
1362 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 11, NOVEMBER 2006

Dynamic Programming-Based Reverse Frame
Selection for VBR Video Delivery Under

Constrained Resources
Dayong Tao, Jianfei Cai, Member, IEEE, Haoran Yi, Deepu Rajan, Liang-Tien Chia, and

King Ngi Ngan, Fellow, IEEE

Abstract—In this paper, we investigate optimal frame-selection
algorithms based on dynamic programming for delivering stored
variable bit rate (VBR) video under both bandwidth and buffer
size constraints. Our objective is to find a feasible set of frames
that can maximize the video’s accumulated motion values without
violating any constraint. It is well known that dynamic program-
ming has high complexity. In this research, we propose to eliminate
nonoptimal intermediate frame states, which can effectively reduce
the complexity of dynamic programming. Moreover, we propose a
reverse frame selection (RFS) algorithm, where the selection starts
from the last frame and ends at the first frame. Compared with
the conventional dynamic programming-based forward frame se-
lection, the RFS is able to find all of the optimal results for different
preloads in one round. We further extend the RFS scheme to solve
the problem of frame selection for VBR channels. In particular,
we first perform the RFS algorithm offline, and the complexity is
modest and scalable with the aids of frame stuffing and nonoptimal
state elimination. During online streaming, we only need to retrieve
the optimal frame-selection path from the pregenerated offline re-
sults, and it can be applied to any VBR channels as long as the VBR
channels can be modeled as piecewise CBR channels. Experimental
results show good performance of our proposed algorithms.

Index Terms—Bandwidth smoothing, dynamic programming,
motion awareness, optimal frame selection, variable bit rate
(VBR) channels, VBR video delivery.

I. INTRODUCTION

AVARIABLE BIT RATE (VBR) encoded video generally
offers improved picture qualities over the corresponding

constant-bit-rate (CBR) encoded video give the same average
bit rate [1], [2]. However, the VBR video traffic is more diffi-
cult to manage because of its significant bit-rate burstiness over
multiple time scales [3]–[5]. In particular, the high peak and
bursty bit rate can substantially increase the bandwidth require-
ment for the continuous playback at the client site. To address
this problem, various bandwidth smoothing techniques [6]–[10]
have been proposed. The basic idea of bandwidth smoothing is
to prefetch data ahead of each burst so that large frames can
be transmitted earlier at a slower rate. Most existing smoothing
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techniques focus on either minimizing the bandwidth require-
ments at a given buffer size [11], [12] or minimizing the buffer
requirements under rate-constrained bandwidth conditions [13].
While bandwidth limits the amount of data that can be trans-
mitted per unit time, buffer size regulates the amount of data
that can be prefetched [14]. If both bandwidth and buffer size
are limited, lossy smoothing is unavoidable.

Given the maximum bandwidth and fixed buffer size, Ng
and Song [15] suggested to introduce playback pauses or delete
B-frames (and subsequently P-frames) when the transmission
exceeds the rate limit. Their algorithms drop frames without
content awareness and have no global optimization criteria.
In [14], Zhang et al. proposed an optimal selective frame
discard algorithm to minimize the number of frames that must
be discarded in order to meet the bandwidth and buffer size
limits. However, their algorithm does not take into account
semantic frame importance and only considers motion JPEG
videos. In [16], Zhou and Liou proposed a nonlinear frame
sampling strategy for video streaming under bandwidth and
buffer constraints. Their objective is to obtain an optimal set of
frames that can maximize the video’s salient scores. Dynamic
programming is used to find the optimal path. Nevertheless, the
authors did not consider the inter-frame dependency, and they
focused on videos with constant frame sizes.

In addition to the individual problems pointed out above,
most of the existing lossy smoothing algorithms assume CBR
channels during the smoothing process. However, in reality,
the network bandwidth such as Internet bandwidth is usually
time-varying. In [17], Feng and Liu proposed two methods
for streaming stored video over VBR channels (both methods
precompute a bandwidth smoothing plan assuming fixed buffer
size and constant bandwidth): 1) adapt the video stream on
the fly and 2) run the smoothing algorithm online under the
new bandwidth condition for the rest of the frames. However,
real-time computation of the transmission plan is too com-
plicated for timely delivery, and the situation becomes even
worse when there are many concurrent client connections. In
[18], Gan et al. proposed a more robust dual-plan bandwidth-
smoothing method for layer-encoded video streaming. Upon
bandwidth renegotiation failure, the scheme adaptively discards
the enhancement-layer data to maintain the original frame rate.

Another problem of most existing lossy smoothing algo-
rithms is that they usually do not consider the packet loss
problem caused by network congestion or physical-layer bit
corruptions. Recently, we have seen extensive studies on
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rate-distortion optimized (RDO) video streaming over lossy
channels [19]–[21]. The most representative work is the one in
[19], where Chou et al. proposed a framework for streaming
packetized media over a lossy packet network in an RDO way.
The proposed framework is able to minimize the end-to-end
distortion under a rate constraint by choosing the right packets
to transmit at a given transmission opportunity. Although the
framework is very comprehensive and theoretically sound, it
requires an accurate network delay model, which is very diffi-
cult to obtain for a network such as the Internet. In addition, the
proposed optimal packet scheduling in [19] is very complex,
which might limit its implementation in practice.

In this paper, we assume that the packet loss problem can be
well handled by the error control techniques deployed in the
transportation layer and the link layer. We only focus on optimal
lossy smoothing based on the a priori motion information in
video. By lossy smoothing, we mean that not all of the frames
can be selected due to resource constraints. Since high motion
objects are usually more perceptible to human eyes, it is desired
to select more frames in the high motion segments for better
perception. Our goal is to select a set of frames out of the video
that can deliver the maximal accumulated motion metrics while
being guaranteed transmittable and playable under bandwidth
and buffer constraints.

In particular, we first analyze the problem of delivering stored
video over CBR channels. In addition to the frame stuffing ap-
proach [16], we propose to eliminate nonoptimal intermediate
frame states in forward frame selection to reduce the computa-
tion complexity of dynamic programming. Then, we find that
the problem can also be solved by a reverse frame selection
(RFS) scheme, where the selection starts from the last frame
and ends at the first frame. The major advantage of our pro-
posed RFS is that, by running RFS just once, we can easily re-
trieve any optimal frame-selection path starting from any frame
at any buffer state. We further extend the RFS scheme to solve
the problem of streaming stored video over the VBR channels
that can be regarded as piecewise CBR channels. We only need
to run RFS times, where is the number of channel bandwidth
samples, and it can apply to any pattern of the VBR channels
with bandwidth changes occurring at any time.

The remainder of this paper is organized as follows.
Section II states the problem setting and introduces the related
work. Section III reviews our previous work for computing the
amount of motion in each frame. We describe our proposed
forward frame selection and RFS algorithms for CBR channels
in Sections IV and V. Section VI describes how to apply the
RFS scheme for the VBR channels. In Section VII, we evaluate
the performance of our proposed algorithms under both CBR
and VBR channels. Finally, Section VIII concludes this paper.

II. BACKGROUND

A. Problem Statement

Our optimal transmission plan is computed based on the
system setting shown in Fig. 1. Two separate buffers are used
at the client side for smoothing and decoding purposes, respec-
tively. The decoding buffer retrieves compressed frames from
the receiving buffer and sends the decoded pictures to video

Fig. 1. System setting for computing the optimal frame-selection path.

sink for display. We assume that, once a frame is retrieved from
the receiving buffer, its space is immediately made available
for future incoming data. In other words, we only need to
examine the receiving buffer fullness to avoid buffer overflow
and underflow when we compute the transmission plan. In
the following, without specification, buffer size means the
receiving buffer size.

In addition, for practical video coding, there usually exists
inter-frame dependencies in the coded video. For example, most
MPEG videos consist of I-, P-, and B-frames. While I-frames
are intra-coded and can be decoded independently, forward pre-
dicted P- and bidirectionally predicted B-frames need their ref-
erences for proper decoding. Thus, the encoding order is dif-
ferent from the display order. In this research, we select frames
according to the encoding order. In other words, for the re-
ceiving buffer, frames are removed one by one in their encoding
order at fixed intervals. It is the decoding buffer’s responsibility
to hold necessary references.

The transmission plan consists of the optimal frame-selection
path and the schedule for frame delivery. The schedule tells the
server the time and the period to stop transmitting data. In par-
ticular, for a long sequence of small-size frames being trans-
mitted, the client consumes less data than the amount of data
being received, which might cause buffer overflow eventually.
Under such a circumstance, the server will have to either stay
idle for some time or transmit at a reduced rate to prevent client
buffer overflow.

After describing the system setup, now we formulate the
problem. For a video sequence with frames, let denote the
size of the client buffer and denote the frame size for the th
frame, where . The problem of motion-based
optimal frame selection can be expressed as

(1)

subject to the bandwidth constraint

bandwidth/framerate (2)

and the buffer constraint for

(3)

where is the motion metric gain for selecting the th frame,
is the indicator function, which is equal to 1 if the th frame is

selected and equal to 0 otherwise, and is the amount of data
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sent within the time slot between the th frame and th
frame. Note that in this paper we consider both CBR and VBR
channels. In the cases of VBR channels, bandwidth is a variable.
However, we assume that the bandwidth does not change rapidly
and remains constant in a magnitude of a few seconds. This
is reasonable for slow-fading channels in mobile networks or
using TFRC [22] in the Internet, where the application rate is
adjusted according to a certain feedback interval. In other words,
the VBR channels we consider in this paper can be regarded as
piecewise CBR channels so that dynamic programming can be
applied.

B. Related Work on Frame Selection

Here, we describe three existing frame-selection algorithms:
the just-in-time (JIT) algorithm [14], the greedy algorithm [14],
and the Z-B diagram algorithm with frame stuffing [16], which
will be used for comparison with our proposed algorithms. Since
the original algorithms only consider intra-frame video coding,
we make some changes in order for them to be applicable with
inter-frame dependencies.

1) JIT Algorithm: The JIT algorithm [14] is probably the
most intuitive approach for frame selection. It always drops the
current frame if client buffer underflow occurs and reduces the
transmission rate when buffer overflow occurs. Consequently,
the JIT algorithm has no content awareness. Due to inter-frame
dependency, we orderly apply the JIT algorithm to different
types of frames, I, P and B, and make sure the references are
selected before we select a new frame. The computational com-
plexity of the layered JIT algorithm is .

2) Greedy Algorithm: The greedy algorithm proposed in [14]
is always trying to make the result look the best at the moment.
It selects frames according to their reward metrics, i.e., the one
currently having the largest reward metric will get selected first.
To overcome inter-frame dependency, we use weighted metric
for frame sorting, which is given by

if frame is B frame
if frame is I- or P-frame (4)

where is the index for the last frame in the current GOP.
In this way, we ensure that the reference frames are always
given greater weighted metric and thus are considered first.
However, we still need to check whether a frame’s references
have been selected or not before inserting the frame to the path.
The overall computational complexity of the greedy algorithm
is also . In addition, in this paper we introduce another
metric instead of using the original motion metric

for frame selection, since the greedy algorithm is very
sensitive to frame size.

3) Z-B Diagram: Fig. 2 shows the Z-B diagram proposed in
[16]. In particular, a discrete-time model is used at frame level
for client buffer management. Each discrete-time point along the
horizontal direction is identified by the particular frame fetched
out at that moment for decoding, and each buffer fullness level
at any time point is called a state indicated by an arrow end-
point in Fig. 2. As shown in the figure, all of the enqueue lines

Fig. 2. Z-B diagram with frame stuffing.

(slanted lines) are vertically separated by a fixed distance called
the step size and every state at each frame is on an enqueue line.
This configuration effectively bounds the number of states at
each frame by . The larger the step size, the fewer
the number of states and, hence, the less the amount of compu-
tational work. To realize the configuration, every frame’s size
must be a multiple of the step size. In the case of VBR video,
the authors [16] suggested to use the greatest common divisor
(GCD) of all the frame sizes as the step size. However, in prac-
tice, the GCD is most likely to be a very small value, which re-
sults in a large number of states at each frame time point and thus
significantly increases the computational complexity. Hence,
frame stuffing has to be used to increase the step size at the cost
of sacrificing bandwidth. For example, suppose stepsize ,
a frame size of 1009 will be stuffed with 91 dummy data to make
its size 1100. The average stuffing for a video of frames is

stepsize .

III. MOTION INFORMATION REPRESENTATION

As stated in Section II-A, a fundamental problem we need to
solve is how to represent the amount of motion for each video
frame. The common approach is to analyze the motion field and
use the motion energy to quantify the amount of motion such
as in [23]. In this paper, we apply our previous work, “Pixel
Change Map” (PCM) [24], [25], to compute the amount of mo-
tion. Compared with the approaches directly based on motion
fields, the PCM scheme is of low complexity and very easy to
implement. In fact, any frame or content classification scheme
can be used in our proposed frame-selection algorithms. The
PCM scheme by no means is the only or the best way to mea-
sure the content importance.

A. Pixel Change Map

The perception of motion content for the human visual system
relies on the intensity of the motion. By intensity, we mean how
fast a certain object moves. The faster the object moves, the
more perceptible it is to humans. As we have observed that a
higher intensity of motion would lead to a large number of pixel
changes in the video frames, the pixel change map of the frame
gives a good characterization of the motion content in the video.
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This can be also justified from the famous optical flow constraint
equation [26]

(5)

which shows that the velocity of a pixel in a video signal
is directly related to the temporal derivative , which is

approximated by the difference of adjacent frames.

B. Motion Curve

Based on the above observation, we use the simple PCMs
as the measurement of the amount of motion in video signals.
In particular, for the current frame , we compute the frame
absolute differences , where

. For each pixel in this frame, if the absolute differ-
ence is greater than a fixed threshold of 10, the corresponding
location in the PCM is set to 1. The comparison of with the
threshold is simply to undo the effect of any noise associated
with the camera or the discretization process when dealing with
digital camera. The reason we choose the threshold of 10 is that
this threshold has been found to be quite robust to noise in our
earlier work [25].

After getting the PCMs, we form a 1-D pixel change se-
quence, where the th component denoted as is the average
pixel change in the th PCM. Then, we filter this pixel change
sequence to obtain a more accurate measurement of motion
since the human’s perception of motion content in the video has
the “smoothening” effect, and the human eyes tend to smooth
the motion of the video [27]. Besides, the PCMs also contain
pixel changes due to other factors in addition to motion such
as sudden change of lighting conditions. Those pixel changes
are regarded as noise that corrupts the true measurement of the
amount of motion. To get the accurate measurement of the video
motion content according to human perception, we use filters to
remove the noise from the pixel change maps. Details on the
filter design can be found in [24] and [25].

In this paper, we simply define the motion metric gain in
(1) as , where is the filtered average pixel change
values. Using the proposed PCM scheme, we extract the “mo-
tion curves” for four common interchange format (CIF) video
sequences: 1) Akiyo, 2) Foreman, 3) Mobile, and 4) Stefan.
Fig. 3 shows the motion curves for each video separately. We
evaluate the effectiveness and accuracy of the “motion curves”
by watching the video evolving with the “motion curves.” We
find that the extracted motion curves correspond to the motion
content in the videos very well. In particular, for the Akiyo video
sequence, the video contains very little motion and thus the mo-
tion curve [Fig. 3(a)] is very close to zero. The “Foreman” video
sequence contains various amount of motion at different time,
especially when there is a large camera panning motion from
frame 175 to frame 235, which is represented as a plateau in
the motion curve [Fig. 3(b)]. For the Mobile video sequence,
which contains very smooth object motion and camera motion,
the extracted motion curve [Fig. 3(c)] is relatively flat. For the
Stefan video sequence, the motion content in the video is very
high and there is a periodical motion due the rhythm of playing
tennis. As shown in Fig. 3(d), we can see that the extracted mo-
tion curve manifests this periodical rhythm very well. At the end

of the video sequence, the player rushes towards the net and we
see a up drift of the motion curve there, which indicates the in-
creasing amount of motion.

IV. FORWARD FRAME SELECTION FOR CBR CHANNELS

After obtaining the motion metrics, here we discuss how to
maximize the reward function shown in (1) by selecting a fea-
sible set of frames, which satisfies the fixed network bandwidth
and the buffer constraints. Since each video frame is either se-
lected or discarded, this problem can be considered as a 0–1
knapsack problem [28], which can be solved by dynamic pro-
gramming. The Viterbi algorithm is a dynamic programming
algorithm often used for solving optimization problems whose
solutions depend on their subproblems [28]. It avoids overlap
computation by solving each subproblem once and saves the an-
swer to a table for future usage. At the final stage, it performs
back tracing to find the optimal path that reaches the optimal
solution.

Without using the Viterbi algorithm, theoretically the number
of possible path is , which means the computational com-
plexity grows exponentially with the number of frames. By
using the Viterbi algorithm, the complexity can be greatly
reduced to O(BN), where B represents the client buffer size.
In this section, we introduce our proposed dynamic program-
ming-based forward frame-selection algorithm, which consists
of three basic components: nonoptimal state elimination, vir-
tual states, and optimal preload. The component of nonoptimal
state elimination is for reducing the complexity of dynamic
programming. The complexity can be further decreased by
combining with the frame stuffing approach mentioned in [16].
The component of virtual states is to deal with the issue of
inter-frame dependency, and the component of optimal preload
is to find the lowest preload value for the global optimal result.

A. Viterbi Trellis

Similar to the Z-B diagram algorithm [16], we also use the
common discrete-time model at frame level for client buffer
management, as shown in Fig. 4. Let denote the buffer full-
ness level at the th state at frame . If state at frame is created
by state at frame , or in other words state at frame is di-
rectly lined with state at a previous frame , then we have the
following relation:

bandwidth/framerate

(6)

where bandwidth/framerate is the amount of data that can be
transmitted in one frame time-slot period, is buffer size, and

is the size of frame . Note that becomes a full buffer state
if buffer overflow occurs during state transition

from to . In this case, the server has to stay idle for some
time or transmit at a reduced rate in order to avoid client buffer
overflow. In addition, there is a preload level at the initial stage
just before playback starts. It is the amount of data that has been
prefetched into the client buffer. The time required to buffer
preload is called startup delay

startup delay preload/bandwidth (7)
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Fig. 3. Amount of motion per frame before and after the filtering for (a) Akiyo, (b) Foreman, (c) Mobile, and (d) Stefan.

Fig. 4. Discrete-time model for client buffer management. Each buffer fullness
level at which an arrow points is considered to be a state. All columns of states
form a trellis.

Depending on the tolerable startup delay, preload can vary in the
range of .

Let denote the accumulated motion metrics at . For
state transition from to , where is
the motion metric associated with frame . If another state
also leads to state , we resolve the “collision” with

Clearly, we always try to maximize the accumulated motion
metrics at each state. In case of a “tie,” when ,
we can arbitrarily choose one path without affecting global
optimality. Alternatively, we may want to choose the one that
selects more frames as an additional metric. In summary, a
state can be completely characterized by a five-tuple vector

, where is a pointer pointing back to the
state that creates the current one and is used for back tracing
the path at the final stage.
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Fig. 5. Illustration of a nonoptimal state.

B. Nonoptimal States

Theoretically, the number of possible states increase in an
exponential manner with the increase of frame number, which
makes the dynamic programming algorithm computationally
prohibitive. However, in this research, we find the number of
states at each frame can be largely reduced by three factors:

1) buffer size because no state can fall outside the given buffer
range;

2) inter-frame dependencies because P- and B-frames need
their reference frames for proper decoding;

3) nonoptimal states described below.
Lemma 1: For any two optimal states and at frame (an

optimal state means a state that could be included in the final
optimal path), if , then , and vice versa. In
other words, for optimal states at frame increases mono-
tonically as decreases.

Proof: Suppose and , and is on the
final optimal frame-selection path (see Fig. 5). Obviously,

and are mutually exclusive because frame can only be
selected once. Because is at a higher buffer state, the least

can do is to select the same frames that has selected from
frame until the end. The accumulated motion values of the
new path is larger than that of by . In fact,

has a better chance to select additional frames such as path
. Whatever the case is, can make the accumulated mo-

tion values larger by at least , which contradicts the
claim that is the optimal path. Hence, can never be an
optimal state. For example, the state at with
in Fig. 4 is a nonoptimal state.

The elimination of nonoptimal states can dramatically re-
duce the computation complexity because it not only reduces the
number of states at each individual frame but also prevents those
nonoptimal states from propagating into subsequent frames.

C. Virtual States

Referring to Fig. 4, we need to consider , and in
order to obtain all possible states at . This works fine for a
small set of frames within a GOP. However, it is not suitable for
I-frames in a long video sequence with numerous GOPs since
any state transition to a I-frame from any previous frame is al-
lowed. The number of possible state transitions to examine for
the I-frame in the next GOP can be potentially huge especially
when the I-frame is near to the end of the video sequence. In

Fig. 6. Illustration of virtual states that facilitate frame-to-frame state
transition.

order to avoid this inconvenient multistep “look back,” we intro-
duce the concept of “virtual state.” A virtual state at a frame is
a state where a frame selection path passes through the frame
time point without selecting frame , shown as empty endpoints
in Fig. 6. With virtual states, we only need to look back the states
at frame to get all possible states for frame .

In particular, a state at frame is carried forward and be-
comes the th virtual state at frame with the following
relations:

bandwidth/framerate (8)

(9)

if is a virtual state
pointer to if is an actual state

(10)

From the virtual states, we can easily find the corresponding
actual states by

(11)

while taking into account inter-frame dependencies. For ex-
ample, in Fig. 6, the first virtual state at points back to the
actual state at , and hence it cannot create an actual state at
because is not selected. However, this virtual state cannot
be discarded because it might create an optimal state at future
I-frames. After obtaining all of the virtual and actual states at
frame , they are jointly verified for state optimality. In other
words, states at frame , virtual or actual, must all satisfy
Lemma 1. For instance, in Fig. 6, the nonoptimal virtual state

is removed from since .
Note that eliminating also prevents it from propagating
to .

Special actions need to be taken when we apply Lemma 1 for
I-frames. Consider the following scenario:
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Fig. 7. Obtaining the optimal preload through global and local reductions on
the optimal path.

We divide all of the I-frame states into two sets: set 1 contains
the states pointing back to an actual state before , and set
2 contains the states pointing back to , or .
Obviously, only the actual states in set 2 are allowed to create
actual states in and . If we directly apply Lemma 1
to all the states in both sets 1 and 2, it is possible that an actual
state from set 2 is eliminated by a state from set 1. However, the
discarded state might create a potentially optimal state at
or . Therefore, for I-frames, we treat the two sets separately
and apply Lemma 1 within each set.

D. Optimal Preload

In the previous subsections, we have shown how to obtain the
optimal result given bandwidth, buffer size, and preload. In this
subsection, we study the case where the preload is not fixed.
It is clear that, for different preload values, the optimal results
will be different. Depending on the client’s tolerable startup
delay, the preload can vary in the range of . Intuitively,
a larger preload should yield a larger or at least equal optimal
result. The question is: given bandwidth and buffer constraints,
what is the minimum preload required to obtain the maximal
global optimal result? In other words, there exists a certain
preload level, above which we can not get a better optimal
result.

Obviously, preload is able to give the maximal global
optimal result. But the problem is how to bring the preload down
to the optimal level. In this research, we propose a two-step ap-
proach to bring down the preload level from . In particular,
in the first step we perform global reduction (GR). GR is de-
fined as the distance between the lowest state on the maximal
optimal path and the empty buffer line (Fig. 7). It is clear that we
can bring the entire maximal optimal path down by GR without
changing the global optimal result. In the second step, we per-
form local reduction (LR). The idea of LR comes from the ob-
servation that in the cases of buffer overflow we have to waste
some channel bandwidth. In fact, through reducing the preload
level, we can avoid wasting channel bandwidth or reduce the
amount of bandwidth wasted. Consider two adjacent states
and on the maximal optimal path, where is a full buffer
state. If buffer overflow occurs during the state transition from

to , the amount of LR at frame is defined as

bandwidth/framerate

where is the lowest state on the maximal optimal path up to
frame . It is clear that we can bring down the optimal path from
the first frame to frame by without affecting the global
optimal result. Note that this local reduction has no effect on the
optimal path after frame . Therefore, by jointly applying GR
and applying LR at the places of buffer overflow, we are able to
bring down the preload to the optimal level.

V. RFS FOR CBR CHANNELS

In this section, we propose an RFS scheme, which selects
frames starting from the last frame of a video sequence until its
beginning, to solve the problem of video streaming over CBR
channels.

As shown in Fig. 8(a), the symbols above the full buffer line
tell the frame type (I, P, or B) as well as its frame number in the
sequence. The real numbers below the empty buffer line are the
motion metrics associated with each frame. It is obvious that
after the client consumes the last frame, the buffer should be-
come empty. Hence, the first state at the last frame is positioned
at the empty buffer line, which we refer to as an empty buffer
state. A state is represented by the starting point of an arrow,
and all arrows are pointing upward because we can record the
accumulated motion metrics only if the arrow end is within the
full buffer line or its “buffer resource need” can be satisfied. An
upward arrow actually means consumption of the buffer data.
In contrast, reception of data during each frame slot is reflected
by the downward slanted lines between frames. In the case of
“buffer underflow,” such as that from to , an empty
buffer state will be created. This means that the amount of data
transmitted during the period is more than enough to reach the
current state, and the server needs to stay idle for some time or
reduce the transmission rate. Because an path can terminate at
any frame, if there is no empty buffer state at a frame, we will
create one such as that at .

Fig. 8(a) is not intuitive to interpret. We use a simple “buffer
mirroring” technique to make the computation easier and more
intuitive. Imagine that there is a mirror aligned with the empty
buffer line in Fig. 8(a). If we look from the full buffer line side,
we shall see a mirrored buffer model as shown in Fig. 8(b).
The buffer mirroring effect makes the computation just like
what we do in the forward frame-selection scheme except that
the selection is from the end of the video sequence to the
beginning. All of the concepts, including Lemma 1, discussed
for forward frame selection can also be applied to the mirrored
buffer model.

Note that, at the first frame, RFS generates multiple accumu-
lated motion metric gains at different states and each gain cor-
responds to the optimal result that we can get at that preload
level. In other words, RFS runs only once and gets all the op-
timal results for different start-up delays, which is very useful
for the case of multiple clients with different start-up delay re-
quirements. For those preloads that are not exactly matched in
the RFS results, we use the results of their nearby lower matched
preloads. On the contrary, the forward frame selection scheme
has to run many times in order to obtain all the optimal re-
sults for multiple start-up delay requirements, which is very
time-consuming.
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Fig. 8. Reverse Viterbi selection (a) in normal mode and (b) with buffer mirroring.

VI. RFS FOR VBR CHANNELS

For the VBR channels (piecewise constant channels), the op-
timal frame selection becomes extremely difficult since we do
not know when and how the channel is going to change in the
future., i.e., the channel variation is unpredictable. Suppose we
know the range of bandwidth variation; one possible approach
is to offline compute the optimal frame selection path according
to the middle value of the bandwidth variation range. Note that
this middle value is not the average bandwidth, which we do
not know. We can also compute the optimal path according to
the minimum (or maximal) bandwidth, but it will lead to high
channel bandwidth wasting (or high occurrence of buffer un-
derflow). During transmission, the JIT algorithm [14] is applied
for on-the-fly adaptation in response to bandwidth changes. If
the current bandwidth is larger, JIT raises buffer occupancy,
which reduces the probability of future buffer underflow. In
case of buffer underflow, JIT drops the current frame right the
way. When overflow occurs, JIT reduces the transmission rate.
Clearly, all of these approaches use the precomputed frame se-
lection path and the actual path cannot be better than the pre-
computed one. Another possible approach is to use JIT directly
without any precomputed frame-selection path, which tries to
send all of the frames without content awareness.

In this paper, we propose to use the RFS scheme for video
streaming over VBR channels. In particular, we sample the
bandwidth variation range into a finite sequence of channel
rates. For a given client buffer size, we run the RFS scheme for
each sampled channel rate. During transmission, if the starting
buffer occupancy status is and the current bandwidth is ,
we will first classify it into one of the preselected channel rates

and then retrieve the optimal frame path for the channel rate
with a starting state of . If at frame the buffer state

is and the bandwidth is changed to , we will retrieve the
optimal frame path starting at frame for the channel rate
with a starting state of . Fig. 9 shows such an example. In this
way, the global optimality is approximately preserved under
dynamic changing network conditions. The key advantage here
is that we only need to run RFS times, where is the number
of channel bandwidth samples, and it can apply to any pattern
of piecewise constant channels occurring at any time as long as
the changes are within the variation range.

Fig. 9. Optimal path switching for video streaming over VBR channels.

TABLE I
PROPERTIES OF THE FOUR MPEG-4 VIDEO TRACES

VII. EXPERIMENTAL RESULTS

A. Experimental Results of Short Videos

We conduct experiments to compare six algorithms: “OFS,”
“ ,” “Z-B,” “JIT,” “Greedy,” and “

,” where “OFS” stands for our proposed forward op-
timal frame-selection algorithm without optimal preload,
“ ” stands for our proposed forward optimal
frame selection with optimal preload, “Z-B” represents the
Z-B diagram algorithm with frame stuffing, “Greedy” rep-
resents the greedy algorithm with weighted motion metric,
and “ ” represents the greedy algorithm with
weighted ratio metric . Note that we have also obtained the
results of the reverse Viterbi algorithm. Since they are the same
as “OFS” and “ ” for the respective cases, we do not
list them out for the conciseness of this paper.

We choose four representative MPEG-4 CIF video traces to
evaluate the performance of the various algorithms. Each trace
contains 300 frames with a frame rate of 30 frames/s. They are
both encoded in the pattern: with a GOP
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Fig. 10. Selected motion metric gains under different algorithms for (a) Akiyo, (b) Foreman, (c) Mobile, and (d) Stefan.

size of 90. The Akiyo video trace contains little motion informa-
tion and is coded at very lower bit rate. The Foreman video trace
containing moderate motion is coded at a relatively lower bit
rate. The Mobile video trace containing nearly flat high motion
and complex texture is coded at high bit rate. The Stefan con-
taining the highest motion information is coded with the highest
average bit rate (see Table I). The table also shows the setting
of the buffer sizes and the bandwidth ranges for each video se-
quence. Note that, except for the “ ,” all of the other
algorithms use fixed preloads, i.e., half of the buffer sizes.

Fig. 10 shows the frame-selection results using the six dif-
ferent algorithms under different channel bandwidth. It can be
seen that the “ ” outperforms all of the other algo-
rithms especially at low bandwidth regions since it fully ex-
plores the buffer capacity. Under the fixed preload levels, our
proposed “OFS” algorithm always gives the optimal results. For

the “Z-B” algorithm, we choose step size bytes for all the
video traces. The “Z-B” performance of Stefan is only slightly
worse than “OFS” while the gap is very large for Akiyo. This
is because Stefan has a very high bit rate and the stuffed data
only occupies a small percentage of the total bandwidth whereas
for Akiyo the stuffed data severely degrades bandwidth utiliza-
tion. As expected, the selection results of the “ ”
algorithm are very close to the optimal results except at low
bandwidth regions. This is because, at low bandwidth, some
P-frames that have small motion metrics still tend to be se-
lected due to the large weights assigned to them. As a result,
the “ ” performs as poor as the “Greedy” algo-
rithm and the “JIT” algorithm at low bandwidth regions. Note
that for the “JIT” algorithm I- and P-frames are always consid-
ered first, which is equivalent to assign them “weights.” It is
surprising that the JIT that has no content awareness performs
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Fig. 11. Number of states at each frame.

better than the “Greedy” algorithm for Stefan. The reason is per-
haps that for Stefan high-motion frames have very large frame
sizes and the “Greedy” algorithm completely ignores the cost of
consuming large frames.

Fig. 11 shows the number of states at each frame for Stefan
using the “OFS” algorithm with and without the nonoptimal
state elimination, and the “Reverse Viterbi” algorithm. The
bandwidth is 600 kb/s and the buffer size is 150 kbytes. For
“OFS,” the preload is set to 75 kbytes. As shown in the figure,
the initial linear increment indicates an exponential growth
of states with the increase of the frame number (note that the
log-scale is used at the vertical axis). The curves then become
relatively constant because of the buffer size constraint. Those
discontinuous points are mainly due to inter-frame dependen-
cies. Comparing the cases with and without the nonoptimal
state elimination, we can see that there exist a huge number of
nonoptimal states. By applying the proposed nonoptimal state
elimination, we reduce the number of states at each frame by
approximately 100 times. In addition, we can observe that the
number of states for the “Reverse Viterbi” algorithm is more or
less the same as that for the “OFS.”

B. Experimental Results of Long Video

The purpose of the previous experiments is to prove the con-
cepts of our proposed algorithms, where the short test video se-
quences and the small client buffer are being used. However, in
practical applications such as VoD, the video is typically much
longer and the buffer size even in today’s mobile devices can
be much bigger. Therefore, in this section, we study the perfor-
mance of our proposed algorithms in the cases of long video and
large client buffer size.

We create a longer video sequence, where we equally choose
15 times of each of the four video traces in Table I and randomly
shuffle these sixty 300-frame traces. The generated mixed se-
quence is encoded into MPEG-4 bitstream with an average bi-
trate of 542.33 kb/s, a pattern of IPBBPBBP…, a GOP size of
60, and an accumulated motion values of 4598.21. The buffer

size we consider is in the range from 256 to 2048 kbyte. For such
a long video sequence and large buffer size, with only nonop-
timal state elimination, the computational complexity is still too
high. Thus, in addition to nonoptimal state elimination, frame
stuffing is used to further reduce complexity at the cost of sac-
rificing some bandwidth resources. Note that, in the following,
we use our proposed RFS scheme for experiments due to its low
complexity and flexibilities, and hereafter “OFS” stands for the
proposed RFS scheme.

1) Impact of Preload and Frame Stuffing: Fig. 12 shows the
optimal accumulated motion values that we can achieve under
different frame stuffing sizes and preloads with a fixed band-
width of 300 kb/s. It is obvious that the smaller the stuffing
size we use, the better performance we achieve since less band-
width is wasted. Comparing Fig. 12(a) and (b), we find that
large preloads for the smaller buffer do not lead to as propor-
tionate gains in the accumulated motion metrics as those for a
larger buffer. In addition, in the case of a 512-kbyte buffer and
the frame stuffing size of 1 byte (i.e., no stuffing), the accumu-
lated motion results stop at the preload time of a little over 4 s,
which is less than half of the largest allowable preload time,
13.65 s . On the contrary, the corresponding re-
sults in the case of 1024 kbytes buffer stop around 18 s. The stop
point is actually the point of the optimal preload, after which in-
creasing preload will not change the performance. The reason to
have a shorter optimal preload for a 512-kbyte buffer is that a
smaller buffer is more likely to incur buffer overflow at an early
stage, and once buffer overflow occurs, increasing the preload
becomes useless (see Section IV-D).

2) Effectiveness of Complexity Reduction: Here, we evaluate
the effectiveness of frame stuffing as well as nonoptimal state
elimination for reducing the complexity of dynamic program-
ming. Fig. 13 shows the average number of states per frame for
different frame-stuffing step sizes under different buffer condi-
tions. As we can see, the number of states per frame reduces
with increasing stuffing sizes. For instance, for buffer
kbytes, the number of states reduces from over 128 k at
stuffing byte (i.e., no stuffing) down to a little over 4 k
at stuffing bytes, a dramatic reduction of 32 times. How-
ever, as the number of states becomes less, further reduction by
increasing the stuffing size appears to be less significant.

The effectiveness of nonoptimal state elimination can also be
evaluated from Fig. 13. In particular, let represent the the-
oretical number of states per frame after taking the contribu-
tion of frame stuffing into account. For example, for buffer

kbytes and stuffing 200 bytes, the theoretical value is
k . Let represent the recorded

average number of states in Fig. 13. It is clear that the per-
centage calculated by indicates the contribution
from nonoptimal state elimination. Tables II and III show this
percentage of state reduction due to nonoptimal state elimina-
tion at different buffer sizes. It can be seen that with no frame
stuffing the reduction percentage can be as high as 95.79% for
buffer kbytes. However, as we increase the stuffing size,
the reduction becomes less effective. This is not surprising be-
cause frame states are spaced out by at least a distance equal to
the stuffing size. As the stuffing size increases, it becomes less
likely to create nonoptimal states. Comparing Tables II and III,
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Fig. 12. Results of the accumulated motion metrics for delivering the long VBR video under different frame stuffing sizes and preloads with a buffer size of
(a) 512 kbytes and (b) 1024 kbytes.

Fig. 13. Frame stuffing versus average number of states per frame with
bandwidth = 300 kb/s.

TABLE II
EFFECTIVENESS OF NONOPTIMAL STATE ELIMINATION

AT BUFFER = 512 kbytes

TABLE III
EFFECTIVENESS OF NON-OPTIMAL STATE ELIMINATION

AT BUFFER = 1024 kbytes

we can conclude that a larger buffer creates a smaller percentage
of nonoptimal states, and nonoptimal state elimination is more
effective for small stuffing sizes and small buffers.

Note that, although the number of states after frame stuffing
and nonoptimal state elimination is still large, we find that at
each frame many consecutive states point to the same frame to
be selected next. Therefore, in our implementation, we group
those states leading to the same next destination together and
only store the ranges of different groups. In this way, the resulted
storage overhead is actually not much.

3) Performance Comparison: Fig. 14(a) shows the results of
the accumulated motion metrics of different frame selection al-
gorithms under different bandwidth conditions, where “

” refers to our proposed optimal RFS algorithm with bytes of
frame stuffing. The observations are similar to those described
in Section VII-A. Fig. 14(b) shows the results under different
buffers. It can be seen that all the algorithms outper-
form the other three algorithms under all the buffer conditions.
We can also observe that a larger buffer such as 2048 kbytes
does not yield significant gain. This is due to the bandwidth con-
straint. In addition, it is interesting to see that the Greedy algo-
rithm has a worse performance when the buffer increases from
1024 to 2048 kbytes. The reason is perhaps that a larger buffer
allows the Greedy algorithm to select more large-size frames at
the beginning, which consumes most of the bandwidth and thus
compromises the overall gain. Note that we did not compare
with the Z-B diagram algorithm since its accumulated motion
results are the same as those for our proposed OFS at the same
stuffing size.

4) Performance of VBR Channels: We use piecewise-CBR
channels to approximate the bandwidth variations of VBR chan-
nels. Particularly, we divide the time into consecutive -second
intervals and at the beginning of each interval the bandwidth is
randomly chosen from the set: kbps.
The time interval are set to 2 and 10 seconds, representing
a fast-changing VBR channel and a slow-changing channel,
respectively.
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Fig. 14. Results of the accumulated motion metrics of different frame selection algorithms with a fixed preload of 375 kbytes (300 kb/s� 10 s). (a) Under different
bandwidth conditions with buffer = 1024 kbytes (b) Under different buffers with bandwidth = 300 kb/s.

Fig. 15. Results of the accumulated motion metrics with buffer = 1024 kbytes. (a) Under the fast-changing VBR channel. (b) Under the slow-changing VBR
channel.

Fig. 15 shows the frame selection results of different algo-
rithms over the VBR channels, where “Ave” is the algorithm
using the middle bandwidth to compute the optimal path (see
Section VI), and “UPB” is the upper bound that achieves the
global optimization by assuming the channel bandwidth vari-
ation is known a priori. It can be seen that both
and outperform JIT significantly. For the case of
the fast-changing VBR channel in Fig. 15(a), has a
better performance than OFS+200. This is because OFS is op-
timal on the condition that the new bandwidth will remain con-
stant until the end of the sequence. With the bandwidth varies
so frequently, the global optimality of the OFS is severely de-
viated. On the contrary, for the case of the slow-changing VBR
channel in Fig. 15(b), outperforms . This
is because, with less frequent bandwidth changes, the OFS can

better preserve the global optimality over longer CBR channel
segments while the algorithm is severely degraded
by the long-term low-bandwidth CBR channel segments.

VIII. CONCLUSION

In this paper, we have studied the problem of optimal frame
selection for streaming stored video over both CBR and VBR
channels using dynamic programming. Our major contributions
are threefold. First, we have proposed the elimination of nonop-
timal states, and combining with the frame stuffing it can ef-
fectively reduce the computational complexity of dynamic pro-
gramming, especially in the cases of small stuffing sizes and
small buffers. Second, we have proposed the RFS algorithm,
which can find the optimal results for any preload in one round
for CBR channels. Third, our proposed RFS algorithm has been



1374 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 11, NOVEMBER 2006

smartly extended for the VBR channels, which can be modeled
as piecewise CBR channels. Experimental results have demon-
strated that with modest complexity our proposed algorithm
achieves much better performance than the common JIT algo-
rithm, especially in the cases of slow-changing VBR channels.
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