and coincide) when the chain is irreducible
aperiodic with finite state space, and in this case we have πk > 0 for all k ∈ S by Corollaries 6.13 and 7.11. When the chain is
irreducible it is usually easier to compute the stationary distribution, which will give us the limiting distribution.

Under the assumptions of Theorem 7.8, if the stationary and limiting distributions both exist then they are equal and in this case we
only need to compute one of them. However, in some situations only the stationary distribution might exist. According to Corollary 7.11
above the stationary distribution always exists when the chain is irreducible with finite state space, nevertheless the limiting distribution
may not exist if the chain is not aperiodic, consider for example the two-state switching chain with a = b = 1.

Finding a limiting distribution

In summary:

- We usually attempt first to compute the stationary distribution whenever possible, and this also gives the limiting distribution when
it exists. For this, we first check whether the chain is positive recurrent, aperiodic and irreducible, in which case the limiting
distribution can be found by solving π = πP according to Theorem 7.8.

- In case the above properties are not satisfied we need to compute the limiting distribution by taking the limit limn→∞ P
n of the

powers P n of the transition matrix, if possible by decomposing the state space in communicating classes as in e.g. Exercise 7.11.
This can turn out to be much more complicated and done only in special cases. If the chain has period d > 2 we may need to
investigate the limits limn→∞ P

nd instead, see e.g. Exercise 7.3 and (7.2.5)-(7.2.6) below.
MH3512 AY19-20



"279To further summarize, we note that by Theorem 7.2 we have

a) irreducible + recurrent + aperiodic =⇒ existence of a limiting distribution,

by Theorem 7.8 we get

b) irreducible + positive recurrent + aperiodic =⇒ existence of a limiting distribution which is also stationary,

and by Theorem 7.10 we get

c) irreducible + positive recurrent =⇒ existence of a stationary distribution.

In addition, the limiting or stationary distribution π = (πi)i∈S satisfies

πi =
1

µi(i)
, i ∈ S,

in all above cases (a), (b) and (c).

The ergodic theorem

The Ergodic Theorem, cf. e.g. Theorem 1.10.2 of [Nor98] states the following.
Theorem 7.12

Assume that the chain (Xn)n∈N is irreducible. Then the sample average time spent at to state i converges almost surely to
1/µi(i), i.e.

lim
n→∞

1
n

n∑
k=1

1{Xk=i} =
1

µi(i)
, i ∈ S.

MH3512 AY19-20
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lim
n→∞

1
n

n∑
k=1

1{Xk=i} = πi, i ∈ S,

where (πi)i∈S is the stationary distribution of (Xn)n∈N. We refer to Figure 4.5 for an illustration of convergence in the setting of the
Ergodic Theorem 7.12.

Example. Consider the maze random walk (5.3.7) with transition matrix

P =



0 1 0 0 0 0 0 0 0
1/2 0 1/2 0 0 0 0 0 0
0 1/2 0 0 0 1/2 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1/2 0 1/2 0
0 0 1/2 0 1/2 0 0 0 0
0 0 0 1/2 0 0 0 1/2 0
0 0 0 0 1/3 0 1/3 0 1/3
0 0 0 0 0 0 0 1 0



.

MH3512 AY19-20



"281The equation π = πP yields 

π1 =
1
2
π2

π2 = π1 +
1
2
π3

π3 =
1
2
π2 +

1
2
π6

π4 =
1
2
π7

π5 =
1
2
π6 +

1
3
π8

π6 =
1
2
π3 +

1
2
π5

π7 = π4 +
1
3
π8

π8 =
1
2
π5 +

1
2
π7 + π9

π9 =
1
3
π8,

hence



π1 =
1
2
π2

π2 = π3

π3 = π6

π4 =
1
2
π3

1
2
π7 =

1
3
π8

π6 = π5

π6 = π7

π9 =
1
3
π8,

and

1 = π1 + π2 + π3 + π4 + π5 + π6 + π7 + π8 + π9

= π1 + 2π1 + 2π1 + π1 + 2π1 + 2π1 + 2π1 + 3π1 + π1

= 16π1,

hence

π1 =
1

16
, π2 =

2
16

, π3 =
2

16
, π4 =

1
16

,

π5 =
2

16
, π6 =

2
16

, π7 =
2

16
, π8 =

3
16

, π9 =
1

16
,

cf. Figures 7.3 and 7.2 below, and we check that since µ1(1) = 16 by (5.3.8), we indeed have

π1 =
1

µ1(1)
=

1
16

,

MH3512 AY19-20



"282according to Corollary 7.11.

 0

 0.1

 0.2

Figure 7.2: Stationary distribution on the maze (5.3.7).
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Figure 7.3: Stationary distribution by state numbering.

The stationary probability distribution of Figures 7.3 and (7.2) can be compared to the proportions of time spent at each state simulated
in Figure 7.4 using this Markov chain experiment. MH3512 AY19-20
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Figure 7.4: Simulated stationary distribution.

Note that this chain has period 2 and the matrix powers (P n)n∈N do not converge as n tends to infinity, i.e. it does not admit a
limiting distribution. In fact, using the following Matlab/Octave commands:

P = [0,1,0,0,0,0,0,0,0;
1/2,0,1/2,0,0,0,0,0,0;
0,1/2,0,0,0,1/2,0,0,0;
0,0,0,0,0,0,1,0,0;
0,0,0,0,0,1/2,0,1/2,0;
0,0,1/2,0,1/2,0,0,0,0;
0,0,0,1/2,0,0,0,1/2,0;
0,0,0,0,1/3,0,1/3,0,1/3;
0,0,0,0,0,0,0,1,0]
mpower(P,1000)
mpower(P,1001)

MH3512 AY19-20
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lim
n→∞P

2n =



1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0

1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0

1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0

1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0

1/8 0 1/4 0 1/4 0 1/4 0 1/8



, (7.2.5)

and

lim
n→∞P

2n+1 =



0 1/4 0 1/8 0 1/4 0 3/8 0
1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0

1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0

1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0

1/8 0 1/4 0 1/4 0 1/4 0 1/8
0 1/4 0 1/8 0 1/4 0 3/8 0



, (7.2.6)

which shows that, although (P n)n>1 admits two converging subsequences, limn→∞ P
n does not exist, therefore the chain does not

admit a limiting distribution.

7.3 Markov Chain Monte Carlo

The goal of the Markov Chain Monte Carlo (MCMC) method, or Metropolis algorithm, is to generate random samples according to a
target distribution π = (πi)i∈S via a Markov chain that admits π as limiting and stationary distribution. It applies in particular in
the setting of huge state spaces S, cf. e.g. Problem 7.27-(a).

A Markov chain (Xk)k∈N with transition matrix P on a state space S is said to satisfy the detailed balance (or reversibility) conditionMH3512 AY19-20



"285with respect to the probability distribution π = (πi)i∈S if

πiPi,j = πjPj,i, i, j ∈ S, (7.3.1)

see Figure 7.5.
Note that the detailed balance condition (7.3.1) implies the global balance condition (7.2.2) as, by summation over i ∈ S in (7.3.1) we
have ∑

i∈S

πiPi,j =
∑
i∈S

πjPj,i = πj
∑
i∈S

Pj,i = πj, j ∈ S,

which shows that πP = π, i.e. π is a stationary distribution for P , cf. e.g. Problem 7.24-(c).

iπi j πj

Pi,j

Pj,i

Figure 7.5: Detailed balance condition (discrete time).

If the transition matrix P satisfies the detailed balance condition with respect to π then the probability distribution ofXn will naturally
converge to the stationary distribution π in the long run, e.g. under the hypotheses of Theorem 7.8, i.e. when the chain (Xk)k∈N is
positive recurrent, aperiodic, and irreducible.

In general, however, the detailed balance (or reversibility) condition (7.3.1) may not be satisfied by π and P . In this case one can
construct a modified transition matrix P̃ that will satisfy the detailed balance condition with respect to π. This modified transition
matrix P̃ is defined by

P̃i,j := Pi,j ×min
1,

πjPj,i

πiPi,j

 =


Pj,i

πj

πi
if πjPj,i < πiPi,j,

Pi,j if πjPj,i > πiPi,j,
for i 6= j, and

P̃i,i = 1−
∑

k 6=i∈S

P̃i,k = Pi,i +
∑

i 6=k∈S

Pi,k

1−min
1,

πjPj,i

πiPi,j

 , i ∈ S.
MH3512 AY19-20



"286Clearly, we have P̃ = P when the detailed balance (or reversibility) condition (7.3.1) is satisfied. In the general case, we can check that
for i 6= j we have

πiP̃i,j =


Pj,iπj = πjP̃j,i if πjPj,i < πiPi,j,

πiPi,j = πjP̃j,i if πjPj,i > πiPi,j,

 = πjP̃j,i,

hence P̃ satisfies the detailed balance condition with respect to π (the condition is obviously satisfied when i = j). Therefore, the
random simulation of (X̃n)n∈N according to the transition matrix P̃ will provide samples of the distribution π in the long run as n
tends to infinity, provided that the chain (X̃n)n∈N is positive recurrent, aperiodic, and irreducible.

MH3512 AY19-20



"287In Table 7.1 we summarize the definitions introduced in this chapter and in Chapter 6.

Table 7.1: Summary of Markov chain properties.

Property Definition

absorbing (state) Pi,i = 1

recurrent (state) P(T ri <∞ | X0 = i) = 1

transient (state) P(T ri <∞ | X0 = i) < 1

positive recurrent (state) recurrent and IE[T ri | X0 = i] <∞

null recurrent (state) recurrent and IE[T ri | X0 = i] =∞

aperiodic (state or chain) period(s) = 1

ergodic (state or chain) positive recurrent and aperiodic

irreducible (chain) all states communicate

regular (chain) all coefficients of Pn are > 0 for some n > 1

stationary distribution π obtained from solving π = πP

MH3512 AY19-20
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Exercise 7.1 We consider the Markov chain of Exercise 4.10-(a).

a) Is the chain irreducible, aperiodic, recurrent, positive recurrent?

b) Does it admit a stationary distribution?

c) Does it admit a limiting distribution?

Exercise 7.2 We consider the success runs Markov chain of Exercise 4.10-(b).

a) Is the success runs chain irreducible, aperiodic, recurrent, positive recurrent?

b) Does it admit a stationary distribution?

c) Does it admit a limiting distribution?

Exercise 7.3 We consider the Ehrenfest chain (4.3.2)-(4.3.3).

a) Is the Ehrenfest chain irreducible, aperiodic, recurrent, positive recurrent?

b) Does it admit a stationary distribution?

c) Does it admit a limiting distribution?

Hint: Try a binomial distribution. MH3512 AY19-20



"289Exercise 7.4 Consider the Bernoulli-Laplace chain (Xn)n∈N of Exercise 4.9 with state space {0, 1, 2, . . . ,N} and transition matrix

P =



0 1 0 0 · · · · · · 0 0
1/N2 2(N − 1)/N2 (N − 1)2/N2 0 · · · · · · 0 0

0 22/N2 4(N − 2)/N2 (N − 2)2/N2 · · · · · · 0 0
0 0 32/N2 0 · · · · · · 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

. . .
. . .

...
...

...

0 0 · · ·
... 0 32/N2 0 0

0 0 · · · 0 (N − 2)2/N2 4(N − 2)/N2 22/N2 0
0 0 · · · 0 0 (N − 1)2/N2 2(N − 1)/N2 1/N2

0 0 · · · 0 0 0 1 0



,

i.e.
Pk,k−1 =

k2

N2 , Pk,k =
2k(N − k)2

N2 , Pk,k+1 =
(N − k)2

N2 , k = 1, 2, . . . ,N − 1.

a) Is the Bernoulli-Laplace chain irreducible, aperiodic, recurrent, positive recurrent?

b) Does it admit a stationary distribution?

c) Does it admit a limiting distribution?

Exercise 7.5 Consider a robot evolving in the following circular maze, moving from one room to the other according to a Markov chain
with equal probabilities.

MH3512 AY19-20
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.

3 2

0 1

Let Xn ∈ {0, 1, 2, 3} denote the state of the robot at time n ∈ N.

a) Write down the transition matrix P of the chain.

b) By first step analysis, compute the mean return times µ0(k) from state k = 0, 1, 2, 3 to state 0 .∗

c) Guess an invariant (or stationary) probability distribution [π0,π1,π2,π3] for the chain, and show that it does satisfy the condition
π = πP .

Exercise 7.6 A signal processor is analysing a sequence of signals that can be either distorted or non-distorted. It turns out that on
average, 1 out of 4 signals following a distorted signal are distorted, while 3 out of 4 signals are non-distorted following a non-distorted
signal.

a) Let Xn ∈ {D,N} denote the state of the n-th signal being analysed by the processor. Show that the process (Xn)n>1 can be
modeled as a Markov chain and determine its transition matrix.

b) Compute the stationary distribution of (Xn)n>1.

c) In the long run, what fraction of analysed signals are distorted?

d) Given that the last observed signal was distorted, how long does it take on average until the next non-distorted signal?
∗You may use the symmetry of the problem to simplify the calculations. MH3512 AY19-20
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Exercise 7.7 Consider a Markov chain (Xn)n>0 on the state space {0, 1, 2, 3} with transition probability matrix P given by

P =


0 1 0 0

0.2 0 0.8 0
0.3 0 0.7 0
0.4 0.6 0 0

 .

a) Draw the graph of this chain. Is the chain reducible?

b) Find the recurrent, transient, and absorbing state(s) of this chain.

c) Compute the fraction of time spent at state 0 in the long run.

d) On the average, how long does it take to reach state 0 after starting from state 2 ?

Exercise 7.8 Consider the transition probability matrix

P = [ Pi,j ]06i,j63 =


0 1 0 0

0.1 0.4 0.2 0.3
0.2 0.2 0.5 0.1
0.3 0.3 0.4 0

 .

a) Compute the limiting distribution [π0,π1,π2,π3] of this Markov chain.

b) Compute the average time µ0(1) it takes to the chain to travel from state 1 to state 0 .

Hint: The data of the first row of the matrix P should play no role in the computation of µ0(k), k = 0, 1, 2, 3.

c) Prove by direct computation that the relation π0 = 1/µ0(0) holds, where µ0(0) represents the mean return time to state 0 for
this chain. MH3512 AY19-20
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[ Pi,j ]06i,j63 =


0 1/2 0 1/2

1/4 0 3/4 0
0 1/3 0 2/3

1/2 0 1/2 0

 .

a) Show that the chain is periodic∗ and compute its period.

b) Determine the stationary distribution of this chain.

Exercise 7.10 The lifetime of a given component of a machine is a discrete random variable T with distribution

P(T = 1) = 0.1, P(T = 2) = 0.2, P(T = 3) = 0.3, P(T = 4) = 0.4.

The component is immediately replaced with a new component upon failure, and the machine starts functioning with a new component.
Compute the long run probability of finding the machine about to fail at the next time step.

Exercise 7.11 Suppose that a Markov chain has the one-step transition probability matrix P on the state space {A,B,C,D,E} given
by

P =



0.6 0.4 0 0 0
0.3 0.7 0 0 0
0.2 0 0.4 0 0.4
0.2 0.2 0.2 0.2 0.2
0 0 0 0 1


.

Find limn→∞ P(Xn = A | X0 = C).

∗A chain is periodic when all states have the same period MH3512 AY19-20



"293Exercise 7.12 Consider a Markov chain (Xn)n>0 on the state space {0, 1, 2, 3, 4} with transition probability matrix P given by

P =



1/3 2/3 0 0 0
1/2 1/2 0 0 0
0 0 1 0 0
0 0 1/7 6/7 0
1 0 0 0 0


.

a) Draw the graph of this chain.

b) Identify the communicating class(es).

c) Find the recurrent, transient, and absorbing state(s) of this chain.

d) Find limn→∞ P(Xn = 0 | X0 = 4).

Exercise 7.13 Three out of 4 trucks passing under a bridge are followed by a car, while only 1 out of every 5 cars passing under that
same bridge is followed by a truck. Let Xn ∈ {C, T} denote the nature of the n-th vehicle passing under the bridge, n > 1.

a) Show that the process (Xn)n>1 can be modeled as a Markov chain and write down its transition matrix.

b) Compute the stationary distribution of (Xn)n>1.

c) In the long run, what fraction of vehicles passing under the bridge are trucks?

d) Given that the last vehicle seen was a truck, how long does it take on average until the next truck is seen under that same bridge?

Exercise 7.14 Consider a discrete-time Markov chain (Xn)n∈N on S = {1, 2, . . . ,N}, whose transition matrix P = (Pi,j)16i,j6N

is assumed to be symmetric, i.e. Pi,j = Pj,i, 1 6 i, j 6 N ,

a) Find an invariant (or stationary) distribution of the chain.
Hint: The equation πP = π admits an easy solution.

b) Assume further that Pi,i = 0, 1 6 i 6 N , and that Pi,j > 0 for all 1 6 i < j 6 N . Find the period of every state.
MH3512 AY19-20



"294Exercise 7.15 ([Gus14]). (Problem 5.25-(d) continued).

a) Is the chain (Yk)k∈N reducible? Find its communicating classes.

b) Find the limiting distribution, and the possible stationary distributions of the chain (Yk)k∈N.

Exercise 7.16 Consider the Markov chain with transition matrix

q p 0 0 0
q 0 p 0 0
q 0 0 p 0
q 0 0 0 p
1 0 0 0 0


,

where p, q ∈ (0, 1) satisfy p+ q = 1.

a) Compute the stationary distribution [π0,π1,π2,π3,π4] of this chain.

b) Compute the limiting distribution of the chain.

Exercise 7.17 Four players A,B,C,D are connected by the following network, and play by exchanging a token.

A B C

D

At each step of the game, the player who holds the token chooses another player he is connected to, and sends the token to that player.

a) Assuming that the player choices are made at random and are equally distributed, model the states of the token as a Markov chain
(Xn)n>1 on {A,B,C,D} and give its transition matrix. MH3512 AY19-20
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Hint: To simplify the resolution, start by arguing that we have πA = πD.

c) Compute the mean return times µD(i), i ∈ {A,B,C,D}. On average, how long does player D have to wait to recover the token ?

d) In the long run, what is the probability that player D holds the token ?

Exercise 7.18 Consider the Markov chain with transition probability matrix


1 0 0
0 1 0
a b c

 ,

with a+ b+ c = 1.

a) Compute the power P n for all n > 2.

b) Does the chain admit a limiting distribution? If yes, compute this distribution.

c) Does the chain admit a stationary distribution? Compute this distribution if it exists.

Exercise 7.19 Consider a game server that can become offline with probability p and can remain online with probability q = 1− p on
any given day. Assume that the random time N it takes to fix the server has the geometric distribution

P(N = k) = β(1− β)k−1, k > 1,

with parameter β ∈ (0, 1). We let Xn = 1 when the server is online on day n, and Xn = 0 when it is offline.

a) Show that the process (Xn)n∈N can be modeled as a discrete-time Markov chain and write down its transition matrix.

b) Compute the probability that the server is online in the long run, in terms of the parameters β and p.

Exercise 7.20 Let (Xn)n∈N be an irreducible aperiodic Markov chain on the finite state space S = {1, 2, . . . ,N}. MH3512 AY19-20
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i.e. µi(i) 6 N .

b) Show that there exists a state i ∈ {1, 2, . . . ,N} such that the mean return time µi(i) from state i to itself is higher or equal to
N , i.e. µi(i) > N .

Exercise 7.21 Consider a Markov chain on the state space {1, 2, . . . ,N}. For any i ∈ {2, . . . ,N − 1}, the chain has probability
p ∈ (0, 1) to switch from state i to state

�� ��i+ 1 , and probability q = 1− p to switch from i to
�� ��i− 1 . When the chain reaches

state i = 1 it rebounds to state 2 with probability p or stays at state 1 with probability q. Similarly, after reaching state N it
rebounds to state

�� ��N − 1 with probability q, or remains at N with probability p.

a) Write down the transition probability matrix of this chain.

b) Is the chain reducible?

c) Determine the absorbing, transient, recurrent, and positive recurrent states of this chain.

d) Compute the stationary distribution of this chain.

e) Compute the limiting distribution of this chain.

Exercise 7.22 (Problem 6.9 continued). Let α > 0 and consider the Markov chain with state space N and transition matrix given by

Pi,i−1 =
1

α+ 1
, Pi,i+1 =

α

α+ 1
, i > 1.

and a reflecting barrier at 0, such that P0,1 = 1.

a) Show that when α < 1 this chain admits a stationary distribution of the form

πk = αk−1(1−α2)/2, k > 1,

where the value of π0 has to be determined. MH3512 AY19-20
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c) Show that the chain is positive recurrent when α < 1.

Exercise 7.23 Consider two discrete-time stochastic processes (Xn)n∈N and (Yn)n∈N on a state space S, such that

Xn = Yn, n > τ ,

where τ is a random time called the coupling time of (Xn)n∈N and (Yn)n∈N.

a) Show that for all x ∈ S and n ∈ N we have

P(Xn = x) 6 P(Yn = x) + P(τ > n) x ∈ S, n ∈ N.

Hint: Use the law of total probability as P(A) = P(A∩ {τ 6 n}) + P(A∩ {τ > n}).

b) Show that for all n ∈ N we have

sup
x∈S

|P(Xn = x)−P(Yn = x)| 6 P(τ > n), n ∈ N.

Problem 7.24 Reversibility is a fundamental issue in physics as it is akin to the idea of “traveling backward in time”. This problem
studies the reversibility of Markov chains, and applies it to the computation of stationary and limiting distributions. Given N > 1 and
(Xk)k=0,1,...,N a Markov chain with transition matrix P on a state space S, we let

Yk := XN−k, k = 0, 1, . . . ,N ,

denote the time reversal of (Xk)k=0,1,...,N .

a) Assume that Xk has same distribution π = (πi)i∈S for every k = 0, 1, . . . ,N , i.e.

P(Xk = i) = πi, i ∈ S, k = 0, 1, . . . ,N . MH3512 AY19-20
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the transition matrix

[P(Yn+1 = j | Yn = i)]i,j

in terms of P and π.

Hint: Use the basic definition of conditional probabilities to compute

[P(Yn+1 = j | Yn = i)]i,j,

and then show that (Yn)n=0,1,...,N has the Markov property

P(Yn+1 = j | Yn = in, . . . ,Y0 = i0) = P(Yn+1 = j | Yn = in).

b) We say that (Xk)k=0,1,...,N is reversible for π when (Xk)k=0,1,...,N and (Yk)k=0,1,...,N have same transition probabilities.

Write down this reversibility condition in terms of P and π. From now on we refer to that condition as the detailed balance condition,
which can be stated independently of N .

Hint: By “same transition probabilities” we mean

P(Xn+1 = j | Xn = i) = P(Yn+1 = j | Yn = i).

c) Show that if (Xk)k∈N is reversible for π, then π is also a stationary distribution for (Xk)k∈N.

Hint: The fact that ∑i Pj,i = 1 plays a role here.

d) Show that if an irreducible positive recurrent aperiodic Markov chain is reversible for its stationary distribution π then we have

Pk1,k2Pk2,k3 · · ·Pkn−1,knPkn,k1 = Pk1,knPkn,kn−1 · · ·Pk3,k2Pk2,k1 (7.3.2)MH3512 AY19-20
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Hint: This is a standard algebraic manipulation.

e) Show that conversely, if an irreducible positive recurrent aperiodic Markov chain satisfies Condition (7.3.2) for all sequences {k1, k2, . . . , kn}
of states, n > 2, then it is reversible for its stationary distribution π.

Hint: This question is more difficult and here you need to apply Theorem 7.8.

f) From now on we assume that S = {0, 1, . . . ,M} and that P is the transition matrix

Pi,i+1 =
1
2
−

i

2M
, Pi,i =

1
2

, Pi,i−1 =
i

2M
, 1 6 i 6M − 1,

of the modified Ehrenfest chain, with P0,0 = P0,1 = PM ,M−1 = PM ,M = 1/2.

Find a probability distribution π for which the chain (Xk)k∈N is reversible.

Hint: The reversibility condition will yield a relation that can be used to compute π by induction. Remember to make use of the
condition ∑

i πi = 1.

g) Confirm that the distribution of Question (f) is invariant (or stationary) by checking explicitly that the equality

π = πP

does hold.

h) Show, by quoting the relevant theorem, that π is also the limiting distribution of the modified Ehrenfest chain (Xk)k>0.

i) Show, by the result of Question (h), that
lim
n→∞ IE[Xn | X0 = i] =

M

2
,

for all i = 0, 1, . . . ,M . MH3512 AY19-20
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IE
Xn−

M

2

∣∣∣∣∣ X0 = i

 =

i−M
2

 (1−
1
M

)n
, n > 0,

for all i = 0, 1, . . . ,M , and that this relation can be used to recover the result of Question (i).

Hint: Letting

hn(i) = IE
Xn−

M

2

∣∣∣∣∣ X0 = i

 , n > 0,

in order to prove the formula by induction one has to

(i) show that the formula holds for h0(i) when n = 0;

(ii) show that assuming that the formula holds for hn(i), it then holds for hn+1(i).

It can help to start by proving the formula for h1(i) when n = 1 by first step analysis.

Problem 7.25 PageRank™ algorithm ([SvZ09]). A meta search engine tries to provide a single optimized ranking of search results
{a, b, c, d, e} based on the outputs of 4 different search engines denoted S1, S2, S3, S4, a technique known as rank aggregation.

Five possible search results a, b, c, d, e have been respectively ranked as

rank S1 S2 S3 S4
1 b c d e
2 c b e a
3 d d a d
4 a e b b
5 e a c c

by the search engines S1, S2, S3, S4.
MH3512 AY19-20
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than x for at least three of the four search engines.

Complete the ranking table

� a b c d e
a X
b X
c X
d X
e X

with “x � y” or “x 6� y” at position (x, y). The diagonal entries are not relevant.

b) The meta search engine works by constructing a self-improving random sequence (Xn)n∈N which is supposed to “converge” to the
best possible search result based on the data of the four rankings.

Given a search result Xn = x we choose the next search result Xn+1 by assigning probability 1/5 to each of the search results that
are better ranked than x. If no search result is better than x, then we keep Xn+1 = x.

What is the state space of the sequence (Xn)n∈N?

Model the process (Xn)n∈N as a Markov chain and complete the transition matrix

P =



3/5 2 2 2 2
0 2 2 2 2
2 1/5 2 2 2
2 2 2 2 0
2 2 2 1/5 2



c) Draw the graph of the chain (Xn)n∈N.
MH3512 AY19-20
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d) Does the chain (Xn)n∈N admit a limiting distribution independent of the initial state?

e) Does the chain (Xn)n∈N admit a stationary distribution? Find all stationary distribution(s) of the chain (Xn)n∈N.

f) In PageRank™-type algorithms, one often chooses to perturb the transition matrix P into the new matrix

P̃ :=
ε

n



1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


+ (1− ε)P ,

with n = 5 here, and ε ∈ (0, 1). Show that P̃ is a Markov transition matrix and that the corresponding chain (X̃n)n>1 is
irreducible and aperiodic.

g) Show that P̃ admits a stationary distribution π̃ that satisfies

π̃ =
[
ε

5
,
ε

5
,
ε

5
,
ε

5
,
ε

5

]
+ (1− ε)π̃P ,

and that all probabilities in π̃ are greater than ε/5.

h) Compute the stationary distribution of P̃ .

i) Provide a ranking of the states {a, b, c, d, e} based on the stationary distribution π̃.

j) Compute the mean return times for P̃ , and show that they are all below 5/ε.

Problem 7.26 ([LPW09]). Convergence to equilibrium. In this problem we derive quantitative bounds for the convergence of a Markov
chain to its stationary distribution π. Let P be the transition matrix of a discrete-time Markov chain (Xn)n∈N on S = {1, 2, . . . ,N}.
Given two probability distributions µ = [µ1,µ2, . . . ,µN ] and ν = [ν1,µ2, . . . , νN ] on {1, 2, . . . ,N}, the total variation distance
between µ and ν is defined as

‖µ− ν‖TV :=
1
2

N∑
k=1
|µk − νk|.

MH3512 AY19-20



"303Recall that the vector µP n = ([µP n]i)i=1,2,...,N denotes the probability distribution of the chain at time n ∈ N, given it was started
with the initial distribution µ = [µ1,µ2, . . . ,µN ], i.e. we have, using matrix product notation,

P(Xn = i) =
N∑
j=1

P(Xn = i | X0 = j)P(X0 = j) =
N∑
j=1

µj[P
n]j,i = [µP n]i,

i = 1, 2, . . . ,N .

a) Show that for any two probability distributions µ = [µ1,µ2, . . . ,µN ] and ν = [ν1, ν2, . . . , νN ] on {1, 2, . . . ,N} we always have
‖µ− ν‖TV 6 1.

b) Show that for any two probability distributions µ = [µ1,µ2, . . . ,µN ] and ν = [ν1, ν2, . . . , νN ] on {1, 2, . . . ,N} and any Markov
transition matrix P we have

‖µP − νP‖TV 6 ‖µ− ν‖TV.
Hint: Use the triangle inequality ∣∣∣∣∣∣

n∑
k=1

xk

∣∣∣∣∣∣ 6
n∑
k=1
|xk|, x1,x2, . . . ,xn ∈ R.

c) Assume that the chain with transition matrix P admits a stationary distribution π = [π1,π2, . . . ,πN ]. Show that for any
probability distribution µ = [µ1,µ2, . . . ,µN ] we have

‖µP n+1− π‖TV 6 ‖µP n− π‖TV, n ∈ N.

d) Show that the distance from stationarity, defined as

d(n) := max
k=1,2,...,N

‖[P n]k,·− π‖TV, n ∈ N,

satisfies d(n+ 1) 6 d(n), n ∈ N.

e) Assume that all entries of P are strictly positive. Explain why the chain is aperiodic and irreducible, and why it admits a limiting
and stationary distribution.

In the sequel we assume that P admits an invariant (or stationary) distribution π = [π1,π2, . . . ,πN ] such that πP = π, and that

Pi,j > θπj, for all i, j = 1, 2, . . . ,N , (7.3.3)MH3512 AY19-20
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Π :=



π1 π2 π3 π4 · · · πN

π1 π2 π3 π4 · · · πN

π1 π2 π3 π4 · · · πN

...
...

...
...

. . .
...

π1 π2 π3 π4 · · · πN



,

hence (7.3.3) reads P > θΠ.

f) Show that for all 0 < θ < 1 the matrix
Qθ :=

1
1− θ

(P − θΠ)

is the transition matrix of a Markov chain on S = {1, 2, . . . ,N}.

g) Show by induction on n ∈ N that we have

P n−Π = (1− θ)n(Qn
θ −Π), n ∈ N.

h) Show that given any X0 = k = 1, 2, . . . ,N the total variation distance between the distribution

[P n]k,· = ([P n]k,1, . . . , [P n]k,N)

= [P(Xn = 1 | X0 = k), . . . , P(Xn = N | X0 = k)]

of the chain at time n and the stationary distribution π = [π1,π2, . . . ,πN ] satisfies

‖[P n]k,·− π‖TV 6 (1− θ)n, n > 1, k = 1, 2, . . . ,N .

Conclude that we have d(n) 6 (1− θ)n, n > 1.

i) Show that the mixing time of the chain with transition matrix P , defined as

tmix := min{n > 0 : d(n) 6 1/4}, MH3512 AY19-20
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tmix 6


log 1/4

log(1− θ)

 .

j) Find the optimal value of θ satisfying the condition Pi,j > θπj for all i, j = 1, 2, . . . ,N for the chain of Exercise 4.12 withN = 3.

Problem 7.27 ([AH07]). The voter model is a particular case of the Ising model. This model has applications to spatial statistics, image
analysis and segmentation, opinion studies, urban segregation, language change, metal alloys, magnetic materials, liquid/gas coexistence,
phase transitions, plasmas, cell membranes in biophysics, ...

In dimension one, the model is built on the state space S := {−1, +1}N made of elements z = (zk)16k6N ∈ S whose components
zk ∈ {−1, 1}, k = 1, 2, . . . N , are called spins.

Figure 7.6: Simulation of the voter model with N = 199, p = 0.98, and z0 = zN+1 = +1.∗

We consider a Markov chain (Zn)n∈N on the state space S = {−1, +1}N , whose transitions from an initial configuration Z0 = z =
(zk)16k6N to a new configuration Z1 = z̃ = (z̃k)16k6N are defined as follows:

First, choose one component zk in z = (zk)16k6N with probability 1/N , k = 1, 2, . . . ,N , and then consider the following cases:
(i) if (zk−1, zk+1) = (−1, +1) or (zk−1, zk+1) = (+1,−1):
⇒ flip the sign of zk, i.e. set z̃k := ±zk with probability 1/2,

∗Animated figure (works in Acrobat Reader). MH3512 AY19-20
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⇒ set z̃k := +1 with probability p > 0, and z̃k := −1 with probability q > 0.

(iii) if (zk−1, zk+1) = (−1,−1):
⇒ set z̃k := −1 with probability p > 0, and z̃k := +1 with probability q > 0,

where p+ q = 1. The probabilities p and q can be respectively viewed as the probabilities of “agreeing”, resp. “disagreeing” with two
neighbors sharing the same opinion. The boundary conditions z0 and zN+1 are arbitrarily fixed, and the corresponding instructions can
be coded in R as follows:

if (z[k-1]!=z[k+1]) z[k]=sample(c(-1,1), 1,prob=c(0.5,0.5))
if (z[k-1]==1 && z[k+1]==1) z[k]=sample(c(-1,1), 1, prob=c(q,p))
if (z[k-1]==-1 && z[k+1]==-1) z[k]=sample(c(-1,1), 1, prob=c(p,q))

a) Find the cardinality of the state space S.

b) Replace the question marks (?) below with the corresponding transition probabilities given that Z0 = z = (zk)16k6N :
(i) if (zk−1, zk, zk+1) = (−1,±1, +1) or (zk−1, zk, zk+1) = (+1,±1,−1),

P(Z1 = (z1, . . . , zk−1,−zk, zk+1, . . . , zN) | Z0 = z) := (?),

k = 1, 2, . . . ,N ,
(ii) if (zk−1, zk, zk+1) = (+1, +1, +1) or (zk−1, zk, zk+1) = (−1,−1,−1),

P(Z1 = (z1, . . . , zk−1,−zk, zk+1, . . . , zN) | Z0 = z) := (?),

k = 1, 2, . . . ,N ,
(iii) if (zk−1, zk, zk+1) = (+,−1, +1) or (zk−1, zk, zk+1) = (−1, +1,−1),

P(Z1 = (z1, . . . , zk−1,−zk, zk+1, . . . , zN) | Z0 = z) := (?),

k = 1, 2, . . . ,N . MH3512 AY19-20
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P(Z1 = z̄k | Z0 = z) =
1

N(1 + (p/q)zk(zk−1+zk+1)/2)
, k = 1, 2, . . . ,N , (7.3.4)

where z = (z1, . . . , zN) and
z̄k := (z1, . . . , zk−1,−zk, zk+1, . . . , zN) (7.3.5)

denotes the state z ∈ S after flipping its kth component zk.

d) Compute P(Z1 = z | Z0 = z) for all z ∈ S using the complement rule, Relation (7.3.4), and the law of total probability.

e) Taking N = 3 and setting z0 = z4 = −1, i.e. (z0, z1, z2, z3, z4) takes the form (−,±,±,±,−), complete the missing entries
following transition probability matrix P of (Zn)n∈N on the state space S = {− − −,−−+,−+ −,−−+, + −−, + −
+, ++−, +++}:

−−−

−−+

−+−

−++

+−−

+−+

++−

+++

[
−−−

(?)

(?)

(?)

0
p/3
0
0
0

−−+

(?)

1/2
0

1/6
0
p/3
0
0

−+−

q/3
0

(1 + q)/3
(?)

0
0

1/6
0

−++

0
(?)

(?)

(?)

0
0
0

1/6

+−−

q/3
0
0
0

1/2
p/3
(?)

0

+−+

0
q/3
0
0
(?)

q

0
q/3

++−

0
0

1/6
0
(?)

0
1/2
1/6

+++

0
0
0

1/6
0
p/3
(?)

(?)

] .

Is the chain (Zn)n∈N reducible? Why?

f) Does the chain (Zn)n∈N admit a limiting distribution? A stationary distribution? Why? MH3512 AY19-20
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πz̄k

πz
=

P(Z1 = z̄k | Z0 = z)

P(Z1 = z | Z0 = z̄k)
, k = 1, 2, . . . ,N , z ∈ S, (7.3.6)

where z̄k is defined in (7.3.5), then (πz)z∈S is a stationary distribution for the chain (Zn)n∈N, i.e. we have
(

P(Z0 = z) = πz, ∀ z ∈ S

)
=⇒

(
P(Z1 = z) = πz, ∀ z ∈ S

)
.

Hint: Start from the law of total probability

P(Z1 = z) = P(Z1 = z | Z0 = z)P(Z0 = z)

+
N∑
k=1

P(Z1 = z | Z0 = z̄k)P(Z0 = z̄k),

and show, using (7.3.6), that the above equals πz if P(Z0 = z) = πz for all z ∈ S.

h) Show that
P(Z1 = z̄k | Z0 = z)

P(Z1 = z | Z0 = z̄k)
=

q
p

zk(zk−1+zk+1)/2

, k = 1, 2, . . . ,N , z ∈ S. (7.3.7)

Hint: Use Equation (7.3.4) and the relations

1 + (q/p)
1 + (p/q)

=
q

p
and

1 + (p/q)
1 + (q/p)

=
p

q
.

i) Show that the probability distribution (πz)z∈S defined as

πz := Cβ exp
β N∑

l=0
zlzl+1

 , z ∈ S, (7.3.8)

is the stationary and limiting distribution of (Zn)n∈N, where Cβ is a normalization constant∗ and β is to be given in terms of p and q.

∗The normalization constant Cβ does not have to be computed here. MH3512 AY19-20
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j) Taking N = 3 and z0 = z4 = +1, i.e. (z0, z1, z2, z3, z4) takes the form (+,±,±,±, +), compute the limiting distribution of
each of the 8 configurations in

S = {−−−,−−+,−+−,−−+, +−−, +−+, ++−, +++},

and find the value of Cβ.

Figure 7.7: Simulation of the voter model with N = 3, p =
√

0.75, and z0 = z4 = +1.∗

∗Animated figure (works in Acrobat Reader). MH3512 AY19-20
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8 Branching Processes
Branching processes are used as a tool for modeling in genetics, biomolecular reproduction, population growth, genealogy, disease spread,
photomultiplier cascades, nuclear fission, earthquake triggering, queueing models, viral phenomena, social networks, neuroscience, etc.
This chapter mainly deals with the computation of probabilities of extinction and explosion in finite time for branching processes.

8.1 Construction and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
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8.1 Construction and Examples
Consider a time-dependent population made of a number Xn of individuals at generation n > 0. In the branching process model, each
of these Xn individuals may have a random number of descendants born at time n+ 1.

For each k = 1, 2, . . . ,Xn we let Yk denote the number of descendants of individual no k. That means, we have X0 = 1, X1 = Y1,
and at time n+ 1, the new population size Xn+1 will be given by

Xn+1 = Y1 + · · ·+ YXn =
Xn∑
k=1

Yk, (8.1.1)

where the (Yk)k>1 form a sequence of independent, identically distributed, nonnegative integer valued random variables which are
assumed to be almost surely finite, i.e.

P(Yk <∞) =
∑
n>0

P(Yk = n) = 1.
MH3512 AY19-20
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to keep them at the next generation we would have to modify (8.1.1) into

Xn+1 = Xn + Y1 + · · ·+ YXn,

however we will not adopt this convention, and we will rely on (8.1.1) instead.

As a consequence of (8.1.1), the branching process (Xn)n∈N is a Markov process with state space S = N and transition matrix given
by

P = [ Pi,j ]i,j∈N
=



1 0 0 · · ·
P(Y1 = 0) P(Y1 = 1) P(Y1 = 2) · · ·

P2,0 P2,1 P2,2 · · ·
P3,0 P3,1 P3,2 · · ·
...

...
...

. . .


. (8.1.2)

Note that state 0 is absorbing since by construction we always have

P0,0 = P(Xn+1 = 0 | Xn = 0) = 1, n ∈ N. MH3512 AY19-20
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X0 = 1 X1 = 6

X2 = 12

X2 = 12X2 = 12
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X2 = 12X2 = 12
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X3 = 11

X3 = 11
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X3 = 11

X1 = 6

Figure 8.1: Example of branching process.

Figure 8.1 represents an example of branching process with X0 = 1 and Y1 = 6, hence

X1 = YX0 = Y1 = 6,

then successively
(Yk)k=1,2,...,X1 = (Y1,Y2,Y3,Y4,Y5,Y6) = (0, 4, 1, 2, 2, 3)

and

X2 = Y1 + · · ·+ YX1

= Y1 + Y2 + Y3 + Y4 + Y5 + Y6

= 0 + 4 + 1 + 2 + 2 + 3
= 12,

then

(Yk)k=1,2,...,X2 = (Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,Y11,Y12) MH3512 AY19-20
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and

X3 = Y1 + · · ·+ YX2

= Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + Y8 + Y9 + Y10 + Y11 + Y12

= 0 + 2 + 0 + 0 + 0 + 4 + 2 + 0 + 0 + 2 + 0 + 1
= 11.

The next Figure 8.2 presents another sample tree for the path of a branching process.

Figure 8.2: Sample graph of a branching process.

In Figure 8.2 above the branching process starts from X0 = 2, with X1 = 3, X2 = 5, X3 = 9, X4 = 9, X5 = 9. However, in the
sequel and except if otherwise specified, all branching processes will start from X0 = 1.

See [SSB08] and [IM11] for results on the modeling of the offspring distribution of Y1 based on social network and internet data and the
use of power tail distributions. The use of power tail distributions leads to probability generating functions of polylogarithmic form.MH3512 AY19-20
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Let now G1(s) denote the probability generating function of X1 = Y1, defined as

G1(s) := IE[sX1 | X0 = 1] = IE[sY1] =
∑
k>0

skP(Y1 = k), −1 6 s 6 1,

cf. (1.7.1), denote the probability generating function of the (almost surely finite) random variable X1 = Y1, with


G1(0) = P(Y1 = 0),

G1(1) =
∑
n>0

P(Y1 = n) = P(Y1 <∞) = 1,

µ := G′1(1
−) =

∑
k>0

kP(Y1 = k) = IE[X1 | X0 = 1] = IE[Y1]. (8.2.1a)

More generally, letting Gn(s) denote the probability generating function of Xn, defined as

Gn(s) := IE[sXn | X0 = 1] =
∑
k>0

skP(Xn = k | X0 = 1), −1 6 s 6 1,

n ∈ N, we have 

G0(s) = s, −1 6 s 6 1,

Gn(0) = P(Xn = 0 | X0 = 1), n ∈ N,

µn := IE[Xn | X0 = 1] = G′n(1
−) =

∑
k>0

kP(Xn = k | X0 = 1),

(8.2.2a)

(8.2.2b)

cf. (1.7.3). When X0 = k we can view the branching tree as the union of k independent trees started from X0 = 1 and we can write
Xn as the sum of independent random variables

Xn =
k∑
l=1
X(l)
n , n ∈ N,

MH3512 AY19-20



"315where X(l)
n denotes the size of the tree nol at time n, with X(l)

n = 1, l = 1, 2, . . . , k. In this case, we have

IE
[
sXn | X0 = k

]
= IE

[
sX

(1)
n +···+X(k)

n

∣∣∣∣∣ X(1)
0 = 1, . . . ,X(k)

0 = 1
]

=
k∏
l=1

IE
[
sX

(l)
n | X(l)

0 = 1
]

=
(
IE
[
sXn | X0 = 1

])k
= (Gn(s))

k, −1 6 s 6 1, n ∈ N.

The next proposition provides an algorithm for the computation of the probability generating function Gn.
Proposition 8.1

We have the recurrence relation

Gn+1(s) = Gn(G1(s)) = G1(Gn(s)), −1 6 s 6 1, n ∈ N. (8.2.3)

Proof

By the identity (1.6.11) on random products we have

Gn+1(s) = IE[sXn+1 | X0 = 1]
= IE[sY1+···+YXn | X0 = 1]

= IE
Xn∏
l=1
sYl

∣∣∣∣∣ X0 = 1


=
∑
k>0

IE
Xn∏
l=1
sYl

∣∣∣∣∣ Xn = k

P(Xn = k | X0 = 1)

=
∑
k>0

IE
 k∏
l=1
sYl

∣∣∣∣∣ Xn = k

P(Xn = k | X0 = 1)

=
∑
k>0

IE
 k∏
l=1
sYl

P(Xn = k | X0 = 1)

MH3512 AY19-20
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=

∑
k>0

 k∏
l=1

IE
[
sYl

]P(Xn = k | X0 = 1)

=
∑
k>0

(IE[sY1])kP(Xn = k | X0 = 1)

= Gn(IE[sY1])

= Gn(G1(s)), −1 6 s 6 1.

�

Instead of (8.2.3) we may also write

Gn(s) = G1(G1(· · · (G1(s), · · · )), −1 6 s 6 1, (8.2.4)

and
Gn(s) = G1(Gn−1(s)) = Gn−1(G1(s)), −1 6 s 6 1.

Mean population size

In case the random variable Yk is equal to a deterministic constant µ ∈ N, the population size at generation n > 0 will clearly be
equal to µn. The next proposition shows that for branching processes, this property admits a natural extension to the random case.

Proposition 8.2

The mean population size µn at generation n > 0 is given by

µn = IE[Xn | X0 = 1] = (IE[X1 | X0 = 1])n = µn, n > 1, (8.2.5)

where µ = IE[Y1] is given by (8.2.1a).

Proof

By (8.2.4), (8.2.2b) and the chain rule of derivation we have

µn = G′n(1
−)

MH3512 AY19-20
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=

d

ds
G1(Gn−1(s))|s=1

= G′n−1(1
−)G′1(Gn−1(1−))

= G′n−1(1
−)G′1(1

−)

= µ× µn−1,

hence µ1 = µ, µ2 = µ× µ1 = µ2, µ3 = µ× µ2 = µ3, and by induction on n > 1 we obtain (8.2.5). �

Similarly we find
IE[Xn | X0 = k] = k IE[Xn | X0 = 1] = kµn, n > 1,

hence starting from X0 = k > 1, the average of Xn goes to infinity when µ > 1. On the other hand, µn converges to 0 when µ < 1.

Examples

i) Supercritical case. When µ > 1 the average population size µn = µn grows to infinity as n tends to infinity, and we say that the
branching process (Xn)n∈N is supercritical.

This condition holds in particular when P(Y1 > 1) = 1 and Y1 is not almost surely equal to 1, i.e. P(Y1 = 1) < 1. Indeed,
under those conditions we have P(Y1 > 2) > 0 and

µ = IE[Y1] =
∑
n>1

nP(Y1 = n)

> P(Y1 = 1) + 2
∑
n>2

P(Y1 = n)

= P(Y1 = 1) + P(Y1 > 2)
> P(Y1 > 1)
= 1,

hence µ > 1.

ii) Critical case. When µ = 1 we have µn = (µ)n = 1 for all n ∈ N, and we say that the branching process (Xn)n∈N is critical .

iii) Subcritical case. In case µ < 1, the average population size µn = µn tends to 0 as n tends to infinity and we say that theMH3512 AY19-20
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1 > µ = IE[Y1] =
∑
n>1

nP(Y1 = n)

>
∑
n>1

P(Y1 = n)

= P(Y1 > 1)
= 1−P(Y0 = 0),

although the converse is not true in general.

The variance σ2
n = Var[Xn | X0 = 1] of Xn given that X0 = 1 can be shown in a similar way to satisfy the recurrence relation

σ2
n+1 = σ2µn + µ2σ2

n,

cf. also Relation (1.7.5), where σ2 = Var[Y1], which shows by induction that

σ2
n = Var[Xn | X0 = 1] =


nσ2, µ = 1,

σ2µn−11− µn

1− µ
= σ2

n−1∑
k=0

µn+k−1, µ 6= 1,

n > 1 cf. e.g. pages 180-181 of [KT81], and Exercise 8.3-(a) for an application. We also have

Var[Xn | X0 = k] = kVar[Xn | X0 = 1] = kσ2
n, k,n ∈ N,

due to Relation (1.6.10) for the variance of a sum of independent random variables.

8.3 Extinction Probabilities
Here we are interested in the time to extinction∗

T0 := inf{n > 0 : Xn = 0},

∗We normally start from X0 > 1. MH3512 AY19-20
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αk := P(T0 <∞ | X0 = k)

within a finite time, after starting from X0 = k. Note that the word “extinction” can have negative as well as positive meaning, for
example when the branching process is used to model the spread of an infection.

Proposition 8.3

The probability distribution of T0 can be expressed using the probability generating function Gn as

P(T0 = n | X0 = 1) = Gn(0)−Gn−1(0) = G1(Gn−1(0))−Gn−1(0), n > 1,

with P(T0 = 0 | X0 = 1) = 0.

Proof

By the relation {Xn−1 = 0} ⊂ {Xn = 0}, we have
{
T0 = n

}
=

{
Xn = 0

}
∩
{
Xn−1 > 1

}
=

{
Xn = 0

}
\
{
Xn−1 = 0

}
and

P(T0 = n | X0 = 1) = P({Xn = 0} ∩ {Xn−1 > 1} | X0 = 1)
= P({Xn = 0} \ {Xn−1 = 0} | X0 = 1)
= P({Xn = 0})−P({Xn−1 = 0} | X0 = 1)
= Gn(0)−Gn−1(0)
= G1(Gn−1(0))−Gn−1(0), n > 1,

where we applied Proposition 8.1. �

First, we note that by the independence assumption, starting from X0 = k > 2 independent individuals, we have

αk = P(T0 <∞ | X0 = k) = (P(T0 <∞ | X0 = 1))k = (α1)
k, k > 1. (8.3.1)

Indeed, given k individuals at generation 0, each of them will start independently a new branch of offsprings, and in order to have
extinction of the whole population, all of k branches should become extinct. Since the k branches behave independently, αk is theMH3512 AY19-20
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and there are k of them.

The next proposition is a consequence of Lemma 5.2.
Proposition 8.4

We have
α1 = lim

n→∞Gn(0).

Proof

Since state 0 is absorbing, by Lemma 5.2 with j = 0 and i = 1 we find

α1 = P(T0 <∞ | X0 = 1) = lim
n→∞P(Xn = 0 | X0 = 1) = lim

n→∞Gn(0).

�

The next proposition shows that the extinction probability α1 can be computed as the solution of an equation.
Proposition 8.5

The extinction probability
α1 := P(T0 <∞ | X0 = 1)

is a solution of the equation
α = G1(α). (8.3.2)

Proof

By first step analysis we have

α1 = P(T0 <∞ | X0 = 1)
= P(X1 = 0 | X0 = 1) +

∑
k>1

P(T0 <∞ | X1 = k)P(X1 = k | X0 = 1)

MH3512 AY19-20
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∑
k>1

P(T0 <∞ | X0 = k)P(Y1 = k)

=
∑
k>0

(α1)
kP(Y1 = k)

= G1(α1),

hence the extinction probability α1 solves (8.3.2). �

Note that from the above proof we find
α1 > P(X1 = 0 | X0 = 1) = P(Y1 = 0), (8.3.3)

which shows that the extinction probability is non-zero whenever P(Y1 = 0) > 0. On the other hand, any solution α of (8.3.2) also
satisfies

α = G1(G1(α)), α = G1(G1(G1(α))),
and more generally

α = Gn(α), n > 1, (8.3.4)
by Proposition 8.1. On the other hand the solution of (8.3.2) may not be unique, for example α = 1 is always solution of (8.3.2) since
G1(1) = 1, and it may not be equal to the extinction probability. The next proposition clarifies this point.

Proposition 8.6

The extinction probability
α1 := P(T0 <∞ | X0 = 1)

is the smallest solution of the equation α = G1(α).

Proof

By Lemma 8.4 we have α1 = limn→∞Gn(0). Next, we note that the function s 7−→ G1(s) is increasing because

G′1(s) = IE[Y1s
Y1−1] > 0, s ∈ [0, 1).

Hence s 7−→ Gn(s) is also increasing by Proposition 8.1, and for any solution α > 0 of (8.3.2) we have, by (8.3.4),

0 6 Gn(0) 6 Gn(α) = α, n > 1,
MH3512 AY19-20
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0 6 α1 = lim
n→∞Gn(0) 6 α,

by (5.1.5) and Proposition 8.4, hence the extinction probability α1 is always smaller than any solution α of (8.3.2). This fact can
also be recovered from Proposition 8.4 and

α = lim
n→∞Gn(α)

= lim
n→∞

Gn(0) +
∑
k>1

αkP(Xn = k | X0 = 1)


> lim
n→∞Gn(0)

= α1.

Therefore α1 is the smallest solution of (8.3.2). �

Since G1(0) = P(Y1 = 0) we have
P(Y1 = 0) = G1(0) 6 G1(α1) = α1,

which recovers (8.3.3).

On the other hand, if P(Y1 > 1) = 1 then we have G1(0) = 0, which implies α1 = 0 by Proposition 8.6.

Note that from Lemma 5.2, Proposition 8.4, and (8.3.1), the transition matrix (8.1.2) satisfies

lim
n→∞ ([P n]i,0)i∈N

=



1
α1
α2
α3
...


=



1
α1

(α1)2

(α1)3

...


.

Examples

i) Assume that Y1 has a Bernoulli distribution with parameter p ∈ (0, 1), i.e.

P(Y1 = 1) = p, P(Y1 = 0) = 1− p. MH3512 AY19-20
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In this case the branching process is actually a two-state Markov chain with transition matrix

P =

 1 0
1− p p

 ,

and we have
Gn(0) = P(Xn = 0 | X0 = 1) = (1− p)

n−1∑
k=0

pk = 1− pn, (8.3.5)

where we used the geometric series (A.2), hence as in (5.1.5) the extinction probability α1 is given by

α1 = P(T0 <∞ | X0 = 1) = P

 ⋃
n>1
{Xn = 0}

∣∣∣∣∣ X0 = 1


= lim
n→∞P(Xn = 0 | X0 = 1)

= lim
n→∞Gn(0) = 1,

provided that p = IE[Y1] < 1, otherwise we have α1 = 0 when p = 1. The value of α1 can be recovered using the generating
function

G1(s) = IE[sY1] =
∑
k>0

skP(Y1 = k) = 1− p+ ps, (8.3.6)

for which the unique solution of G1(α) = α is the extinction probability α1 = 1, as shown in the next Figure 8.3.MH3512 AY19-20
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Figure 8.3: Generating function of Y1 with p = 0.65.

From (8.2.4) and (8.3.6) we can also show by induction on n > 1 as in Exercise 8.2 that

Gn(s) = pns+ (1− p)
n−1∑
k=0

pk = 1− pn + pns,

which recovers (8.3.5) from (1.7.3) or (8.2.2a) as

P(Xn = 0 | X0 = 1) = Gn(0) = 1− pn.

We also have IE[Xn] = pn, n > 0.

ii) Same question as in (i) above for
P(Y1 = 2) = p, P(Y1 = 0) = q = 1− p.

Here, we will directly use the probability generating function

G1(s) = IE[sY1] =
∑
k>0

skP(Y1 = k)

= s0P(Y1 = 0) + s2P(Y1 = 2) = 1− p+ ps2. MH3512 AY19-20
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G1(α) = 1− p+ pα2 = α,

i.e. ∗

pα2−α+ q = p(α− 1)(α− q/p) = 0, (8.3.7)
with q = 1− p, are given by

1 +
√

1− 4pq
2p

,
1−
√

1− 4pq
2p

 =

1,
q

p

 , p ∈ (0, 1]. (8.3.8)

Hence the extinction probability is α1 = 1 if q > p, and it is equal to α1 = q/p < 1 if q < p, or equivalently if IE[Y1] > 1,
due to the relation IE[Y1] = 2p.

iii) Assume that Y1 has the geometric distribution with parameter p ∈ (0, 1), i.e.

P(Y1 = n) = (1− p)pn, n > 0,

with µ = IE[Y1] = p/q. We have

G1(s) = IE[sY1] =
∑
n>0

snP(Y1 = n) = (1− p)
∑
n>0

pnsn =
1− p
1− ps

. (8.3.9)

The equation G1(α) = α reads
1− p

1− pα
= α,

i.e.
pα2−α+ q = p(α− 1)(α− q/p) = 0,

which is identical to (2.2.15) and (8.3.7) with q = 1− p, and has for solutions (8.3.8). Hence the finite time extinction probability
is

α1 = P(T0 <∞ | X0 = 1)

∗Remark that (8.3.7) is identical to the characteristic equation (2.2.15). MH3512 AY19-20
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= min
1,

q

p

 =



q

p
, p > 1/2, (super)critical case,

1, p 6 1/2, (sub)critical case.

Note that we have α1 < 1 if and only if IE[Y1] > 1, due to the equality IE[Y1] = p/q. As can be seen from Figures 8.4 and 8.5,
the extinction probability α1 is equal to 1 when p 6 1/2, meaning that extinction within a finite time is certain in that case. Note
that we also find

P(T0 <∞ | X0 = k) = min
1,

q
p

k


=



q
p

k , p > 1/2, (super)critical case,

1, p 6 1/2, (sub)critical case.

which incidentally coincides with the finite time hitting probability found in (3.4.16) for the simple random walk started from k > 1.

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

α1=1

G(
s)

s

Figure 8.4: Generating function of Y1 with p = 3/8 < 1/2 and α1 = 1.

Next, in Figure 8.5 is a graph of the generating function s 7−→ G1(s) for p = 1/2. MH3512 AY19-20
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Figure 8.5: Generating function of Y1 with p = 1/2 and α1 = 1.

The graph of generating function in Figure 8.6 corresponds to p = 3/4.
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Figure 8.6: Generating function of Y1 with p = 3/4 > 1/2 and α1 = q/p = 1/3.

We also have µn = (IE[Y1])n = (p/q)n, n > 1. MH3512 AY19-20
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iv) Assume now that Y1 is the sum of two independent geometric variables with parameter 1/2, i.e. it has the negative binomial
distribution

P(Y1 = n) =

n+ r− 1
r− 1

qrpn = (n+ 1)qrpn = (n+ 1)q2pn, n > 0,

with r = 2, cf. (1.5.12).

In this case we have∗

G1(s) = IE[sY1] =
∑
n>0

snP(Y1 = n)

= q2 ∑
n>0

(n+ 1)pnsn =

 1− p
1− ps

2

, −1 6 s 6 1,

see here.† When p = 1/2 we check that G1(α) = α reads

s3− 4s2 + 4s− 1 = 0,

which is an equation of degree 3 in the unknown s. Now, since α = 1 is solution of this equation we can factorise it as follows:

(s− 1)(s2− 3s+ 1) = 0,

and we check that the smallest nonnegative solution of this equation is given by

α1 =
1
2
(3−

√
5) ' 0.382

which is the extinction probability, as illustrated in the next Figure 8.7. Here we have IE[Y1] = 2.

∗Here, Y1 is the sum of two independent geometric random variables, and G1 is the square of the generating function (8.3.9) of the geometric distribution.
†We used the identity

∑
n>0

(n+ 1)rn = (1− r)−2, cf. (A.4).
MH3512 AY19-20
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Figure 8.7: Probability generating function of Y1.

Figure 8.8: Simulation of influenza spread.∗

The next graph in Figure 8.9 illustrates the extinction of a branching process in finite time when Y1 has the geometric distribution with
∗Click on the figure to play the video (works in Acrobat Reader). MH3512 AY19-20

http://www.youtube.com/watch?v=3QM055uW43I
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Figure 8.9: Sample path of a branching process (Xn)n>0.∗

∗Animated figure (works in Acrobat Reader). Download the corresponding or the that can be run here. MH3512 AY19-20


library(tcltk) 

# parameter of the geometric distribution 
p=0.5

# Maximum number of time steps 
N=10000 

A=array(10001);

A[1]=10

M=A[1]

m=0;m0=0;

split.screen(c(1,1)) 
 
for(l in seq(1:N))
{
if (A[l]>0) 
{ 
A[l+1]=0
for(lll in seq(1:A[l])) 
{ 
A[l+1]=A[l+1]+rgeom(1,1-p)
} 
}

if (A[l]==0) {A[l+1]=0;m=m+1}

print(l+1)
print(A[l+1])

if (A[l+1]==0 && A[l]>0) {alarm();m0=l}

# if (A[l+1]>0) {tkbell()}

if (A[l+1]>M) {M=A[l+1]}

screen(1,FALSE)

#tkbell()

par(bg = "white")

plot(0:l,A,type="o", xlim=c(0,max(100,l)),ylim=c(0,max(40,M)), xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i",col="blue", main = "Branching process",bty="n")

axis(2,pos=0,at=seq(0,max(40,M),max(1,floor(max(40,M)/10))))

axis(1,pos=0,at=seq(0,max(100,l),max(1,floor(max(100,l)/10))),outer=TRUE)

Sys.sleep(0.4)
 
if (m>5+m0*0.2) {break} 

} 

dev.copy(png,'branching_rescaled.png')
dev.off()
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 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "from IPython.display import HTML\n",
    "\n",
    "HTML('''<script>\n",
    "code_show=true; \n",
    "function code_toggle() {\n",
    " if (code_show){\n",
    " $('div.input').hide();\n",
    " } else {\n",
    " $('div.input').show();\n",
    " }\n",
    " code_show = !code_show\n",
    "} \n",
    "$( document ).ready(code_toggle);\n",
    "</script>\n",
    "<form action=\"javascript:code_toggle()\"><input type=\"submit\" value=\"Click here to toggle on/off the raw code.\"></form>''')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "%matplotlib notebook\n",
    "from pylab import *\n",
    "import time\n",
    "import numpy as np\n",
    "import random as rm\n",
    "import matplotlib \n",
    "import matplotlib.pyplot as plt \n",
    "\n",
    "# parameter of the geometric distribution \n",
    "p=0.5\n",
    "\n",
    "N=100\n",
    "A = np.empty(2, dtype=int)\n",
    "B = np.empty(2, dtype=int)\n",
    "  \n",
    "def path(axarr):\n",
    "    global l,A,B\n",
    "    A[0]=l-1;\n",
    "    A[1]=A[0]+1;\n",
    "    B[0]=B[1];\n",
    "    B[1]=0;\n",
    "    if (B[0]>0): \n",
    "        for k in range(1,B[0]): \n",
    "            B[1]=B[1]+np.random.geometric(1-p,1)-1\n",
    "    axarr.plot(A,B,marker='.',markersize = 14,color=\"blue\")\n",
    "    matplotlib.pyplot.yticks(np.arange(0, 45, 5))\n",
    "    matplotlib.pyplot.xlim((0,max(N,l)))\n",
    "    l=l+1\n",
    "    ff.canvas.draw()\n",
    "    if (B[1]==0 and B[0]>0): B[0]=0\n",
    "    time.sleep(0.2)\n",
    "                           \n",
    "ff, axarr = plt.subplots(1, sharex=True,figsize=(12,10))\n",
    "matplotlib.pyplot.yticks(np.arange(0, 45, 5))\n",
    "matplotlib.pyplot.xlim((0,N))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "l=1\n",
    "B[0]=10\n",
    "B[1]=10\n",
    "axarr.clear()\n",
    "while (B[0]>0): path(axarr)\n",
    "\n",
    "axarr.plot(range(l,max(N,l)),[0]*(N-l),marker='.',markersize = 14,color=\"blue\")\n",
    "matplotlib.pyplot.yticks(np.arange(0, 45, 5))\n",
    "matplotlib.pyplot.xlim((0,max(N,l)))\n",
    "ff.canvas.draw()"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.1"
  },
  "widgets": {
   "state": {},
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}
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"331In Table 8.1 we summarize some questions and their associated solution methods introduced in this chapter and the previous ones.

Table 8.1: Summary of computing methods.

How to compute Method

the expected value IE[X] sum the values of X weighted by their probabilities.

Uses of GX(s) GX(0) = P(X = 0),

GX(1) = P(X <∞),

G′X(1−) = IE[X].

the hitting probabilities g(k) solve∗ g = Pg for g(k).

the mean hitting times h(k) solve∗ h = 1+ Ph for h(k).

the stationary distribution π solve† π = πP for π.

the extinction probability α1 solve G1(α) = α for α and choose the smallest solution.

lim
n→∞


 1− a a

b 1− b



n


b

a+ b

a

a+ b

b

a+ b

a

a+ b



∗Be sure to write only the relevant rows of the system under the appropriate boundary conditions.
†Remember that the values of π(k) have to add up to 1. MH3512 AY19-20



"332Exercises
Exercise 8.1 A parent particle can be divided into 0, 1 or 2 particles with probabilities 1/5, 3/5, and 1/5, respectively. It disappears
after splitting. Starting with one particle, the ancestor, let us denote by Xn the size of the corresponding branching process at the nth
generation.

a) Find P (X2 > 0).

b) Find P (X2 = 1).

c) Find the probability that X1 = 2 given that X2 = 1.

Exercise 8.2 Each individual in a population has a random number Y of offsprings, with

P(Y = 0) = 1/2, P(Y = 1) = 1/2.

Let Xn denote the size of the population at time n ∈ N, with X0 = 1.

a) Compute the generating function G1(s) = IE[sY ] of Y for s ∈ R+.

b) Let Gn(s) := IE
[
sXn

]
denote the generating function of Xn. Show that

Gn(s) = 1−
1
2n

+
s

2n
, s ∈ R. (8.3.10)

c) Compute the probability P(Xn = 0 | X0 = 1) that the population is extinct at time n.

d) Compute the average size E[Xn | X0 = 1] of the population at step n.

e) Compute the extinction probability of the population starting from one individual at time 0.

Exercise 8.3 Each individual in a population has a random number ξ of offsprings, with distribution

P(ξ = 0) = 0.2, P(ξ = 1) = 0.5, P(ξ = 2) = 0.3.

Let Xn denote the number of individuals in the population at the nth generation, with X0 = 1. MH3512 AY19-20



"333a) Compute the mean and variance of X2.

b) Give the probability distribution of the random variable X2.

c) Compute the probability that the population is extinct by the fourth generation.

d) Compute the expected number of offsprings at the tenth generation.

e) What is the probability of extinction of this population?

Exercise 8.4 Each individual in a population has a random number Y of offsprings, with

P(Y = 0) = c, P(Y = 1) = b, P(Y = 2) = a,

where a+ b+ c = 1.

a) Compute the generating function G1(s) of Y for s ∈ [−1, 1].

b) Compute the probability that the population is extinct at time 2, starting from 1 individual at time 0.

c) Compute the probability that the population is extinct at time 2, starting from 2 individuals at time 0.

d) Show that when 0 < c 6 a the probability of eventual extinction of the population, starting from 2 individuals at time 0, is (c/a)2.

e) What is this probability equal to when 0 < a < c?

Exercise 8.5 Consider a branching process (Zn)n>0 in which the offspring distribution at each generation is binomial with parameter
(2, p), i.e.

P(Y = 0) = q2, P(Y = 1) = 2pq, P(Y = 2) = p2,
with q := 1− p.

a) Compute the probability generating function GY of Y .

b) Compute the extinction probability of this process, starting from Z0 = 1. MH3512 AY19-20



"334c) Compute the probability that the population becomes extinct for the first time in the second generation (n = 2), starting from
Z0 = 1.

d) Suppose that the initial population size Z0 is a Poisson random variable with parameter λ > 0. Compute the extinction probability
in this case.

Exercise 8.6 A cell culture is started with one red cell at time 0. After one minute the red cell dies and two new cells are born according
to the following probability distribution:

Color configuration Probability
2 red cells 1/4

1 red cell + 1 white cell 2/3
2 white cells 1/12

The above procedure is repeated minute after minute for any red cell present in the culture. On the other hand, the white cells can only
live for one minute, and disappear after that without reproducing. We assume that the cells behave independently.

a) What is the probability that no white cells have been generated until time n included?

b) Compute the extinction probability of the whole cell culture.

c) Same questions as above for the following probability distribution:

Color configuration Probability
2 red cells 1/3

1 red cell + 1 white cell 1/2
2 white cells 1/6

Exercise 8.7 Using first step analysis, show that if (Xn)n>0 is a subcritical branching process, i.e. µ = IE[Y1] < 1, the time to
extinction T0 := inf{n > 0 : Xn = 0} satisfies IE[T0 | X0 = 1] <∞.

MH3512 AY19-20



"335Exercise 8.8 Consider a branching process (Xn)n>0 started at X0 = 1, in which the numbers Yk of descendants of individual nok
form an i.i.d. sequence with the negative binomial distribution

P(Yk = n) = (n+ 1)q2pn, n > 0, k > 1,

where 0 < q = 1− p < 1.

a) Compute the probability generating function

G1(s) := IE
[
sYk

]
=

∑
n>0

snP(Y1 = n)

of Yk, k > 1.

b) Compute the extinction probability α1 := P(T0 <∞ | X0 = 1) of the branching process (Xn)n>0 in finite time.

Exercise 8.9 Families in a given society have children until the birth of the first girl, after which the family stops having children. Let
X denote the number of male children of a given husband.

a) Assuming that girls and boys are equally likely to be born, compute the probability distribution of X.

b) Compute the probability generating function GX(s) of X.

c) What is the probability that a given man has no male descendant (patrilineality) by the time of the third generation?

d) Suppose now that one fourth of the married couples have no children at all while the others continue to have children until the first
girl, and then cease childbearing. What is the probability that the wife’s female line of descent (matrilineality) will cease to exist by
the third generation?

Exercise 8.10 Consider a branching process (Zk)k∈N with Z0 = 1 and offspring distribution given by

P(Z1 = 0) =
1− p− q

1− p
and P(Z1 = k) = qpk−1, k = 1, 2, 3, . . . ,

where 0 6 p < 1 and 0 6 q 6 1− p. MH3512 AY19-20



"336a) Find the probability generating function of Z1.

b) Compute IE[Z1].

c) Find the value of q for which IE[Z1] = 1, known as the critical value.

d) Using the critical value of q, show by induction that determine the probability generating function of Zk is given by

GZk(s) =
kp− (kp+ p− 1)s
1− p+ kp− kps

, −1 < s < 1,

for all k > 1.

Problem 8.11 Consider a branching process with i.i.d. offspring sequence (Yk)k>1. The number of individuals in the population at
generation n+ 1 is given by the relation Xn+1 = Y1 + · · ·+ YXn, with X0 = 1.

a) Let
Zn =

n∑
k=1

Xk,

denote the total number of individuals generated from time 1 to n. Compute IE[Zn] as a function of µ = IE[Y1].

b) Let Z =
∑
k>1

Xk. denote the total number of individuals generated from time 1 to infinity. Compute IE[Z] and show that it is finite

when µ < 1.

In the sequel we work under the condition µ < 1.

c) Let
H(s) = IE

[
sZ

]
, −1 6 s 6 1,

denote the generating function of Z.

Show, by first step analysis, that the relation

H(s) = G1(sH(s)), 0 6 s 6 1, MH3512 AY19-20



"337holds, where G1(x) is the probability generating function of Y1.

d) In the sequel we assume that Y1 has the geometric distribution P(Y1 = k) = qpk, k ∈ N, with p ∈ (0, 1) and q = 1− p.
Compute H(s) for s ∈ [0, 1].

e) Using the expression of the generating function H(s) computed in Question (d), check that we have H(0) = lims↘0H(s), where
H(0) = P(Z = 0) = P(Y1 = 0) = G1(0).

f) Using the generating function H(s) computed in Question (d), recover the value of IE[Z] found in Question (b).

g) Assume that each of the Z individuals earns an income Uk, k = 1, 2, . . . ,Z, where (Uk)k>1 is an i.i.d. sequence of random
variables with finite expectation IE[U ] and distribution function F (x) = P(U 6 x).

Compute the expected value of the sum of gains of all the individuals in the population.

h) Compute the probability that none of the individuals earns an income higher than x > 0.

i) Evaluate the results of Questions (g) and (h) when Uk has the exponential distribution with F (x) = 1− e−x, x ∈ R+.
Hints and comments on Problem 8.11.
a) Use the expression (8.2.5) of IE[Xk].

b) IE[Z] <∞ implies that Z <∞ almost surely.

c) Given that X1 = k, Z can be decomposed into the sum of k independent population sizes, each of them started with 1 individual.

d) Compute G1(s) and µ in this model, and check the condition µ < 1. When computing H(s) you should have to solve a quadratic
equation, and to choose the relevant solution out of two possibilities.

e) The goal of this question is to confirm the result of Question (d) by checking the value of H(0) = lims↘0H(s). For this, find the
Talyor expansion of

√
1− 4pqs as s tends to 0.

f) The identity 1− 4pq = (q− p)2 can be useful, and the sign of q− p has to be taken into account when computing
√

1− 4pq.

g) Use conditioning on Z = n, n ∈ N.

h) The answer will use both H and F .

i) Compute the value of IE[U1].
MH3512 AY19-20
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9 Continuous-Time Markov Chains
In this chapter we start the study of continuous-time stochastic processes, which are families (Xt)t∈R+ of random variables indexed by
R+. Our aim is to make the transition from discrete to continuous-time Markov chains, the main difference between the two settings
being the replacement of the transition matrix with the continuous-time infinitesimal generator of the process. We will start with the
two fundamental examples of the Poisson and birth and death processes, followed by the construction of continuous-time Markov chains
and their generators in more generality. From the point of view of simulations, the use of continuous-time Markov chains does not bring
any special difficulty as any continuous-time simulation is actually based on discrete-time samples. From a theoretical point of view,
however, the rigorous treatment of the continuous-time Markov property is much more demanding than its discrete-time counterpart,
notably due to the use of the strong Markov property. Here we focus on the understanding of the continuous-time case by simple
calculations, and we will refer to the literature for the use of the strong Markov property.

9.1 The Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
9.2 Continuous-Time Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
9.3 Transition Semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
9.4 Infinitesimal Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
9.5 The Two-State Continuous-Time Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
9.6 Limiting and Stationary Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
9.7 The Discrete-Time Embedded Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
9.8 Mean Absorption Time and Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

9.1 The Poisson Process
The standard Poisson process (Nt)t∈R+ is a continuous-time counting process, i.e. (Nt)t∈R+ has jumps of size +1 only, and its paths
are constant (and right-continuous) in between jumps. The next Figure 9.1 represents a sample path of a Poisson process. MH3512 AY19-20
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Figure 9.1: Sample path of a Poisson process (Nt)t∈R+ .

We denote by (Tk)k>1 the increasing sequence of jump times of (Nt)t∈R+, which can be defined from the (right-continuous) Poisson
process path (Nt)t∈R+ by noting that Tk is the first hitting time of state k, i.e.

Tk = inf{t ∈ R+ : Nt = k}, k > 1,

with
lim
k→∞

Tk =∞.

The value Nt at time t of the Poisson process can be recovered from its jump times (Tk)k>1 as

Nt =
∑
k>1

k1[Tk,Tk+1)(t) =
∑
k>1

1[Tk,∞)(t), t ∈ R+,
MH3512 AY19-20
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1[Tk,∞)(t) =


1 if t > Tk,

0 if 0 6 t < Tk,
and

1[Tk,Tk+1)(t) =


1 if Tk 6 t < Tk+1, k > 0,

0 if 0 6 t < Tk or t > Tk+1, k > 0.
with T0 = 0.

In addition, (Nt)t∈R+ is assumed to satisfy the following conditions:

i) Independence of increments: for all 0 6 t0 < t1 < · · · < tn and n > 1 the increments

Nt1 −Nt0, . . . , Ntn −Ntn−1,

over the disjoint time intervals [t0, t1), [t1, t2), . . ., [tn−2, tn−1), [tn−1, tn] are mutually independent random variables.

ii) Stationarity of increments: Nt+h−Ns+h has the same distribution as Nt−Ns for all h > 0 and 0 6 s 6 t.

The meaning of the above stationarity condition is that for all fixed k ∈ N we have

P(Nt+h−Ns+h = k) = P(Nt−Ns = k),

for all h > 0 and 0 6 s 6 t.

The stationarity of increments means that for all k ∈ N, the probability P(Nt+h−Ns+h = k) does not depend on h > 0.

Based on the above assumption, a natural question arises:

what is the distribution of Nt at time t?

We already know that Nt takes values in N and therefore it has a discrete distribution for all t ∈ R+. It is a remarkable fact that the
distribution of the increments of (Nt)t∈R+, can be completely determined from the above conditions, as shown in the following theorem.MH3512 AY19-20
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As seen in the next result, the random variable Nt−Ns has the Poisson distribution with parameter λ(t− s).

Theorem 9.1

Assume that the counting process (Nt)t∈R+ satisfies the independence and stationarity Conditions (i) and (ii) above. Then we
have

P(Nt−Ns = k) = e−λ(t−s)
(λ(t− s))k

k!
, k ∈ N, 0 6 s 6 t,

for some constant λ > 0.

Theorem 9.1 shows in particular that

IE[Nt−Ns] = λ(t− s) and Var[Nt−Ns] = λ(t− s),

0 6 s 6 t, cf. Relations (B.4) and (B.5) in the solution of Exercise 1.3-(a).

The parameter λ > 0 is called the intensity of the process and it can be recovered given from P(Nh = 1) = λhe−λh as the limit

λ = lim
h↘0

1
h

P(Nh = 1). (9.1.1)

Proof of Theorem 9.1. We only quote the main steps of the proof and we refer to [BN96] for the complete argument. Using the
independence and stationarity of increments, we show that the probability generating function

Gt(u) := IE[uNt], −1 6 u 6 1,

satisfies
Gt(u) := (G1(u))

t, −1 6 u 6 1,
which implies that

Gt(u) := e−tf(u), −1 6 u 6 1,
for some function f(u) of u. Still relying on the independence and stationarity of increments, it can be shown that f(u) takes the
form

f(u) = λ× (1− u), −1 6 u 6 1,
where λ > 0 is given by (9.1.1). �MH3512 AY19-20
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In particular, given that N0 = 0, the random variable Nt has a Poisson distribution with parameter λt:

P(Nt = k) =
(λt)k

k!
e−λt, t ∈ R+.

From (9.1.1) above we see that∗ 
P(Nh = 0) = e−λh = 1− λh+ o(h), h↘ 0,

P(Nh = 1) = hλe−λh ' λh, h↘ 0,
and more generally that 

P(Nt+h−Nt = 0) = e−λh = 1− λh+ o(h), h↘ 0,

P(Nt+h−Nt = 1) = λhe−λh ' λh, h↘ 0,

P(Nt+h−Nt = 2) = h2λ
2

2
e−λh ' h2λ

2

2
, h↘ 0,

(9.1.2a)

(9.1.2b)

(9.1.2c)

for all t ∈ R+. This means that within “short” time intervals [kh, (k+ 1)h] of length h = t/n > 0, the increments N(k+1)h−Nkh

can be approximated by independent Bernoulli random variables Xkh with parameter λh, whose sum

n−1∑
k=0

Xkh '
n−1∑
k=0

(N(k+1)h−Nkh) = Nt−N0 = Nt

converges in distribution as n goes to infinity to the Poisson random variable Nt with parameter λt. This remark can be used for the
random simulation of Poisson process paths.

More generally, we have

P(Nt+h−Nt = k) ' hk
λk

k!
, h↘ 0, t > 0.

∗The notation f(h) ' hk means limh→0 f(h)/hk = 1, and f(h) = o(h) means limh→0 f(h)/h = 0. MH3512 AY19-20



"343In order to determine the distribution of the first jump time T1 we note that we have the equivalence

{T1 > t} ⇐⇒ {Nt = 0},

which implies
P(T1 > t) = P(Nt = 0) = e−λt, t > 0,

i.e. T1 has an exponential distribution with parameter λ > 0.

In order to prove the next proposition we note that more generally, we have the equivalence

{Tn > t} = {Nt < n}, t > 0, n > 1.

Indeed, stating that the n-th jump time Tn is strictly larger that t is equivalent to saying that at most n− 1 jumps of the Poisson
process have occurred over the interval [0, t], i.e. Nt 6 n− 1. The next proposition shows that Tn has a gamma distribution with
parameter (λ,n) for n > 1, also called the Erlang distribution in queueing theory.

Proposition 9.2

The random variable Tn has the gamma probability density function

x 7−→ λne−λx
xn−1

(n− 1)!

x ∈ R+, n > 1.

Proof

For n = 1 we have
P(T1 > t) = P(Nt = 0) = e−λt, t ∈ R+,

and by induction on n > 1, assuming that

P(Tn−1 > t) = λ
w ∞
t

e−λs
(λs)n−2

(n− 2)!
ds,

MH3512 AY19-20



"344at the rank n− 1 with n > 2, we obtain

P(Tn > t) = P(Tn > t > Tn−1) + P(Tn−1 > t)

= P(Nt = n− 1) + P(Tn−1 > t)

= e−λt
(λt)n−1

(n− 1)!
+ λ

w ∞
t

e−λs
(λs)n−2

(n− 2)!
ds

= λ
w ∞
t

e−λs
(λs)n−1

(n− 1)!
ds, t ∈ R+,

which proves the desired relation at the rank n, where we applied an integration by parts on R+ to derive the last line. �

Let now
τk = Tk+1− Tk, k > 1,

denote the time spent in state k ∈ N, with T0 = 0. In addition to Proposition 9.2 we could show the following proposition which is
based on the strong Markov property, see e.g. Theorem 6.5.4 of [Nor98], (9.2.4) below and Exercise 5.9 in discrete time.

Proposition 9.3

The random inter-jump times
τk := Tk+1− Tk

spent in state k ∈ N form a sequence of independent identically distributed random variables having the exponential distribution
with parameter λ > 0, i.e.

P(τ0 > t0, τ1 > t1, . . . , τn > tn) = e−λ(t0+t1+···+tn), t0, t1, . . . , tn ∈ R+.

Random samples of Poisson process jump times can be generated using the following R code.

lambda = 2.0;n = 10
for (k in 1:n){tauk <- rexp(n)/lambda; Ti <- cumsum(tauk)}
tauk
Ti

Similarly, random samples of Poisson process paths can be generated using the following code. MH3512 AY19-20
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x<-cumsum(rexp(50,rate=0.5))
y<-cumsum(c(0,rep(1,50)))
plot(stepfun(x,y),xlim = c(0,10),do.points = F,main="L=0.5")

In other words, we have

P(τ0 > t0, τ1 > t1, . . . , τn > tn) = P(τ0 > t0)× · · · ×P(τn > tn) (9.1.3)

=
n∏
k=0

e−λtk

= e−λ(t0+···+tn),

for all t0, t1, . . . , tn ∈ R+. In addition, from Proposition 9.2 the sum

Tk = τ0 + τ1 + · · ·+ τk−1, k > 1,

has a gamma distribution with parameter (λ, k), cf. also Exercise 9.12 for a proof in the particular case k = 2.

As the expectation of the exponentially distributed random variable τk with parameter λ > 0 is given by

IE[τk] = λ
w ∞

0
xe−λxdx =

1
λ

,

we can check that the higher the intensity λ (i.e. the higher the probability of having a jump within a small interval), the smaller is the
time spent in each state k ∈ N on average. Poisson random samples on arbitrary spaces will be considered in Chapter 11.

9.2 Continuous-Time Markov Chains
A S-valued continuous-time stochastic process (Xt)t∈R+ is said to be Markov, or to have the Markov property if, for all t ∈ [s,∞),
the probability distribution of Xt given the past of the process up to time s is determined by the state Xs of the process at time s, and
does not depend on the past values of Xu for u < s. In other words, for all

0 < s1 < · · · < sn−1 < s < t

we have
P(Xt = j | Xs = in, Xsn−1 = in−1, . . . ,Xs1 = i0) = P(Xt = j | Xs = in). (9.2.1)MH3512 AY19-20
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P(Xt = j | Xs = in and Xsn−1 = in−1) = P(Xt = j | Xs = in).

Example

The Poisson process (Nt)t∈R+ considered in Section 9.1 is a continuous-time Markov chain because it has independent increments by
Condition (i) page 340. The birth and death processes discussed below are also continuous-time Markov chains, although they
may not have independent increments.

More generally, any continuous-time process (Xt)t∈R+ with independent increments has the Markov property. Indeed, for all j, in, . . . , i1 ∈
S we have (note that X0 = 0 here)

P(Xt = j | Xs = in, Xsn−1 = in−1, . . . ,Xs1 = i1)

=
P(Xt = j,Xs = in,Xsn−1 = in−1, . . . ,Xs1 = i1)

P(Xs = in, Xsn−1 = in−1, . . . ,Xs1 = i1)

=
P(Xt−Xs = j − in,Xs = in, . . . ,Xs2 = i2,Xs1 = i1)

P(Xs = in, , . . . ,Xs2 = i2,Xs1 = i1)

=
P(Xt−Xs = j − in)P(Xs = in,Xsn−1 = in−1, . . . ,Xs2 = i2,Xs1 = i1)

P(Xs = in,Xsn−1 = in−1, . . . ,Xs2 = i2,Xs1 = i1)

= P(Xt−Xs = j − in) =
P(Xt−Xs = j − in)P(Xs = in)

P(Xs = in)

=
P(Xt−Xs = j − in and Xs = in)

P(Xs = in)

=
P(Xt = j and Xs = in)

P(Xs = in)
= P(Xt = j | Xs = in),

cf. (4.1.5) for the discrete-time version of this argument. Hence, continuous-time processes with independent increments are Markov
chains. However, not all continuous-time Markov chains have independent increments, and in fact the continuous-time Markov chains
of interest in this chapter will not have independent increments.

Birth process

The pure birth process behaves similarly to the Poisson process, by making the parameter of every exponential inter-jump time depen-
dent on the current state of the process. MH3512 AY19-20
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In other words, a continuous-time Markov chain (Xb
t )t∈R+ such that∗

P(Xb
t+h = i+ 1 | Xb

t = i) = P(Xb
t+h−X

b
t = 1 | Xb

t = i)

' λih, h↘ 0, i ∈ S,

and

P(Xb
t+h = Xb

t | X
b
t = i) = P(Xb

t+h−X
b
t = 0 | Xb

t = i)

= 1− λih+ o(h), h↘ 0, i ∈ S, (9.2.2)

is called a pure birth process with (possibly) state-dependent birth rates λi > 0, i ∈ S, see Figure 9.2. Its inter-jump times (τk)k>0
form a sequence of exponential independent random variables with state-dependent parameters.

This process is stationary in time because the rates λi, i ∈ N, are independent of time t. The Poisson process (Nt)t∈R+ is a pure birth
process with state-independent birth rates λi = λ > 0, i ∈ N.

∗Recall that by definition f(h) ' g(h), h→ 0, if and only if limh→0 f(h)/g(h) = 1. MH3512 AY19-20
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Figure 9.2: Sample path of a birth process (Xb
t )t∈R+ .

As a consequence of (9.2.2) we can recover the fact that the time τi,i+1 spent in state i by the pure birth process (Xb
t )t∈R+ started at

state i at time 0 before it moves to state
�� ��i+ 1 has an exponential distribution with parameter λi. Indeed we have, using the Markov

property in continuous time,

P(τi,i+1 > t+ h | τi,i+1 > t and Xb
0 = i) =

P(τi,i+1 > t+ h | Xb
0 = i)

P(τi,i+1 > t | Xb
0 = i)

=
P(Xb

t+h = i | Xb
0 = i)

P(Xb
t = i | Xb

0 = i)

=
P(Xb

t+h = i and Xb
0 = i)P(Xb

0 = i)

P(Xb
t = i and Xb

0 = i)P(Xb
0 = i)

=
P(Xb

t+h = i and Xb
0 = i)

P(Xb
t = i and Xb

0 = i) MH3512 AY19-20
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=

P(Xb
t+h = i, Xb

t = i, Xb
0 = i)

P(Xb
t = i and Xb

0 = i)

= P(Xb
t+h = i | Xb

t = i and Xb
0 = i)

= P(Xb
t+h = i | Xb

t = i)

= P(Xb
h = i | Xb

0 = i)

= P(τi,i+1 > h | Xb
0 = i)

= 1− λih+ o(h), (9.2.3)

which is often referred to as the memoryless property of Markov processes. In other words, since the above ratio is independent of t > 0
we get

P(τi,i+1 > t+ h | τi,i+1 > t and Xb
0 = i) = P(τi,i+1 > h | Xb

0 = i),
which means that the distribution of the waiting time after time t does not depend on t, cf. (12.1.1) in Chapter 12 for a similar argument.

From (9.2.3) we have

P(τi,i+1 > t+ h | Xb
0 = i)−P(τi,i+1 > t | Xb

0 = i)

hP(τi,i+1 > t | Xb
0 = i)

=
1
h

P(τi,i+1 > t+ h | Xb
0 = i)

P(τi,i+1 > t | Xb
0 = i)

− 1


= P(τi,i+1 > t+ h | τi,i+1 > t and Xb
0 = i)− 1

' −λi, h→ 0,

which can be read as the differential equation

d

dt
log P(τi,i+1 > t | Xb

0 = i) = −λi,

where “log” denotes the natural logarithm “ln”, with solution

P(τi,i+1 > t | Xb
0 = i) = e−λit, t ∈ R+, (9.2.4)

i.e. τi,i+1 is an exponentially distributed random variable with parameter λi, and the mean time spent at state i before switching toMH3512 AY19-20
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�� ��i+ 1 is given by

IE[τi,i+1 | Xb
0 = i] =

1
λi

, i ∈ S,

see (9.4.10) below for the general case of continuous-time Markov chains. More generally, and similarly to (9.1.3) it can also be shown as a
consequence of the strong Markov property that the sequence (τj,j+1)j>i is made of independent random variables which are respectively
exponentially distributed with parameters λj, j > i.

Letting T bi,j = τi,i+1 + · · ·+ τj−1,j denote the hitting time of state j starting from state i by the birth process (Xb
t )t∈R+, we have

the representation
Xb
t = i+

∑
i<j<∞

1[T bi,j ,∞)(t), t ∈ R+.

Note that since the pure birth process has stationary increments, by Theorem 9.1 it can have independent increments only when the
rates λi = λ are state independent, i.e. when (Xb

t )t∈R+ is a standard Poisson process with intensity λ > 0.

Death process

A continuous-time Markov chain (Xd
t )t∈R+ such that


P(Xd

t+h−Xd
t = −1 | Xd

t = i) ' µih, h↘ 0, i ∈ S,

P(Xd
t+h−Xd

t = 0 | Xd
t = i) = 1− µih+ o(h), h↘ 0, i ∈ S,

is called a pure death process with (possibly) state-dependent death rates µi > 0, i ∈ S. Its inter-jump times (τk)k>0 form a sequence
of exponential independent random variables with state-dependent parameters, see Figure 9.3. MH3512 AY19-20
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Figure 9.3: Sample path of a death process (Xd
t )t∈R+ .

In the case of a pure death process (Xd
t )t∈R+ we denote by τi,i−1 the time spent in state i by (Xd

t )t∈R+ before it moves to state
�� ��i− 1 .

Similarly to the pure birth process, that the sequence (τj,j−1)j6i is made of independent random variables which are exponentially
distributed with parameter µj, j 6 i, wich

P(τj,j−1 > t) = e−µjt, t ∈ R+,
and

IE[τi,i−1] =
1
µi

, i ∈ S.

Letting T di,j = τi,i−1 + · · ·+ τj+1,j denote the hitting time of state j starting from state i by the death process (Xd
t )t∈R+ we have

the representation
Xd
t = i−

∑
−∞<j<i

1[T di,j ,∞)(t), t ∈ R+.
MH3512 AY19-20
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n ∈ N.

Birth and death process

A continuous-time Markov chain (Xt)t∈R+ such that, for all i ∈ S,


P(Xt+h−Xt = 1 | Xt = i) ' λih, h↘ 0,

P(Xt+h−Xt = −1 | Xt = i) ' µih, h↘ 0, and

P(Xt+h−Xt = 0 | Xt = i) = 1− (λi + µi)h+ o(h), h↘ 0,

(9.2.5a)

(9.2.5b)

is called a birth and death process with (possibly) state-dependent birth rates λi > 0 and death rates µi > 0, i ∈ S, see Figure 9.4.MH3512 AY19-20
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Figure 9.4: Sample path of a birth and death process (Xt)t∈R+ .

The birth and death process (Xt)t∈R+ can be built as

Xt = Xb
t +Xd

t , t ∈ R+,

in which case the time τi spent in state i by (Xt)t∈R+ satisfies the identity in distribution

τi = min(τi,i+1, τi,i−1)

i.e. τi is an exponentially distributed random variable with parameter λi + µi and

IE[τi] =
1

λi + µi
.

MH3512 AY19-20
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P(min(τi,i+1 and τi,i−1) > t) = P(τi,i+1 > t and τi,i−1 > t)

= P(τi,i+1 > t)P(τi,i−1 > t)

= e−t(λi+µi), t ∈ R+,

hence τi = min(τi,i+1, τi,i−1) is an exponentially distributed random variable with parameter λi + µi, cf. also (1.5.8) in Chapter 1.

9.3 Transition Semigroup

The transition semigroup of the continuous time Markov process (Xt)t∈R+ is the family (P (t))t∈R+ of matrices determined by

Pi,j(t) := P(Xt+s = j | Xs = i), i, j ∈ S, s, t ∈ R+,

where we assume that the probability P(Xt+s = j | Xs = i) does not depend on s ∈ R+. In this case the Markov process (Xt)t∈R+

is said to be time homogeneous.
Definition 9.4

A continuous-time Markov chain (Xt)t∈R+ is irreducible if for all t > 0, P (t) is the transition matrix of an irreducible discrete-time
chain.

Note that we always have
P (0) = Id.

This data can be recorded as a time-dependent matrix indexed by S2 = S× S, called the transition semigroup of the Markov process:

[ Pi,j(t) ]i,j∈S
= [ P(Xt+s = j | Xs = i) ]i,j∈S , MH3512 AY19-20
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[ Pi,j(t) ]i,j∈S
=



. . .
...

...
...

...
... . .

.

· · · P−2,−2(t) P−2,−1(t) P−2,0(t) P−2,1(t) P−2,2(t) · · ·

· · · P−1,−2(t) P−1,−1(t) P−1,0(t) P−1,1(t) P−1,2(t) · · ·

· · · P0,−2(t) P0,−1(t) P0,0(t) P0,1(t) P0,2(t) · · ·

· · · P1,−2(t) P1,−1(t) P1,0(t) P1,1(t) P1,2(t) · · ·

· · · P2,−2(t) P2,−1(t) P2,0(t) P2,1(t) P2,2(t) · · ·

. .
. ...

...
...

...
...

. . .



.

As in the discrete-time case, note the inversion of the order of indices (i, j) between P(Xt+s = j | Xs = i) and Pi,j(t). In particular,
the initial state i correspond to a row number in the matrix P (t), while the final state j corresponds to a column number.

Due to the relation ∑
j∈S

P(Xt+s = j | Xs = i) = 1, i ∈ S, (9.3.1)

all rows of the transition matrix semigroup (P (t))t∈R+ satisfy the condition
∑
j∈S

Pi,j(t) = 1,

for i ∈ S. In the sequel we will only consider N-valued Markov process, and in this case the transition semigroup (P (t))t∈R+ of the
Markov process is written as

P (t) = [ Pi,j(t) ]i,j∈N
=



P0,0(t) P0,1(t) P0,2(t) · · ·

P1,0(t) P1,1(t) P1,2(t) · · ·

P2,0(t) P2,1(t) P2,2(t) · · ·

...
...

...
. . .


.
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j>0

Pi,j(t) = 1,

for all i ∈ N and t ∈ R+.

Exercise: Write down the transition semigroup [ Pi,j(t) ]i,j∈N
of the Poisson process (Nt)t∈R+.

We can show that

[ Pi,j(t) ]i,j∈N
=



e−λt λte−λt
λ2t2

2
e−λt · · ·

0 e−λt λte−λt · · ·

0 0 e−λt · · ·
...

...
...

. . .


.

Indeed we have

Pi,j(t) = P(Ns+t = j | Ns = i) =
P(Ns+t = j and Ns = i)

P(Ns = i)

=
P(Ns+t−Ns = j − i and Ns = i)

P(Ns = i)
=

P(Ns+t−Ns = j − i)P(Ns = i)

P(Ns = i)

= P(Ns+t−Ns = j − i) =


e−λt

(λt)j−i

(j − i)!
if j > i,

0 if j < i.

In case the Markov process (Xt)t∈R+ takes values in the finite state space {0, 1, . . . ,N} its transition semigroup will simply have theMH3512 AY19-20
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P (t) = [ Pi,j(t) ]06i,j6N =



P0,0(t) P0,1(t) P0,2(t) · · · P0,N(t)

P1,0(t) P1,1(t) P1,2(t) · · · P1,N(t)

P2,0(t) P2,1(t) P2,2(t) · · · P2,N(t)

...
...

...
. . .

...

PN ,0(t) PN ,1(t) PN ,2(t) · · · PN ,N(t)



.

As noted above, the semigroup matrix P (t) is a convenient way to record the values of P(Xt+s = j | Xs = i) in a table.
Proposition 9.5

The family (P (t))t∈R+ satisfies the relation

P (s+ t) = P (s)P (t) = P (t)P (s), (9.3.2)

which is called the semigroup property.

Proof

Using the Markov property and denoting by S the state space of the process, by standard arguments based on the law of total
probability (1.3.1) for the probability measure P(· | X0 = i) and the Markov property (9.2.1), we have

Pi,j(t+ s) = P(Xt+s = j | X0 = i)

=
∑
l∈S

P(Xt+s = j and Xs = l | X0 = i) =
∑
l∈S

P(Xt+s = j, Xs = l, X0 = i)

P(X0 = i)

=
∑
l∈S

P(Xt+s = j, Xs = l, X0 = i)

P(Xs = l and X0 = i)

P(Xs = l and X0 = i)

P(X0 = i)
MH3512 AY19-20
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∑
l∈S

P(Xt+s = j | Xs = l and X0 = i)P(Xs = l | X0 = i)

=
∑
l∈S

P(Xt+s = j | Xs = l)P(Xs = l | X0 = i) =
∑
l∈S

Pi,l(s)Pl,j(t)

= [P (s)P (t)]i,j,

i, j ∈ S, s, t ∈ R+. We have shown the relation

Pi,j(s+ t) =
∑
l∈S

Pi,l(s)Pl,j(t),

which leads to (9.3.2). �

From (9.3.2) property one can check in particular that the matrices P (s) and P (t) commute, i.e. we have

P (s)P (t) = P (t)P (s), s, t ∈ R+.

Example

For the transition semigroup (P (t))t∈R+ of the Poisson process we can check by hand computation that

P (s)P (t) =



e−λs λse−λs
λ2

2
s2e−λs · · ·

0 e−λs λse−λs · · ·

0 0 e−λs · · ·
...

...
...

. . .


×



e−λt λte−λt
λ2

2
t2e−λt · · ·

0 e−λt λte−λt · · ·

0 0 e−λt · · ·
...

...
...

. . .
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=



e−λ(s+t) λ(s+ t)e−λ(s+t)
λ2

2
(s+ t)2e−λ(s+t) · · ·

0 e−λ(s+t) λ(s+ t) e−λ(s+t) · · ·

0 0 e−λ(s+t) · · ·
...

...
...

. . .


= P (s+ t).

The above identity can be recovered by the following calculation, for all 0 6 i 6 j, which amounts to saying that the sum of two
independent Poisson random variables with parameters s and t has a Poisson distribution with parameter s+ t, cf. (B.9) in the solution
of Exercise 1.6-(a). We have Pi,j(s) = 0, i > j, and Pl,j(t) = 0, l > j, hence

[P (s)P (t)]i,j =
∑
l>0
Pi,l(s)Pl,j(t) =

j∑
l=i
Pi,l(s)Pl,j(t)

= e−λs−λt
j∑
l=i

(λs)l−i

(l− i)!
(λt)j−l

(j − l)!
= e−λs−λt

1
(j − i)!

j∑
l=i

j − i
l− i

(λs)l−i(λt)j−l

= e−λs−λt
1

(j − i)!

j−i∑
l=0

j − i
l

(λs)l(λt)j−i−l = e−λ(s+t)
1

(j − i)!
(λs+ λt)j−i

= Pi,j(s+ t), s, t ∈ R+.

9.4 Infinitesimal Generator
The infinitesimal generator of a continuous-time Markov process allows us to encode all properties of the process (Xt)t∈R+ in a single
matrix.

By differentiating the semigroup relation (9.3.2) with respect to t we get, by componentwise differentiation and assuming a finite state
space S,

P ′(t) = lim
h↘0

P (t+ h)− P (t)

h
= lim

h↘0

P (t)P (h)− P (t)

h MH3512 AY19-20
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= P (t) lim

h↘0

P (h)− P (0)
h

= = P (t)Q, (9.4.1)

where
Q := P ′(0) = lim

h↘0

P (h)− P (0)
h

is called the infinitesimal generator of (Xt)t∈R+.

When S = {0, 1, . . . ,N} we will denote by λi,j, i, j ∈ S, the entries of the infinitesimal generator matrix Q = (λi,j)i,j∈S, i.e.

Q =
dP (t)

dt |t=0
= [ λi,j ]06i,j6N =



λ0,0 λ0,1 λ0,2 · · · λ0,N

λ1,0 λ1,1 λ1,2 · · · λ1,N

λ2,0 λ2,1 λ2,2 · · · λ2,N

...
...

...
. . .

...

λN ,0 λN ,1 λN ,2 · · · λN ,N



. (9.4.2)

Denoting Q = [λi,j]i,j∈S, for all i ∈ S we have

∑
j∈S

λi,j =
∑
j∈S

P ′i,j(0) =
d

dt

∑
j∈S

Pi,j(t)|t=0 =
d

dt
1|t=0 = 0,

hence the rows of the infinitesimal generator matrix Q = [λi,j]i,j∈S always add up to 0, i.e.
∑
l∈S

λi,l = λi,i +
∑
l 6=i
λi,l = 0,

or
λi,i = −

∑
l 6=i
λi,l. (9.4.3)
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The equation (9.4.1), i.e.

P ′(t) = P (t)Q, t > 0, (9.4.4)

is called the forward Kolmogorov equation, cf. (1.2.2). In a similar way we can show that

P ′(t) = QP (t), t > 0, (9.4.5)

which is called the backward Kolmogorov equation.

The forward and backward Kolmogorov equations (9.4.4)-(9.4.5) can be solved either using the matrix exponential etQ defined as

exp(tQ) :=
∑
n>0

tn

n!
Qn = Id +

∑
n>1

tn

n!
Qn, (9.4.6)

or by viewing the Kolmogorov equations (9.4.4)-(9.4.5) component by component as systems of differential equations.

In (9.4.6) above, Q0 = Id is the identity matrix, written as

Id =



1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1


when the state space is S = {0, 1, . . . ,N}. Using matrix exponentials, the solution of (9.4.4) is given by

P (t) = P (0) exp(tQ) = exp(tQ), t ∈ R+.
MH3512 AY19-20

http://en.wikipedia.org/wiki/Andrey_Kolmogorov
http://en.wikipedia.org/wiki/Andrey_Kolmogorov
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P (h) = exp(hQ) = Id +
∑
n>1

hn

n!
Qn = Id + hQ+

h2

2!
Q2 +

h3

3!
Q3 +

h4

4!
Q4 + · · · ,

given by
P (h) = Id + hQ+ o(h), h↘ 0, (9.4.7)

where o(h) is a function such that limh→0 o(h)/h = 0, i.e.

P (h) =



1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1


+ h



λ0,0 λ0,1 λ0,2 · · · λ0,N

λ1,0 λ1,1 λ1,2 · · · λ1,N

λ2,0 λ2,1 λ2,2 · · · λ2,N

...
...

...
. . .

...

λN ,0 λN ,1 λN ,2 · · · λN ,N



+ o(h), h↘ 0.

Relation (9.4.7) yields the transition probabilities over a small time interval of length h > 0, as:

P(Xt+h = j | Xt = i) = Pi,j(h) =


λi,jh+ o(h), i 6= j, h↘ 0,

1 + λi,ih+ o(h), i = j, h↘ 0,

and by (9.4.3) we also have

P(Xt+h = j | Xt = i) = Pi,j(h) =


λi,jh+ o(h), i 6= j, h↘ 0,

1− h
∑
l 6=i
λi,l + o(h), i = j, h↘ 0.

(9.4.8)
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"363For example, in the case of a two-state continuous-time Markov chain we have

Q =


−α α

β −β

 ,

with α,β > 0, and

P (h) = Id + hQ+ o(h)

=


1 0

0 1

+ h


−α α

β −β

+ o(h)

=


1−αh αh

βh 1− βh

+ o(h), (9.4.9)

as h ↘ 0. In this case, P (h) above has the same form as the transition matrix (4.5.1) of a discrete-time Markov chain with “small”
time step h > 0 and “small” transition probabilities hα and hβ, namely hα is the probability of switching from state 0 to state 1 ,
and hβ is the probability of switching from state 1 to state 0 within a short period of time h > 0.

We note that since
P(Xt+h = j | Xt = i) ' λi,jh, h↘ 0, i 6= j,

and
P(Xt+h 6= j | Xt = i) = 1− λi,jh+ o(h), h↘ 0, i 6= j,

the transition of the process (Xt)t∈R+ from state i to state j behaves identically to that of a Poisson process with intensity λi,j, cf.
(9.1.2a)-(9.1.2b) above. Similarly to the Poisson, birth and death processes, the relation

P(Xt+h = j | Xt = i) = λi,jh+ o(h), h↘ 0, i 6= j,

shows that the time τi,j spent in state i “before moving to state j 6= i ”, i.e. given the first jump is to state j , is an exponentially
distributed random variable with parameter λi,j, i.e.

P(τi,j > t) = e−λi,jt, t ∈ R+, (9.4.10)MH3512 AY19-20



"364and we have
IE[τi,j] = λi,j

w ∞
0
te−tλi,jdt =

1
λi,j

, i 6= j.

When i = j we have
P(Xt+h 6= i | Xt = i) ' h

∑
l 6=i
λi,l = −λi,ih, h↘ 0,

and
P(Xt+h = i | Xt = i) = 1− h

∑
l 6=i
λi,l + o(h) = 1 + λi,ih+ o(h), h↘ 0,

hence, by the same Poisson process analogy, the time τi spent in state i before the next transition to a different state is an exponentially
distributed random variable with parameter

∑
j 6=i
λi,j, i.e.

P(τi > t) = exp
−t ∑

j 6=i
λi,j

 = etλi,i, t ∈ R+.

In other words, we can also write the time τi spent in state i as

τi = min
j∈S
j 6=i

τi,j,

and this recovers the fact that τi is an exponential random variable with parameter
∑
j 6=i
λi,j, since

P(τi > t) = P

min
j∈S
j 6=i

τi,j > t


=

∏
j∈S
j 6=i

P(τi,j > t)

= exp
−t ∑

j 6=i
λi,j

 = etλi,i, t ∈ R+.
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IE[τi] =
∑
l 6=i
λi,l

w ∞
0
t exp

−t∑
l 6=i
λi,l

 dt = 1∑
l 6=i
λi,l

= −
1
λi,i

,

and the times (τk)k∈S spent in each state k ∈ S form a sequence of independent random variables.

Examples

i) Two-state continuous-time Markov chain.

For the two-state continuous-time Markov chain with generator

Q =


−α α

β −β

 ,

the mean time spent at state 0 is 1/α, whereas the mean time spent at state 1 is 1/β. We will come back to this example in
more detail in the following Section 9.5.

ii) Poisson process.

The generator of the Poisson process is given by λi,j = 1{j=i+1}λ, i 6= j, i.e.

Q = [ λi,j ]i,j∈N
=



−λ λ 0 · · ·

0 −λ λ · · ·

0 0 −λ · · ·
...

...
...

. . .


.

MH3512 AY19-20



"366From the relation P (h) = Id + hQ+ o(h) we recover the infinitesimal transition probabilities of the Poisson process as

P(Nt+h−Nt = 1) = P(Nt+h = i+ 1 | Nt = i) ' λh,

h↘ 0, i ∈ N, and
P(Nt+h−Nt = 0) = P(Nt+h = i | Nt = i) = 1− λh+ o(h),

h↘ 0, i ∈ N.

iii) Pure birth process.

The generator of the pure birth process on N = {0, 1, 2, . . .} is

Q = [ λi,j ]i,j∈N
=



−λ0 λ0 0 · · ·

0 −λ1 λ1 · · ·

0 0 −λ2 · · ·
...

...
...

. . .


,

in which the rate λi is (possibly) state-dependent. From the relation

P (h) = Id + hQ+ o(h), h↘ 0,

i.e.

P (h) =



1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .

+ h



−λ0 λ0 0 · · ·

0 −λ1 λ1 · · ·

0 0 −λ2 · · ·
...

...
...

. . .


+ o(h), h↘ 0,
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P(Xt+h−Xt = 1 | Xt = i) = P(Xt+h = i+ 1 | Xt = i) ' λih,

h↘ 0, i ∈ N, and
P(Xt+h−Xt = 0 | Xt = i) = P(Xt+h = i | Xt = i) = 1− λih+ o(h),

h↘ 0, i ∈ N.

iv) Pure death process.

The generator of the pure death process on −N = {. . . ,−2,−1, 0} is

Q = [ λi,j ]i,j60 =



· · · 0 µ0 −µ0

· · · µ1 −µ1 0

· · · −µ2 0 0

. .
. ...

...
...


.

From the relation

P (h) =



· · · 0 0 1
· · · 0 1 0
· · · 1 0 0

. .
. ...

...
...

+ h



· · · 0 µ0 −µ0

· · · µ1 −µ1 0

· · · −µ2 0 0

. .
. ...

...
...


+ o(h), h↘ 0,

we recover the infinitesimal transition probabilities

P(Xt+h−Xt = −1 | Xt = i) = P(Xt+h = i− 1 | Xt = i) ' µih, h↘ 0,

i ∈ S, and
P(Xt+h = i | Xt = i) = P(Xt+h−Xt = 0 | Xt = i) = 1− µih+ o(h), h↘ 0, MH3512 AY19-20
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v) Birth and death process on {0, 1, . . . ,N}.

By (9.2.5a)-(9.2.5b) and (9.4.8), the generator of the birth and death process on {0, 1, . . . ,N} is

[ λi,j ]06i,j6N =



−λ0 λ0 0 0 · · · · · · · · · 0 0
µ1 −λ1− µ1 λ1 0 · · · · · · · · · 0 0
...

. . .
. . .

. . .
. . .

...
...

...
...

...
...

. . .
. . .

. . .
. . .

...
...

...
...

...
...

. . .
. . .

. . .
. . .

...
...

...
...

...
...

. . .
. . .

. . .
...

...
0 0 0 0 · · · 0 µN−1 −λN−1− µN−1 λN−1
0 0 0 0 · · · 0 0 µN −µN



,

with µ0 = λN = 0.

From the Relation (9.4.7) we have
P (h) = Id + hQ+ o(h), h↘ 0,

and we recover the infinitesimal transition probabilities

P(Xt+h−Xt = 1 | Xt = i) ' λih, h↘ 0, i = 0, 1, . . . ,N ,

and
P(Xt+h−Xt = −1 | Xt = i) ' µih, h↘ 0, i = 0, 1, . . . ,N ,

and
P(Xt+h−Xt = 0 | Xt = i) = 1− (λi + µi)h+ o(h), h↘ 0, i = 0, 1, . . . ,N ,

of the birth and death process on {0, 1, . . . ,N}, with µ0 = λN = 0.

Recall that the time τi spent in state i is an exponentially distributed random variable with parameter λi + µi and we have

Pi,i(t) > P(τi > t) = e−t(λi+µi), t ∈ R+, MH3512 AY19-20
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IE[τi] =

1
λi + µi

.

In the case of a pure birth process we find

Pi,i(t) = P(τi > t) = e−tλi, t ∈ R+,

and similarly for a pure death process. This allows us in particular to compute the diagonal entries in the matrix exponential
P (t) = exp(tQ), t ∈ R+.

When S = {0, 1, . . . ,N} with λi = λ and µi = µ, i = 1, 2, . . . ,N − 1, and λ0 = µN = 0, the above birth and death process
becomes a continuous-time analog of the discrete-time gambling process.

9.5 The Two-State Continuous-Time Markov Chain
In this section we consider a continuous-time Markov process with state space S = {0, 1}, in the same way as in Section 4.5 which
covered the two-state Markov chain in discrete time.

In this case the infinitesimal generator Q of (Xt)t∈R+ has the form

Q =


−α α

β −β

 , (9.5.1)

with α,β > 0. The forward Kolmogorov equation (9.4.4) reads

P ′(t) = P (t)×


−α α

β −β

 , t > 0, (9.5.2)

i.e. 
P ′0,0(t) P ′0,1(t)

P ′1,0(t) P ′1,1(t)

 =


P0,0(t) P0,1(t)

P1,0(t) P1,1(t)

×

−α α

β −β

 , t > 0,
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P ′0,0(t) = −αP0,0(t) + βP0,1(t), P ′0,1(t) = αP0,0(t)− βP0,1(t),

P ′1,0(t) = −αP1,0(t) + βP1,1(t), P ′1,1(t) = αP1,0(t)− βP1,1(t),

t > 0, which is a system of four differential equations ∗ with initial condition

P (0) =


P0,0(0) P0,1(0)

P1,0(0) P1,1(0)

 =


1 0

0 1

 = Id.

The solution of the forward Kolmogorov equation (9.5.2) is given by the matrix exponential

P (t) = P (0) exp(tQ) = exp(tQ) = exp

t

−α α

β −β


 ,

which is computed in the next Proposition 9.6, see also the command MatrixExp[t*-a,a,b,-b].
Proposition 9.6

The solution P (t) of the forward Kolmogorov equation (9.5.2) is given by

P (t) =


P0,0(t) P0,1(t)

P1,0(t) P1,1(t)

 (9.5.3)

=



β

α+ β
+

α

α+ β
e−t(α+β)

α

α+ β
−

α

α+ β
e−t(α+β)

β

α+ β
−

β

α+ β
e−t(α+β)

α

α+ β
+

β

α+ β
e−t(α+β)


,

t ∈ R+.

∗Please refer to MH3110 - Ordinary Differential Equations for more on first order linear systems of differential equations. MH3512 AY19-20
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"371Proof

We will compute the matrix exponential etQ by the diagonalization technique. The matrix Q has two eigenvectorsa


1

1

 and


−α

β

 ,

with respective eigenvalues λ1 = 0 and λ2 = −α− β.b Hence it can be put in the diagonal form

Q = M ×D×M−1

as follows:

Q =


1 −α

1 β

×

λ1 0

0 λ2

×


β

α+ β

α

α+ β

−
1

α+ β

1
α+ β


.

Consequently we have

P (t) = exp(tQ) =
∑
n>0

tn

n!
Qn =

∑
n>0

tn

n!
(M ×D×M−1)n

=
∑
n>0

tn

n!
M ×Dn×M−1 = M ×

∑
n>0

tn

n!
Dn

×M−1

= M × exp(tD)×M−1

=


1 −α

1 β

×


etλ1 0

0 etλ2

×


β

α+ β

α

α+ β

−
1

α+ β

1
α+ β



MH3512 AY19-20
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=


1 −α

1 β

×


1 0

0 e−t(α+β)

×


β

α+ β

α

α+ β

−
1

α+ β

1
α+ β



=
1

α+ β


β α

β α

+ e−t(α+β)

α+ β


α −α

−β β



=



β

α+ β
+

α

α+ β
e−t(α+β)

α

α+ β
−

α

α+ β
e−t(α+β)

β

α+ β
−

β

α+ β
e−t(α+β)

α

α+ β
+

β

α+ β
e−t(α+β)


,

t > 0. �
aPlease refer to MH1201 - Linear Algebra II for more on eigenvectors, eigenvalues, and diagonalization.
bSee for example the command Eigensystem[-a,a,b,-b].

From Proposition 9.6 we obtain the probabilities

P(Xh = 0 | X0 = 0) =
β+ αe−(α+β)h

α+ β
,

P(Xh = 1 | X0 = 0) =
α

α+ β
(1− e−(α+β)h),

P(Xh = 0 | X0 = 1) =
β

α+ β
(1− e−h(α+β)h),

P(Xh = 1 | X0 = 1) =
α+ βe−(α+β)h

α+ β
, h ∈ R+.

MH3512 AY19-20
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"373In other words, (9.5.3) can be rewritten as

P (h) =


1−

α

α+ β
(1− e−(α+β)h)

α

α+ β
(1− e−(α+β)h)

β

α+ β
(1− e−(α+β)h) 1−

β

α+ β
(1− e−(α+β)h)

 , h > 0, (9.5.4)

hence, since
1− e−(α+β)h ' h(α+ β), h↘ 0,

the expression (9.5.4) above recovers (9.4.9) as h↘ 0, i.e. we have

P (h) =


1− hα hα

hβ 1− hβ

+ o(h) = Id + hQ+ o(h), h↘ 0,

which recovers (9.5.1).

From these expressions we can determine the large time behavior of the continuous-time Markov chain by taking limits as t goes to
infinity:

lim
t→∞

P (t) = lim
t→∞


P(Xt = 0 | X0 = 0) P(Xt = 1 | X0 = 0)

P(Xt = 0 | X0 = 1) P(Xt = 1 | X0 = 1)

 =
1

α+ β


β α

β α

 ,

whenever α > 0 or β > 0, whereas if α = β = 0 we simply have

P (t) =


1 0

0 1

 = Id, t ∈ R+,

and the chain is constant. Note that in continuous time the limiting distribution of the two-state chain always exists (unlike in the
discrete-time case), and convergence will be faster when α+ β is larger. Hence we have

lim
t→∞

P(Xt = 1 | X0 = 0) = lim
t→∞

P(Xt = 1 | X0 = 1) =
α

α+ β MH3512 AY19-20
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lim
t→∞

P(Xt = 0 | X0 = 0) = lim
t→∞

P(Xt = 0 | X0 = 1) =
β

α+ β

and
π = [π0,π1] =

 β

α+ β
,

α

α+ β

 =

 1/α
1/α+ 1/β

,
1/β

1/α+ 1/β


appears as a limiting distribution as t goes to infinity, provided that (α,β) 6= (0, 0). This means that whatever the starting point
X0, the probability of being at 1 after a “large” time is close to α/(α+ β), while the probability of being at 0 is close to β/(α+ β).

Next, we consider a simulation of the two-state continuous Markov chain with infinitesimal generator

Q =


−20 20

40 −40

 ,

i.e. α = 20 and β = 40. Figure 9.5 represents a sample path (xt)t∈R+ of the continuous-time chain, while Figure 9.6 represents the
sample average

yt =
1
t

w t

0
xsds, t ∈ [0, 1],

which counts the proportion of values of the chain in the state 1 . This proportion is found to converge to α/(α+ β) = 1/3, as a
consequence of the Ergodic Theorem in continuous time, see (9.6.4) below.∗

∗Download the corresponding or the that can be run here. MH3512 AY19-20


a=20; b=40;

# Number of time steps 
N=1000 

# Time horizon 
T=1.0 

# Length of time step 
h=T/N 

# Dimension of the transition matrix
dim=2 
 
# Transition matrix P = I + hQ over a small time interval 
P=matrix(c(1-a*h,a*h,b*h,1-b*h),nrow=dim,ncol=dim,byrow=TRUE)

Z=array(N+1);

for(ll in seq(1,N)) {

Z[1]=sample(dim,size=1,prob=P[2,])

# Random simulation of Z[j+1] given Z[j] 
for (j in seq(1,N)) Z[j+1]=sample(dim,size=1,prob=P[Z[j],])

Y=array(N+1);

S=0; 

# Computation of the average over the l first steps 

for(l in seq(1,N+1)) { Z[l]=Z[l]-1;  S=S+Z[l]; Y[l]=S/l; }

X=array(N+1); for(l in seq(1,N+1)) { X[l]=(l-1)*T/N; }

par(mfrow=c(2,1))

plot(X,Z,type="o",xlab="",ylab="",xlim=c(0,T),yaxt="n",xaxt="n",xaxs="i",col="black",main="",pch=20,cex=0.4,bty="n")

axis(1,pos=1,at=seq(0,T,T/10),outer=TRUE,padj=-4,tcl=0.5) 
axis(1,pos=0,at=seq(0,T,T/10),outer=TRUE) 
axis(2,las=2,at=0:1)

plot(X,Y,type="l",yaxt="n",xaxt="n",xlim=c(0,T),xlab="",ylim=c(0,1),ylab="",xaxs="i",col="black",main="",bty="n")

segments( 0 , a/(a+b), N, a/(a+b)) 

axis(2,pos=0,at=c(0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0))

axis(1,pos=0,at=seq(0,T,T/10),outer=TRUE) 

readline(prompt = "Pause. Press <Enter> to continue...") 

} 

dev.off() 


{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "from IPython.display import HTML\n",
    "\n",
    "HTML('''<script>\n",
    "code_show=true; \n",
    "function code_toggle() {\n",
    " if (code_show){\n",
    " $('div.input').hide();\n",
    " } else {\n",
    " $('div.input').show();\n",
    " }\n",
    " code_show = !code_show\n",
    "} \n",
    "$( document ).ready(code_toggle);\n",
    "</script>\n",
    "<form action=\"javascript:code_toggle()\"><input type=\"submit\" value=\"Click here to toggle on/off the raw code.\"></form>''')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "from pylab import *\n",
    "import numpy as np\n",
    "import random as rm\n",
    "import matplotlib.pyplot as plt \n",
    "%matplotlib notebook\n",
    "from ipywidgets import Select,interactive,Dropdown\n",
    "from IPython.display import display\n",
    "\n",
    "# Number of time steps \n",
    "N=1000 \n",
    "\n",
    "# Time horizon \n",
    "T=1.0 \n",
    "\n",
    "# Length of time step \n",
    "h=T/N \n",
    "\n",
    "X = np.empty(N)\n",
    "Y = np.empty(N, dtype=int)\n",
    "Z = np.empty(N)\n",
    "\n",
    "for i in range(0,N): X[i]=i*h\n",
    "    \n",
    "ff, axarr = plt.subplots(2, sharex=True,figsize=(12,10))\n",
    "\n",
    "def path(a=20,b=40):\n",
    "    global X,Y,Z\n",
    "    P = [[1-a*h,a*h],[b*h,1-b*h]]\n",
    "    Y[0] = rm.choice([0,1])\n",
    "    S=Y[0]\n",
    "    Z[0]=S\n",
    "    for i in range(1,N):\n",
    "        Y[i] = np.random.choice([0,1],p=P[Y[i-1]])\n",
    "        S +=Y[i]\n",
    "        Z[i]=S/(i+1)\n",
    "        i += 1\n",
    "    axarr[0].clear()\n",
    "    axarr[1].clear()\n",
    "    axarr[0].plot(X,Y,marker='.',markersize = 10)\n",
    "    axarr[0].set_title('Chain samples')\n",
    "    axarr[1].set_title('Proportion of samples at state 1')\n",
    "    plt.ylim((0,1))\n",
    "    axarr[1].axhline(y=a/(a+b),xmin=0,xmax=N,c=\"purple\",linewidth=2,zorder=0)\n",
    "    axarr[1].plot(X,Z)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "interactive(path, a=(0.0, 100, 5), b=(0.0, 100, 5))"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.1"
  },
  "widgets": {
   "state": {
    "01556756cc1f41ec9923fc15faf6ae99": {
     "views": []
    },
    "04194d9bda1746f18f59cf3af0470203": {
     "views": []
    },
    "2b3cf09e92914c82a8c871ebe54af71b": {
     "views": []
    },
    "69ff395470714add932ba50860e564f1": {
     "views": [
      {
       "cell_index": 2
      }
     ]
    },
    "853668b336ad445ab101a690004c21c0": {
     "views": []
    },
    "ba8da3ee01b442748dcd32e8a0a5044b": {
     "views": []
    }
   },
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}


http://jupyter.org/try
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Figure 9.5: Sample path of a continuous-time two-state chain with α = 20 and β = 40.
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Figure 9.6: The proportion of process values in the state 1 converges to 1/3 = α/(α+ β).
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"3769.6 Limiting and Stationary Distributions
A probability distribution π = (πi)i∈S is said to be stationary for P (t) if it satisfies the equation

πP (t) = π, t ∈ R+.

In the next proposition we show that the notion of stationary distribution admits a simpler characterization.
Proposition 9.7

The probability distribution π = (πi)i∈S is stationary if and only if it satisfies the equation

πQ = 0.

Proof

Assuming that πQ = 0, we have

πP (t) = π exp(tQ) = π
∑
n>0

tn

n!
Qn

= π

Id +
∑
n>1

tn

n!
Qn


= π+

∑
n>1

tn

n!
πQn

= π,

since πQn = πQQn−1 = 0, n > 1. Conversely, the relation π = πP (t) shows, by differentiation at t = 0, that

0 = πP ′(0) = πQ.

�

When S = {0, 1, . . . ,N} and the generator Q has the form (9.4.2) the relation πQ = 0 reads

π0λ0,j + π1λ1,j + · · ·+ πNλN ,j = 0, j = 0, 1, . . . ,N , MH3512 AY19-20



"377i.e.,
N∑
i=0
i 6=j

πiλj,i = −πjλj,j, j = 0, 1, . . . ,N ,

hence from (9.4.3) we find the balance condition
N∑
i=0
i6=j

πiλi,j =
N∑
k=0
k 6=j

πjλj,k,

which can be interpreted by stating the equality between incoming and outgoing “flows” into and from state j are equal for all
j = 0, 1, . . . ,N .

iπi

iπi

iπi

jπj

k

k

k

λi,j

λi,j

λi,j

λj,k

λj,k

λj,k

Figure 9.7: Global balance condition (continuous time).

Next is the continuous-time analog of Proposition 7.7 in Section 7.2.
Proposition 9.8

Consider a continuous-time Markov chain (Xt)t∈R+ on a finite state space, which admits a limiting distribution given by

πj := lim
t→∞

P(Xt = j | X0 = i) = lim
t→∞

Pi,j(t), j ∈ S, (9.6.1)

independent of the initial state i ∈ S. Then we have
πQ = 0, (9.6.2)

i.e. π is a stationary distribution for the chain (Xt)t∈R+.
MH3512 AY19-20
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Taking S = {0, 1, . . . ,N} we note that by (9.6.1) since the limiting distribution is independent of the initial state it satisfies

lim
t→∞

P (t) =


lim
t→∞

P0,0(t) · · · lim
t→∞

P0,N(t)

...
. . .

...
lim
t→∞

PN ,0(t) · · · lim
t→∞

PN ,N(t)



=


π0 π1 · · · πN
...

...
. . .

...
π0 π1 · · · πN

 =


π
...
π

 ,

where π is the row vector
π = [π0,π1, . . . ,πn].

By the forward Kolmogorov equation (9.4.4) and (9.6.1) we find that the limit of P ′(t) exists as t→∞ since

lim
t→∞

P ′(t) = lim
t→∞

P (t)Q =


π
...
π

Q.

On the other hand, since P ′(t) converges as t→∞ we should have

lim
t→∞

P ′(t) = 0,

for the integral
P (t) = P (0) +

w t

0
P ′(s)ds (9.6.3)

to converge as t→∞. This shows that 
πQ
...
πQ

 =


π
...
π

Q = 0

MH3512 AY19-20



"379by (9.4.4), hence we have πQ = 0, or
∑
i∈S

πiλi,j = 0, j ∈ S. �

Equation (9.6.2) is actually equivalent to
π = π(Id + hQ), h > 0,

which yields the stationary distribution of a discrete-time Markov chain with transition matrix P (h) = Id + hQ+ o(h) on “small”
discrete intervals of length h↘ 0.

Proposition 9.8 admits the following partial converse. More generally it can be shown, cf. Corollary 6.2 of [Lal13], that an irreducible
continuous-time Markov chain admits its stationary distribution π as limiting distribution, similarly to the discrete-time Theorem 7.8,
cf. also Proposition 1.1 page 9 of [Sig14] in the positive recurrent case.

Proposition 9.9

Consider an irreducible, continuous-time Markov chain (Xt)t∈R+ on a finite state space, with stationary distribution π, i.e.

πQ = 0,

and assume that the matrix Q is diagonalizable. Then (Xt)t∈R+ admits π as limiting distribution, i.e.

lim
t→∞

Pi,j(t) = lim
t→∞

P(Xt = j | X0 = i) = πj, j ∈ S,

which is independent of the initial state i ∈ S.

Proof

By e.g. Theorem 2.1 in Chapter 10 of [KT81], since the chain is irreducible, λ1 = 0 is an eigenvalue of Q with multiplicity one and
eigenvector u(1) = (1, 1, . . . , 1). In addition, the remaining eigenvectors u(2), . . . ,u(n) ∈ Rn with eigenvalues λ2, . . . ,λn are
orthogonal to the invariant (or stationary) distribution [π1,π2, . . . ,πn] of (Xt)t∈R+ as we have λk〈u(k),π〉Rn = 〈Qu(k),π〉Rn =

〈u(k),Q>π〉Rn = π>Qu(k) = 0, k = 2, . . . ,n. Hence by diagonalization we have Q = M−1DM where the matrices M and

MH3512 AY19-20



"380M−1 take the form

M =



π1 · · · πn
M2,1 · · · M2,n
...

. . .
...

Mn,1 · · · Mn,n

 and M−1 =



1 u
(2)
1 · · · u(n)

1

1 u
(2)
2 · · · u(n)

2
...

...
. . .

...

1 u(2)
n · · · u(n)

n


,

and D is the diagonal matrix D = diag(λ1,λ2, . . . ,λn). This allows us to compute the transition probabilities of (Xt)t∈R+ as

Pi,j(t) = P(Xt = j | X0 = i) = [exp(tQ)]i,j = [M−1 exp(tD)M ]i,j

where exp(tD) is the diagonal matrix
exp(tD) = diag(1, etλ2, . . . , etλn),

and the eigenvalues λ2, . . . ,λn have to be strictly negative, hence we have

lim
t→∞

[P(Xt = j | X0 = i)]16i,j6n = lim
t→∞

[M−1 exp(tD)M ]16i,j6n

=



1 u
(2)
1 · · · u(n)

1

1 u
(2)
2 · · · u(n)

2
...

...
. . .

...

1 u(2)
n · · · u(n)

n





1 0 · · · 0
0 0 · · · 0
...
...
. . .

...
0 0 · · · 0





π1 · · · πn
M2,1 · · · M2,n
...

. . .
...

Mn,1 · · · Mn,n



=



1 0 · · · 0
1 0 · · · 0
...
...
. . .

...
1 0 · · · 0





π1 · · · πn
M2,1 · · · M2,n
...

. . .
...

Mn,1 · · · Mn,n



=



π1 · · · πn
π1 · · · πn
...
. . .

...
π1 · · · πn

 .

�

The discrete-time Ergodic Theorem 7.12 also admits a continuous-time version with a similar proof, stating that if the chain (Xt)t∈R+MH3512 AY19-20



"381is irreducible then the sample average of the number of visits to state i converges almost surely to πi, i.e.,

lim
t→∞

1
t

w t

0
1{Xt=i}dt = πi, i ∈ S. (9.6.4)

Examples

i) Two-state Markov chain.

Consider the two-state Markov chain with infinitesimal generator

Q =


−α α

β −β

 ,

the limiting distribution solves πQ = 0, i.e. 
0 = −απ0 + βπ1

0 = απ0− βπ1,
with π0 + π1 = 1, i.e.

π = [π0,π1] =

 β

α+ β
,

α

α+ β

 . (9.6.5)

ii) Birth and death process on N.

Next, consider the birth and death process on N with infinitesimal generator

Q = [ λi,j ]i,j∈N
=



−λ0 λ0 0 0 0 · · ·
µ1 −λ1− µ1 λ1 0 0 · · ·
0 µ2 −λ2− µ2 λ2 0 · · ·
0 0 µ3 −λ3− µ3 λ3 · · ·
...

...
...

. . .
. . .

. . .

...
...

...
...

. . .
. . .


,

MH3512 AY19-20



"382the stationary distribution solves πQ = 0, i.e.

0 = −λ0π0 + µ1π1

0 = λ0π0− (λ1 + µ1)π1 + µ2π2

0 = λ1π1− (λ2 + µ2)π2 + µ3π3
...

0 = λj−1πj−1− (λj + µj)πj + µj+1πj+1,
...

i.e. 

π1 =
λ0

µ1
π0

π2 = −
λ0

µ2
π0 +

λ1 + µ1

µ2
π1 = −

λ0

µ2
π0 +

λ1 + µ1

µ2

λ0

µ1
π0 =

λ1

µ2

λ0

µ1
π0

π3 = −
λ1

µ3
π1 +

λ2 + µ2

µ3
π2 = −

λ1

µ3

λ0

µ1
π0 +

λ2 + µ2

µ3

λ1

µ2

λ0

µ1
π0 =

λ2

µ3

λ1

µ2

λ0

µ1
π0

...

πj+1 =
λj · · ·λ0

µj+1 · · ·µ1
π0.

...

Using the convention

λj−1 · · ·λ0 =
j−1∏
l=0

λl = 1 and µj · · ·µ1 =
j∏
l=1
µl = 1

in the case j = 0, we have

1 =
∑
j>0

πj = π0 + π0
∑
j>0

λj · · ·λ0

µj+1 · · ·µ1
= π0 + π0

∑
j>1

λj−1 · · ·λ0

µj · · ·µ1 MH3512 AY19-20
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= π0

∑
i>0

λ0 · · ·λi−1

µ1 · · ·µi
,

hence
π0 =

1
∑
i>0

λ0 · · ·λi−1

µ1 · · ·µi

,

and
πj =

λ0 · · ·λj−1

µ1 · · ·µj
∑
i>0

λ0 · · ·λi−1

µ1 · · ·µi

, j ∈ N.

When λi = λ, i ∈ N, and µi = µ, i > 1, this gives

πj =
λj

µj
∑
i>0

(λ/µ)i
=

1−
λ

µ

 λ
µ

j , j ∈ N.

provided that λ < µ, hence in this case the stationary distribution is the geometric distribution with parameter λ/µ, otherwise the
stationary distribution does not exist.

iii) Birth and death process on S = {0, 1, . . . ,N}.
MH3512 AY19-20



"384The birth and death process on S = {0, 1, . . . ,N} has the infinitesimal generator

Q = [ λi,j ]06i,j6N =



−λ0 λ0 0 · · · · · · 0 0 0 0
µ1 −λ1− µ1 λ1 · · · · · · 0 0 0 0

0
. . .

. . .
. . .

...
... 0 0 0

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

. . .
. . .

. . .
...

...

0 0 0
...

...
. . .

. . .
. . . 0

0 0 0 · · · · · · 0 µN−1 −λN−1− µN−1 λN−1
0 0 0 · · · · · · 0 0 µN −µN



,

we can apply (1.6.6) with λj = 0, j > N , and µj = 0, j > N + 1, which yields

πj =
λj−1 · · ·λ0

µj · · ·µ1
N∑
i=0

λi−1 · · ·λ0

µi · · ·µ1

, j ∈ {0, 1, . . . ,N},

and coincides with (9.6.5) when N = 1.

When λi = λ, i ∈ N, and µi = µ, i > 1, this gives

πj =
1− λ/µ

1− (λ/µ)N+1

λ
µ

j , j = 0, 1, . . . ,N ,

which is a truncated geometric distribution since πj = 0 for all j > N and any λ,µ > 0. MH3512 AY19-20



"3859.7 The Discrete-Time Embedded Chain

Consider the sequence (Tn)n∈N the sequence of jump times of the continuous-time Markov process (Xt)t∈R+, defined recursively by
T0 = 0, then

T1 = inf{t > 0 : Xt 6= X0},
and

Tn+1 = inf{t > Tn : Xt 6= XTn}, n ∈ N.
The embedded chain of (Xt)t∈R+ is the discrete-time Markov chain (Zn)n∈N defined by Z0 = X0 and

Zn := XTn, n > 1.

The next Figure 9.8 shows the graph of the embedded chain of a birth and death process.∗
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Figure 9.8: Birth and death process (Xt)t∈R+ with its embedded chain (Zn)n∈N.

The results of Chapters 2-8 can now be applied to the discrete-time embedded chain. The next Figure 9.9 represents the discrete-time
embedded chain associated to the path of Figure 9.8, in which we have Z0 = 0, Z1 = 1, Z2 = 2, Z3 = 3, Z4 = 4, Z5 = 3, Z6 = 4,
Z7 = 3, ...

∗Download the corresponding or the that can be run here. MH3512 AY19-20


library(tcltk) 

# Number of time steps 
N=1000 

# Time horizon 
T=1.0 

# Length of time step 
h=T/N 

# Dimension of the transition matrix
dim=5 
 
# Definition of the identity matrix 
I=matrix(c(
1,0,0,0,0, 
0,1,0,0,0, 
0,0,1,0,0, 
0,0,0,1,0, 
0,0,0,0,1 
),nrow=dim,ncol=dim,byrow=TRUE)

# Definition of the infinitesimal generator 
Q=matrix(c(
-40,40,0,0,0, 
20,-40,20,0,0, 
0,10,-30,20,0, 
0,0,20,-60,40,
0,0,0,20,-20 
),nrow=dim,ncol=dim,byrow=TRUE)

# Definition of the transition matrix
P=I+h*Q 

A=array(2);
B=array(2);
C=array(2);

Y=array(N+1);

X=array(N+1); for(l in seq(1,N+1)) { X[l]=l-1; }

B[1]=2
B[2]=2

split.screen(c(1,1)) 
 
A[1]=0;A[2]=h;

screen(1,FALSE) 
plot(A,B-1,type="o", xlim=c(0,T),ylim=c(0,4),xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i",col="red", main = "Birth and death process - embedded chain",cex=1.2,bty="n")

for(l in seq(0:N))
{
A[1]=(l-1)*h;
A[2]=A[1]+h;
B[1]=B[2];
B[2]=sample(dim,size=1,prob=P[B[1],])

screen(1,FALSE)

plot(A,B-1,type="o", xlim=c(0,T),ylim=c(0,4),xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i",col="black", main = "Birth and death process - embedded chain",cex=0.4,bty="n")

if (B[2]!=B[1]) {alarm();
screen(1,FALSE)
C[1]=B[2];C[2]=B[2]
plot(A,C-1,type="o", xlim=c(0,T),ylim=c(0,4),xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i",col="red", main = "Birth and death process - embedded chain",cex=1.2,bty="n")
} 

axis(2,pos=0,at=seq(0,4,1)) 

axis(1,pos=0,at=seq(0,T,T/10),outer=TRUE) 

Sys.sleep(0.02) 

} 




{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "%matplotlib notebook\n",
    "from pylab import *\n",
    "import time\n",
    "import numpy as np\n",
    "import random as rm\n",
    "import matplotlib \n",
    "import matplotlib.pyplot as plt \n",
    "\n",
    "# Number of time steps \n",
    "N=500 \n",
    "\n",
    "# Time horizon \n",
    "T=1.0 \n",
    "\n",
    "# Length of time step \n",
    "h=T/N \n",
    "\n",
    "I = [[1,0,0,0,0],\n",
    "    [0,1,0,0,0],\n",
    "    [0,0,1,0,0],\n",
    "    [0,0,0,1,0],\n",
    "    [0,0,0,0,1]]\n",
    "\n",
    "Q = [[-40.0,40.0,0.0,0.0,0.0],\n",
    "    [20.0,-40.0,20.0,0.0,0.0],\n",
    "    [0.0,10.0,-30.0,20.0,0.0],\n",
    "    [0.0,0.0,20.0,-60.0,40.0],\n",
    "    [0.0,0.0,0.0,20.0,-20.0]]\n",
    "\n",
    "# Definition of the transition matrix\n",
    "P=I+h*np.array(Q) \n",
    "\n",
    "A = np.empty(2)\n",
    "B = np.empty(2, dtype=int)\n",
    "C = np.empty(2, dtype=int)\n",
    "\n",
    "X = np.empty(N)\n",
    "Y = np.empty(N, dtype=int)\n",
    "\n",
    "for i in range(0,N): X[i]=i\n",
    "\n",
    "B[0]=2\n",
    "B[1]=2\n",
    "\n",
    "def path(axarr):\n",
    "    global l,A,B\n",
    "    A[0]=(l-1)*h;\n",
    "    A[1]=A[0]+h;\n",
    "    B[0]=B[1];\n",
    "    B[1]=0;\n",
    "    B[1]=np.random.choice([0,1,2,3,4],p=P[B[0]])\n",
    "    axarr.plot(A,B,marker='.',markersize = 4,color=\"blue\")\n",
    "    if (B[1]!=B[0]):\n",
    "        C[0]=B[1];C[1]=B[1]\n",
    "        axarr.plot(A,C,marker='o',markersize = 8,color=\"red\")\n",
    "    matplotlib.pyplot.yticks([0,1,2,3,4])\n",
    "    matplotlib.pyplot.xlim((0,1))\n",
    "    l=l+1\n",
    "    ff.canvas.draw()\n",
    "                           \n",
    "ff, axarr = plt.subplots(1, sharex=True,figsize=(12,10))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "l=0\n",
    "for f in range(N):\n",
    "    path(axarr)\n",
    "    time.sleep(0.0)"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.1"
  },
  "widgets": {
   "state": {},
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}


http://jupyter.org/try
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Figure 9.9: Discrete-time embedded chain (Zn)n∈N based on the path of Figure 9.8.

For example, if λ0 > 0 and µ0 > 0, the embedded chain of the two-state continuous-time Markov chain has the transition matrix

P =

 0 1
1 0

 , (9.7.1)

which switches permanently between the states 0 and 1 .

In case one of the states {0, 1} is absorbing the transition matrix becomes

P =



 1 0
1 0

 , λ0 = 0, µ1 > 0,

 0 1
0 1

 , λ0 > 0, µ1 = 0,

 1 0
0 1

 , λ0 = 0, µ1 = 0.
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"387Birth and death embedded chain

More generally, consider now the birth and death process with infinitesimal generator

Q = [ λi,j ]06i,j6N =



−λ0 λ0 0 · · · · · · 0 0 0 0
µ1 −λ1− µ1 λ1 · · · · · · 0 0 0 0

0
. . .

. . .
. . .

...
... 0 0 0

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

. . .
. . .

. . .
...

...

0 0 0
...

...
. . .

. . .
. . . 0

0 0 0 · · · · · · 0 µN−1 −λN−1− µN−1 λN−1
0 0 0 · · · · · · 0 0 µN −µN



.

Given that a transition occurs from state i in a “short” time interval [t, t+ h], the probability that the chain switches to state
�� ��i+ 1

is given by

P(Xt+h = i+ 1 | Xt = i and Xt+h−Xt 6= 0) =
P(Xt+h = i+ 1 and Xt = i)

P(Xt+h−Xt 6= 0 and Xt = i)

=
P(Xt+h = i+ 1 and Xt = i)

P(Xt+h−Xt 6= 0 | Xt = i)P(Xt = i)

=
P(Xt+h = i+ 1 | Xt = i)

P(Xt+h−Xt 6= 0 | Xt = i)

=
P(Xt+h−Xt = 1 | Xt = i)

P(Xt+h−Xt 6= 0 | Xt = i)

'
λih

λih+ µih

=
λi

λi + µi
, h↘ 0, i ∈ S,
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"388where we applied (9.4.8), hence the transition matrix of the embedded chain satisfies

Pi,i+1 = lim
h↘0

P(Xt+h = i+ 1 | Xt = i and Xt+h−Xt 6= 0) =
λi

λi + µi
, i ∈ S. (9.7.2)

This result can also be obtained from (1.5.9) which states that

P(τi,i+1 < τi,i−1) =
λi

λi + µi
. (9.7.3)

Similarly the probability that a given transition occurs from i to
�� ��i− 1 is

P(Xt+h = i− 1 | Xt = i and Xt+h−Xt 6= 0) =
µi

λi + µi
, h↘ 0, i ∈ S,

which can also be obtained from (1.5.9) which states that

P(τi,i−1 < τi,i+1) =
µi

λi + µi
.

Hence we have
Pi,i−1 = lim

h↘0
P(Xt+h = i− 1 | Xt = i and Xt+h−Xt 6= 0) =

µi

λi + µi
, i ∈ S,

and the embedded chain (Zn)n∈N has the transition matrix

P = [ Pi,j ]i,j∈S
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=



0 1 0 0 · · · 0 0 0 0
µ1

λ1 + µ1
0

λ1

λ1 + µ1
0 · · · 0 0 0 0

0
. . .

. . .
. . .

...
... 0 0 0

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

. . .
. . .

. . .
...

...

0 0 0
...

...
. . .

. . .
. . . 0

0 0 0 0 · · · 0
µN−1

λN−1 + µN−1
0

λN−1

λN−1 + µN−1
0 0 0 0 · · · 0 0 1 0



,

provided that λ0 > 0 and µN > 0. When N = 1, this coincides with (9.7.1). In case λ0 = µN = 0, states 0 and N are both
absorbing since the birth rate starting from 0 and the death rate starting from N are both 0, hence the transition matrix of the
embedded chain can be written as

P = [ Pi,j ]06i,j6N

=



1 0 0 0 · · · 0 0 0 0
µ1

λ1 + µ1
0

λ1

λ1 + µ1
0 · · · 0 0 0 0

0
. . .

. . .
. . .

...
... 0 0 0

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

. . .
. . .

. . .
...

...

0 0 0
...

...
. . .

. . .
. . . 0

0 0 0 0 · · · 0
µN−1

λN−1 + µN−1
0

λN−1

λN−1 + µN−1
0 0 0 0 · · · 0 0 0 1



,
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"390which is the transition matrix of a gambling type process on {0, 1, . . . ,N}. When N = 1 this yields P = Id, which is consistent
with the fact that a two-state Markov chain with two absorbing states is constant.

For example, for a continuous-time chain with infinitesimal generator

Q = [ λi,j ]06i,j64 =



−10 10 0 0 0
10 −20 10 0 0
0 10 −30 20 0
0 0 10 −40 30
0 0 0 20 −20


,

the transition matrix of the embedded chain is

P = [ Pi,j ]06i,j64 =



0 1 0 0 0
1/2 0 1/2 0 0
0 1/3 0 2/3 0
0 0 1/4 0 3/4
0 0 0 1 0


.

In case the states 0 and 4 are absorbing, i.e.

Q = [ λi,j ]06i,j64 =



0 0 0 0 0
10 −20 10 0 0
0 10 −30 20 0
0 0 10 −40 30
0 0 0 0 0


,

the transition matrix of the embedded chain becomes

P = [ Pi,j ]06i,j64 =



1 0 0 0 0
1/2 0 1/2 0 0
0 1/3 0 2/3 0
0 0 1/4 0 3/4
0 0 0 0 1


.

More generally, by (9.4.8) and (9.4.3) we could also show that the embedded chain of a continuous-time Markov chain with generatorMH3512 AY19-20



"391Q of the form (9.4.2) has the transition matrix

P = [ Pi,j ]i,j∈S

=



0 −
λ0,1

λ0,0
−
λ0,2

λ0,0
· · · · · · −

λ0,N−1

λ0,0
−
λ0,N

λ0,0

−
λ1,0

λ1,1
0 −

λ1,2

λ1,1
· · · · · · −

λ1,N−1

λ1,1
−
λ1,N

λ1,1
...

. . .
...

...
...

. . .
...

...
. . .

...
...

...
. . .

...
...

. . .
...

...
...

. . .
...

−
λN−1,0

λN−1,N−1
−

λN−1,1

λN−1,N−1
· · · · · · · · · 0 −

λN−1,N

λN−1,N−1

−
λN ,0

λN ,N
−
λN ,1

λN ,N
· · · · · · · · · −

λN ,N−1

λN ,N
0



,

provided that λi,i > 0, i = 0, 1, . . . ,N .

9.8 Mean Absorption Time and Probabilities
Absorption probabilities

The absorption probabilities of the continuous-time process (Xt)t∈R+ can be computed based on the behaviour of the embedded chain
(Zn)n∈N. In fact the continuous waiting time between two jumps has no influence on the absorption probabilities. Here we consider
only the simple example of birth and death processes, which can be easily generalized to more complex situations.

The basic idea is to perform a first step analysis on the underlying discrete-time embedded chain. Assume that state 0 is absorbing,
i.e. λ0 = 0, and let

T0 = inf{t ∈ R+ : Xt = 0}
denote the absorption time of the chain into state 0 . Let now

g0(k) = P(T0 <∞ | X0 = k), k = 0, 1, . . . ,N ,

denote the probability of absorption in 0 starting from state k ∈ {0, 1, . . . ,N}. We have the boundary condition g0(0) = 1, andMH3512 AY19-20



"392by first step analysis on the chain (Zn)n>1 we get

g0(k) =
λk

λk + µk
g0(k+ 1) +

µk

λk + µk
g0(k− 1), k = 1, 2, . . . ,N − 1.

When the rates λk = λ and µk = µ are independent of k ∈ {1, 2, . . . ,N − 1}, this equation becomes

g0(k) = pg0(k+ 1) + qg0(k− 1), k = 1, 2, . . . ,N − 1,

which is precisely Equation (2.2.6) for the gambling process with

p =
λ

λ+ µ
and q =

µ

λ+ µ
.

When λ0 = µN = 0 we have the boundary conditions

g0(0) = 1 and g0(N) = 0

since the state N becomes absorbing, and the solution becomes

g0(k) =
(µ/λ)k − (µ/λ)N

1− (µ/λ)N
, k = 0, 1, . . . ,N ,

when λ 6= µ, according to (2.2.11). When λ 6= µ, Relation (2.2.12) shows that

g0(k) =
N − k
N

= 1−
k

N
, k = 0, 1, . . . ,N .

Mean absorption time

We may still use the embedded chain (Zn)n∈N to compute the mean absorption time, using the mean inter-jump times. Here, unlike
in the case of absorption probabilities, the random time spent by the continuous-time process (Xt)t∈R+ should be taken into account
in the calculation. We consider a birth and death process on {0, 1, . . . ,N} with absorbing states 0 and N .

MH3512 AY19-20



"393Recall that the the mean time spent at state i , given that the next transition is from i to
�� ��i+ 1 , is equal to

IE[τi,i+1] =
1
λi

, i = 1, 2, . . . ,N − 1,

and the mean time spent at state i , given that the next transition is from i to
�� ��i− 1 , is equal to

IE[τi,i−1] =
1
µi

, i = 1, 2, . . . ,N − 1.

We associate a weighted graph to the Markov chain (Zn)n∈N that includes the average

IE[τi] =
1

λi + µi

of the time τi = min(τi,i−1, τi,i+1) spent in state i before the next transition, i = 1, 2, . . . ,N − 1. In the next graph, which is
drawn for N = 4, the weights are underlined:

0 1 2 3 4

1µ1/(λ1 + µ1)

1/(λ1 + µ1) 1/(λ1 + µ1)

λ1/(λ1 + µ1)

1/(λ2 + µ2)

µ2/(λ2 + µ2) λ2/(λ2 + µ2)

1/(λ2 + µ2)

µ3/(λ3 + µ3)

1/(λ3 + µ3) 1/(λ3 + µ3)

λ3/(λ3 + µ3)1

with λ0 = µ4 = 0.
Proposition 9.10

The mean absorption times
h0,N(i) = IE [T0,N | X0 = i] , i = 0, 1, . . . ,N ,

into states {0,N} starting from state i ∈ {0, 1, . . . ,N} satisfy the boundary conditions h0,N(0) = h0,N(N) = 0 the first step
analysis equation

h0,N(i) =
1

λi + µi
+

µi

λi + µi
h0,N(i− 1) +

λi

λi + µi
h0,N(i+ 1),

i = 1, 2, . . . ,N − 1.
MH3512 AY19-20



"394Proof

By first step analysis on the discrete-time embedded chain (Zn)n>1 with transition matrix

P = [ Pi,j ]i,j∈S
=



0 1 0 0 · · · 0 0 0
µ1

λ1 + µ1
0

λ1

λ1 + µ1
0 · · · 0 0 0

0
. . .

. . .
. . .

...
... 0 0

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

. . .
. . .

. . .
...

0 0 0
...

...
. . .

. . . 0

0 0 0 0 · · · 0 0
λN−1

λN−1 + µN−1
0 0 0 0 · · · 0 1 0



,

we have

h0,N(i) =
µi

λi + µi
(IE[τi] + h0,N(i− 1)) +

λi

λi + µi
(IE[τi] + h0,N(i+ 1))

=
µi

λi + µi

 1
λi + µi

+ h0,N(i− 1)
+

λi

λi + µi

 1
λi + µi

+ h0,N(i+ 1)
 ,

(9.8.1)

i = 1, 2, . . . ,N − 1. �

Note that by conditioning on the independent exponential random variables τi,i−1 and τi,i+1 we can also show that

IE[τi | τi,i−1 < τi,i+1] = IE[τi | τi,i+1 < τi,i−1] = IE[τi] =
1

λi + µi
,

i = 1, 2, . . . ,N − 1, cf. (1.7.9) in Exercise 1.4-(a), hence (9.8.1) can be rewritten as

h0,N(i) =
µi

λi + µi
(IE[τi | τi,i−1 < τi,i+1] + h0,N(i− 1))
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+

λi

λi + µi
(IE[τi | τi,i+1 < τi,i−1] + h0,N(i+ 1)) .

When the rates λi = λ and µi = µ are independent of i ∈ {1, 2, . . . ,N − 1}, this equation becomes

h0,N(i) =
1

λ+ µ
+

λ

λ+ µ
h0,N(i+ 1) +

µ

λ+ µ
h0,N(i− 1),

i = 1, 2, . . . ,N − 1, which is a modification of Equation (2.3.6), by replacing the discrete time step by the average time 1/(λ+ µ)
spent at any state. Rewriting the equation as

h0,N(i) =
1

λ+ µ
+ ph0,N(i+ 1) + qh0,N(i− 1),

i = 1, 2, . . . ,N − 1, or
(λ+ µ)h0,N(i) = 1 + p(λ+ µ)h0,N(i+ 1) + q(λ+ µ)h0,N(i− 1),

i = 1, 2, . . . ,N − 1, with
p =

λ

λ+ µ
and q =

µ

λ+ µ
,

we find from (2.3.11) that, with r = q/p = µ/λ,

(λ+ µ)h0,N(k) =
1

q− p

k−N 1− rk

1− rN

 ,

i.e.

h0,N(k) =
1

µ− λ

k−N 1− (µ/λ)k

1− (µ/λ)N

 , k = 0, 1, . . . ,N , (9.8.2)

when λ 6= µ. In the limit λ→ µ we find by (2.3.17) that

h0,N(k) =
1

2µ
k(N − k), k = 0, 1, . . . ,N .
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"396This solution is similar to that of the gambling problem with draw Exercise 2.1 as we multiply the solution of the gambling problem in
the fair case by the average time 1/(2µ) spent in any state in {1, 2, . . . ,N − 1}.

The mean absorption time for the embedded chain (Zn)n∈N can be recovered by dividing (9.8.2) by the mean time IE[τi] = 1/(λ+ µ)
between two jumps, as

λ+ µ

µ− λ

k−N 1− (µ/λ)k

1− (µ/λ)N

 , k = 0, 1, . . . ,N , (9.8.3)

which coincides with (2.3.11) in the non-symmetric case with p = λ/(λ+ µ) and p = µ/(λ+ µ), and recovers (2.3.17), i.e.

k(N − k), k = 0, 1, . . . ,N ,

in the symmetric case λ = µ.
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"397In Table 9.1 we gather some frequent questions and their corresponding solution methods.

Table 9.1: Summary of computing methods.

How to compute Method

the infinitesimal generator Q = (λi,j)i,j∈S Q =
dP (t)

dt |t=0
= P ′(0).

the semigroup (P (t))t∈R+ P (t) = exp(tQ), t ∈ R+,
P (h) = Id + hQ+ o(h), h↘ 0.

the stationary distribution π solve∗πQ = 0 for π.

the probability distribution of the time τi,j spent in i→ j exponential distribution (λi,j).

the probability distribution of the time τi spent at state i exponential distribution
∑
l 6=i
λi,l

.

lim
t→∞

exp

t
 −α α

β −β





β

α+ β

α

α+ β

β

α+ β

α

α+ β



hitting probabilities solve†g = Pg for the embedded chain.

mean hitting times use the embedded chain
with weighted links
using mean inter-jump times.
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"398Exercises
Exercise 9.1 A workshop has five machines and one repairman. Each machine functions until it fails at an exponentially distributed
random time with rate µ = 0.20 per hour. On the other hand, it takes a exponentially distributed random time with (rate) λ = 0.50
per hour to repair a given machine. We assume that the machines behave independently of one another, and that

(i) up to five machines can operate at any given time,

(ii) at most one can be under repair at any time.

Compute the proportion of time the repairman is idle in the long run.

Exercise 9.2 Two types of consultations occur at a database according to two independent Poisson processes: “read” consultations
arrive at the rate (or intensity) λR and “write” consultations arrive at the rate (or intensity) λW .

a) What is the probability that the time interval between two consecutive “read” consultations is larger than t > 0?

b) What is the probability that during the time interval [0, t], at most three “write” consultations arrive?

c) What is the probability that the next arriving consultation is a “read” consultation?

d) Determine the distribution of the number of arrived “read” consultations during [0, t], given that in this interval a total number of
n consultations occurred.

Exercise 9.3 Consider two machines, operating simultaneously and independently, where both machines have an exponentially distributed
time to failure with mean 1/µ. There is a single repair facility, and the repair times are exponentially distributed with rate λ.

a) In the long run, what is the probability that no machines are operating when λ = µ = 1?

b) We now assume that at most one machine can operate at any time. Namely, while one machine is working, the other one may be
either under repair or already fixed and waiting to take over. How does this modify your answer to question (a)?

Exercise 9.4 Passengers arrive at a cable car station according to a Poisson process with intensity λ > 0. Each car contains at most 4
passengers, and a cable car arrives immediately and leaves with 4 passengers as soon as there are at least 4 people in the queue. We let
(Xt)t∈R+ denote the number of passengers in the waiting queue at time t > 0.

∗Remember that the values of π(k) have to add up to 1.
†Be sure to write only the relevant rows of the system under the appropriate boundary conditions. MH3512 AY19-20



"399a) Explain why (Xt)t∈R+ is a continuous-time Markov chain with state space S = {0, 1, 2, 3}, and give its matrix infinitesimal
generator Q.

b) Compute the limiting distribution π = [π0,π1,π2,π3] of (Xt)t∈R+.

c) Compute the mean time between two departures of cable cars.

Exercise 9.5 ([MT15]). We consider a stock whose prices can only belong to the following five ticks:

$10.01; $10.02; $10.03; $10.04; $10.05,

numbered k = 1, 2, 3, 4, 5.

At time t, the order book for this stock contains exactly N (k)
t sell orders at the price tick nok, k = 1, 2, 3, 4, 5, where (N (k)

t )t∈R+ are
independent Poisson processes with same intensity λ > 0. In addition,

• any sell order can be cancelled after an exponentially distributed random time with parameter µ > 0,

• buy market orders are submitted according to another Poisson process with intensity θ > 0, and are filled instantly at the lowest
order price present in the book.

Order cancellations can occur as a result of various trading algorithms such as, e.g., “spoofing”, “layering”, or “front running”.

a) Show that the total number of sell orders Lt in the order book at time t forms a continuous-time Markov chain, and write down its
infinitesimal generator Q.

b) It is estimated that 95% percent of high-frequency trader orders are later cancelled. What relation does this imply between µ and
λ?

Exercise 9.6 The size of a fracture in a rock formation is modeled by a continuous-time pure birth process with parameters

λk = (1 + k)ρ, k > 1,

i.e. the growth rate of the fracture is a power of 1 + k, where k is the current fracture length. Show that when ρ > 1, the mean time
for the fracture length to grow to infinity is finite. Conclude that the time to failure of the rock formation is almost-surely finite.∗

∗Recall that a finite-valued random variable may have an infinite mean. MH3512 AY19-20



"400Exercise 9.7 Customers arrive at a processing station according to a Poisson process with rate λ = 0.1, i.e. on average one customer
per ten minutes. Processing of customer queries starts as soon as the third customer enters the queue.

a) Compute the expected time until the start of the customer service.

b) Compute the probability that no customer service occurs within the first hour.

Exercise 9.8 Suppose that customers arrive at a facility according to a Poisson process having rate λ = 3. Let Nt be the number of
customers that have arrived up to time t and let Tn be the arrival time of the nth customer, n = 1, 2, . . . Determine the following
(conditional) probabilities and (conditional) expectations, where 0 < t1 < t2 < t3 < t4.

a) P(Nt3 = 5 | Nt1 = 1).

b) IE[Nt1Nt4(Nt3 −Nt2)].

c) IE[Nt2 | T2 > t1].

Exercise 9.9 Let (Xt)t∈R+ be a birth and death process on {0, 1, 2} with birth and death parameters λ0 = 2α, λ1 = α, λ2 = 0,
and µ0 = 0, µ1 = β, µ2 = 2β. Determine the stationary distribution of (Xt)t∈R+.

Exercise 9.10 Let (Xt)t∈R+ be a birth and death process on 0, 1, . . . ,N with birth and death parameters λn = α(N − n) and
µn = βn, respectively. Determine the stationary distribution of (Xt)t∈R+.

Exercise 9.11 Consider a pure birth process with birth rates λ0 = 1, λ1 = 3, λ2 = 2, λ3 = 5. Compute P0,n(t) for n = 0, 1, 2, 3.

Exercise 9.12 Consider a pure birth process (Xt)t∈R+ started at X0 = 0, and let Tk denote the time until the kth birth. Show that

P(T1 > t and T2 > t+ s) = P0,0(t)(P0,0(s) + P0,1(s)).

Determine the joint probability density function of (T1, T2), and then the joint density of (τ0, τ1) := (T1, T2− T1).

Exercise 9.13 Cars pass a certain street location with identical speeds, according to a Poisson process with rate λ > 0. A woman at
that location needs T units of time to cross the street, i.e. she waits until it appears that no car will cross that location within the next
T time units. MH3512 AY19-20
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b) Find her expected waiting time.

c) Find the total average time it takes to cross the street.

d) Assume that, due to other factors, the crossing time in the absence of cars is an independent exponentially distributed random
variable with parameter µ > 0. Find the total average time it takes to cross the street in this case.

Exercise 9.14 A machine is maintained at random times, such that the inter-service times (τk)k>0 are i.i.d. with exponential distribution
of parameter µ > 0. The machine breaks down if it has not received maintenance for more than T units of time. After breaking down
it is automatically repaired.

a) Compute the probability that the machine breaks down before its first maintenance after it is started.

b) Find the expected time until the machine breaks down.

c) Assuming that the repair time is exponentially distributed with parameter λ > 0, find the proportion of time the machine is working.

Exercise 9.15 A system consists of two machines and two repairmen. Each machine can work until failure at an exponentially distributed
random time with parameter 0.2. A failed machine can be repaired only by one repairman, within an exponentially distributed random
time with parameter 0.25. We model the number Xt of working machines at time t ∈ R+ as a continuous-time Markov process.

a) Complete the missing entries in the matrix

Q =


2 0.5 0

0.2 2 2
0 2 −0.4


of its generator.

b) Calculate the long-run probability distribution [π0,π1,π2] of Xt.

c) Compute the average number of working machines in the long run.

d) Given that a working machine can produce 100 units every hour, how many units can the sytem produce per hour in the long run?MH3512 AY19-20
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time by a factor 2. Complete the missing entries in the matrix

Q =


−0.5 2 2

2 −0.7 2
2 2 −0.4


of the modified generator and calculate the long run probability distribution [π0,π1,π2] for Xt.

Exercise 9.16 Let X1(t) and X2(t) be two independent two-state Markov chains on {0, 1} and having the same infinitesimal matrix
 −λ λ
µ −µ

 .

Argue that Z(t) := X1(t) +X2(t) is a Markov chain on the state space S = {0, 1, 2} and determine the transition semigroup P (t)
of Z(t).

Exercise 9.17 Consider a two-state discrete-time Markov chain (ξn)n>0 on {0, 1} with transition matrix
 0 1

1−α α

 . (9.8.4)

Let (Nt)t∈R+ be a Poisson process with parameter λ > 0, and let the

Xt = ξNt, t ∈ R+,

i.e. (Xt)t∈R+ is a two-state birth and death process.

a) Compute the mean return time E[T r0 | X0 = 0] of Xt to state 0 , where T r0 is defined as

T r0 = inf{t > T1 : Xt = 0}

and
T1 = inf{t > 0 : Xt = 1}

is the first hitting time of state 1 . Note that the return time MH3512 AY19-20
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T r1 = inf{t > T0 : Xt = 1}

and
T0 = inf{t > 0 : Xt = 0}

is the first hitting time of state 0 . The return time T r1 to 1 starting from 1 is evaluated by switching first to state 0 before
returning to state 1 .

c) Show that (Xt)t∈R+ is a two-state birth and death process and determine its generator matrix Q in terms of α and λ.

Problem 9.18 Let (N1
t )t∈R+ and (N2

t )t∈R+ be two independent Poisson processes with intensities λ1 > 0 and λ2 > 0.
a) Show that (N1

t +N2
t )t∈R+ is a Poisson process and find its intensity.

b) Consider the difference
Mt = N1

t −N
2
t , t ∈ R+,

and that (Mt)t∈R+ has stationary independent increments.

c) Find the distribution of Mt−Ms, 0 < s < t.

d) Compute
lim
t→∞

P(|Mt| 6 c)

for any c > 0.

e) Suppose that N1
t denotes the number of clients arriving at a taxi station during the time interval [0, t], and that N2

t denotes the
number of taxis arriving at that same station during the same time interval [0, t].

How do you interpret the value of Mt depending on its sign?

How do you interpret the result of Question (d)?

Problem 9.19 We consider a birth and death process (Xt)t∈R+ on {0, 1, . . . ,N} with transition semigroup (P (t))t∈R and birth and
death rates

λn = (N − n)λ, µn = nµ, n = 0, 1, . . . ,N . MH3512 AY19-20
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a) Write down the infinitesimal generator Q of (Xt)t∈R+.

b) From the forward Kolmogorov equation P ′(t) = P (t)Q, show that for all n = 0, 1, . . . ,N we have


P ′n,0(t) = −λ0Pn,0(t) + µ1Pn,1(t),

P ′n,k(t) = λk−1Pn,k−1(t)− (λk + µk)Pn,k(t) + µk+1Pn,k+1(t),

P ′n,N(t) = λN−1Pn,N−1(t)− µNPn,N(t),

k = 1, 2, . . . ,N − 1.

c) Let

Gk(s, t) = IE
[
sXt | X0 = k

]
=

N∑
n=0

snP(Xt = n | X0 = k) =
N∑
n=0

snPk,n(t)

denote the generating function of Xt given that X0 = k ∈ {0, 1, . . . ,N}. From the result of Question (b), show that Gk(s, t)
satisfies the partial differential equation

∂Gk

∂t
(s, t) = λN(s− 1)Gk(s, t) + (µ+ (λ− µ)s− λs2)

∂Gk

∂s
(s, t), (9.8.5)

with Gk(s, 0) = sk, k = 0, 1, . . . ,N .

d) Verify that the solution of (9.8.5) is given by

Gk(s, t) =
1

(λ+ µ)N
(µ+ λs+ µ(s− 1)e−(λ+µ)t)k(µ+ λs− λ(s− 1)e−(λ+µ)t)N−k,

k = 0, 1, . . . ,N .

e) Show that

IE[Xt | X0 = k] =
k

(λ+ µ)N
(λ+ µe−(λ+µ)t)(µ+ λ)k−1(µ+ λ)N−k

MH3512 AY19-20
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+

N − k
(λ+ µ)N

(µ+ λ)k(λ− λe−(λ+µ)t)(µ+ λ)N−k−1.

f) Compute
lim
t→∞

IE[Xt | X0 = k]

and show that it does not depend on k ∈ {0, 1, . . . ,N}.

Problem 9.20 Let T1, T2, . . . be the first two jump times of a Poisson process (Nt)t∈R+ with intensity λ. Given f : R −→ R an
integrable function, show that

IE
 Nt∑
k=1

f(Ti)

 = λ
w t

0
f(s)ds. (9.8.6)

MH3512 AY19-20
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10 Discrete-Time Martingales
As mentioned in the introduction, stochastic processes can be classified into two main families, namely Markov processes on the one
hand, and martingales on the other hand. Markov processes have been our main focus of attention so far, and in this chapter we turn
to the notion of martingale. In particular we will give a precise mathematical meaning to the description of martingales stated in the
introduction, which says that when (Xn)n∈N is a martingale, the best possible estimate at time n ∈ N of the future value Xm at
time m > n is Xn itself. The main application of martingales will be to recover in an elegant way the previous results on gambling
processes of Chapter 2. Before that, let us state many recent applications of stochastic modeling are relying on the notion of martingale.
In financial mathematics for example, the notion of martingale is used to characterize the fairness and equilibrium of a market model.

10.1 Filtrations and Conditional Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
10.2 Martingales - Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
10.3 Stopping Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
10.4 Ruin Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
10.5 Mean Game Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

10.1 Filtrations and Conditional Expectations
Before dealing with martingales we need to introduce the important notion of filtration generated by a discrete-time stochastic process
(Xn)n∈N. The filtration (Fn)n∈N generated by a stochastic process (Xn)n∈N taking its values in a state space S, is the family of
σ-algebras

Fn := σ(X0,X1, . . . ,Xn), n > 0,
which denote the collections of events generated by X0,X1, . . . ,Xn. Examples of such events include

{X0 6 a0, X1 6 a1, . . . , Xn 6 an} MH3512 AY19-20



"407for a0, a1, . . . , an a given fixed sequence of real numbers. Note that we have the inclusion Fn ⊂ Fn+1, n ∈ N.

One refers to Fn as the information generated by (Xk)k∈N up to time n, and to (Fn)n∈N as the information flow generated by
(Xn)n∈N. We say that a random variable is Fn-measurable whenever F can be written as a function F = f(X0,X1, . . . ,Xn) of
(X0,X1, . . . ,Xn).

Consider for example the simple random walk

Sn := X1 +X2 + · · ·+Xn, n ∈ N,

where (Xk)k>1 is a sequence of independent, identically distributed {−1, 1} valued random variables. The filtration (or information
flow) (Fn)n∈N generated by (Sn)n∈N is given by F0 =

{
∅, Ω

}
,

F1 =
{
∅, {X1 = 1}, {X1 = −1}, Ω

}
,

and

F2 = σ
({
∅, {X1 = 1,X2 = 1}, {X1 = 1,X2 = −1}, {X1 = −1,X2 = 1},
{X1 = −1,X2 = −1}, Ω

})
.

The notation Fn is useful to represent a quantity of information available at time n, and various sub σ-algebras of Fn can be defined
such as e.g.

G2 :=
{
∅, {X1 = 1,X2 = −1} ∪ {X1 = −1,X2 = 1},
{X1 = 1,X2 = 1} ∪ {X1 = −1,X2 = −1}, Ω

}
,

which contains less information than F2, as it only tells whether the increments X1, X2 have same signs.

We now review the definition of conditional expectation, cf. also Section 1.6. Given F a random variable with finite mean the conditional
expectation IE[F | Fn] refers to

IE[F | X0,X1, . . . ,Xn] = IE[F | X0 = k0, . . . ,Xn = kn]k0=X0,...,kn=Xn,

given that X0,X1, . . . ,Xn are respectively equal to k0, k1, . . . , kn ∈ S.
MH3512 AY19-20



"408The conditional expectation IE[F | Fn] is itself a random variable that depends only on the values of X0,X1, . . . ,Xn, i.e. on the
history of the process up to time n ∈ N. It can also be interpreted as the best possible estimate of F in mean square sense, given the
values of X0,X1, . . . ,Xn.

A stochastic process (Zn)n∈N is said to be Fn-adapted if the value of Zn depends on no more than the information available up to
time n in Fn, that means, the value of Zn is some function of X0,X1, . . . ,Xn, n ∈ N.

In particular, any Fn-adapted process (Zn)n∈N satisfies

IE[Zn | Fn] = Zn, n ∈ N.

10.2 Martingales - Definition and Properties
We now turn to the definition of martingale.

Definition 10.1

An integrable,a discrete-time stochastic process (Zn)n∈N is a martingale with respect to (Fn)n∈N if (Zn)n∈N is Fn-adapted and
satisfies the property

IE[Zn+1 | Fn] = Zn, n ∈ N. (10.2.1)
aIntegrable means IE[|Zn|] <∞ for all n ∈ N.

The process (Zn)n∈N is a martingale with respect to (Fn)n∈N if, given the information Fn known up to time n, the best possible
estimate of Zn+1 is simply Zn.

Exercise. Using the tower property of conditional expectations, show that Definition 10.2.1 can be equivalently stated by saying that

IE[Mn | Fk] = Mk, 0 6 k < n.

A particular property of martingales is that their expectation is constant over time.
Proposition 10.2

Let (Zn)n∈N be a martingale. We have
IE[Zn] = IE[Z0], n ∈ N.
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From the tower property (1.6.8) we have:

IE[Zn+1] = IE[IE[Zn+1 | Fn]] = IE[Zn], n ∈ N,

hence by induction on n ∈ N we have

IE[Zn+1] = IE[Zn] = IE[Zn−1] = · · · = IE[Z1] = IE[Z0], n ∈ N.

�

Examples of martingales

1. Any centered∗ integrable process (Sn)n∈N with independent increments is a martingale with respect to the filtration (Fn)n∈N

generated by (Sn)n∈N.

Indeed, in this case we have

IE[Sn+1 | Fn] = IE[Sn | Fn] + IE [Sn+1− Sn | Fn]
= IE[Sn | Fn] + IE[Sn+1− Sn]
= IE[Sn | Fn] = Sn, n ∈ N.

In addition to being a martingale, a stochastic process (Xn)n∈N with centered independent increments is also a Markov process,
cf. Section 4.1. However, not all martingales have the Markov property, and not all Markov processes are martingales. In addition,
there are martingales and Markov processes which do not have independent increments.

2. Given F ∈ L2(Ω) a square-integrable random variable and (Fn)n∈N a filtration, the process (Xn)n∈N defined by Xn := IE[F |
Fn] is an (Fn)n∈N-martingale under the probability measure P, as follows from the tower property:

IE[Xn+1 | Fn] = IE[IE[F | Fn+1] | Fn] = IE[F | Fn] = Xn, n ∈ N, (10.2.2)

∗A random variable Xn is said to be centered if IE[Xn] = 0. MH3512 AY19-20
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The following Figure 10.1 illustrates various estimatesXn = IE[F | Fn] at time n =“Wed”, “Thu”, “Fri”, “Sat”, for a random outcome
F known at time “Sat”, i.e. XWed = 26, XThu = 28, XFri = 26, XSat = 24.
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Figure 10.1: Updated weather forecast.

10.3 Stopping Times
Next, we turn to the definition of stopping time. If an event occurs at a (random) stopping time, it should be possible, at any time
n ∈ N, to determine whether the event has already occured, based on the information available at time n. This idea is formalized in
the next definition.

Definition 10.3

MH3512 AY19-20
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A stopping time is a random variable τ : Ω −→ N such that

{τ > n} ∈ Fn, n ∈ N. (10.3.1)

The meaning of Relation (10.3.1) is that the knowledge of {τ > n} depends only on the information present in Fn up to time n, i.e.
on the knowledge of X0,X1, . . . ,Xn.

Note that condition (10.3.1) is equivalent to the condition

{τ 6 n} ∈ Fn, n ∈ N,

since Fn is stable by complement and {τ 6 n} = {τ > n}c.

Not every N-valued random variable is a stopping time, however, hitting times provide natural examples of stopping times.
Proposition 10.4

The first hitting time
Tx := inf{k > 0 : Xk = x}

of x ∈ S is a stopping time.

Proof

We have

{Tx > n} = {X0 6= x, X1 6= x, . . . ,Xn 6= x}
= {X0 6= x} ∩ {X1 6= x} ∩ · · · ∩ {Xn 6= x} ∈ Fn, n ∈ N,

since
{X0 6= x} ∈ F0 ⊂ Fn, {X1 6= x} ∈ F1 ⊂ Fn, . . . , {Xn 6= x} ∈ Fn, n ∈ N.

�

On the other hand, the first time
T = inf

{
k > 0 : Xk = max

l=0,1,...,N
Xl

}
MH3512 AY19-20



"412the process (Xk)k∈N reaches its maximum over {0, 1, . . . ,N} is not a stopping time. Indeed, it is not possible to decide whether
{T 6 n}, i.e. the maximum has been reached before time n, based on the information available at time n.

Exercise: Show that the minimum τ ∧ ν = min(τ , ν) of two stopping times is a stopping time.
Definition 10.5

Given (Zn)n∈N a stochastic process and τ : Ω −→ N a stopping time, the stopped process

(Zτ∧n)n∈N = (Zmin(τ ,n))n∈N

is defined as

Zτ∧n = Zmin(τ ,n) =


Zn if n < τ ,

Zτ if n > τ ,

Using indicator functions we may also write

Zτ∧n = Zn1{n<τ}+ Zτ1{n>τ}, n ∈ N.

The following Figure 10.2 is an illustration of the path of a stopped process. MH3512 AY19-20
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Figure 10.2: Stopped process.

The following Theorem 10.6 is called the stopping time theorem, it is due to J.L. Doob (1910-2004).
Theorem 10.6

Assume that (Mn)n∈N is a martingale with respect to (Fn)n∈N. Then the stopped process (Mτ∧n)n∈N is also a martingale with
respect to (Fn)n∈N.

Proof

Writing
Mn = M0 +

n∑
l=1

(Ml−Ml−1) = M0 +
∑
l>1

1{l6n}(Ml−Ml−1),

we have
Mτ∧n = M0 +

τ∧n∑
l=1

(Ml−Ml−1) = M0 +
n∑
l=1

1{l6τ}(Ml−Ml−1),

MH3512 AY19-20
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IE
[
Mτ∧n

∣∣∣Fk] = M0 +
n∑
l=1

IE
[
1{l6τ}(Ml−Ml−1)

∣∣∣Fk]

= M0 +
k∑
l=1

IE
[
1{l6τ}(Ml−Ml−1)

∣∣∣Fk]+ n∑
l=k+1

IE
[
1{l6τ}(Ml−Ml−1)

∣∣∣Fk]

= M0 +
k∑
l=1

(Ml−Ml−1) IE
[
1{l6τ}

∣∣∣Fk]

+
n∑

l=k+1
IE
[
IE
[
(Ml−Ml−1)1{l−1<τ}

∣∣∣Fl−1
] ∣∣∣Fk]

= M0 +
k∑
l=1

(Ml−Ml−1)1{l6τ}

+
n∑

l=k+1
IE
[
1{l−1<τ} IE

[
(Ml−Ml−1)

∣∣∣Fl−1
]

︸ ︷︷ ︸
=0

∣∣∣∣∣ Fk
]

= M0 +
τ∧k∑
l=1

(Ml−Ml−1)

= Mτ∧k,

k = 0, 1, . . . ,n, where we used the tower property and the fact that

{τ > l} = {τ > l− 1} ∈ Fl−1 ⊂ Fl ⊂ Fk, 1 6 l 6 k.

�

By Theorem 10.6 we know that the stopped process (Mτ∧n)n∈N is a martingale, hence its expectation is constant by Proposition 10.2.
As a consequence, if τ is a stopping time bounded by a constant N > 0, i.e. τ 6 N , we have

IE[Mτ ] = IE[Mτ∧N ] = IE[Mτ∧0] = IE[M0]. (10.3.2)

As a consequence of (10.3.2), if (Mn)n∈N is a martingale and τ 6 N and ν 6 N are two bounded stopping times bounded by a
constant N > 0, we have

IE[Mτ ] = IE[Mν] = IE[M0]. (10.3.3)MH3512 AY19-20
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IE[Mτ ] = IE
[

lim
n→∞Mτ∧n

]
= lim

n→∞ IE[Mτ∧n] = IE[M0],

provided that the limit and expectation signs can be exchanged, however this may not be always the case. In some situations the exchange
of limit and expectation signs can be difficult to justify, nevertheless the exchange is possible when the stopped process (Mτ∧n)n∈N is
bounded in absolute value, i.e. |Mτ∧n| 6 K a.s., n ∈ N, for some constant K > 0.

Analog statements can be proved for submartingales, cf. Exercise 10.2 for this notion.

10.4 Ruin Probabilities
In the sequel we will show that, as an application of the stopping time theorem, the ruin probabilities computed for simple random
walks in Chapter 2 can be recovered in a simple and elegant way.

Consider the standard random walk (or gambling process) (Sn)n∈N on {0, 1, . . . ,B} with independent {−1, 1}-valued increments,
and

P(Sn+1− Sn = +1) = p and P(Sn+1− Sn = −1) = q, n ∈ N,
as introduced in Section 2.1. Let

T0,B : Ω −→ N

be the first hitting time of the boundary {0,B}, defined by

τ := T0,B := inf{n > 0 : Sn = B or Sn = 0}.

One checks easily that the event {τ > n} depends only on the history of (Sk)k∈N up to time n since for k ∈ {1, 2, . . . ,B − 1} we
have

{τ > n} = {0 < S0 < B} ∩ {0 < S1 < B} ∩ · · · ∩ {0 < Sn < B},
hence τ is a stopping time.

We will recover the ruin probabilities
P(Sτ = 0 | S0 = k), k = 0, 1, . . . ,B,

computed in Chapter 2 in three steps, first in the unbiased case p = q = 1/2 (note that the hitting time τ can be shown to be a.s.MH3512 AY19-20
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Step 1. The process (Sn)n∈N is a martingale.

We note that the process (Sn)n∈N has independent increments, and in the unbiased case p = q = 1/2 those increments are centered:

IE[Sn+1− Sn] = 1× p+ (−1)× q = 1×
1
2
+ (−1)×

1
2
= 0, (10.4.1)

hence (Sn)n∈N is a martingale by Point 1 page 409.

Step 2. The stopped process (Sτ∧n)n∈N is also a martingale, as a consequence of Theorem 10.6.

Step 3. Since the stopped process (Sτ∧n)n∈N is a martingale by Theorem 10.6, we find that its expectation IE[Sτ∧n | S0 = k] is
constant in n ∈ N by Proposition 10.2, which gives

k = IE[S0 | S0 = k] = IE[Sτ∧n | S0 = k], k = 0, 1, . . . ,B.

Letting n go to infinity we get

IE[Sτ | S0 = k] = IE
[

lim
n→∞Sτ∧n | S0 = k

]
= lim

n→∞ IE[Sτ∧n | S0 = k] = k,

where the exchange between limit and expectation is justified by the boundedness |Sτ∧n| 6 B a.s., n ∈ N. Hence we have


0×P(Sτ = 0 | S0 = k) +B ×P(Sτ = B | S0 = k) = IE[Sτ | S0 = k] = k

P(Sτ = 0 | S0 = k) + P(Sτ = B | S0 = k) = 1,
which shows that

P(Sτ = B | S0 = k) =
k

B
and P(Sτ = 0 | S0 = k) = 1−

k

B
,

k = 0, 1, . . . ,B, which recovers (2.2.21) without use of boundary conditions, and with short calculations. Namely, the solution has
been obtained in a simple way without solving any finite difference equation, demonstrating the power of the martingale approach.

MH3512 AY19-20



"417Next, let us turn to the biased case where p 6= q. In this case the process (Sn)n∈N is no longer a martingale, and in order to use
Theorem 10.6 we need to construct a martingale of a different type. Here we note that the process

Mn :=
q
p

Sn , n ∈ N,

is a martingale with respect to (Fn)n∈N.

Step 1. The process (Mn)n∈N is a martingale.

Indeed, we have

IE[Mn+1 | Fn] = IE

q
p

Sn+1 ∣∣∣∣∣Fn
 = IE


q
p

Sn+1−Sn q
p

Sn ∣∣∣∣∣Fn


=

q
p

Sn IE

q
p

Sn+1−Sn ∣∣∣∣∣Fn


=

q
p

Sn IE

q
p

Sn+1−Sn


=

q
p

Sn
q
p

P(Sn+1− Sn = 1) +
q
p

−1

P(Sn+1− Sn = −1)


=

q
p

Sn
pq
p
+ q

q
p

−1
=

q
p

Sn (q+ p) =

q
p

Sn = Mn,

n ∈ N. In particular, the expectation of (Mn)n∈N is constant over time by Proposition 10.2 since it is a martingale, i.e. we have
q
p

k = IE[M0 | S0 = k] = IE[Mn | S0 = k], k = 0, 1, . . . ,B, n ∈ N.

Step 2. The stopped process (Mτ∧n)n∈N is also a martingale, as a consequence of Theorem 10.6. MH3512 AY19-20
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Step 3. Since the stopped process (Mτ∧n)n∈N remains a martingale by Theorem 10.6, its expected value IE[Mτ∧n | S0 = k] is constant
in n ∈ N by Proposition 10.2. This gives

q
p

k = IE[M0 | S0 = k] = IE[Mτ∧n | S0 = k].

Next, letting n go to infinity we find
q
p

k = IE[M0 | S0 = k] = lim
n→∞ IE[Mτ∧n | S0 = k]

= IE
[

lim
n→∞Mτ∧n | S0 = k

]
= IE[Mτ | S0 = k],

hence q
p

k = IE[Mτ | S0 = k]

=

q
p

B P

Mτ =

q
p

B ∣∣∣∣∣ S0 = k

+

q
p

0

P

Mτ =

q
p

0 ∣∣∣∣∣ S0 = k


=

q
p

B P

Mτ =

q
p

B ∣∣∣∣∣ S0 = k

+ P(Mτ = 1 | S0 = k).

Solving the system of equations

q
p

k =

q
p

B P

Mτ =

q
p

B ∣∣∣∣∣ S0 = k

+ P(Mτ = 1 | S0 = k)

P

Mτ =

q
p

B ∣∣∣∣∣ S0 = k

+ P(Mτ = 1 | S0 = k) = 1,
MH3512 AY19-20



"419gives

P(Sτ = B | S0 = k) = P

Mτ =

q
p

B ∣∣∣∣∣ S0 = k

 (10.4.2)

=
(q/p)k − 1
(q/p)B − 1

, k = 0, 1, . . . ,B,

and

P(Sτ = 0 | S0 = k) = P(Mτ = 1 | S0 = k)

= 1−
(q/p)k − 1
(q/p)B − 1

,

=
(q/p)B − (q/p)k

(q/p)B − 1
,

k = 0, 1, . . . ,B, which recovers (2.2.11).

10.5 Mean Game Duration
In this section we show that the mean game durations IE[τ | S0 = k] computed in Section 2.3 can also be recovered as a second
application of the stopping time theorem.

In the case of a fair game p = q = 1/2 the martingale method can be used by noting that
(
S2
n− n

)
n∈N

is also a martingale.

Step 1. The process
(
S2
n− n

)
n∈N

is a martingale.

We have

IE[S2
n+1− (n+ 1) | Fn] = IE[(Sn + Sn+1− Sn)2− (n+ 1) | Fn]

= IE[S2
n + (Sn+1− Sn)2 + 2Sn(Sn+1− Sn)− (n+ 1) | Fn]

= IE[S2
n− n− 1 | Fn] + IE[(Sn+1− Sn)2 | Fn] + 2 IE[Sn(Sn+1− Sn) | Fn]

= S2
n− n− 1 + IE[(Sn+1− Sn)2 | Fn] + 2Sn IE[Sn+1− Sn | Fn] MH3512 AY19-20
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n− n− 1 + IE[(Sn+1− Sn)2] + 2Sn IE[Sn+1− Sn]

= S2
n− n− 1 + IE[(Sn+1− Sn)2]

= S2
n− n, n ∈ N.

Step 2. The stopped process
(
S2
τ∧n− τ ∧ n

)
n∈N

is also a martingale, as a consequence of Theorem 10.6.

Step 3. Since the stopped process
(
S2
τ∧n− τ ∧ n

)
n∈N

is also a martingale, its expectation IE[S2
τ∧n− τ ∧ n | S0 = k] is constant in

n ∈ N by Proposition 10.2, hence we have

k2 = IE
[
S2

0 − 0 | S0 = k
]
= IE

[
S2
τ∧n− τ ∧ n | S0 = k

]
,

and after taking the limit as n tends to infinity,

k2 = lim
n→∞ IE

[
S2
τ∧n− τ ∧ n | S0 = k

]
= lim

n→∞ IE
[
S2
τ∧n | S0 = k

]
− lim

n→∞ IE[τ ∧ n | S0 = k]

= IE
[

lim
n→∞S

2
τ∧n | S0 = k

]
− IE

[
lim
n→∞ τ ∧ n | S0 = k

]
= IE

[
lim
n→∞S

2
τ∧n− lim

n→∞ τ ∧ n | S0 = k
]

= IE
[
S2
τ − τ | S0 = k

]
,

since S2
τ∧n ∈ [0,B2] for all n ∈ N and n 7→ τ ∧ n is non-decreasing, and this gives∗†

k2 = IE[S2
τ − τ | S0 = k]

= IE[S2
τ | S0 = k]− IE[τ | S0 = k]

= B2P(Sτ = B | S0 = k) + 02×P(Sτ = 0 | S0 = k)− IE[τ | S0 = k],

i.e.

IE[τ | S0 = k] = B2P(Sτ = B | S0 = k)− k2

= B2 k

B
− k2

∗By application of the dominated convergence theorem.
†By application of the monotone convergence theorem. MH3512 AY19-20
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k = 0, 1, . . . ,B, which recovers (2.3.17).

Finally we show how to recover the value of the mean game duration, i.e. the mean hitting time of the boundaries {0,B} in the
non-symmetric case p 6= q.

Step 1. The process Sn− (p− q)n is a martingale.

In this case we note that although (Sn)n∈N does not have centered increments and is not a martingale, the compensated process

Sn− (p− q)n, n ∈ N,

is a martingale because, in addition to being independent, its increments are centered random variables:

IE[Sn− Sn−1− (p− q)] = IE[Sn− Sn−1]− (p− q) = 0,

by (10.4.1).

Step 2. The stopped process (Sτ∧n− (p− q)(τ ∧ n))n∈N is also a martingale, as a consequence of Theorem 10.6.

Step 3. The expectation IE[Sτ∧n− (p− q)(τ ∧ n) | S0 = k] is constant in n ∈ N.

Step 4. Since the stopped process (Sτ∧n− (p− q)(τ ∧ n))n∈N is a martingale, we have

k = IE[S0− 0 | S0 = k] = IE[Sτ∧n− (p− q)(τ ∧ n) | S0 = k],

and after taking the limit as n goes to infinity,

k = lim
n→∞ IE[Sτ∧n− (p− q)(τ ∧ n) | S0 = k]

= IE
[

lim
n→∞Sτ∧n− (p− q) lim

n→∞ τ ∧ n | S0 = k
]

= IE[Sτ − (p− q)τ | S0 = k], MH3512 AY19-20
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Problem

Probabilities Unbiased Biased

Ruin probability Sn

q
p

Sn

Mean game duration S2
n− n Sn− (p− q)n

Table 10.1: List of martingales.

which gives

k = IE[Sτ − (p− q)τ | S0 = k]

= IE[Sτ | S0 = k]− (p− q) IE[τ | S0 = k]

= B ×P(Sτ = B | S0 = k) + 0×P(Sτ = 0 | S0 = k)− (p− q) IE[τ | S0 = k],

i.e.

(p− q) IE[τ | S0 = k] = B ×P(Sτ = B | S0 = k)− k

= B
(q/p)k − 1
(q/p)B − 1

− k,

from (10.4.2), hence

IE[τ | S0 = k] =
1

p− q

B (q/p)k − 1
(q/p)B − 1

− k
 , k = 0, 1, . . . ,B,

which recovers (2.3.11).

In Table 10.1 we summarize the family of martingales used to treat the above problems. MH3512 AY19-20
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Exercise 10.1 Consider a sequence (Xn)n>1 of independent Bernoulli random variables with

P(Xn = 1) = P(Xn = −1) = 1/2, n > 1,

and the process (Mn)n∈N defined by M0 := 0 and

Mn :=
n∑
k=1

2k−1Xk, n > 1,

see Figure 10.3. MH3512 AY19-20
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Mn

n
1 2 3
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-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

Figure 10.3: Possible paths of the process (Mn)n∈N.

Note that when X1 = X2 = · · · = Xn−1 = −1 and Xn = 1, we have

Mn = −
n−1∑
k=1

2k−1 + 2n−1 = −
1− 2n−1

1− 2
+ 2n−1 = 1, n > 1.

a) Show that the process (Mn)n∈N is a martingale.

b) Is the random time
τ := inf{n > 1 : Mn = 1} MH3512 AY19-20
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c) Consider the stopped process

Mτ∧n := Mn1{n<τ}+ 1{τ6n} =


Mn = 1− 2n if n < τ ,

Mτ = 1 if n > τ ,

n ∈ N, see Figure 10.4. Give an interpretation of (Mn∧τ )n∈N in terms of betting strategy for a gambler starting a game atM0 = 0.

Mτ∧n

n
1 2 3 4 5

-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1

Figure 10.4: Possible paths of the stopped process (Mτ∧n)n∈N.

d) Determine the two possible values of Mτ∧n and the probability distribution of Mτ∧n at any time n > 1.
MH3512 AY19-20
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IE[Mτ∧n] = 0, n ∈ N.

f) Show that the result of Question (e) can be recovered using the stopping time theorem.

Exercise 10.2 Let (Mn)n∈N be a discrete-time submartingale with respect to a filtration (Fn)n∈N, with F0 = {∅, Ω}, i.e. we have

Mn 6 IE[Mn+1 | Fn], n > 0.

a) Show that we have IE[Mn+1] > IE[Mn], n > 0, i.e. a submartingale has a non-decreasing expectation.

b) Show that independent increment processes whose increments have nonnegative expectation are examples of submartingales.

c) (Doob-Meyer decomposition). Show that there exists two processes (Nn)n∈N and (An)n∈N such that

i) (Nn)n∈N is a martingale with respect to (Fn)n∈N,

ii) (An)n∈N is non-decreasing, i.e. An 6 An+1, a.s., n ∈ N,

iii) (An)n∈N is predictable in the sense that An is Fn−1-measurable, n ∈ N, and

iv) Mn = Nn +An, n ∈ N.

Hint: Let A0 = 0 and
An+1 := An + IE[Mn+1−Mn | Fn], n > 0,

and define (Nn)n∈N in such a way that it satisfies the four required properties.

d) Show that for all bounded stopping times σ and τ such that σ 6 τ a.s., we have

IE[Mσ] 6 IE[Mτ ].

Hint: Use the Doob stopping time Theorem 10.6 for martingales and (10.3.3). MH3512 AY19-20



"427Exercise 10.3 Consider an asset price (Sn)n=0,1,...,N which is a martingale under the risk-neutral measure P∗, with respect to the
filtration (Fn)n∈N. Given the (convex) function φ(x) := (x−K)+, show that the price of an Asian option with payoff

φ

S1 + S2 + · · ·+ SN

N


is upper bounded by the price of the European call option with maturity N , i.e. show that

IE∗
φ

S1 + S2 + · · ·+ SN

N

 6 IE∗[φ(SN)].

Hint: Use in the following order:

(i) the convexity inequality

φ

(
x1 + x2 + · · ·+ xn

n

)
6
φ(x1) + φ(x2) + · · ·+ φ(xn)

n
,

(ii) the martingale property of (Sk)k∈N,

(iii) the conditional Jensen inequality φ(IE[F | G]) 6 IE[φ(F ) | G],

(iv) the tower property of conditional expectations.

Exercise 10.4 A stochastic process (Mn)n∈N is a submartingale if it satisfies

Mk 6 IE[Mn | Fk], k = 0, 1, . . . ,n.

a) Show that the expectation IE[Mn] of a submartingale increases with time n ∈ N.

b) Consider the random walk given by S0 := 0 and

Sn :=
n∑
k=1

Xk = X1 +X2 + · · ·+Xn, n > 1,

where (Xn)n>1 is an i.i.d. Bernoulli sequence of {0, 1}-valued random variables with P(Xn = 1) = p, n > 1. Under which
condition on α ∈ R is the process (Sn−αn)n∈N a submartingale? MH3512 AY19-20



"428Exercise 10.5 Recall that a stochastic process (Mn)n∈N is a submartingale if it satisfies

Mk 6 IE[Mn | Fk], k = 0, 1, . . . ,n.

a) Show that any convex function (φ(Mn))n∈N of a martingale (Mn)n∈N is itself a submartingale. Hint: Use Jensen’s inequality.

b) Show that any convex non-decreasing function φ(Mn) of a submartingale (Mn)n∈N remains a submartingale.

Problem 10.6
a) Consider (Mn)n∈N a nonnegative martingale. For any x > 0, let

τx := inf{n > 0 : Mn > x}.

Show that the random time τx is a stopping time.

b) Show that for all n > 0 we have

P

(
max

k=0,1,...,n
Mk > x

)
6

IE[Mn]

x
, x > 0. (10.5.1)

Hint: Proceed as in the proof of the Markov inequality and use the Doob stopping time Theorem 10.6 for the stopping time τx.

c) Show that (10.5.1) remains valid when (Mn)n∈N is a nonnegative submartingale.

Hint: Use the Doob stopping time theorem for submartingales as in Exercise 10.2-(d).

d) Show that for any n > 0 we have

P

(
max

k=0,1,...,n
Mk > x

)
6

IE[(Mn)2]

x2 , x > 0.

e) Show that more generally we have

P

(
max

k=0,1,...,n
Mk > x

)
6

IE[(Mn)p]

xp
, x > 0,

for all n > 0 and p > 1.

f) Given (Yn)n>1 a sequence of centered independent random variables with same mean IE[Yn] = 0 and variance σ2 = Var[Yn],
n > 1, consider the random walk Sn = Y1 + Y2 + · · ·+ Yn, n > 1, with S0 = 0.

MH3512 AY19-20
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"429Show that for all n > 0 we have

P

(
max

k=0,1,...,n
|Sk| > x

)
6
nσ2

x2 , x > 0.

g) Show that for any (not necessarily nonnegative) submartingale we have

P

(
max

k=0,1,...,n
Mk > x

)
6

IE[M+
n ]

x
, x > 0,

where z+ = max(z, 0), z ∈ R.

h) A stochastic process (Mn)n∈N is a supermartingale∗ if it satisfies

IE[Mn | Fk] 6Mk, k = 0, 1, . . . ,n.

Show that for any nonnegative supermartingale we have

P

(
max

k=0,1,...,n
Mk > x

)
6

IE[M0]

x
, x > 0.

i) Show that for any nonnegative submartingale (Mn)n∈N and any convex non-decreasing nonnegative function φ we have

P

(
max

k=0,1,...,n
φ(Mk) > x

)
6

IE[φ(Mn)]

x
, x > 0.

Hint: Consider the stopping time
τφx := inf{n > 0 : Mn > x}.

j) Give an example of a nonnegative supermartingale which is not a martingale.

Exercise 10.7 Consider the random walk (Sn)n∈N on {0, 1, . . . ,B} with independent {−1, 1}-valued increments, and

P(Sn+1− Sn = +1) = p and P(Sn+1− Sn = −1) = q, n ∈ N,
∗“This obviously inappropriate nomenclature was chosen under the malign influence of the noise level of radio’s SUPERman program, a favorite supper-time program of Doob’s son during
the writing of [Doo53]”, cf. [Doo84], historical notes, page 808. MH3512 AY19-20



"430and the martingale

Mn :=
q
p

Sn , n ∈ N,

where p, q ∈ (0, 1) are such that p+ q = 1. Show that for all n > 0 and r > 1 we have

P

(
max

k=0,1,...,n
Mk > x

)
6

(p(q/p)r + q(p/q)r)2n

xr
, x > 0.

MH3512 AY19-20



"431

11 Spatial Poisson Processes

Spatial Poisson process are typically used to model the random scattering of configuration points within a plane or a three-dimensional
space X. In case X = R+ is the real half-line, these random points can be identified with the jump times (Tk)k>1 of the standard
Poisson process (Nt)t∈R+ introduced in Section 9.1. However, in contrast with the previous chapter, no time ordering is a priori
imposed here on the index set X. Sections 11.4 and 11.5 contain some more advanced results on moments and deviation inequalities
for Poisson stochastic integrals.

11.1 Spatial Poisson (1781-1840) Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

11.2 Poisson Stochastic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

11.3 Transformations of Poisson Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

11.4 Moments of Poisson Stochastic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

11.5 Deviation Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

11.1 Spatial Poisson (1781-1840) Processes

In this section we present the construction of spatial Poisson processes on a space of configurations of X ⊂ Rd, d > 1. The set

ΩX :=
{
ω := (xi)

N
i=1 ⊂ X, N ∈ N∪ {∞}

}
,

is called the space of configurations on X ⊂ Rd. The next figure illustrates a given configuration ω ∈ ΩX . MH3512 AY19-20
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Given A a (measurable) subset of X, we let

ω(A) = #{x ∈ ω : x ∈ A} =
∑
x∈ω

1A(x)

denote the number of configuration points in ω that are contained in the set A.

Given ρ : X −→ R+ a nonnegative function, the Poisson probability measure PX
σ with intensity σ(dx) = ρ(x)dx on X is the only

probability measure on ΩX satisfying
i) For any (measurable) subset A of X such that

σ(A) =
w

A
ρ(x)dx =

w

Rd
1A(x)ρ(x)dx <∞,

the number ω(A) of configuration points contained in A is a Poisson random variable with intensity σ(A), i.e.

PX
σ (ω ∈ ΩX : ω(A) = n) = e−σ(A)(σ(A))n

n!
, n ∈ N.

ii) In addition, if A1,A2, . . . ,An are disjoint subsets of X with σ(Ak) <∞, k = 1, 2, . . . ,n, the Nn-valued random vector

ω 7−→ (ω(A1), . . . ,ω(An)), ω ∈ ΩX,

is made of independent random variables for all n > 1.
In the remaining of this chapter we will assume that σ(X) <∞ for simplicity.

The Poisson measure PX
σ can also be defined as

IEPXσ
[F ] = e−σ(X) ∑

n>0

1
n!

w

Xn
fn(x1,x2, . . . ,xn)σ(dx1) · · ·σ(dxn) (11.1.1)

MH3512 AY19-20



"433for F written as
F (ω) =

∑
n>0

1{ω(X)=n}fn(x1,x2, . . . ,xn)

where fn is a symmetric integrable function of ω = {x1,x2, . . . ,xn} when ω(X) = n, n > 1, cf. e.g. Proposition 6.1.3 and § 6.1 in
[Pri09].

By applying the above to
F (ω) = 1{ω(X)=n}1An(x1,x2, . . . ,xn),

we find that the conditional distribution of ω = {x1,x2, . . . ,xn} given that ω(X) = n is given by the formula

PX
σ ({x1, . . . ,xn} ⊂ A | ω(X) = n) =

PX
σ ({x1, . . . ,xn} ⊂ A and ω(X) = n)

PX
σ (ω(X) = n)

=
1

PX
σ (ω(X) = n)

IEPXσ
[1{ω(X)=n}1An(x1,x2, . . . ,xn)]

=

σ(A)

σ(X)

n . (11.1.2)

In many applications the intensity function ρ(x) will be constant, i.e. ρ(x) = λ > 0, x ∈ X, where λ > 0 is called the intensity
parameter, and

σ(A) = λ
w

A
dx = λ

w

X
1A(x)dx

represents the surface or volume of A in Rd. In this case, (11.1.2) can be used to show that the random points {x1, . . . ,xn} are
uniformly distributed on An given that {ω(A) = n}.

11.2 Poisson Stochastic Integrals
In the next proposition we consider the Poisson stochastic integral defined as

w

X
f(x)ω(dx) :=

∑
x∈ω

f(x),

for f an integrable function on X, and we compute its first and second order moments and cumulants via its characteristic function.
MH3512 AY19-20
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Let f be an integrable function on X. We have

IEPXσ

[
exp

(
i
w

X
f(x)ω(dx)

)]
= exp

(w
X
(eif(x)− 1)σ(dx)

)
.

Proof

We assume that σ(X) <∞. By (11.1.1) we have

IEPXσ

[
exp

(
i
w

X
f(x)ω(dx)

)]

= e−σ(X) ∑
n>0

1
n!

w

X
· · ·

w

X
ei(f(x1)+···+f(xn))σ(dx1) · · ·σ(dxn).

= e−σ(X) ∑
n>0

1
n!

(w
X

eif(x)σ(dx)
)n

= exp
(w

X
(eif(x)− 1)σ(dx)

)
.

�

The characteristic function allows us to compute the expectation of
r
X f(x)ω(dx), as

IEPXσ

[w
X
f(x)ω(dx)

]
= −i

d

dε
IEPXσ

[
exp

(
iε

w

X
f(x)ω(dx)

)]
|ε=0

= −i
d

dε
exp

(w
X
(eiεf(x)− 1)σ(dx)

)
|ε=0

=
w

X
f(x)σ(dx),

for f an integrable function on X. As a consequence, the compensated Poisson stochastic integral
w

X
f(x)ω(dx)−

w

X
f(x)σ(dx) MH3512 AY19-20



"435is a centered random variable, i.e. we have

IEPXσ

[w
X
f(x)ω(dx)−

w

X
f(x)σ(dx)

]
= 0.

The variance can be similarly computed as

IEPXσ

[(w
X
f(x)(ω(dx)− σ(dx))

)2]
=

w

X
|f(x)|2σ(dx),

for all f in the space L2(X,σ) of functions which are square-integrable on X with respect to σ(dx).

More generally, the logarithmic generating function

log IEPXσ

[
exp

(w
X
f(x)ω(dx)

)]
=

w

X
(ef(x)− 1)σ(dx) =

∑
n>1

1
n!

w

X
fn(x)σ(dx),

shows that the cumulants of
r
X f(x)ω(dx) are given by

κn =
w

X
fn(x)σ(dx), n > 1. (11.2.1)

11.3 Transformations of Poisson Measures

Consider a mapping τ : (X,σ) −→ (Y ,µ), and let
τ∗ : ΩX −→ ΩY

be the transformed configuration defined by

τ∗(ω) := {τ (x) : x ∈ ω}, ω ∈ ΩX,

as illustrated in the following figure. MH3512 AY19-20
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Proposition 11.2

The random configuration

ΩX : −→ ΩY

ω 7−→ τ∗(ω)

has the Poisson distribution PY
µ with intensity µ on Y , where µ is defined by

µ(A) :=
w

X
1A(τ (x))σ(dx) =

w

X
1τ−1(A)(x)σ(dx) = σ(τ−1(A)),

for A a (measurable) subset of X.

Proof

We have

PX
σ (τ∗ω(A) = n) = PX

σ (ω(τ
−1(A)) = n)

= e−σ(τ−1(A))(σ(τ
−1(A)))n

n!

= e−µ(A)(µ(A))n

n!
.

MH3512 AY19-20



"437More generally we can check that for all families A1,A2, . . . ,An of disjoint subsets of X and k1, k2, . . . , kn ∈ N, we have

PX
σ ({ω ∈ ΩX : τ∗ω(A1) = k1, . . . , τ∗ω(An) = kn})

=
n∏
i=1

PX
σ ({τ∗ω(Ai) = ki})

=
n∏
i=1

PX
σ ({ω(τ

−1(Ai)) = ki})

= exp
− n∑

i=1
σ(τ−1(Ai))

 n∏
i=1

(σ(τ−1(Ai)))ki

ki!

= exp
− n∑

i=1
µ(Ai)

 n∏
i=1

(µ(Ai))ki

ki!

=
n∏
i=1

PY
µ ({ω(Ai) = ki})

= PY
µ ({ω(A1) = k1, . . . ,ω(An) = kn}).

�

The next figure illustrates the transport of measure in the case of Gaussian intensities on X = R.

2 3 1 0 4

2a 3a 1a 0a 4a

For example in the case of a flat intensity ρ(x) = λ on X = R+ the intensity becomes doubled under the mapping τ (x) = x/2, since

PX
σ (τ∗ω([0, t]) = n) = PX

σ (ω(τ
−1([0, t])) = n)

= e−σ(τ−1([0,t]))(σ(τ
−1([0, t])))n

n!
= e−2λt(2λt)n/n!. MH3512 AY19-20
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11.4 Moments of Poisson Stochastic Integrals

As a consequence of (11.2.1) and the relation (1.7.8) between cumulants and moments we find that the n-th moment of
r
X f(x)ω(dx)

can be written as

IEPXσ

[(w
X
f(x)ω(dx)

)n]

=
n∑
k=0

1
k!

∑
d1+···+dk=n

n!
d1! · · · dk!

w

X
fd1(x)σ(dx) · · ·

w

X
fdk(x)σ(dx)

=
n∑
k=1

∑
Bn1 ,Bn2 ,...,Bnk

w

X
f |B

n
1 |(x)σ(dx) · · ·

w

X
f |B

n
k |(x)σ(dx),

where the sum runs over the partitions Bn
1 ,Bn

2 , . . . ,Bn
k of {1, . . . ,n} with cardinality |Bn

i |. Similarly, we find that the moments of
the centered integral

r
X f(x)ω(dx)−

r
X f(x)σ(dx) satisfy

IEPXσ

[(w
X
f(x)ω(dx)−

w

X
f(x)σ(dx)

)n]

=
n∑
k=1

∑
Bn1 ,Bn2 ,...,Bn

k
|Bn1 |>2,...,|Bn

k
|>2

w

X
f |B

n
1 |(x)σ(dx) · · ·

w

X
f |B

n
k |(x)σ(dx),

where the sum runs over the partitions Bn
1 ,Bn

2 , . . . ,Bn
k of {1, . . . ,n} of size |Bn

k | > 2.

By taking f = 1A we can specialize the above results to the computation of the moments and central moments of the Poisson randomMH3512 AY19-20



"439variable ω(A) with parameter λ := σ(A). For the moments we recover the well-known identity

IE [(ω(A))n] =
n∑
k=1

λnS(n, k),

where S(n, k) is the Stirling number of the second kind, i.e. the number of partitions of {1, 2, . . . ,n} made of k subsets, k =
0, 1, . . . ,n. Similarly, for the central moments we have

IE[(ω(A)− σ(A))n] =
n∑
k=1

λnS2(n, k), (11.4.1)

where S2(n, k) is the number of partitions of {1, 2, . . . ,n} made of k subsets of size at least 2, k = 0, 1, . . . ,n, cf. [Pri11]. The
following version of Mecke’s identity [Mec67] allows us to compute the first moment of the first order stochastic integral of a random
integrand.

Proposition 11.3

Let u : X ×ΩX −→ R be a (measurable) process. We have

IEPXσ
[w
X
u(x,ω)ω(dx)

]
= IEPXσ

[w
X
u(x,ω ∪ {x})σ(dx)

]
,

provided that
IEPXσ

[w
X
|u(x,ω ∪ {x})|σ(dx)

]
<∞.

Proof

We take u(x,ω) written as
u(x,ω) =

∑
n>0

1{ω(X)=n}fn(x;x1,x2, . . . ,xn),

where (x1,x2, . . . ,xn) 7−→ fn(x;x1,x2, . . . ,xn) is a symmetric integrable function of ω = {x1,x2, . . . ,xn} when ω(X) = n,
for each n > 1. We have

IEPXσ

[w
X
u(x,ω)ω(dx)

]
MH3512 AY19-20
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= e−σ(X) ∑

n>0

1
n!

n∑
k=1

w

Xn
fn(xi;x1,x2, . . . ,xn)σ(dx1) · · ·σ(dxn)

=
∑
n>1

e−σ(X)

(n− 1)!

w

Xn
fn(x;x1,x2, . . . ,xi−1,x,xi, . . . ,xn−1)σ(dx)σ(dx1) · · ·σ(dxn−1)

= e−σ(X) ∑
n>0

1
n!

w

Xn

w

X
fn+1(x;x,x1,x2, . . . ,xn)σ(dx)σ(dx1) · · ·σ(dxn)

= IEPXσ

[w
X
u(x,ω ∪ {x})σ(dx)

]
.

�

Proposition 11.3 can actually be extended to a moment identity, as follows.
Proposition 11.4

([Pri12]) Let u : X ×ΩX −→ R be a (measurable) process. We have

IEPXσ

[(w
X
u(x,ω)ω(dx)

)n]

=
n∑
k=1

∑
Bn1 ,Bn2 ,...,Bnk

IEPXσ

[w
Xk
u|B

n
1 |(x1,ω ∪ {x1,x2, . . . ,xk}) · · ·

· · ·u|Bnk |(xk,ω ∪ {x1,x2, . . . ,xk})σ(dx1) · · ·σ(dxk)
]
,

where the sum runs over the partitions Bn
1 ,Bn

2 , . . . ,Bn
k of {1, . . . ,n}, for any n > 1 such that all terms are integrable.

Proof

We will prove the following slightly more general formula

IEPXσ

[
F
(w

X
u(x,ω)ω(dx)

)n]

=
n∑
k=1

∑
Bn1 ,Bn2 ,...,Bnk

IEPXσ

[w
Xk
F (ω ∪ {x1,x2, . . . ,xk})u|B

n
1 |(x1,ω ∪ {x1,x2, . . . ,xk}) · · ·

· · ·u|Bnk |(xk,ω ∪ {x1,x2, . . . ,xk})σ(dx1) · · ·σ(dxk)
]
,

MH3512 AY19-20



"441by induction on n > 1, for F a sufficiently integrable random variable. Clearly, the formula holds for n = 0 and n = 1. Assuming
that it holds at the rank n and using Proposition 11.3 we get

IEPXσ

[
F
(w

X
u(x,ω)ω(dx)

)n+1]

=
n∑
k=1

∑
Bn1 ,Bn2 ,...,Bnk

IEPXσ

[w
Xk
u|B

n
1 |(x1,ω ∪ {x1,x2 . . . ,xk}) · · ·u|B

n
k |(xk,ω ∪ {x1,x2, . . . ,xk})

×F (ω ∪ {x1,x2, . . . ,xk})
k∑
i=1

u(xi,ω ∪ {x1,x2, . . . ,xk})σ(dx1) · · ·σ(dxk)


+
n∑
k=1

∑
Bn1 ,Bn2 ,...,Bnk

IEPXσ

[w
Xk
u|B

n
1 |(x1,ω ∪ {x1,x2, . . . ,xk}) · · ·u|B

n
k |(xk,ω ∪ {x1,x2, . . . ,xk})

×F (ω ∪ {x1,x2, . . . ,xk})
w

X
u(y,ω ∪ {x1,x2, . . . ,xk})ω(dy)σ(dx1) · · ·σ(dxk)

]

=
n∑
k=1

∑
Bn1 ,Bn2 ...,Bnk

IEPXσ

[w
Xk
u|B

n
1 |(x1,ω ∪ {x1,x2, . . . ,xk}) · · ·u|B

n
k |(xk,ω ∪ {x1,x2, . . . ,xk})

×F (ω ∪ {x1,x2, . . . ,xk})
k∑
i=1

u(xi,ω ∪ {x1,x2, . . . ,xk})σ(dx1) · · ·σ(dxk)

+
n∑
k=1

∑
Bn1 ,Bn2 ,...,Bnk

IEPXσ

[w
Xk+1

u|B
n
1 |(x1,ω ∪ {x1,x2, . . . ,xk, y}) · · ·u|B

n
k |(xk,ω ∪ {x1,x2, . . . ,xk, y})

×F (ω ∪ {x1,x2, . . . ,xk, y})u(y,ω ∪ {x1,x2, . . . ,xk, y})σ(dy)σ(dx1) · · ·σ(dxk)]

=
n+1∑
k=1

∑
Bn+1

1 ,Bn+1
2 ,...,Bn+1

k

IEPXσ

[w
Xk
F (ω ∪ {x1,x2, . . . ,xk})u|B

n+1
1 |(x1,ω ∪ {x1,x2, . . . ,xk})× · · ·
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"442· · · × u|B
n+1
k |(xk,ω ∪ {x1,x2, . . . ,xk})σ(dx1) · · ·σ(dxk)

]
,

where the sum runs over the partitions Bn+1
1 ,Bn+1

2 , . . . ,Bn+1
k of {1, . . . ,n+ 1}. �

11.5 Deviation Inequalities
The next proposition is a particular case of results proved for general Poisson functionals in [HP02], [Wu00], cf. also Corollary 6.9.3
of [Pri09]. Such results are useful for the accurate estimation of loss (or outage) probabilities in a wireless network whose users are
randomly located within the space X, cf. e.g. [DFM09].

Proposition 11.5

Let f : X −→ R be a (measurable) function such that

i) f(y) 6 K, σ(dy)-a.e., for some K > 0, and

ii)
w

X
|f(y)|2σ(dy) 6 α2, for some α > 0.

Then we have

PX
σ

(w
X
f(y)ω(dy)−

w

X
f(y)σ(dy) > x

)
6 ex/K

1 +
xK

α2

−
x
K−

α2
K2

, (11.5.1)

for all x > 0.

Proof

We let w

X
f(y)ω̃(dy) :=

w

X
f(y)(ω(dy)− σ(dy))

denote the compensated Poisson stochastic integral of f , and

L(s) := IEPXσ

[
exp

(
s

w

X
f(y)ω̃(dy)

)]
, s ∈ R+.
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L′(s) = IEPXσ

[w
X
f(x)ω̃(dx) exp

(
s

w

X
f(y)ω̃(dy)

)]
= IEPXσ

[w
X

exp
(
s

w

X
f(y)ω̃(dy)

)
f(x)ω̃(dx)

−
w

X
exp

(
s

w

X
f(y)ω̃(dy)

)
f(x)σ(dx)

]
= IEPXσ

[w
X

exp
(
sf(x) + s

w

X
f(y)ω̃(dy)

)
f(x)σ(dx)

−
w

X
exp

(
s

w

X
f(y)ω̃(dy)

)
f(x)σ(dx)

]
= IEPXσ

[w
X
f(x)(esf(x)− 1)σ(dx) exp

(
s

w

X
f(y)ω̃(dy)

)]
=

w

X
f(x)(esf(x)− 1)σ(dx) IEPXσ

[
exp

(
s

w

X
f(y)ω̃(dy)

)]

= s
w

X
|f(x)|2

esf(x)− 1
sf(x)

σ(dx) IEPXσ

[
exp

(
s

w

X
f(y)ω̃(dy)

)]

6
esK − 1
K

w

X
|f(x)|2σ(dx) IEPXσ

[
exp

(
s

w

X
f(y)ω̃(dy)

)]

= α2esK − 1
K

IEPXσ

[
exp

(
s

w

X
f(y)ω̃(dy)

)]
= α2esK − 1

K
L(s),

which shows that
L′(s)

L(s)
6 h(s) := α2esK − 1

K
, s ∈ R+,

hence
L(t) 6 exp

(w t

0
h(s)ds

)
= exp

α2
w t

0

esK − 1
K

ds

 , t ∈ R+.

Consequently we have
IEPXσ

[F etF ] 6 h(t) IEPXσ
[etF ], t ∈ R+.

Next, the Markov inequality shows that

PX
σ

(w
X
f(y)(ω(dy)− σ(dy)) > x

)
= IEPXσ

[
1{

r
X f(y)(ω(dy)−σ(dy))>x}

]
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[
1{

r
X f(y)(ω(dy)−σ(dy))>x} exp

(
t
w

X
f(y)ω(dy)

)]
6 e−tx IEPXσ

[
exp

(
t
w

X
f(y)ω(dy)

)]

6 exp
(
−tx+

w t

0
h(s)ds

)

6 exp
−tx+ α2

w t

0

esK − 1
K

ds


= exp

−tx+
α2

K2(e
tK − tK − 1)

 .

Minimizing the above term in t with t = K−1 log(1 +Kx/α2) shows that

PX
σ

(w
X
f(y)(ω(dy)− σ(dy)) > x

)
6 exp

 x
K
−

 x
K

+
α2

K2

 log
1 +

xK

α2

 ,

which yields (11.5.1). �

The bound (11.5.1) also shows that

PX
σ

(w
X
f(y)ω(dy)−

w

X
f(y)σ(dy) > x

)

6 exp
− x

2K
log

1 +
xK

α2

 =

1 +
xK

α2

−x/2K

,

for all x > 0.

In case the function f : X −→ R is such that

i) f(y) 6 0, σ(dy)-a.e., for some K ∈ R, and

ii)
w

X
|f(y)|2σ(dy) 6 α2, MH3512 AY19-20
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PX
σ

(w
X
f(y)ω(dy)−

w

X
f(y)σ(dy) > x

)
6 exp

− x2

2α2

 ,

for all x > 0.

Exercises
Exercise 11.1 Consider a standard Poisson process (Nt)t∈R+ on R+ with intensity λ = 2 and jump times (Tk)k>1. Compute

IE[T1 + T2 + T3 | N2 = 2].

Exercise 11.2 Consider a spatial Poisson process on R2 with intensity λ = 0.5 per square meter. What is the probability that there
are 10 events within a circle of radius 3 meters.

Exercise 11.3 Some living organisms are distributed in space according to a Poisson process of intensity θ = 0.6 units per mm3.
Compute the probability that more than two living organisms are found within a 10 mm3 volume.

Exercise 11.4 Defects are present over a piece of fabric according to a Poisson process with intensity of one defect per piece of fabric.
Both halves of the piece is checked separately. What is the probability that both inspections record at least one defect?

Exercise 11.5 Let λ > 0 and suppose that N points are independently and uniformly distributed over the interval [0,N ]. Determine
the probability distribution for the number of points in the interval [0,λ] as N →∞.

Exercise 11.6 Suppose that X(A) is a spatial Poisson process of discrete items scattered on the plane R2 with intensity λ = 0.5 per
square meter. We let

D((x, y), r) = {(u, v) ∈ R2 : (x− u)2 + (y− v)2 6 r2}
denote the disc with radius r centered at (x, y) in R2. No evaluation of numerical expressions is required in this exercise.

a) What is the probability that 10 items are found within the disk D((0, 0), 3) with radius 3 meters centered at the origin?

b) What is the probability that 5 items are found within the disk D((0, 0), 3) and 3 items are found within the disk D((x, y), 3)
with (x, y) = (7, 0)? MH3512 AY19-20



"446c) What is the probability that 8 items are found anywhere within
D((0, 0), 3) ⋃D((x, y), 3) with (x, y) = (7, 0)?

d) Given that 5 items are found within the disk D((0, 0), 1), what is the probability that 3 of them are located within the disk
D((1/2, 0), 1/2) centered at (1/2, 0) with radius 1/2?

Exercise 11.7 Let Sn be a Poisson random variable with parameter λn for all n > 1, with λ > 0. Show that the moments of order p
of (Sn− λn)/

√
n satisfy the bound

sup
n>1

IE
∣∣∣∣∣∣
Sn− λn√

n

∣∣∣∣∣∣
p < Cp

where Cp > 0 is a finite constant for all p > 1. Hint: Use Relation (11.4.1).

Exercise 11.8 Let (Nt)t∈R+ denote a standard Poisson process on R+. Given a bounded function f ∈ L1(R+) we let
w ∞

0
f(y)(dNy − dy)

denote the compensated Poisson stochastic integral of f , and let

L(s) := E
[
exp

(
s

w ∞
0
f(y)(dNy − dy)

)]
= exp

(w ∞
0

(esf(y)− sf(y)− 1)dy
)

,

s ∈ R+.

a) Show that we have
L′(s)

L(s)
6 h(s) := α2e

sK − 1
K

, s ∈ R+,

provided that f(t) 6 K, dt-a.e., for some K > 0 and provided in addition that
w ∞

0
|f(y)|2dy 6 α2, for some α > 0.

b) Show that

L(t) 6 exp
(w t

0
h(s)ds

)
= exp

α2
w t

0

esK − 1
K

ds

 , t ∈ R+.
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P
(w ∞

0
f(y)(dNy − dy) > x

)
6 e−txE

[
exp

(
t
w ∞

0
f(y)dNy

)]
,

and that
P
(w ∞

0
f(y)(dNy − dy) > x

)
6 exp

−tx+ α2
w t

0

esK − 1
K

ds

 .

d) By minimization in t, show that

P
(w ∞

0
f(y)dNy −

w ∞
0
f(y)dy > x

)
6 ex/K

1 +
xK

α2

−x/K−α2/K2

,

for all x > 0, and that

P
(w ∞

0
f(y)dNy −

w ∞
0
f(y)dy > x

)
6

1 +
xK

α2

−x/2K

,

for all x > 0.
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12 Reliability Theory

This chapter consists in a short review of survival probabilities based on failure rate and reliability functions, in connection with Poisson
processes having a time-dependent intensity.

12.1 Survival Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

12.2 Poisson Process with Time-Dependent Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

12.3 Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

12.1 Survival Probabilities

Let τ : Ω −→ R+ denote (random) the lifetime of an entity, and let P(τ > t) denote its probability of surviving at least t years,
t > 0. The probability of surviving up to a (deterministic) time T , given that the entity has already survived up to time t, is given by

P(τ > T | τ > t) =
P(τ > T and τ > t)

P(τ > t)

=
P(τ > T )

P(τ > t)
, 0 6 t 6 T .

Let now
λ(t) := lim

h↘0

P(τ < t+ h | τ > t)

h
, t ∈ R+,

MH3512 AY19-20



"449denote the failure rate function associated to τ . Letting A = {τ < t+ h} and B = {τ > t} we note that (Ω \A) ⊂ B, hence
A∩B = B \Ac, and

λ(t) = lim
h↘0

P(τ < t+ h | τ > t)

h

=
1

P(τ > t)
lim
h↘0

P(τ < t+ h and τ > t)

h

=
1

P(τ > t)
lim
h↘0

P(τ > t)−P(τ > t+ h)

h

= −
d

dt
log P(τ > t)

= −
1

P(τ > t)

d

dt
P(τ > t) (12.1.1)

= −
1

R(t)

d

dt
R(t),

where the reliability function R(t) is defined by

R(t) := P(τ > t), t ∈ R+.

This yields
R′(t) = −λ(t)R(t),

with R(0) = P(τ > 0) = 1, which has for solution

R(t) = P(τ > t) = R(0) exp
(
−

w t

0
λ(u)du

)
= exp

(
−

w t

0
λ(u)du

)
, (12.1.2)

t ∈ R+. Hence we have

P(τ > T | τ > t) =
R(T )

R(t)
= exp

(
−

w T

t
λ(u)du

)
, t ∈ [0, T ]. (12.1.3)

In case the failure rate function λ(t) = c is constant we recover the memoryless property of the exponential distribution with parameter
c > 0, cf. (9.2.3).
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"450Relation (12.1.2) can be recovered informally as

P(τ > T ) =
∏

0<t<T
P(τ > t+ dt | τ > t) =

∏
0<t<T

exp (−λ(t)dt) ,

which yields
P(τ > t) = exp

(
−

w t

0
λ(s)ds

)
, t ∈ R+,

in the limit.

12.2 Poisson Process with Time-Dependent Intensity

Recall that the random variable τ has the exponential distribution with parameter λ > 0 if

P(τ > t) = e−λt, t > 0,

cf. (1.5.3). Given (τn)n>0 a sequence of i.i.d. exponentially distributed random variables, letting

Tn = τ0 + · · ·+ τn−1, n > 1,

and
Nt =

∑
n>1

1[Tn,∞)(t), t ∈ R+,

defines the standard Poisson process with intensity λ > 0 of Section 9.1 and we have

P(Nt−Ns = k) = e−λ(t−s)
(λ(t− s))k

k!
, k > 0.

The intensity of the Poisson process can in fact made time-dependent. For example under the time change

Xt = Nr t
0 λ(s)ds MH3512 AY19-20



"451where (λ(u))u∈R+ is a deterministic function of time, we have

P(Xt−Xs = k) =

(r t
s λ(u)du

)k
k!

exp
(
−

w t

s
λ(u)du

)
, k > 0.

In this case we have
P(Xt+h−Xt = 0) = e−λ(t)h + o(h) = 1− λ(t)h+ o(h), h↘ 0, (12.2.1)

and
P(Xt+h−Xt = 1) = 1− e−λ(t)h + o(h) ' λ(t)h, h↘ 0, (12.2.2)

which can also viewed as a pure birth process with time-dependent intensity. Letting τ0 denote the first jump time of (Xt)t∈R+, we
have

R(t) = P(τ0 > t) = P(Xt = 0) = exp
(
−

w t

0
λ(u)du

)
, t > 0, (12.2.3)

hence by (12.1.3) we find

P(Xt+h = 0 | Xt = 0) = P(τ0 > t+ h | τ0 > t)

= e−λ(t)h + o(h) = 1− λ(t)h+ o(h), h↘ 0,

and

P(Xt+h > 1 | Xt = 0) = P(τ0 < t+ h | τ0 > t) = 1−P(τ0 > t+ h | τ0 > t)

= 1− e−λh ' λ(t)h+ o(h), h↘ 0,

which coincide respectively with P(Xt+h −Xt = 0) and P(Xt+h −Xt = 1) in (12.2.1) and (12.2.2) above, as (Xt)t∈R+ has
independent increments.

Cox processes

The intensity process λ(s) can also be made random. In this case, (Xt)t∈R+ is called a Cox process and it may not have independent
increments. For example, assume that (λu)u∈R+ is a two-state Markov chain on {0,λ}, with transitions

P(λt+h = λ | λt = 0) = αh, h↘ 0, MH3512 AY19-20



"452and
P(λt+h = 0 | λt = λ) = βh, h↘ 0.

In this case the probability distribution of Nt can be explicitly computed, cf. Chapter VI-7 in [KT81].

Renewal processes

A renewal process is a counting process (Nt)t∈R+ given by

Nt =
∑
k>1

k1[Tk,Tk+1)(t) =
∑
k>1

1[Tk,∞)(t), t ∈ R+,

in which τk = Tk+1−Tk, k ∈ N, is a sequence of independent identically distributed random variables. In particular, Poisson processes
are renewal processes.

12.3 Mean Time to Failure

The mean time to failure is given, from (12.1.1), by

IE[τ ] =
w ∞

0
t
d

dt
P(τ < t)dt = −

w ∞
0
t
d

dt
P(τ > t)dt

= −
w ∞

0
tR′(t)dt =

w ∞
0
R(t)dt, (12.3.1)

provided that limt↘0 tR(t) = 0. For example when τ has the distribution function (12.2.3) we get

IE[τ ] =
w ∞

0
R(t)dt =

w ∞
0

exp
(
−

w t

0
λ(u)du

)
dt.

In case the function λ(t) = λ > 0 is constant we recover the mean value

IE[τ ] =
w ∞

0
e−λtdt =

1
λ

of the exponential distribution with parameter λ > 0. MH3512 AY19-20
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Exercise 12.1 Assume that the random time τ has the Weibull distribution with probability density

fβ(x) = β1[0,∞)x
β−1e−tβ, x ∈ R,

where β > 0 is a called the shape parameter.

a) Compute the distribution function Fβ of the Weibull distribution.

b) Compute the reliability function R(t) = P(τ > t).

c) Compute the failure rate function λ(t).

d) Compute the mean time to failure.
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Some Useful Identities
Here we present a summary of algebraic identities that are used in this text.

Indicator functions

1A(x) =


1 if x ∈ A,

0 if x /∈ A.
1[a,b](x) =


1 if a 6 x 6 b,

0 otherwise.

Binomial coefficientsn
k

 :=
n!

(n− k)!k!
, k = 0, 1, . . . ,n.

Exponential series

ex =
∑
n>0

xn

n!
, x ∈ R. (A.1)

Geometric sum
n∑
k=0

rk =
1− r
1− r

n+1
, r 6= 1. (A.2)
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Geometric series∑
k>0

rk =
1

1− r
, −1 < r < 1. (A.3)

Differentiation of geometric series
∑
k>1

krk−1 =
∂

∂r

∑
k>0

rk =
∂

∂r

1
1− r

=
1

(1− r)2 , −1 < r < 1. (A.4)

Binomial identities
n∑
k=0

n
k

akbn−k = (a+ b)n.

n∑
k=0

n
k

 = 2n. (A.5)

n∑
k=1

k

n
k

 = n2n−1.

n∑
k=0

k

n
k

akbn−k =
n∑
k=1

n!
(n− k)!(k− 1)!

akbn−k

=
n−1∑
k=0

n!
(n− 1− k)!k!

ak+1bn−1−k

= n
n−1∑
k=0

n− 1
k

ak+1bn−1−k

= na(a+ b)n−1, n > 1,
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k=0

k

n
k

akbn−k = a
∂

∂a

n∑
k=0

n
k

akbn−k
= a

∂

∂a
(a+ b)n

= na(a+ b)n−1, n > 1.

Sums of integers
n∑
k=1

k =
n(n+ 1)

2
. (A.6)

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
. (A.7)

Taylor expansion

(1 + x)α =
∑
k>0

xk

k!
α(α− 1)× · · · × (α− (k− 1)). (A.8)

Differential equation

The solution of f ′(t) = cf(t) is given by f(t) = f(0)ect, t ∈ R+. (A.9)
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Solutions to the Exercises

Chapter 1 - Probability Background
Exercise 1.1

a) We have
P(X <∞) =

∑
k>0

P(X = k) = q
∑
k>0

pk =
q

1− p
,

hence
P(X =∞) = 1−P(X <∞) = 1−

q

1− p
=

1− p− q
1− p

.

When 0 6 q < 1− p we have P(X =∞) > 0, hence IE[X] =∞.

b) We have P(Y <∞) = P(X <∞) = 1 and

IE[Y ] =
∑
k>0

rkP(Y = rk) =
∑
k>0

rkP(X = k) = (1− p)
∑
k>0

(pr)k,

hence IE[Y ] = (1− p)/(1− pr) <∞ when r < 1/p, and IE[Y ] = +∞ when r > 1/p.

Exercise 1.2 We write
Z =

N∑
k=1

Xk

where P(N = n) = 1/6, n = 1, 2, . . . , 6, and Xk is a Bernoulli random variable with parameter 1/2, k = 1, 2, . . . , 6.

a) We have

IE[Z] = IE[IE[Z | N ]] =
6∑

n=1
IE[Z | N = n]P(N = n)
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=

6∑
n=1

IE
 N∑
k=1

Xk

∣∣∣∣∣ N = n

P(N = n) =
6∑

n=1
IE
 n∑
k=1

Xk

P(N = n)

=
6∑

n=1

n∑
k=1

IE[Xk]P(N = n) =
1
6

6∑
n=1

n∑
k=1

1
2
=

1
2× 6

6∑
n=1

n

=
1

2× 6
×

6× (6 + 1)
2

=
7
4

, (B.1)

where we applied (A.6). Concerning the variance, we have

IE[Z2] = IE[IE[Z2 | N ]]

=
6∑

n=1
IE[Z2 | N = n]P(N = n)

=
6∑

n=1
IE

 n∑
k=1

Xk

2 ∣∣∣∣∣ N = n

P(N = n)

=
6∑

n=1
IE
 n∑
k=1

Xk

n∑
l=1
Xl

∣∣∣∣∣ N = n

P(N = n)

=
6∑

n=1
IE
 n∑
k,l=1

XkXl

∣∣∣∣∣ N = n

P(N = n)

=
6∑

n=1
IE
 n∑
k=1

X2
k +

∑
16k 6=l6n

XkXl

P(N = n)

=
6∑

n=1
IE
 n∑
k=1

X2
k

P(N = n) +
6∑

n=1
IE
 ∑

16k 6=l6n
XkXl

P(N = n)

=
6∑

n=1

n∑
k=1

IE
[
X2
k

]
P(N = n) +

6∑
n=1

∑
16k 6=l6n

IE [XkXl] P(N = n)

=
6∑

n=1

n∑
k=1

IE
[
X2
k

]
P(N = n) +

6∑
n=1

∑
16k 6=l6n

IE[Xk] IE[Xl]P(N = n)

=
1

2× 6

6∑
n=1

n+
1

6× 22

6∑
n=1

n(n− 1)

=
1

2× 6

6∑
n=1

n+
1

6× 22

6∑
n=1

n2−
1

6× 22

6∑
n=1

n
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=

1
6× 22

6∑
n=1

n+
1

6× 22

6∑
n=1

n2

=
1

6× 22

6(6 + 1)
2

+
1

6× 22

6(6 + 1)(2× 6 + 1)
6

=
14
3

, (B.2)

where we used (A.7) and (B.1), hence

Var[Z] = IE[Z2]− (IE[Z])2 =
14
3
−

49
16

=
77
48

. (B.3)

Using (1.6.10) and Var[Xk] = p(1− p) we could also write

Var[Z | N = n] = Var
 N∑
k=1

Xk

∣∣∣∣∣ N = n


= Var

 n∑
k=1

Xk


=

n∑
k=1

Var[Xk]

= np(1− p),

which implies
IE[Z2 | N = n] = Var[Z | N = n] + (IE[Z | N = n])2 = np(1− p) + n2p2,

hence

IE
[
Z2] =

6∑
k=1

IE[Z2 | N = n]P(N = n)

=
1
6

6∑
k=1

IE[Z2 | N = n]

=
1
6

6∑
k=1

(np− np2 + n2p2),

and recovers (B.2).
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P(Z = l) = P

 N∑
k=1

Xk = l


=

6∑
n=1

P

 N∑
k=1

Xk = l

∣∣∣∣∣ N = n

P(N = n)

=
6∑

n=1
P

 n∑
k=1

Xk = l

P(N = n).

Next, we notice that the deterministic summation
n∑
k=1

Xk has a binomial distribution with parameter (n, 1/2), i.e.

P

 n∑
k=1

Xk = l

 =



n
l

 (1
2

)l (1
2

)n−l
if l = 0, 1, . . . ,n,

0 if l > n,

which yields

P(Z = 0) =
6∑

n=1
P

 n∑
k=1

Xk = 0
P(N = n)

=
1
6

6∑
n=1

(1
2

)n

=
1

6× 2

5∑
n=0

(1
2

)n

=
1− (1/2)6

6
,

and, for l = 1, 2, . . . , 6,

P(Z = l) =
6∑

n=1
P

 n∑
k=1

Xk = l

P(N = n)
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=

1
6

6∑
n=l

(1
2

)l (1
2

)n−l n
l


=

1
6

6∑
n=l

n
l

 (1
2

)n
, l = 1, 2, . . . , 6,

hence
P(Z = l) =

1
6

6∑
n=max(1,l)

n
l

 (1
2

)n
, l = 0, 1, . . . , 6.

Note that we have
6∑
l=0

P(Z = l) =
1
6

6∑
n=1

(1
2

)n
+

1
6

6∑
l=1

6∑
n=l

n
l

 (1
2

)n

=
1
6

6∑
n=1

(1
2

)n
+

1
6

6∑
n=1

(1
2

)n n∑
l=1

n
l


=

1
6

6∑
n=1

(1
2

)n n∑
l=0

n
l


= 1,

where we used the identity
n∑
l=0

n
l

 = (1 + 1)n = 2n.

c) We have

IE[Z] =
6∑
l=0
lP(Z = l) =

1
6

6∑
l=0
l

6∑
n=l

(1
2

)n n
l


=

1
6

6∑
n=1

(1
2

)n n∑
l=1
l

n
l

 =
1
6

6∑
n=1

(1
2

)n n∑
l=1

n!
(n− l)!(l− 1)!

=
1
6

6∑
n=1

n

(1
2

)n n−1∑
l=0

(n− 1)!
(n− 1− l)!l!

=
1
6

6∑
n=1

n

(1
2

)n n−1∑
l=0

n− 1
l


=

1
6× 2

6∑
n=1

n =
1

6× 2
6× (6 + 1)

2
=

7
4

,
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IE[Z2] =
6∑
l=0
l2P(Z = l)

=
1
6

6∑
l=0
l2

6∑
n=l

(1
2

)n n
l

 =
1
6

6∑
n=1

(1
2

)n n∑
l=1
l2
n
l


=

1
6

6∑
n=1

(1
2

)n n∑
l=1

(l− 1 + 1)n!
(n− l)!(l− 1)!

=
1
6

6∑
n=1

(1
2

)n n∑
l=1

(l− 1)n!
(n− l)!(l− 1)!

+
1
6

6∑
n=1

(1
2

)n n∑
l=1

n!
(n− l)!(l− 1)!

=
1
6

6∑
n=1

(1
2

)n n∑
l=2

n!
(n− l)!(l− 2)!

+
1
6

6∑
n=1

(1
2

)n n∑
l=1

n!
(n− l)!(l− 1)!

=
1
6

6∑
n=1

(1
2

)n
n(n− 1)

n−2∑
l=0

(n− 2)!
(n− 2− l)!l!

+
1
6

6∑
n=1

(1
2

)n n−1∑
l=0

n!
(n− 1− l)!l!

=
1

6× 22

6∑
n=1

n(n− 1) +
1

6× 2

6∑
n=1

n

=
1

6× 22

6∑
n=1

n2−
1

6× 22

6∑
n=1

n+
1

6× 2

6∑
n=1

n

=
1

6× 22

6∑
n=1

n2 +
1

6× 22

6∑
n=1

n

=
1

6× 22

6(6 + 1)(2× 6 + 1)
6

+
1

6× 22

6(6 + 1)
2

=
14
3

,

which recovers (B.3).

Exercise 1.3

a) We assume that the sequence of Bernoulli trials is represented by a family (Xk)k>1 of independent Bernoulli random variables with
distribution

P(Xk = 1) = p, P(Xk = 0) = 1− p, k > 1. MH3512 AY19-20
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Z = X1 +X2 + · · ·+XN =

N∑
k=1

Xk,

and, since IE[Xk] = p,

IE[Z] = IE
 N∑
k=1

Xk

 =
∑
n>0

IE
 n∑
k=1

Xk

P(N = n)

=
∑
n>0

 n∑
k=1

IE[Xk]

P(N = n) = p
∑
n>0

nP(N = n) = p IE[N ].

Note that N need not have the Poisson distribution for the above equality to hold.

Next, the expectation of the Poisson random variable N with parameter λ > 0 is given as in (1.6.4) by

IE[N ] =
∑
n>0

nP(N = n) = e−λ
∑
n>0

n
λn

n!
= e−λ

∑
n>1

λn

(n− 1)!

= λe−λ
∑
n>0

λn

n!
= λe−λeλ = λ, (B.4)

where we used the exponential series (A.1), hence
IE[Z] = pλ.

Concerning the variance we have, since IE[X2
k ] = p,

IE[Z2] = IE

 N∑
k=1

Xk

2
=

∑
n>0

IE

 n∑
k=1

Xk

2P(N = n)

=
∑
n>0

IE

 n∑
k=1

Xk

  n∑
l=1
Xl

2P(N = n)

=
∑
n>0

IE
 n∑
k,l=1

XkXl

P(N = n)
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=

∑
n>0

IE
 n∑

k=1
(Xk)

2 +
∑

16k 6=l6n
XkXl

P(N = n)

=
∑
n>0

IE
 n∑
k=1

(Xk)
2
+ ∑

16k 6=l6n
IE[Xk] IE[Xl]

P(N = n)

=
∑
n>0

(
np+ n(n− 1)p2)P(N = n)

= p(1− p)
∑
n>0

nP(N = n) + p2 ∑
n>0

n2P(N = n)

= p(1− p) IE[N ] + p2 IE[N2].

Again, the above equality holds without requiring that N has the Poisson distribution.

Next, we have

IE[N2] =
∑
n>0

n2P(N = n) = e−λ
∑
n>0

n2λ
n

n!

= e−λ
∑
n>1

n
λn

(n− 1)!
= e−λ

∑
n>1

(n− 1)
λn

(n− 1)!
+ e−λ

∑
n>1

λn

(n− 1)!

= e−λ
∑
n>2

λn

(n− 2)!
+ e−λ

∑
n>1

λn

(n− 1)!
= λ2e−λ

∑
n>0

λn

n!
+ λe−λ

∑
n>0

λn

n!
= λ+ λ2,

hence
Var[N ] = IE[N2]− (IE[N ])2 = λ, (B.5)

and

Var[Z] = IE[Z2]− (IE[Z])2

= p(1− p) IE[N ] + p2 IE[N2]− (p IE[N ])2

= p(1− p) IE[N ] + p2Var[N ]

= λp(1− p) + λp2

= pλ. MH3512 AY19-20



"466b) For l ∈ N, using (1.3.1) with B = {Z = l} and the fact that
n∑
k=1

Xk has a binomial distribution with parameter (n, p), we have

P(Z = l) =
∑
n>0

P

 N∑
k=1

Xk = l

∣∣∣∣∣ N = n

P(N = n)

=
∑
n>0

P

 n∑
k=1

Xk = l

P(N = n)

= e−λ
∑
n>l

n
l

pl(1− p)n−lλn
n!

=
pl

l!
e−λ

∑
n>l

1
(n− l)!

(1− p)n−lλn

=
(λp)

l!

l

e−λ
∑
n>0

(1− p)n
λn

n!
=

(λp)

l!

l

e−λe(1−p)λ =
(λp)

l!

l

e−pλ,

hence Z has a Poisson distribution with parameter pλ. This result is known as thinning of the Poisson distribution with parameter
λ > 0.

c) From Question (b), Z is a Poisson random variable with parameter pλ, hence from (B.4) and (B.5) we have IE[Z] = Var[Z] = pλ.

Exercise 1.4 Using the relation P(X < Y ) = λ/(λ + µ) that follows from (1.5.9), we can compute the following conditional
expectation in the same way as in (1.6.6) of Lemma 1.4:

IE[min(X,Y ) | X < Y ] = IE[X | X < Y ] =
1

P(X < Y )
IE
[
X1{X<Y }

]

= µ(λ+ µ)
w ∞

0
e−µy

w y

0
xe−λxdxdy

= (λ+ µ)
µ

λ2

w ∞
0

e−µy(1− (1 + λy)e−λy)dy

= (λ+ µ)
µ

λ2

(w ∞
0

e−µydy−
w ∞

0
e−µye−λydy− λ

w ∞
0

e−µyye−λy)dy
)

= (λ+ µ)
µ

λ2

1
µ
−

1
λ+ µ

−
λ

(λ+ µ)2


= (λ+ µ)

µ

λ2

 (λ+ µ)2

µ(λ+ µ)2 −
µ(λ+ µ)

µ(λ+ µ)2 −
λµ

µ(λ+ µ)2
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= (λ+ µ)

µ

λ2

(λ+ µ)2− µ(λ+ µ)− λµ
µ(λ+ µ)2


=

1
λ+ µ

= IE[min(X,Y )].

Note that the random variable min(X,Y ) is actually independent of the event {X < Y }. Indeed, for any a > 0 we have

P(min(X,Y ) > a and X < Y ) = λµ
w ∞
a

e−µy
w y

a
e−λxdxdy

= µ
w ∞
a

e−µy(e−λa− e−λy)dy

= µe−λa
w ∞
a

e−µydy− µ
w ∞
a

e−(λ+µ)ydy

=
λ

λ+ µ
e−(λ+µ)a

= P(X < Y )P(min(X,Y ) > a).

Exercise 1.5 Since U is uniformly distributed given L over the interval [0,L], we have

fU |L=y(x) =
1
y
1[0,y](x), x ∈ R, y > 0,

hence by the definition (1.5.7) of the conditional density fU |L=y(x) we have

f(U ,L)(x, y) = fU |L=y(x)fL(y)

=
1
y
1[0,y](x)ye−y1[0,∞)(y)

= 1[0,y](x)1[0,∞)(y)e−y. (B.6)

Next, we want to determine the density function (x, y) 7−→ f(U ,L−U)(x, y). For this, for all bounded functions h : R2 −→ R, we
rewrite the expectation

IE[h(U ,L−U)] =
w ∞
−∞

w ∞
−∞

h(x, z)f(U ,L−U)(x, z)dxdz (B.7)MH3512 AY19-20
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IE[h(U ,L−U)] =
w ∞
−∞

(w ∞
−∞

h(x, y− x)f(U ,L)(x, y)dy
)
dx

=
w ∞
−∞

w ∞
−∞

h(x, z)f(U ,L)(x,x+ z)dxdz, (B.8)

using the change of variable (x, z) = (x, y− x). Identifying (B.7) with (B.8) yields the relation

f(U ,L−U)(x, z) = f(U ,L)(x,x+ z),

hence from (B.6) we get

f(U ,L−U)(x, z) = f(U ,L)(x,x+ z)

= 1[0,x+z](x)1[0,∞)(x+ z)e−x−z

= 1[0,∞)(x)1[0,∞)(z)e−x−z,

since

{0 6 x 6 x+ z & x+ z > 0} ⇐⇒ {0 6 x 6 x+ z}
⇐⇒ {x > 0 & z > 0}.

We refer to Theorem 12.7 page 92 of [JP00] for the general version of the above change of variable formula.

Exercise 1.6

a) Assuming that X and Y are independent Poisson random variables with parameters λ and µ, we have

P(X + Y = n) =
n∑
k=0

P(X = k and X + Y = n)

=
n∑
k=0

P(X = k and Y = n− k)

=
n∑
k=0

P(X = k)P(Y = n− k) = e−λ−µ
n∑
k=0

λk

k!
µn−k

(n− k)!

= e−λ−µ
1
n!

n∑
k=0

n
k

λkµn−k = e−λ−µ
(λ+ µ)n

n!
, (B.9)
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(1.7.2) of the Poisson distribution and Relation (1.7.6), as

GX+Y (s) = GX(s)GY (s) = eλ(s−1)eµ(s−1) = e(λ+µ)(s−1), −1 6 s 6 1.

b) We have

P(X = k | X + Y = n) =
P(X = k and X + Y = n)

P(X + Y = n)

=
P(X = k and Y = n− k)

P(X + Y = n)
=

P(X = k)P(Y = n− k)
P(X + Y = n)

= e−λ
λk

k!
e−µ

µn−k

(n− k)!

e−λ−µ
(λ+ µ)n

n!

−1

=

n
k

  λ

λ+ µ

k  µ

λ+ µ

n−k , (B.10)

hence, given X + Y = n, the random variable X has a binomial distribution with parameters n and λ/(λ+ µ).

c) In this case, using the exponential probability density

fΛ(x) = θ1[0,∞)(x)e−θx, x ∈ R,

satisfying
P(Λ 6 x) =

w x

−∞
fΛ(y)dy =

w x

0
fΛ(y)dy, x ∈ R,

and
dP(Λ 6 x) = fΛ(x)dx,

we have

P(X = k) =
w ∞

0
P(X = k | Λ = x)dP(Λ 6 x)

=
w ∞

0
P(X = k | Λ = x)fΛ(x)dx MH3512 AY19-20
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= θ

w ∞
0

xk

k!
e−(θ+1)xdx

=
θ

(θ+ 1)k+1

w ∞
0

yk

k!
e−ydy

=
θ

(θ+ 1)k+1

=
(
1−

1
θ+ 1

) ( 1
θ+ 1

)k
,

i.e. X and Y are independent random variables with same geometric distribution with parameter p = 1/(θ+ 1). ThereforeX+Y
has a negative binomial distribution with parameter (r, p) = (2, 1/(θ+ 1)), cf. (1.5.12), i.e.,

P(X + Y = k) = (k+ 1)
(
1−

1
θ+ 1

)2 ( 1
θ+ 1

)k
, k ∈ N.

Hence we have

P(X = k | X + Y = n) =
P(X = k and X + Y = n)

P(X + Y = n)

=
P(X = k and Y = n− k)

P(X + Y = n)

=
P(X = k)P(Y = n− k)

P(X + Y = n)

=
(
1−

1
θ+ 1

) ( 1
θ+ 1

)k (
1−

1
θ+ 1

) ( 1
θ+ 1

)n−k 1
n+ 1

(
1−

1
θ+ 1

)−2 ( 1
θ+ 1

)−n

=
1

n+ 1
, k = 0, 1, . . . ,n,

which shows that the distribution of X given X + Y = n is the discrete uniform distribution on {0, 1, . . . ,n}.
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P(X = k | X + Y = n) =

n
k

 1
2n

, k = 0, 1, . . . ,n,

which becomes independent of λ. Hence, when λ is represented by a random variable Λ with probability density x 7−→ fΛ(x) on
R+, from (B.10) we get

P(X = k | X + Y = n) =
w ∞

0
P(X = k | X + Y = n and Λ = x)dP(Λ 6 x)

=
w ∞

0
P(X = k | X + Y = n and Λ = x)fΛ(x)dx

=
w ∞

0
P(X = k | X + Y = n)fΛ(x)dx

= P(X = k | X + Y = n)
w ∞

0
fΛ(x)dx

= P(X = k | X + Y = n) =

n
k

 1
2n

, k = 0, 1, . . . ,n.

This relation holds regardless of the expression of the probability density fΛ, and in particular when Λ has an exponential distribution
with parameter θ > 0.

Exercise 1.7 Let C1 denote the color of the first drawn pen, and let C2 denote the color of the second drawn pen. We have

P(C1 = R) = P(C1 = G) =
1
2

,

and
P(C2 = R and C1 = R) =

2
3

, P(C2 = R and C1 = G) =
1
3

.

On the other hand, we have

P(C2 = R) = P(C2 = R and C1 = R) + P(C2 = R and C1 = G)

= P(C2 = R | C1 = R)P(C1 = R) + P(C2 = R | C1 = G)P(C1 = G)

=
2
3
×

1
2
+

1
3
×

1
2
=

1
2

, MH3512 AY19-20
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P(C2 = G) = P(C2 = G and C1 = R) + P(C2 = G and C1 = G)

= P(C2 = G | C1 = R)P(C1 = R) + P(C2 = G | C1 = G)P(C1 = G)

=
1
3
×

1
2
+

2
3
×

1
2
=

1
2

.

Finally, the probability we wish to compute is

P(C1 = R | C2 = R) =
P(C1 = R and C2 = R)

P(C2 = R)

= P(C2 = R | C1 = R)
P(C1 = R)

P(C2 = R)
=

2
3
×

1/2
1/2

=
2
3

.

Interestingly, we note that although the probabilities of finding a red or green pen at the second stage remain the same as at the first
stage (P(C2 = G) = P(C1 = G) = 1/2), the result obtained at the second stage does provide some information on the outcome at
the first stage.

Exercise 1.8

a) The probability that the system operates is

P(X > 2) =

3
2

p2(1− p) + p3 = 3p2− 2p3,

where X is a binomial random variable with parameter (3, p).

b) The probability that the system operates is
w 1

0
P(X > 2 | p = x)dP(p 6 x) =

w 1

0
P(X > 2 | p = x)dx

=
w 1

0
(3x2− 2x3)dx

= 3
w 1

0
x2dx− 2

w 1

0
x3dx

=
1
2

, MH3512 AY19-20
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Chapter 2 - Gambling Problems
Exercise 2.1

a) By first step analysis we have
f(k) = (1− 2r)f(k) + rf(k+ 1) + rf(k− 1),

which yields the equation
f(k) =

1
2
f(k+ 1) +

1
2
f(k− 1), 1 6 k 6 S − 1, (B.11)

with the boundary conditions f(0) = 1 and f(S) = 0, which is identical to Equation (2.2.18).

We refer to this equation as the homogeneous equation.

b) According to the result of (2.2.19) in Section 2.2 we know that the general solution of (B.11) has the form

f(k) = C1 +C2k, k = 0, 1, . . . ,S

and after taking into account the boundary conditions we find

f(k) =
S − k
S

, k = 0, 1, . . . ,S.

Intuitively, the game is fair to both players for all values of r, so that the probability of ruin should be the same for all r ∈ (0, 1/2),
which is indeed the case.

c) By first step analysis we have

h(k) = (1− 2r)(1 + h(k)) + r(1 + h(k+ 1)) + r(1 + h(k− 1))
= 1 + (1− 2r)h(k) + rh(k+ 1) + rh(k− 1),

hence the equation
h(k) =

1
2r

+
1
2
h(k+ 1) +

1
2
h(k− 1), 1 6 k 6 S − 1, MH3512 AY19-20



"474with the boundary conditions h(0) = 0 and h(S) = 0, which is identical to (2.3.6) by changing h(k) into 2r × h(k) in
(2.3.6). We note that r should be strictly positive, otherwise if r = 0 we will have h(k) = ∞ for all k = 1, 2, . . . ,S − 1 and
h(0) = h(S) = 0.

d) After trying a solution of the form h(k) = Ck2 we find

Ck2 =
1

2r
+

1
2
C(k+ 1)2 +

1
2
C(k− 1)2,

hence C should be equal to C = −1/(2r), hence k 7−→ −k2/(2r) is a particular solution.

e) Given the hint, the general solution has the form

h(k) = C1 +C2k−
k2

2r
, k = 0, 1, . . . ,S,

which gives

h(k) =
k(S − k)

2r
, k = 0, 1, . . . ,S, (B.12)

after taking into account the boundary conditions.

Remark. The inclusion of draws changes the standard discrete time step length 1 into 1/(2r), which can be interpreted as the
mean IE[τ ] = 1/(2r) of the geometric random variable τ representing the time k spent by remaining at the same state, with

P(τ = k) = 2r(1− 2r)k−1, k > 1.

f) Starting from any state k ∈ {1, 2, . . . ,S − 1}, the mean duration goes to infinity when r goes to zero.

When r goes to 0 the probability 1− 2r of a draw increases, therefore the game should take longer. Hence the above answer is
compatible with intuition.

Exercise 2.2 MH3512 AY19-20



"475a) Taking a = m and b = S in (2.3.18), we find the probability

1− (p/q)S−k

1− (p/q)S−m
=

(q/p)S − (q/p)k

(q/p)S − (q/p)m
. (B.13)

b) Taking a = 0 and b = m in (2.3.18), we find the probability

1−
1− (p/q)m−k

1− (p/q)m
=

1− (q/p)k

1− (q/p)m
. (B.14)

c) Taking k = m+ 1 in (B.13), we find that the probability of returning to m after starting from
�� ��m+ 1 is

(q/p)S − (q/p)m+1

(q/p)S − (q/p)m
.

Similarly, taking k = m− 1 in (B.14), we find that the probability of returning to m after starting from
�� ��m− 1 is

1− (q/p)m−1

1− (q/p)m
.

Therefore, by first step analysis we find that the probability of coming back to state m in finite time after starting from X0 = m is

p
1− (p/q)S−(m+1)

1− (p/q)S−m
+ q

1− (q/p)m−1

1− (q/p)m

=
p(1− (p/q)S−(m+1))(1− (q/p)m) + q(1− (q/p)m−1)(1− (p/q)S−m)

(1− (p/q)S−m)(1− (q/p)m)

=
(p− q(p/q)S−m)(1− (q/p)m) + (q− p(q/p)m)(1− (p/q)S−m)

(1− (p/q)S−m)(1− (q/p)m)

=
1− 2p(q/p)m− 2q(p/q)S−m + (p/q)S−2m

(1− (p/q)S−m)(1− (q/p)m) MH3512 AY19-20
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=

1− 2p(q/p)m− 2q(p/q)S−m + (p/q)S−2m

1− (q/p)m− (p/q)S−m + (p/q)S−2m , 1 6 m 6 S − 1.

When S = 2 and m = 1 we find that the above probability is zero, as expected.

d) Using (2.3.11) we can similarly compute the mean time to either come back to m or reach any of the two boundaries {0,S},
whichever comes first, using first step analysis, as follows:

1 +
p

q− p

1− (S −m)
1− q/p

1− (q/p)S−m

+
q

q− p

m− 1−m
1− (q/p)m−1

1− (q/p)m


= −

p(S −m)

q− p
1− q/p

1− (q/p)S−m
+

mq

q− p
(q/p)m− (q/p)m−1

(q/p)m− 1
, 1 6 m 6 S − 1.

When S = 2 and m = 1 we find that the above expression equals 1 as expected.

e) When p = q = 1/2 we would find

1
2

S −m− 1
S −m

+
1
2

(
m− 1
m

)
= 1−

S

2m(S −m)
,

for the probability of coming back to state m in finite time after starting from X0 = m, which gives 1− 2/S when S = 2m,
m > 1. Similarly, the mean time to either come back to m of reach any of the two boundaries {0,S}, whichever comes first, is

1 +
1
2
(S −m− 1) +

1
2
(m− 1) =

S

2
,

which does not depend on m = 1, 2, . . . ,S − 1.

Exercise 2.3

a) Starting from state k we can reach
�� ��k+ 1 in one time step by going up with probability p, or we can go down to

�� ��k− 1 with
probability q, in which case we have to reach

�� ��k+ 1 without hitting state 0 in two stages:

i) first, reach
�� ��k from

�� ��k− 1 , with probability P(τk < τ0 | X0 = k− 1),

ii) then, reach
�� ��k+ 1 from

�� ��k with probability P(τk+1 < τ0 | X0 = k). MH3512 AY19-20
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pk = P(τk+1 < τ0 | X0 = k)

= p+ qP(τk < τ0 | X0 = k− 1)P(τk+1 < τ0 | X0 = k)

= p+ qpk−1pk, k = 1, 2, . . . ,S − 1.

b) We need to check that (2.3.21) is satisfied when pk is given by

pk =
1− (q/p)k

1− (q/p)k+1 , k = 0, 1, . . . ,S − 1.

Starting from the right hand side of (2.3.21), this means checking the following:

p+ q
1− (q/p)k−1

1− (q/p)k
1− (q/p)k

1− (q/p)k+1 = p+ q
1− (q/p)k−1

1− (q/p)k+1

=
p(1− (q/p)k+1) + q(1− (q/p)k−1)

1− (q/p)k+1

=
p+ q− p(q/p)k+1− q(q/p)k−1

1− (q/p)k+1

=
p+ q− q(q/p)k − p(q/p)k

1− (q/p)k+1

=
1− (q/p)k

1− (q/p)k+1 .

c) We have

P(τS < τ0 | X0 = k)

= P(τk+1 < τ0 | X0 = k)

×P(τk+2 < τ0 | X0 = k+ 1)× · · · ×P(τS < τ0 | X0 = S − 1)

=
S−1∏
l=k

pl =
S−1∏
l=k

1− (q/p)l

1− (q/p)l+1 =
1− (q/p)k

1− (q/p)S
, k = 0, 1, . . . ,S,

MH3512 AY19-20
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d) In the symmetric case p = q = 1/2, the same reasoning as in part (a) above shows that pk should satisfy the equation

pk =
1
2
+

1
2
pk−1pk, k = 1, 2, . . . ,S − 1,

which rewrites as
pk(2− pk−1) = 1, k = 1, 2, . . . ,S − 1.

We check that the above equation is satisfied by

pk :=
k

k+ 1
, k = 1, 2, . . . ,S − 1,

hence we find again

P(τS < τ0 | X0 = k)

= P(τk+1 < τ0 | X0 = k)

×P(τk+2 < τ0 | X0 = k+ 1)× · · · ×P(τS < τ0 | X0 = S − 1)

=
S−1∏
l=k

pl

= pkpk+1pk+2 · · · pN−1

=
S−1∏
l=k

l

l+ 1

=
k

S
, k = 0, 1, . . . ,S,

showing that
P(τ0 < τS | X0 = k) = 1−

k

S
, k = 0, 1, . . . ,S,

which recovers (2.2.12).

Exercise 2.4 MH3512 AY19-20
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f(0) = P(RA | X0 = 0) = q+ pq.

b) We have
f(2) = P(RA | X0 = 2) = 0,

and

f(1) = P(RA | X0 = 1)
= pP(RA | X0 = 2) + qP(RA | X0 = 0)
= q2 + pq2.

Exercise 2.5

a) Letting ε = r− 1, i.e. r = 1 + ε, we have

hS(k) =
1

q− p

k− S 1− rk

1− rS

 =
1
pε

k− S 1− (1 + ε)k

1− (1 + ε)S



=
1
pε

k− S
k∑
i=1

k
i

εi
S∑
i=1

S
i

εi

 =
1
pε


k

S∑
i=1

S
i

εi− S k∑
i=1

k
i

εi
S∑
i=1

S
i

εi



=
1
p


kS(S − 1)/2− Sk(k− 1)/2 + k

S∑
i=3

S
i

εi−2− S
k∑
i=3

k
i

εi−2

S + ε
S∑
i=2

S
i

εi−2


hence

lim
r→1

1
q− p

k− S 1− rk

1− rS

 = lim
ε→0

1
pε

k− S 1− (1 + ε)k

1− (1 + ε)S

 = k(S − k), (B.15)

which recovers (2.3.17). MH3512 AY19-20
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fS(k) =
rS − rk

rS − 1
=

(1 + ε)S − (1 + ε)k

(1 + ε)S − 1

=

S∑
i=0

S
i

εi− k∑
i=0

k
i

εi
S∑
i=0

S
i

εi− 1
=

S − k+ ε2
k∑
i=2

k
i

εi−2− ε2
S∑
i=2

S
i

εi−2

S + ε2
S∑
i=2

S
i

εi−2

hence
lim
r→1

rS − rk

rS − 1
= lim

ε→0

(1 + ε)S − (1 + ε)k

(1 + ε)S − 1
=
S − k
S

,

which recovers (2.2.21).

Exercise 2.6 By first step analysis we now have

f(k) = (1−α− β)f(k) + αf(k+ 1) + βf(k− 1),

which yields
f(k) =

α

α+ β
f(k+ 1) +

β

α+ β
f(k− 1), 1 6 k 6 S − 1,

with f(0) = 1 and f(S) = 0. Therefore this non-symmetric problem with draw can be reduced to a non-symmetric gambling process
without draw and probabilities p = α/(α+ β) and q = β/(α+ β), and solution

f(k) =
(β/α)k − (β/α)S

1− (β/α)S
, k = 0, 1, . . . ,S,

obtained by (2.2.11), with α 6= β. For the mean game duration, by first step analysis we find the equation

h(k) = (1−α− β)(1 + h(k)) + α(1 + h(k+ 1)) + β(1 + h(k− 1))
= 1 + (1−α− β)h(k) + αh(k+ 1) + βh(k− 1), MH3512 AY19-20
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h(k) =

1
α+ β

+
α

α+ β
h(k+ 1) +

β

α+ β
h(k− 1), 1 6 k 6 S − 1,

or
(α+ β)h(k) = 1 + p(α+ β)h(k+ 1) + q(α+ β)h(k− 1),

with p = α/(α+ β) and q = β/(α+ β) which, using (2.3.11), shows that

h(k) =
1

β−α

k− S 1− (β/α)k

1− (β/α)S

 , k = 0, 1, . . . ,S, (B.16)

when α 6= β. As in Question (e) of Exercise 2.1, the inclusion of a draw changes the discrete time step length from 1 to 1/(α+ β),
which is the mean IE[τ ] of a geometric random variable τ with distribution

P(τ = k) = (α+ β)(1−α− β)k−1, k > 1.

When α tends to β, the result of Exercise 2.1 can be recovered as on page 479. Indeed, the limit of (B.16) as α → β is given as in
(B.15) by

h(k) =
k(S − k)

2β
, k = 0, 1, . . . ,S,

which is consistent with (B.12).

Problem 2.7

a) We have
g(k) = pg(k+ 1) + qg(k− 1), k = 1, 2, . . . ,S − 1, (B.17)

with
g(0) = pg(1) + qg(0) (B.18)

for k = 0, and the boundary condition g(S) = 1.

b) We observe that the constant function g(k) = C is solution of both (B.17) and (B.18) and the boundary condition g(S) = 1 yields
C = 1, hence

g(k) = P(W | X0 = k) = 1
for all k = 0, 1, . . . ,S. MH3512 AY19-20
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h(k) = 1 + ph(k+ 1) + qh(k− 1), k = 1, 2, . . . ,S − 1, (B.19)

with
h(0) = 1 + ph(1) + qh(0)

for k = 0, and the boundary condition h(S) = 0.

d) Case p 6= q. The solution of the homogeneous equation

h(k) = ph(k+ 1) + qh(k− 1), k = 1, 2, . . . ,S − 1,

has the form
h(k) = C1 +C2(q/p)k, k = 1, 2, . . . ,S − 1,

and we can check that k 7→ k/(p− q) is a particular solution. Hence the general solution of (B.19) has the form

h(k) =
k

q− p
+C1 +C2(q/p)k, k = 0, 1, . . . ,S,

with 

0 = h(S) =
S

q− p
+C1 +C2(q/p)S,

ph(0) = p(C1 +C2) = 1 + ph(1) = 1 + p

 1
q− p

+C1 +C2
q

p

 ,

which yields 

C1 = q
(q/p)S

(p− q)2 −
S

q− p
,

C2 = −
q

(p− q)2 ,

and
h(k) = IE[TS | X0 = k] =

S − k
p− q

+
q

(p− q)2((q/p)S − (q/p)k),

k = 0, 1, . . . ,S. MH3512 AY19-20



"483

Case p = q = 1/2. The solution of the homogeneous equation is given by

h(k) = C1 +C2k, k = 1, 2, . . . ,S − 1,

and the general solution to (B.19) has the form

h(k) = −k2 +C1 +C2k, k = 1, 2, . . . ,S,

with 
0 = h(S) = −S2 +C1 +C2S,

h(0)
2

=
C1

2
= 1 +

h(1)
2

= 1 +
−1 +C1 +C2

2
,

hence 
C1 = S(S + 1),

C2 = −1,
which yields

h(k) = IE[TS | X0 = k] = (S + k+ 1)(S − k), k = 0, 1, . . . ,S.

e) When p 6= q we have

pk := P(TS < T0 | X0 = k) =
1− (q/p)k

1− (q/p)S
, k = 0, 1, . . . ,S,

and when p = q = 1/2 we find
pk =

k

S
, k = 0, 1, . . . ,S.

f) The equality holds because, given that we start from state
�� ��k+ 1 at time 1, whether TS < T0 or TS > T0 does not depend on the

past of the process before time 1. In addition it does not matter whether we start from state
�� ��k+ 1 at time 1 or at time 0.

g) We have

P(X1 = k+ 1 | X0 = k and TS < T0) =
P(X1 = k+ 1, X0 = k, TS < T0)

P(X0 = k and TS < T0) MH3512 AY19-20
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=

P(TS < T0 | X1 = k+ 1 and X0 = k)P(X1 = k+ 1 and X0 = k)

P(TS < T0 and X0 = k)

= p
P(TS < T0 | X0 = k+ 1)

P(TS < T0 | X0 = k)
= p

pk+1

pk
,

k = 0, 1, . . . ,S − 1. By the result of Question (e), when p 6= q we find

P(X1 = k+ 1 | X0 = k and TS < T0) = p
1− (q/p)k+1

1− (q/p)k
,

k = 1, 2, . . . ,S − 1, and in case p = q = 1/2 we get

P(X1 = k+ 1 | X0 = k and TS < T0) =
k+ 1

2k
,

k = 1, 2, . . . ,S − 1. Note that this probability is higher than p = 1/2.

h) Similarly, we have

P(X1 = k− 1 | X0 = k and T0 < TS)

=
P(X1 = k− 1, X0 = k and T0 < TS)

P(X0 = k and T0 < TS)

=
P(T0 < TS | X1 = k− 1 and X0 = k)P(X1 = k− 1 and X0 = k)

P(T0 < TS and X0 = k)

= q
P(T0 < TS | X0 = k− 1)

P(T0 < TS | X0 = k)

= q
1− pk−1

1− pk
,

k = 1, 2, . . . ,S − 1. When p 6= q this yields

P(X1 = k− 1 | X0 = k and T0 < TS) = q
(q/p)k−1− (q/p)S

(q/p)k − (q/p)S
,

MH3512 AY19-20
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P(X1 = k− 1 | X0 = k and T0 < TS) =
S + 1− k
2(S − k)

,

k = 1, 2, . . . ,S − 1. Note that this probability is higher than q = 1/2.

i) We find

h(k) = 1 + p
pk+1

pk
h(k+ 1) +

1− p
pk+1

pk

h(k− 1), (B.20)

k = 1, 2, . . . ,S − 1, or, due to the first step equation pk = ppk+1 + qpk−1,

pkh(k) = pk + ppk+1h(k+ 1) + qpk−1h(k− 1), k = 1, 2, . . . ,S − 1,

with the boundary condition h(S) = 0. When p = q = 1/2 we have pk = k/S by Question (e), hence (B.20) becomes

h(k) = 1 +
k+ 1

2k
h(k+ 1) +

k− 1
2k

h(k− 1),

k = 1, 2, . . . ,S − 1.

j) We have to solve the equation

kh(k) = k+
1
2
(k+ 1)h(k+ 1) +

1
2
(k− 1)h(k− 1), k = 1, 2, . . . ,S − 1,

with the boundary condition h(S) = 0. Letting g(k) := kh(k) we check that g(k) satisfies

g(k) = k+
1
2
g(k+ 1) +

1
2
g(k− 1), k = 1, 2, . . . ,S − 1, (B.21)

with the boundary conditions g(0) = 0 and g(S) = 0. We check that g(k) = Ck3 is a particular solution when C = −1/3,
hence the solution of (B.21) has the form

g(k) = −
1
3
k3 +C1 +C2k, MH3512 AY19-20
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0 = g(0) = C1

and
0 = g(S) = −

1
3
S3 +C1 +C2S,

i.e. C1 = 0 and C2 = S2/3. Consequently, we have

g(k) =
k

3
(S2− k2), k = 0, 1, . . . ,S,

hence we have
h(k) = IE[TS | X0 = k, TS < T0] =

S2− k2

3
, k = 1, 2, . . . ,S.

The conditional expectation h(0) is actually undefined because the event
{
X0 = 0, TS < T0

}
has probability 0.

Problem 2.8

a) We have g(0) = 0 and g(S) = g(S + 1) = 1.

b) We have
g(k) = pg(k+ 2) + rg(k) + 2pg(k− 1), 1 6 k 6 S − 1,

and g(0) = 0 and g(S) = g(S + 1) = 1.

c) Trying a solution of the form g(k) = Cλk shows that λ must satisfy

λk = pλk+2 + rλk + 2pλk−1, 1 6 k 6 S − 1,

i.e.
λ = pλ3 + rλ+ 2p, 1 6 k 6 S − 1,

hence, using the relation 3p+ r = 1 we find

λ3− 3λ+ 2 = (λ2− 2λ+ 1)(λ+ 2) = (λ− 1)2(λ+ 2) = 0, k = 1, 2, . . . ,S − 1, MH3512 AY19-20
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g(k) = C1 +C2k+C3(−2)k

with the boundary conditions 

g(0) = 0 = C1 +C3,

g(S) = 1 = C1 +C2S + (−2)SC3,

g(S + 1) = 1 = C1 +C2(S + 1)− 2× (−2)SC3,
i.e. 

C1 =
1

1− (3S + 1)(−2)S

C2 = −
3(−2)S

1− (3S + 1)(−2)S

C3 = −
1

1− (3S + 1)(−2)S
,

which yields

g(k) =
1

1− (3S + 1)(−2)S
−

3k(−2)S

1− (3S + 1)(−2)S
−

(−2)k

1− (3S + 1)(−2)S

=
1− 3k(−2)S − (−2)k

1− (3S + 1)(−2)S
, k = 0, 1, . . . ,S + 1. (B.22)

In the graph of Figure S.1 the ruin probability (B.22) is plotted as a function of k for p = 1/3 and r = 0. MH3512 AY19-20
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k/S

Figure S.1: Ruin probability f8(k) as a function of X0 = k ∈ [0, 9].

d) Intuitively, this problem corresponds to a fair game for all values of p since the expected gain IE[Xn−Xn−1] = 0 vanishes∗ for all
n > 1, so that the probability of ruin f(k) should be the same for all p ∈ (0, 1/2), which is indeed the case in (B.22).

e) We have h(0) = h(S) = h(S + 1) = 0.

f) We find
h(k) = 1 + ph(k+ 2) + rh(k) + 2ph(k− 1), 1 6 k 6 S − 1.

g) After checking that k 7→ Ck cannot be a solution we search for a particular solution of the form h(k) = Ck2, which yields

Ck2 = 1 + pC(k+ 2)2 + rCk2 + 2pC(k− 1)2, 1 6 k 6 S − 1,

i.e.
0 = 1 + pC(2k+ 4) + 2pC(−2k+ 1), 1 6 k 6 S − 1,

or C = −1/(6p).

h) The general solution takes the form

h(k) = −
k2

6p
+C1 +C2k+C3(−2)k

∗We are in presence of a fair game in which probabilities of going up and down are not equal, while increments are by two units and decrements are by one unit. MH3512 AY19-20
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h(0) = 0 = C1 +C3,

h(S) = 0 = −
S2

6p
+C1 +C2S + (−2)SC3,

h(S + 1) = 0 = −
(S + 1)2

6p
+C1 +C2(S + 1)− 2× (−2)SC3,

i.e. 

C1 = −
S(S + 1)

6p(1− 3S(−2)S − (−2)S)

C2 =
S

6p
+

(S + 1)(1− (−2)S)
6p(1− 3S(−2)S − (−2)S)

C3 =
S(S + 1)

6p(1− 3S(−2)S − (−2)S)
,

which yields

h(k) = −
k2

6p
−

S(S + 1)
6p(1− (3S + 1)(−2)S)

+ k

 S
6p

+
(S + 1)(1− (−2)S)

6p(1− (3S + 1)(−2)S)


+

S(S + 1)(−2)k

6p(1− (3S + 1)(−2)S)

=
k(S − k)

6p
+
−S(S + 1) + k(S + 1)(1− (−2)S) + S(S + 1)(−2)k

6p(1− (3S + 1)(−2)S)
,

=
k(S − k)

6p
+
k(S + 1)(1− (−2)S)− S(S + 1)(1− (−2)k)

6p(1− (3S + 1)(−2)S)

=
k(S − k)

6p
+

k(S + 1)− S(S + 1)
6p(1− (3S + 1)(−2)S)

+
−k(S + 1)(−2)S + S(S + 1)(−2)k

6p(1− (3S + 1)(−2)S)

MH3512 AY19-20
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=
k(S − k)

6p
+ (S + 1)

S(−2)k − k(−2)S − (S − k)
6p(1− (3S + 1)(−2)S)

, (B.23)

k = 0, 1, . . . ,S + 1. In the graph of Figure S.2 the mean game duration (B.23) is plotted as a function of k with p = 1/3.
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k(S-k)

Figure S.2: Mean game duration h20(k) as a function of X0 = k ∈ [0, 20].

i) Starting from a state k ∈ {1, 2, . . . ,S − 1}, the mean duration goes to infinity when p goes to zero. Indeed, when p goes to 0 the
probability 1− 3p of a draw increases and the game should take longer. Hence the above answer is compatible with intuition.

j) When S tends to infinity, the ruin probability starting from k > 1 tends to 0 and the mean game duration tends to infinity.

Problem 2.9

a) We have h(0) = h(1) = 0.

b) Here we need to increment the value of τ by one unit in the first step analysis argument, which yields

h(k) = p IE
[
(1 + τ )2 ∣∣∣X0 = k+ 1

]
+ q IE

[
(1 + τ )2 ∣∣∣X0 = k− 1

]
= p IE

[
1 + 2τ + τ 2 ∣∣∣X0 = k+ 1

]
+ q IE

[
1 + 2τ + τ 2 ∣∣∣X0 = k− 1

]
= 1 + p IE

[
2τ + τ 2 ∣∣∣X0 = k+ 1

]
+ q IE

[
2τ + τ 2 ∣∣∣X0 = k− 1

]
= 1 + 2p IE

[
τ
∣∣∣X0 = k+ 1

]
+ 2q IE

[
τ
∣∣∣X0 = k− 1

]
MH3512 AY19-20



"491+p IE
[
τ 2 ∣∣∣X0 = k+ 1

]
+ q IE

[
τ 2 ∣∣∣X0 = k− 1

]
= 1 + 2p IE

[
τ
∣∣∣X0 = k+ 1

]
+ 2q IE

[
τ
∣∣∣X0 = k− 1

]
+ ph(k+ 1) + qh(k− 1),

1 6 k 6 S − 1, where we used the relation p+ q = 1.

c) We have

h(k) = 1 + IE
[
τ
∣∣∣X0 = k+ 1

]
+ IE

[
τ
∣∣∣X0 = k− 1

]
+

1
2
h(k+ 1) +

1
2
h(k− 1)

= 1 + (S − k− 1)(k+ 1) + (S − k+ 1)(k− 1) +
1
2
h(k+ 1) +

1
2
h(k− 1)

= 1 + (S − k− 1)k+ (S − k− 1) + (S − k+ 1)k− (S − k+ 1)

+
1
2
h(k+ 1) +

1
2
h(k− 1)

= −1 + 2(S − k)k+
1
2
h(k+ 1) +

1
2
h(k− 1),

1 6 k 6 S − 1.

d) We have

h(k) = C1 +C2k+
2k2

3
−
k3

3
(2S − k)

with
0 = h(0) = C1

and
0 = h(S) = C2S +

2S2

3
−
S4

3
hence

C2 = −
2S
3

+
S3

3
=
S

3
(
S2− 2

)
and

h(k) = k
S

3
(
S2− 2

)
+

2k2

3
−
k3

3
(2S − k). MH3512 AY19-20



"492e) We have

v(k) = h(k)− k2(S − k)2

= k
S

3
(
S2− 2

)
+

2k2

3
−
k3

3
(2S − k)− k2(S − k)2

= k

S
3
(
S2− 2

)
+

2k
3
− S

k2

3
−
k2

3
(S − k)− k(S − k)2


=

k

3
(
S
(
S2− 2

)
+ 2k− Sk2− k2(S − k)− 3k(S − k)2)

=
k

3
(
(S − k)

(
S2− 2

)
+ Sk(S − k)− k2(S − k)− 3k(S − k)2)

=
k

3
(
(S − k)

(
S2− 2 + Sk

)
− k2(S − k)− 3k(S − k)2)

=
k(S − k)

3
(
k2 + (S − k)2− 2

)
.

Remark. When k = S/2 we find

v(k) =
S2

12
(
S2/2− 2

)

and the standard deviation

σ(k) '
S2
√

24
'
S2

5
.

if S is large.

In the graph of Figure S.3 the standard deviation of the game duration τ is plotted as a function of the initial state k = 0, 1, . . . ,S.MH3512 AY19-20
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Figure S.3: Standard deviation of τ as a function of X0 = k ∈ [0, 20].

f) We have v(1) = 0, which is consistent with the fact that the game duration is constant equal to one when k = 1 and S = 2.

Chapter 3 - Random Walks
Exercise 3.1

a) We find
4

3

 =

4
1

 = 4 paths, as follows.

-1

 0

 1

 2

 3

 0  1  2  3  4

S
n

n

-1

 0

 1

 2

 3

 0  1  2  3  4

S
n

n
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-1

 0

 1

 2

 3

 0  1  2  3  4

S
n

n

-1

 0

 1

 2

 3

 0  1  2  3  4

S
n

n

Figure S.4: Four paths leading from 0 to 2 in four steps.

b) In each of the 4
3

 =

4
1

 =
4!
3!

= 4

paths there are 3 steps up (with probability p) and 1 step down (with probability q = 1− p), hence the result.

c) We consider two cases depending on the parity of n and k.
i) In case n and k are even, or written as n = 2n′ and k = 2k′, (3.3.3) shows that

P(Sn = k | S0 = 0) = P(S2n′ = 2k′ | S0 = 0)

=

 2n′

n′+ k′

pn′+k′qn′−k′

=

 n

(n+ k)/2

p(n+k)/2q(n−k)/2, −n 6 k 6 n.

ii) In case n and k are odd, or written as n = 2n′+ 1 and k = 2k′+ 1, (3.3.4) shows that

P(Sn = k | S0 = 0) = P(S2n′+1 = 2k′+ 1 | S0 = 0)

=

 2n′+ 1
n′+ k′+ 1

pn′+k′+1qn
′−k′

=

 n

(n+ k)/2

p(n+k)/2q(n−k)/2, −n 6 k 6 n.
MH3512 AY19-20



"495d) By a first step analysis started at state 0 we have, letting pn,k := P(Sn = k),

pn+1,k = P(Sn+1 = k)

= P(Sn+1 = k | S0 = 0)
= P(Sn+1 = k | S1 = 1)P(S1 = 1 | S0 = 0)

+P(Sn+1 = k | S1 = −1)P(S1 = −1 | S0 = 0)
= pP(Sn+1 = k | S1 = 1) + qP(Sn+1 = k | S1 = −1)
= pP(Sn+1 = k− 1 | S1 = 0) + qP(Sn+1 = k+ 1 | S1 = 0)
= pP(Sn = k− 1 | S0 = 0) + qP(Sn = k+ 1 | S0 = 0)
= ppn,k−1 + qpn,k+1,

which yields
pn+1,k = ppn,k−1 + qpn,k+1,

for all n ∈ N and k ∈ Z. The same equation could be obtained by a backstep analysis, by looking at the two possible ways to reach
state k at time n+ 1 after starting from either k− 1 or k+ 1 at time n.

e) We consider two cases depending on the parity of n+ 1 + k.

i) If n+ 1 + k is odd the equation is clearly satisfied as both the right hand side and left hand side of (3.4.25) are equal to 0.

ii) If n+ 1 + k is even we have

ppn,k−1 + qpn,k+1 = p

 n

(n− 1 + k)/2

p(n−1+k)/2(1− p)(n+1−k)/2

+q

 n

(n+ 1 + k)/2

p(n+1+k)/2(1− p)(n−1−k)/2

=

 n

(n− 1 + k)/2

p(n+1+k)/2q(n+1−k)/2

+

 n

(n+ 1 + k)/2

p(n+1+k)/2q(n+1−k)/2

= p(n+1+k)/2q(n+1−k)/2
 n

(n− 1 + k)/2

+

 n

(n+ 1 + k)/2


MH3512 AY19-20
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= p(n+1+k)/2q(n+1−k)/2

 n!
((n+ 1− k)/2)!((n− 1 + k)/2)!

+
n!

((n− 1− k)/2)!((n+ 1 + k)/2)!


= p(n+1+k)/2q(n+1−k)/2

 n!(n+ 1 + k)/2
((n+ 1− k)/2)!((n+ 1 + k)/2)!

+
n!(n+ 1− k)/2

((n1− k)/2)!((n+ 1 + k)/2)!


= p(n+1+k)/2q(n+1−k)/2 n!(n+ 1)

((n+ 1− k)/2)!((n+ 1 + k)/2)!

= p(n+1+k)/2q(n+1−k)/2
 n+ 1
(n+ 1 + k)/2


= pn+1,k,

which shows that pn,k satisfies Equation (3.4.25). In addition we clearly have

p0,0 = P(S0 = 0) = 1 and p0,k = P(S0 = k) = 0, k 6= 0.

Exercise 3.2

a) By the space homogeneity of the random walk we have

IE[Ti−1 | S0 = i] = IE[T0 | S0 = 1], i = 1, 2, . . . , k,

hence by adding inductively the average travel times from i to
�� ��i− 1 we find

IE[T0 | S0 = k] =
k∑
i=1

IE[Ti−1 | S0 = i] = k IE[T0 | S0 = 1].

Next, by first step analysis we have

IE[T0 | S0 = 1] = q× 1 + p× (1 + IE[T0 | S0 = 2])
= q× 1 + p× (1 + 2 IE[T0 | S0 = 1]) MH3512 AY19-20



"497= 1 + 2p IE[T0 | S0 = 1],

hence
IE[T0 | S0 = 1] =

1
1− 2p

=
1

q− p
, q > p.

When p > q we find IE[T0 | S0 = 1] = +∞.

b) By the space homogeneity of the random walk we have

P(Ti−1 <∞ | S0 = i) = P(T0 <∞ | S0 = 1), i = 1, 2, . . . , k,

hence by multiplying inductively the hitting probabilities of state
�� ��i-1 starting from i we find

P(T0 <∞ | S0 = k) =
k∏
i=1

P(Ti−1 <∞ | S0 = i) = (P(T0 <∞ | S0 = 1))k .

c) By first step analysis we have
P(T0 <∞ | S0 = 1) = q+ p(P(T0 <∞ | S0 = 1))2,

which yields the equation
pα2−α+ q = 0

for α := P(T0 <∞ | S0 = 1), and possible solutions α ∈ {1, q/p}. When p > q we find

P(T0 <∞ | S0 = 1) =
q

p
,

when p 6 q we have P(T0 <∞ | S0 = 1) = 1. We conclude that in general,

P(T0 <∞ | S0 = k) = min
1,

q
p

k
 , k ∈ N,

which coincides with (2.2.13) and (3.4.16).

Exercise 3.3 Recall that by (3.4.27) we have GT r0 (s) = 1−
√

1− 4pqs2, s ∈ (−1, 1). MH3512 AY19-20



"498a) We have P(T r0 = 0) = GT r0 (0) = 0 and

P(T r0 <∞) = GT r0 (1) = 1−
√

1− 4pq = 2 min(p, q).

b) In general we have P(T r0 = n) =
1
n!
G

(n)
T r0

(0), n > 0, with



G′T r0
(s) = 4pqs(1− 4pqs2)−1/2,

G′′T r0
(s) = 4pq(1− 4pqs2)−3/2,

G′′′T r0
(s) = 48p2q2s(1− 4pqs2)−5/2,

G
(4)
T r0

(s) = 48p2q2(1 + 16pqs2)(1− 4pqs2)−7/2,

hence 

P(T r0 = 1) = G′T r0
(0) = 0,

P(T r0 = 2) = G′′T r0
(0) = 2pq,

P(T r0 = 3) =
1
3!
G′′′T r0

(0) = 0,

P(T r0 = 4) =
1
4!
G

(4)
T r0

(0) = 2p2q2.

c) We have
IE[T r01{T r0<∞}] = G′T r0

(1) =
4pq

√
1− 4pq

=
4pq
|p− q|

,

hence
IE[T r0 | T

r
0 <∞] =

1
P(T r0 <∞)

IE[T r01{T r0<∞}] = 2
max(p, q)
|p− q|

,

see (3.4.19). MH3512 AY19-20



"499Exercise 3.4

a) We have the boundary conditions G0(s) = 1, G±∞(s) = 0, s ∈ (−1, 1), and

Gi(s) = IE[sT0 | X0 = i]

= p IE[s1+T0 | X0 = i+ 1] + q IE[s1+T0 | X0 = i− 1]
= ps IE[sT0 | X0 = i+ 1] + qs IE[sT0 | X0 = i− 1], i > 1,

hence we have
Gi(s) = psGi+1(s) + qsGi−1(s), i ∈ Z \ {0}, s ∈ [0, 1). (B.24)

b) We note that (B.24) has the same form as Equation (2.2.6), up to a parametrization by s ∈ [0, 1). Hence, substituting a possible
solution of the form Gi(s) = (α(s))i into (B.24) we find

(α(s))i = ps(α(s))i+1 + qs(α(s))i−1,

which yields the characteristic equation

ps(α(s))2−α(s) + qs = 0, s ∈ [0, 1),

with unknown α(s) and solutions

α+(s) =
1 +
√

1− 4pqs2

2ps
=

2qs
1−
√

1− 4pqs2 >
1

2ps
, |s| < 1/(2√pq),

and
α−(s) =

1−
√

1− 4pqs2

2ps
=

2qs
1 +
√

1− 4pqs2 < 2qs, |s| < 1/(2√pq),

hence the general solution of (B.24) is given by

Gi(s) = C+(α+(s))
i +C−(α−(s))

i

= C+

1 +
√

1− 4pqs2

2ps


i

+C−

1−
√

1− 4pqs2

2ps


i

, i ∈ Z.

Hence the boundary conditions G±∞(s) = 0, or the boundedness condition |Gi(s)| 6 1 for sufficiently small s ∈ (−1, 1), showMH3512 AY19-20



"500that C+ = 0 and C− = 1 when i > 0, i.e.

Gi(s) =

1−
√

1− 4pqs2

2ps


i

=

 2qs
1 +
√

1− 4pqs2

i , i > 0, (B.25)

and C+ = 1 and C− = 0 when i 6 0, i.e.

Gi(s) =

1 +
√

1− 4pqs2

2ps


i

=

 2qs
1−
√

1− 4pqs2

i , i 6 0,

while by symmetry we also have

Gi(s) =

 2qs
1 +
√

1− 4pqs2

i =
1−

√
1− 4pqs2

2ps


i

, i > 0, (B.26)

and

Gi(s) =

 2qs
1−
√

1− 4pqs2

i =
1 +

√
1− 4pqs2

2ps


i

, i 6 0.

c) Relations (B.25) and (B.26) show from (3.4.14) that

P(T0 <∞ | X0 = i) = Gi(1) =
2q

1 +
√

1− 4pq
=

2q
1 + |p− q|

= min
1,

q
p

i
 ,

i > 0, which recovers (2.2.13) and (3.4.16).

d) When q 6 p we have

G′i(s) = −
is−i−1

(2q)i
(
1−

√
1− 4pqs2

)i
+

4pqi
(2q)i

(
1−
√

1− 4pqs2
)i−1

√
1− 4pqs2 ,

and when s = 1 this yields

G′i(1) = −
i

(2q)i
(
1−
√

1− 4pq
)i
+

4pqi
(2q)i

(1−
√

1− 4pq)i−1

√
1− 4pq MH3512 AY19-20
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= −

i

(2q)i
(1− (p− q))i +

4pqi
(2q)i

(1− (p− q))i−1

p− q

= −i+
2pi
p− q

=
i

q− p
, i 6 0.

e) By first step analysis starting from state 0 we have, when q > p,

IE
[
sT

r
0 | X0 = 0

]
= ps IE

[
sT0 | X0 = 1

]
+ qs IE

[
sT0 | X0 = −1

]
= psG1(s) + qsG−1(s)

=
1−
√

1− 4pqs2

2
+

2pqs2

1 +
√

1− 4pqs2

=
(1−

√
1− 4pqs2)(1 +

√
1− 4pqs2) + 4pqs2

2(1 +
√

1− 4pqs2)

=
4pqs2

1 +
√

1− 4pqs2

= 1−
√

1− 4pqs2, s ∈ [0, 1),

which recovers (3.4.9), while when q 6 p we find similarly

IE
[
sT

r
0 | X0 = 0

]
= psG1(s) + qsG−1(s)

=
2qps2

1 +
√

1− 4pqs2 +
1−
√

1− 4pqs2

2
= 1−

√
1− 4pqs2, s ∈ [0, 1).

Exercise 3.5 By (3.4.21) we have

IE
[
T r01{T r0<∞} | S0 = 0

]
=

∑
n>1

nP
(
T r0 = n | S0 = 0

)
MH3512 AY19-20
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∑
k>1

2kP
(
T r0 = 2k | S0 = 0

)

=
∑
k>1

2k
2k− 1

2k
k

(1/4)k (B.27)

= ∞,

where the general term of the above series satisfies the equivalence

2k
2k− 1

2k
k

(1/4)k 'k→∞
(2k)!

4k(k!)2 'k→∞

√√√√ 1
2πk

by Stirling’s approximation k! ' (k/e)k
√

2πk as k tends to∞, from which we conclude to the divergence of the series (B.27).

Exercise 3.6

a) We have

IE [Mn] = IE
 n∑
k=1

2k−1Xk


=

n∑
k=1

2k−1 IE [Xk]

= (p− q)
n−1∑
k=0

2k

= (p− q)
1− 2n

1− 2
= (p− q)(2n− 1), n > 0.

b) The two possible values of Mτ∧n are 1 and

−
n∑
k=1

2k−1 = −
1− 2n

1− 2
= 1− 2n, n > 1.

We have
P(Mn∧τ = 1− 2n) = qn and P(Mn∧τ = 1) = 1− qn, n > 1. MH3512 AY19-20
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"503c) The stopped process (Mmin(n,τ ))n∈N represents the wealth of a gambler whose strategy of the gambler is to double the stakes each
time he loses, and to quit the game as soon as his gains reach $1.

d) We have

IE[Mn∧τ ] = (1− 2n)P(Mn∧τ = 1− 2n) + P(Mn∧τ = 1)
= (1− 2n)qn + 1− qn

= 1− (2q)n, n > 1.

In particular, we find IE[Mn∧τ ] = 0 in the fair game with p = q = 1/2.

Exercise 3.7

a) We have P(T (m) < m) = 0, P(T (m) = m) = pm, P(T (m) = m+ 1) = qpm, and P(T (m) = m+ 2) = q2pm + pqpm =
qpm.

b) The idea is to start by start by flipping a coin and to observe the number k of consecutive “1” until we get the first “0”.
1) If k = m then the game ends, and this happens with probability P(T (m) = m) = pm.
2) If k < m, the sequence of “1” is broken and we need to start again at time k+ 1. This happens with probability pkq and we

need to factor in the power sk+1 where k+ 1 is the number of time steps until we reach the first “0”, and restart the counter
T (m).

Therefore we have

GT (m)(s) = smP(T (m) = m) +
m−1∑
k=0

qpk IE[sk+1+T (m)
]

= pmsm +
m−1∑
k=0

pkqsk+1 IE[sT (m)
]

= pmsm +
m−1∑
k=0

pkqsk+1GT (m)(s), s ∈ (−1, 1).

c) We have

GT (m)(s)

1−
m−1∑
k=0

pkqsk+1
 = pmsm,

MH3512 AY19-20



"504and

GT (m)(s) =
pmsm

1− ∑m−1
k=0 p

kqsk+1

=
pmsm

1−
qs(1− (ps)m

1− ps

=
pmsm(1− ps)

1− ps− qs(1− (ps)m)

=
pmsm(1− ps)

1− s+ qpmsm+1 , s ∈ (−1, 1].

We note that
P
(
T (m) <∞

)
= GT (m)(1) = (1− p)

pm

qpm
= 1.

d) Differentiating in (3.4.28) with respect to s, we find

G′
T (m)(s) =

m−1∑
k=0

pkq(k+ 1)skGT (m)(s) +
m−1∑
k=0

pkqsk+1G′
T (m)(s) +mpmsm−1,

s ∈ (−1, 1), hence, since GT (m)(1) = 1 because P
(
T (m) <∞

)
= 1, we have

G′
T (m)(1) = (1− p)

m−1∑
k=0

pk(k+ 1) +mpm +G′
T (m)(1)

m−1∑
k=0

pkq

=
1− pm

1− p
+ qG′

T (m)(1)
m−1∑
k=0

pk

=
1− pm

1− p
+ qG′

T (m)(1)
1− pm

1− p

=
1− pm

1− p
+G′

T (m)(1)(1− pm),
MH3512 AY19-20



"505which yields

IE
[
T (m)

]
= G′

T (m)(1) =
1− pm

pm(1− p)
=

1− (1/p)m

p(1− 1/p)
=

m∑
k=1

1
pk

.

For example, for an unbiased coin with p = 1/2 the mean time until the first winning streak of length m is

IE
[
T (m)

]
=

m∑
k=1

1
(1/2)k

=
m∑
k=1

2k = 2
1− 2m

1− 2
= 2(2m− 1).

Exercise 3.8

a) Applying (3.4.29) with m = n− 1 and k = 0, we find that this number is
2n− 2
n− 1

.

b) Applying (3.4.29) with m = n− 1 and k = −1, we find that this number is
2n− 2
n− 2

 =

2n− 2
n

.

c) On the graph below, the blue path joining S1 = 1 to S2n−1 = 1 by crossing 0 is associated to a unique red path joining S1 = 1
to S2n−1 = −1.

MH3512 AY19-20
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original path

reflected path

d) This number is
2n− 2
n− 2

 =

2n− 2
n

.

e) This number is
2n− 2
n− 1

−
2n− 2
n− 2

 =
(2n− 2)!

(n− 1)!(n− 1)!
−

(2n− 2)!
(n− 2)!n!

=
(n2− n(n− 1))(2n− 2)!

n!n!

=
(2n− 2)!
(n− 1)!n!

.
MH3512 AY19-20
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f) According to the following graph, to each of the

(2n− 2)!
(n− 1)!n!

blue paths joining S1 = 1 to S2n−2 = 1 without crossing 0 between

time 1 and time 2n− 1 we can associate a red path joining S1 = −1 to S2n−2 = −1 without crossing 0 .

original path

reflected path

Adding the number of paths joining S1 = 1 to S2n−2 = 1 without crossing 0 between time 1 and time 2n− 1 to the number of
paths joining S1 = −1 to S2n−2 = −1 without crossing 0 between time 1 and time 2n− 1, we get the total to the number of
paths joining S0 = 0 to S2n = 0 without crossing 0 , between time 0 and time 2n, as follows:

2
(2n− 2)!
(n− 1)!n!

=
2n(2n− 2)!

n!n!
=

1
2n− 1

2n
n

.
MH3512 AY19-20
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1
2n− 1

2n
n

 =
n−1∑
k=0

1
2n− 2k− 1

2n− 2k
n− k

2k
k


=

n−1∑
k=0

1
2k− 1

2k
k

2n− 2k
n− k

, n > 1,

see e.g. here.

Problem 3.9

a) We have

P(S2n = 2k) =

 2n
n+ k

pn+kqn−k, −n 6 k 6 n.

b) We partition the event {S2n = 0} into

{S2n = 0} =
2n⋃
k=1

{
S1 6= 0, . . . ,S2k−1 6= 0, S2k = 0

}
, n > 1,

according to all possible times 2k = 2, 4, . . . , 2n of first return to state 0 before time 2n, see Figure S.5. MH3512 AY19-20
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n

Sn

S0 =
2k =

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure S.5: Last return to state 0 at time k = 10.

Then we have

P(S2n = 0) =
n∑
r=1

P
(
S2 6= 0, . . . ,S2r−1 6= 0, S2r = 0, S2n = 0

)

=
n∑
r=1

P
(
S2n = 0 | S2r = 0, S2r−1 6= 0, . . . , S2 6= 0

)
×P

(
S2 6= 0, . . . ,S2r−1 6= 0, S2r = 0

)
=

n∑
r=1

P
(
S2n = 0 | S2r = 0

)
P
(
T0 = 2r

)

=
n∑
k=1

P
(
S2n−2r = 0

)
P
(
T0 = 2r

)
, n > 1.

c) The idea of the proof is to note that after starting from S0 = 0, one may move up with probability 1/2, in which case T0 = 2r time
steps strictly above 0 will be counted from time 0 until time T0, after which the remaining 2r− 2k time steps will be counted from
time T0 until time 2n. On the other hand, if one moves down with probability 1/2, zero time step strictly above 0 will be counted
from time 0 until time T0 = 2r, after which the remaining 2k time steps strictly above zero will be counted from time T0 = 2rMH3512 AY19-20
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P(T+
2n = 2k) =

n∑
r=1

P
(
S0 = 0, T0 = 2r, T+

2n = 2k
)

=
n∑
r=1

P
(
S0 = 0,S1 = 1, T0 = 2r, T+

2n = 2k
)

+
n∑
r=1

P
(
S0 = 0,S1 = −1, T0 = 2r, T+

2n = 2k
)

=
k∑
r=1

P
(
S0 = 0,S1 = 1, T0 = 2r

)
P
(
T+

2n = 2k | S1 = 1, T0 = 2r
)

+
n−k∑
r=1

P
(
S0 = 0,S1 = −1, T0 = 2r

)
P
(
T+

2n = 2k | S1 = −1, T0 = 2r
)

=
k∑
r=1

P
(
S0 = 0,S1 = 1, T0 = 2r

)
P
(
T+

2n−2r = 2k− 2r
)

+
n−k∑
r=1

P
(
S0 = 0,S1 = −1, T0 = 2r

)
P
(
T+

2n−2r = 2k
)

=
1
2

k∑
r=1

P
(
T0 = 2r

)
P
(
T+

2n−2r = 2k− 2r
)
+

1
2

n−k∑
r=1

P
(
T0 = 2r

)
P
(
T+

2n−2r = 2k
)
,

n > 1.

d) We check that, when

P
(
T+

2n−2r = 2k− 2r
)
= 2−(2n−2r)

2k− 2r
k− r

2n− 2k
n− k


and

P
(
T+

2n−2r = 2k
)
= 2−(2n−2r)

2k
k

2n− 2r− 2k
n− r− k

,

we have

1
2

k∑
r=1

P
(
T0 = 2r

)
P
(
T+

2n−2r = 2k− 2r
)
+

1
2

n−k∑
r=1

P
(
T0 = 2r

)
P
(
T+

2n−2r = 2k
)

=
1
2

k∑
r=1

P
(
T0 = 2r

)
2−2n+2r

2k− 2r
k− r

2n− 2k
n− k
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+

1
2

n−k∑
r=1

2−2n+2rP
(
T0 = 2r

)2k
k

2n− 2r− 2k
n− r− k


=

1
2

2−2n
2n− 2k
n− k

22k
k∑
r=1

P
(
T0 = 2r

) 1
22(k−r)

2k− 2r
k− r


+

1
2

2−2n
2k
k

22(n−k)
n−k∑
r=1

P
(
T0 = 2r

) 1
22(n−k−r)

2n− 2r− 2k
n− r− k


=

1
2

2−2(n−k)
2n− 2k
n− k

 k∑
r=1

P
(
T0 = 2r

)
P(S2k−2r = 0)

+
1
2

2k
k

2−2k
n−k∑
r=1

P
(
T0 = 2r

)
P(S2n−2k+2r = 0)

=
1
2

2−2(n−k)
2n− 2k
n− k

P(S2k = 0) +
1
2

2−2k
2k
k

P(S2n−2k = 0)

=
1
2

2−2n
2n− 2k
n− k

2k
k

+
1
2

2−2n
2k
k

2n− 2k
n− k


= 2−2n

2k
k

2n− 2k
n− k


= P

(
T+

2n = 2k
)
, n > 1.

e) We have

P
(
T+

2n = 2k
)

= 2−2n
2k
k

2n− 2k
n− k


= 2−2n(2k)!

k!2
(2n− 2k)!
(n− k)!2

' 2−2n(2k/e)2k√4πk
(k/e)2k2πk

((2n− 2k)/e)(2n−2k)
√

2π(2n− 2k)
((n− k)/e)(2n−2k)2π(n− k)

=
1

π
√
k(n− k)

, k,n− k→∞.
MH3512 AY19-20
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lim
n→∞P

(
T+

2n/2n 6 x
)

= lim
n→∞

nx∑
k=0

P
(
T+

2n/2n = k/n
)

= lim
n→∞

∑
06k/n6x

2−2n
2k
k

2n− 2k
n− k


'

1
π

lim
n→∞

1
n

∑
06k/n6x

1√
k(1− k/n)/n

=
1
π

w x

0

1√
t(1− t)

dt

=
1
2
+

arcsin(2x− 1)
π

=
2
π

arcsin
√
x, x ∈ [0, 1],

which yields the arcsine distribution.

Problem 3.10

a) Since the increment Xk takes its values in {−1, 1}, the set of distinct values in {S0,S1, . . . ,Sn} is the integer interval
 inf
k=0,1,...,n

Sk, sup
k=0,1,...,n

Sk

 ,

which has
Rn = 1 +

 sup
k=0,1,...,n

Sk

− (
inf

k=0,1,...,n
Sk

)

elements. In addition we have R0 = 1 and R1 = 2.

b) At each time step k > 1 the range can only either increase by one unit or remain constant, hence Rk−Rk−1 ∈ {0, 1} is a Bernoulli
random variable. In addition we have the identity

{Rk −Rk−1 = 1} = {Sk 6= S0, Sk 6= S1, . . . , Sk 6= Sk−1}, MH3512 AY19-20
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P(Rk −Rk−1 = 1) = P(Sk − S0 6= 0, Sk − S1 6= 0, . . . , Sk − Sk−1 6= 0).

c) By the change of index
(X1,X2, . . . ,Xk−1,Xk) 7−→ (Xk,Xk−1, . . . ,X2,X1)

under which X1 +X2 + · · ·+Xl becomes Xk + · · ·+Xk−l+1, l = 1, 2, . . . , k, we have

P(Rk −Rk−1 = 1) = P(Sk − S0 6= 0, Sk − S1 6= 0, . . . , Sk − Sk−1 6= 0)
= P(X1 + · · ·+Xk 6= 0, X2 + · · ·+Xk 6= 0, . . . , Xk 6= 0)
= P(X1 6= 0, X1 +X2 6= 0, . . . , X1 + · · ·+Xk 6= 0),

for all k > 1, since the sequence (Xk)k>1 is made of independent and identically distributed random variables.

d) We have the telescoping sum

Rn = R0 + (R1−R0) + · · ·+ (Rn−Rn−1)

= R0 +
n∑
k=1

(Rk −Rk−1), n ∈ N.

e) By (1.2.4) we have

P(T0 =∞) = P

 ⋂
k>1
{T0 > k}

 = lim
k→∞

P(T0 > k),

since
{T0 > k+ 1} =⇒ {T0 > k}, k > 1,

i.e. ({T0 > k})k>1 is a decreasing sequence of events.

f) Noting that Rk −Rk−1 ∈ {0, 1} is a Bernoulli random variable with

IE[Rk −Rk−1] = P(Rk −Rk−1 = 1), MH3512 AY19-20
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IE[Rn] = IE
R0 +

n∑
k=1

(Rk −Rk−1)

 = R0 +
n∑
k=1

IE[Rk −Rk−1]

= R0 +
n∑
k=1

P(Rk −Rk−1 = 1)

= R0 +
n∑
k=1

P(X1 6= 0,X1 +X2 6= 0, . . . ,X1 + · · ·+Xk 6= 0)

= R0 +
n∑
k=1

P(S1 6= 0,S2 6= 0, . . . ,Sk 6= 0) = R0 +
n∑
k=1

P(T0 > k)

= 1 +
n∑
k=1

P(T0 > k) = P(T0 > 0) +
n∑
k=1

P(T0 > k) =
n∑
k=0

P(T0 > k).

g) Let ε > 0. Since by Question (e) we have P(T0 =∞) = limk→∞ P(T0 > k), there exists N > 1 such that

|P(T0 =∞)−P(T0 > k)| < ε, k > N .

Hence for n > N we have∣∣∣∣∣∣P(T0 =∞)−
1
n

n∑
k=1

P(T0 > k)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1
n

n∑
k=1

(P(T0 =∞)−P(T0 > k))

∣∣∣∣∣∣
6

1
n

n∑
k=1
|P(T0 =∞)−P(T0 > k)|

6
1
n

N∑
k=1
|P(T0 =∞)−P(T0 > k)|+

1
n

n∑
k=N+1

|P(T0 =∞)−P(T0 > k)|

6
N

n
+
n−N
n

ε

6
N

n
+ ε. MH3512 AY19-20
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∣∣∣∣∣P(T0 =∞)−

1
n

IE[Rn]
∣∣∣∣∣ 6 1

n
+

∣∣∣∣∣∣P(T0 =∞)−
1
n

n∑
k=1

P(T0 > k)

∣∣∣∣∣∣ 6 2ε,

n > N0, which concludes the proof.

Alternatively, the answer to that question can be derived by applying the Cesàro theorem, which states that in general we have

lim
n→∞

1
n

n∑
k=0

ak = a

when the sequence (ak)k∈N has the limit a, by taking ak = P(T0 > k), k ∈ N, since we have limk→∞ P(T0 > k) = P(T0 =∞).

h) From Relation (3.4.15) in Section 3.4 we have
P(T0 = +∞) = |p− q|,

hence by the result of Question (g) we get
lim
n→∞

1
n

IE[Rn] = |p− q|,

when p 6= q, and
lim
n→∞

1
n

IE[Rn] = 0,

when p = q = 1/2.

Problem 3.11 The question of recurrence of the d-dimensional random walk has been first solved in [Pol21], cf. [CMS07] for the solution
proposed in this problem.

a) We partition the event {Sn = ~0} into

{Sn = ~0} =
n⋃
k=2
{Sn−k = ~0, Sn−k+1 6= ~0, . . . ,Sn−1 6= ~0, Sn = ~0}, n > 1,

according to the time of last return to state ~0 before time n, with P
(
{S1 = ~0}

)
= 0 since we are starting from S0 = ~0. Then weMH3512 AY19-20



"516have

P
(
Sn = ~0

)
:= P

(
Sn = ~0 | S0 = ~0

)
=

n∑
k=2

P
(
Sn−k = ~0, Sn−k+1 6= ~0, . . . ,Sn−1 6= ~0, Sn = ~0 | S0 = ~0

)

=
n∑
k=2

P
(
Sn−k+1 6= ~0, . . . ,Sn−1 6= ~0, Sn = ~0 | Sn−k = ~0, S0 = ~0

)
×P

(
Sn−k = ~0 | S0 = ~0

)
=

n∑
k=2

P
(
S1 6= ~0, . . . ,Sk−1 6= ~0, Sk = ~0 | S0 = ~0

)
P
(
Sn−k = ~0 | S0 = ~0

)

=
n∑
k=2

P
(
T r~0 = k | S0 = ~0

)
P
(
Sn−k = ~0 | S0 = ~0

)

=
n∑
k=2

P
(
Sn−k = ~0

)
P
(
T r~0 = k

)
, n > 1.

b) We have
m∑
n=1

P
(
Sn = ~0

)
=

m∑
n=1

n∑
k=2

P
(
T r~0 = k

)
P
(
Sn−k = ~0

)

=
m∑
k=2

m∑
n=k

P
(
T r~0 = k

)
P
(
Sn−k = ~0

)

=
m∑
k=2

P
(
T r~0 = k

)m−k∑
l=0

P
(
Sl = ~0

)

6
m∑
k=2

P
(
T r~0 = k

) m∑
l=0

P
(
Sl = ~0

)

=

 m∑
n=0

P
(
Sn = ~0

)  m∑
n=2

P
(
T r~0 = n

) .

c) By letting m tend to∞ in (3.4.30) we get

P
(
T r~0 <∞

)
=

∑
n>2

P
(
T r~0 = n

)
> 1,
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"517which allows us to conclude. Note that the sum of the series
∑
n>0

P
(
Sn = ~0

)
actually represents the average number of visits to state

0 .

d) We have

2m∑
n=1

P
(
Sn = ~0

)
=

2m∑
n=2

P
(
T r~0 = n

) 2m−n∑
l=0

P
(
Sl = ~0

)

>
m∑
n=2

P
(
T r~0 = n

) 2m−n∑
l=0

P
(
Sl = ~0

)

>
m∑
n=2

P
(
T r~0 = n

) m∑
l=0

P
(
Sl = ~0

)
.

e) Letting m tend to +∞ in (3.4.31) we find

P
(
T r~0 <∞

)
=

∑
n>2

P
(
T r~0 = n

)
6

∑
n>2

P
(
Sn = ~0

)
∑
n>0

P
(
Sn = ~0

) = 1−
1∑

n>0
P
(
Sn = ~0

) < 1.

f) When d = 1 we have

P(S2n = 0) =
1

22n

2n
n

 =
(2n)!

22n(n!)2 'n→∞
1
√
πn

,

by Stirling’s approximation, hence ∑
n>0

P(Sn = 0) =∞.

and the result of Question (c) shows that P(T r0 <∞) = 1.

g) We note that the random walk can return to state ~0 in 2n time steps by
• k forward steps in the direction e1,
• k backward steps in the direction −e1,
• n− k forward steps in the direction e2,
• n− k backward steps in the direction −e2, MH3512 AY19-20
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steps is the multinomial coefficient  2n

k, k,n− k,n− k

 =
(2n!)

k!k!(n− k)!(n− k)!
,

hence, since every sequence of 2n moves occur with the same probability (1/4)2n, by summation over k = 0, 1, . . . ,n we find

P
(
S2n = ~0

)
=

(1
4

)2n n∑
k=0

(2n!)
(k!)2((n− k)!)2

=
(2n)!

42n(n!)2

n∑
k=0

n
k

2

=
(2n)!

42n(n!)2

2n
n


=

((2n)!)2

42n(n!)4 'n→∞
1

2πn
,

where we used Stirling’s approximation, and this yields
∑
n>0

P
(
Sn = ~0

)
=∞.

To conclude, the result of Question (c) shows again that P
(
T r~0 <∞

)
= 1.

h) In order to come back to ~0 we need to take i1 forward steps in the direction e1 and i1 backward steps in the direction e1, and
similarly for i2, . . . , id. The number of ways to arrange such paths is given by the multinomial coefficient 2n

i1, i1, i2, i2, . . . , id, id

 =
(2n)!

(i1!)2 · · · (id!)2 ,

and by summation over all possible indices i1, i2, . . . , id > 0 satisfying i1 + · · ·+ id = n and multiplying by the probability
(1/(2d))2n of each path we find

P
(
S2n = ~0

)
=

1
(2d)2n

∑
i1+···+id=n
i1,i2,...,id>0

 2n
i1, i1, i2, i2, . . . , id, id


MH3512 AY19-20
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=

1
(2d)2n

∑
i1+···+id=n
i1,i2,...,id>0

(2n)!
(i1!)2 · · · (id!)2 .

i) By the hint provided that we have

∑
n>1

P
(
S2n = ~0

)
=

∑
n>1

1
(2d)2n

2n
n!

 ∑
i1+···+id=n
i1,i2,...,id>0

(n!)2

(i1!)2 · · · (id!)2

6
∑
n>1

1
(2d)2n

2n
n!

 n!
(an!)d(an + 1)bn

∑
i1+···+id=n
i1,i2,...,id>0

n!
i1! · · · id!

6
∑
n>1

1
(2d)2n

2n
n!

 n!dn

(an!)dabnn
=

∑
n>1

(2n)!
22ndnn!(an!)dabnn

.

j) For sufficiently large n, by the Stirling approximation we have

(2n)!
22ndnn!(an!)dabnn

'
(2n/e)2n√4πn

22ndn(n/e)n
√

2πn((an/e)an
√

2πan)dabnn

=

√
2

(2π)d/2

nn

ebn(and)nad/2
n

=

√
2

(2π)d/2

(1− bn/n)−n

ebnad/2
n

6

√
2dd/2

(2π)d/2

(1− (d− 1)/n)−n

(and)d/2

'
√

2dd/2ed−1

(2π)d/2

1
nd/2 ,

since and ' n as n goes to infinity from the relation and/n = 1− bn/n.

k) The result of Question (j) shows that ∑
n>0

P
(
Sn = ~0

)
<∞,
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"520hence P
(
T r~0 =∞

)
> 0 by the result of Question (e), and the random walk is not recurrent when d > 3.

Problem 3.12

a) The cookie random walk does not have the Markov property when p 6= 1/2 because in this case the transition probabilities at a given
state may depend on the past behavior of the chain starting from time 1. On the other hand, the cookie random walk has the Markov
property when p = 1/2 because in this case it coincides with the usual symmetric random walk with independent increments.

b) Knowing that the probability for a symmetric random walk to reach state
�� ��x+ 1 before hitting state 0 starting from k is

k/(x+ 1), by first step analysis we find the probability

p+ (1− p)
x− 1
x+ 1

= 1−
2q
x+ 1

, x > 1.

c) We have P(τ1 < τ0 | S0 = 0) = 1/2 and by the (strong) Markov property, by reasoning inductively on the transitions from state
0 to state 1 , then from state 2 to state 2 , etc, up to state x , we find

P(τx < τ0 | S0 = 0) =
x−1∏
l=0

P(τl+1 < τ0 | S0 = l)

= P(τ1 < τ0 | S0 = 0)
x−1∏
l=1

P(τl+1 < τ0 | S0 = l)

=
1
2

x−1∏
l=1

(
1−

2q
l+ 1

)

=
1
2

x∏
l=2

(
1−

2q
l

)
, x > 1.

d) Using the inequality log(1 + z) 6 z for z > −1, we have

x∑
l=2

log
(
1−

2q
l

)
6

w x

2
log

1−
2q
y

 dy
6 −2q

w x

2

1
y
dy
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= −2q log

x

2
,

hence

P(τx < τ0 | S0 = 0) =
1
2

exp
 x∑
l=2

(
1−

2q
l

)
6 exp

(
−2q log

x

2

)
6

(
x

2

)−2q
,

x > 2.

e) We have

P(τ0 <∞ | S0 = 0) > P

 ⋃
x>1

τ0 < τx

∣∣∣∣∣ S0 = 0


= lim
x→∞P(τ0 < τx | S0 = 0)

= lim
x→∞(1−P(τx 6 τ0 | S0 = 0))

= lim
x→∞(1−P(τx < τ0 | S0 = 0))

> 1− lim
x→∞(x/2)−2q

= 1.

Remark. We note that P(τx < ∞ | S0 = 0) = 1, as can be seen by bounding from Question (a) of Problem 2.7 with rebound.
Note also that P(B ∩A) = P(B) when P(A) = 1.

f) This question can be solved in three possible ways.

i) By first step analysis. We have
IE[τ1 | S0 = 0] =

1
2
× 1 +

1
2
(1 + IE[τ1 | S0 = 0]),

hence
IE[τ1 | S0 = 0] = 2. MH3512 AY19-20
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IE[τ1 | S0 = 0] =
∑
k>1

k

2k
=

1
2
∑
k>1

k

2k−1 =
1/2

(1− 1/2)2 = 2.

iii) By applying the result of Question (d) of Problem 2.7 page 100 with S = 1 and k = 0, which shows that

IE[τ1 | S0 = 0] = (S + k+ 1)(S − k) = 2.

g) Applying the result of Question (d) of Problem 2.7 together with first step analysis, we find the mean time

p+ q(1 + (x+ 1 + (x− 1) + 1)(x+ 1− (x− 1))) = p+ q(1 + 4x+ 2) = 1 + q(4x+ 2).

h) We have

IE[τx | S0 = 0] = 2 +
x−1∑
k=1

(1 + q(4k+ 2))

= 2 + (1 + 2q)(x− 1) + 4q
x−1∑
k=1

k

= 2 + (1 + 2q)(x− 1) + 2qx(x− 1)
= 2 + (1 + 2q)x− (1 + 2q) + 2qx2− 2qx
= 1− 2q+ x+ 2qx2, x > 1.

i) Using the notation of Problem 2.7 we have

P(S1 = x+ 1 | S0 = x and τx+1 < τ0) = p
P(τx+1 < τ0 | S0 = x+ 1)

P(τx+1 < τ0 | S0 = x)

=
p

P(τx+1 < τ0 | S0 = x)

and

P(S1 = x− 1 | S0 = x, τx+1 < τ0) = q
P(τx+1 < τ0 | S0 = x− 1)

P(τx+1 < τ0 | S0 = x) MH3512 AY19-20
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=

q(x− 1)/(x+ 1)
P(τx+1 < τ0 | S0 = x)

,

as we have P(τx+1 < τ0 | S0 = x+ 1) = 1 and

P(τx+1 < τ0 | S0 = x− 1) =
x− 1
x+ 1

,

because the random walk becomes symmetric when started from state
�� ��x− 1 . Next, we note that, according to Question (b),

P(τx+1 < τ0 | S0 = x) can be computed as

P(τx+1 < τ0 | S0 = x) = pP(τx+1 < τ0 | S1 = x+ 1)
+qP(τx+1 < τ0 | S1 = x− 1)

= p+ q
x− 1
x+ 1

,

and in this case we get

P(S1 = x+ 1 | S0 = x and τx+1 < τ0) =
p

p+ q(x− 1)/(x+ 1)
=

p

1− 2q/(x+ 1)

and
P(S1 = x− 1 | S0 = x and τx+1 < τ0) =

q(x− 1)/(x+ 1)
p+ q(x− 1)/(x+ 1)

=
q(x− 1)/(x+ 1)
1− 2q/(x+ 1)

.

j) The mean time is given by

IE[τx+1 | S0 = x, τx+1 < τ0] = 1 +
((x+ 1)2− (x− 1)2)

3
q(x− 1)/(x+ 1)
1− 2q/(x+ 1)

= 1 +
4qx(x− 1)/(x+ 1)
3(1− 2q/(x+ 1))

= 1 +
4qx(x− 1)

3(x+ 1− 2q)
,

which yields 1 + (2x− 2)/3 when p = q = 1/2. MH3512 AY19-20
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Remark. Using the above result we can also compute the average time to reach state x with x > 2 after starting from state 1
and given one does not hit 0 by the summation

IE[τx | S0 = 1, τx < τ0] =
x∑
k=2

IE[τk | S0 = k− 1, τk < τ0]

= x− 1 +
4q
3

x∑
k=2

(k− 1)(k− 2)
k− 2q

= x− 1 +
2qx(x− 1)

3
−

8pq̃
3

x−1∑
k=1

k

k+ 1− 2q

= x− 1 +
2qx(x− 1)

3
−

8pq
3

(x− 1) +
8pq

3
(p− q)

x−1∑
k=1

1
k+ 1− 2q

= x− 1 +
4q
3

x(x− 1)
2

− 2p(x− 1) + 2p(p− q)
x−1∑
k=1

1
k+ 1− 2q

 .

When p = q = 1/2 we recover the known expression

IE[τx | S0 = 1, τx < τ0] = x− 1 +
2
3

x−2∑
k=1

k

= x− 1 +
(x− 1)(x− 2)

3

=
x2− 1

3
, x > 2,

cf. Question (j) of Problem 2.7.

Problem 3.13

a) The probability P(X = 0) that the random walk eats no cookies before hitting the origin is the probability of going directly from
0 to 0 in one time step, which is 1/2.

The probability P(X = 1) that the random walk eats exactly one cookie before hitting the origin is the probability of first movingMH3512 AY19-20



"525from 0 to 1 in one time step and then back to 0 in one time step, that is q× (1/2) = q/2.

In general we have

P(X = x) = P(τx < τ0 | S0 = 0)−P(τx+1 < τ0 | S0 = 0)

=
1
2

x∏
l=2

(
1−

2q
l

)
−

1
2

x+1∏
l=2

(
1−

2q
l

)
,

=
1
2

(
1−

(
1−

2q
x+ 1

)) x∏
l=2

(
1−

2q
l

)

=
q

x+ 1

x∏
l=2

(
1−

2q
l

)
.

b) We have
IE[X] =

∑
x>0

xP(X = x) = q
∑
x>0

x

x+ 1

x∏
l=2

(
1−

2q
l

)
,

hence
qcq

∑
x>0

x

(x+ 1)x2q 6 IE[X] 6 qCq
∑
x>0

x

(x+ 1)x2q ,

and IE[X] is finite if and only if 2q > 1.

Remark. One could show in addition that the mean return time to 0 is always infinite, see [AR05].

Chapter 4 - Discrete-Time Markov Chains
Exercise 4.1

a) This process is a Markov chain because its increments Zn+1−Zn = 2(Sn+1− Sn), n ∈ N, are independent random variables.

b) We have

Zn+1 = (Sn+1)
2

= (Sn+1− Sn + Sn)
2

MH3512 AY19-20



"526= (Sn)
2 + 2(Sn+1− Sn)Sn + (Sn+1− Sn)2

= (Sn)
2 + 2(Sn+1− Sn)Sn + 1

= Zn + 2Xn+1Sn + 1,

where (Xn)n>1 = (Sn− Sn−1)n>1 denotes the independent increments of (Sn)n>0, and the increment of (Zn)n∈N is

Zn+1−Zn = 2Xn+1Sn + 1, n ∈ N.

In the symmetric case P(Xn+1 = ±1) = 1/2, the process (Zn)n>0 is a Markov chain because Xn+1Sn takes the values

{Sn,−Sn} = {
√
Zn,−

√
Zn}

with probabilities 1/2, hence the probability distribution of Xn+1Sn is always (1/2, 1/2) over the two values {
√
Zn,−

√
Zn}, and

the distribution of Zn+1 is fully determined given the value of Zn = (Sn)2.

In the non symmetric case, with

P(Xn+1 = 1) = p, P(Xn+1 = −1) = q, and p 6= q,

the process (Zn)n>0 will not be a Markov chain because when Sn > 0 we have

(Sn,−Sn) = (
√
Zn,−

√
Zn)

and the probability distribution of Xn+1Sn over (
√
Zn,−

√
Zn) is (p, q). On the other hand, when Sn < 0 we have

(Sn,−Sn) = (−
√
Zn,

√
Zn)

and the probability distribution of Xn+1Sn over (
√
Zn,−

√
Zn) becomes (q, p) which differs from (p, q) since p 6= q. Hence the

sign of Sn is needed and the knowledge of Zn = |Sn| is no longer sufficient in order to determine the distribution of Zn+1 given
Zn, therefore (Zn)n>0 is not a Markov chain.

Exercise 4.2 MH3512 AY19-20
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P(X7 = 1 and X5 = 2 | X4 = 1 and X3 = 2)
= P(X7 = 1 and X5 = 2 | X4 = 1)

=
P(X7 = 1, X5 = 2, X4 = 1)

P(X4 = 1)

=
P(X7 = 1, X5 = 2, X4 = 1)

P(X5 = 2 and X4 = 1)
P(X5 = 2 and X4 = 1)

P(X4 = 1)
= P(X7 = 1 | X5 = 2 and X4 = 1)P(X5 = 2 | X4 = 1)
= 0.6×P(X7 = 1 | X5 = 2).

Next, we note that

P 2 =


0.4 0.6

0.8 0.2

×


0.4 0.6

0.8 0.2

 =


0.64 0.36

0.48 0.52

 ,

hence P(X7 = 1 | X5 = 2) = 0.48, and we conclude that

P(X7 = 1 and X5 = 2 | X4 = 1 and X3 = 2) = 0.6× 0.48 = 0.288.

b) We have

IE[X2 | X1 = 1] = 1×P(X2 = 1 | X1 = 1) + 2×P(X2 = 2 | X1 = 1)
= 0.4 + 2× 0.6 = 1.6.

Exercise 4.3 MH3512 AY19-20



"528a) We have

P n = P =



π0 π1 π2 π3 · · · πN

π0 π1 π2 π3 · · · πN

π0 π1 π2 π3 · · · πN

...
...

...
...
. . .

...

π0 π1 π2 π3 · · · πN



, (B.28)

for all n > 1.

b) The vector π is an invariant (or stationary) distribution for P because it satisfies

[π0,π1, . . . ,πN ] = [π0, . . . ,πN ]×



π0 π1 π2 · · · πN

π0 π1 π2 · · · πN

π0 π1 π2 · · · πN

...
...

...
. . .

...

π0 π1 π2 · · · πN



,

as in (4.2.5).

c) Since P n = P , n > 1, we have

P(Zn = i | Zk = j) = P(Zn = i) = πi, i, j = 0, 1, . . . ,N , 0 6 k < n,

hence by the Markov property we find

P(Zn = i and Zk = j) = P(Zn = i | Zk = j)P(Zk = j) (B.29)
= P(Zn = i)P(Zk = j), MH3512 AY19-20
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or (4.1.1), shows that

P(Zn = in, Zn−1 = in−1, . . . ,Z0 = i0)

= P(Zn = in | Zn−1 = in−1) · · ·P(Z1 = i1 | Z0 = i0)P(Z0 = i0)

= P(Zn = in)P(Zn−1 = in−1) · · ·P(Z0 = i0)

= πinπin−1 · · ·πi0,

i0, i1, . . . , in ∈ {0, 1, . . . ,N}, which shows that (Zn)n∈N is an i.i.d sequence of random variables with distribution π over
{0, 1, . . . ,N}.

Exercise 4.4

a) We have

P((O0,O1) = (a, b) and (X0,X1) = (1, 1))
= P((O0,O1) = (a, b) | (X0,X1) = (1, 1))P((X0,X1) = (1, 1))
= P(O0 = a | X0 = 1)P(O1 = b | X1 = 1)P((X0,X1) = (1, 1))
= π1P1,1m1,am1,b,

since
P((X0,X1) = (1, 1)) = π1P1,1.

b) We have

P((O0,O1) = (a, b))
=

∑
x,y∈{0,1}

P((O0,O1) = (a, b) and (X0,X1) = (x, y))

=
∑

x,y∈{0,1}
πxPx,ymx,amy,b

= π0P0,0m0,am0,b + π0P0,1m0,am1,b + π1P1,0m1,am0,b + π1P1,1m1,am1,b.

c) We have
{
X1 = 1

}
=

{
(X0,X1) = (0, 1)

} ⋃ {
(X0,X1) = (0, 1)

}
MH3512 AY19-20



"530⋃ {
(X0,X1) = (1, 1)

} ⋃ {
(X0,X1) = (1, 1)

}
=

⋃
x∈{0,1}

{
(X0,X1) = (x, 1)

}
=

{
(X0,X1) = (0, 1)

} ⋃ {
(X0,X1) = (1, 1)

}
,

where the above union is a partition, hence

P(X1 = 1 | (O0,O1) = (a, b))
=

∑
x∈{0,1}

P((X0,X1) = (x, 1) | (O0,O1) = (a, b))

=
1

P((O0,O1) = (a, b))
∑

x∈{0,1}
P((X0,X1) = (x, 1) and (O0,O1) = (a, b))

=
1

P((O0,O1) = (a, b))
∑

x∈{0,1}
πxPx,1mx,am1,b

=
1

P((O0,O1) = (a, b))
(π0P0,1m0,am1,b + π1P1,1m1,am1,b) .

Exercise 4.5
a) The resulting system cannot be a Markov chain because the behavior of the chain at time n+ 1 may depend on the past of the chain

from time 0 to time n− 1. Indeed, the fact that have visited a given state between time 0 to time n− 1 will affect the probability
of visiting that state at time n.

b) The process (Zn)n∈N cannot be a Markov chain because when e.g. Zn = 25 the distribution of the next value of the chain at time
n+ 1 is not uniquely determined from the data of Zn = 25. Indeed, it may depend on how the state 25 has been reached, e.g.
through (5, 0) or (4, 3), and this information will influence the next transition probabilities, which can then can depend on past
chain values from time 0. Other examples include (99, 101) and (11, 141) whose sums of squares equal 20002.

Exercise 4.6 The Elephant Random Walk (Sn)n∈N does not have the Markov property because the distribution of Sn+1 given the value
of Sn depends on extra information that relies on the past data of (X1, . . . ,Xn−1).

Exercise 4.7 The state space of (Zn)n>1 is
{
(0, 0), (0, 1), (1, 0), (1, 1)

}
. Based on Zn = (Xn−1,Xn), the distribution of Zn+1 =

(Xn,Xn+1) at time n + 1 is fully determined from the data of Xn and the transition matrix of (Xn)n∈N hence (Zn)n>1 is a
(0, 1)-valued Markov chain and its transition matrix is given by MH3512 AY19-20
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00

01

10

11
[

00

1− a
0

1− a
0

01

a

0
a

0

10

0
b

0
b

11

0
1− b

0
1− b

] ,

Exercise 4.8

a) The probability distribution of T2 is negative binomial with parameters (p, 2), i.e.

P(T2 = k | X0 = 0) =

k− 1
k− 2

(1− p)2pk−2, k > 2.

b) We have

IE[T2 | X0 = 0] =
∑
k>2

kP(T2 = k | X0 = 0)

= (1− p)2 ∑
k>2

k

k− 1
k− 2

pk−2

= (1− p)2 ∑
k>2

k(k− 1)pk−2

= (1− p)2 ∂
2

∂p2
∑
k>0

pk

= (1− p)2 ∂
2

∂p2

1
1− p

=
2

1− p

=
2
q

.
MH3512 AY19-20



"532Remark. We could also recover the values IE[T1 | X0 = 0] and IE[T2 | X0 = 1] from the first step analysis equations

IE[T2 | X0 = 1] = p(1 + IE[T2 | X0 = 1]) + q× 1.

and
IE[T2 | X0 = 0] = p(1 + IE[T2 | X0 = 0]) + q× (1 + IE[T2 | X0 = 1]) ,

which yield
IE[T2 | X0 = 1] =

1
q

and IE[T2 | X0 = 0] =
2
q

.

Exercise 4.9 When N = 5, the transition matrix of this chain is

P =



0 1 0 0 0 0
1/25 8/25 16/25 0 0 0

0 4/25 12/25 9/25 0 0
0 0 9/25 12/25 4/25 0
0 0 0 16/25 8/25 1/25
0 0 0 0 1 0


.

For general N > 1, the transition matrix reads

P =



0 1 0 0 · · · · · · 0 0
1/N2 2(N − 1)/N2 (N − 1)2/N2 0 · · · · · · 0 0

0 22/N2 4(N − 2)/N2 (N − 2)2/N2 · · · · · · 0 0
0 0 32/N2 0 · · · · · · 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

. . .
. . .

...
...

...

0 0 · · ·
... 0 32/N2 0 0

0 0 · · · 0 (N − 2)2/N2 4(N − 2)/N2 22/N2 0
0 0 · · · 0 0 (N − 1)2/N2 2(N − 1)/N2 1/N2

0 0 · · · 0 0 0 1 0



,

MH3512 AY19-20
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Pk,k−1 = P(X1 = k− 1 | X0 = k) =
k2

N2 ,

Pk,k = P(X1 = k | X0 = k) =
2k(N − k)2

N2 ,

Pk,k+1 = P(X1 = k+ 1 | X0 = k) =
(N − k)2

N2 ,

k = 1, 2, . . . ,N − 1, with P0,1 = PN ,N−1 = 1. We check that

Pk,k−1 + Pk,k + Pk,k+1 =
k2 + 2k(N − k)2 + (N − k)2

N2 = 1, k = 1, 2, . . . ,N − 1.

Exercise 4.10
a) Let Sn denote the wealth of the player at time n ∈ N. The process (Sn)n∈N is a Markov chain whose transition matrix is given by

P = [ Pi,j ]i,j∈N
=



1 0 0 0 0 0 · · ·
q 0 p 0 0 0 · · ·
q 0 0 p 0 0 · · ·
q 0 0 0 p 0 · · ·
q 0 0 0 0 p · · ·
...
...
...
...
...
...
. . .


.

After n time steps we have
P(Sn = n+ 1 | S0 = 1) = pn, n > 1,

and, by decomposing over n possible paths made of l steps up and one step down, l = 0, 1, . . . ,n− 1, we find

P(Sn = 0 | S0 = 1) =
n−1∑
l=0

qpl

= q
1− p
1− p

n

MH3512 AY19-20



"534= 1− pn

= 1−P(Sn = n+ 1 | S0 = 1), n > 1.

More generally, we have
P(Sn = n+ k | S0 = k) = pn, k,n > 1,

and

P(Sn = 0 | S0 = k) = q
n−1∑
l=0

pl

= q
1− p
1− p

n

= 1− pn

= 1−P(Sn = n+ k | S0 = k), k,n > 1,

by (A.2), hence P n is given by

P n = [ [P n]i,j ]i,j∈N
=



1 0 · · · 0 0 0 0 0 0 · · ·
1− pn 0 · · · 0 pn 0 0 0 0 · · ·
1− pn 0 · · · 0 0 pn 0 0 0 · · ·
1− pn 0 · · · 0 0 0 pn 0 0 · · ·
1− pn 0 · · · 0 0 0 0 pn 0 · · ·
1− pn 0 · · · 0 0 0 0 0 pn · · ·
...

...
...

...
...

...
...

...
...
. . .


, (B.30)

in which the n columns no 2 to n+ 1 are identically 0. We can also check by matrix multiplication that this relation is consistent

MH3512 AY19-20
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1 0 · · · 0 0 0 0 0 0 · · ·
1− pn+1 0 · · · 0 pn+1 0 0 0 0 · · ·
1− pn+1 0 · · · 0 0 pn+1 0 0 0 · · ·
1− pn+1 0 · · · 0 0 0 pn+1 0 0 · · ·
1− pn+1 0 · · · 0 0 0 0 pn+1 0 · · ·
1− pn+1 0 · · · 0 0 0 0 0 pn+1 · · ·

...
...

...
...

...
...

...
...

...
. . .



=



1 0 0 0 0 0 0 · · ·
1− p 0 p 0 0 0 0 · · ·
1− p 0 0 p 0 0 0 · · ·
1− p 0 0 0 p 0 0 · · ·
1− p 0 0 0 0 p 0 · · ·
1− p 0 0 0 0 0 p · · ·
...

...
...
...
...
...
...
. . .


×



1 0 · · · 0 0 0 0 0 0 · · ·
1− pn 0 · · · 0 pn 0 0 0 0 · · ·
1− pn 0 · · · 0 0 pn 0 0 0 · · ·
1− pn 0 · · · 0 0 0 pn 0 0 · · ·
1− pn 0 · · · 0 0 0 0 pn 0 · · ·
1− pn 0 · · · 0 0 0 0 0 pn · · ·
...

...
...

...
...

...
...

...
...
. . .


,

from the relation 1− p+ p(1− pn) = 1− pn+1, n ∈ N.

b) In this case the transition matrix P becomes

P = [ Pi,j ]i,j∈N
=



q p 0 0 0 0 · · ·
q 0 p 0 0 0 · · ·
q 0 0 p 0 0 · · ·
q 0 0 0 p 0 · · ·
q 0 0 0 0 p · · ·
...
...
...
...
...
...
. . .


,
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P 2 =



q qp p2 0 0 0 · · ·
q qp 0 p2 0 0 · · ·
q qp 0 0 p2 0 · · ·
q qp 0 0 0 p2 · · ·
q qp 0 0 0 0 · · ·
...

...
...

...
...

...
. . .


,

and more generally, by induction on n > 2 we find

P n =



q qp qp2 . . . qpn−1 pn 0 0 0 · · ·
q qp qp2 . . . qpn−1 0 pn 0 0 · · ·
q qp qp2 . . . qpn−1 0 0 pn 0 · · ·
q qp qp2 . . . qpn−1 0 0 0 pn · · ·
q qp qp2 . . . qpn−1 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...
. . .


. (B.31)

Exercise 4.11

a) We have

P(Zn+1 = 2 | Zn = 0 and Zn−1 = 2) =
P(Zn+1 = 2, Zn = 0, Zn−1 = 2)

P(Zn = 0 and Zn−1 = 2)

=
P(Xn+1 = 2, Xn ∈ {0, 1}, Xn−1 = 2)

P(Xn ∈ {0, 1} and Xn−1 = 2)

=
P(Xn+1 = 2, Xn = 0, Xn−1 = 2)

P(Xn ∈ {0, 1} and Xn−1 = 2)
+

P(Xn+1 = 2, Xn = 1, Xn−1 = 2)
P(Xn ∈ {0, 1} and Xn−1 = 2)

= 0,

n > 1. Next, we have

P(Zn+1 = 2 | Zn = 0 and Zn−1 = 3) =
P(Zn+1 = 2, Zn = 0, Zn−1 = 3)

P(Zn = 0 and Zn−1 = 3) MH3512 AY19-20
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=

P(Xn+1 = 2, Xn ∈ {0, 1}, Xn−1 = 3)
P(Xn ∈ {0, 1} and Xn−1 = 3)

=
P(Xn+1 = 2, Xn = 0, Xn−1 = 3)

P(Xn ∈ {0, 1} and Xn−1 = 3)
+

P(Xn+1 = 2, Xn = 1, Xn−1 = 3)
P(Xn ∈ {0, 1} and Xn−1 = 3)

=
P(Xn+1 = 2, Xn = 0, Xn−1 = 3)

P(Xn = 0 and Xn−1 = 3) + P(Xn = 1 and Xn−1 = 3)

+
P(Xn+1 = 2, Xn = 1, Xn−1 = 3)

P(Xn = 0 and Xn−1 = 3) + P(Xn = 1 and Xn−1 = 3)

=
P(Xn = 0 and Xn−1 = 3)P(Xn+1 = 2 | Xn = 0 and Xn−1 = 3)

P(Xn = 0 and Xn−1 = 3) + P(Xn = 1 and Xn−1 = 3)

+
P(Xn = 1 and Xn−1 = 3)P(Xn+1 = 2 | Xn = 1 and Xn−1 = 3)

P(Xn = 0 and Xn−1 = 3) + P(Xn = 1 and Xn−1 = 3)

=
P(Xn+1 = 2 | Xn = 0)

1 + P(Xn = 1 and Xn−1 = 3)/P(Xn = 0 and Xn−1 = 3)

+
P(Xn+1 = 2 | Xn = 1)

1 + P(Xn = 1 and Xn−1 = 3)/P(Xn = 0 and Xn−1 = 3)

=
P(Xn+1 = 2 | Xn = 0)

1 + P(Xn = 1 and Xn−1 = 3)/P(Xn = 0 and Xn−1 = 3)

=
1/2

1 + (1/3)/(1/3)

=
1
4

,

n > 1.

b) The process (Zn)n∈N is not a Markov chain because by Question (a) we have

0 = P(Zn+1 = 2 | Zn = 0 and Zn−1 = 2)
6= P(Zn+1 = 2 | Zn = 0 and Zn−1 = 3)

=
1
4

. MH3512 AY19-20



"538Exercise 4.12

a) We find
360ηL + 505ηM + 640ηH = 360× 50% + 505× 40% + 640× 10% ' 446.

b) We find

ηP = [50%, 40%, 10%]×


2/3 1/6 1/6
1/3 1/2 1/6
1/6 2/3 1/6


=

[2× 0.5
3

+
0.4
3

+
0.1
6

,
0.5
6

+
0.4
2

+
2× 0.1

3
,

0.5
6

+
0.4
6

+
0.1
6

]

=
[29
60

,
21
60

,
10
60

]
' [48.3%, 35%, 16.7%] .

c) We find
360ηL + 505ηM + 640ηH = 360×

29
60

+ 505×
21
60

+ 640×
10
60
' 457.

d) The equation π = πP reads

[πL,πM ,πH ] = [πL,πM ,πH ]× P = [πL,πM ,πH ]×


8/12 2/12 2/12
4/12 6/12 2/12
2/12 8/12 2/12

 ,

and it can be rewritten as
π(P − Id) = πP − π = 0,

i.e.,

π(P − Id) = [πL,πM ,πH ](P − Id)

= [πL,πM ,πH ]×


−4/12 2/12 2/12
4/12 −6/12 2/12
2/12 8/12 −10/12


MH3512 AY19-20
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=


0
0
0

 ,

which can be rewritten as 
πL− 3πM + 4πH = 0

πL + πM − 5πH = 0.
Combining the above with the additional condition

πL + πM + πH = 1,

we arrive at
[πL,πM ,πH ] =

[11
24

,
9

24
,

4
24

]
' [45.8%, 37.5%, 16.7%].

Problem 4.13

a) We have

P =

 1 0
q p

 ,

with q := 1− p.

b) We have

P =



1 0 0 · · · 0 0
q p 0 · · · 0 0
0 q p · · · 0 0
...

...
. . .

. . .
...

...
0 0 · · · q p 0
0 0 · · · 0 q p


,

with q := 1− p.

c) Clearly, the first row of P has to be [1, 0, . . . , 0] because state 0 is absorbing, and the remaining of the matrix can take the formMH3512 AY19-20
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αk +
d∑
l=1
Qk,l = 1, k = 1, 2, . . . , d,

which can be rewritten as

(Id−Q)e =



1−Q1,1 −Q1,2 · · · −Q1,d
−Q1,1 1−Q1,2 · · · −Q1,d
...

...
. . .

...
−Qd,1 · · · Qd,d−1 1−Qd,d

×


1
1
...
1



=



1−Q1,1− · · · −Q1,d
1−Q2,1− · · · −Q2,d

...
1−Qd,1− · · · −Qd,d



=



α1
α2
...
αd

 ,

i.e.
α = (Id−Q)e.

d) Clearly, the conclusion holds for n = 0, and also at the rank n = 1 since α = (Id −Q)e. Next, we assume that the relation
(4.5.9) holds at the rank n > 0. In this case, we have

P n+1 = P × P n

=

 1 0
α Q

×
 1 0
(Id−Qn)e Qn


=

 1 0
α+Q(Id−Qn)e Qn+1


MH3512 AY19-20
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=

 1 0
(Id−Qn+1)e Qn+1

 ,

since
α+Q(Id−Qn)e = (Id−Q)e+ (Q−Qn+1)e = (Id−Qn+1)e.

e) We have

P(T0 = n | X0 = i) = P

 d⋃
k=1

{
Xn−1 = k, T0 = n

} ∣∣∣∣∣ X0 = i


=

d∑
k=1

P(Xn−1 = k | X0 = i)P(Xn = 0 | Xn−1 = k)

=
d∑

k=1
[P n−1]i,kPk,0

=
d∑

k=1
αk[Q

n−1]i,k

= [Qn−1α]i, n > 1.

f) We have

P(T0 = n) =
d∑
i=1

P(X0 = i)P(T0 = n | X0 = i)

=
d∑
i=1

d∑
k=1

βiαkQ
n−1
i,k

= β>Qn−1α, n > 1.

g) We have

P(T0 6 n) =
n∑
k=1

P(T0 = k)

=
n∑
k=1

β>Qk−1α
MH3512 AY19-20
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= β>(Id−Qn)e

= 1− β>Qne, n > 1.

Alternatively, using the relation α = (Id−Q)e and a telescopic sum, we recover this result as

P(T0 6 n) =
n∑
k=1

P(T0 = k)

=
n∑
k=1

β>Qk−1α

=
n∑
k=1

β>Qk−1(Id−Q)e

=
n−1∑
k=0

β>Qke−
n∑
k=1

β>Qke

= β>e− β>Qne

= 1− β>Qne, n > 1.

h) We have

P(T0 6 n) = 1−
d∑

k=1
P(Xn = k)

= 1−
d∑

k=1

d∑
i=1

βiP(Xn = k | X0 = i)

= 1−
d∑

k=1

d∑
i=1

βiQ
n
i,k

= 1− β>Qne, n > 1.

Alternatively we could also write

P(T0 6 n) = P(Xn = 0)

=
d∑
i=1

βiP(Xn = 0 | X0 = i)
MH3512 AY19-20
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=

d∑
i=1

βi[P
n]i,0

=
d∑
i=1

βi[(Id−Qn)e]i

=
d∑
i=1

βi−
d∑
i=1

βi[Q
ne]i

= 1− β>Qne, n > 1.

i) We have

GT0(s) =
∑
k>0

skP(T0 = k)

= P(X0 = 0) +
∑
k>1

skβ>Qk−1α

= s
∑
k>0

skβ>Qkα

= sβ>(Id− sQ)−1α

= sβ>(Id− sQ)−1(Id−Q)e.

We note that
P(T0 <∞) = GT0(1) = β>(Id−Q)−1(Id−Q)e = β>e = 1,

hence state 0 is reached in finite time with probability one.

j) We have
G′T0

(s) = β>(Id− sQ)−1α+ sβ>Q(Id− sQ)−2α,
hence

IE[T0] = G′T0
(1)

= β>(Id−Q)−1α+ β>Q(Id−Q)−2α

= β>(Id−Q)(Id−Q)−2α+ β>Q(Id−Q)−2α

= β>(Id−Q)−2α

= β>(Id−Q)−1e. MH3512 AY19-20
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G′′T0

(s) = β>Q(Id− sQ)−2α+ β>Q(Id− sQ)−2α+ 2sβ>Q2(Id− sQ)−3α,
hence

IE[T0(T0− 1)] = G′′T0
(1)

= 2β>Q(Id−Q)−2α+ 2β>Q2(Id−Q)−3α

= 2β>Q(Id−Q)−3α,
= 2β>Q(Id−Q)−2e,

hence

IE[T 2
0 ] = IE[T0(T0− 1)] + IE[T0]

= 2β>Q(Id−Q)−2e+ β>(Id−Q)−1e

= 2β>Q(Id−Q)−2e+ β>(Id−Q)(Id−Q)−2e

= β>(Id +Q)(Id−Q)−2e.

More generally, by (1.7.4) we could also compute the factorial moment

IE[T0(T0− 1) · · · (T0− k+ 1)] = G
(k)
T0 (1) = k!β>Qk−1(Id−Q)−ke,

for all k > 1.

Problem 4.14

a) We have

P((O0,O1,O2) = (c, a, b) and (X0,X1,X2) = (1, 1, 0))
= P((O0,O1,O2) = (c, a, b) | (X0,X1,X2) = (1, 1, 0))P((X0,X1,X2) = (1, 1, 0))
= P(O0 = c | X0 = 1)P(O1 = a | X1 = 1)P(O2 = b | X2 = 0)P((X0,X1,X2) = (1, 1, 0))
= π1P1,1P1,0m1,cm1,am0,b,

since
P((X0,X1,X2) = (1, 1, 0)) = π1P1,1P1,0. MH3512 AY19-20
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P((O0,O1,O2) = (c, a, b))
=

∑
x,y,z∈{0,1}

P((O0,O1,O2) = (c, a, b) and (X0,X1,X2) = (x, y, z))

=
∑

x,y,z∈{0,1}
πxPx,yPy,zmx,cmy,amz,b.

c) We have
{
X1 = 1

}
=

{
(X0,X1,X2) = (0, 1, 0)

} ⋃ {
(X0,X1,X2) = (0, 1, 1)

}
⋃ {

(X0,X1,X2) = (1, 1, 0)
} ⋃ {

(X0,X1,X2) = (1, 1, 1)
}

=
⋃

x,z∈{0,1}

{
(X0,X1,X2) = (x, 1, z)

}
,

where the above union is a partition, hence

P(X1 = 1 | (O0,O1,O2) = (c, a, b))
=

∑
x,z∈{0,1}

P((X0,X1,X2) = (x, 1, z) | (O0,O1,O2) = (c, a, b))

=
1

P((O0,O1,O2) = (c, a, b))
×

∑
x,z∈{0,1}

P((X0,X1,X2) = (x, 1, z) and (O0,O1,O2) = (c, a, b))

=
1

P((O0,O1,O2) = (c, a, b))
∑

x,z∈{0,1}
πxPx,1P1,zmx,cm1,bmz,c.

MH3512 AY19-20
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P((X0,X1,X2) = (0, 0, 0) and (O0,O1,O2) = (c, a, b)) = 0.00588,
P((X0,X1,X2) = (0, 0, 1) and (O0,O1,O2) = (c, a, b)) = 0.00126,
P((X0,X1,X2) = (0, 1, 0) and (O0,O1,O2) = (c, a, b)) = 0.0101,
P((X0,X1,X2) = (0, 1, 1) and (O0,O1,O2) = (c, a, b)) = 0.00756,
P((X0,X1,X2) = (1, 0, 0) and (O0,O1,O2) = (c, a, b)) = 0.000448,
P((X0,X1,X2) = (1, 0, 1) and (O0,O1,O2) = (c, a, b)) = 0.0000960,
P((X0,X1,X2) = (1, 1, 0) and (O0,O1,O2) = (c, a, b)) = 0.00269,
P((X0,X1,X2) = (1, 1, 1) and (O0,O1,O2) = (c, a, b)) = 0.00202.

From the above computation we deduce that the most likely sample sequence of values for (X0,X1,X2) given the observation
(O0,O1,O2) = (c, a, b) is (X0,X1,X2) = (0, 1, 0), with the probability

P((X0,X1,X2) = (0, 1, 0) and (O0,O1,O2) = (c, a, b)) = 0.0101.

e) By the result of Question (b) we find

P((O0,O1,O2) = (c, a, b)) = 0.030028 ' 3%.

f) By proceeding as in Question (c) we find

P(X0 = 0 | (O0,O1,O2) = (c, a, b)) = 0.825,
P(X0 = 1 | (O0,O1,O2) = (c, a, b)) = 0.175,
P(X1 = 0 | (O0,O1,O2) = (c, a, b)) = 0.256,
P(X1 = 1 | (O0,O1,O2) = (c, a, b)) = 0.744,
P(X2 = 0 | (O0,O1,O2) = (c, a, b)) = 0.636,
P(X2 = 1 | (O0,O1,O2) = (c, a, b)) = 0.364.

According to the above estimates, the most likely sequence for (X0,X1,X2) given the observation (O0,O1,O2) = (c, a, b) is
(0, 1, 0).

g) We find π̂ = [π̂0, π̂1] = [0.825, 0.175]. MH3512 AY19-20
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P̂ =


0.415 0.585

0.482 0.518

 .

i) We find

M̂ =

 0.149 0.370 0.481
0.580 0.284 0.136

 .

j) The estimates of the matrix M obtained from the R code can be plotted as follows:
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Figure S.6: Plot of estimate$hmm$emissionProbs[1,].
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Figure S.7: Plot of estimate$hmm$emissionProbs[2,].
From Figures S.6 and S.7 we can infer that the vowels {a, e, i,u, o} are more frequently associated to the state 0 of the hidden
chain (Xn)n∈N. The vowels “a,e,i,o,u”, together with the spacing character “_” total 93% of emission probabilities from state 0 ,MH3512 AY19-20
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e.g. to separate “u” from “t”. The classification effect is enhanced in the following Figure S.8 that plots η 7→ (M0,η/M0,”_”)((M1,”_”−
M1,η)/M1,”_”)2 by combining the information available in the two rows of the emission matrix M , showing that “y” recovers its
“semi-vowel” status.
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_ a b c d e f g h i j k l m n o p q r s t u v w x y z

Figure S.8: Plot of η 7→ (M0,η/M0,”_”)((M1,”_”−M1,η)/M1,”_”)
2.

Note that the graphs of Figures S.6 and S.7 do not represent a frequency analysis. A frequency analysis of letters can be represented
as the histogram of Figure S.9 using the command

text = readChar("brown.txt",nchars=10000)
data <- unlist (strsplit (gsub ("[^a-z]", "_", tolower (text)), ""))
barplot(col = rainbow(30), table(data), cex.names=0.7)

with the following output:

The command

estimate$hmm$transProbs[1,]

yields the transition probability estimate

P̂ =

 0 1
0.1906356 0.8093644
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_ a b c d e f g h i j k l m n o p q r s t u v w x y z

0
500

1000
1500

2000

Figure S.9: Frequency analysis of alphabet letters.

for the hidden chain (Xn)n∈N.

Note that P̂ is not the transition matrix of vowels vs consonants. For example of the word “universities” contains eleven letter
transitions, including:
five vowel-consonant transitions,
one vowel-vowel transition,
four consonant-vowel transitions,
one consonant-consonant transitions,

which would yield the transition probability estimate  5/6 1/6
4/5 1/5

 ,

assuming the alphabet has already been partitioned. Such a matrix can be estimated on the whole text, from the code
MH3512 AY19-20
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y <- unlist (strsplit (gsub ("[^a,e,i,o,u]", "2", tolower (x)), ""))
z <- as.numeric(noquote(unlist (strsplit (gsub ("[a,e,i,o,u]", "1",y), ""))))
p <- matrix(nrow = 2, ncol = 2, 0)
for (t in 1:(length(z) - 1)) p[z[t], z[t + 1]] <- p[z[t], z[t + 1]] + 1
for (i in 1:2) p[i, ] <- p[i, ] / sum(p[i, ])

as  0.1424749 0.8575251
0.5360502 0.4639498

 ,

which means that inside the text, a vowel is followed by a consonant for 85.7% of the time, while a consonant is followed by a vowel
for 53% of the time.

The Baum-Welch algorithm does more than a simple frequency/transition analysis, as it can estimate the emission probability matrix
M , which can be used to partition the alphabet. However, the algorithm is not making a one-to-one association between states
(0, 1) of (Xn)n∈N and letters; the association is only probabilistic and expressed through the estimate M̂ of the emission matrix.

Using a three-state model shows a more definite identification of vowels from state 3 in Figure S.10, and a special weight given to
the letters h and t from state 1 in Figure S.11.
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Figure S.10: Plot of estimate$hmm$emissionProbs[3,]. MH3512 AY19-20



"552c

0.00

0.05

0.10

0.15

0.20

_ a b c d e f g h i j k l m n o p q r s t u v w x y z

Figure S.11: Plot of estimate$hmm$emissionProbs[1,].

Chapter 5 - First Step Analysis
Exercise 5.1

a) The chain has the transition matrix

[ Pi,j ]i,j∈N
=


1 0 0 0

1/2 0 1/2 0
0 1/3 0 2/3
0 0 0 1

 ,

and the graph

0 1 2 31

1/2

1/2

1/3

2/3 1

b) Compute α := P(T3 <∞ | X0 = 1) and β := P(T3 <∞ | X0 = 2), where

T3 := inf{n > 0 : Xn = 3}. MH3512 AY19-20
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α = P(T3 <∞ | X0 = 1) =
1
2
× 0 +

1
2
β

β = P(T3 <∞ | X0 = 2) =
1
3
α+

2
3
× 1,

hence
α = P(T3 <∞ | X0 = 1) =

2
5

and β = P(T3 <∞ | X0 = 2) =
4
5

.

c) By first step analysis we have


IE[T0,3 | X0 = 1] =
1
2
(1 + IE[T0,3 | X0 = 0]) +

1
2
(1 + IE[T0,3 | X0 = 2])

= 1 +
1
2
IE[T0,3 | X0 = 2],

IE[T0,3 | X0 = 2] = 1 +
1
3
IE[T0,3 | X0 = 1] +

2
3
(1 + IE[T0,3 | X0 = 3])

= 1 +
1
3
IE[T0,3 | X0 = 1],

i.e. 

IE[T0,3 | X0 = 1] =
3
2
+

1
6
IE[T0,3 | X0 = 1]

IE[T0,3 | X0 = 2] =
4
3
+

1
6
IE[T0,3 | X0 = 2],

hence 

IE[T0,3 | X0 = 1] =
9
5

,

IE[T0,3 | X0 = 2] =
8
5

. MH3512 AY19-20
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1 we find

µ1(1) = 1 +
b

a
= 1 +

0.8
0.6

=
7
3

.

from e.g. (5.3.6). This mean time can also be recovered by pathwise analysis using the mean 1/a of the geometric distribution on
{1, 2, 3, . . .} with parameter a ∈ (0, 1], as

(1− b)× 1 + b×
(
1 +

1
a

)
= 1 +

b

a
=

7
3

.

Exercise 5.3

a) The chain has the following graph:

0 1 21

1/3

2/3

1

Noting that state 0 is absorbing, by first step analysis we have


g0(0) = 1

g0(1) =
1
3
g0(0) +

2
3
g0(2)

g0(2) = g0(1),

which has for solution
g0(0) = g0(1) = g0(2) = 1. MH3512 AY19-20
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h0(0) = 0

h0(1) = 1 +
1
3
h0(0) +

2
3
h0(2)

h0(2) = 1 + h0(1),
which has for solution

h0(0) = 0, h0(1) = 5, h0(2) = 6.

Exercise 5.4

a) The finite difference equation satisfied by f(x, y), x+ y > 1, is given by

f(x, y) =
x

x+ y
(f(x− 1, y)− 1) +

y

x+ y
(f(x, y− 1) + 1).

b) The boundary conditions are given by

f(x, 0) = −x and f(0, y) = 0, x, y > 1. MH3512 AY19-20
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f(1, 1) =
1
2
(f(0, 1)− 1) +

1
2
(f(1, 0) + 1) = 0,

f(1, 2) =
1
3
(f(0, 2)− 1) +

2
3
(f(1, 1) + 1) = 1,

f(2, 2) =
1
2
(f(1, 2)− 1) +

1
2
(f(2, 1) + 1) = 0,

f(1, 3) =
1
4
(f(0, 3)− 1) +

3
4
(f(1, 2) + 1) = 2,

f(2, 3) =
2
5
(f(1, 3)− 1) +

3
5
(f(2, 2) + 1) = 1,

f(3, 3) =
1
2
(f(2, 3)− 1) +

1
2
(f(3, 2) + 1) = 0.

d) We check that f(x, y) := y− x solves the finite difference equation
x

x+ y
(f(x− 1, y)− 1) +

y

x+ y
(f(x, y− 1) + 1)

=
x

x+ y
(y− (x− 1)− 1) +

y

x+ y
(y− 1− x+ 1)

=
x

x+ y
(y− x) +

y

x+ y
(y− x)

= y− x
= f(x, y),

with the correct boundary conditions.

Exercise 5.5 MH3512 AY19-20
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p0,2 = 0.2× p1,2 + 0.8
p1,2 = 0.1× p1,2 + 0.3× p0,2 + 0.6× p3,2
p2,2 = 0.5× p0,2 + 0.5× p3,2
p3,2 = 0,

hence 

p0,2 = 0.2× p1,2 + 0.8
p1,2 =

p0,2

3
p2,2 =

p0,2

2
p3,2 = 0,

and 

p0,2 =
6
7

p1,2 =
2
7

p2,2 =
3
7

p3,2 = 0.
We note that

P(T r2 =∞ | X0 = 2) = 1− p2,2 =
4
7
> P(X1 = 3 | X0 = 2) = 0.5,

as seen in (6.3.5).

b) By first step analysis, we have 
p0,1 = 0.2 + 0.8× p2,1
p1,1 = 0.1 + 0.3× p0,1 + 0.6× p3,1
p2,1 = 0.5× p0,1 + 0.5× p3,1
p3,1 = 0, MH3512 AY19-20



"558hence 

p0,1 = 0.2 + 0.8× p2,1 = 0.2 + 0.4× p0,1
p1,1 = 0.1 + 0.3× p0,1

p2,1 =
p0,1

2
p3,1 = 0,

and 

p0,1 =
1
3

p1,1 = 0.2

p2,1 =
1
6

p3,1 = 0.
We note that

P(T r1 =∞ | X0 = 1) = 1− p1,1 = 0.8 > P(X1 = 3 | X0 = 1) = 0.6,
as seen in (6.3.6).

Exercise 5.6 This exercise is a particular case of the Example of Section 5.1, by taking a := 0.3, b := 0, c := 0.7, d := 0, α := 0,
β := 0.3, γ := 0, η := 0.7, and the chain has the graph

0

1

2

3
1

0.3

0.7
0.3 0.7

1

a) States 0 and 3 are absorbing. MH3512 AY19-20
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g0(0) = 1

g0(1) = 0.3 + 0.7g0(2)

g0(2) = 0.3g0(1)

g0(3) = 0,
hence

g0(1) =
0.3

1− 0.7× 0.3
and g0(2) =

0.3× 0.3
1− 0.7× 0.3

,

which is consistent with the answer 

g0(1) =
a

1− βc

g0(2) =
aβ

1− βc
obtained from (5.1.10). Note that this chain is actually a particular case of the gambling process of Chapter 2 with S = 3, hence by
(2.2.11) we can also write

g0(1) = P(RA | X0 = 1) =
(3/7)− (3/7)3

1− (3/7)3 =
(7/3)3−1− 1
(7/3)3− 1

' 0.3797.

c) By first step analysis we find the equations


h1(0) = 1 + h1(0)

h1(1) = 0

h1(2) = 0.3(1 + h1(1)) + 0.7(1 + h1(3)) = 1 + 0.7h1(3)

h1(3) = 1 + h1(3),

which admit the only solution h1(1) = 0 and h1(0) = h1(2) = h1(2) = +∞. MH3512 AY19-20
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0 1

0.5

0.5

2

0.5 0.5
0.5

3

0.5

1

Let
h3(k) := IE[T3 | X0 = k]

denote the mean (hitting) time needed to reach state 3 starting from state k = 0, 1, 2, 3. We have


h3(0) = 1 +
1
2
h3(0) +

1
2
h3(2)

h3(1) = 1 +
1
2
h3(0)

h3(2) = 1 +
1
2
h3(0) +

1
2
h3(1)

h3(3) = 0,

which yields
h3(3) = 0, h3(1) = 8, h3(2) = 12, h3(0) = 14.

We check that h3(3) < h3(1) < h3(2) < h3(0), as can be expected from the graph.

Exercise 5.8 This exercise has some similarities with the gambling problem of Chapter 2, with the maze problems of Section 5.3, and
with Exercise 5.12 below.

a) The chain has the following graph: MH3512 AY19-20
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0

1

2

3
1

0.5

0.5

0.5

0.5
1

Note that this process is in fact a fair gambling process on the state space {0, 1, 2, 3}.

b) Since the states 0 and 3 are absorbing, by first step analysis we have


g0(0) = 1

g0(1) =
1
2
+

1
2
g0(2)

g0(2) =
1
2
g0(1)

g0(3) = 0,

which has for solution
g0(0) = 1, g0(1) =

2
3

, g0(2) =
1
3

, g0(3) = 0.

c) By first step analysis we have 

h0,3(0) = 0

h0,3(1) = 1 +
1
2
h0,3(2)

h0,3(2) = 1 +
1
2
h0,3(1)

h0,3(3) = 0,
which has for solution

h0,3(0) = 0, h0,3(1) = 2, h0,3(2) = 2, h0,3(3) = 0. MH3512 AY19-20



"562Exercise 5.9 Using the law of total probability with respect to the partition Ω =
⋃
m>0

{
TA = m

}
, we have, provided that i0 ∈ A,

P(XTA+n = j | XTA = i0, . . . ,X0 = iTA and TA < +∞)

=
∑
m>0

P(XTA+n = j and TA = m | XTA = i0, . . . ,X0 = iTA and TA < +∞)

=
∑
m>0

P(XTA+n = j, TA = m, XTA = i0, . . . ,X0 = iTA and TA < +∞)

P(XTA = i0, . . . ,X0 = iTA and TA < +∞)

=
∑
m>0

P(Xn+m = j, TA = m, Xm = i0, . . . ,X0 = im)

P(XTA = i0, . . . ,X0 = iTA and TA < +∞)

=
∑
m>0

P(Xn+m = j, Xm = i0, . . . ,X0 = im, Xm ∈ A, Xm−1 /∈ A, . . . ,X0 /∈ A)

P(XTA = i0, . . . ,X0 = iTA and TA < +∞)

=
∑
m>0

P(Xn+m = j, Xm = i0, . . . ,X0 = im, Xm ∈ A,Xm−1 /∈ A, . . . ,X0 /∈ A)

P(Xm = i0, . . . ,X0 = im, Xm ∈ A,Xm−1 /∈ A, . . . ,X0 /∈ A)

×
P(Xm = i0, . . . ,X0 = im, Xm ∈ A,Xm−1 /∈ A, . . . ,X0 /∈ A)

P(XTA = i0, . . . ,X0 = iTA and TA < +∞)

=
∑
m>0

P(Xn+m = j | Xm = i0, . . . ,X0 = im, Xm ∈ A,Xm−1 /∈ A, . . . ,X0 /∈ A)

×
P(Xm = i0, . . . ,X0 = im, Xm ∈ A,Xm−1 /∈ A, . . . ,X0 /∈ A)

P(XTA = i0, . . . ,X0 = iTA and TA < +∞)

=
∑
m>0

P(Xn+m = j | Xm = i0 and Xm ∈ A)

×
P(Xm = i0, . . . ,X0 = im, Xm ∈ A,Xm−1 /∈ A, . . . ,X0 /∈ A)

P(XTA = i0, . . . ,X0 = iTA and TA < +∞)

=
∑
m>0

P(Xn+m = j | Xm = i0)

×
P(Xm = i0, . . . ,X0 = im and Xm ∈ A,Xm−1 /∈ A, . . . ,X0 /∈ A)

P(XTA = i0, . . . ,X0 = iTA and TA < +∞)

= P(Xn = j | X0 = i0)
∑
m>0

P(Xm = i0, . . . ,X0 = im and Xm ∈ A,Xm−1 /∈ A, . . . ,X0 /∈ A)

P(XTA = i0, . . . ,X0 = iTA and TA < +∞)

MH3512 AY19-20
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= P(Xn = j | X0 = i0)

∑
m>0

P(Xm = i0, . . . ,X0 = im and TA = m)

P(XTA = i0, . . . ,X0 = iTA and TA < +∞)

= P(Xn = j | X0 = i0)
∑
m>0

P(XTA = i0, . . . ,X0 = iTA and TA = m)

P(XTA = i0, . . . ,X0 = iTA and TA < +∞)

= P(Xn = j | X0 = i0),

for all n,m > 0, j ∈ S, and (ik)k∈N ⊂ S.

Exercise 5.10

a) Letting f(k) := P(T0 < ∞ | S0 = k) we have the boundary condition f(0) = 1 and by first step analysis we find that f(k)
satisfies

f(k) = pf(k+ 1) + qf(k− 1), k > 1,
which is (2.2.6), and has the general solution

f(k) = C1 +C2r
k, k ∈ N, (B.32)

where r = q/p, by (2.2.16), see also the command RSolve[f[k]=pf[k+1]+(1-p)f[k-1],f[k],k].
i) In case q > p, f(k) would tend to (positive or negative) infinity if C2 6= 0, hence we should have C2 = 0, and C1 = f(0) = 1,

showing that f(k) = 1 for all k ∈ N.
ii) In case q < p, the probability of hitting 0 in finite time starting from k becomes 0 in the limit as k tends to infinity, i.e. we

have
lim
k→∞

f(k) = lim
k→∞

P(T0 <∞ | S0 = k) = 0, k ∈ N,

which shows that C1 = 0.
On the other hand, the condition f(0) = 1 yields C2 = 1, hence we find f(k) = (q/p)k for all k > 0.

Alternatively, denoting by Tk the hitting time of state k we could show the decomposition

f(k+ 1) = P(T0 <∞ | S0 = k+ 1)
= P(Tk <∞ | S0 = k+ 1)×P(T0 <∞ | S0 = k)

= P(T0 <∞ | S0 = 1)×P(T0 <∞ | S0 = k) MH3512 AY19-20
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"564= f(1)× f(k), k ∈ N,

based on the Markov property, i.e. the probability of going down from k + 1 to 0 in a finite time should be the product of the
probability to go down one step in finite time, multiplied by the probability of going down k steps in a finite time. This shows that

f(k) = f(0)(f(1))k = (f(1))k, k > 0,

hence we have C1 = 0, C2 = 1, and f(1) = r = q/p, which yields

f(k) =

q
p

k , k ∈ N,

and recovers (2.2.13) and (3.4.16), cf. also (B.25) and (B.26).

b) Letting h(k) := IE[T0 | S0 = k] we have the boundary condition h(0) = 0 and by first step analysis we find that h(k) satisfies

h(k) = p(1 + h(k+ 1)) + q(1 + h(k− 1))
= 1 + ph(k+ 1) + qh(k− 1), k > 1,

which is (2.3.6) and has a general solution of the form

h(k) = C1 +C2r
k +

1
q− p

k, k ∈ N, (B.33)

by (2.3.9). Next, we note that by the Markov property we should have the decomposition

h(k+ 1) = IE[T0 | S0 = k+ 1]
= IE[T0 | S0 = 1] + IE[T0 | S0 = k]

= h(1) + h(k), k ∈ N,

i.e. the mean time to go down from k+ 1 to 0 should be the sum of the mean time needed to go down one step plus the mean time
needed to go down k steps. This shows that

h(k) = h(0) + kh(1) = kh(1), MH3512 AY19-20
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h(k) =
k

q− p
, k ∈ N.

In case q 6 p the above argument would yield a negative value for h(k), which is impossible, and h(k) has to be infinite for all
k > 1.

Exercise 5.11 First, we take a look at the complexity of the problem. Starting from 0 there are multiple ways to reach state 13
without reaching 11 or 12 . For example:

13 = 3 + 4 + 1 + 5, or 13 = 1 + 6 + 3 + 3, or 13 = 1 + 1 + 2 + 1 + 3 + 1 + 4, etc.

Clearly it would be difficult to enumerate all such possibilities, for this reason we use the framework of Markov chains.

We denote by Xn the cumulative sum of dice outcomes after n rounds, and choose to model it as a Markov chain with n as a time
index. We can represent Xn as

Xn =
n∑
k=1

ξk, n > 0,

where (ξk)k>1 is a family of independent random variables uniformly distributed over {1, 2, 3, 4, 5, 6}. The process (Xn)n>0 is a
Markov chain since given the history of (Xk)k=0,1,...,n up to time n, the value

Xn+1 = Xn + ξn+1

depends only on Xn and on ξn+1 which is independent of X0,X1, . . . ,Xn. The process (Xn)n>0 is actually a random walk with
independent increments ξ1, ξ2, . . ..

MH3512 AY19-20



"566The chain (Xn)n>0 has the transition matrix

[ Pi,j ]i,j∈N
=



0 1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 0 0 · · ·
0 0 1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 0 · · ·
0 0 0 1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 · · ·
0 0 0 0 1/6 1/6 1/6 1/6 1/6 1/6 0 0 · · ·
0 0 0 0 0 1/6 1/6 1/6 1/6 1/6 1/6 0 · · ·
0 0 0 0 0 0 1/6 1/6 1/6 1/6 1/6 1/6 · · ·
0 0 0 0 0 0 0 1/6 1/6 1/6 1/6 1/6 · · ·
0 0 0 0 0 0 0 0 1/6 1/6 1/6 1/6 · · ·
0 0 0 0 0 0 0 0 0 1/6 1/6 1/6 · · ·
0 0 0 0 0 0 0 0 0 0 1/6 1/6 · · ·
0 0 0 0 0 0 0 0 0 0 0 1/6 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
. . .



.

Letting A := {11, 12, 13, 14, 15, 16}, we are looking at the probability

g0 := P(XTA = 13 | X0 = 0)

of hitting the set A through and the set 13 after starting from state 0 . More generally, letting

gk := P(XTA = 13 | X0 = 0)

denote the probability of hitting the set A through the set 13 after starting from state k, we have gk = 0 for all k > 14, and the
probabilities gk can be easily computed for k = 8, . . . , 13 as

g13 = P(XTA = 13 | X0 = 13) = 1,
g12 = P(XTA = 13 | X0 = 12) = 0,
g11 = P(XTA = 13 | X0 = 11) = 0,

g10 = P(XTA = 13 | X0 = 10) =
1
6

,

g9 = P(XTA = 13 | X0 = 9) =
1
6
+

1
6
×

1
6
=

7
36

,
MH3512 AY19-20
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g8 = P(XTA = 13 | X0 = 8) =

1
6
+ 2×

1
6
×

1
6
+

1
6
×

1
6
×

1
6
=

49
216

,

where for the computation of g8 we note that there are only 4 ways to reach state 13 from state 8 without hitting states 11 or 12 ,
by the four combinations

13 = 8 + 5, 13 = 8 + 1 + 4, 13 = 8 + 2 + 3 13 = 8 + 1 + 1 + 3.

Clearly, things become easily complicated for k 6 7, and we will rely on first step analysis to continue the calculation. We have

g(k) =
1
6

6∑
i=1

gk+i, k ∈ N,

i.e.

g10 =
1
6
g13

g9 =
1
6
(g10 + g13)

g8 =
1
6
(g9 + g10 + g13)

g7 =
1
6
(g8 + g9 + g10 + g13)

g6 =
1
6
(g7 + g8 + g9 + g10)

g5 =
1
6
(g6 + g7 + g8 + g9 + g10)

g4 =
1
6
(g5 + g6 + g7 + g8 + g9 + g10)

g3 =
1
6
(g4 + g5 + g6 + g7 + g8 + g9)

g2 =
1
6
(g3 + g4 + g5 + g6 + g7 + g8)

g1 =
1
6
(g2 + g3 + g4 + g5 + g6 + g7)

MH3512 AY19-20
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g0 =

1
6
(g1 + g2 + g3 + g4 + g5 + g6).

In order to solve this system of equations we rewrite it as



g0− g1 =
1
6
(g1− g7)

g1− g2 =
1
6
(g2− g8)

g2− g3 =
1
6
(g3− g9)

g3− g4 =
1
6
(g4− g10)

g4− g5 =
1
6
g5

g5− g6 =
1
6
g6

g6− g7 =
1
6
(g7− 1)

g7− g8 =
1
6
g8

g8− g9 =
1
6
g9

g9− g10 =
1
6
g10

g10 =
1
6
g13,

or



g0 =
710− 76× 64− 4× 73× 66

611

g1 =
79− 75× 64− 3× 72× 66

610

g2 =
78− 74× 64− 2× 7× 66

69

g3 =
77− 73× 64− 66

68

g4 =
76− 72× 64

67

g5 =
75− 7× 64

66

g6 =
74

65 −
1
6
=

74− 64

65

g7 =
73

64

g8 =
72

63

g9 =
7
62

g10 =
1
6

,

i.e.
g0 =

710− 76× 64− 4× 73× 66

611 ' 0.181892636.

The total number of paths leading to 13 in the above fashion is 928. More generally, the numbers of such paths starting from
k = 0, 1, . . . , 10 can be computed by induction according to the following table:

MH3512 AY19-20



"569k 0 1 2 3 4 5 6 7 8 9 10
number of paths 928 492 248 125 63 32 16 8 4 2 1

Table 14.1: Number of paths starting from k = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

In Figure S.12 we enumerate the corresponding possible paths.

Figure S.12: Graph of 928 paths leading from 0 to state 13.∗

In addition we could compute the number of paths leading to 13 in k rounds with k = 3, 4, 5, 6, 7, 8, 9, 10, 11 as in the following
table:

k 3 4 5 6 7 8 9 10 11
number of paths 18 88 191 246 209 120 45 10 1

Table 14.2: Number of paths starting taking k rounds, k = 3, 4, 5, 6, 7, 8, 9, 10, 11.

∗Animated figure (works in Acrobat Reader). MH3512 AY19-20



"570This would also allow us to recover the value of g0 as

g0 =
18
63 +

88
64 +

191
65 +

246
66 +

209
67 +

120
68 +

45
69 +

10
610 +

1
611

=
65990113

362797056
' 0.181892636,

see e.g. here.

Exercise 5.12

a) The transition matrix is given by 

× × × × × ×
q 0 p 0 0 0
0 q 0 p 0 0
0 0 q 0 p 0
0 0 0 q 0 p
× × × × × ×


.

The information contained in the first and last lines of the matrix is not needed here because they have no influence on the result.
We have g(0) = 0, g(5) = 1, and

g(k) = q× g(k− 1) + p× g(k+ 1), 1 6 k 6 4. (B.34)

b) When p = q = 1/2 the probability that starting from state k the fish finds the food before getting shocked is obtained by solving
Equation (B.34) rewritten as

g(k) =
1
2
× g(k− 1) +

1
2
× g(k+ 1), 1 6 k 6 4.

Trying a solution of the form g(k) = C1 + kC2 under the boundary conditions g(0) = 0 and g(5) = 1, shows that C1 = 0 and
C2 = 1/5, which yields

g(k) =
k

5
, k = 0, 1, . . . , 5.

Exercise 5.13 MH3512 AY19-20
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"571a) The transition matrix is given by 

1 0 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·

1/2 1/2 0 0 0 0 · · ·
1/3 1/3 1/3 0 0 0 · · ·
1/4 1/4 1/4 1/4 0 0 · · ·
1/5 1/5 1/5 1/5 1/5 0 · · ·
...

...
...

...
...

...
. . .


.

Note that an arbitrary choice has been made for the first line (i.e. state 0 is absorbing), however other choices would not change
the answer to the question.

b) We have

h0(m) =
m−1∑
k=0

1
m

(1 + h0(k)) = 1 +
1
m

m−1∑
k=0

h0(k), m > 1,

and h0(0) = 0, h0(1) = 1.

c) We have

h0(m) = 1 +
1
m

m−1∑
k=0

h0(k)

= 1 +
1
m
h0(m− 1) +

m− 1
m

m−2∑
k=0

h0(k)

m− 1

= 1 +
1
m
h0(m− 1)−

m− 1
m

+
m− 1
m

1 +
m−2∑
k=0

h0(k)

m− 1


= 1 +

1
m
h0(m− 1)−

m− 1
m

+
m− 1
m

h0(m− 1)

= 1−
m− 1
m

+
1
m
h0(m− 1) +

m− 1
m

h0(m− 1)

= h0(m− 1) +
1
m

, m > 1, MH3512 AY19-20
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h0(m) = h0(m− 1) +
1
m

= h0(m− 2) +
1

m− 1
+

1
m

=
m∑
k=1

1
k

, m > 1.

We can also note that from the Markov property we have

h0(m) = hm−1(m) + h0(m− 1),

where the mean time hm−1(m) from state m to state
�� ��m− 1 is equal to 1/m since state

�� ��m− 1 is always reached in one step
from state m , with probability 1/m.

Exercise 5.14

a) Assuming that it takes one day per state transition, the graph of the chain can be drawn as

0 1 2

3

1/3 1/3

1/3

1
1 1

where state 0 represents the tower, states 1 and 2 represents the tunnel, and state 3 represents the outside.

b) We have

P =


1/3 1/3 0 1/3
0 0 1 0
1 0 0 0
0 0 0 1

 .

MH3512 AY19-20



"573c) By first step analysis, the average time h3(i) from state i to state 3 solves


h3(0) =
1
3
(1 + h3(0)) +

1
3
(1 + h3(1)) +

1
3

h3(1) = 1 + h3(2)

h3(2) = 1 + h3(0)

h3(3) = 0,

which yields
h3(0) =

1
3
(1 + h3(0)) +

1
3
(3 + h3(0)) +

1
3

,

i.e. h3(0) = 5, i.e. 4 times steps on average to reach the exit, plus one time step from the exit to the outside. The result h3(0) = 4
can also be obtained directly by writing the equations



h3(0) =
1
3
(1 + h3(0)) +

1
3
(1 + h3(1)) +

1
3
× 0

h3(1) = 1 + h3(2)

h3(2) = 1 + h3(0).

The difficulty in this exercise is that the Markov chain itself is not specified and one had to first design a suitable Markov model,
sometimes involving a Markov chain with weighted links. On the other hand, the equation h = 1 + Ph cannot be directly used
when the links have different weights starting from state 1 .

Alternative solutions:

(i) The problem can be solved in a simpler way with only 3 states, by adding a weight corresponding to the travel time (underlined)MH3512 AY19-20
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0 1

2

1/3
1

1/3
1

1/3
0
1
2

1

Here the average time h2(i) from state i to state 2 solves


h2(0) =
1
3
(1 + h2(0)) +

1
3
(1 + h2(1)) +

1
3
× 0

h2(1) = 2 + h2(0)

h2(2) = 0,

which yields
h2(0) =

1
3
(1 + h2(0)) +

1
3
(3 + h2(0)) +

1
3
× 0,

i.e. h2(0) = 4, which is consistent with the answer to Question (c) above since the time from the exit to the outside is here
taken equal to 0.

(ii) The answer can even be further simplified using the following graph, which no longer uses the notion of Markov chain, and in
which each link is weigthed by a travel time:

0 1
1/3
1

1/3 3

1/3
0

By first step analysis the average time t1(0) to travel from state 0 to state 1 is directly given by

t1(0) =
1
3
(1 + t1(0)) +

1
3
(3 + t1(0)) +

1
3
× 0, MH3512 AY19-20
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(iii) The problem could also be solved using 4 transient states and one absorbing state, based on the following graph:

Tower Exit 1 2

Exit 3 Out

1/3 1/3

1/3
1

1

1
1

Exercise 5.15 The average time t spent inside the maze can be quickly computed by the following first step analysis using weighted
links:

t =
1
2
× (t+ 3) +

1
6
× 2 +

2
6
× (t+ 5),

which yields t = 21. We refer to Exercise 5.14 and its solution for a more detailed analyis of a similar problem.

Exercise 5.16 The chain has the following graph:

0

1

2

31

0.1

0.6

0.1

0.2

0.2

0.3
0.4

0.1
1

a) Let us compute
g0(k) = P(T0 <∞ | X0 = k) = P(XT{0,3} = 0 | X0 = k), k = 0, 1, 2, 3. MH3512 AY19-20
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g0(0) = 1

g0(1) = 0.1× g0(0) + 0.6× g0(1) + 0.1× g0(2) + 0.2× g0(3)

g0(2) = 0.2× g0(0) + 0.3× g0(1) + 0.4× g0(2) + 0.1× g0(3)

g0(3) = 0,

i.e. 

g0(0) = 1

g0(1) = 0.1 + 0.6× g0(1) + 0.1× g0(2)

g0(2) = 0.2 + 0.3× g0(1) + 0.4× g0(2)

g0(3) = 0,
which has for solution

g0(0) = 1, g0(1) =
8

21
, g0(2) =

11
21

, g0(3) = 0,

cf. also (5.1.10).

b) Let
h0,3(k) = IE[T{0,3} | X0 = k]

denote the mean time to reach the set A = {0, 3} starting from k = 0, 1, 2, 3. By first step analysis, we have


h0,3(0) = 0

h0,3(1) = 0.1× 1 + 0.6× (1 + h0,3(1)) + 0.1× (1 + h0,3(2)) + 0.2× (1 + h0,3(3))

h0,3(2) = 0.2× 1 + 0.4× (1 + h0,3(1)) + 0.3× (1 + h0,3(2)) + 0.1× (1 + h0,3(3))

h0,3(3) = 0, MH3512 AY19-20
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h0,3(0) = 0

h0,3(1) = 1 + 0.6× h0,3(1) + 0.1× h0,3(2)

h0,3(2) = 1 + 0.4× h0,3(1) + 0.3× h0,3(2)

h0,3(3) = 0,
which has for solution

h0,3(0) = 0, h0,3(1) =
10
3

, h0,3(2) =
10
3

, h0,3(3) = 0.

Note that the relation h0,3(1) = h0,3(2) can be guessed from the symmetry of the problem.

Exercise 5.17

a) Let g2(k) = IP(T2 <∞ | X0 = k), k = 0, 1, 2. We have g2(2) = 1 and by first step analysis,


g2(0) =
1
3
g2(0) +

1
3
g2(1) +

1
3

g2(1) =
1
4
g2(0) +

3
4
g2(1),

with g2(2) = 1 since state 2 is absorbing. This shows that


2
3
g2(0) =

1
3
g2(1) +

1
3

g2(1) = g2(0),

hence IP(T2 <∞ | X0 = 1) = g2(0) = g2(1) = g2(2) = 1.
MH3512 AY19-20



"578Next, let g1(k) = IP(T r1 <∞ | X0 = k), k = 0, 1, 2. We have g1(2) = 0 and by first step analysis we have


g1(0) =
1
3
g1(0) +

1
3

g1(1) =
1
4
g1(0) +

3
4

g1(2) = 0,

hence 

g1(0) =
1
2

g1(1) =
7
8

g1(2) = 0,

and IP(T r1 <∞ | X0 = 1) = g1(1) = 7/8.

b) We have IE[T r1 | X0 = 1] = +∞×P(T r1 =∞ | X0 = 1) = +∞ because P(T r1 =∞ | X0 = 1) > 0 as state 1 is transient,
cf. Proposition 7.4.

On the other hand, let h2(k) = IE[T2 <∞ | X0 = k], k = 0, 1, 2. We have h2(2) = 0 and by first step analysis we have


h2(0) = 1 +
1
3
h2(0) +

1
3
h2(1)

h2(1) = 1 +
1
4
h2(0) +

3
4
h2(1)

h2(2) = 0, MH3512 AY19-20
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2h2(0) = 3 + h2(1)

h2(1) = 4 + h2(0)

h2(2) = 0,
hence 

h2(0) = 7

h2(1) = 11

h2(2) = 0,

and IE[T r2 <∞ | X0 = 1] = h2(1) = 11.

Exercise 5.18

a) When X0 = x > 2 and Y0 = y > 2 we have TA = 0, hence

µA(x, y) := IE[TA <∞ | X0 = x, Y0 = y] = 0, x > 2, y > 2.

b) This equation is obtained by first step analysis, noting that we can only move up to to the right with probability 1/2 in both cases.

c) We note that µA(x, y) = µA(x, y+ 1) for y > 2 and

µA(1, y) = 1 +
1
2
µA(2, y) +

1
2
µA(1, y+ 1) = 1 +

1
2
µA(1, y), y > 2,

hence µA(1, y) = 2 for all y > 2. We also have

µA(0, y) = 1 +
1
2
µA(1, y) +

1
2
µA(0, y+ 1) = 2 +

1
2
µA(0, y), y > 2,

hence µA(0, y) = 4, y > 2. By symmetry we also have µA(x, 1) = 2 and µA(x, 0) = 4 for all x > 2.
MH3512 AY19-20
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µA(1, y) =
∑
k>1

k

2k
=

1
2
∑
k>0

k

2k−1 =
1

2(1− 1/2)2 = 2, y > 2,

which yields similarly µA(x, 1) = 2 for all x > 2. Repeating this argument once also leads to µA(x, 0) = µA(0, y) = 4 for all
x, y > 2.

d) We have 

µA(1, 1) = 1 +
1
2
µA(2, 1) +

1
2
µA(1, 2) = 3,

µA(0, 1) = 1 +
1
2
µA(1, 1) +

1
2
µA(0, 2) =

9
2

,

µA(1, 0) = 1 +
1
2
µA(2, 0) +

1
2
µA(1, 1) =

9
2

,

µA(0, 0) = 1 +
1
2
µA(1, 0) +

1
2
µA(0, 1) =

11
2

,

hence the mean time it takes until both cans contain at least $2 is µA(0, 0) = 11/2. MH3512 AY19-20
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4 4 2 0 0 0

3 4 2 0 0 0

2 4 2 0 0 0

1 9/2 3 2 2 2

0 11/2 9/2 4 4 4

0 1 2 3 4

Table 14.3: Values of µA(x, y) with N = 2 and the set A in blue.

Figure S.13: Backward solution of (5.4.9) for the µA(x, y) with N = 10.∗

MH3512 AY19-20
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a) We have µA(x, y) = 0 for all (x, y) ∈ A.

b) We have
µA(x, y) = 1 +

1
2
µA(x+ 1, y) +

1
2
µA(x, y+ 1), 0 6 x, y 6 3. (B.35)

c) We have 

µA(2, 2) = 1 +
1
2
µA(3, 2) +

1
2
µA(2, 3) = 1,

µA(1, 2) = 1 +
1
2
µA(2, 2) +

1
2
µA(1, 3) =

3
2

,

µA(2, 1) = 1 +
1
2
µA(2, 2) +

1
2
µA(3, 1) =

3
2

,

µA(0, 2) = 1 +
1
2
µA(1, 2) +

1
2
µA(0, 3) =

7
4

,

µA(2, 0) = 1 +
1
2
µA(2, 1) +

1
2
µA(3, 0) =

7
4

,

µA(1, 1) = 1 +
1
2
µA(2, 1) +

1
2
µA(1, 2) =

5
2

,

µA(0, 1) = 1 +
1
2
µA(1, 1) +

1
2
µA(0, 2) =

25
8

,

µA(1, 0) = 1 +
1
2
µA(1, 1) +

1
2
µA(2, 0) =

25
8

,

µA(0, 0) = 1 +
1
2
µA(1, 0) +

1
2
µA(0, 1) =

33
8

.

d) The mean number of rounds is µA(0, 0) = 33/8 = 4.125.

∗Animated figure (works in Acrobat Reader). MH3512 AY19-20
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4 0 0 0 0 0

3 0 0 0 0 0

2 7/4 3/2 1 0 0

1 25/8 5/2 3/2 0 0

0 33/8 25/8 7/4 0 0

0 1 2 3 4

Table 14.4: Values of µA(x, y) with N = 3 and the set A in blue.

Figure S.14: Backward solution of Equation (B.35) for µA(x, y) with N = 10.∗

MH3512 AY19-20
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h(k) = IE
∑
i>0
βic(Xi)

∣∣∣∣∣ X0 = k


= IE

[
c(X0)

∣∣∣∣∣ X0 = k

]
+ IE

∑
i>1
βic(Xi)

∣∣∣∣∣ X0 = k


= c(k) +

∑
j∈S

Pk,j IE
∑
i>1
βic(Xi)

∣∣∣∣∣ X1 = j


= c(k) + β

∑
j∈S

Pk,j IE
∑
i>0
βic(Xi)

∣∣∣∣∣ X0 = j


= c(k) + β

∑
j∈S

Pk,jh(j), k ∈ S.

However, this type of equation may be difficult to solve in general. We refer to Problem 5.24 for a particular case with explicit solution.

Exercise 5.21 We have

V ∗(k) = max
π

IE
 ∑
n>0

γnR(Xn)
∣∣∣∣∣ X0 = k


= max

π
IE
R(X0) +

∑
n>1

γnR(Xn)
∣∣∣∣∣ X0 = k


= max

π
IE
R(k) + γ

∑
n>1

γn−1R(Xn)
∣∣∣∣∣ X0 = k


= max

π

R(k) + IE
γ ∑

n>1
γn−1R(Xn)

∣∣∣∣∣ X0 = k


= R(k) + γmax

π
IE
 ∑
n>1

γn−1R(Xn)
∣∣∣∣∣ X0 = k


= R(k) + γmax

a∈A

∑
l∈S

P a
k,l max

π
IE
 ∑
n>1

γn−1R(Xn)
∣∣∣∣∣ X1 = l


∗Animated figure (works in Acrobat Reader). MH3512 AY19-20
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= R(k) + γmax

a∈A

∑
l∈S

P a
k,l max

π
IE
 ∑
n>0

γnR(Xn+1)
∣∣∣∣∣ X1 = l


= R(k) + γmax

a∈A

∑
l∈S

P a
k,l IE

 ∑
n>0

γnR(Xn)
∣∣∣∣∣ X0 = l


= R(k) + γmax

a∈A

∑
l∈S

P a
k,lV

∗(l), k ∈ S.

The optimal policy π∗k ∈ A starting from state k ∈ S is given by

π∗k = argmaxa∈A

∑
l∈S

P a
k,lV

∗(l).

Problem 5.22

a) The boundary conditions g(0) and g(N) are given by g(0) = 1 and g(N) = 0.

b) We have

g(k) = P(T0 < TN | X0 = k) =
N∑
l=0

P(T0 < TN | X1 = l)P(X1 = l | X0 = k)

=
N∑
l=0

P(T0 < TN | X1 = l)Pk,l

=
N∑
l=0

P(T0 < TN | X0 = l)Pk,l

=
N∑
l=0
g(l)Pk,l, k = 0, 1, . . . ,N .

MH3512 AY19-20
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[ Pi,j ]06i,j63 =



1 0 0 0

(2/3)3 (2/3)2 2/32 1/33

1/33 2/32 (2/3)2 (2/3)3

0 0 0 1



d) Letting g(k) = 1− k/N , we check that g(k) satisfies the boundary conditions g(0) = 1 and g(N) = 0, and in addition we have

N∑
l=0
g(l)Pk,l =

N∑
l=0

N !
(N − l)!l!

 k
N

l 1−
k

N

N−l N − l
N

=
N−1∑
l=0

N !
(N − l)!l!

 k
N

l 1−
k

N

N−l N − l
N

=
N−1∑
l=0

(N − 1)!
(N − l− 1)!l!

 k
N

l 1−
k

N

N−l

=

1−
k

N

N−1∑
l=0

N − 1
l

  k
N

l 1−
k

N

N−1−l

=

1−
k

N

  k
N

+ 1−
k

N

N−1

=
N − k
N

= g(k), k = 0, 1, . . . ,N ,

which allows us to conclude by uniqueness of the solution given two boundary conditions, cf. Exercise 5.10 for cases of non-uniqueness
under a single boundary condition.

e) The boundary conditions h(0) and h(N) are given by h(0) = 0 and h(N) = 0 since the states 0 and N are absorbing.MH3512 AY19-20
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h(k) = IE[T0,N | X0 = k]

=
N∑
l=0

(1 + IE[T0,N | X1 = l])P(X1 = l | X0 = k)

=
N∑
l=0

(1 + IE[T0,N | X1 = l])Pk,l =
N∑
l=0
Pk,l +

N∑
l=0

IE[T0,N | X1 = l]Pk,l

= 1 +
N−1∑
l=1

IE[T0,N | X1 = l]Pk,l = 1 +
N−1∑
l=1

h(l)Pk,l, (B.36)

k = 1, 2, . . . ,N − 1.

g) In this case, the Equation (B.36) reads 

h(0) = 0,

h(1) = 1 +
4
9
h(1) +

2
9
h(2)

h(2) = 1 +
2
9
h(1) +

4
9
h(2)

h(3) = 0,
which yields

h(0) = 0, h(1) = 3, h(2) = 3, h(3) = 0.

Problem 5.23

a) As in the solution of Exercise 4.7, the transition matrix is given by MH3512 AY19-20
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aa

ab

ba

bb

[
aa

p

0
p

0

ab

q

0
q

0

ba

0
p

0
p

bb

0
q

0
q
] .

b) We have τab = 1 with probability one, hence

Gab(s) = IE[s | Z1 = (a, b)] = s.

c) We find 
Gaa(s) = psGaa(s) + qsGab(s),

Gba(s) = psGaa(s) + qsGab(s).

d) We have 
Gaa(s) = psGaa(s) + qs2,

Gba(s) = psGaa(s) + qs2,
hence

Gaa(s) = Gba(s) =
pqs3

1− ps
+ qs2 =

qs2

1− ps
, s ∈ (−1, 1).

We note that

P(τab <∞ | Z1 = (a, a)) = P(τab <∞ | Z1 = (b, a))
= Gba(1−)
= lim

s↗1
Gba(s)

= lim
s↗1

qs2

1− ps MH3512 AY19-20
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=

q

1− p
= 1.

e) We have

IE[τab | Z1 = (a, a)] = IE[τab | Z1 = (b, a)]
= G′ba(1) = G′aa(1)

=
2q

1− p
+

pq

(1− p)2 = 2 +
p

q
.

f) This average time is

p IE[τab | Z1 = (a, a)] + q IE[τab | Z1 = (a, b)] = p

2 +
p

q

+ q = 1 +
p

q
.

Problem 5.24

a) Since we consider the time until we hit either 0 or N , we have h(N) = 0 as well as h(N) = 0.

b) We have

h(k) = IE
τ−1∑
i=0

Xi

∣∣∣∣∣ X0 = k


= IE

[
X0

∣∣∣∣∣ X0 = k

]
+ IE

τ−1∑
i=1

Xi

∣∣∣∣∣ X0 = k


= k+ p IE

τ−1∑
i=1

Xi

∣∣∣∣∣ X1 = k+ 1
+ q IE

τ−1∑
i=1

Xi

∣∣∣∣∣ X1 = k− 1


= k+ p IE
τ−2∑
i=0

Xi+1

∣∣∣∣∣ X1 = k+ 1
+ q IE

τ−2∑
i=0

Xi+1

∣∣∣∣∣ X1 = k− 1
 (B.37)

= k+ p IE
τ−1∑
i=0

Xi

∣∣∣∣∣ X0 = k+ 1
+ q IE

τ−1∑
i=0

Xi

∣∣∣∣∣ X0 = k− 1
 (B.38)

= k+ ph(k+ 1) + qh(k− 1), 1 6 k 6 N − 1, MH3512 AY19-20
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When passing from

p IE
τ−1∑
i=1

Xi

∣∣∣∣∣ X1 = k+ 1
+ q IE

τ−1∑
i=1

Xi

∣∣∣∣∣ X1 = k− 1


to
p IE

τ−1∑
i=0

Xi

∣∣∣∣∣ X0 = k+ 1
+ q IE

τ−1∑
i=0

Xi

∣∣∣∣∣ X0 = k− 1
 ,

we are shifting the time summation index from i to i− 1, and after that the summation starts from 0 instead of 1. Nevertheless the
summation remains up to τ − 1 at the second step because in both cases, τ denotes the first hitting time of 0 or N . Writing τ − 2
in the second step would be wrong because the first hitting time of 0 or N within the expectation is τ (not τ − 1).

From now on we take p = q = 1/2.

c) We check successively that h(k) = C, h(k) = Ck, h(k) = Ck2 cannot be solution and that h(k) = Ck3 is solution provided
that C = −1/3.

Note that when trying successively h(k) = C, h(k) = Ck, h(k) = Ck2 and h(k) = Ck3, the quantity C has to be a constant.

Here, the index k is a variable, not a constant. Finding for example

C = 3k

can only be wrong because 3k is not a constant. On the other hand, finding C = 2 (say) would make sense because 2 is a
constant. Note that N also has the status of a constant (parameter) here.

d) The general solution has the form

h(k) = −
k3

3
+C1 +C2k, MH3512 AY19-20
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0 = h(0) = C1,

0 = h(N) = −
N3

3
+C1 +C2N ,

hence C1 = 0, C2 = N2/3, and

h(k) = −
k3

3
+N2k

3
=
k

3
(N2− k2) = k(N − k)

N + k

3
, k = 0, 1, . . . ,N . (B.39)

e) When N = 2 we find h(1) = 1 since starting from k = 1 we can only move to state 0 or state N = 2 which ends the game with
a cumulative sum equal to 1 in both cases.

f) i) We find an average of

IE[T0,N | X0 = 4] = 4(70− 4) = 4(70− 4) = 264 months = 22 years.

ii) By (B.39) we find
h(4) =

4
3
(702− 42) = $6512K = $6.512M.

iii) In that case we find
$4K× 264 = $1056K = $1.056M.

iv) It appears that starting a (potentially risky) business is more profitable on the average than keeping the same fixed initial income
over an equivalent (average) period of time.

However, this problem has been solved in the fair game case and without time discount, which may not be realistic. A more
thorough analysis should consider

h(k) = IE
τ−1∑
i=0

βiXi

∣∣∣∣∣ X0 = k


with discount factor β ∈ (0, 1) in the case where p < q, with additional computational difficulties.

MH3512 AY19-20
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P(XT0,N = 0 | X0 = k) = 1−
k

N
= %94

when k = 4 and N = 70.

Problem 5.25 This problem is based on a simplified version of questions considered in [Gus14].

a) We find

0 1 2 3 4 5

b
a a a

b

b a
b b

a

a,b

The smallest integers are l = 3, m = 2 and the word is a3b2.

b) This language can be denoted by Σ∗a3b2Σ∗. An example of five-letter word is aabbb.

c) The process (Yk)k∈N is clearly a Markov chain because given Yk, the distribution of Yk+1 := f(Xk+1,Yk) is independent of
Y0, . . . ,Yk−1. The graph of the chain (Yk)k∈N is

0 1 2 3 4 5

q
p p p

q

q p
q q

p

1

The transition matrix of the chain (Yk)k∈N is

[ Pi,j ]06i,j65 =



q p 0 0 0 0
q 0 p 0 0 0
q 0 0 p 0 0
0 0 0 p q 0
0 p 0 0 0 q
0 0 0 0 0 1


.

MH3512 AY19-20



"593d) Denoting by h5(k) the time it takes to reach state 5 starting from state k = 0, 1, 2, 3, 4, 5, we have the equations


h5(0) = 1 + qh5(0) + ph5(1)
h5(1) = 1 + qh5(0) + ph5(2)
h5(2) = 1 + qh5(0) + ph5(3)
h5(3) = 1 + ph5(3) + qh5(4)
h5(4) = 1 + ph5(1) + qh5(5)
h5(5) = 0,

i.e. 

ph5(0) = 1 + ph5(1)
h5(1) = 1 + qh5(0) + ph5(2)
h5(2) = 1 + qh5(0) + ph5(3)
qh5(3) = 1 + qh5(4) = 1 + qph5(0)
h5(4) = 1 + ph5(1) = ph5(0)
h5(5) = 0,

i.e. 

h5(0) =
1
p
+

1
p2 +

1
p3 + h5(3)

h5(1) =
1
p2 +

1
p3 + h5(3)

h5(2) =
1
p3 + h5(3)

h5(3) =
1
q
+ ph5(0)

h5(4) = ph5(0)
h5(5) = 0,
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h5(0) =
q(p2 + p+ 1) + p3

p3q2 =
1
p3q2

h5(1) =
1
p3q2 −

1
p

h5(2) =
1
p3q2 −

1
p
−

1
p2

h5(3) =
1
q
+

1
p2q2

h5(4) =
1
p2q2

h5(5) = 0.

e) We find

0 1 2 3 4

a,b
ab

a
b b

a

a,b

f) The words are abab and aabb.

g) The graph of the chain (Zk)k∈N is

0 1 2 3 4

1
pq

p
q q

p

1

The transition matrix of the chain (Zk)k∈N is

[ Pi,j ]06i,j64 =



1 0 0 0 0
q 0 p 0 0
0 0 p q 0
0 p 0 0 q
0 0 0 0 1


.
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"595h) Denoting by g0(k) the probability that state 0 is reached first starting from state k = 0, 1, 2, 3, 4, we have the equations


g0(0) = 1
g0(1) = qg0(0) + pg0(2) = q+ pg0(2)
g0(2) = pg0(2) + qg0(3)
g0(3) = pg0(1) + qg0(4) = pg0(1)
g0(4) = 0,

i.e. 

g0(0) = 1
g0(1) = q+ pg0(2)
g0(2) = pg0(2) + qg0(3) = pg0(2) + qpg0(1)
g0(3) = pg0(1)
g0(4) = 0,

i.e. 

g0(0) = 1
g0(1) = q+ p2g0(1)
g0(2) = pg0(1)
g0(3) = pg0(1)
g0(4) = 0,

i.e. 

g0(0) = 1

g0(1) =
q

1− p2 =
1

1 + p

g0(2) =
pq

1− p2 =
p

1 + p

g0(3) =
pq

1− p2 =
p

1 + p
g0(4) = 0.

The probability g0(1) can also be computed by pathwise analysis and a geometric series, as

g0(1) = 1− pq
∑
k>0

p2k = 1−
pq

1− p2 = 1−
p

1 + p
=

1
1 + p

.

Now, starting from state 1 one may move directly to state 0 with probability q, in which case the first synchronized word is “b”,
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"596not “abab”. For this reason we need to subtract q from g0(1), and the probability that the first synchronized word is “abab” starting
from state 1 is 1/(1 + p)− (1− p) = p2/(1 + p).

Note that the above computations apply only when p ∈ [0, 1). In case p = 1 the problem admits a trivial solution since the word
“abab” will never occur.

Exercise 5.26

a) The unique shortest word that synchronizes to state 4 starting from all states 1, 2, 3 is “aabb”.

b) The process (Zk)k∈N is a Markov chain on the state space {0, 1, 2, 3, 4}, with the following graph:

0 1 2 3 4

1
1/21/2

1/2
1/2 1/2

1/2

1

The transition matrix of the chain (Zk)k∈N is

[ Pi,j ]06i,j64 =



1 0 0 0 0
1/2 0 1/2 0 0
0 0 1/2 1/2 0
0 1/2 0 0 1/2
0 0 0 0 1


.
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"597c) Denoting by g4(k) the probability that state 4 is reached first starting from state k = 0, 1, 2, 3, 4, we have the equations


g4(0) = 0

g4(1) =
1
2
g4(0) +

1
2
g4(2) =

1
2
g4(2)

g4(2) =
1
2
g4(2) +

1
2
g4(3)

g4(3) =
1
2
g4(1) +

1
2
g4(4) =

1
2
g4(1) +

1
2

g4(4) = 1,

with the solution 

g4(0) = 0

g4(1) =
1
3

g4(2) =
2
3

g4(3) =
2
3

g4(4) = 1.

Hence the probability that the first synchronized word is “aabb” when the automaton is started from state 1 is 1/3.

Problem 5.27

a) We have

V (k) = IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = k
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=

∑
m∈S

Pk,m

R(k) + IE
 ∑
n>1

R(Xn)
∣∣∣∣∣ X1 = k


=

∑
m∈S

Pk,mR(k) +
∑
m∈S

Pk,m IE
 ∑
n>1

R(Xn)
∣∣∣∣∣ X1 = m


= R(k)

∑
m∈S

Pk,m +
∑
m∈S

Pk,m IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = m


= R(k) +

∑
m∈S

Pk,mV (m), k ∈ S.

b) b1) We have
Q∗(7, ↓) = 0, Q∗(7,→) = 0, Q∗(6, ↓) = 5, Q∗(6,→) = 5,

and Q∗(3, ↓) = 4. Regarding Q∗(3,→), we have

Q∗(3,→) = −1 + max
(
Q∗(3, ↓),Q∗(3,→)

)
,

which implies
Q∗(3,→) < Q∗(3, ↓),

hence
Q∗(3,→) = −1 +Q∗(3, ↓) = 3.

Similarly, we find 
Q∗(5, ↓) = −1, Q∗(5,→) = 2,
Q∗(2, ↓) = 0, Q∗(2,→) = 2,
Q∗(4, ↓) = 0, Q∗(4,→) = 1,
Q∗(1, ↓) = 1, Q∗(1,→) = 2.

We can solve by backward optimization (or dynamic programming): MH3512 AY19-20
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V ∗(6) = 5

Q∗(3, ↓) = 4

Q∗(3,→) = 3

→

Q∗(2,→) = 2

Q∗(1,→) = 2

→

→

↓

Q∗(5,→) = 2

Q∗(5, ↓) = −1

↓

Q∗(2, ↓) = 0

↓

Q∗(4,→) = 1

Q∗(4, ↓) = 0

↓

Q∗(1, ↓) = 1

→

→

→

b2) At every state k we have
V ∗(k) = max

(
Q∗(k, ↓),Q∗(k,→)

)
,

hence 

V ∗(7) = 0,
V ∗(6) = 5,
V ∗(3) = 4,
V ∗(5) = 2,
V ∗(2) = 2,
V ∗(4) = 1,
V ∗(1) = 2.

We obtain the following backward optimization tree: MH3512 AY19-20
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V ∗(6) = 5

V ∗(3) = 4, π∗(3) =“↓”

V ∗(2) = 2, π∗(2) =“→”

V ∗(1) = 2, π∗(1) =“→”

→

→

↓

V ∗(5) = 2, π∗(5) =“→”

V ∗(4) = 1, π∗(4) =“→”

→

→

b3) We find
π∗ = (π∗(1),π∗(2),π∗(3),π∗(4),π∗(5),π∗(6),π∗(7)) = (→,→, ↓,→,→, ↓�, ↓�),

which is consistent with the MDPtoolbox output:
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"601install.packages("MDPtoolbox")
library(MDPtoolbox)
P <- array(0, c(7, 7, 2))
P[,,1] <- matrix(c(0,0,0,1,0,0,0,

0,0,0,0,1,0,0,
0,0,0,0,0,1,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1), nrow=7, ncol=7, byrow=TRUE)

P[,,2] <- matrix(c(0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1), nrow=7, ncol=7, byrow=TRUE)

R <- array(0, c(7, 2))
R[,1] <- matrix(c(0, -2, -1, -1, -3, 5, 0), nrow=1, ncol=7, byrow=TRUE)
R[,2] <- R[,1]
mdp_check(P, R)
mdp_value_iteration(P,R,discount=1)
$V
[1] 2 2 4 1 2 5 0
$policy
[1] 2 2 1 2 2 1 1

c) c1) We have

Q∗(k, a) := max
π : π(k)=a

IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = k


= max

π : π(k)=a
IE
R(X0) +

∑
n>1

R(Xn)
∣∣∣∣∣ X0 = k


= max

π : π(k)=a
IE
R(k) +

∑
n>1

R(Xn)
∣∣∣∣∣ X0 = k
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=

∑
l∈S

P
(a)
k,l

R(k) + max
π

IE
 ∑
n>1

R(Xn)
∣∣∣∣∣ X1 = l


= R(k) +

∑
l∈S

P
(a)
k,l max

π
IE
 ∑
n>0

R(Xn+1)
∣∣∣∣∣ X1 = l


= R(k) +

∑
l∈S

P
(a)
k,l max

π
IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = l


= R(k) +

∑
l∈S

P
(a)
k,l V

∗(l), k ∈ S.

Similarly, the value function Qπ(k, a) for a given policy π by setting the first action at state k to a satisfies the equation

Qπ(k, a) = R(k) +
∑
l∈S

P
(a)
k,l V

π(l), k ∈ S. (B.40)

c2) The optimal policy π∗k ∈ A at state k ∈ S is given by

π∗k = argmaxa∈AQ
∗(k, a) = argmaxa∈A

∑
l∈S

P
(a)
k,l V

∗(l).

c3) We have

V ∗(k) = max
π

IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = k


= max

a∈A
max

π : π(k)=a
IE
 ∑
n>0

R(Xn)
∣∣∣∣∣ X0 = k


= max

a∈A
Q∗(k, a)

= max
a∈A

R(k) +
∑
l∈S

P
(a)
k,l V

∗(l)


= R(k) + max

a∈A

∑
l∈S

P
(a)
k,l V

∗(l), k ∈ S.
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V ∗(k) = R(k) + max
a∈A

∑
l∈S

P
(a)
k,l V

∗(l)

= max
a∈A

R(k) +
∑
l∈S

P
(a)
k,l V

∗(l)


= max

a∈A
Q∗(k, a), k ∈ S. (B.41)

Similarly, the value function V π(k) for a given policy satisfies the equation

V π(k) = R(k) +
∑
l∈S

P
(π(k))
k,l V π(l) k ∈ S, (B.42)

and the Bellman equation for Q∗(k, a) can also be rewritten as

Q∗(k, a) = R(k) +
∑
l∈S

P
(a)
k,l max

b∈A
Q∗(k, b), k ∈ S.

In order to solve the MDP problem, starting from an arbitrary initial policy choice π, one can:

i) Compute V π by applying (B.42) iteratively.

ii) Deduce the value of Qπ(k, a) for every state k and action a from (B.40).

iii) For every state k and action a, based on (B.41), choose to update π with π(k) := a if Qπ(k, a) > V π(k).

iv) Repeat the above iteratively.

d) d1) Similarly to Question (b1), we have 
Q∗(7, ↓) = 0, Q∗(7,→) = 0,
Q∗(6, ↓) = 5, Q∗(6,→) = 5,
Q∗(3, ↓) = 4, Q∗(3,→) = 3,
Q∗(5, ↓) = −1, Q∗(5,→) = 2. MH3512 AY19-20
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Q∗(2,→) = −2 + pmax
(
Q∗(3, ↓),Q∗(3,→)

)
+ qmax

(
Q∗(5,→),Q∗(5,→)

)
= −2 + pQ∗(3, ↓) + qQ∗(5,→)

= −2 + 4p+ 2q = 2p,

and
Q∗(4, ↓) = 0, Q∗(4,→) = 1, Q∗(1, ↓) = 1, Q∗(1,→) = Q∗(2,→) = 2p.

In other words, we have the following backward optimization (or dynamic programming) graph:

V ∗(6) = 5

Q∗(3, ↓) = 4

Q∗(3,→) = 3

→

Q∗(2,→) = 2p

Q∗(1,→) = 2p

→

→

↓

Q∗(5,→) = 2

Q∗(5, ↓) = −1

↓

Q∗(2, ↓) = 0

↓

Q∗(4,→) = 1

Q∗(4, ↓) = 0

↓

Q∗(1, ↓) = 1

→

→

→

d2) At every state k we have
V ∗(k) = max

(
Q∗(k, ↓),Q∗(k,→)

)
, MH3512 AY19-20
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V ∗(7) = 0,
V ∗(6) = 5,
V ∗(5) = 2,
V ∗(4) = 1,
V ∗(3) = 4,
V ∗(2) = 2p,
V ∗(1) = max(2p, 1).

d3) When p = 0 we find

π∗ = (π∗(1),π∗(2),π∗(3),π∗(4),π∗(5),π∗(6),π∗(7)) = (↓, ↓�, ↓,→,→, ↓�, ↓�)

which is consistent with the MDPtoolbox output:

$V
[1] 1 0 4 1 2 5 0
$policy
[1] 1 1 1 2 2 1 1

MH3512 AY19-20



"606
V ∗(6) = 5

V ∗(3) = 4, π∗(3) =“↓”

↓

V ∗(5) = 2, π∗(5) =“→”

V ∗(2) = 0, π∗(2) =“↓�”

↓�

V ∗(4) = 1, π∗(4) =“→”

V ∗(1) = 1, π∗(1) =“↓”

↓

→

→

Figure S.15: Optimal value function with p = 0.

When 0 < p < 1/2 we obtain

π∗ = (π∗(1),π∗(2),π∗(3),π∗(4),π∗(5),π∗(6),π∗(7)) = (↓,→, ↓,→,→, ↓�, ↓�)

which is consistent with the MDPtoolbox output, here with p = 0.25:

$V
[1] 1.0 0.5 4.0 1.0 2.0 5.0 0.0
$policy
[1] 1 2 1 2 2 1 1
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V ∗(6) = 5

V ∗(3) = 4, π∗(3) =“↓”

↓

V ∗(5) = 2, π∗(5) =“→”

V ∗(2) = 2p, π∗(2) =“→”

→

V ∗(4) = 1, π∗(4) =“→”

V ∗(1) = 1, π∗(1) =“↓”

↓

→

→

Figure S.16: Optimal value function with 0 < p < 1/2.

When p = 1/2 we find

π∗ = (π∗(1),π∗(2),π∗(3),π∗(4),π∗(5),π∗(6),π∗(7)) = (↓�,→, ↓,→,→, ↓�, ↓�) MH3512 AY19-20
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V ∗(6) = 5

V ∗(3) = 4, π∗(3) =“↓”

V ∗(2) = 1, π∗(2) =“→”

V ∗(1) = 1, π∗(1) =“→”

→

→

↓

V ∗(5) = 2, π∗(5) =“→”

V ∗(4) = 1, π∗(4) =“→”

V ∗(1) = 1, π∗(1) =“↓”

↓

→

→

Figure S.17: Optimal value function with p = 1/2.

which is consistent with the MDPtoolbox output, with p = 0.5:

$V
[1] 1 1 4 1 2 5 0
$policy
[1] 1 2 1 2 2 1 1

When 1/2 < p 6 1 we obtain

π∗ = (π∗(1),π∗(1),π∗3,π∗4,π∗5,π∗6,π∗7) = (→,→, ↓,→,→, ↓�, ↓�). MH3512 AY19-20
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V ∗(6) = 5

V ∗(3) = 4, π∗(3) =“↓”

V ∗(2) = 2p, π∗(2) =“→”

V ∗(1) = 2p, π∗(1) =“→”

→

→

↓

V ∗(5) = 2, π∗(5) =“→”

V ∗(4) = 1, π∗(4) =“→”

→

→

Figure S.18: Optimal value function with 1/2 < p 6 1.

which is also consistent with the following MDPtoolbox output, here with p = 0.75:
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P <- array(0, c(7, 7, 2))
p=0.75
q=1-p
P[,,1] <- matrix(c(0,0,0,1,0,0,0,

0,0,0,0,1,0,0,
0,0,0,0,0,1,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1), nrow=7, ncol=7, byrow=TRUE)

P[,,2] <- matrix(c(0,1,0,0,0,0,0,
0,0,p,0,q,0,0,
0,0,1,0,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1), nrow=7, ncol=7, byrow=TRUE)

R <- array(0, c(7, 2))
R[,1] <- matrix(c(0, -2, -1, -1, -3, 5, 0), nrow=1, ncol=7, byrow=TRUE)
R[,2] <- R[,1]
mdp_check(P, R)
mdp_value_iteration(P,R,discount=1)
$V
[1] 1.5 1.5 4.0 1.0 2.0 5.0 0.0
$policy
[1] 2 2 1 2 2 1 1

Chapter 6 - Classification of States

Exercise 6.1 MH3512 AY19-20



"611a) The graph of the chain is

0 1 2 3
1/3

1/3

1/3

1

1 1

This Markov chain is reducible because its state space can be partitioned into two communicating classes as S = {0} ∪ {1, 2, 3}.

b) State 0 has period 1 and states 1 , 2 , 3 have period 3.

c) We have
p0,0 = P(T0 <∞ | X0 = 0) = P(T0 = 1 | X0 = 0) =

1
3

,

and
P(T0 =∞ | X0 = 0) = 1−P(T0 <∞ | X0 = 0) =

2
3

.

We also have

P(R0 <∞ | X0 = 0) = P(T0 =∞ | X0 = 0)
∑
n>1

(P(T0 <∞ | X0 = 0))n

=
2
3
∑
n>1

(1
3

)n
= 1.

d) There are no absorbing states, state 0 is transient, and states 1 , 2 , 3 are recurrent by Corollary 6.7. State 0 is transient since
P(R0 <∞ | X0 = 0) = 1, as expected according to (5.4.3).

Exercise 6.2

a) The chain is reducible and its communicating classes are {0, 1} and {2}.

b) States 0 and 1 are transient and the state 2 is (positive) recurrent and absorbing.

c) All states have period 1. MH3512 AY19-20
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a) The chain has the following graph

0

1
2 43

1/4

1/4
1/4

1/4

1

1
1

1

b) All states 0 , 1 , 2 and 3 have period 1, which can be obtained as the greastest common divisor (GCD) of {2, 3} for states 0 ,
1 , 2 and {4, 6, 7} for state 3 . The chain is aperiodic.

c) State 4 is absorbing (and therefore recurrent), state 0 is transient because

P(T r0 =∞|X0 = 0) >
1
4
> 0,

and the remaining states 1 , 2 , 3 are also transient because they communicate with the transient state 0 , cf. Corollary 6.7. By
pathwise or first step analysis we can actually check that

P(T r0 =∞|X0 = 0)

=
1
4
(
P(T r0 =∞|X0 = 1) + P(T r0 =∞|X0 = 2) + P(T r0 =∞|X0 = 3)

)

=
3
4

.

d) The Markov chain is reducible because its state space S = {0, 1, 2, 3, 4} can be partitioned into two communicating classes
{0, 1, 2, 3} and {4}. MH3512 AY19-20
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0 1 2

3 45

1/2

1/4

1/4 1/3
1/3 1/3

11/6
1/2

1/6
1/6

11

a) The chain is reducible and its communicating classes are {0}, {1}, {3}, {5}, and {2, 4}.

b) States 0 , 1 , 3 are transient and states 2 , 4 , 5 are recurrent.

c) State 3 has period 0, states 2 and 4 have period 2, and states 0 , 1 , 5 are aperiodic.

Exercise 6.5

a) The graph of the chain is

0 3

2 1

0.8

0.2

1

1

0.3

0.4

0.3

This chain is reducible, with communicating classes {0, 2}, {1}, and {3}.

b) States 0 , 2 , 3 have period 1, and state 1 has period 0. States 1 and 3 are transient, states 0 and 2 are recurrent by
Theorem 6.10 and Corollary 6.7, and they are also positive recurrent since the state space is finite. There are no absorbing states.

Exercise 6.6 MH3512 AY19-20
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b) the transient states are 1 , 2 , 3 , 4 , 5 .

c) the recurrent state is 0 .

d) the positive recurrent state is 0 .

e) the period of state 0 is 1, the period of states 1 and 2 is 2, and the period of states 3 , 4 , 5 is 3.

Exercise 6.7

a) This question refers to the Ehrenfest chain, cf. Example (iv) page 151. By (4.3.2) and (4.3.3) the transition matrix of this chain
takes the form 

0 1 0 0 · · · · · · 0 0
1/N 0 (N − 1)/N 0 · · · · · · 0 0

0 2/N 0 (N − 2)/N · · · · · · 0 0
0 0 3/N 0 · · · · · · 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

. . .
. . .

...
...

...

0 0 · · ·
... 0 3/N 0 0

0 0 · · · 0 (N − 2)/N 0 2/N 0
0 0 · · · 0 0 (N − 1)/N 0 1/N
0 0 · · · 0 0 0 1 0



.

Note that the random choice made is that of a ball among N balls, not a box among two boxes.

b) All states have period 2 and are recurrent. There is no transient state.

Exercise 6.8

a) For the Markov chain of Exercise 4.10-(a) we find that state 0 is (positive) recurrent as it is absorbing, while every state k is
transient when k > 1 since P(T rk <∞ | X0 = k) = 0, k > 1. State 0 is aperiodic, and all other states have period 0.MH3512 AY19-20
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P(T r0 <∞ | X0) = q
∑
n>0

pn =
q

1− p
= 1,

hence state 0 is recurrent. Since the chain is irreducible, it is recurrent by Corollary 6.7. State 0 is also positive recurrent as we
have

IE[T r0 | X0] = q
∑
n>1

npn−1 =
q

(1− p)2 =
1
q

.

Next, by first step analysis we have

IE[T rk | X0 = 0] =
k∑
i=1

IE[T ri | X0 = i− 1]

=
k∑
i=1

(
q(1 + IE[T ri−1 | X0 = 0]) + p

)

=
k∑
i=1

(
1 + q IE[T ri−1 | X0 = 0]

)

= k+ q
k∑
i=1

IE[T ri−1 | X0 = 0], k > 1,

which shows by induction that IE[T rk | X0 = 0] <∞, k > 0. On the other hand, we have

IE[T rk | X0 = k] = 1 + q IE[T rk | X0 = 0] + p IE[T rk | X0 = k+ 1]
= 1 + q IE[T rk | X0 = 0] + p IE[T rk | X0 = k], k > 0,

since the starting point does not matter as long as we start from k > 1, hence

IE[T rk | X0 = k] =
1
q
+ IE[T rk | X0 = 0], k > 1,

which shows that IE[T rk | Xk = 0] <∞, k > 0, therefore the success runs Markov chain is also positive recurrent.

c) The chain is aperiodic because it is recurrent and state 0 has a returning loop. MH3512 AY19-20



"616Problem 6.9 By the same argument as in Exercise 3.2, by first step analysis we have

IE[T r0 | X0 = 1] =
1

α+ 1
× 1 +

α

α+ 1
× (1 + IE[T r0 | X0 = 2])

=
1

α+ 1
× 1 +

α

α+ 1
× (1 + 2 IE[T r0 | X0 = 1])

= 1 +
2α
α+ 1

IE[T r0 | X0 = 1],

hence
IE[T r0 | X0 = 1] =

α+ 1
1−α

, α < 1.

By the space homogeneity of the chain, we deduce that

IE[T r0 | X0 = k] =
k∑
i=1

IE[T ri−1 | X0 = i]

= k IE[T r0 | X0 = 1]

= k
α+ 1
1−α

, k > 1, α < 1,

and
IE[T r0 | X0 = 0] = 1 + IE[T r0 | X0 = 1] = 1 +

α+ 1
1−α

=
2

1−α
,

hence state 0 is positive recurrent if α < 1. On the other hand, we have

IE[T r1 | X0 = 1] =
1

α+ 1
× 2 +

α

α+ 1
× (1 + IE[T r1 | X0 = 2])

= 1 +
1

α+ 1
+

α

α+ 1
IE[T r0 | X0 = 1]

= 1 +
1

α+ 1
+

α

1−α

=
2

1−α2 .

MH3512 AY19-20



"617Similarly to the above, we have IE[T r1 | X0 = 0] = 1 and, for k > 1,

IE[T rk+1 | X0 = k] =
α

α+ 1
× 1 +

1
α+ 1

× (1 + IE[T rk+1 | X0 = k− 1])

= 1 +
1

α+ 1
× (IE[T rk | X0 = k− 1] + IE[T rk+1 | X0 = k]),

hence
IE[T rk+1 | X0 = k] =

α+ 1 + IE[T rk | X0 = k− 1]
α

, k > 1,

which can be solved as
IE[T rk+1 | X0 = k] =

2α−k −α− 1
1−α

, k > 0,

see e.g. the command RSolve[f[k+1]==1+1/a+f[k]/a,f[0] == 1, f[k], k], which shows that

IE[T rk | X0 = k]

=
1

α+ 1
(1 + IE[T rk | X0 = k− 1]) +

α

α+ 1
(1 + IE[T rk | X0 = k+ 1])

= 1 +
1

α+ 1
IE[T rk | X0 = k− 1] +

α

α+ 1
IE[T rk | X0 = k+ 1]

= 1 +
1

α+ 1
IE[T rk | X0 = k− 1] +

α

1−α

=
1

1−α
+

1
α+ 1

IE[T rk | X0 = k− 1]

=
2α−k

1−α2 ,

< ∞,

therefore the chain is positive recurrent if and only if α < 1.

MH3512 AY19-20
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"618Chapter 7 - Long-Run Behavior of Markov Chains
Exercise 7.1

a) The chain is reducible, state 0 is aperiodic and all other states have period 0. On the other hand, we check that state 0 is positive
recurrent and all other states are transient, cf. Exercise 6.8-(a). Therefore, the assumptions of Theorems 7.2, 7.8 and 7.10 are not
satisfied.

b) Writing π = πP , i.e.

[π0,π1,π2,π3, · · · ] = [π0,π1,π2,π3, · · · ]×



1 0 0 0 0 · · ·
q 0 p 0 0 · · ·
q 0 0 p 0 · · ·
q 0 0 0 p · · ·
q 0 0 0 0 · · ·
... 0 0 0 0

. . .


,

shows that 

π0 = π0 + q(π1 + π2 + · · · ) = π0 + q(1− π0) = q+ pπ0,
π1 = 0,
π2 = pπ1,
π3 = pπ2,
...

hence πk = 0, k > 1, and the stationary distribution is given by

π = [1, 0, 0, 0, . . .].

c) Taking the limit as n tends to infinity in (B.30), we find

lim
n→∞P

n =



1 0 0 0 0 · · ·
1 0 0 0 0 · · ·
1 0 0 0 0 · · ·
1 0 0 0 0 · · ·
...
...
...
...
...
. . .


,

MH3512 AY19-20



"619hence the limiting distribution coincides with the stationary distribution π obtained in (b).

Exercise 7.2

a) The chain irreducible, aperiodic, recurrent and positive recurrent by Exercise 6.8-(c). Therefore, the assumptions of Theorems 7.2,
7.8 and 7.10 are all satisfied and the chain admits a limiting distribution which coincides with its stationary distribution.

b) Writing π = πP , i.e.

[π0,π1,π2,π3, · · · ] = [π0,π1,π2,π3, · · · ]×



q p 0 0 0 · · ·
q 0 p 0 0 · · ·
q 0 0 p 0 · · ·
q 0 0 0 p · · ·
q 0 0 0 0 · · ·
... 0 0 0 0

. . .


,

shows that 

π1 = pπ0,
π2 = pπ1,
π3 = pπ2,
...

hence by induction we get πk = pkπ0, k > 1. By the condition
∑
k>0

πk = 1 we find

1 =
∑
k>0

πk = π0
∑
k>0

pk =
π0

1− p
,

which shows that π0 = q. We conclude that π is the geometric distribution

πk = (1− p)pk, k ∈ N.

For the chain of Exercise 4.10-(a) we find π1 = 0 hence the stationary distribution is given by π = (1, 0, 0, . . .). MH3512 AY19-20



"620c) Taking the limit as n tends to infinity in (B.31), we find, when p < 1,

lim
n→∞P

n =



q qp qp2 qp3 qp4 · · ·
q qp qp2 qp3 qp4 · · ·
q qp qp2 qp3 qp4 · · ·
q qp qp2 qp3 qp4 · · ·
...

...
...

...
...

. . .


hence the chain admits the geometric distribution with parameter p as a limiting distribution, which coincides with the stationary
distribution π obtained in (b).

Exercise 7.3

a) The Ehrenfest chain is irreducible and positive recurrent, and has period 2, therefore it satisfies the conditions of Theorem 7.10 and
it admits a stationary distribution.

b) The stationary distribution of the Ehrenfest chain satisfies the equation πP = π, which reads

[π0,π1,π2, . . .]×



0 1 0 0 · · · · · · 0 0
1/N 0 (N − 1)/N 0 · · · · · · 0 0

0 2/N 0 (N − 2)/N · · · · · · 0 0
0 0 3/N 0 · · · · · · 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

. . .
. . .

...
...

...

0 0 · · ·
... 0 3/N 0 0

0 0 · · · 0 (N − 2)/N 0 2/N 0
0 0 · · · 0 0 (N − 1)/N 0 1/N
0 0 · · · 0 0 0 1 0


MH3512 AY19-20



"621= [π0,π1,π2, . . .] = π,
cf. Exercise 6.7. This yields 

π0 =
π1

N

π1 = π0 +
2
N
π2,

π2 = π1
N − 1
N

+
3
N
π3,

π3 = π2
N − 2
N

+
4
N
π4,

...

from which we deduce 

π0 =
π1

N

π1 =
2

N − 1
π2,

π2 =
3

N − 2
π3,

π3 =
4

N − 3
π4,

...

hence
π0 =

1
N
×

2
N − 1

×
3

N − 2
× · · · ×

k

N − k+ 1
πk =

k!(N − k)!
N !

πk,

or
πk =

N
k

π0, k = 0, . . . ,N .

MH3512 AY19-20



"622In addition we have
1 =

N∑
k=0

πk = π0
N∑
k=0

N
k

 = (1 + 1)nπ0 = 2Nπ0,

hence π0 = 2−N and (πk)k=0,1,...,N is the binomial distribution with parameter (N , 1/2), i.e.

πk =

N
k

 (1
2

)N
, k = 0, 1, . . . ,N . (B.43)

Conversely, from (B.43) we can recover

N∑
l=0
πlPl,k = πk−1

N − (k− 1)
N

+ πk+1
k+ 1
N

=

 N

k− 1

 (1
2

)N N − k+ 1
N

+

 N

k+ 1

 (1
2

)N k+ 1
N

=
(1

2

)N (N − 1)!k
(N − k)!k!

+
(1

2

)N (N − 1)!(N − k)
(N − k)!k!

=
(1

2

)N N
k


= πk, k = 1, 2, . . . ,N − 1,

and similarly for k = 0 and k = N , showing that π = πP .

c) The powers of the transition matrix of the Ehrenfest chain can be computed using the following R code:

MH3512 AY19-20



"623install.packages("expm")
library(expm)
Ehrenfest <-
function(n) {
States <- c(0, seq(1,n))
TPM <- matrix(0,nrow=length(States),ncol=length(States),dimnames=

list(seq(0,n),seq(0,n)))
tran_prob <- function(i,n) {
tranRow <- rep(0,n+1)
if(i==0) tranRow[2] <- 1
if(i==n) tranRow[(n+1)-1] <- 1
if(i!=0 & i!=n) {
j=i+1
tranRow[j-1] <- i/(n)
tranRow[j+1] <- 1-i/(n)

}
return(tranRow)

}
for(j in 0:(n))TPM[j+1,] <- tran_prob(j,n)
return(TPM)

}
P=Ehrenfest(4)
P%^%1000
P%^%1001
P%^%1002

which shows that, although (P n)n>1 admits two converging subsequences, limn→∞ P
n does not exist. Note that the conditions of

Theorems 7.8 and 7.10 are not satisfied here.

Exercise 7.4

a) The Bernoulli-Laplace chain is irreducible, aperiodic and positive recurrent. Therefore it satisfies all the assumptions of Theorems 7.2,
7.8 and 7.10, the chain admits a limiting distribution which coincides with its stationary distribution. MH3512 AY19-20



"624b) The equation π = πP reads 

π0 =
π1

N2

π1 = π0 +
2(N − 1)
N2 π1 +

22

N2π2,

π2 =
(N − 1)2

N2 π1 +
4(N − 2)
N2 π2 +

32

N2π3,

π3 =
(N − 2)2

N2 π1 +
6(N − 3)
N2 π2 +

32

N2π3,
...

from which we deduce 

π0 =
π1

N2

π1 =
22

(N − 1)2π2,

π2 =
32

(N − 2)2π3,

π3 =
42

(N − 3)2π4,

...

hence
π0 =

1
N2 ×

22

(N − 1)2 ×
32

(N − 2)2 × · · · ×
k2

(N − k+ 1)2πk =
k!2(N − k)!2

N !2
πk,

or
πk =

N
k

2

π0, k = 0, . . . ,N .
MH3512 AY19-20



"625In addition we have
1 =

N∑
k=0

πk = π0
N∑
k=0

N
k

2

=

2N
N

π0,

hence π0 = 1/
2N
N

 and (πk)k=0,1,...,N is the probability distribution given by

πk =

N
k

2

2N
N

, k = 0, 1, . . . ,N .

c) The Bernoulli-Laplace chain admits a limiting distribution which coincides with its stationary distribution by Theorem 7.8.

Exercise 7.5

a) We have 
0 0.5 0 0.5

0.5 0 0.5 0
0 0.5 0 0.5

0.5 0 0.5 0

 .

b) By first step analysis, we have 

µ0(0) = 1 +
1
2
µ0(1) +

1
2
µ0(3)

µ0(1) = 1 +
1
2
µ0(2)

µ0(2) = 1 +
1
2
µ0(1) +

1
2
µ0(3)

µ0(3) = 1 +
1
2
µ0(2). MH3512 AY19-20



"626By symmetry of the maze we have µ0(1) = µ0(3), hence

µ0(0) = µ0(2) = 1 + µ0(1)

µ0(1) = µ0(3) = 1 +
1
2
µ0(2).

and
µ0(0) = 4, µ0(1) = 3, µ0(2) = 4, µ0(3) = 3.

The symmetry of the problem shows that we have, µ0(1) = µ0(3), which greatly simplifies the calculations. One has to pay
attention to the fact that µ0(0) is a return time, not a hitting time, so that µ0(0) cannot be equal to zero.

c) Clearly, the probability distribution
(π0,π1,π2,π3) =

(1
4

,
1
4

,
1
4

,
1
4

)

is invariant and satisfies the condition π = πP , see also Exercise 7.14.

Recall that the family (π0,π1,π2,π3) is a (probability) distribution if and only if

(i) π0 > 0, π1 > 0, π2 > 0, π3 > 0,

and

(ii)
π0 + π1 + π2 + π3 = 1.

In the present situation we have
π0 = π1 = π2 = π3

and
π0 + π1 + π2 + π3 = 1 = 4π0,

which necessarily yields
π0 = π1 = π2 = π3 =

1
4
=

1
µ0(0)

.
MH3512 AY19-20
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a) Clearly, the transition from the current state to the next state depends only on the current state on the chain, hence the process is
Markov. The transition matrix of the chain on the state space S = (D,N) is

P =

 1− a a
b 1− b

 =

 1/4 3/4
1/4 3/4

 .

b) The stationary distribution π = (πD,πN) is solution of π = πP , i.e.


πD = (1− a)πD + bπN =
1
4
πD +

1
4
πN

πN = aπD + (1− b)πN =
3
4
πD +

3
4
πN

under the condition πD + πN = 1, which yields πD = b/(a+ b) = 1/4 and πN = a/(a+ b) = 3/4.

c) In the long run, by the Ergodic Theorem 7.12 we find that the fraction of distorted signals is πD = 1/4 = 25%.

d) The average time hN(D) = µN(D) to reach state N starting from state D satisfies

µN(D) = (1− a)(1 + µN(D)) + a (B.44)

hence µN(D) = 1/a = 4/3.

Additional comments:

(i) The stationary distribution [πD,πN ] satisfies

[πD,πN ] =

 µN(D)

µD(N) + µN(D)
,

µD(N)

µD(N) + µN(D)

 ,

as the ratios of times spent in states D and N , since µN(D) = 1/a and µD(N) = 1/b. MH3512 AY19-20
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µN(D) =
3
4
∑
k>1

k

(1
4

)k−1
=

3
4

1
(1− 1/4)2 =

4
3

,

cf. (A.4).

e) The average time µD(N) to reach state D starting from state N satisfies

µD(N) = (1− b)(1 + µD(N)) + b (B.45)

hence µN(D) = 1/b = 4.

Additional comments:
(i) The value of µD(N) may also be recovered as

µD(N) =
1
4
∑
k>1

k

(3
4

)k−1
=

1
4

1
(1− 3/4)2 = 4,

cf. (A.4).
(ii) The values of µDD and µNN can also be computed from µDD = 1/πD and µNN = 1/πN .

Exercise 7.7

a) The chain has the following graph:

0

1

2

3
1

0.2

0.8

0.3

0.7

0.4

0.6

MH3512 AY19-20



"629The chain is reducible and its communicating classes are {0, 1, 2} and {3}.

b) State 3 is transient because P(T3 = ∞ | X0 = 3) = 0.4 + 0.6 = 1, cf. (6.3.1), and states 0 , 1 , 2 are recurrent by
Theorem 6.10 and Corollary 6.7.

c) It suffices to consider the subchain on {0, 1, 2} with transition matrix

P̃ =


0 1 0

0.2 0 0.8
0.3 0 0.7

 ,

and to solve π = πP̃ , i.e. 
π0 = 0.2π1 + 0.3π2
π1 = π0
π2 = 0.8π1 + 0.7π2

which yields π1 = π0 and 0.3π2 = 0.8π1 = 0.8π0, with

1 = π0 + π1 + π2 = 2π0 +
8
3
π0,

i.e.
π0 =

3
14

, π1 =
3

14
, π2 =

4
7

,

and the fraction of time spent at state 0 in the long run is 3/14 ' 0.214 as the limiting and stationary distributions coincide.

d) Letting h0(k) denote the mean hitting time of state 0 starting from state k , we have

h0(0) = 0
h0(1) = 0.2(1 + h0(0)) + 0.8(1 + h0(2))
h0(2) = 0.3(1 + h0(0)) + 0.7(1 + h0(2))
h0(3) = 0.4(1 + h0(0)) + 0.6(1 + h0(1)), MH3512 AY19-20



"630i.e. 

h0(0) = 0,

h0(1) = 1 + 0.8h0(2),

h0(2) = 1 + 0.7h0(2),

h0(3) = 1 + 0.6h0(1),

or



h0(0) = 0,

h0(1) = 1 + 0.8h0(2),

0.3h0(2) = 1,

h0(3) = 1 + 0.6h0(1),
hence

h0(0) = 0, h0(1) =
11
3

, h0(2) =
10
3

, h0(3) =
16
5

,

and the mean time to reach state 0 starting from state 2 is found to be equal to h0(2) = 10/3, which can also be recovered by
pathwise analysis and the geometric series

h0(2) = 0.3
∑
k>1

k(0.7)k−1 =
0.3

(1− 0.7)2 =
10
3

.

Note that the value of h0(2) could also be computed by restriction to the sub-chain {0, 1, 2}, by solving

h0(0) = 0
h0(1) = 0.2(1 + h0(0)) + 0.8(1 + h0(2))
h0(2) = 0.3(1 + h0(0)) + 0.7(1 + h0(2)).

Exercise 7.8

a) First, we note that the chain has finite state space and it is irreducible, positive recurrent and aperiodic, hence by Theorem 7.8
its limiting distribution coincides with its stationary distribution which is the unique solution of π = πP . After calculations, this
equation can be solved as

π0 = c× 161, π1 = c× 460, π2 = c× 320, π3 = c× 170,

see here. The condition
1 = π0 + π1 + π2 + π3 = c× 161 + c× 460 + c× 320 + c× 170 MH3512 AY19-20

http://www.wolframalpha.com/input/?i=10*x%3Dy%2B2*z%2B3*t%2C10*y%3D10*x%2B4*y%2B2*z%2B3*t%2C10*z%3D2*y%2B5*z%2B4*t%2C10*t%3D3*y%2Bz


"631shows that
c =

1
161 + 460 + 320 + 170

=
1

1111
,

hence
π0 =

161
1111

, π1 =
460

1111
, π2 =

320
1111

, π3 =
170

1111
. (B.46)

b) We choose to solve this problem using mean return times since µ0(i) = h0(i), i = 1, 2, 3, however it could also be solved using
mean hitting times hi(j). We have



µ0(0) = 1 + µ0(1),

µ0(1) = 0.1 + 0.4(1 + µ0(1)) + 0.2(1 + µ0(2)) + 0.3(1 + µ0(3))
= 1 + 0.4µ0(1) + 0.2µ0(2) + 0.3µ0(3),

µ0(2) = 0.2 + 0.2(1 + µ0(1)) + 0.5(1 + µ0(2)) + 0.1(1 + µ0(3))
= 1 + 0.2µ0(1) + 0.5µ0(2) + 0.1µ0(3),

µ0(3) = 1 + 0.3µ0(1) + 0.4µ0(2),

hence
µ0(1) =

950
161

, µ0(2) =
860
161

, µ0(3) =
790
161

,

see here or here. Note that the data of the first row in the transition matrix is not needed in order to compute the mean return times.

c) We find
µ0(0) = 1 + µ0(1) = 1 +

950
161

=
161 + 950

161
=

1111
161

,

hence the relation π0 = 1/µ0(0) is satisfied from (B.46).

Exercise 7.9

a) All states of this chain have period 2.

b) The chain is irreducible and it has a finite state space, hence it is positive recurrent from Theorem 6.12. By Proposition 6.15, all
states have period 2 hence the chain is not aperiodic, and for this reason Theorem 7.2 and Theorem 7.8 cannot be used and theMH3512 AY19-20
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"632chain actually has no limiting distribution. Nevertheless, Theorem 7.10 applies and shows that the equation π = πP characterizes
the stationary distribution. This equation reads 

π0 =
1
4
π1 +

1
2
π3

π1 =
1
2
π0 +

1
3
π2

π2 =
3
4
π1 +

1
2
π3

π3 =
1
2
π0 +

2
3
π2,

hence
π1 = π0, π2 = 3π0/2, π3 = 3π0/2,

see here, under the condition
π0 + π1 + π2 + π3 = 1,

which yields the solution
π0 = 2c, π1 = 2c, π2 = 3c, π3 = 3c,

and c = 1/10, i.e
π0 = 20%, π1 = 20%, π2 = 30%, π3 = 30%.

Exercise 7.10 We choose to model the problem on the state space {1, 2, 3, 4}, meaning that the replacement of a component is immediate
upon failure. Let Xn denote the remaining active time of the component at time n. Given that at time n there remains Xn = k > 2
units of time until failure, we know with certainty that at the next time step n+ 1 there will remain Xn−1 = k− 1 > 1 units of time
until failure. Hence at any time n > 1 we have

Xn = 4 =⇒ Xn+1 = 3 =⇒ Xn+2 = 2 =⇒ Xn+3 = 1,

whereas when Xn = 1 the component will become inactive at the next time step and will be immediately replaced by a new component
of random lifetime T ∈ {1, 2, 3}. Hence we have

P(Xn+1 = k | Xn = 1) = P(T = k), k = 1, 2, 3, 4, MH3512 AY19-20
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"633and the process (Xn)n∈N is a Markov chain on S = {1, 2, 3, 4}, with transition matrix

P =


P(Y = 1) P(Y = 2) P(Y = 3) P(Y = 4)

1 0 0 0
0 1 0 0
0 0 1 0

 =


0.1 0.2 0.3 0.4
1 0 0 0
0 1 0 0
0 0 1 0

 .

We now look for the limit
lim
n→∞P(Xn = 1).

Since the chain is irreducible, aperiodic (all states are checked to have period one) and its state space is finite, we know by Theorem 7.8
that

π1 = lim
n→∞P(Xn = 1),

where π = (π1,π2,π3,π4) is the stationary distribution π uniquely determined from the equation π = πP , as follows:


π1 = 0.1π1 + π2

π2 = 0.2π1 + π3

π3 = 0.3π1 + π4

π4 = 0.4π1.

hence
π2 = 0.9π1, π3 = 0.7π1, π4 = 0.4π1,

under the condition
π1 + π2 + π3 + π4 = 1,

i.e.
π1 + 0.9π1 + 0.7π1 + 0.4π1 = 1,

which yields
π1 =

1
3

, π2 =
9

30
, π3 =

7
30

, π4 =
4

30
.

This result can be confirmed by computing the limit of matrix powers (P n)n∈N as n tends to infinity using the following Matlab/Octave
MH3512 AY19-20



"634commands:
P = [0.1,0.2,0.3,0.4;
1,0,0,0;
0,1,0,0;
0,0,1,0;]
mpower(P,1000)

showing that

lim
n→∞P

n =


0.33333 0.30000 0.23333 0.13333
0.33333 0.30000 0.23333 0.13333
0.33333 0.30000 0.23333 0.13333
0.33333 0.30000 0.23333 0.13333

 .

Exercise 7.11 The graph of the chain is as follows:
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B

C

DE
0.6

0.4

0.7

0.3

0.2

0.4

0.4
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0.2

0.2

0.2
0.2

1

We note that the chain is reducible, and that its state space S can be partitioned into 4 communicating classes:

S = {A,B} ∪ {C} ∪ {D} ∪ {E},

where A,B are recurrent, E is absorbing, and C,D are transient.

Starting from state C , one can only return to C or end up in one of the absorbing classes {A,B} or {E}. Let us denote by

T{A,B} = inf{n > 0 : Xn ∈ {A,B}} MH3512 AY19-20



"635the hitting time of {A,B}. We start by computing P(T{A,B} < ∞ | X0 = C). By first step analysis we find that this probability
satisfies

P(T{A,B} <∞ | X0 = C) = 0.2 + 0.4×P(T{A,B} <∞ | X0 = C) + 0.4× 0,
hence

P(T{A,B} <∞ | X0 = C) =
1
3

,

which can also be recovered using a geometric series as

P(T{A,B} <∞ | X0 = C) = 0.2
∑
n>0

(0.4)n =
0.2

1− 0.4
=

1
3

.

On the other hand, {A,B} is a closed two-state chain with transition matrix
 1− a a

b 1− b

 =

 0.6 0.4
0.3 0.7

 ,

hence, starting from any state within {A,B}, the long run probability of being in A is given by

lim
n→∞P(Xn = A | X0 ∈ {A,B})

= lim
n→∞P(Xn = A | X0 = A)

P(X0 = A)

P(X0 ∈ {A,B})

+ lim
n→∞P(Xn = A | X0 = B)

P(X0 = B)

P(X0 ∈ {A,B})

=
b

a+ b

 P(X0 = A)

P(X0 ∈ {A,B})
+

P(X0 = B)

P(X0 ∈ {A,B})


=

0.3
0.3 + 0.4

=
3
7

.

Since
{Xn = A} ⊂ {TA,B 6 n} ⊂ {TA,B <∞}, n ∈ N,

we conclude that

α := lim
n→∞P(Xn = A | X0 = C)

MH3512 AY19-20



"636= lim
n→∞P

(
TA,B <∞ and Xn = A | X0 = C

)
= lim

n→∞P
(
TA,B <∞ and Xn+TA,B = A | X0 = C

)
= P

(
TA,B <∞ | X0 = C

)
lim
n→∞P

(
Xn+TA,B = A | TA,B <∞ and X0 = C

)
= P

(
TA,B <∞ | X0 = C

)
× lim

n→∞P
(
Xn+TA,B = A | TA,B <∞, XTA,B ∈ {A,B}, X0 = C

)
= P

(
T{A,B} <∞ | X0 = C

)
lim
n→∞P(Xn = A | X0 ∈ {A,B})

=
1
3
×

3
7

=
1
7

,

where we used the strong Markov property, cf. Exercise 5.9.

The value α of this probability could also be obtained in a faster way by the following more intuitive first step analysis:

α = 0.4×α+ 0.2×
0.3
0.7

,

which recovers α = 1/7, although this way of reasoning is a bit too fast to be truly recommended.

On the other hand, the numerical computation of the 20th power of P shows that

P 20 =



0.4285 0.5714 0 0 0
0.4285 0.5714 0 0 0
0.1428 0.1904 1.099510−8 0 0.6666
0.2500 0.3333 1.099510−8 1.048510−14 0.4166

0 0 0 0 1


,

which recovers
lim
n→∞P(Xn = A | X0 = C) =

1
7
' 0.142857 MH3512 AY19-20
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"637up to 6 decimals, and one can reasonably conjecture that the limiting distribution of the chain is given by

lim
n→∞P

n =



3/7 4/7 0 0 0
3/7 4/7 0 0 0
1/7 4/21 0 0 2/3
1/4 1/3 0 0 5/12
0 0 0 0 1


, (B.47)

which could also be recovered term by term using the above method. From this matrix one also sees clearly that C and D are transient
states since they correspond to vanishing columns in the above matrix. From (B.47) we also note that limn→∞ P(Xn = i | X0 = j)
is dependent on the initial state j , due to the fact that the chain is not irreducible and Theorems 7.2 and 7.8 cannot be applied
except if the initial state belongs to the communicating class {A,B}, for which (3/7, 4/7) is a limiting distribution independent of the
initial state. We also check that every limiting distribution in (B.47) is a stationary distribution solution of π = πP , cf. Proposition 7.7.

Exercise 7.12

a) The chain has the following graph:

0

1

2
3

4
1/3

2/3
1/2

1/2

1

6/71/7

1

b) The communicating classes are {0, 1}, {2}, {3}, and {4}.

c) States 3 and 4 are transient, states 0 and 1 are recurrent, and state 2 is absorbing (hence it is recurrent).

d) By (4.5.7) we have

lim
n→∞P(Xn = 0 | X0 = 4) = lim

n→∞P(Xn = 0 | X0 = 0) =
1/2

2/3 + 1/2
=

3
7

,

cf. also the Table 8.1. MH3512 AY19-20



"638Exercise 7.13

a) The transition matrix P of the chain on the state space S = (C, T ) is given by
 4/5 1/5

3/4 1/4

 .

b) The stationary distribution π = (πC,πT ) is solution of π = πP , i.e.


πC =
4
5
πC +

3
4
πT

πT =
1
5
πC +

1
4
πT

under the condition πC + πT = 1, which yields πC = 15/19 and πT = 4/19.

c) In the long run, applying the Ergodic Theorem 7.12 we find that 4 out of 19 vehicles are trucks.

d) Let µT (C) and µT (T ) denote the mean return times to state T starting from C and T , respecticely. By first step analysis we
have 

µT (C) = 1 +
4
5
µT (C)

µT (T ) = 1 +
3
4
µT (C)

which has for solution µT (C) = 5 and µT (T ) = 19/4. Consequently, it takes on average 19/4 = 4.75 vehicles after a truck until
the next truck is seen under the bridge, and we check that the relation πD = 1/µT (T ) holds.

Exercise 7.14

a) We note that, due to the symmetry of P , the vector

π = [π1,π2, . . . ,πN ] := [1/N , . . . , 1/N ] MH3512 AY19-20



"639is an invariant probability distribution for the chain, since we can check the balance condition

[πP ]j =
N∑
i=1

πiPi,j

=
1
N

N∑
i=1

Pj,i

=
1
N

= πj, j = 1, 2, . . . ,N .

b) When N = 2 the chain can only have the transition matrix

P =


0 1

1 0


which clearly has period 2. When N > 3 the chain is aperiodic because it is irreducible and one can travel from 0 to 0 in 2 steps
via the path 0 → 1 → 0 , and in 3 steps via the path 0 → 1 → 2 → 0 .

Exercise 7.15 (Problem 5.25 continued).

a) The chain is reducible and its communicating classes are {0, 1, 2, 3, 4} and {5}.

b) The limiting distribution is (0, 0, 0, 0, 0, 1) independently of the initial state because the states {0, 1, 2, 3, 4} are transient (cf.
Proposition 7.4) and state 5 is absorbing. This means that

lim
n→∞P

n =



0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1


,

which would be difficult to recover by a direct computation of P n.
MH3512 AY19-20



"640For the stationary distribution, the equation π = πP reads

π0 = qπ0 + qπ1 + qπ2
π1 = pπ0 + pπ4
π2 = pπ1
π3 = pπ2 + pπ3
π4 = pπ3
π5 = qπ4 + π5,

i.e. 

pπ0 = qπ1 + qπ2
π1 = pπ0 + pπ4
π2 = pπ1
qπ3 = pπ2
π4 = pπ3
π4 = 0,

hence (π0,π1,π2,π3,π4,π5) = (0, 0, 0, 0, 0, 1), which coincides with the limiting distribution.

Note that the relation πi = 1/µi(i) still holds for i = 0, 1, 2, 3, 4, 5, although not all of the assumptions of Theorems 7.2, 7.8 and
7.8 (notably the irreducibility condition) are satisfied here.

Exercise 7.16
a) We solve the system of equations 

π0 = q(π0 + π1 + π2 + π3) + π4 = q+ pπ4

π1 = pπ0

π2 = pπ1 = p2π0

π3 = pπ2 = p3π0

π4 = pπ3 = p4π0,
which yields

1 = π0 + π1 + π2 + π3 + π4 = π0(1 + p+ p2 + p3 + p4), MH3512 AY19-20



"641and 

π0 =
1

1 + p+ p2 + p3 + p4

π1 =
p

1 + p+ p2 + p3 + p4

π2 =
p2

1 + p+ p2 + p3 + p4

π3 =
p3

1 + p+ p2 + p3 + p4

π4 =
p4

1 + p+ p2 + p3 + p4 .

b) Since the chain is irreducible and aperiodic with finite state space, its limiting distribution coincides with its stationary distribution.

Exercise 7.17
a) The transition matrix P is given by

P =


0 1/2 0 1/2

1/3 0 1/3 1/3
0 1 0 0

1/2 1/2 0 0

 .

b) The chain is aperiodic, irreducible, and has finite state space hence we can apply Theorem 7.8 or Theorem 7.10. The equation
πP = π reads

πP = [πA,πB,πC,πD]×


0 1/2 0 1/2

1/3 0 1/3 1/3
0 1 0 0

1/2 1/2 0 0

 =



1
3
πB +

1
2
πD

1
2
πA + πC +

1
2
πD

1
3
πB

1
2
πA +

1
3
πB


= [πA,πB,πC,πD],

i.e. πA = πD = 2πC and πB = 3πC , which, under the condition πA + πB + πC + πD = 1, gives πA = 1/4, πB = 3/8,
πC = 1/8, πD = 1/4. MH3512 AY19-20



"642c) We solve the system


µD(A) =
1
2
+

1
2
(1 + µD(B)) = 1 +

1
2
µD(B)

µD(B) =
1
3
+

1
3
(1 + µD(A)) +

1
3
(1 + µD(C)) = 1 +

1
3
(µD(A) + µD(C))

µD(C) = 1 + µD(B)

µD(D) =
1
2
(1 + µD(A)) +

1
2
(1 + µD(B)) = 1 +

1
2
(µD(A) + µD(B)),

which has for solution
µD(A) =

8
3

, µD(B) =
10
3

, µD(C) =
13
3

, µD(D) = 4.

On average, player D has to wait µD(D) = 4 time units before recovering the token.

d) This probability is πD = 0.25, and we check that the relation µ(D) = 1/πD = 4 is satisfied.

Exercise 7.18 Clearly we may assume that c < 1, as the case c = 1 corresponds to the identity matrix, or to constant a chain. On the
other hand, we cannot directly apply Theorem 7.8 since the chain is reducible. The chain has the following graph:

0

2

11 1
a

b

c

a) By observation of

P 2 =


1 0 0
0 1 0

a(1 + c) b(1 + c) c2


and

P 3 =


1 0 0
0 1 0

a(1 + c+ c2) b(1 + c+ c2) c3


MH3512 AY19-20



"643we infer that P n takes the general form

P n =


1 0 0
0 1 0
an bn cn

 ,

where an, bn and cn are coefficients to be determined by the following induction argument. Writing down the relation P n+1 =
P × P n as

P n+1 =


1 0 0
0 1 0

an+1 bn+1 cn+1

 =


1 0 0
0 1 0
a b c

×


1 0 0
0 1 0
an bn cn


shows that we have the recurrence relations



an+1 = a+ can,

bn+1 = b+ cbn,

cn+1 = c× cn,

which yield



an = a+ ac+ · · ·+ acn−1 = a
1− cn

1− c
,

bn = b+ bc+ · · ·+ bcn−1 = b
1− cn

1− c
,

cn+1 = cn,

hence

P n =


1 0 0
0 1 0

a
1− cn

1− c
b

1− cn

1− c
cn

 .

b) From the structure of P n it follows that the chain admits a limiting distribution

lim
n→∞P

n =


1 0 0
0 1 0
a

1− c
b

1− c
0

 .

which is dependent of the initial state, provided that c < 1. The limiting probabilities

lim
n→∞P(Xn = 0 | X0 = 2) =

a

1− c
,

MH3512 AY19-20



"644resp.
lim
n→∞P(Xn = 1 | X0 = 2) =

b

1− c
,

correspond to the probability of moving to state 0 , resp. the probability of moving to state 1 , given one does not return to state 2 .

In addition we have P(T r2 =∞ | X0 = 2) = a+ b > 0, hence state 2 is transient and the chain is not recurrent.

c) By solving the equation π = πP we find that the chain admits an infinity of stationary distributions of the form (π0,π1, 0)
with π0 + π1 = 1 when c < 1. We also note that here, all limiting distributions obtained in Question (b) are also stationary
distributions on every row. Here again, Theorem 7.8 does not apply for the same reasons as in Question (b) and the limiting and
stationary distributions may differ.

Exercise 7.19

a) The process (Xn)n∈N is a two-state Markov chain on {0, 1} with transition matrix
 α β
p q


and α = 1− β. The entries on the second line are easily obtained. Concerning the first line we note that P(N = 1) = β is the
probability of switching from 0 to 1 in one time step, while the equality P(N = 2) = β(1− β) shows that the probability of
remaining at 0 for one time step is 1− β.

b) This probability is given from the stationary distribution (π0,π1) as π1 =
β

p+ β
.

Exercise 7.20

a) Since the chain is irreducible and aperiodic with finite state space it admits a unique stationary distribution π = (π1,π2, . . . ,πN)
with

πi =
1

µi(i)
, i = 1, 2, . . . ,N ,

by Corollary 7.9. Since π = (π1,π2, . . . ,πN) is a probability distribution we have π1 + π2 + · · ·+ πN = 1 hence there exists
i ∈ {1, 2, . . . ,N} with πi = 1/µi(i) > 1/N , i.e. µi(i) 6 N , otherwise the sum π1 + π2 + · · ·+ πN would be lower than one.MH3512 AY19-20



"645b) Similarly, the condition π1 + π2 + · · ·+ πN = 1 shows that there must exist i ∈ {1, 2, . . . ,N} with πi = 1/µi(i) 6 1/N , i.e.
µi(i) > N , otherwise the sum π1 + π2 + · · ·+ πN would be larger than one.

Exercise 7.21

a) The N ×N transition matrix of the chain is

P =



q p 0 · · · · · · 0 0 0
q 0 p · · · · · · 0 0 0

0 q 0
. . .

. . . 0 0 0

0 0 q
. . .

. . . 0 0 0
...

...
...

. . .
. . .

...
...

...

0 0 0
. . .

. . . 0 p 0
0 0 0 · · · · · · q 0 p
0 0 0 · · · · · · 0 q p



.

b) The chain is irreducible if p ∈ (0, 1), and reducible if p = 0 or p = 1.

c) If p ∈ (0, 1) there are no absorbing states and all states are positive recurrent. If p = 0, state 1 is absorbing and all other states
are transient. If p = 1, state N is absorbing and all other states are transient.

d) The equation π = πP yields
π2 =

p

q
π1 and πN =

p

q
πN−1, k = 1, 2, . . . ,N − 1,

and
p(πk − πk−1) = q(πk+1− πk) k = 2, 3, . . . ,N − 1.

We check that πk given by

πk =
pk−1

qk−1π1, k = 1, 2, . . . ,N ,
MH3512 AY19-20



"646satisfies the above conditions. The normalization condition

1 =
N∑
k=1

πk = π1
N∑
k=1

pk−1

qk−1 = π1
N−1∑
k=0

p
q

k = π1
1− (p/q)N

1− p/q

shows that
πk =

1− p/q
1− (p/q)N

pk−1

qk−1 , k = 1, 2, . . . ,N ,

provided that 0 < p 6= q < 1. When p = q = 1/2 we find that the uniform distribution

πk =
1
N

, k = 1, 2, . . . ,N ,

is stationary. When p = 0 the stationary distribution is 1{0} = [1, 0, . . . , 0, 0], and when p = 1 it is 1{N} = [0, 0, . . . , 0, 1].

e) The chain has finite state space and when p ∈ (0, 1) it is irreducible and aperiodic, hence its limiting distribution coincides with
its stationary distribution. It can by easily checked that this coincidence also occurs here for p = 0 and p = 1, although in those
cases the chain is not irreducible and not aperiodic.

Exercise 7.22 We note that the chain is irreducible and has period 2.
a) By Problem 6.9 the chain is positive recurrent when α < 1, hence by Theorem 7.10 it admits a stationary distribution π. The

relation π = πP reads

π = [π0,π1,π2, . . .] = [π0,π1,π2, . . .]×



0 1 0 0 · · ·
1

α+ 1
0

α

α+ 1
0 · · ·

0
1

α+ 1
0

α

α+ 1
· · ·

...
...

. . .
. . .

. . .


,

hence
π0 =

π1

α+ 1
, π1 = π0 +

π2

α+ 1
, π2 =

απ1

α+ 1
+

π3

α+ 1
, . . .

i.e.
π0 =

π2

α(α+ 1)
, π1 =

π2

α
, π2 =

π3

α
, . . .

MH3512 AY19-20



"647from which we can deduce that
πk = π0α

k−1(1 + α), k > 1.
From the condition

∑
k>0

πk = 1 we find

1 = π0 + π0(1 + α)
∑
k>1

αk−1 = π0 + π0
1 + α

1−α
,

hence
π0 =

1−α
2

and πk = αk−11−α2

2
, k > 1.

More generally, from the relation π = πP we can also write

πk =
απk−1

α+ 1
+
πk+1

α+ 1
, k > 2,

which can be written as
πk = qπk−1 + pπk+1, k > 2, (B.48)

where p = 1/(α+ 1) and q = α/(α+ 1). We look for a solution of (B.48) of the form πk = C(q/p)k = Cαk as in (2.2.14),
k > 1, which clearly satisfies (B.48) written as

ααk−1

α+ 1
+
αk+1

α+ 1
= αk, k > 2.

When α < 1 the value of C can be found from the condition

1 =
∑
k>0

πk

= π0 +
∑
k>2

πk

=
π2

α(α+ 1)
+

∑
k>1

πk

= C
α

α+ 1
+C

α

1−α

MH3512 AY19-20
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= C

2α
1−α2

hence
C =

1−α2

2α
and

π0 =
1−α

2
, πk = αk−11−α2

2
, k > 1.

b) When α > 1 the series ∑k>1 πk does not converge so there cannot be a stationary distribution. In addition, π0 would be negative
if α > 1. When α = 1 we find πk = 0, k ∈ N, which cannot be a probability distribution as well (note that from Question (a)
the solution of π = πP is unique).

c) From the solution of Problem 6.9, we check that

IE[T0 | X0 = 0] =
1

1−α
=

1
π0

,

and
IE[Tk | X0 = k] =

2αk−1

1−α2 =
1
πk

<∞, k > 1,

as expected from Theorem 7.10.

Exercise 7.23

a) We have

P(Xn = x) = P({Xn = x} ∩ {τ 6 n}) + P({Xn = x} ∩ {τ > n})
= P({Yn = x} ∩ {τ 6 n}) + P({Xn = x} ∩ {τ > n})
6 P(Yn = x) + P(τ > n).

b) Similarly to Question (a), we have

P(Yn = x) = P({Yn = x} ∩ {τ 6 n}) + P({Yn = x} ∩ {τ > n})
= P({Xn = x} ∩ {τ 6 n}) + P({Yn = x} ∩ {τ > n}) MH3512 AY19-20



"6496 P(Xn = x) + P(τ > n),

hence
−P(τ > n) 6 P(Xn = x)−P(Yn = x) 6 P(τ > n),

which leads to the conclusion.

Problem 7.24

a) We have

P(Yn+1 = j | Yn = i) =
P(Yn+1 = j and Yn = i)

P(Yn = i)

=
P(Yn−1 = j)

P(Yn = i)

P(Yn = i and Yn+1 = j)

P(Yn−1 = j)

=
P(XN−n−1 = j)

P(XN−n = i)

P(XN−n = i and XN−n−1 = j)

P(XN−n−1 = j)

=
P(XN−n−1 = j)

P(XN−n = i)

P(XN−n = i and XN−n−1 = j)

P(XN−n−1 = j)

=
P(XN−n−1 = j)

P(XN−n = i)
P(XN−n = i | XN−n−1 = j) =

πj

πi
Pj,i.

On the other hand, we have

P(Yn+1 = j | Yn = in, . . . ,Y0 = i0) =
P(Yn+1 = j,Yn = in, . . . ,Y0 = i0)

P(Yn = in, . . . ,Y0 = i0)

=
P(XN−n−1 = j,XN−n = in, . . . ,XN = i0)

P(XN−n = in, . . . ,XN = i0)

= P(XN−n−1 = j and XN−n = in)

×
P(XN−n+1 = in−1, . . . ,XN = i0 | XN−n−1 = j,XN−n = in)

P(XN−n+1 = in−1, . . . ,XN = i0) MH3512 AY19-20
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=

P(XN−n−1 = j)

P(XN−n = in)

P(XN−n−1 = j and XN−n = in)

P(XN−n−1 = j)

×
P(XN−n+1 = in−1, . . . ,XN = i0 | XN−n−1 = j,XN−n = in)

P(XN−n+1 = in−1, . . . ,XN = i0 | XN−n = in)

=
P(XN−n−1 = j)

P(XN−n = in)
P(XN−n = in | XN−n−1 = j, )

×
P(XN−n+1 = in−1, . . . ,XN = i0 | XN−n−1 = j)

P(XN−n+1 = in−1, . . . ,XN = i0 | XN−n = in)

=
P(XN−n−1 = j)

P(XN−n = in)
P(XN−n = in | XN−n−1 = j) =

πj

πin
Pj,in,

and this shows that
P(Yn+1 = j | Yn = in, . . . ,Y0 = i0) = P(Yn+1 = j | Yn = in) =

πj

πin
Pj,in,

i.e. the time-reversed process (Yn)n=0,1,...,N has the Markov property.

b) We find
Pi,j =

πi

πj
Pj,i, (B.49)

i.e.
πiPi,j = πjPj,i,

which is the detailed balance condition with respect to the probability distribution π = (πi)i∈S.

c) We have
πj =

∑
i

πjPj,i =
∑
i

πiPi,j = [πP ]j.

d) According to the detailed balance condition (B.49), we have

Pk1,k2Pk2,k3 · · ·Pkn,k1 = Pkn,k1

n−1∏
i=1

Pki,ki+1 = Pkn,k1

n−1∏
i=1

πki+1

πki
Pki+1,ki

=
πkn
πk1

Pkn,k1

n−1∏
i=1

Pki+1,ki = Pk1,kn

n−1∏
i=1

Pki+1,ki, MH3512 AY19-20
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e) If the Markov chain satisfies
Pk1,k2Pk2,k3 · · ·Pkn−1,knPkn,k1 = Pk1,knPkn,kn−1 · · ·Pk3,k2Pk2,k1

then by summation over the indexes k2, k3, . . . , kn−1, using the matrix power relation

[P n−1]i,j =
∑

k2,...,kn−1

Pi,k2Pk2,k3 · · ·Pkn−1,j,

we get

[P n−1]k1,knPkn,k1 = Pkn,k1

∑
k2,...,kn−1

Pk1,k2Pk2,k3 · · ·Pkn−1,kn

= Pk1,kn
∑

k2,...,kn−1

Pkn,kn−1 · · ·Pk3,k2Pk2,k1

= Pk1,kn[P
n−1]kn,k1.

On the other hand, by taking the limit as n goes to infinity Theorem 7.8 shows that

lim
n→∞[P

n−1]kn,k1 = lim
n→∞[P

n]kn,k1 = πk1

since the limiting and stationary distributions coincide, and we get

πknPkn,k1 = Pk1,knπk1,

which is the detailed balance condition.

f) The detailed balance condition reads

πiPi,i+1 = πi

1
2
−

i

2M

 = πi+1Pi+1,i = πi+1
i+ 1
2M

,

hence
πi+1

πi
=

1− i/M
(i+ 1)/M

=
M − i
i+ 1

,
MH3512 AY19-20



"652which shows that
πi =

(M − i+ 1)
i

(M − i+ 2)
(i− 1)

· · ·
(M − 1)

2
M

1
π0 =

M !
i!(M − i)!

π0 = π0

M
i

,

i = 0, 1, . . . ,M , where the constant π0 > 0 is given by

1 =
∑
i

πi = π0
M∑
i=0

M
i

 = π02M ,

hence π0 = 2−M and
πi =

1
2M

M
i

, i = 0, 1, . . . ,M .

g) We have

[πP ]i = Pi+1,iπi+1 + Pi,iπi + Pi−1,iπi−1

=
1

2M
i+ 1
2M

 M

i+ 1

+
1

2M

1
2
−
i− 1
2M

  M

i− 1

+
1

2M
×

1
2

M
i


=

1
2M

i+ 1
2M

M !
(i+ 1)!(M − i− 1)!

+
1

2M
M − i+ 1

2M
M !

(i− 1)!(M − i+ 1)!

+
1

2M × 2
M !

i!(M − i)!

=
1
2

 1
2M

(M − 1)!
i!(M − i− 1)!

+
1

2M
(M − 1)!

(i− 1)!(M − i)!

+
1

2M+1

M
i


=

1
2M+1

M − 1
i

+
1

2M+1

M − 1
i− 1

+
1

2M+1

M
i


=

1
2M

M
i

,

which is also known as Pascal’s triangle.

h) The chain is positive recurrent, irreducible and aperiodic, therefore by Theorem 7.8 it admits a limiting distribution equal to π.
MH3512 AY19-20
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"653i) We have

lim
n→∞ IE[Xn | X0 = i] = lim

n→∞

M∑
j=0

jP(Xn = j | X0 = i)

=
M∑
j=0

j lim
n→∞P(Xn = j | X0 = i) =

M∑
j=0

jπj

=
1

2M
M∑
j=0

j

M
j

 =
1

2M
M∑
j=0

j
M !

j!(M − j)!

=
M

2M
M∑
j=1

(M − 1)!
(j − 1)!(M − j)!

=
M

2M
M−1∑
j=0

(M − 1)!
j!(M − 1− j)!

=
M

2
,

independently of i = 0, 1, . . . ,M .

j) Clearly, the relation

IE
X0−

M

2

∣∣∣∣∣ X0 = i

 =

i−M
2


holds when n =0. Next, assuming that the relation holds at the rank n > 0 we have

h(i) = IE
Xn+1−

M

2

∣∣∣∣∣ X0 = i


= Pi,i+1 IE

Xn+1−
M

2

∣∣∣∣∣ X1 = i+ 1
+ Pi,i IE

Xn+1−
M

2

∣∣∣∣∣ X1 = i


+Pi,i−1 IE

Xn+1−
M

2

∣∣∣∣∣ X1 = i− 1


=

1
2
−

i

2M

 IE
Xn+1−

M

2

∣∣∣∣∣ X1 = i+ 1
+ 1

2
IE
Xn+1−

M

2

∣∣∣∣∣ X1 = i


+

i

2M
IE
Xn+1−

M

2

∣∣∣∣∣ X1 = i− 1


=

1
2
−

i

2M

 IE
Xn−

M

2

∣∣∣∣∣ X0 = i+ 1
+ 1

2
IE
Xn−

M

2

∣∣∣∣∣ X0 = i
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+

i

2M
IE
Xn−

M

2

∣∣∣∣∣ X0 = i− 1


=

1
2
−

i

2M

 i+ 1−
M

2

 (1−
1
M

)n
+

1
2

i−M
2

 (1−
1
M

)n

+
i

2M

i− 1−
M

2

 (1−
1
M

)n
=

i−M
2

 (1−
1
M

)n+1
, n > 0,

for all i = 0, 1, . . . ,M .

Taking the limit as n goes to infinity we get

lim
n→∞ IE

Xn−
M

2

∣∣∣∣∣ X0 = i

 = lim
n→∞

i−M
2

 (1−
1
M

)n
= 0,

hence
lim
n→∞ IE[Xn] =

M

2
,

for all i = 0, 1, . . . ,M , which recovers the result of Question (i).

Problem 7.25

a) The ranking table is completed as follows:

� a b c d e
a X � � � �
b � X � � �
c � � X � �
d � � � X �
e � � � � X MH3512 AY19-20



"655b) The state space of the chain (Xn)n∈N is (a, b, c, d, e) and its transition matrix is

P =



3/5 0 0 1/5 1/5
0 1 0 0 0
0 1/5 4/5 0 0
0 0 0 1 0
0 0 0 1/5 4/5


.

c) The chain is clearly reducible:

c
b

d

e a 3/5

1/5

1/5

1
1/5 4/5

1

1/5

4/5

d) Starting from state a , d or e , the limiting distribution is (0, 0, 0, 1, 0), starting from state b or c , the limiting distribution is
(0, 1, 0, 0, 0), so that although the chain admits limiting distributions, it does not admit a limiting distribution independent of the
initial state.

More precisely it can be checked that the power P n of order n > 1 of the transition matrix P takes the form

P n =



(3/5)n 0 0 1− (4/5)n an
0 1 0 0 0
0 1− (4/5)n (4/5)n 0 0
0 0 0 1 0
0 0 0 1− (4/5)n (4/5)n
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"656where an = (4/5)n− (3/5)n since the sum of probabilities over the rows of P n is equal to 1, hence

lim
n→∞P

n =



0 0 0 1 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0


.

e) The equation
π = πP

reads

π = [πa,πb,πc,πd,πe]

= π



3/5 0 0 1/5 1/5
0 1 0 0 0
0 1/5 4/5 0 0
0 0 0 1 0
0 0 0 1/5 4/5


= [3πa/5,πb + πc/5, 4πc/5,πa/5 + πd + πe/5,πa/5 + 4πe/5] ,

i.e.
[0, 0, 0, 0, 0] = [−2πa/5,πc/5,−πc/5,πa/5 + πe/5,πa/5− πe/5] ,

or 
πa = 0
πc = 0
πe = 0.

As a consequence, any probability distribution of the form

π = [πa,πb,πc,πd,πe] = [0, p, 0, 1− p, 0],

with p ∈ [0, 1], will be a stationary distribution for the chain with matrix P . The stationary distribution is not unique here because
the chain is reducible. MH3512 AY19-20



"657f) All rows in the matrix P̃ clearly add up to 1, so P̃ is a Markov transition matrix. On the other hand, all states become accessible
from each other so that the new chain is irreducible and all states have period 1.

g) Since the chain is irreducible, aperiodic and has a finite state space, we know by Corollary 7.9 that it admits a unique stationary
distribution π̃. The equation π̃ = π̃P̃ reads

π̃ = π̃P̃

=
ε

n
π̃



1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


+ (1− ε)π̃P

=
[
ε

5
,
ε

5
,
ε

5
,
ε

5
,
ε

5

]
+ (1− ε)π̃P .

h) The equation
π̃ =

[
ε

5
,
ε

5
,
ε

5
,
ε

5
,
ε

5

]
+ (1− ε)π̃P

reads

[πa,πb,πc,πd,πe] =
[
ε

5
,
ε

5
,
ε

5
,
ε

5
,
ε

5

]
+ (1− ε)π̃



3/5 0 0 1/5 1/5
0 1 0 0 0
0 1/5 4/5 0 0
0 0 0 1 0
0 0 0 1/5 4/5


=

[
ε

5
,
ε

5
,
ε

5
,
ε

5
,
ε

5

]
+(1− ε) [3πa/5,πb + πc/5, 4πc/5,πa/5 + πd + πe/5,πa/5 + 4πe/5] ,

i.e.

[0, 0, 0, 0, 0]
= [ε+ 3(1− ε)πa− 5πa, ε+ 5(1− ε)πb− 5πb + (1− ε)πc, ε+ 4(1− ε)πc− 5πc,

ε+ (1− ε)πa + 5(1− ε)πd− 5πd + (1− ε)πe, ε+ (1− ε)πa + 4(1− ε)πe− 5πe] , MH3512 AY19-20
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ε− (2 + 3ε)πa = 0
ε− 5επb + (1− ε)πc = 0
ε− πc(1 + 4ε) = 0
ε+ (1− ε)πa− 5επd + (1− ε)πe = 0
ε+ (1− ε)πa− (1 + 4ε)πe = 0,

i.e. 

πa =
ε

2 + 3ε
,

πb =
2 + 3ε

5(1 + 4ε)
,

πc =
ε

1 + 4ε
,

πd =
3 + 2ε

5(1 + 4ε)
,

πe =
ε(3 + 2ε)

(1 + 4ε)(2 + 3ε)
.

We also check that

πa + πb + πc + πd + πe

=
ε

2 + 3ε
+

2 + 3ε
5(1 + 4ε)

+
ε

1 + 4ε
+

3 + 2ε
5(1 + 4ε)

+
ε(3 + 2ε)

(1 + 4ε)(2 + 3ε)

=
5ε(1 + 4ε)

5(2 + 3ε)(1 + 4ε)
+

(2 + 3ε)2

5(1 + 4ε)(2 + 3ε)
+

5ε(2 + 3ε)
5(1 + 4ε)(2 + 3ε)

+
(3 + 2ε)(2 + 3ε)

5(2 + 3ε)(1 + 4ε)
+

5ε(3 + 2ε)
5(1 + 4ε)(2 + 3ε)

MH3512 AY19-20
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=

5ε(1 + 4ε) + (2 + 3ε)(5 + 10ε) + 5ε(3 + 2ε)
5(1 + 4ε)(2 + 3ε)

= 1.

i) We note that
πa < πc < πe < πb < πd,

hence we will rank the states as

rank state
1 d
2 b
3 e
4 c
5 a

based on the idea that the most visited states should rank higher. In the graph of Figure S.19 the stationary distribution is plotted
as a function of ε ∈ [0, 1].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1

sta
tio

na
ry 

dis
trib

uti
on

ε

πa+πb+πc+πd+πe
πd
πb
πe
πc
πa

Figure S.19: Stationary distribution as a function of ε ∈ [0, 1].
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µa(a) = 3 + 2
ε

µb(b) = 5(1+4ε)
2+3ε

µc(c) = 4 + 1
ε

µd(d) = 5(1+4ε)
3+2ε

µe(e) = (1+4ε)(2+3ε)
ε(3+2ε) .

In the graph of Figure S.20 the mean return times are plotted as a function of ε ∈ [0, 1]. A commonly used value in the literature
is ε = 1/7.
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Figure S.20: Mean return times as functions of ε ∈ [0, 1].

We note that the ranking of states is clearer for smaller values of ε. In particular ε cannot be be chosen too large, for example taking
ε = 1 makes all mean return times and equal and corresponds to a uniform stationary distribution. However the mean return times
can be higher and hence the simulations can take longer for small values of ε.

Problem 7.26 (cf. [LPW09]-§ 4.3-4.5)
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"661a) For any two probability distributions µ = [µ1,µ2, . . . ,µN ] and ν = [ν1, ν2, . . . , νN ] on {1, 2, . . . ,N} we have

‖µ− ν‖TV =
1
2

N∑
k=1
|µk − νk|

6
1
2

N∑
k=1

(µk + νk)

=
1
2

N∑
k=1

µk +
1
2

N∑
k=1

νk

= 1.

b) We have

‖µP − νP‖TV =
1
2

N∑
j=1
|[µP ]j − [νP ]j|

=
1
2

N∑
j=1

∣∣∣∣∣∣
n∑
i=1

µiPi,j −
n∑
i=1

νiPi,j

∣∣∣∣∣∣
6

1
2

N∑
j=1

n∑
i=1

Pi,j|µi− νi|

=
1
2

n∑
i=1
|µi− νi|

N∑
j=1

Pi,j

=
1
2

n∑
i=1
|µi− νi|.

c) Replacing µ and ν with µP n and π in the result of Question (b) we find

‖µP n+1− π‖TV = ‖(µP n)P − πP‖TV

6 ‖µP n− π‖TV.

d) Letting k ∈ {1, 2, . . . ,N} and taking
µ := (0, . . . , 0, 1,

↑
k

0, . . . , 0)
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"662we have µP n+1 = [P n+1]k,· and by Question (c) we find

‖[P n+1]k,·− π‖TV = ‖µP n+1− πP‖TV

6 ‖µP n− π‖TV

= ‖[P n]k,·− π‖TV.

Taking the maximum over k = 1, 2, . . . ,N in the above inequality yields

d(n+ 1) = max
k=1,2,...,N

‖[P n+1]k,·− π‖TV 6 max
k=1,2,...,N

‖[P n]k,·− π‖TV = d(n),

n ∈ N.

e) The chain is irreducible because all states can communicate in one time step since Pi,j > 0, 1 6 i, j 6 N . In addition the chain
is aperiodic as all states have period one, given that Pi,i > 0, i = 1, 2, . . . ,N . Since the state space is finite, Corollary 6.2 shows
that all states are positive recurrent, hence by Theorem 7.2 the chain admits a limiting and a stationary distribution that are equal.

f) We note that Qθ can be written as

Qθ = [ [Qθ]i,j ]16i,j6N

=



[Qθ]1,1 [Qθ]1,2 · · · [Qθ]1,N

[Qθ]2,1 [Qθ]2,2 · · · [Qθ]2,N

...
...

. . .
...

[Qθ]N ,1 [Qθ]N ,2 · · · [Qθ]N ,N



=



1
1−θ(P1,1− θπ1)

1
1−θ(P1,2− θπ2) · · · 1

1−θ(P1,N − θπN)

1
1−θ(P2,1− θπ1)

1
1−θ(P2,2− θπ2) · · · 1

1−θ(P2,N − θπN)

...
...

. . .
...

1
1−θ(PN ,1− θπ1)

1
1−θ(PN ,2− θπ2) · · · 1

1−θ(PN ,N − θπN)
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"663Clearly, all entries of Qθ are nonnegative due to the condition

Pi,j > θπj, i, j = 1, 2, . . . ,N .

In addition, for all i = 1, 2, . . . ,N we have

N∑
j=1

[Qθ]i,j =
1

1− θ
N∑
j=1

(Pi,j − θΠi,j)

=
1

1− θ
N∑
j=1

(Pi,j − θπj)

=
1

1− θ
N∑
j=1

Pi,j −
θ

1− θ
N∑
j=1

πj

=
1

1− θ
−

θ

1− θ
= 1, 0 < θ < 1,

and we conclude that Qθ is a Markov transition matrix.

g) Clearly, the property holds for n = 1 by the definition of Qθ. Next, assume that

P n = Π + (1− θ)n (Qn
θ −Π)

for some n > 1. Noting that the condition πP = π implies ΠP = Π, we have

P n+1 =
(
Π + (1− θ)n(Qn

θ −Π)
)
P

= ΠP + (1− θ)nQn
θP − (1− θ)nΠP

= Π + (1− θ)nQn
θP − (1− θ)nΠ

= Π + (1− θ)nQn
θ

(
Π + (1− θ)(Qθ −Π)

)
− (1− θ)nΠ

= Π + θ(1− θ)nQn
θΠ + (1− θ)n+1Qn+1

θ − (1− θ)nΠ.

Next, we note that sinceQθ is a Markov transition matrix by Question (f) we haveQθΠ = Π, in other words we have PΠ = Π2 = Π,
and

QθΠ =
1

1− θ
(P − θΠ) Π =

1
1− θ

(
PΠ− θΠ2) = 1

1− θ
(Π− θΠ) = Π,
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"664and more generally Qn
θΠ = Π, n > 1, hence

P n+1 = Π + θ(1− θ)nQn
θΠ + (1− θ)n+1Qn+1

θ − (1− θ)nΠ

= Π + θ(1− θ)nΠ + (1− θ)n+1Qn+1
θ − (1− θ)nΠ

= Π + (1− θ)n+1Qn+1
θ − (1− θ)n+1Π

= Π + (1− θ)n+1(Qn+1
θ −Π

)
.

h) Let k ∈ {1, 2, . . . ,N}. By Question (g) we have

‖[P n]k,·− π‖TV = ‖[P n]k,·−Πk,·‖TV

=
1
2

N∑
j=1
|[P n]k,j − πj|

=
1
2

N∑
j=1
|(1− θ)n[Qn

θ ]k,j − (1− θ)nπj|

=
(1− θ)n

2

N∑
j=1
|[Qn

θ ]k,j − πj|

= (1− θ)n‖[Qn
θ ]k,·− π‖TV

6 (1− θ)n, n ∈ N,

where we applied the result of Question (a), since Πk,· = π is a probability distribution and the same holds for [Qn
θ ]k,· for all

k = 1, 2, . . . ,N by Question (f).

The relation
‖[P n]k,·− π‖TV = (1− θ)n‖[Qn

θ ]k,·− π‖TV, n ∈ N,
also shows that, in total variation distance, at each time step the chain associated to P converges faster (by a factor 1− θ) to π
than the chain associated to Qθ.

Finally, we find
d(n) = max

k=1,2,...,N
‖[P n]k,·− π‖TV 6 (1− θ)n, n > 0.

i) If tmix = 0 the inequality is clearly satisfied, so that we can suppose that tmix > 1. By the definition of tmix and the result ofMH3512 AY19-20



"665Question (h) we have
1
4
< d(tmix− 1) 6 (1− θ)tmix−1,

hence
log

1
4
< log d(tmix− 1) 6 log

(
(1− θ)tmix−1) = (tmix− 1) log(1− θ),

and
tmix− 1 6

log d(tmix− 1)
log(1− θ)

<
log 1/4

log(1− θ)
.

Hence we have
tmix < 1 +

log 1/4
log(1− θ)

,

which yields

tmix < 1 +


log 1/4

log(1− θ)

 ,

and finally

tmix 6


log 1/4

log(1− θ)

 .

j) Given the transition matrix

P =


2/3 1/6 1/6
1/3 1/2 1/6
1/6 2/3 1/6


and its stationary distribution

π = [π1,π2,π3] = [11/24, 9/24, 4/24],
we check that in order to satisfy all nine conditions Pi,j > θπj, i, j = 1, 2, 3, the value of θ should be in the range [0, 4/11]. The

optimal value of θ is the one that minimizes the bound


log 1/4
log(1− θ)

, i.e. θ = 4/11, and

tmix 6


log 1/4

log 7/11

 = d3.067e = 4.
MH3512 AY19-20



"666

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

di
st

an
ce

time steps n

d(n)

(1-θ)n

Figure S.21: Graphs of distance to stationarity d(n) and upper bound (1− θ)n.

We check from the above graph that the actual value of the mixing time is tmix = 2. The value of d(0) is the maximum distance
between π and all deterministic initial distributions starting from states k = 1, 2, . . . ,N .

Remark. We have shown that the conditions πP = π and Pi,j > θπj, i, j = 1, 2, . . . ,N , for some θ ∈ (0, 1), define a unique (sta-
tionary) distribution π which is also a limiting distribution independent of the initial state. This is the case in particular when Pi,j > 0,
i, j = 1, 2, . . . ,N , in which case the chain is irreducible and aperiodic, and admits a unique limiting and stationary distribution. More
generally, the result holds when P is regular, i.e. when there exists n > 1 such that [P n]i,j > 0 for all i, j = 1, 2, . . . ,N , cf. § 4.3-4.5
of [LPW09].

Below is the Matlab/Octave code used to generate Figure S.21.
P = [2/3,1/6,1/6;

1/3,1/2,1/6;
1/6,2/3,1/6;]

pi = [11/24,9/24,4/25]
theta = 4/11
for n = 1:11
y(n)=n-1;
u(n)=0.25;
z(n)=(1-theta)^(n-1); MH3512 AY19-20
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for k = 1:3
d = mpower(P,n-1)(k,1:3) - pi;
dist=0;
for i = 1:3
dist = dist + 0.5*abs(d(i));
end
distance(n) = max(distance(n) ,dist);
end
end
graphics_toolkit("gnuplot");
plot(y,distance,'-bo','LineWidth',8,y,z,'-ro','LineWidth',8,y,u,'-k',

'LineWidth',8)
legend('d(n)','(1-\theta)^n')
set (gca, 'xtick', 1:10)
set (gca, 'ytick', 0:0.1:1)
grid on
xlabel('time steps n')
ylabel('distance')
pause

Problem 7.27

a) The cardinality of S is 2N .

b) We note that zk(zk−1 + zk+1)/2 can only take the three possible values −1, 0, +1, and treat all cases separately.

c) We have

P(Z1 = z | Z0 = z) = 1−
N∑
k=1

P(Z1 = z̄k | Z0 = z)

= 1−
1
N

N∑
k=1

1
1 + (p/q)zk(zk−1+zk+1)/2 , z ∈ S.
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"668d) The transition probability matrix P of (Zn)n∈N is given by

P =

−−−

−−+

−+−

−++

+−−

+−+

++−

+++

[
−−−

p

p/3
p/3
0
p/3
0
0
0

−−+

q/3
1/2
0

1/6
0
p/3
0
0

−+−

q/3
0

(1 + q)/3
1/6
0
0

1/6
0

−++

0
1/6
1/6
1/2
0
0
0

1/6

+−−

q/3
0
0
0

1/2
p/3
1/6
0

+−+

0
q/3
0
0
q/3
q

0
q/3

++−

0
0

1/6
0

1/6
0

1/2
1/6

+++

0
0
0

1/6
0
p/3
1/6

(1 + p)/3

] .

The chain is irreducible because starting from any configuration z = (zk)16k6N ∈ S we can reach any other configuration
ẑ = (ẑk)16k6N ∈ S in a finite number of time steps. For this, count the number of spins in z = (zk)16k6N that differ from the
spins in ẑ = (ẑk)16k6N and flip them one by one until we reach ẑ = (ẑk)16k6N .

Alternatively, we could also enumerate all possible 2N configurations by flipping one spin at a time, starting from z = (+1, +1, . . . , +1)
until we reach z = (−1,−1, . . . ,−1). When N = 3 the chain has the following graph:

MH3512 AY19-20



"669

- - -

- - +

- + -

+ - -

++ -

+ - +

- ++

+++p

1/2

(1+q)/3

1/2

1/2

q

1/2

(1+p)/3

q/3

q/3

q/3 1/6

q/3

1/6

p/3

1/6

q/3

p/3

q

1/6

1/6
1/6

1/6

1/6

1/6
1/6

p/3

p/3

p/3

p/3

1/6

1/6

From (7.3.4) we note the property

P(Z1 = z̄k | Z0 = z) + P(Z1 = z | Z0 = z̄k)

=
1

N(1 + (p/q)zk(zk−1+zk+1)/2)
+

1
N(1 + (p/q)−zk(zk−1+zk+1)/2)

,

=
1
N

, k = 1, 2, . . . ,N . MH3512 AY19-20



"670e) The chain is irreducible by Question (d), and it has a finite state space of cardinality 2N by Question (a), hence it is positive recurrent
by Corollary 6.13. In addition it is aperiodic since every state has a returning loop because

P(Z1 = z | Z0 = z) > min(p, q) > 0, z ∈ S.

Hence by e.g. Theorem 7.2 it admits a unique stationary distribution which coincides with its limiting distribution.

f) Under (7.3.6) we have

P(Z1 = z) = P(Z1 = z | Z0 = z)πz +
N∑
k=1

P(Z1 = z | Z0 = z̄k)πz̄k

= πzP(Z1 = z | Z0 = z) + πz
N∑
k=1

P(Z1 = z̄k | Z0 = z)

= πz

P(Z1 = z | Z0 = z) +
N∑
k=1

P(Z1 = z̄k | Z0 = z)


= πz,

hence (πz)z∈S is a stationary distribution.

g) By (7.3.4) we have

P(Z1 = z̄k | Z0 = z)

P(Z1 = z | Z0 = z̄k)
=

1 + (p/q)z̄
k(z̄kk−1+z̄

k
k+1)/2

1 + (p/q)zk(zk−1+zk+1)/2

=
1 + (p/q)−zk(zk−1+zk+1)/2

1 + (p/q)zk(zk−1+zk+1)/2

=
qzk(zk−1+zk+1)/2(1 + (q/p)zk(zk−1+zk+1)/2)

qzk(zk−1+zk+1)/2 + pzk(zk−1+zk+1)/2

=
(q/p)zk(zk−1+zk+1)/2(pzk(zk−1+zk+1)/2 + qzk(zk−1+zk+1)/2)

qzk(zk−1+zk+1)/2 + pzk(zk−1+zk+1)/2

=

q
p

zk(zk−1+zk+1)/2

, k = 1, 2, . . . ,N .
MH3512 AY19-20



"671h) For all z ∈ S we have

πz̄k = Cβ exp
β k−2∑

l=0
zlzl+1− βzk−1zk − βzkzk+1 + β

N∑
l=k+1

zlzl+1


= Cβ exp

−2βzk(zk−1 + zk+1) + β
N∑
l=0
zlzl+1


= πze−2βzk(zk−1+zk+1)

=

q
p

zk(zk−1+zk+1)/2

πz, k = 1, 2, . . . ,N ,

and the inverse temperature β is given by
β =

1
4

log
p

q
,

i.e.
p =

1
1 + e−4β .

The constant Cβ is chosen so that ∑
z∈S

πz = Cβ
∑
z∈S

exp
β N∑

l=0
zlzl+1

 = 1,

i.e.

Cβ =

∑
z∈S

exp
β N∑

l=0
zlzl+1

−1

.

The stationary distribution (πz)z∈S is known as the Boltzmann distribution.

MH3512 AY19-20



"672i) We have

π = [
π−−−

π−−+

π−+−

π−++

π+−−

π+−+

π++−

π+++

] = [
Cβ

Cβ

Cβe−4β

Cβ

Cβ

Cβ

Cβ

Cβe4β

] = Cβ [
1
1
q/p

1
1
1
1
p/q

] =
1

1 + 4pq [
pq

pq

q2

pq

pq

pq

pq

p2

]
−−−

−−+

−+−

−++

+−−

+−+

++−

+++

and from the relation
π−−−+ π−−+ + π−+−+ π−++ + π+−−+ π+−+ + π++−+ π+++ = 1,

we find

Cβ =
1

e4β + e−4β + 6

=
1

4 cosh2(2β) + 4

=
pq

q2 + p2 + 6pq

=
1

6 + p/q+ q/p

=
pq

1 + 4pq
.

We note that when p > 1/2 the configuration “+++” has the highest probability p2, while “−+−” has the lowest probability
q2 in the long run, due to the presence of two “opinion leaders” z0 = +1 and z4 = +1 who will not change their minds.
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"673We can also compute the probabilities of having more “+” than “-” in the long run, as

π−++ + π+−+ + π++−+ π+++ =
p(1 + 2q)
1 + 4pq

,

while the probability of having more “-” than “+” is

π−−−+ π−−+ + π−+−+ π+−− =
q(1 + 2p)
1 + 4pq

.

 0
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Figure S.22: Probability of a majority of “+” in the long run as a function of p ∈ [0, 1].

Clearly, the end result is influenced by the boundary conditions z0 = z4 = +1.
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π = [
π−−−

π−−+

π−+−

π−++

π+−−

π+−+

π++−

π+++

] = [
Cβe2β

Cβe2β

Cβe−2β

Cβe2β

Cβe−2β

Cβe−2β

Cβe−2β

Cβe2β

] = Cβ [
√
p/q
√
p/q
√
q/p
√
p/q
√
q/p
√
q/p
√
q/p
√
p/q

] =
1
4 [

p

p

q

p

q

q

q

p

]
−−−

−−+

−+−

−++

+−−

+−+

++−

+++

where
Cβ =

1
4
√
p/q+ 4

√
q/p

=

√
pq

4
.

The probabilities of having more “+” than “-” in the long run are

π−++ + π+−+ + π++−+ π+++ =
1
2

while the probability of having more “-” than “+” is also

π−−−+ π−−+ + π−+−+ π+−− =
1
2

.

The study undertaken in [BM18] shows that β = 0.853 in the Ising model for a Facebook friendship-network with N = 333 nodes
and 2519 edges, in which spin values refer to gender, i.e.

p =
1

1 + e−4β = 0.968077467.

MH3512 AY19-20
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Chapter 8 - Branching Processes
Exercise 8.1

a) We have

P(X2 > 0) = 1−P(X2 = 0)

= 1−
(1

5
+

3
5
×

1
5
+

1
5
×

1
5
×

1
5

)

= 1−
41

125
=

84
125

.

b) We have

P(X2 = 1) = P(X2 = 1 and X1 = 0) + P(X2 = 1 and X1 = 1)
+P(X2 = 1 and X1 = 2)

= P(X2 = 1 | X1 = 0)P(X1 = 0)
+P(X2 = 1 | X1 = 1)P(X1 = 1)
+P(X2 = 1 | X1 = 2)P(X1 = 2)

= 0×
1
5
+

3
5
×

3
5
+ 2×

1
5
×

3
5
×

1
5

=
51

125
.

We could also compute

P(X2 = 2) = P(X2 = 2 and X1 = 0) + P(X2 = 2 and X1 = 1)
+P(X2 = 2 and X1 = 2)

= P(X2 = 2 | X1 = 0)P(X1 = 0)
+P(X2 = 2 | X1 = 1)P(X1 = 1)
+P(X2 = 2 | X1 = 2)P(X1 = 2) MH3512 AY19-20
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= 0×

1
5
+

1
5
×

3
5
+×

1
5
×

(3
5

)2
+ 2×

1
5
×

1
5
×

1
5

=
26

125
,

and

P(X2 = 3) = P(X2 = 3 and X1 = 0) + P(X2 = 3 and X1 = 1)
+P(X2 = 3 and X1 = 2)

= P(X2 = 3 | X1 = 0)P(X1 = 0)
+P(X2 = 3 | X1 = 1)P(X1 = 1)
+P(X2 = 3 | X1 = 2)P(X1 = 2)

= 2×
1
5
×

1
5
×

3
5

=
6

125
,

and

P(X2 = 4) = P(X2 = 4 and X1 = 0) + P(X2 = 4 and X1 = 1)
+P(X2 = 4 and X1 = 2)

= P(X2 = 4 | X1 = 0)P(X1 = 0)
+P(X2 = 4 | X1 = 1)P(X1 = 1)
+P(X2 = 4 | X1 = 2)P(X1 = 2)

=
1
5
×

1
5
×

1
5

=
1

125
,

which recovers
P(X2 > 1) =

51 + 26 + 6 + 1
125

=
84

125
.
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P(X1 = 2 | X2 = 1) =
P(X1 = 2 and X2 = 1)

P(X2 = 1)

= P(X2 = 1 | X1 = 2)
P(X1 = 2)
P(X2 = 1)

= 2×
1
5
×

3
5
×

1
5
×

125
51

=
2

17
.

We can also compute

P(X1 = 1 | X2 = 1) = P(X2 = 1 | X1 = 1)
P(X1 = 1)
P(X2 = 1)

=
3
5
×

3/5
51/125

=
15
17

,

which allows us to check that

P(X1 = 2 | X2 = 1) + P(X1 = 1 | X2 = 1) =
2

17
+

15
17

= 1,

since P(X1 = 0 | X2 = 1) = 0.

Exercise 8.2
a) We have

G1(s) = IE[sY ] = s0P(Y = 0) + s1P(Y = 1) =
1
2
+

1
2
s, s ∈ R.

b) We prove this statement by induction. Clearly it holds at the order 1. Next, assuming that (8.3.10) holds at the order n > 1 we get

Gn+1(s) = G1(Gn(s)) = G1

(
1−

1
2n

+
s

2n

)

=
1
2
+

1
2

(
1−

1
2n

+
s

2n

)
= 1−

1
2n+1 +

s

2n+1 .
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"678Additional comments:
(i) We may also directly note that

P(Xn = 1 | X0 = 1) = P(Y1 = 1,Y2 = 1, . . . ,Yn = 1) = (P(Y = 1))n =
1
2n

,

hence
P(Xn = 0 | X0 = 1) = 1−P(Xn = 1 | X0 = 1) = 1−

1
2n

,

and
Gn(s) = P(Xn = 0 | X0 = 1) + sP(Xn = 1 | X0 = 1) = 1−

1
2n

+
s

2n
.

(ii) It is also possible to write

Gn(s) =
1
2
+

1
22 + · · ·+

1
2n

+
s

2n
=

s

2n
+

1
2

n−1∑
k=0

1
2k

=
1
2n
s+

1
2
×

1− (1/2)n

1− 1/2
= 1−

1
2n

+
1
2n
s,

although this is not recommended here.
(iii) It is wrong (why?) to write

Gn(s) = IE[sY1+···+YXn ] = / / / / / / / / /IE[sY1] · · · IE[sYXn ].
Note that the left hand side is a well-defined deterministic number, while the right hand side is not well-defined as a random
product.

(iv) For n > 2 we do not have Gn(s) = / / / / /(G1(s))n.

c) We have
P(Xn = 0 | X0 = 1) = Gn(0) = 1−

1
2n

.

Additional comments:
(i) We may also directly write

P(Xn = 0 | X0 = 1) = 1−P(Xn = 1 | X0 = 1) MH3512 AY19-20



"679= 1−P(Y1,Y2 = 1, . . . ,Yn = 1)
= 1− (P(Y1 = 1))n

= 1−
1
2n

.

On the other hand, we do not have
P(Xn = 0 | X0 = 1) = / / / / / / /(P(Y1 = 0))n,

since the events {Xn = 0} and {Y1 = 0,Y2 = 0, . . . ,Yn = 0} are not equivalent, more precisely we only have

{Y1 = 0,Y2 = 0, . . . ,Yn = 0} $ {Xn = 0},

hence
1
2n
6 P(Xn = 0 | X0 = 1) = 1−

1
2n

, n > 1.

(ii) The probability βn := P(Xn = 0 | X0 = 1) is not solution of Gn(βn) = βn. It is easy to check that the equality

Gn

(
1−

1
2n

)
= / / / /1−

1
2n

does not hold for n > 1.

(iii) In fact, {Xn = 0} means that extinction occurs at time n, or has already occurred before time n.

d) We have
IE[Xn | X0 = 1] = G′n(s)|s=1 = (IE[Y1])

n =
1
2n

.

Additional comment:

In this simple setting we could also write

IE[Xn | X0 = 1] = 0×P(Xn = 0 | X0 = 1) + 1×P(Xn = 1 | X0 = 1)
= P(Xn = 1 | X0 = 1)

=
1
2n

. MH3512 AY19-20



"680e) The extinction probability α is solution of G1(α) = α, i.e.

α =
1
2
+

1
2
α,

with unique solution α = 1.

Additional comment:

Since the sequence of events ({Xn = 0})n>1 is increasing, we also have

α = P

 ⋃
n>1
{Xn = 0}

 = lim
n→∞P({Xn = 0}) = lim

n→∞ 1−
1
2n

= 1.

Exercise 8.3

a) We have G1(s) = 0.2 + 0.5s+ 0.3s2 and

IE[X1] = IE[ξ] = G′1(1) = 0.5 + 2× 0.3 = 1.1,

hence
IE[X2] = (G′1(1))

2 = (IE[ξ])2 = (1.1)2,
by Proposition 8.2. On the other hand, we have

G2(s) = G1(G1(s))

= G1(0.2 + 0.5s+ 0.3s2)

= 0.2 + 0.5(0.2 + 0.5s+ 0.3s2) + 0.3(0.2 + 0.5s+ 0.3s2)2

= 0.312 + 0.31s+ 0.261s2 + 0.09s3 + 0.027s4,

with
G′2(s) = 0.31 + 0.522s+ 0.27s2 + 0.108s3

and
G′′2(s) = 0.522 + 0.54s+ 0.324s2, MH3512 AY19-20



"681hence
G′2(1) = (G′1(1))

2 = (1.1)2 = 1.21 and G′′2(1) = 1.386,
and

IE[X2
2 ] = G′′2(1) +G′2(1) = 1.386 + 1.21 = 2.596.

By (1.7.5) this yields
Var[X2] = 2.596− (1.21)2.

b) We have
G2(s) = 0.312 + 0.31s+ 0.261s2 + 0.09s3 + 0.027s4,

hence
P(X2 = 0) = 0.312, P(X2 = 1) = 0.31, P(X2 = 2) = 0.261,

and
P(X2 = 3) = 0.09, P(X2 = 4) = 0.027.

c) We have

P(X4 = 0) = G4(0)
= G2(G2(0))
= 0.312 + 0.31G2(0) + 0.261(G2(0))2 + 0.09(G2(0))3 + 0.027(G2(0))4

= 0.312 + 0.31× 0.312 + 0.261× 0.3122 + 0.09× 0.3123 + 0.027× 0.3124

' 0.44314.

d) We have
IE[X10] = (IE[X1])

10 = (G′1(1))
10 = (1.1)10 = 2.59,

since the mean population size grows by 10% at each time step.

e) The extinction probability α solves the equation

α = G1(α) = 0.2 + 0.5α+ 0.3α2,

i.e.
0.3α2− 0.5α+ 0.2 = 0.3(α− 1)(α− 2/3) = 0, MH3512 AY19-20
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Exercise 8.4

a) We have
G1(s) = P(Y = 0) + sP(Y = 1) + s2P(Y = 2) = as2 + bs+ c, s ∈ R.

b) Letting Xn denote the number of individuals in the population at generation n > 0, we have

P(X2 = 0 | X0 = 1) = G1(G1(0)) = G1(c) = ac2 + bc+ c.

This probability can actually be recovered by pathwise analysis, by noting that in order to reach {X2 = 0} we should have either
i) Y1 = 0 with probability c, or
ii) Y1 = 1 with probability b and then Y1 = 0 with probability c, or
iii) Y1 = 2 with probability a and then Y1 = 0 (two times) with probability c,
which yields

P(X2 = 0 | X0 = 1) = c+ bc+ ac2.

c) We have
P(X2 = 0 | X0 = 2) = (P(X2 = 0 | X0 = 1))2 = (ac2 + bc+ c)2,

as in (8.3.1).

d) The extinction probability α1 given that X0 = 1 is solution of G1(α) = α, i.e.

aα2 + bα+ c = α,

or
0 = aα2− (a+ c)α+ c = (α− 1)(aα− c)

from the condition a+ b+ c = 1. The extinction probability α1 is known to be the smallest solution of G1(α) = α, hence it is
α1 = c/a when 0 < c 6 a. The extinction probability α2 given that X0 = 2 is α2 = (α1)2.

e) When 0 6 a 6 c we have α1 = 1.

Exercise 8.5 MH3512 AY19-20
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GY (s) = P(Y = 0) + sP(Y = 1) + s2P(Y = 2) = q2 + 2spq+ s2p2 = (q+ ps)2,

b) The extinction probability satisfies the equation α = GY (α), i.e.

α = q2 + 2αpq+ α2p2 = (q+ αp)2,

with solutions α = 1 and α = q2/p2, hence the extinction probability is

min
1,

q2

p2

 =



1 if p 6 q,

q2

p2 if p > q.

c) Since {Z1 = 0} ⊂ {Z2 = 0}, this probability is

P(Z2 = 0 and Z1 > 1) = P (Z2 = 0
⋂
{Z1 = 0}c)

= P(Z2 = 0)−P(Z1 = 0)
= GY (GY (0))−GY (0)
= 2pq3 + q2p4.

Alternatively, it can be recovered pathwise as

2pq× q2 + p2× q2× q2 = 2pq3 + p2q4.

d) When q 6 p the extinction probability is q2/p2 starting from Z0 = 1, hence when Z0 has a Poisson distribution with parameter
λ > 0 this extinction probability is

P(T0 <∞) =
∑
n>0

P(T0 <∞ and Z0 = n)

= P(Z0 = n)
∑
n>0

P(T0 <∞ | Z0 = n)

=
∑
n>0

q2

p2

n P(Z0 = n)
MH3512 AY19-20
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= e−λ

∑
n>0

1
n!

λq2

p2

n

= eλ(q2/p2−1)

= eλ(q2−p2)/p2

= eλ(q−p)/p2,

whereas when q > p the extinction probability becomes

∑
n>0

P(Z0 = n) = e−λ
∑
n>0

λn

n!
= 1.

Exercise 8.6

a) When only red cells are generated, their number at time n− 1 is sn−1, hence the probability that only red cells are generated up to
time n is

1
4
×

(1
4

)2
× · · · ×

(1
4

)2n−1

=
n−1∏
k=0

(1
4

)2k

=
(1

4

)∑n−1
k=0 2k

=
(1

4

)2n−1
, n > 0.

b) Since white cells cannot reproduce, the extinction of the culture is equivalent to the extinction of the red cells, and this question can
be solved as in the framework of Exercise 8.3. The probability distribution of the number Y of red cells produced from one red cell
is

P(Y = 0) =
1

12
, P(Y = 1) =

2
3

, P(Y = 2) =
1
4

,

which has the generating function

G1(s) = P(Y = 0) + sP(Y = 1) + s2P(Y = 2)

=
1

12
+

2s
3

+
s2

4
=

1
12

(1 + 8s+ 3s2), MH3512 AY19-20
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3α2− 4α+ 1 = 3(α− 1)(α− 1/3) = 0,

which has α = 1/3 for smallest solution. Consequently, the extinction probability of the culture is equal to 1/3.

c) The probability that only red cells are generated from time 0 to time n is

1
3
×

(1
3

)2
× · · · ×

(1
3

)2n−1

=
n−1∏
k=0

(1
3

)2k

=
(1

3

)2n−1
,

n > 0. The probability distribution

IP(Y = 0) =
1
6

, IP(Y = 1) =
2
2

, IP(Y = 2) =
1
3

,

of the number Y of red cells has the generating function

G1(s) = IP(Y = 0) + sIP(Y = 1) + s2IP(Y = 2)

=
1
6
+
s

2
+
s2

3
=

1
12

(2 + 6s+ 4s2),

hence the equation G1(α) = α reads 1 + 3α+ 2α2 = 6α, or

2α2− 3α+ 1 = 2(α− 1)(α− 1/2) = 0,

which has α = 1/2 for smallest solution. Consequently, the extinction probability of the culture is equal to 1/2.

Exercise 8.7 Using the relation∗

IE[T0 | X0 = k] 6 k IE[T0 | X0 = 1], k ∈ N,
we have

IE[T0 | X0 = 1] =
∑
k>0

P(Y1 = k)
(
1 + IE[T0 | X0 = k]

)
=

∑
k>0

P(Y1 = k) +
∑
k>0

P(Y1 = k) IE[T0 | X0 = k]

∗This inequality follows from the relation IE[max(X1, . . . ,Xn)] 6 IE[X1 + · · ·+Xn]. MH3512 AY19-20
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∑
k>0

P(Y1 = k) IE[T0 | X0 = k]

6 1 + IE[T0 | X0 = 1]
∑
k>0

kP(Y1 = k)

= 1 + IE[T0 | X0 = 1] IE[Y1],

hence
IE[T0 | X0 = 1] 6

1
1− IE[Y1]

<∞.

Exercise 8.8 This is a particular case of Example (iv) on page 328.

a) We have

G1(s) = q2 ∑
n>1

n(ps)n−1 =
q2

(1− ps)2 .

b) The equation G1(α) = α reads

α =
q2

(1− pα)2 ,

i.e.
p2α3− 2pα2 + α− q2 = 0,

which is known to admit α = 1 for solution, i.e.

(α− 1)(p2α2− (1− q2)α+ q2) = (α− 1)(p2α2− p(1 + q)α+ q2) = 0,

whose smallest solution

α =
p(1 + q)−

√
p2(1 + q)2− 4p2q2

2
= p

2− p−
√

4p− 3p2

2
is the extinction probability.

Exercise 8.9

a) We have P(X = k) = (1/2)k+1, k ∈ N. MH3512 AY19-20
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GX(s) = E[sX ] =
∑
k>0

skP(X = k) =
1
2
∑
k>0

(s/2)k =
1

2− s
,

−1 < s 6 1.

c) The probability we are looking for is

P(X3 = 0 | X0 = 0) = GX(GX(GX(0))) =
1

2− 1
2−1/2

=
3
4

.

d) Since giving birth to a girl is equivalent to having at least one child, and this happens to each couple with probability 1/4, the
probability we are looking for is equal to

1
4
+

3
4
×

1
4
+

(3
4

)2
×

1
4
=

1
4
×

1− (3/4)3

1− 3/4
= 1− (3/4)3 =

37
64

= 0.578125.

It can also be recovered from
G

(3)
Z (s) = GZ(GZ(GZ(s))) =

37
64

+
27s
64

at s = 0, where GZ is the probability generating function

GZ(s) =
1
4
+

3s
4

.

Exercise 8.10
a) We have

GZ1(s) = 1−
q

1− p
+ qs

∑
k>1

(ps)k−1

= 1−
q

1− p
+

qs

1− ps

=
1− p− q

1− p
+

qs

1− ps
.

MH3512 AY19-20



"688b) We have
G′Z1

(s) =
q

1− ps
+

pqs

(1− ps)2 ,

hence
IE[Z1] = G′Z1

(1) =
q

1− p
+

pq

(1− p)2 =
q(1− p) + pq

(1− p)2 =
q

(1− p)2 .

c) The critical value of q is q = (1− p)2.

d) When q = (1− p)2 we have

GZ1(s) = p+
(1− p)2s

1− ps
, −1 < s < 1.

The relation is clearly satisfied at the rank k = 1. Next, assuming that the relation

GZk(s) =
kp− (kp+ p− 1)s
1− p+ kp− kps

, −1 < s < 1,

holds at the rank k > 1, we have

GZk+1(s) = GZk(GZ1(s))

=
kp− (kp+ p− 1)GZ1(s)

1− p+ kp− kpGZ1(s)
,

=

kp− (kp+ p− 1)
p+ (1− p)2s

1− ps


1− p+ kp− kp

p+ (1− p)2s

1− ps


=

kp(1− ps)− (kp+ p− 1) (p(1− ps) + (1− p)2s)

(1− p+ kp)(1− ps)− kp (p(1− ps) + (1− p)2s)

=
kp(1− ps)− (kp+ p− 1) (p+ (1− 2p)s)
(1− p+ kp)(1− ps)− kp (p+ (1− 2p)s)

=
(1− p)(k+ 1)p− (1− p)((k+ 2)p− 1)s

(1− p)(kp+ 1)− (1− p)(k+ 1)ps MH3512 AY19-20
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=

(k+ 1)p− ((k+ 1)p+ p− 1)s
1− p+ (k+ 1)p− (k+ 1)ps

, −1 < s < 1.

Problem 8.11

a) We have

IE[Zn] =
n∑
k=1

IE[Xk] =
n∑
k=1

µk = µ
n−1∑
k=0

µk = µ
1− µ
1− µ

n

, n ∈ N.

b) We have

IE[Z] = IE
∑
k>1

Xk

 =
∑
k>1

IE[Xk] = µ
∑
k>0

µk =
µ

1− µ
, n ∈ N,

provided that µ < 1.

c) We have

H(s) = IE
[
sZ | X0 = 1

]
= s0P(Y1 = 0) +

∑
k>1

IE
[
sZ | X1 = k

]
P(Y1 = k)

= P(Y1 = 0) +
∑
k>1

(
IE
[
sZ | X1 = 1

])k
P(Y1 = k)

= P(Y1 = 0) +
∑
k>1

(
IE
[
s1+

∑
i>2Xi

∣∣∣∣∣ X1 = 1
])k

P(Y1 = k)

= P(Y1 = 0) +
∑
k>1

(
IE
[
s1+

∑
i>1Xi

∣∣∣∣∣ X0 = 1
])k

P(Y1 = k)

= P(Y1 = 0) +
∑
k>1

(
IE
[
s1+Z | X0 = 1

])k
P(Y1 = k)

=
∑
k>0

(
s IE

[
sZ | X0 = 1

])k
P(Y1 = k)

= G1(sH(s)). MH3512 AY19-20
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H(s) = G1(sH(s)) =

1− p
1− psH(s)

,

hence
psH2(s)−H(s) + q = 0,

and
H(s) =

1±
√

1− 4pqs
2ps

=
1−
√

1− 4pqs
2ps

,

where we have chosen the minus sign since the plus sign leads to H(0) = +∞ whereas we should have H(0) = P(Z = 0) 6 1.
In addition we have µ = p/q < 1 hence p < 1/2 < q and the minus sign gives

H(1) =
1−
√

1− 4pq
2p

=
1− |q− p|

2p
= 1.

e) We have

lim
s↘0+

H(s) = lim
s↘0+

1− (1− 2pqs)
2ps

= q = P(Z = 0) = P(Y1 = 0) = H(0).

Alternatively, L’Hospital’s rule can be used to compute the limit of H(s) expressed as a ratio.

f) We have

H ′(s) =
pq

ps
√

1− 4pqs
−

1−
√

1− 4pqs
2ps2 ,

and

H ′(1) =
pq

p
√

1− 4pq
−

1−
√

1− 4pq
2p

=
pq

p(q− p)
−

1− (q− p)
2p

=
q

q− p
− 1 =

p

q− p
=

µ

1− µ
,

with µ = p/q for p < 1/2, which shows that
IE[Z] =

µ

1− µ
and recovers the result of Question (b). MH3512 AY19-20
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IE
 Z∑
k=1

Uk

 =
∑
n>0

IE
 Z∑
k=1

Uk

∣∣∣∣∣ Z = n

P(Z = n)

=
∑
n>0

IE
 n∑
k=1

Uk

P(Z = n) =
∑
n>0

n IE[U1]P(Z = n)

= IE[U1] IE[Z] = IE[U1]
µ

1− µ
.

h) We have

P(Uk < x, k = 1, 2, . . . ,Z) =
∑
n>0

P(Uk < x, k = 1, 2, . . . ,Z | Z = n)P(Z = n)

=
∑
n>0

P(Uk < x, k = 1, 2, . . . ,n)P(Z = n)

=
∑
n>0

P(U1 < x)× · · · ×P(Un < x)P(Z = n)

=
∑
n>0

(P(U1 < x))nP(Z = n) =
∑
n>0

(F (x))nP(Z = n) = H(F (x)),

under the convention that the condition is satisfied by default when Z = 0.

Remark. We could also compute the same probability given that Z > 1, and this would give

P(Uk < x, k = 1, 2, . . . ,Z | Z > 1)

=
1

P(Z > 1)
∑
n>1

P(Uk < x, k = 1, 2, . . . ,Z | Z = n)P(Z = n)

=
1

P(Z > 1)
∑
n>1

P(Uk < x, k = 1, 2, . . . ,n)P(Z = n)

=
1

P(Z > 1)
∑
n>1

P(U1 < x)nP(Z = n) =
∑
n>1

F (x)n
P(Z = n)

P(Z > 1)

=
1

P(Z > 1)
(H(F (x))−P(Z = 0)) =

1
p
(H(F (x))− q).

MH3512 AY19-20
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IE
 Z∑
k=1

Uk

 = IE[U1]
µ

1− µ
=

µ

1− µ
=

p

q− p
.

We find

P(Uk < x, k = 1, 2, . . . ,Z) = H(F (x))

= H(1− e−x)

=
1−

√
1− 4pq(1− e−x)
2p(1− e−x)

.

Chapter 9 - Continuous-Time Markov Chains

Exercise 9.1 We model the number of operating machines as a birth and death process (Xt)t∈R+ on the state space {0, 1, 2, 3, 4, 5}.

A new machine can only be added at the rate λ since the repairman can fix only one machine at a time.

In order to determine the failure rate starting from state k ∈ {0, 1, 2, 3, 4, 5}, let us assume that the number of working machines at
time t is Xt = k. It is known that the lifetime τi of machine i ∈ {0, . . . , k} is an exponentially distributed random variable with
parameter µ > 0. On the other hand, we know that the first machine to fail will do so at time min(τ1, τ2, . . . , τk), and we have

P(min(τ1, τ2, . . . , τk) > t) = P(τ1 > t, τ2 > t, . . . , τk > t)

= P(τ1 > t)P(τ2 > t) · · ·P(τk > t) = (e−µt)k = e−kµt,

t ∈ R+, hence the time until the first machine failure is exponentially distributed with parameter kµ, i.e. the birth rate µk of (Xt)t∈R+

is µk = kµ, k = 1, 2, 3, 4, 5.
MH3512 AY19-20
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Q =



−λ λ 0 0 0 0
µ −µ− λ λ 0 0 0
0 2µ −2µ− λ λ 0 0
0 0 3µ −3µ− λ λ 0
0 0 0 4µ −4µ− λ λ
0 0 0 0 5µ −5µ


,

with λ = 0.5 and µ = 0.2. We look for a stationary distribution of the form

π = (π0,π1,π2,π3,π4,π5)

by solving πQ = 0, i.e. 

0 = −λπ0 + µπ1

0 = λπ0− (λ+ µ)π1 + 2µπ2

0 = λπ1− (λ+ 2µ)π2 + 3µπ3

0 = λπ2− (λ+ 3µ)π3 + 4µπ4

0 = λπ3− (λ+ 4µ)π4 + 5µπ5

0 = λπ4− 5µπ5,

which gives



0 = −λπ0 + µπ1

0 = −λπ1 + 2µπ2

0 = −λπ2 + 3µπ3

0 = −λπ3 + 4µπ4

0 = −λπ4 + 5µπ5,

hence
π1 =

λ

µ
π0, π2 =

λ

2µ
π1, π3 =

λ

3µ
π2, π4 =

λ

4µ
π3, π5 =

λ

5µ
π4,

i.e.
π1 =

λ

µ
π0, π2 =

λ2

2µ2π0, π3 =
λ3

3!µ3π0, π4 =
λ4

4!µ4π0, π5 =
λ5

5!µ5π0,

MH3512 AY19-20



"694which is a truncated Poisson distribution with

π0 +
λ

µ
π0 +

λ2

2µ2π0 +
λ3

3!µ3π0 +
λ4

4!µ4π0 +
λ5

5!µ5π0 = 1,

hence

π0 =
1

1 +
λ

µ
+

λ2

2µ2 +
λ3

3!µ3 +
λ4

4!µ4 +
λ5

5!µ5

=
µ5

µ5 + λµ4 + λ2µ3/2 + λ3µ2/3! + λ4µ/4! + λ5/5!
.

Finally, since π5 is the probability that all 5 machines are operating, the fraction of time the repairman is idle in the long run is

π5 =
λ5

120µ5 + 120λµ4 + 60λ2µ3 + 20λ3µ2 + 5λ4µ+ λ5 .

Note that of at most two machines can be under repair, the infinitesimal generator Q of (Xt)t∈R+ will become

Q =



−2λ 2λ 0 0 0 0
µ −µ− 2λ 2λ 0 0 0
0 2µ −2µ− 2λ 2λ 0 0
0 0 3µ −3µ− 2λ 2λ 0
0 0 0 4µ −4µ− λ λ
0 0 0 0 5µ −5µ


.

Exercise 9.2

a) Since the time τRk spent between two Poisson arrivals no k and k+ 1 is an exponentially distributed random variable with parameter
λR, the probability we are looking for is given by

P(τRk > t) = e−λRt,
where NR

t denotes a Poisson process with intensity λR. MH3512 AY19-20
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P(NW
t 6 3) = P(NW

t = 0) + P(NW
t = 1) + P(NW

t = 2) + P(NW
t = 3)

= e−λW t + λW te−λW t + e−λW t
λ2
W t

2

2
+ e−λW t

λ3
W t

3

6
,

where NW
t denotes a Poisson process with intensity λW .

c) This probability is given by the ratio P(τR < τW ) = λR/(λW + λR) of arrival rates, as follows from the probability computation
(1.5.9), where τR and τW are independent exponential random variables with parameters λR and λW , representing the time until
the next “read”, resp. “write” consultation.

Note that the difference NR
t −NW

t between the number NR
t of “read” consultations and the number NW

t of “write” consultations
is a birth and death process with state-independent birth and death rates λR and λW .

d) This distribution is given by P(NR
t = k | NR

t + Y = n) where NR
t , NW

t are independent Poisson random variables with
parameters λRt and λW t respectively. We have

P(NR
t = k | NR

t +NW
t = n) =

P(NR
t = k and NR

t +NW
t = n)

P(NR
t +NW

t = n)

=
P(NR

t = k and NW
t = n− k)

P(NR
t +NW

t = n)
=

P(NR
t = k)P(NW

t = n− k)
P(NR

t +NW
t = n)

= e−λRt
(λRt)k

k!
e−λW t

(λW t)n−k

(n− k)!

e−λW t−λRt
(λW + λR)ntn

n!

−1

=

n
k

  λR

λR + λW

k  λW

λR + λW

n−k , k = 0, 1, . . . ,n,

cf. (B.10) in the solution of Exercise 1.6.

Exercise 9.3 MH3512 AY19-20



"696a) The number Xt of machines operating at time t is a birth and death process on {0, 1, 2} with infinitesimal generator

Q =


−λ λ 0
µ −(λ+ µ) λ
0 2µ −2µ

 .

The stationary distribution π = (π0,π1,π2) is solution of πQ = 0, i.e.


0 = −λπ0 + µπ1
0 = λπ0− (λ+ µ)π1 + 2µπ2
0 = λπ1− 2µπ2

under the condition π0 + π1 + π2 = 1, which yields

(π0,π1,π2) =

 2µ2

2µ2 + 2λµ+ λ2 ,
2λµ

2µ2 + 2λµ+ λ2 ,
λ2

2µ2 + 2λµ+ λ2

 ,

i.e. the probability that no machine is operating is π0 = 2/5 when λ = µ = 1.

b) The numberXt of machines operating at time t is now a birth and death process on {0, 1}. The time spent in state 0 is exponentially
distributed with average 1/λ. When the chain is in state 1 , one machine is working while the other one may still be under repair,
and the mean time IE[T0 | X0 = 1] spent in state 1 before switching to state 0 has to be computed using first step analysis on
the discrete-time embedded chain. We have

IE[T0 | X0 = 1]

= P(Xλ < Xµ)×
1
µ
+ IE[T0 | X0 = 1]

+ P(Xµ < Xλ)×
1
µ

=
1
µ
+ P(Xλ < Xµ)× IE[T0 | X0 = 1]

=
1
µ
+

λ

λ+ µ
IE[T0 | X0 = 1],

where, by (9.7.2) and (9.7.3) or (1.5.9), P(Xλ < Xµ) = λ/(λ+ µ) is the probability that an exponential random variable Xλ

with parameter λ > 0 is smaller than another independent exponential random variable Xµ with parameter µ > 0. In other words,
P(Xλ < Xµ) is the probability that the repair of the idle machine finishes before the working machine fails. This first step analysisMH3512 AY19-20
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IE[T0 | X0 = 1] =
λ+ µ

µ2 ,

hence the corresponding rate is µ2/(λ+ µ) and the infinitesimal generator of the chain becomes

Q =


−λ λ

1
IE[T0 | X0 = 1]

−
1

IE[T0 | X0 = 1]

 =


−λ λ
µ2

λ+ µ
−

µ2

λ+ µ

 .

The stationary distribution π = (π0,π1) is solution of πQ = 0, i.e.


0 = −λπ0 + π1
µ2

λ+ µ

0 = λπ0− π1
µ2

λ+ µ

under the condition π0 + π1 = 1, which yields

(π0,π1) =

 µ2

µ2 + λµ+ λ2 ,
λµ+ λ2

µ2 + λµ+ λ2

 ,

i.e. the probability that no machine is operating when λ = µ = 1 is π0 = 1/3.

Alternatively, this question can be solved by considering a birth and death process (Xt)t∈R+ on {0, 1, 2} with infinitesimal generator

Q =


−λ λ 0
µ −(λ+ µ) λ
0 µ −µ

 ,
MH3512 AY19-20
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Xt = 0 ⇐⇒ no machine is working,
Xt = 1 ⇐⇒ one machine is working and the other is under repair,
Xt = 2 ⇐⇒ one machine is working and the other one is waiting.

In this case, πQ = 0 yields

(π0,π1,π2) =

 µ2

µ2 + λµ+ λ2 ,
λµ

µ2 + λµ+ λ2 ,
λ2

µ2 + λµ+ λ2

 ,

hence
π0 =

1
3

, π1 =
1
3

, π2 =
1
3

,

when λ = µ.

Exercise 9.4

a) The process (Xt)t∈R+ is a continuous-time Markov chain due to the Poisson arrival of customers in the queue. The state space of
the chain (Xt)t∈R+ is S = {0, 1, 2, 3} since there cannot be more than 3 people in the queue as the cable car departs immediately
as soon as there are more 4 people in the queue. The infinitesimal generator of the chain is given by

Q =


−λ λ 0 0
0 −λ λ 0
0 0 −λ λ
λ 0 0 −λ

 .

b) As the chain is irreducible, the limiting distribution π = [π0,π1,π2,π3] is obtained from the stationary distribution, by solving the
equation πQ = 0, which yields π = [π0,π1,π2,π3] = [1/4, 1/4, 1/4, 1/4, ]

c) This mean time is the sum
IE[τ0] + IE[τ1] + IE[τ2] + IE[τ3] =

4
λ

of the means of four exponential random variables with parameter λ > 0, hence it equals 4/λ. MH3512 AY19-20
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a) The process (Lt)t∈R+ is Markov from its construction using Poisson processes and the memoryless property of exponential random

times. The matrix of the infinitesimal generator is


−5λ 5λ 0 0 0 0 · · ·
µ+ θ −µ− θ− 5λ 5λ 0 0 0 · · ·

0 2µ+ θ −2µ− θ− 5λ 5λ 0 0 · · ·
0 0 3µ+ θ −3µ− θ− 5λ 5λ 0 · · ·
...

...
...

...
...

...
. . .


.

b) Given that the mean number of issued order until time t is λt and the mean number of cancelled order until time t is µt, we deduce
the relation µt = 0.95λt, i.e. µ = 0.95λ.

Exercise 9.6 The size of the crack is viewed as a continuous-time birth process taking values in {1, 2, 3, . . .} with state-dependent rate
λk = (1 + k)ρ, k > 1. Let us denote by τk the time spent at state k ∈ N between two increases, which is an exponentially distributed
random variable with parameter λk. The time it takes for the crack length to grow to infinity is

∑
k>1

τk. It is known that
∑
k>1

τk < ∞

almost surely if the expectation IE
∑
k>1

τk

 is finite, and in this situation the crack grows to infinity within a finite time. We have

IE
∑
k>1

τk

 =
∑
k>1

IE[τk] =
∑
k>1

1
λk

=
∑
k>1

1
(1 + k)ρ

.

By comparison with the integral of the function x 7−→ 1/(1 + x)ρ we get

IE
∑
k>1

τk

 =
∑
k>1

1
(1 + k)ρ

6
∑
k>1

w k

k−1

1
(1 + x)ρ

dx

6
w ∞

0

1
(1 + x)ρ

dx

=
1

1− ρ
[
(1 + x)1−ρ]∞

0 MH3512 AY19-20
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=

1
ρ− 1

<∞,

provided that ρ > 1. We conclude that the time for the crack to grow to infinite length is (almost surely) finite when ρ > 1. Similarly,
we have

IE
∑
k>1

τk

 =
∑
k>1

1
(1 + k)ρ

>
∑
k>1

w k+1

k

1
(1 + x)ρ

dx

>
w ∞

1

1
(1 + x)ρ

dx

= ∞,

hence the mean time for the crack to grow to infinite length is infinite when ρ 6 1.

Remark. This problem could also be treated in discrete time, assuming that τk is the (random) crack length increase at each step. In
this case, the relation

IE
∑
k>1

τk

 <∞
for ρ > 1 shows that growth of the crack length to infinity cannot occur in this case.

Exercise 9.7

a) This time is the expected value of the third jump time T3, i.e.

IE[T3] = IE[τ0] + IE[τ1] + IE[τ2] =
3
λ

= 30 minutes.

b) This probability is

P(N60 < 3) = P(N60 = 0) + P(N60 = 1) + P(N60 = 2)
= e−60λ(1 + 60λ+ (60λ)2/2)
= 25e−6 ' 0.062. MH3512 AY19-20
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a) By the independence of increments of the Poisson process (Nt)t∈R+ we find

P(Nt3 = 5 | Nt1 = 1) =
P(Nt3 = 5 and Nt1 = 1)

P(Nt1 = 1)

=
P(Nt3 −Nt1 = 4 and Nt1 = 1)

P(Nt1 = 1)
=

P(Nt3 −Nt1 = 4)P(Nt1 = 1)
P(Nt1 = 1)

= P(Nt3 −Nt1 = 4) =
(λ(t3− t1))4

4!
e−λ(t3−t1).

b) We expand Nt4 into the telescoping sum

Nt4 = (Nt4 −Nt3) + (Nt3 −Nt2) + (Nt2 −Nt1) + (Nt1 −N0)

of independent increments on disjoint time intervals, to obtain

IE[Nt1Nt4(Nt3 −Nt2)]

= IE[Nt1(Nt4 −Nt3)(Nt3 −Nt2)] + IE[Nt1(Nt3 −Nt2)(Nt3 −Nt2)]

+ IE[Nt1(Nt2 −Nt1)(Nt3 −Nt2)] + IE[Nt1Nt1(Nt3 −Nt2)]

= IE[Nt1] IE[Nt4 −Nt3] IE[Nt3 −Nt2] + IE[Nt1] IE[(Nt3 −Nt2)
2]

+ IE[Nt1] IE[Nt2 −Nt1] IE[Nt3 −Nt2] + IE[N2
t1
] IE[Nt3 −Nt2]

= λ3t1(t4− t3)(t3− t2) + λ2t1(t3− t2)(1 + λ(t3− t2))
+λ3t1(t2− t1)(t3− t2) + λ2t1(1 + λt1)(t3− t2).

c) We have {T2 > t} = {Nt 6 1}, t ∈ R+, hence

IE[Nt2 | T2 > t1] = IE[Nt2 | Nt1 6 1] =
1

P(Nt1 6 1)
IE[Nt21{Nt161}],

by (1.6.6). Now, using the independence of increments between Nt2 −Nt1 and Nt1, we have

IE[Nt21{Nt161}] = IE[(Nt2 −Nt1)1{Nt161}] + IE[Nt11{Nt161}] MH3512 AY19-20
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= IE[Nt2 −Nt1]P(Nt1 6 1) + IE[Nt11{Nt161}],

hence

IE[Nt2 | T2 > t1] = IE[Nt2 | Nt1 6 1] =
1

P(Nt1 6 1)
IE[Nt21{Nt161}]

=
1

P(Nt1 6 1)
IE[(Nt2 −Nt1 +Nt1)1{Nt161}]

=
1

P(Nt1 6 1)
IE[(Nt2 −Nt1)1{Nt161}] +

1
P(Nt1 6 1)

IE[Nt11{Nt161}]

= IE[Nt2 −Nt1] +
1

P(Nt1 6 1)
IE[Nt11{Nt161}]

= IE[Nt2 −Nt1] +
1

P(Nt1 6 1)
(0×P(Nt1 = 0) + 1×P(Nt1 = 1))

= IE[Nt2 −Nt1] +
P(Nt1 = 1)
P(Nt1 6 1)

= λ(t2− t1) +
λt1e−λt1

e−λt1 + λt1e−λt1
.

Exercise 9.9 The generator of the process is given by

Q =


−λ0 λ0 0
µ1 −λ1− µ1 λ1
0 µ2 −µ2

 =


−2α 2α 0
β −α− β α
0 2β −2β

 .

Writing the equation πQ = 0 shows that
π1 =

2α
β
π0 and π2 =

α

2β
π1,

and the condition
π0 + π1 + π2 = 1

shows that
π0 =

1 +
α

β

−2

MH3512 AY19-20



"703and
π0 =

 β

α+ β

2

, π1 =
2αβ

(α+ β)2 and π2 =

 α

α+ β

2

,

which is a binomial distribution with parameter (2, p) = (2,α/(α+ β)), i.e.

π0 = p2, π1 =

2
1

p(1− p) and π2 = (1− p)2.

Exercise 9.10 This is an extension of Exercise 9.9. The generator of the process is given by

Q =



−λ0 λ0 0 · · · 0 0 0
µ1 −λ1− µ1 λ1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · µN−1 −λN−1− µN−1 λN−1
0 0 0 · · · 0 µN −µN



=



−αN αN 0 · · · 0 0 0
β −α(N − 1)− β α(N − 1) · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · β(N − 1) −α− β(N − 1) α
0 0 0 · · · 0 βN −βN


.

Writing the equation πQ = 0 shows that we have −αNπ0 + βπ1 = 0,

β(k+ 1)πk+1− (α(N − k) + βk)πk + α(N − (k− 1))πk−1 = 0, k = 1, 2, . . . ,N − 1,

and απN−1− βNπN = 0, from which we deduce the recurrence relation

πk+1 =
α

β

N − k
k+ 1

πk, k = 0, 1, . . . ,N − 1,
MH3512 AY19-20
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π2 =
α

β

(N − 1)
2

π1 =

α
β

2 N(N − 1)
1× 2

π0, π3 =

α
β

3 N(N − 1)(N − 2)
1× 2× 3

π0,

hence

πk =

α
β

k N(N − 1) · · · (N − k+ 1)
k!

π0

=

α
β

k N !
(N − k)!k!

π0 =

α
β

k N
k

π0,

k = 0, 1, . . . ,N . The condition
π0 + π1 + · · ·+ πN = 1

shows that

1 = π0
N∑
k=0

α
β

k N !
(N − k)!k!

=

1 +
α

β

N π0,

hence

π0 =

1 +
α

β

−N

and we have

πk =

1 +
α

β

−N α
β

k N !
(N − k)!k!

=

 α

α+ β

k  β

α+ β

N−k N !
(N − k)!k!

, k = 0, 1, . . . ,N ,

hence the stationary distribution π is a binomial distribution with parameter (N , p) = (N ,α/(α+ β)).
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"705Exercise 9.11 The generator Q of this pure birth process is given by

Q = [ λi,j ]i,j∈N
=



−1 1 0 0 0 · · ·
0 −3 3 0 0 · · ·
0 0 −2 2 0 · · ·
0 0 0 −5 5 · · ·
...

...
...

...
. . .

. . .


,

hence the forward Kolmogorov equation P ′(t) = P (t)Q reads


P ′0,0(t) P ′0,1(t) P ′0,2(t) P ′0,3(t) · · ·
P ′1,0(t) P ′1,1(t) P ′1,2(t) P ′1,3(t) · · ·
P ′2,0(t) P ′2,1(t) P ′2,2(t) P ′2,3(t) · · ·
P ′3,0(t) P ′3,1(t) P ′3,2(t) P ′3,3(t) · · ·
...

...
...

...
. . .



=



P0,0(t) P0,1(t) P0,2(t) P0,3(t) · · ·
P1,0(t) P1,1(t) P1,2(t) P1,3(t) · · ·
P2,0(t) P2,1(t) P2,2(t) P2,3(t) · · ·
P3,0(t) P3,1(t) P3,2(t) P3,3(t) · · ·
...

...
...

...
. . .


×



−1 1 0 0 0 · · ·
0 −3 3 0 0 · · ·
0 0 −2 2 0 · · ·
0 0 0 −5 5 · · ·
...

...
...

...
. . .

. . .


,

which yields 

P ′0,0(t) = −P0,0(t),

P ′0,1(t) = P0,0(t)− 3P0,1(t),

P ′0,2(t) = 3P0,1(t)− 2P0,2(t),

P ′0,3(t) = 2P0,2(t)− 5P0,3(t).

The first equation is solved by (A.9) as
P0,0(t) = P0,0(0)e−t = e−t, t ∈ R+,

MH3512 AY19-20
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P0,0(t) = P(Xt = 0 | X0 = 0) = P(τ0 > t) = e−t, t ∈ R+.

The second equation becomes
P ′0,1(t) = e−t− 3P0,1(t), (B.50)

its associated homogeneous equation is P ′0,1(t) = −3P0,1(t), which has t 7−→ C1e−3t for homogeneous solution. By substituting the
particular solution t 7−→ C2e−t in (B.50) we get

−C2e−t = e−t− 3C2e−t,
i.e. C2 = 1/2, hence the general solution

P0,1(t) =
1
2

e−t +C1e−3t,

and from the initial condition P0,1(0) = 0 we get C1 = −1/2, i.e.

P0,1(t) =
1
2
(e−t− e−3t), t ∈ R+.

The remaining equations can be solved similarly by searching for a suitable particular solution. For

P ′0,2(t) =
3
2
(e−t− e−3t)− 2P0,2(t),

we find, searching for a particular solution of the form t 7−→ ae−t + be−3t,

P0,2(t) =
3
2

e−3t(1− et)2, t ∈ R+, (B.51)

see here, and for
P ′0,3(t) = 3e−3t(1− et)2− 5P0,3(t),

we find
P0,3(t) =

1
4

e−5t(et− 1)3(1 + 3et), t ∈ R+, (B.52)

see here. Note that using the backward Kolmogorov equation P ′(t) = QP (t) can lead to more complicated calculations.

MH3512 AY19-20
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"707Probabilistic approach

The above results may be recovered by a probabilistic approach, with the change of variable z = x+ y, as

P0,1(t) = P(Xt = 1 | X0 = 0)
= P(τ0 < t and τ0 + τ1 > t)

= P(τ0 < t < τ0 + τ1)

= λ0λ1

w

{(x,y) : 0<x<t, x+y>t}
e−λ0xe−λ1ydxdy

= λ0λ1

w t

0

w ∞
t

e−λ0xe−λ1(z−x)dxdz

= λ0λ1

w t

0

w ∞
t

e−(λ0−λ1)xe−λ1zdxdz

= e−λ1tλ0

w t

0
e−(λ0−λ1)xdx

=
λ0

λ0− λ1
(e−λ1t− e−λ0t)

=
1
2
(e−t− e−3t), t ∈ R+. (B.53)

As for P0,2(t) it also reads

P0,2(t) = P(Xt = 2 | X0 = 0) = P(τ0 + τ1 < t and τ0 + τ1 + τ2 > t),

and (B.51) can be recovered via a triple integral. Similarly, (B.52) can be approached by a quadruple integral, etc.

Exercise 9.12 Noting that the two events

{T1 > t, T2 > t+ s} = {Xt = 0, 0 6 Xt+s 6 1}

coincides for all s, t ∈ R+, we find that

P(T1 > t and T2 > t+ s) = P(Xt = 0 and Xt+s ∈ {0, 1} | X0 = 0)
= P(Xt+s ∈ {0, 1} | Xt = 0)P(Xt = 0 | X0 = 0)
= P(Xs ∈ {0, 1} | X0 = 0)P(Xt = 0 | X0 = 0)
= (P(Xs = 0 | X0 = 0) + P(Xs = 1 | X0 = 0))P(Xt = 0 | X0 = 0) MH3512 AY19-20
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Next, we note that we have
P0,0(t) = e−λ0t, t ∈ R+,

and, from Relation (B.53) above,

P0,1(t) =
λ0

λ1− λ0

(
e−λ0t− e−λ1t

)
, t ∈ R+,

hence

P(T1 > t and T2 > t+ s) = e−λ0(t+s) +
λ0

λ1− λ0

(
e−λ0(t+s)− e−λ0t−λ1s

)

=
λ1

λ1− λ0
e−λ0(t+s)−

λ0

λ1− λ0
e−λ0t−λ1s.

Then, since
P(T1 > x and T2 > y) =

w ∞
x

w ∞
y
f(T1,T2)(u, v)dudv,

by (1.5.4) we get

f(T1,T2)(x, y) =
∂2

∂y∂x
P(T1 > x and T2 > y)

=
∂2

∂y∂x

 λ1

λ1− λ0
e−λ0y −

λ0

λ1− λ0
e−λ0x−λ1(y−x)


= −λ0

∂

∂y
e−λ0x−λ1(y−x) = λ0λ1e−λ0x−λ1(y−x),

provided that y > x > 0. When x > y > 0 we have

f(T1,T2)(x, y) = 0.

The density of (τ0, τ1) is given under the change of variable T0 = τ0, T1 = τ0 + τ1, by

f(τ0,τ1)(s, t) = f(T1,T2)(s, s+ t) = λ0λ1e−λ0s−λ1t, s, t ∈ R+,
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Exercise 9.13 Let (Nt)t∈R+ denote a Poisson process with intensity λ > 0.

a) This probability is equal to
P(NT = 0) = P(τ0 > T ) = e−λT .

b) Let t denote the expected time we are looking for. When the woman attempts to cross the street, she can do so immediately with
probability P(NT = 0) = P(τ0 > T ), in which case the waiting time is 0. Otherwise, with probability 1− P(NT = 0), she has
to wait on average (using Lemma 1.4 and (1.6.12))

IE[τ0 | τ0 < T ] =
1

P(τ0 < T )
IE[τ01{τ0<T}]

=
λ

1− e−λT
w T

0
xe−λxdx

=
1− (1 + λT )e−λT

λ(1− e−λT )

for the first car to pass, after which the process is reinitialized and the average waiting time is again t. Hence by first step analysis
in continuous time we find the equation

t = 0×P(NT = 0) + (IE[τ0 | τ0 < T ] + t)×P(τ0 6 T )

=
1− (1 + λT )e−λT

λ
+ t(1− e−λT ) (B.54)

with unknown t, and solution

t =
eλT − 1− λT

λ
.

Alternatively, we could also rewrite the above equation (B.54) as

t = IE[0× 1{τ0>T}+ (τ0 + t)1{τ0<T}] =
1− (1 + λT )e−λT

λ
+ t(1− e−λT ). MH3512 AY19-20
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t = IE
[
T1{T<τ0}+ (τ0 + t)1{T>τ0}

]
= λT

w ∞
T

e−λsds+ λ
w T

0
(s+ t)e−λsds

= TP(τ0 > T ) + λ
w T

0
se−λsds+ tP(τ0 < T )

= T e−λT +
1− e−λT (1 + λT )

λ
+ t(1− e−λT ),

which yields

t =
eλT − 1
λ

.

Alternatively, we can write

t = TP(τ0 > T ) +
(
IE [τ0 | τ0 > T ] + t

)
P(τ0 > T )

= TP(τ0 > T ) + IE
[
τ01{τ0>T}

]
+ tP(τ0 > T )

= TP(τ0 > T ) + λ
w T

0
se−λsds+ tP(τ0 < T ),

which yields the same result.

d) In this case, T becomes an independent exponentially distributed random variable with parameter µ > 0, hence we can write

t = IE
eλT − 1

λ


= µ

w ∞
0

eλu− 1
λ

e−µudu

=
µ

λ

w ∞
0

e(λ−µ)udu−
µ

λ

w ∞
0

e−µudu

=
µ

λ(µ− λ)
−

1
λ

=
1

µ− λ MH3512 AY19-20
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Exercise 9.14
a) This probability is the probability that an exponential random variable with parameter µ is lower than T , i.e. P(τ0 > T ) = e−µT .

b) Denoting by t = IE[W ] the mean time until the machine breaks down we have, by first step analysis in continuous time,

t = IE
[
T1{T<τ0}+ (τ0 + t)1{T>τ0}

]
= µT

w ∞
T

e−µsds+ µ
w T

0
(s+ t)e−µsds

= TP(τ0 > T ) + µ
w T

0
se−µsds+ tP(τ0 < T )

= T e−µT +
1− e−µT (1 + µT )

µ
+ t(1− e−µT ),

which yields

t = IE[W ] =
eµT − 1
µ

.

Alternatively, we can write

t = TP(τ0 > T ) +
(
IE [τ0 | τ0 > T ] + t

)
P(τ0 > T )

= TP(τ0 > T ) + IE
[
τ01{τ0>T}

]
+ tP(τ0 > T )

= TP(τ0 > T ) + µ
w T

0
se−µsds+ tP(τ0 < T ),

which yields the same result.

c) This proportion is
IE[W ]

IE[W ] + 1/λ
=

eµT − 1
eµT − 1 + µ/λ

.

The state of the machine can be modeled using a two-state Markov chain with infinitesimal generator

Q =


−λ λ
1

IE[W ]
−

1
IE[W ]

 =

 −λ λ
µ

eµT − 1
µ

1− eµT

 ,
MH3512 AY19-20
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[π0,π1] =

 1/λ
1/λ+ (eµT − 1)/µ

,
(eµT − 1)/µ

1/λ+ (eµT − 1)/µ


=

 µ

µ+ λ(eµT − 1)
,

λ(eµT − 1)
µ+ λ(eµT − 1)


=

 1/λ
IE[W ] + 1/λ

,
IE[W ]

IE[W ] + 1/λ

 .

Exercise 9.15

a) The generator Q of (Xt)t∈R+ is given by

Q =


−0.5 0.5 0
0.2 −0.45 0.25
0 0.4 −0.4

 .

b) Solving for πQ = 0 we have

πQ = [π0,π1,π2]×


−0.5 0.5 0
0.2 −0.45 0.25
0 0.4 −0.4



=


−0.5× π0 + 0.2× π1

0.5× π0− 0.45× π1 + 0.4× π2
0.25× π1− 0.4× π2


T

= [0, 0, 0],

i.e. π0 = 0.4× π1 = 0.64× π2 under the condition π0 + π1 + π2 = 1, which gives π0 = 16/81, π1 = 40/81, π2 = 25/81.

c) In the long run the average is
0× π0 + 1× π1 + 2× π2 =

40
81

+
50
81

=
90
81

.

d) We find
100×

90
81

=
1000

9
. MH3512 AY19-20
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Q =


−0.5 0.5 0
0.2 −0.7 0.5
0 0.4 −0.4

 ,

and solving πQ = 0 shows that

[π0,π1,π2] =
[0.32
2.12

,
0.8

2.12
,

1
2.12

]
= [0.15094, 0.37736, 0.47170] .

Exercise 9.16 Both chains (X1(t))t∈R and (X2(t))t∈R have the same infinitesimal generator

Q =

 −λ λ
µ −µ

 .

The infinitesimal generator of Z(t) := X1(t) +X2(t) is given by

−2λ 2λ 0
µ −λ− µ λ
0 2µ −2µ

 ,

as the birth rate λ is doubled when both chains are in state 0 , and the death rate µ is also doubled when both chains are in state 1 .

Note that the generator of the sum (Z(t))t∈R+ of (X1(t))t∈R+ and (X2(t))t∈R+ is not the sum of the matrix generators of (X1(t))t∈R+

and (X2(t))t∈R+. Recall that by Proposition 9.6, the semi-groups of X1(t) and X2(t) are given by


P(X1(t) = 0 | X1(0) = 0) P(X1(t) = 1 | X1(0) = 0)

P(X1(t) = 0 | X1(0) = 1) P(X1(t) = 1 | X1(0) = 1)



=


P(X2(t) = 0 | X2(0) = 0) P(X2(t) = 1 | X2(0) = 0)

P(X2(t) = 0 | X2(0) = 1) P(X2(t) = 1 | X2(0) = 1)
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=



µ

λ+ µ
+

λ

λ+ µ
e−t(λ+µ)

λ

λ+ µ
−

λ

λ+ µ
e−t(λ+µ)

µ

λ+ µ
−

µ

λ+ µ
e−t(λ+µ)

λ

λ+ µ
+

µ

λ+ µ
e−t(λ+µ)


.

As for the transition semi-group of Z(t), we have

P0,0(t) = P(Z(t) = 0 | Z(0) = 0)
= P(X1(t) = 0 and X2(t) = 0 | X1(0) = 0 and X2(0) = 0)
= P(X1(t) = 0 | X1(0) = 0)P(X2(t) = 0 | X2(0) = 0)
= (P(X1(t) = 0 | X1(0) = 0))2

=

 µ

λ+ µ
+

λ

λ+ µ
e−t(λ+µ)

2

.

For P0,1(t) we have

P0,1(t) = P(Z(t) = 1 | Z(0) = 0)
= P(X1(t) = 0 and X2(t) = 1 | X1(0) = 0 and X2(0) = 0)

+P(X1(t) = 1 and X2(t) = 0 | X1(0) = 0 and X2(0) = 0)
= P(X1(t) = 1 | X1(0) = 0)P(X2(t) = 0 | X2(0) = 0)

+P(X1(t) = 0 | X1(0) = 0)P(X2(t) = 1 | X2(0) = 0)
= 2P(X1(t) = 1 | X1(0) = 0)P(X2(t) = 0 | X2(0) = 0).

Starting from Z(0) = 1 and ending at Z(t) = 1 we have two possibilities (0, 1) or (1, 0) for the terminal condition. As for the initial
condition Z(0) = 1 the two possibilities (0, 1) and (1, 0) count for one only since they both give Z(0) = 1. We have

P(Z(t) = 1 | Z(0) = 1)
= P(Z(t) = 1 | {X1(0) = 0 and X2(0) = 1} ∪ {X1(0) = 1 and X2(0) = 0})

=
P({Z(t) = 1} ∩ ({X1(0) = 0 and X2(0) = 1} ∪ {X1(0) = 1 and X2(0) = 0}))

P({X1(0) = 0 and X2(0) = 1} ∪ {X1(0) = 1 and X2(0) = 0})
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=

P({Z(t) = 1} ∩ {X1(0) = 0 and X2(0) = 1})
P(Z(0) = 1)

+
P({Z(t) = 1} ∩ {X1(0) = 1 and X2(0) = 0})

P(Z(0) = 1)

= P(Z(t) = 1 | X1(0) = 0 and X2(0) = 1)
P(X1(0) = 0 and X2(0) = 1)

P(Z(0) = 1)

+P(Z(t) = 1 | X1(0) = 1 and X2(0) = 0)
P(X1(0) = 1 and X2(0) = 0)

P(Z(0) = 1)

= P(Z(t) = 1 | X1(0) = 0 and X2(0) = 1)
P(X1(0) = 0 and X2(0) = 1)

P(Z(0) = 1)

+P(Z(t) = 1 | X1(0) = 0 and X2(0) = 1)
P(X1(0) = 1 and X2(0) = 0)

P(Z(0) = 1)
= P(Z(t) = 1 | X1(0) = 0 and X2(0) = 1).

The above equality

P(Z(t) = 1 | X1(0) = 1 and X2(0) = 0) = P(Z(t) = 1 | X1(0) = 0 and X2(0) = 1)

is justified by the fact that the transition probabilities of (Z(t))t∈R+ depend only on Z(0) = X1(0)+X2(0) = 0+ 1 = 1+ 0 = 1.

Thus, in order to compute P1,1(t) we can choose to assign the value 0 to X1(0) and the value 1 to X2(0) without influencing the final
result, as the other choice would lead to the same probability value. Hence for P1,1(t) we have

P1,1(t) = P(Z(t) = 1 | Z(0) = 1)
= P(X1(t) = 0 and X2(t) = 1 | X1(0) = 0 and X2(0) = 1)

+P(X1(t) = 1 and X2(t) = 0 | X1(0) = 0 and X2(0) = 1)
= P(X1(t) = 0 | X1(0) = 0)P(X2(t) = 1 | X2(0) = 1)

+P(X1(t) = 1 | X1(0) = 0)P(X2(t) = 0 | X2(0) = 1).

Note that in the above calculation we chose to represent the event {Z(0) = 1} by {X1(0) = 0 and X2(0) = 1}, however making the
other choice {X1(0) = 1 and X2(0) = 0} would lead to the same result becauseX1(t) andX2(t) have same infinitesimal generators.
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P1,0(t) = P(Z(t) = 0 | Z(0) = 1)
= P(X1(t) = 0 and X2(t) = 0 | X1(0) = 0 and X2(0) = 1).

On the other hand, we have

P1,2(t) = P(Z(t) = 2 | Z(0) = 1)
= P(X1(t) = 1 and X2(t) = 1 | X1(0) = 0 and X2(0) = 1)
= P(X1(t) = 1 | X1(0) = 0)P(X2(t) = 1 | X2(0) = 1).

We check that

P1,0(t) + P1,1(t) + P1,2(t) = P(X1(t) = 0 | X1(0) = 0)P(X2(t) = 0 | X2(0) = 1)
+P(X1(t) = 0 | X1(0) = 0)P(X2(t) = 1 | X2(0) = 1)
+P(X1(t) = 1 | X1(0) = 0)P(X2(t) = 0 | X2(0) = 1)
+P(X1(t) = 1 | X1(0) = 0)P(X2(t) = 1 | X2(0) = 1)

= (P(X1(t) = 1 | X1(0) = 0) + P(X1(t) = 0 | X1(0) = 0))
×(P(X2(t) = 1 | X2(0) = 1) + P(X2(t) = 0 | X2(0) = 1))

= 1.

Note that for Z(t) to be Markov, the processes X1(t) and X2(t) should have same infinitesimal generators. For example, if X1(t)
and X2(t) have different transition rates, then starting from Z(t) = 1 we need the information whether X1(t) = 1 or X2(t) = 1 in
order to determine what will be the next transition rate. However, the knowledge of Z(t) = 1 is not sufficient for this.

Altogether, there are 3× 3 = 9 transition probabilities to compute since the chain Z(t) has 3 states {0, 1, 2}, and the remaining
computations are left to the reader.

Exercise 9.17 Starting from state 0 , the process Xt = ξNt stays at state 0 during an exponentially distributed Poisson interjump
time with parameter λ, after which Nt increases by one unit. In this case, ξNt = 0 becomes ξNt+1 = 1 with probability 1, from the
transition matrix (9.8.4), hence the birth rate of Xt from state 0 to state 1 is λ.

Then, starting from state 1 , the process Xt stays at 1 during an exponentially distributed time with parameter λ. The difference is
that whenNt increases by one unit, ξNt = 1 may move to ξNt+1 = 0 with probability 1−α, or remain at ξNt+1 = 1 with probabilityα.MH3512 AY19-20
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In fact, due to the Markov property, Xt will remain at 1 during an exponentially distributed time whose expectation may be higher
than 1/λ when α > 0. We will compute the expectation of this random time.

a) We have

IE
[
T r0 | X0 = 1

]
= α

(1
λ
+ IE

[
T r0 | X0 = 1

])
+ (1−α)×

(1
λ
+ 0

)

=
1
λ
+ α IE

[
T r0 | X0 = 1

]
,

hence
IE
[
T r0 | X0 = 1

]
=

1
λ(1−α)

(B.55)

and
IE
[
T r0 | X0 = 0

]
=

1
λ
+ 1× IE

[
T r0 | X0 = 1

]
=

2−α
λ(1−α)

.

Note that (B.55) can also be recovered from (5.3.3) by letting b = 1− α and multiplying by the average Poisson interjump time
1/λ.

b) We have

IE
[
T r1 | X0 = 1

]
=

1
λ
+ α IE

[
T r1 | X0 = 1

]
+ (1−α) IE

[
T r1 | X0 = 0

]

=
2−α
λ

+ α IE
[
T r1 | X0 = 1

]
,

since IE
[
T r1 | X0 = 0

]
= 1/λ, hence

IE
[
T r1 | X0 = 1

]
=

2−α
λ(1−α)

.

c) This continuous-time first step analysis argument is similar to the one used in the solution of Exercise 9.3. Since

IE
[
T r0 | X0 = 1

]
=

1
λ(1−α)

,
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the death rate is

1
IE
[
T r0 | X0 = 1

] = λ(1−α),

and the infinitesimal generator Q of Xt is
−λ λ
1

IE
[
T r0 | X0 = 1

] − 1
IE
[
T r0 | X0 = 1

]
 =


−λ λ

(1−α)λ −(1−α)λ

 .

Problem 9.18

a) We need to show the following properties.

(i) The process (N1
t +N2

t )t∈R+ is a counting process.

Clearly, the jump heights are positive integers and they can only be equal to one since the probability that N1
t and N2

t jumps
simultaneously is 0.

(ii) The process (N1
t +N2

t )t∈R+ has independent increments.

Letting 0 < t1 < t2 < · · · < tn, the family(
N1
tn
+N2

tn
− (N1

tn−1
+N2

tn−1
), . . . ,N1

t2
+N2

t2
− (N1

t1
+N2

t1
)
)

=
(
N1
tn
−N1

tn−1
+N2

tn
−N2

tn−1
, . . . ,N1

t2
−N1

t1
+N2

t2
−N2

t1

)

is a family of independent random variables. In order to see this we note that N1
tn
−N1

tn−1
is independent of

N1
tn−1
−N1

tn−2
, . . . ,N1

t2
−N1

t1
,

and of
N2
tn
−N2

tn−1
, . . . ,N2

t2
−N2

t1
, MH3512 AY19-20
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N1
tn−1
−N1

tn−2
+N2

tn−1
−N2

tn−2
, . . . ,N1

t2
−N1

t1
+N2

t2
−N2

t1
.

Similarly it follows that N2
tn
−N2

tn−1
is independent of

N1
tn−1
−N1

tn−2
+N2

tn−1
−N2

tn−2
, . . . ,N1

t2
−N1

t1
+N2

t2
−N2

t1
,

hence N1
tn
+N2

tn
− (N1

tn−1
+N2

tn−1
) is independent of

N1
tn−1
−N1

tn−2
+N2

tn−1
−N2

tn−2
, . . . ,N1

t2
−N1

t1
+N2

t2
−N2

t1
.

This shows the required mutual independence by induction on n > 1.

(iii) The process (N1
t +N2

t )t∈R+ has stationary increments.

We note that the distributions of the random variables N1
t+h−N1

s+h and N2
t+h−N2

s+h do not depend on h ∈ R+, hence by
the law of total probability we check that

P(N1
t+h +N2

t+h− (N1
s+h +N2

s+h) = n)

=
n∑
k=0

P(N1
t+h−N

1
s+h = k)P(N2

t+h−N
2
s+h = n− k)

is independent of h ∈ R+.

The intensity of N1
t +N2

t is λ1 + λ2.

b) (i) The proof of independence of increments is similar to that of Question (a).

(ii) Concerning the stationarity of increments we have

P(Mt+h−Mt = n) = P(N1
t+h−N

2
t+h− (N1

s+h−N
2
s+h) = n)

= P(N1
t+h−N

1
s+h− (N2

t+h−N
2
s+h) = n)

=
∑
k>0

P(N1
t+h−N

1
s+h = n+ k)P(N2

t+h−N
2
s+h = k)
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t+h−N1

s+h and N2
t+h−N2

s+h are independent of h ∈ R+.

c) For n ∈ N we have

P(Mt = n) = P(N1
t −N

2
t = n)

=
∑

k>max(0,−n)
P(N1

t = n+ k)P(N2
t = k)

= e−(λ1+λ2)t
∑

k>max(0,−n)

λn+k1 λk2t
n+2k

k!(n+ k)!

=

λ1

λ2

n/2

e−(λ1+λ2)t
∑

k>max(0,−n)

(t
√
λ1λ2)n+2k

(n+ k)!k!

=

λ1

λ2

n/2

e−(λ1+λ2)tI|n|(2t
√
λ1λ2),

where
In(x) =

∑
k>0

(x/2)n+2k

k!(n+ k)!
, x > 0,

is the modified Bessel function with parameter n > 0. When n 6 0, by exchanging λ1 and λ2 we get

P(Mt = n) = P(−Mt = −n)

=

λ2

λ1

−n/2

e−(λ1+λ2)tI−n(2t
√
λ1λ2)

=

λ1

λ2

n/2

e−(λ1+λ2)tI−n(2t
√
λ1λ2),

hence in the general case we have

P(Mt = n) =

λ1

λ2

n/2

e−(λ1+λ2)tI|n|(2t
√
λ1λ2), n ∈ Z,

which is known as the Skellam distribution.
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satisfies

Pi,j(t) = P(Mt = j |M0 = i)

= P(Mt = j − i)

=

λ1

λ2

(j−i)/2

e−(λ1+λ2)tI|j−i|(2t
√
λ1λ2),

i, j ∈ Z, t ∈ R+.

When λ1 = λ2 = λ we find
P(Mt = n) = e−2λtI|n|(2λt).

d) From the bound∗

I|n|(y) < Cny
|n|ey, y > 1,

we get

P(Mt = n) 6 Cne−(λ1+λ2)t

λ1

λ2

n/2

(2t
√
λ1λ2)

|n|e2t
√
λ1λ2

= Cne−t(
√
λ1−
√
λ2)2

λ1

λ2

n/2

(2t
√
λ1λ2)

|n|,

which tends to 0 as t goes to infinity when λ1 6= λ2.

Hence we have†

lim
t→∞

P(|Mt| < c) =
∑

−c<k<c
lim
t→∞

P(|Mt| = k) = 0, c > 0. (B.56)

Remark. There exists a shorter proof by a probabilistic argument (not required here), which is displayed below, cf. [BN96].

∗See e.g. Theorem 2.1 of [Laf91] for a proof of this inequality.
†Treating the case λ1 = λ2 is more complicated and not required. MH3512 AY19-20
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c− IE[Mt] 6 −
1
2
IE[Mt] or − c− IE[Mt] >

1
2
IE[Mt],

we get
−c 6Mt 6 c =⇒ Mt− IE[Mt] 6 −

1
2
IE[Mt] or Mt− IE[Mt] >

1
2
IE[Mt],

hence by Chebyshev’s inequality we have

P(|Mt| 6 c) 6 P

(
|Mt− IE[Mt]| >

1
2
IE[Mt]

)

6 4
Var[Mt]

(IE[Mt])2 =
4
t

λ1 + λ2

(λ1− λ2)2 ,

which tends to 0 as t tends to infinity, provided that λ1 6= λ2. A probabilistic proof is also available in case λ1 = λ2, using the
central limit theorem.

e) When Mt > 0, Mt represents the number of waiting customers. When Mt 6 0, −Mt represents the number of waiting drivers.

Relation (B.56) shows that for any fixed c > 0, the probability of having either more than c waiting customers or more than c
waiting drivers is high in the long run.
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Q =



−Nλ Nλ 0 · · · · · · 0 0 0
µ −µ− (N − 1)λ (N − 1)λ · · · · · · 0 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

. . .
. . .

...
...

...
0 0 0 · · · · · · (N − 1)µ −(N − 1)µ− λ λ
0 0 0 · · · · · · 0 Nµ −Nµ


.

b) The system of equations follows by writing the matrix multiplication P ′(t) = P (t)Q term by term.

c) We apply the result of Question (b) to
∂Gk

∂t
(s, t) =

N∑
n=0

snP ′k,n(t),

and use the expression
∂Gk

∂s
(s, t) =

N∑
n=1

nsn−1P ′k,n(t).

d) We have

λN(s− 1)Gk(s, t) + (µ+ (λ− µ)s− λs2)
∂Gk

∂s
(s, t)−

∂Gk

∂t
(s, t)

= −(s− 1)(λ+ µ)(N − k)
(
(s− 1)µe−(λ+µ)t + λs+ µ

)k
λ
(
−(s− 1)λe−(λ+µ)t + λs+ µ

)N−k−1
e−(λ+µ)t

+(s− 1)(λ+ µ)kµ
(
(s− 1)µe−(λ+µ)t + λs+ µ

)k−1(
−(s− 1)λe−(λ+µ)t + λs+ µ

)N−k
e−(λ+µ)t

+(s− 1)
(
(s− 1)µe−(λ+µ)t + λs+ µ

)k
Nλ
(
−(s− 1)λe−(λ+µ)t + λs+ µ

)N−k
+
(
λs2 − (λ− µ)s− µ

)
(N − k)

(
λe−(λ+µ)t − λ

)(
(s− 1)µe−(λ+µ)t + λs+ µ

)k(
−(s− 1)λe−(λ+µ)t + λs+ µ

)N−k−1

−
(
µe−(λ+µ)t + λ

)
k
(
(s− 1)µe−(λ+µ)t + λs+ µ

)k−1(
−(s− 1)λe−(λ+µ)t + λs+ µ

)N−k (
λs2 − (λ− µ)s− µ

)
= 0.

e) This expression follows from the relation

IE[Xt | X0 = k] =
∂Gk

∂s
(s, t)|s=1 MH3512 AY19-20
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f) We have

lim
t→∞

IE[Xt | X0 = k] = k
λ(λ+ µ)k−1

(λ+ µ)N
(µ+ λ)N−k

+(N − k)
(µ+ λ)λk−1

(λ+ µ)N
λN−k =

Nλ

λ+ µ
.

Problem 9.20 First, we note that in case
f(x) = 1[a,b](x), 0 6 a 6 b 6 t,

we have, by direct counting,
Nt∑
k=1

f(Tk) =
Nt∑
k=1

1[a,b](Tk) = Nb−Na.

Hence
IE
 Nt∑
k=1

f(Tk)

 = IE[Nb−Na] = λ(b− a) = λ
w t

0
1[a,b](s)ds = λ

w t

0
f(s)ds,

hence (9.8.6) is proved for f(x) = 1[a,b](x).

Next, we check by linearity that the (9.8.6) extends to a linear combination of indicator functions of the form

f(x) =
n∑
k=1

αk1[ak−1,ak](x), 0 6 a0 < a1 < · · · < an < t.

The difficult part is to do the extension from the linear combinations of indicator functions to “any” integrable function f : [0, t] −→ R.
This requires the knowledge of measure theory. For a different proof using the exponentially distributed jump times of the Poisson pro-
cess, see Proposition 2.3.4 in [Pri09].

Let gn, n > 1, be defined as

gn(t1, t2, . . . , tn) =
n∑
k=1

1{tk−1<t<tk}(f(t1) + · · ·+ f(tk−1)) + 1{tn<t}(f(t1) + · · ·+ f(tn)),
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"725with t0 = 0, so that
min(n,Nt)∑

k=1
f(Tk) = gn(T1, T2, . . . , Tn).

Then

E

min(n,Nt)∑
k=1

f(Tk)

 = E[g(T1, T2, . . . , Tn)]

= λn
n∑
k=1

w ∞
0

e−λtn
w tn

0
· · ·

w t2

0
1{tk−1<t<tk}(f(t1) + · · ·+ f(tk−1))dt1 · · · dtn

+λn
w t

0
e−λtn

w tn

0
· · ·

w t2

0
(f(t1) + · · ·+ f(tn))dt1 · · · dtn

= λn
n∑
k=1

w ∞
t

e−λtn
(tn− t)n−k

(n− k− 1)!
dtn

×
w t

0

w tk−1

0
· · ·

w t2

0
(f(t1) + · · ·+ f(tk−1))dt1 · · · dtk−1

+λn
w t

0
e−λtn

w tn

0
· · ·

w t2

0
(f(t1) + · · ·+ f(tn))dt1 · · · dtn

= e−λt
n∑
k=1

λk
w ∞

0
e−λt

(λt)n−k

(n− k− 1)!
dt

×
w t

0

w tk−1

0
· · ·

w t2

0
(f(t1) + · · ·+ f(tk−1))dt1 · · · dtk−1

+λn
w t

0
e−λtn

w tn

0
· · ·

w t2

0
(f(t1) + · · ·+ f(tn))dt1 · · · dtn

= e−λt
n∑
k=1

λk
w t

0

w tk−1

0
· · ·

w t2

0
(f(t1) + · · ·+ f(tk−1))dt1 · · · dtk−1

+e−λt
∑
k>n

λk
w t

0

(t− tn)k−n

(k− n)!

w tn

0
· · ·

w t2

0
(f(t1) + · · ·+ f(tn))dt1 · · · dtn

= e−λt
n∑
k=1

λk
w t

0

w tk−1

0
· · ·

w t2

0
(f(t1) + · · ·+ f(tk−1))dt1 · · · dtk−1

+e−λt
∑
k>n

λk
w t

0

w t

tn

w tk

tn
· · ·

w tn+2

tn
dtn+1 · · · dtk
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w tn+1

0
· · ·

w t2

0
(f(t1) + · · ·+ f(tn))dt1 · · · dtn

= e−λt
∑
k>0

λk
w t

0

w tk

0
· · ·

w t2

0
(f(t1) + · · ·+ f(tmin(k,n)))dt1 · · · dtk

= e−λt
∑
k>0

λk

k!

w t

0
· · ·

w t

0
(f(t1) + · · ·+ f(tmin(k,n)))dt1 · · · dtk.

Hence as n goes to infinity,

E

 Nt∑
k=1

f(Tk)

 = lim
n→∞E

min(n,Nt)∑
k=1

f(Tk)


= lim

n→∞ e−λt
∑
k>0

λk

k!

w t

0
· · ·

w t

0
(f(t1) + · · ·+ f(tmin(k,n)))dt1 · · · dtk

= e−λt
∑
k>0

λk

k!

w t

0
· · ·

w t

0
(f(t1) + · · ·+ f(tk))dt1 · · · dtk

= λe−λt
w t

0
f(s)ds

∑
k>1

(λt)k−1

(k− 1)!
= λ

w t

0
f(s)ds.

Chapter 10 - Discrete-Time Martingales
Exercise 10.1

a) We have

IE [Mn+1 | Fn] = IE
n+1∑
k=1

2k−1Xk

∣∣∣∣∣ Fn


= IE
 n∑
k=1

2k−1Xk

∣∣∣∣∣ Fn
+ IE [2nXn+1 | Fn]

=
n∑
k=1

2k−1Xk + 2n IE[Xn+1]

= Mn, n > 0. MH3512 AY19-20



"727b) This random time is a hitting time, so it is a stopping time.

c) The strategy of the gambler is to double the stakes each time he loses (double down strategy), and to quit the game as soon as his
gains reach $1.

d) The two possible values of Mτ∧n are 1 and

−
n∑
k=1

2k−1 = −
1− 2n

1− 2
= 1− 2n, n > 1.

We have
P(Mn∧τ = 1− 2n) = 2−n and P(Mn∧τ = 1) = 1− 2−n, n > 1.

e) We have

IE[Mn∧τ ] = (1− 2n)P(Mn∧τ = 1− 2n) + P(Mn∧τ = 1)
= (1− 2n)2−n + (1− 2−n)
= 0, n > 1.

f) The stopping time theorem directly states that
IE[Mn∧τ ] = IE[M0] = 0.

Exercise 10.2

a) From the tower property of conditional expectations we have:

IE[Mn+1] = IE[IE[Mn+1 | Fn]] > IE[Mn], n > 0.

b) If (Zn)n∈N is a stochastic process with independent increments have negative expectation, we have

IE[Zn+1 | Fn] = IE[Zn | Fn] + IE [Zn+1−Zn | Fn]
= IE[Zn | Fn] + IE[Zn+1−Zn]
6 IE[Zn | Fn] = Zn, n > 0. MH3512 AY19-20



"728c) We let A0 := 0, An+1 := An + IE[Mn+1−Mn | Fn], n > 0, and

Nn := Mn−An, n ∈ N. (B.57)

(i) For all n ∈ N, we have

IE[Nn+1 | Fn] = IE[Mn+1−An+1 | Fn]
= IE[Mn+1−An− IE[Mn+1−Mn | Fn] | Fn]
= IE[Mn+1−An | Fn]− IE[IE[Mn+1−Mn | Fn] | Fn]
= IE[Mn+1−An | Fn]− IE[Mn+1−Mn | Fn]
= − IE[An | Fn] + IE[Mn | Fn] = Mn−An = Nn,

hence (Nn)n∈N is a martingale with respect to (Fn)n∈N.
(ii) For all n ∈ N, we have

An+1−An = IE[Mn+1−Mn | Fn]
= IE[Mn+1 | Fn]− IE[Mn | Fn]
= IE[Mn+1 | Fn]−Mn > 0,

since (Mn)n∈N is a submartingale.
(iii) By induction we have An+1 = An + IE[Mn+1 −Mn | Fn], n ∈ N, which is Fn-measurable if An is Fn−1-measurable,

n > 1.
(iv) This property is obtained by construction in (B.57).

d) For all bounded stopping times σ and τ such that σ 6 τ a.s., we have IE[Nσ] = IE[Nτ ] by (10.3.3), hence

IE[Mσ] = IE[Nσ] + IE[Aσ]

= IE[Nτ ] + IE[Aσ]

6 IE[Nτ ] + IE[Aτ ]

= IE[Mτ ],

by (10.3.3), since (Mn)n∈N is a martingale and (An)n∈N is non-decreasing.
MH3512 AY19-20



"729Exercise 10.3 We have

IE∗
[
φ

(
S1 + · · ·+ SN

N

)]
6 IE∗

[
φ(S1) + · · ·+ φ(SN )

N

]
since φ is convex,

=
IE∗[φ(S1)] + · · ·+ IE∗[φ(SN )]

N

=
IE∗[φ(IE∗[SN | F1])] + · · ·+ IE∗[φ(IE∗[SN | FN ])]

N
because (Sn)n∈N is a martingale,

6
IE∗[IE∗[φ(SN ) | F1]] + · · ·+ IE∗[IE∗[φ(SN ) | FN ]]

N
by Jensen’s inequality,

=
IE∗[φ(SN )] + · · ·+ IE∗[φ(SN )]

N
by the tower property,

= IE∗[φ(SN )].

Exercise 10.4

a) We have
IE[Mn] 6 IE[IE[Mn+1 | Fn]] = IE[Mn+1], n ∈ N.

b) Writing
Sn−αn = (X1 +X2 + · · ·+Xn− np)︸ ︷︷ ︸

martingale

+n(p−α)

as the sum of a martingale (a stochastic process with centered independent increments) and n(p−α), we conclude that (Sn)n∈N

is a submartingale if and only if p > α. Indeed, we have

IE[Sn−αn | Fk] = IE[X1 +X2 + · · ·+Xn− np | Fk] + n(p−α)
= X1 +X2 + · · ·+Xk − kp+ n(p−α)
= X1 +X2 + · · ·+Xk − kα+ (n− k)(p−α)
> Sk − kα, k = 0, 1, . . . ,n,

if and only if p > α.

Exercise 10.5

a) We have
φ(Mk) = φ (IE[Mn | Fk]) 6 IE[φ(Mn) | Fk], k = 0, 1, . . . ,n MH3512 AY19-20



"730b) We have
φ(Mk) 6 φ (IE[Mn | Fk]) 6 IE[φ(Mn) | Fk], k = 0, 1, . . . ,n.

Problem 10.6
a) We have

{τx > n} =
n⋂
k=0
{Mk < x}.

On the other hand, for all k = 0, 1, . . . ,n we have {Mk < x} ∈ Fk ⊂ Fn, hence {τx > n} ∈ Fn by stability of σ-algebras by
intersection, cf. (1.1.1).

b) We have

xP

(
max

k=0,1,...,n
Mk > x

)
= xP(τx 6 n)

= x IE[1{τx6n}]
6 IE

[
Mτx∧n1{τx6n}

]
(B.58)

6 IE[Mτx∧n] (B.59)
= IE[Mn], (B.60)

where we used the condition Mτx∧n > 0 from (B.58) to (B.59), hence

P

(
max

k=0,1,...,n
Mk > x

)
6

IE[Mn]

x
, x > 0. (B.61)

Remark. The nonnegativity of (Mn)n∈N is used to reach (B.59), and the Doob stopping time theorem is used to conclude to
(B.60).

c) When (Mn)n∈N is a submartingale we have
IE[Mτx∧n] 6 IE[Mn],

by the Doob stopping time theorem for submartingales, cf. Exercise 10.2-(d), hence we can still conclude to (B.60) and (B.61) above.

d) Since x 7→ x2 is a convex function, ((Mn)2)n∈N is a submartingale by Question (a), hence by Question (c) we have

P

(
max

k=0,1,...,n
Mk > x

)
= P

(
max

k=0,1,...,n
(Mk)

2 > x2
)
6

IE[(Mn)2]

x2 , x > 0.
MH3512 AY19-20



"731e) Similarly to Question (d), x 7→ xp is a convex function for all p > 1 hence ((Mn)2)n∈N is a submartingale by Question (a), and
by Question (c) we find

P

(
max

k=0,1,...,n
Mk > x

)
= P

(
max

k=0,1,...,n
(Mk)

p > xp
)
6

IE[(Mn)p]

xp
, x > 0.

f) We note that (Sn)n∈N is a martingale because it has centered and independent increments, with

IE[(Sn)2] = Var[Sn] = nVar[Y1] = nσ2,

hence by Question (d) we have

P

(
max

k=0,1,...,n
Sk > x

)
6

IE[(Sn)2]

x2 =
nσ2

x2 , x > 0.

g) When (Mn)n∈N is a (not necessarily nonnegative) submartingale we can modify the answer to Question (b) using the Doob stopping
time theorem for supermartingales, as follows:

xP

(
max

k=0,1,...,n
Mk > x

)
= x IE[1{τx6n}]

6 IE
[
Mτx∧n1{τx6n}

]
6 IE[(Mτx∧n)

+]

6 IE[(Mn)
+],

since ((Mk)+)k∈N is a submartingale because x 7→ x+ is a non-decreasing convex function, cf. Question (b), hence

P

(
max

k=0,1,...,n
Mk > x

)
6

IE[(Mn)+]

x
, x > 0.

h) We have

xP

(
max

k=0,1,...,n
Mk > x

)
= xP(τx 6 n)

= x IE[1{τx6n}]
6 IE

[
Mτx∧n1{τx6n}

]
6 IE[Mτx∧n] MH3512 AY19-20
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i) We have

xP

(
max

k=0,1,...,n
φ(Mk) > x

)
= x IE

[
1{maxk=0,1,...,n φ(Mk)>x}

]
= x IE

[
1{τφx6n}

]
= IE

[
φ
(
M

τ
φ
x∧n

)
1{τφx6n}

]
= IE

[
φ
(
M

τ
φ
x∧n

)]
= IE[φ (Mn)],

where the last inequality follows from Exercise 10.2-(d), since both τφx ∧ n and n are stopping times.

j) Consider for example any nonnegative martingale such as Mn = (p/q)Sn where Sn = X1 + · · ·+Xn and (Xk)k>1 is a sequence
of independent identically distributed Bernoulli random variables with p = P(Xk = 1) and q = 1− p = P(Xk = −1), k > 1.
Then Zn := e−nMn will be a supermartingale since

IE[Zn | Fk] = e−n IE[Mn | Fk] = e−nMk 6 e−kMk = Zk, k = 0, 1, . . . ,n.

Exercise 10.7 By (3.3.3) we have

IE[(M2n)
r] = IE

[
(q/p)rS2n

]
=

n∑
k=−n

(q/p)2krP(S2n = 2k)

=
n∑

k=−n

 2n
n+ k

(q/p)2krpn+kqn−k

=
2n∑
k=0

2n
k

(q/p)2(k−n)rpkq2n−k

= (q/p)−2nrq2n
2n∑
k=0

2n
k

((q/p)2r−1)k

= (p(q/p)r + q(p/q)r)2n
MH3512 AY19-20
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=

2n∏
k=1

IE
[
(q/p)(Sk+1−Sk)r

]
,

hence by Problem 10.6-(e), for all n > 0 and r > 1 we have

P

(
max

k=0,1,...,n
Mk > x

)
6

IE[(Mn)r]

xr

=
(p(q/p)r + q(p/q)r)2n

xr
, x > 0.
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Figure S.23: Supremum deviation probability with n = 7 and p = 0.4.
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"734nSim=99999;p=0.4;q=1-p;n=7;a=q/p;r=1;prob=rep(0,2*n+2)
for (i in (-n):(n+1)){for (j in 1:nSim){
M<-a^cumsum(2*rbinom(n,1,p)-1);color="blue"
if (max(M)>=a^i) {prob[n+1+i]=prob[n+1+i]+1;color="red"}
if ((j%%10000)==0){
plot(seq(0,n),c(1,M), xlab = "time", xlim=c(0,n), ylim = c(0,a^(n-1)), lwd = 3, ylab = "", type = "p",pch=19,col = color,main

='',axes=FALSE)
axis(1,pos=0);axis(2,pos=0);lines(seq(0,n),c(1,M),col = color,lwd=2);text(-0.1,a^i, paste("x"))
text(3,8,paste(prob[n+1+i],"/",j,"=",format(prob[n+1+i]/j,digits=4)),col=color)
lines(seq(0,n),rep(a^i,n+1),col = "black",lty = 2, lwd = 2);Sys.sleep(0.5)}}
prob[n+1+i]=prob[n+1+i]/nSim}
x=a^seq(-n,n+1)
plot(x,prob,type="p",pch=19,lwd=3,col="red",xlab="x",ylim=c(0,1),ylab="probability",main="",axes=FALSE)
lines(x,prob,col="red",lwd=2)
lines(x,(p*a^r+q*(p/q)^r)^(2*n)/x^r,type="p",pch=19,lwd=3,col="blue",main="")
lines(x,(p*a^r+q*(p/q)^r)^(2*n)/x^r,lwd=2,col="blue",main="")
axis(1, pos=0);axis(2, pos=0);
for (i in 0:(n+1)){segments(x0=a^i,y0=prob[n+1+i],x1=a^i,(p*a^r+q*a^(-r))^(2*n)/a^(i*r),col="black")}

Chapter 11 - Spatial Poisson Processes
Exercise 11.1 We note that Nt can be constructed as Nt(ω) = ω([0, t]), and by (11.1.2) we find that given {NT = k}, the
distribution of (T1, T2, . . . , Tk) is uniform on

{(t1, t2, . . . , tk) : 0 6 t1 6 · · · 6 tk 6 T}.

This yields
IE[T1 | NT = 2] =

2
T 2

w T

0

w y

0
xdxdy =

1
T 2

w T

0
y2dy =

T

3
,

and
IE[T2 | NT = 2] =

2
T 2

w T

0
y

w y

0
dxdy =

2
T 2

w T

0
y2dy =

2T
3

,

and we check that
IE[T1 + T2 | NT = 2] = T =

2
T

w T

0
xdx,

∗The animation works in Acrobat Reader on the entire pdf file. MH3512 AY19-20
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Figure S.24: Martingale supremum as a function of time.∗

which is consistent with the fact that the (unordered) locations of the two jump times are inform of [0, T ] given that NT = 2, cf.
(11.1.2) page 433.

On the other hand, by the memoryless property of the standard Poisson process we have

IE[T3 | NT = 2] = T + IE[T1 | NT = 0] = T +
1
λ

.

Exercise 11.2 The probability that there are 10 events within a circle of radius 3 meters is

e−9πλ(9πλ)
10

10!
= e−9π/2(9π/2)10

10!
' 0.0637.
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"736Exercise 11.3 The probability that more than two living organisms are in this measured volume is

P(N > 3) = 1−P(N 6 2) = 1− e−10θ
1 + 10θ+

(10θ)2

2


= 1− e−6

1 + 6 +
62

2

 = 1− 25e−6 ' 0.938.

Exercise 11.4 Let XA, resp. XB, the number of defects found by the first, resp. second, inspection. We know that XA and XB are
independent Poisson random variables with intensities 0.5, hence the probability that both inspections yield defects is

P(XA > 1 and XB > 1) = P(XA > 1)P(XB > 1)
= (1−P(XA = 0))(1−P(XB = 0))
= (1− e−0.5)2 ' 0.2212.

Exercise 11.5 The number XN of points in the interval [0,λ] has a binomial distribution with parameter (N ,λ/N), i.e.

P(XN = k) =

N
k

  λ
N

k 1−
λ

N

N−k , k = 0, 1, . . . ,N ,

and we find

lim
N→∞

P(XN = k) =
λk

k!
lim
N→∞


1−

λ

N

N−k k−1∏
i=0

N − i
N

 = e−λ
λk

k!
,

which is the Poisson distribution with parameter λ > 0.

Exercise 11.6
a) Based on the area πr2 = 9π, this probability is given by

e−9π/2(9π/2)10

10!
.

b) This probability is

e−9π/2(9π/2)5

5!
× e−9π/2(9π/2)3

3!
.

MH3512 AY19-20



"737c) This probability is

e−9π (9π)
8

8!
.

d) Since the location of points are uniformly distributed by (11.1.2), the probability that a point in the diskD((0, 0), 1) is located in the
subdisk D((1/2, 0), 1/2) is given by the ratio π/4/π = 1/4 of their surfaces. Hence, given that 5 items are found in D((0, 0), 1),
the number of points located within D((1/2, 0), 1/2) has a binomial distribution with parameter (5, 1/4), cf. (B.10) in the solution
of Exercise 1.6 and Exercise 9.2-(d), and we find the probability

5
3

(1/4)3(3/4)2 =
45

512
' 0.08789.

Exercise 11.7 ([WSL12]) By the moment identity Relation (11.4.1) we have

IE
∣∣∣∣∣∣
Sn− λn√

n

∣∣∣∣∣∣
p = n−p/2

p∑
k=0

(nλ)kS2(p, k) = n−p/2
p/2∑
k=0

(nλ)kS2(p, k)

= n−p/2
p/2∑
k=0

(nλ)kpk = n−p/2(npλ)
1+p/2− 1

npλ− 1

6
(pλ)1+p/2

pλ− 1/n
< Cp,

where Cp > 0 is a finite constant.

Exercise 11.8

a) We have

L′(s) =
w

X
f(x)(esf(x)− 1)σ(dx) IEPXσ

[
exp

(
s

w ∞
0
f(y)(dNy − dy)

)]

= s
w

X
|f(x)|2

esf(x)− 1
sf(x)

σ(dx) IEPXσ

[
exp

(
s

w ∞
0
f(y)(dNy − dy)

)]

6
esK − 1
K

w

X
|f(x)|2σ(dx) IEPXσ

[
exp

(
s

w ∞
0
f(y)(dNy − dy)

)]
MH3512 AY19-20



"738
= α2esK − 1

K
IEPXσ

[
exp

(
s

w ∞
0
f(y)(dNy − dy)

)]
= α2esK − 1

K
L(s),

which shows that
L′(s)

L(s)
6 h(s) := α2esK − 1

K
, s ∈ R+.

b) We have

logL(t) = logL(0) +
w t

0
d logL(s)

6
w t

0

L′(s)

L(s)
ds

6
w t

0
h(s)ds,

hence
L(t) 6 exp

(w t

0
h(s)ds

)
= exp

α2
w t

0

esK − 1
K

ds

 , t ∈ R+.

c) By the Chebyshev inequality we have

PX
σ

(w ∞
0
f(y)(dNy − dy) > x

)
= IEPXσ

[
1{

r∞
0 f(y)(dNy−dy)>x}

]
6 e−tx IEPXσ

[
1{

r∞
0 f(y)(dNy−dy)>x} exp

(
t
w ∞

0
f(y)dNy

)]
6 e−tx IEPXσ

[
exp

(
t
w ∞

0
f(y)dNy

)]

6 exp
(
−tx+

w t

0
h(s)ds

)

6 exp
−tx+ α2

w t

0

esK − 1
K

ds


= exp

−tx+
α2

K2(e
tK − tK − 1)

 ,
MH3512 AY19-20



"739which also yields

P
(w ∞

0
f(y)(dNy − dy) > x

)
6 exp

−tx+ α2
w t

0

esK − 1
K

ds

 .

d) Minimizing the above term in t with t = K−1 log(1 +Kx/α2) shows that

PX
σ

(w ∞
0
f(y)(dNy − dy) > x

)
6 exp

 x
K
−

 x
K

+
α2

K2

 log
1 +

xK

α2


6 exp

− x

2K
log

1 +
xK

α2


=

1 +
xK

α2

−x/2K

.

Chapter 12 - Reliability and Renewal Processes
Exercise 12.1

a) We have
Fβ(t) = P(τ < t) =

w t

0
fβ(x)dx = β

w t

0
xβ−1e−xβdx = −

[
e−xβ

]t
0
= 1− e−tβ,

t ∈ R+.

b) We have
R(t) = P(τ > t) = 1− Fβ(t) = e−tβ, t ∈ R+.

c) We have

λ(t) = −
d

dt
logR(t) = βtβ−1 t ∈ R+.

d) By (12.3.1) we have
IE[τ ] =

w ∞
0
R(t)dt =

w ∞
0

e−tβdt.

In particular this yields IE[τ ] =
√
π/2 when β = 2.
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complement rule, 26
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set, 188
state, 149, 188, 256, 287

absorption
probability, 391
time, 195, 392

accepting state, 230
accessible state, 243
action-value function, 237
adjacency matrix, 145
algorithm

Baum-Welch, 185, 551
EM, 185

aperiodic
chain, 257
state, 256, 266, 272, 274, 287

aperiodicity, 256, 274

backward Kolmogorov equation, 361
backward optimization, 598
balance condition, 269, 377, 639
Baum-Welch algorithm, 185, 551
Bellman equation, 226, 238

Bernoulli
distribution, 62
random walk, 106

Bernoulli distribution, 40
Bernoulli-Laplace chain, 175, 289
Bessel function, 720
binary classification, 185
binomial

coefficient, 455
distribution, 40, 110
identity, 456

birth and death process, 352, 383
birth process, 346
Boltzmann distribution, 308, 671
boundary condition, 71, 86
branching process, 310

subcritical, 318
supercritical, 317

Brownian motion, 15

Cauchy
distribution, 36
process, 18

cellular automata, 230
centered random variable, 409
central moments, 439
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"741Cesàro mean, 132
characteristic

equation, 75, 103
function, 433

class
communicating, 244
recurrent, 246, 248

class property, 247, 250, 256
classification of states, 242
code

Matlab, 283, 634
communicating

class, 244
state, 242, 244

compound Poisson process, 17
conditional

expectation, 46
probability, 28

conditional expectation, 407
conditioning, 28
continuous-time Markov chain, 338, 345
convolution equation, 112, 134, 212
cookie, 136, 139, 520, 524
counting process, 338
Cox process, 451
critical (branching process), 317
cumulants, 60, 435
cumulative distribution function, 34

joint, 37

death process, 350
density

function, 33
marginal, 38

detailed balance, 285, 298, 308

deviation inequalities, 442
diagonalization, 161, 371
Dirichlet problem, 190
discrete distribution, 40
discrete-time

Markov chain, 141
martingale, 408

distance from stationarity, 303
distribution

Bernoulli, 40
binomial, 40, 110
Boltzmann, 308, 671
Cauchy, 36
discrete, 40
Erlang, 343
exponential, 35
gamma, 36
Gaussian, 35
geometric, 41
zero-modified, 213

invariant, 148, 270, 272, 275
limiting, 163, 164, 265, 266, 374, 376
lognormal, 36
marginal, 50
negative binomial, 41, 179, 328, 335, 470
Pascal, 41
phase-type, 178
Poisson, 41
power tail, 313
Skellam, 720
stationary, 268, 284, 299, 376, 398
uniform, 35
Weibull, 453

dominated convergence, 420 MH3512 AY19-20



"742Doob-Meyer decomposition, 426
double down, 727
dynamic programming, 225, 234, 597, 598

Ehrenfest chain, 151, 288, 299, 620
elephant random walk, 174
EM algorithm, 185
embedded chain, 385
emission probabilities, 172, 182
equation

characteristic, 75, 103
convolution, 112, 134, 212
homogeneous, 90, 96
Kolmogorov (backward), 361
Kolmogorov (forward), 361, 369, 378, 404
partial differential, 404

equivalence relation, 243
ergodic

state, 256, 287
theorem
continuous time, 374, 381
discrete time, 167, 279

Erlang
distribution, 343

ERW, 174
event, 23
excited random walk, 136, 139, 520, 524
expectation, 42, 331

conditional, 46
exponential distribution, 35, 63, 337, 344, 363, 364, 397, 450
exponential series, 455
extinction probability, 318, 331

factorial moment, 59, 544
failure rate function, 449

failure time, 452
filtration, 406
first step analysis, 70, 88, 96, 155, 187, 203, 226, 291, 320, 336,

392, 473, 495, 567, 574, 585, 635, 696
forward Kolmogorov equation, 361, 369, 378, 404
front running, 399

gambling process, 65, 158
gamma distribution, 36
gamma function, 36
gamma process, 17
Gaussian

distribution, 35
generating function, 56, 114, 323, 404
geometric

distribution, 41
zero-modified, 213

series, 69, 206, 456
sum, 455

GridWorld, 234

hidden Markov, 172, 181, 544
high-frequency trading, 399
hitting

probability, 187, 331
time, 195

HMM, 185
homogeneous equation, 90, 96

increment
independent, 144, 340, 346, 409, 426
stationary, 340

independence, 28, 30, 33, 39, 41, 48, 59, 466
independent increments, 144, 340, 346, 409, 426
indicator function, 31, 455 MH3512 AY19-20



"743infimum, 41, 85
infinitesimal generator, 360, 398
information flow, 407
intensity parameter, 341
invariant distribution, 148, 270, 272, 275
inverse

Gaussian process, 19
temperature, 308

IPython notebook, 167, 170, 330, 374, 385
irreducible, 244, 266, 272, 277, 287, 354
Ising model, 305

joint
cumulative distribution function, 37
probability density function, 37

kernel
potential, 216

Kolmogorov equation
backward, 361
forward, 361, 369, 378, 404

law
of total expectation, 50, 196
of total probability, 26, 30, 50, 143, 145, 155, 188, 252, 357

layering, 399
lazy random walk, 96
limiting distribution, 163, 164, 265, 266, 374, 376

Bernoulli-Laplace chain, 289
Ehrenfest chain, 288
success runs chain, 288

lognormal
distribution, 36

marginal
density, 38

distribution, 50
Markov

decision process, 225, 234, 597
hidden, 172, 181, 544
property, 141, 196, 345
strong, 220, 338, 344, 350, 636

Markov chain, 141
Bernoulli-Laplace, 175, 289
continuous time, 338, 345
discrete time, 141
embedded, 385
irreducible, 244, 266, 272, 277, 287
Monte Carlo, 285
recurrent, 246, 266
reducible, 244
regular, 266, 287
reversible, 285, 298
success runs, 176, 264, 288
two-state, 160, 192, 198, 205, 250, 266, 272, 323, 360, 369,

374, 386, 402, 451
martingale, 423, 726

discrete time, 408
submartingale, 415, 426, 727
supermartingale, 731

Matlab, 283, 634
matrilineality, 335
maze, 206, 221
MCMC, 285
MDP, 225, 234, 597
MDPtoolbox, 238, 240
mean

game duration, 85, 419
hitting time, 331, 398
number of returns, 116, 211 MH3512 AY19-20



"744recurrence time, 254
return time, 203
time to failure, 452

memoryless property, 349, 449
Metropolis algorithm, 285
mixing time, 304
model

hidden Markov, 172, 181, 544
moment, 60, 435

generating function, 433
monotone convergence, 420

natural logarithm, 138, 349
negative

binomial distribution, 41, 179, 328, 335, 470
inverse Gaussian process, 20

null recurrent, 255, 287
number of returns, 116, 211

Octave, 283, 634
order book, 399
PageRank™, 302
partial differential equation, 404
partition, 30, 438
Pascal distribution, 41
Pascal triangle, 652
patrilineality, 335
pattern recognition, 227
periodicity, 256
phase-type distribution, 178
Poisson

central moments, 439
compound process, 17
cumulants, 435
distribution, 41, 63
moments, 435
process, 16, 338, 356, 400, 431, 450
transformation, 436

stochastic integral, 433
Poisson moments, 439

policy, 226, 234
polylogarithmic, 313
population genetics, 226
positive recurrence, 255, 272, 277, 287

Bernoulli-Laplace chain, 289
Ehrenfest chain, 288
success runs chain, 288

potential kernel, 216
power tail distribution, 313
probability

absorption, 391
conditional, 28
density function, 33
joint, 37

distribution, 33, 268
extinction, 318
generating function, 56, 314, 469
measure, 26
ruin, 68, 415
space, 21

problem
Dirichlet, 190

process
birth, 346
birth and death, 352, 383
branching, 310
Cauchy, 18
compound Poisson, 17
counting, 338
Cox, 451
death, 350
gambling, 65, 158
gamma, 17
inverse Gaussian, 19
negative inverse Gaussian, 20
Poisson, 16, 338, 356, 400, 431, 450
renewal, 452
spatial Poisson, 431
stable, 18
stopped, 412
variance gamma, 19

Python code, 167, 170, 330, 374, 385

R code, 44, 48, 167, 170, 185, 245, 306, 330, 344, 374, 385, 622
R package

HMM, 185
markovchain, 245
MDPtoolbox, 238, 240 MH3512 AY19-20



"745random
variable, 30
walk, 106, 134, 143, 515

random sum, 52, 463
random walk

elephant, 174
excited, 136, 139, 520, 524

range process, 132
rank aggregation, 300
rebound, 100
recurrence, 134, 515
recurrent, 246

class, 246, 248
null, 255
positive, 255
random walk, 134
state, 246, 266, 287

reducible, 244
reflected path, 128, 503, 505
reflection principle, 128, 503, 505
reflexive (relation), 243
regular transition matrix, 266, 287, 666
reinforcement learning, 234
relation

equivalence, 243
reflexive, 243
symmetric, 243
transitive, 243

reliability function, 449
renewal process, 452
resolvent, 216
return

probabilities, 211
time, 110, 203

reversibility, 297
condition, 285

reversible Markov chain, 285, 298
ruin probability, 68, 415

search engine, 300, 302
second chance, 100
semigroup, 354

property, 357
sink state, 230
Skellam distribution, 720
snake

and ladders, 154, 216
game, 173

spatial Poisson process, 431
spin, 305
spoofing, 399
St. Petersburg paradox, 45, 92, 121
stable process, 18
state

absorbing, 188, 256, 287
accepting, 230
accessible, 243
aperiodic, 256, 266, 272, 274, 287
communicating, 242, 244
ergodic, 256, 287
null recurrent, 255, 287
positive recurrent, 255, 272, 277, 287
recurrent, 246, 266, 287
sink, 230
transient, 248, 287

stationary
distribution, 268, 284, 376, 398
increments, 340

stationary distribution, 299
Bernoulli-Laplace chain, 289
Ehrenfest chain, 288
success runs chain, 288

stickiness, 166
Stirling

approximation, 130, 135, 276
number, 439

stochastic dynamic programming, 225, 234, 597
stopped process, 412
stopping time, 410

theorem, 413
streak (winning), 127
strong Markov property, 220, 338, 344, 350, 636
strongly connected (graph theory), 243
subcritical, 318
success runs Markov chain, 176, 264, 288
supercritical, 317
survival probability, 448
symmetric (relation), 243
synchronizing automata, 230

telescoping sum, 79, 131, 132, 276
thinning, 62, 466
time homogeneous, 68, 144, 270, 354
time series, 14
tower property, 50, 54, 408, 409
trading, 399 MH3512 AY19-20



"746transience, 248
transient state, 248, 287
transition

matrix, 144
semigroup, 354

transitive (relation), 243
two-state Markov chain, 160, 192, 198, 205, 250, 266, 272, 323, 360, 369, 374, 386, 402,

451

uniform distribution, 35
unsupervised learning, 181
utility function, 198, 225

value function, 238
variance, 51, 59

gamma process, 19
voter model, 305

Weibull distribution, 453
winning streaks, 127
Wright-Fisher model, 226

zero-modified distribution, 213
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library(tcltk) 

# Number of time steps 
N=1000 

# Time horizon 
T=1.0 

# Length of time step 
h=T/N 

# Dimension of the transition matrix
dim=5 
 
# Definition of the identity matrix 
I=matrix(c(
1,0,0,0,0, 
0,1,0,0,0, 
0,0,1,0,0, 
0,0,0,1,0, 
0,0,0,0,1 
),nrow=dim,ncol=dim,byrow=TRUE)

# Definition of the infinitesimal generator 
Q=matrix(c(
-40,40,0,0,0, 
20,-40,20,0,0, 
0,10,-30,20,0, 
0,0,20,-60,40,
0,0,0,20,-20 
),nrow=dim,ncol=dim,byrow=TRUE)

# Definition of the transition matrix
P=I+h*Q 

A=array(2);
B=array(2);
C=array(2);

Y=array(N+1);

X=array(N+1); for(l in seq(1,N+1)) { X[l]=l-1; }

B[1]=2
B[2]=2

split.screen(c(1,1)) 
 
A[1]=0;A[2]=h;

screen(1,FALSE) 
plot(A,B-1,type="o", xlim=c(0,T),ylim=c(0,4),xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i",col="red", main = "Birth and death process - embedded chain",cex=1.2,bty="n")

for(l in seq(0:N))
{
A[1]=(l-1)*h;
A[2]=A[1]+h;
B[1]=B[2];
B[2]=sample(dim,size=1,prob=P[B[1],])

screen(1,FALSE)

plot(A,B-1,type="o", xlim=c(0,T),ylim=c(0,4),xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i",col="black", main = "Birth and death process - embedded chain",cex=0.4,bty="n")

if (B[2]!=B[1]) {alarm();
screen(1,FALSE)
C[1]=B[2];C[2]=B[2]
plot(A,C-1,type="o", xlim=c(0,T),ylim=c(0,4),xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i",col="red", main = "Birth and death process - embedded chain",cex=1.2,bty="n")
} 

axis(2,pos=0,at=seq(0,4,1)) 

axis(1,pos=0,at=seq(0,T,T/10),outer=TRUE) 

Sys.sleep(0.02) 

} 




library(tcltk) 

# parameter of the geometric distribution 
p=0.5

# Maximum number of time steps 
N=10000 

A=array(10001);

A[1]=10

M=A[1]

m=0;m0=0;

split.screen(c(1,1)) 
 
for(l in seq(1:N))
{
if (A[l]>0) 
{ 
A[l+1]=0
for(lll in seq(1:A[l])) 
{ 
A[l+1]=A[l+1]+rgeom(1,1-p)
} 
}

if (A[l]==0) {A[l+1]=0;m=m+1}

print(l+1)
print(A[l+1])

if (A[l+1]==0 && A[l]>0) {alarm();m0=l}

# if (A[l+1]>0) {tkbell()}

if (A[l+1]>M) {M=A[l+1]}

screen(1,FALSE)

#tkbell()

par(bg = "white")

plot(0:l,A,type="o", xlim=c(0,max(100,l)),ylim=c(0,max(40,M)), xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i",col="blue", main = "Branching process",bty="n")

axis(2,pos=0,at=seq(0,max(40,M),max(1,floor(max(40,M)/10))))

axis(1,pos=0,at=seq(0,max(100,l),max(1,floor(max(100,l)/10))),outer=TRUE)

Sys.sleep(0.4)
 
if (m>5+m0*0.2) {break} 

} 

dev.copy(png,'branching_rescaled.png')
dev.off()



library(tcltk) 

a=0.2; b=0.4;

# Dimension of the transition matrix
dim=5 
 
# Definition of the transition matrix
P=matrix(c(
0.0,0.5,0.0,0.5,0.0,
0.2,0.4,0.0,0.3,0.1,
0.3,0.2,0.1,0.3,0.1,
0.2,0.4,0.1,0.2,0.1,
0.2,0.0,0.0,0.1,0.7
),nrow=dim,ncol=dim,byrow=TRUE)

# Number of time steps 
N=100 

Z=array(N+1);

A=array(2);
B=array(2);

for(ll in seq(1,100)) {

Y=array(N+1);

X=array(N+1); for(l in seq(1,N+1)) { X[l]=l-1; Z[l]=Z[l]-1}

B[1]=2
B[2]=2

split.screen(c(1,1)) 
 
for(l in seq(0:1000))
{
A[1]=l-1;
A[2]=A[1]+1;
B[1]=B[2];
B[2]=sample(dim,size=1,prob=P[B[1],])
print(B[1]) 

screen(1,FALSE)

tkbell()

plot(A,B-1,type="o",lwd=2,col="blue",xlim=c(1,100),ylim=c(0,4),xlab="", ylab="", yaxt="n",xaxt="n",xaxs="i", main = "5-state Markov chain",bty="n")

axis(2,pos=1,at=seq(0,4,1)) 

axis(1,pos=0,at=seq(0,100,10),outer=TRUE) 

Sys.sleep(0.4)
 
} 

} 




a=0.2; b=0.4;

# Dimension of the transition matrix
dim=2 
 
# Definition of the transition matrix
P=matrix(c(1-a,a,b,1-b),nrow=dim,ncol=dim,byrow=TRUE)

# Number of time steps 
N=100 

Z=array(N+1);

for(ll in seq(1,1000)) {

Z[1]=sample(dim,size=1,prob=P[2,])

# Random simulation of Z[j+1] given Z[j] 
for (j in seq(1,N)) Z[j+1]=sample(dim,size=1,prob=P[Z[j],])

Y=array(N+1);

S=0; 

# Computation of the average over the l first steps 

for(l in seq(1,N+1)) { Z[l]=Z[l]-1;  S=S+Z[l]; Y[l]=S/l; }

X=array(N+1); for(l in seq(1,N+1)) { X[l]=l-1; }

par(mfrow=c(2,1))

plot(X,Y,type="l",yaxt="n",xaxt="n",xlim=c(0,N),xlab="",ylim=c(0,1),ylab="",xaxs="i",col="black",main="",bty="n")

segments( 0 , a/(a+b), N, a/(a+b)) 

axis(2,pos=0,at=c(0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0))

axis(1,pos=0,at=seq(0,N,10),outer=TRUE) 

plot(X,Z,type="o",xlab="",ylab="",xlim=c(0,N),yaxt="n",xaxt="n",xaxs="i",col="black",main="",pch=20,bty="n")

axis(1,pos=1,at=seq(0,N+1,10),outer=TRUE,padj=-4,tcl=0.5) 
axis(1,pos=0,at=seq(0,N+1,10),outer=TRUE) 
axis(2,las=2,at=0:1)
 
readline(prompt = "Pause. Press <Enter> to continue...") 

} 




a=20; b=40;

# Number of time steps 
N=1000 

# Time horizon 
T=1.0 

# Length of time step 
h=T/N 

# Dimension of the transition matrix
dim=2 
 
# Transition matrix P = I + hQ over a small time interval 
P=matrix(c(1-a*h,a*h,b*h,1-b*h),nrow=dim,ncol=dim,byrow=TRUE)

Z=array(N+1);

for(ll in seq(1,N)) {

Z[1]=sample(dim,size=1,prob=P[2,])

# Random simulation of Z[j+1] given Z[j] 
for (j in seq(1,N)) Z[j+1]=sample(dim,size=1,prob=P[Z[j],])

Y=array(N+1);

S=0; 

# Computation of the average over the l first steps 

for(l in seq(1,N+1)) { Z[l]=Z[l]-1;  S=S+Z[l]; Y[l]=S/l; }

X=array(N+1); for(l in seq(1,N+1)) { X[l]=(l-1)*T/N; }

par(mfrow=c(2,1))

plot(X,Z,type="o",xlab="",ylab="",xlim=c(0,T),yaxt="n",xaxt="n",xaxs="i",col="black",main="",pch=20,cex=0.4,bty="n")

axis(1,pos=1,at=seq(0,T,T/10),outer=TRUE,padj=-4,tcl=0.5) 
axis(1,pos=0,at=seq(0,T,T/10),outer=TRUE) 
axis(2,las=2,at=0:1)

plot(X,Y,type="l",yaxt="n",xaxt="n",xlim=c(0,T),xlab="",ylim=c(0,1),ylab="",xaxs="i",col="black",main="",bty="n")

segments( 0 , a/(a+b), N, a/(a+b)) 

axis(2,pos=0,at=c(0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0))

axis(1,pos=0,at=seq(0,T,T/10),outer=TRUE) 

readline(prompt = "Pause. Press <Enter> to continue...") 

} 

dev.off() 


{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "%matplotlib notebook\n",
    "from pylab import *\n",
    "import time\n",
    "import numpy as np\n",
    "import random as rm\n",
    "import matplotlib \n",
    "import matplotlib.pyplot as plt \n",
    "\n",
    "# Number of time steps \n",
    "N=500 \n",
    "\n",
    "# Time horizon \n",
    "T=1.0 \n",
    "\n",
    "# Length of time step \n",
    "h=T/N \n",
    "\n",
    "I = [[1,0,0,0,0],\n",
    "    [0,1,0,0,0],\n",
    "    [0,0,1,0,0],\n",
    "    [0,0,0,1,0],\n",
    "    [0,0,0,0,1]]\n",
    "\n",
    "Q = [[-40.0,40.0,0.0,0.0,0.0],\n",
    "    [20.0,-40.0,20.0,0.0,0.0],\n",
    "    [0.0,10.0,-30.0,20.0,0.0],\n",
    "    [0.0,0.0,20.0,-60.0,40.0],\n",
    "    [0.0,0.0,0.0,20.0,-20.0]]\n",
    "\n",
    "# Definition of the transition matrix\n",
    "P=I+h*np.array(Q) \n",
    "\n",
    "A = np.empty(2)\n",
    "B = np.empty(2, dtype=int)\n",
    "C = np.empty(2, dtype=int)\n",
    "\n",
    "X = np.empty(N)\n",
    "Y = np.empty(N, dtype=int)\n",
    "\n",
    "for i in range(0,N): X[i]=i\n",
    "\n",
    "B[0]=2\n",
    "B[1]=2\n",
    "\n",
    "def path(axarr):\n",
    "    global l,A,B\n",
    "    A[0]=(l-1)*h;\n",
    "    A[1]=A[0]+h;\n",
    "    B[0]=B[1];\n",
    "    B[1]=0;\n",
    "    B[1]=np.random.choice([0,1,2,3,4],p=P[B[0]])\n",
    "    axarr.plot(A,B,marker='.',markersize = 4,color=\"blue\")\n",
    "    if (B[1]!=B[0]):\n",
    "        C[0]=B[1];C[1]=B[1]\n",
    "        axarr.plot(A,C,marker='o',markersize = 8,color=\"red\")\n",
    "    matplotlib.pyplot.yticks([0,1,2,3,4])\n",
    "    matplotlib.pyplot.xlim((0,1))\n",
    "    l=l+1\n",
    "    ff.canvas.draw()\n",
    "                           \n",
    "ff, axarr = plt.subplots(1, sharex=True,figsize=(12,10))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "l=0\n",
    "for f in range(N):\n",
    "    path(axarr)\n",
    "    time.sleep(0.0)"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.1"
  },
  "widgets": {
   "state": {},
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}



{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "from IPython.display import HTML\n",
    "\n",
    "HTML('''<script>\n",
    "code_show=true; \n",
    "function code_toggle() {\n",
    " if (code_show){\n",
    " $('div.input').hide();\n",
    " } else {\n",
    " $('div.input').show();\n",
    " }\n",
    " code_show = !code_show\n",
    "} \n",
    "$( document ).ready(code_toggle);\n",
    "</script>\n",
    "<form action=\"javascript:code_toggle()\"><input type=\"submit\" value=\"Click here to toggle on/off the raw code.\"></form>''')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "%matplotlib notebook\n",
    "from pylab import *\n",
    "import time\n",
    "import numpy as np\n",
    "import random as rm\n",
    "import matplotlib \n",
    "import matplotlib.pyplot as plt \n",
    "\n",
    "# parameter of the geometric distribution \n",
    "p=0.5\n",
    "\n",
    "N=100\n",
    "A = np.empty(2, dtype=int)\n",
    "B = np.empty(2, dtype=int)\n",
    "  \n",
    "def path(axarr):\n",
    "    global l,A,B\n",
    "    A[0]=l-1;\n",
    "    A[1]=A[0]+1;\n",
    "    B[0]=B[1];\n",
    "    B[1]=0;\n",
    "    if (B[0]>0): \n",
    "        for k in range(1,B[0]): \n",
    "            B[1]=B[1]+np.random.geometric(1-p,1)-1\n",
    "    axarr.plot(A,B,marker='.',markersize = 14,color=\"blue\")\n",
    "    matplotlib.pyplot.yticks(np.arange(0, 45, 5))\n",
    "    matplotlib.pyplot.xlim((0,max(N,l)))\n",
    "    l=l+1\n",
    "    ff.canvas.draw()\n",
    "    if (B[1]==0 and B[0]>0): B[0]=0\n",
    "    time.sleep(0.2)\n",
    "                           \n",
    "ff, axarr = plt.subplots(1, sharex=True,figsize=(12,10))\n",
    "matplotlib.pyplot.yticks(np.arange(0, 45, 5))\n",
    "matplotlib.pyplot.xlim((0,N))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "l=1\n",
    "B[0]=10\n",
    "B[1]=10\n",
    "axarr.clear()\n",
    "while (B[0]>0): path(axarr)\n",
    "\n",
    "axarr.plot(range(l,max(N,l)),[0]*(N-l),marker='.',markersize = 14,color=\"blue\")\n",
    "matplotlib.pyplot.yticks(np.arange(0, 45, 5))\n",
    "matplotlib.pyplot.xlim((0,max(N,l)))\n",
    "ff.canvas.draw()"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.1"
  },
  "widgets": {
   "state": {},
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}



{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "from IPython.display import HTML\n",
    "\n",
    "HTML('''<script>\n",
    "code_show=true; \n",
    "function code_toggle() {\n",
    " if (code_show){\n",
    " $('div.input').hide();\n",
    " } else {\n",
    " $('div.input').show();\n",
    " }\n",
    " code_show = !code_show\n",
    "} \n",
    "$( document ).ready(code_toggle);\n",
    "</script>\n",
    "<form action=\"javascript:code_toggle()\"><input type=\"submit\" value=\"Click here to toggle on/off the raw code.\"></form>''')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "%matplotlib notebook\n",
    "from pylab import *\n",
    "import time\n",
    "import numpy as np\n",
    "import random as rm\n",
    "import matplotlib \n",
    "import matplotlib.pyplot as plt \n",
    "\n",
    "l=0    \n",
    "P = [[0.0,0.3,0.0,0.7,0.0],\n",
    "    [0.1,0.3,0.2,0.3,0.1],\n",
    "    [0.3,0.2,0.1,0.3,0.1],\n",
    "    [0.2,0.5,0.1,0.1,0.1],\n",
    "    [0.2,0.0,0.1,0.1,0.6]]\n",
    "N=100\n",
    "X = np.empty(N+1, dtype=int)\n",
    "Y = np.empty(N+1, dtype=int)\n",
    "for i in range(0,N):\n",
    "    X[i]=i\n",
    "    Y[i]=0\n",
    "Y[0] = 3\n",
    "\n",
    "def path(axarr):\n",
    "    global l,X,Y\n",
    "    axarr.clear()\n",
    "    matplotlib.pyplot.yticks([0,1,2,3,4])\n",
    "    axarr.plot(X[0:l+1],Y[0:l+1],marker='.',markersize = 14)\n",
    "    matplotlib.pyplot.yticks([0,1,2,3,4])\n",
    "    matplotlib.pyplot.xlim((0,N))\n",
    "    matplotlib.pyplot.ylim((0,4))\n",
    "    l=l+1\n",
    "    Y[l]=np.random.choice([0,1,2,3,4],p=P[Y[l-1]])\n",
    "    ff.canvas.draw()\n",
    "    \n",
    "ff, axarr = plt.subplots(1,figsize=(12,10))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "l=0\n",
    "for f in range(N):\n",
    "    path(axarr)\n",
    "    time.sleep(0.1)"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.1"
  },
  "widgets": {
   "state": {},
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}



{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "from IPython.display import HTML\n",
    "\n",
    "HTML('''<script>\n",
    "code_show=true; \n",
    "function code_toggle() {\n",
    " if (code_show){\n",
    " $('div.input').hide();\n",
    " } else {\n",
    " $('div.input').show();\n",
    " }\n",
    " code_show = !code_show\n",
    "} \n",
    "$( document ).ready(code_toggle);\n",
    "</script>\n",
    "<form action=\"javascript:code_toggle()\"><input type=\"submit\" value=\"Click here to toggle on/off the raw code.\"></form>''')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false,
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "from pylab import *\n",
    "import numpy as np\n",
    "import random as rm\n",
    "import matplotlib.pyplot as plt \n",
    "%matplotlib notebook\n",
    "from ipywidgets import Select,interactive,Dropdown\n",
    "from IPython.display import display\n",
    "\n",
    "N=100\n",
    "X = np.empty(N, dtype=int)\n",
    "Y = np.empty(N)\n",
    "\n",
    "ff, axarr = plt.subplots(2, sharex=True,figsize=(12,10))\n",
    "\n",
    "def path(a=0.2,b=0.4):\n",
    "    global X,Y\n",
    "    P = [[1-a,a],[b,1-b]]\n",
    "    X[0] = rm.choice([0,1])\n",
    "    S=X[0]\n",
    "    Y[0]=S\n",
    "    for i in range(1,N):\n",
    "        X[i] = np.random.choice([0,1],p=P[X[i-1]])\n",
    "        S +=X[i]\n",
    "        Y[i]=S/(i+1)\n",
    "        i += 1\n",
    "    axarr[0].clear()\n",
    "    axarr[0].set_xlim([0,N])\n",
    "    axarr[0].set_ylim([0,1])\n",
    "    axarr[0].plot(X,marker='.',markersize = 10)\n",
    "    axarr[0].set_title('Chain samples')\n",
    "    axarr[1].clear()\n",
    "    axarr[1].set_xlim([0,N])\n",
    "    axarr[1].set_ylim([0,1])\n",
    "    axarr[1].set_title('Proportion of samples at state 1')\n",
    "    axarr[1].axhline(y=a/(a+b),xmin=0,xmax=N,c=\"purple\",linewidth=2,zorder=0)\n",
    "    axarr[1].plot(Y)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false,
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "outputs": [],
   "source": [
    "interactive(path, a=(0.0, 1.0, 0.05), b=(0.0, 1.0, 0.05))"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "celltoolbar": "Slideshow",
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.1"
  },
  "widgets": {
   "state": {
    "194c9575da7648eeb3eb50de5f6eac77": {
     "views": []
    },
    "230cd7e3c7694c64855d094710ef120f": {
     "views": []
    },
    "34653b0a89a74a718d93006eead7bfc5": {
     "views": []
    },
    "3b280929354944c484121980f9dccab2": {
     "views": [
      {
       "cell_index": 2
      }
     ]
    },
    "90a55a6236c742738139721eeeaade44": {
     "views": []
    },
    "da88e4c8ba674b7f84258dc7dd8ecafc": {
     "views": []
    }
   },
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}



{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "from IPython.display import HTML\n",
    "\n",
    "HTML('''<script>\n",
    "code_show=true; \n",
    "function code_toggle() {\n",
    " if (code_show){\n",
    " $('div.input').hide();\n",
    " } else {\n",
    " $('div.input').show();\n",
    " }\n",
    " code_show = !code_show\n",
    "} \n",
    "$( document ).ready(code_toggle);\n",
    "</script>\n",
    "<form action=\"javascript:code_toggle()\"><input type=\"submit\" value=\"Click here to toggle on/off the raw code.\"></form>''')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "from pylab import *\n",
    "import numpy as np\n",
    "import random as rm\n",
    "import matplotlib.pyplot as plt \n",
    "%matplotlib notebook\n",
    "from ipywidgets import Select,interactive,Dropdown\n",
    "from IPython.display import display\n",
    "\n",
    "# Number of time steps \n",
    "N=1000 \n",
    "\n",
    "# Time horizon \n",
    "T=1.0 \n",
    "\n",
    "# Length of time step \n",
    "h=T/N \n",
    "\n",
    "X = np.empty(N)\n",
    "Y = np.empty(N, dtype=int)\n",
    "Z = np.empty(N)\n",
    "\n",
    "for i in range(0,N): X[i]=i*h\n",
    "    \n",
    "ff, axarr = plt.subplots(2, sharex=True,figsize=(12,10))\n",
    "\n",
    "def path(a=20,b=40):\n",
    "    global X,Y,Z\n",
    "    P = [[1-a*h,a*h],[b*h,1-b*h]]\n",
    "    Y[0] = rm.choice([0,1])\n",
    "    S=Y[0]\n",
    "    Z[0]=S\n",
    "    for i in range(1,N):\n",
    "        Y[i] = np.random.choice([0,1],p=P[Y[i-1]])\n",
    "        S +=Y[i]\n",
    "        Z[i]=S/(i+1)\n",
    "        i += 1\n",
    "    axarr[0].clear()\n",
    "    axarr[1].clear()\n",
    "    axarr[0].plot(X,Y,marker='.',markersize = 10)\n",
    "    axarr[0].set_title('Chain samples')\n",
    "    axarr[1].set_title('Proportion of samples at state 1')\n",
    "    plt.ylim((0,1))\n",
    "    axarr[1].axhline(y=a/(a+b),xmin=0,xmax=N,c=\"purple\",linewidth=2,zorder=0)\n",
    "    axarr[1].plot(X,Z)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "interactive(path, a=(0.0, 100, 5), b=(0.0, 100, 5))"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.1"
  },
  "widgets": {
   "state": {
    "01556756cc1f41ec9923fc15faf6ae99": {
     "views": []
    },
    "04194d9bda1746f18f59cf3af0470203": {
     "views": []
    },
    "2b3cf09e92914c82a8c871ebe54af71b": {
     "views": []
    },
    "69ff395470714add932ba50860e564f1": {
     "views": [
      {
       "cell_index": 2
      }
     ]
    },
    "853668b336ad445ab101a690004c21c0": {
     "views": []
    },
    "ba8da3ee01b442748dcd32e8a0a5044b": {
     "views": []
    }
   },
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}
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